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1 Introduction

The money used by households and firms is a combination of physical currency issued by

the central bank and liabilities of private financial institutions, most notably bank deposits.

In recent decades, it has become increasingly easy for transactions with bank deposits to be

made electronically using payment cards, online account access, and mobile apps. Money

issued by the central bank, in contrast, can generally be used only for purchases made with

physical currency or for transactions directly between commercial banks that hold reserves on

deposit at the central bank. The increased use of electronic means of payment has, therefore,

represented a decline in the use of central bank money by households and firms, and this

process has accelerated in many countries during the Covid-19 pandemic. Policy makers have

expressed concern that this decline could have negative consequences for financial inclusion,

contestability in payments services, and potentially for monetary policy as new types of

electronic money and payments services are developed.

In response to these concerns, policy makers around the world are discussing the possi-

bility of issuing central bank digital currency (CBDC). A central bank could, for example,

issue cryptographic tokens that share some of the technological features of Bitcoin or other

cryptocurrencies. Alternatively, a digital currency could be created simply by allowing house-

holds and firms to open deposit accounts at the central bank and use these accounts to make

payments in much the same way they currently use private bank deposits. Depending on

the design, a CBDC may allow central bank money to be used in a much wider range of

situations, including online and large-value transactions where the use of physical currency

is impractical. It could also allow a widely held form of central bank money to bear interest.

Academics and policy makers have begun discussing a range of issues, from technical design

features to political economy considerations, in an attempt to evaluate the potential benefits

and costs of issuing digital currency.1

One concern often raised in these discussions is that a central bank digital currency may

crowd out private bank deposits and thereby lead to disintermediation of the banking system.

If households and firms find this new option attractive, they may shift a substantial amount

of funds out of private bank deposits and into the central bank digital currency. Such a

shift could potentially raise bank funding costs and lead to a decline in bank lending and

investment. A Bank of International Settlements report (BIS, 2018) expresses concern that

“a flow of retail deposits into a CBDC could lead to a loss of low-cost and stable funding

1 Early discussions of these issues were offered by Ali et al. (2014), Broadbent (2016), Fung and Halaburda
(2016) and Skingsley (2016), among others. Auer et al. (2020) provides a recent overview of the policy
discussion. Boar and Wehrli (2021) describe a survey of 65 central banks in which 86% reported currently
studying central bank digital currency in some form.
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for banks.” Mersch (2017) worries that “[a] consequence could be higher interest rates on

bank loans.” Meaning et al. (2018) wonder if the benefits of a CBDC would be “outweighed

by the negative consequences of the central bank disintermediating a large part of banks

business models.”2 Others are less concerned and believe that making central bank money a

more attractive competitor to private bank deposits will necessarily benefit consumers and

the broader economy.3 Several central banks have run or are planning pilot projects and

at least one CBDC – the Bahamas’ Sand Dollar – is in full operation. However, as these

debates indicate, the basic macroeconomic implications of introducing a central bank digital

currency are not well understood.

We study how the introduction of a central bank digital currency affects interest rates,

bank lending, output and welfare in an environment where both central bank money and

private bank deposits are used in exchange. We build on the framework in Lagos and Wright

(2005) and the subsequent New Monetarist literature, where money in some form is essential

for exchange.4 Bankers in our model can issue deposits that serve as a means of payment.

The ability of these deposits to facilitate exchange may give rise to a liquidity premium, which

lowers banks’ funding costs and tends to increase investment. At the same time, however,

bankers face credit constraints due to limited pledgeability of their returns, as in Kiyotaki

and Moore (1997, 2005), Holmström and Tirole (1998) and others. These constraints tend

to reduce bank lending and investment.

We show that introducing a central bank digital currency can often raise welfare in this

environment, even if it leads to some disintermedation of banks. A key benefit of digital

currency is that it increases production of those goods it can be used to purchase, which can

potentially lead to higher total output. In addition, the central bank gains a new policy tool:

the interest rate it pays on digital currency. This tool can be used to influence the efficiency

of exchange and, in some cases, of aggregate investment. The optimal choice of this interest

rate is sensitive to the design features of the digital currency, in particular, what existing

form(s) of payment it competes with. We study two broad possibilities, one in which the

central bank can issue targeted digital currencies, which only compete with a single existing

form of payment, and the other in which a digital currency is universal, meaning that it

necessarily competes with both physical currency and deposits.

The analysis of a targeted digital currency that competes only with physical currency

2 This concern is also expressed in official reports from the Bank of England (2020, pp.35-36), Bank of Israel
(2018, p.26), Dansmark Nationalbank (2017, pp.13-14), European Central Bank (2020, pp.16-17), Norges
Bank (2018, pp.35-36) and Sverges Riksbank (2018, p.30).

3 See, for example, Bordo and Levin (2018) and Kumhof and Noone (2018).
4 For an overview of this literature, see the survey papers by Williamson and Wright (2010a, 2010b) and

Lagos et al. (2017), as well as the many references therein.
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is straightforward. Because it involves substituting one form of outside money for another,

introducing a cash-like digital currency has no direct impact on bank funding or investment.

The ability to pay interest on digital currency decouples the return on holding outside money

from the rate of inflation, which allows the central bank to increase the real value of the

stock of outside money, if desired. We show that a cash-like digital currency is desirable if

and only if the social value of cash-based transactions is sufficiently large. In these cases,

the optimal policy corresponds to a modified version of the Friedman rule.

Issuing a deposit-like currency, in contrast, will tend to crowd out bank deposits, raise

the real interest rate on these deposits, and decrease bank-financed investment. At the same

time, however, it will increase the aggregate stock of liquid assets in the economy, which

promotes more efficient levels of production and exchange. The optimal interest rate on

a deposit-like digital currency balances these competing effects. A deposit-like currency is

desirable when productive projects are sufficiently scarce relative to the transactions demand

for bank deposits and when credit market frictions are moderate.

Creating digital currencies that only compete with a single existing means of payment

may not be technologically feasible, however. For example, it may not be possible to design a

cash-like digital currency that cannot also be used in online or other transactions at a distance

that currently use bank deposits. If a digital currency will necessarily compete with both

cash and bank deposits, the central bank must take into account the potential interactions

across these sectors. To illustrate these interactions, we study a universal digital currency

that can be used in all transactions. The central bank is more restricted in this regime: it

sets a single interest rate on a digital currency that is available for all uses. We provide

conditions under which a universal digital currency can implement the same allocation as

two targeted currencies. When it cannot, the welfare gain from a universal digital currency

is smaller than from two targeted digital currencies but is often still positive. We show

through examples that a universal digital currency may circulate either more or less widely

than targeted digital currencies in equilibrium.

Our analysis demonstrates that the interest rate paid on a digital currency is a useful new

policy tool. To further illustrate this point, we extend our model to allow the central bank to

lend the proceeds it receives from a deposit-like digital currency back to private banks. Under

this alternative policy, the digital currency represents inside rather than outside money, since

the central bank holds a corresponding claim on the private sector.5 We show that, in this

extended model, it is possible for the central bank to choose the interest rate on digital

currency so that it is held in equilibrium but does not alter equilibrium allocations. This

5 See Lagos (2010) for a discussion of the distinction between inside and outside money, including situations
where the public sector holds private claims.
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result is in line with Brunnermeier and Niepelt (2019), who provide conditions under which

the introduction of a digital currency has no effect on equilibrium allocations. However, the

interest rate that achieves this outcome is often not the optimal policy. Instead, the central

bank wants to use the new policy tool to alter total real money balances and the equilibrium

liquidity premium, so that introducing a digital currency does affect allocations under the

optimal policy and raises welfare.

Related literature. The literature on digital currencies is growing rapidly. A wave of

recent papers discuss the possibility of a central bank digital currency and the many design

choices it would bring. Bech and Garratt (2017) provide a useful starting point by laying out a

taxonomy of types of money and comparing different types of possible digital currencies with

existing payment options. Mancini-Griffoli et al. (2018) provide a comprehensive overview

of the issues raised by a possible digital currency along with citations to many relevant

papers. Among these, Kahn et al. (2019) and Kumhof and Noone (2018) provide interesting

discussions of the design choices facing a central bank.

Our paper lies in the branch of this literature that uses dynamic general equilibrium

models to analyze the macroeconomic effects of a central bank digital currency. The earliest

paper in this branch is Barrdear and Kumhof (2021), which introduces a central bank digital

currency into a quantitative DSGE model to assess its impact on GDP and to evaluate

different monetary policy rules. The effects of issuing a digital currency in their framework

come largely from the expansion of the assets held by the central bank, which directly lowers

the real interest rate, rather than from having a new form of money per se. Our focus, in

contrast, is on how the introduction of a new payment medium affects the liquidity premium

on bank deposits and thereby alters equilibrium interest rates and investment.

In this respect, our paper is more closely related to recent work by Chiu et al. (2021)

and Williamson (2021), both of which use New Monetarist models that share many features

with ours.6 Chiu et al. (2021) follow Andolfatto (2021) in studying the effects of introducing

a central bank digital currency when banks have market power. Williamson (2021) focuses

on the efficiency gains that can arise when households hold direct claims on the central

bank, in the form of a CBDC, rather than claims on financial intermediaries that are subject

to incentive constraints. A CBDC may disintermediate banks in both of these papers,

but only in situations where there is an overaccumulation of capital, which implies that

disintermediation improves economic efficiency. In our model, in contrast, financial frictions

may cause investment to be inefficiently low in equilibrium. A decline in bank deposits will

6 See also Davoodalhosseini (2021), who studies the monetary policy implications of a CBDC that competes
with cash as a means of payment, and Dong and Xiao (2019), who study how the introduction of CBDC
affects firms’ financing decisions.
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tend to worsen this inefficiency, which captures policy makers’ concern that disintermediating

banks could be costly from a social point of view. The optimal policy involves balancing the

benefits of a CBDC against these costs.

Piazzesi and Schneider (2020) demonstrate that disintermediating banks can be costly in

other ways as well. In their model, banks provide liquidity through both deposits and credit

lines, and these two activities are complementary. A CBDC that crowds out deposits will

also decrease the provision of credit lines, bringing additional losses. We view our analysis as

a benchmark that captures the fundamental interaction between CBDC and bank deposits as

(potentially) competing means of payment. While future work will likely continue to identify

additional costs and benefits of introducing a CBDC, the fundamental tradeoffs we identify

here are likely to be present in any setting where disintermediating banks is a concern.

The remainder of the paper is organized as follows. We present the model environment

and derive the equilibrium conditions for a general formulation of the type(s) of currency

available to agents in Section 2. We analyze equilibrium in a benchmark case without a digital

currency in Section 3. We study the effects of introducing targeted of digital currencies in

Section 4, of introducing a universal digital currency in Section 5, and of central bank lending

in Section 6. Finally, we offer some concluding remarks in Section 7.

2 The Model

In this section, we describe the physical environment, which builds on Lagos and Rocheteau

(2008) and Williamson (2012), among others. We also derive the conditions characterizing

equilibrium for a general formulation of the type(s) of currency available to agents. Subse-

quent sections then specialize the analysis to study different digital currency designs.

2.1 The Environment

Time is discrete and continues forever. Each period is divided into two subperiods, the first

with a frictionless centralized market and the second with decentralized trade. A perishable

commodity is produced and consumed in each subperiod; we refer to these commodities as

the centralized market (CM) good and the decentralized market (DM) good, respectively.

Agents. The economy is populated by three types of agents: buyers, sellers, and bankers.

Buyers and sellers are infinitely lived and participate in both markets in each period. They

can produce the CM good in the first subperiod using a linear technology that requires labor

as input, and they also have linear utility over CM consumption. In the second subperiod,

buyers want to consume but cannot produce, whereas sellers can produce but do not want
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to consume. Each buyer is randomly matched with a seller with probability α ∈ [0, 1], so

trade is bilateral. Each buyer has the period utility function

U b
(
xbt , qt

)
= xbt + u (qt) ,

where xbt ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes consumption

of the DM good. The function u : R+ → R+ is strictly increasing, strictly concave, and

continuously differentiable, with u (0) = 0, u′ (0) = ∞, and u′ (∞) = 0. Each seller has the

period utility function

U s (xst , qt) = xst − w (qt) ,

where xst ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes production of

the DM good. The function w : R+ → R+ is strictly increasing, convex, and continuously

differentiable, with w (0) = 0. There is a unit mass each of buyers and sellers, all of whom

discount future periods at a common rate β ∈ (0, 1).

Bankers live for two periods, participate only in the centralized market, and consume

only in old age. Each period, a new generation of bankers is born. Banker j is endowed at

birth with an indivisible and nontradable project that requires one unit of the CM good as

input and pays off γj ∈ R+ units of the CM good in the following period.7 Project returns

are known in advance, publicly observable, and heterogeneous across bankers. The support

of the distribution of project returns is [0, γ̄] with γ̄ > β−1, which implies that some projects

are socially efficient to operate but others are not. There is a measure η > 0 of bankers with

each return γ in the support; the total measure of bankers is ηγ̄.

Bankers have no endowment; they must fund their project by issuing deposits in the

centralized market when they are young. These deposits are risk-free claims on consumption

in the following period’s CM. The ability to issue deposits is limited by a pledgeability

constraint: Only a fraction θ ≤ 1 of the project’s return can be pledged to the bank’s

depositors. This friction prevents some banks whose projects are profitable at market interest

rates from being able to borrow and invest. We assume θ > (βγ̄)−1, which ensures the most

productive projects can be funded when the interest rate on deposits is β−1.

Assets and exchange. Buyers and sellers are anonymous (i.e., their identities are unknown

to each other and their trading histories are private information), which precludes credit in

the decentralized market and makes a medium of exchange essential for decentralized trade.

The possible media of exchange in our model are deposits issued by bankers and currency,

7 A banker in our model can be interpreted as the combination of an intermediary that issues a means of
payment and a firm that operates a productive technology. It is straightforward to divide these two roles
into separate institutions (a bank and a firm) in a way that leaves the results below unchanged.
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both physical and digital.

The supply of bank deposits depends on the real interest rate, which determines how

many bankers are able to satisfy the pledgeability constraint. The supply of currency is

determined by the central bank according to a price-level targeting regime in which the

gross inflation rate µ > β is assumed to be constant over time. In particular, the central

bank stands ready to buy/sell CM goods each period at a predetermined price in either

physical or digital currency. By enforcing the same price level target for physical and digital

currency, the central bank is effectively offering to convert units of physical currency one-

for-one into units of digital currency and vice versa. In this sense, the digital currency in our

model is an electronic version of the physical currency and not a distinct item that might

trade at a different price.8 The central bank uses lump-sum taxes/transfers to balance its

budget each period.9

The extent to which each of these assets can be used in DM exchange depends on the

verification technology available to the seller in a particular meeting. A fraction λ1 ∈ (0, 1)

of sellers is endowed with the technology to recognize physical currency but not deposits.

We interpret this assumption as capturing a variety of reasons why cash is used in practice,

including concerns about the privacy of the transacting parties, fees, and/or a lack of access

to the electronic payment network. The remaining fraction λ2 ≡ 1−λ1 of sellers is endowed

with the technology to recognize bank deposits but not physical currency. The meetings of

these sellers correspond to transactions that in practice involve debit cards, checks, or other

methods of directly transferring claims on a commercial bank from the buyer to the seller.

These meetings represent transactions in which the value of the trade and/or the distance

between parties make the use of physical currency impractical. We refer to a meeting in

which the seller is able to verify physical currency as type 1 and to a meeting in which the

seller can verify bank deposits as type 2.10 A buyer finds out the type of seller she will

potentially meet in the next DM before making her portfolio decision in the CM, which

implies that she will choose to hold either currency or deposits for transactions purposes,

but not both.

When we introduce digital currency into this environment, a key issue is the type(s) of

8 Private digital currencies like Bitcoin would be different in this regard, of course. See Bank for International
Settlements (2015) for a discussion of the economic implications of private digital currencies and Fernández-
Villaverde and Sanches (2019) for a model of private digital currency issue.

9 In other words, while we refer to the policy maker in the model as the “central bank,” it actually represents
the consolidated public sector, as is common in dynamic general equilibrium models.

10 It is straightforward to add a third type of meeting in which both currency and deposits can be verified
by the seller, as in Chiu et al. (2021). Doing so complicates the presentation without changing the basic
insights of our model, as only one of the two forms of payment would typically be used in all such meetings.
The important assumption for our purposes is that each form of payment can be used in some situations
where the other cannot.
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meeting in which it can be used. As the technological features of a potential CBDC are still

largely undetermined, we study two broad possibilities. In Section 4, we assume the central

bank is able to design targeted digital currencies that can only be used in a single type of

meeting. A cash-like CBDC can only be verified by type 1 sellers, while a deposit-like CBDC

can only be verified by type 2 sellers.11 We derive conditions under which it is desirable to

issue each type of targeted CBDC and properties of the optimal interest rates. In Section

5, we assume targeted CBDCs are technologically infeasible; instead, a digital currency can

necessarily be verified by all sellers. In this case, the central bank has only a single policy

instrument: the interest rate on the universal CBDC. We derive conditions under which a

digital currency is desirable when it must be universal and characterize the optimal interest

rate in this case.

Allocations and welfare. For discussions of optimal policy, we measure welfare using

an equal-weighted sum of all agents’ utilities. However, we allow for the possibility that

some of the consumption that results from type 1 meetings, where physical currency is used,

might have lower social value than private value. For example, a policy maker may put less

weight on transactions involving illicit activities. Specifically, we follow Williamson (2012)

in assuming that only a fraction ν ∈ [0, 1] of type 1 meetings generates social value. We can

then write aggregate welfare as

∞∑
t=0

βt
{
xbt + xst + xt + α [λ1 (νu (q1t)− w (q1t)) + λ2 (u (q2t)− w (q2t))]

}
, (1)

where xt ∈ R+ denotes the total CM consumption of old-age bankers. Feasibility of an allo-

cation requires that the net consumption of all agents in the centralized market is no greater

than the net output of bankers’ investment projects. We focus on allocations characterized

by a cutoff value γ̂t above which a banker’s project is operated and below which it is not.

Feasibility in period t then requires

xbt + xst + xt ≤ η

∫ γ̄

γ̂t−1

γdγ − η (γ̄ − γ̂t) . (2)

The right-hand side of this expression is the output from projects maturing at the current

date minus total investment into new projects that will mature the following period. Net

consumption of CM goods by all agents can be no larger than this difference.

11 See Agur et al. (2021) for a model in which a single central bank digital currency is an imperfect substitute
for both cash and deposits. While our approach of having digital currencies be a perfect substitutes for
an existing payment method is perhaps somewhat extreme, it allow us to capture the key trade-offs faced
by policy makers in a tractable macroeconomic framework. See Wang (2020) for an analysis of how the
desirability of different designs is affected by concerns about tax avoidance.
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Given quasi-linear preferences, the welfare properties of an allocation depend only on the

sequences of DM consumption levels {q1t, q2t} and of cutoff investment values {γ̂t}, which

determine the total amount of CM consumption available in each period. As equations (1)

and (2) make clear, the distribution of CM consumption across agents has no impact on

welfare. In the analysis that follows, we summarize an allocation by these three quantities.

In the remainder of this section, we derive buyers’ demand for assets (deposits and currency),

the supply of these assets, and the conditions that characterize an equilibrium of the model.

2.2 Asset Demand

Let φt ∈ R+ denote the goods value of money in the centralized market in period t, so that

the real value of Mt dollars can be written as mt ≡ φtMt. Let i denote the net nominal

interest rate paid on a digital currency by the central bank, which can be either positive or

negative. The gross real rate of return on physical currency is then φt+1/φt and on digital

currency is (1 + i)φt+1/φt. Let 1 + rt denote the gross real interest rate on bank deposits.

Finally, let a ≡ (m, d, e) denote an asset portfolio consisting of m ∈ R+ units of physical real

money balances, d ∈ R+ units of bank deposits, and e ∈ R+ units of digital (or “electronic”)

real money balances, all measured in current CM consumption goods.

Bellman equations. Let Js (a, t) denote the value function for a buyer entering the cen-

tralized market in period t holding portfolio a. The index s ∈ {1, 2} indicates what type

of seller she will potentially meet in the next decentralized market. Let Vs (a′, t) denote the

value function of this same buyer when she arrives in the decentralized market with portfolio

a′. Using these two functions, we can write the Bellman equation for this buyer as

Js (a, t) = max
(xb,a′)∈R×R3

+

[
xb + Vs (a′, t)

]
,

where the maximization is subject to the budget constraint

xb + p · a′ = Rt−1 · a + τt.

The variable xb is the buyer’s net consumption of the CM good, which can be positive or

negative. The price vector p ≡ (1, 1, 1) measures the cost of acquiring real money balances

and deposits in terms of CM goods, while the vector

Rt−1 ≡
(

φt
φt−1

, 1 + rt−1, (1 + i)
φt
φt−1

)
measures the gross real returns on assets carried over from the previous period. Finally, τt
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denotes the real value of any lump-sum transfer received by the agent.

The value function Vs (a′, t) satisfies

Vs (a′, t) = α [u (qs (a′, t)) + βJ (a′ − hs (a′, t) , t+ 1)] + (1− α) βJ (a′, t+ 1) , (3)

where qs (a′, t) ∈ R+ denotes the buyer’s consumption of the DM good and hs (a′, t) ∈ R3
+ de-

notes the payment she makes for this consumption out of her asset holdings a′. The function

J (a, t) in this expression represents the expected value of entering the centralized market

before knowing the type of her potential meeting in the following period’s decentralized

market, that is,

J (a, t) ≡ λ1J1 (a, t) + λ2J2 (a, t) . (4)

Bargaining. Throughout the analysis, we assume that the terms of decentralized trade are

determined by Nash bargaining. For simplicity, we restrict attention to the case where the

buyer has all the bargaining power. The bargaining problem can then be described as

max
(qs,hs)∈R4

+

[u (qs)− β ×Rt · hs]

subject to the seller’s participation constraint

−w (qs) + β ×Rt · hs ≥ 0

and the liquidity constraint

hs ≤ fs (a) . (5)

The function fs enforces the fact that the buyer will only pay with assets her trading partner

can verify. If, for example, type 1 sellers can only verify physical currency, we have f1 (a) =

(m, 0, 0). If these sellers can instead verify both physical and digital currency, we have

f1 (a) = (m, 0, e). In the sections that follow, we impose particular functions fs to capture

different potential digital currency designs. For now, we only impose that type 1 sellers can

verify physical currency but not bank deposits and that the reverse holds for type 2 sellers.

The solution to this bargaining problem implies the following schedule for DM output

qs (a, t) =

{
w−1 (βRt · fs (a)) if Rt · fs (a) < w(q∗)

β

q∗ otherwise
(6)
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and for payments

Rt · hs (a, t) =

{
Rt · fs (a) if Rt · fs (a) < w(q∗)

β
w(q∗)
β

otherwise,

where q∗ is the surplus-maximizing quantity satisfying u′ (q∗) = w′ (q∗). In other words, if

the value of the buyer’s spendable assets is large enough to induce the seller to produce q∗,

the efficient level of trade occurs. If not, the buyer spends all that she can and the seller

produces an amount smaller than q∗.

First-order conditions. Using this solution to the bargaining problem, a buyer’s portfolio

problem in the centralized market can be written as

max
a′∈R3

+

{−p · a′ + α [u (qs (a′, t))− βRt · hs (a′, t)] + βRt · a′} . (7)

Recall that the buyer knows the type of seller she will potentially meet in the next DM when

making this portfolio choice in the CM. The slope of the objective function with respect to

a given asset depends not only on whether the seller accepts the asset but also on whether

the buyer is liquidity constrained. Define the function L : R+ → R+ by

L (A) =

{
α
u′(w−1(βA))
w′(w−1(βA))

+ 1− α if βA ≤ w (q∗)

1 otherwise.
(8)

This function measures the expected benefit of holding an extra unit of spendable assets.

If the buyer’s current spendable assets are insufficient to purchase the efficient quantity q∗,

the increase will allow her to consume more if she is matched in the DM, which occurs

with probability α. If she is not matched, or if she already has enough spendable assets to

purchase q∗, she merely holds the extra unit of assets until the following CM.

Using this function, the first-order condition for the real physical currency balances of a

buyer who will potentially be in a type 1 match can be written as

L (Rt · f1 (a′)) ≤ φt
βφt+1

, (9)

with equality if m′ > 0. The first-order condition for the deposits of a buyer who will

potentially be in a type 2 match is

L (Rt · f2 (a′)) ≤ 1

β (1 + rt)
, (10)
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with equality if d′ > 0. In addition, only buyers potentially entering type 1 meetings will

hold physical currency and only buyers potentially entering type 2 meetings will hold bank

deposits.12 If type s sellers accept digital currency, the first-order condition for real digital

currency balances of a buyer who will potentially be in a type s match is

L (Rt · fs (a′)) ≤ φt
β (1 + i)φt+1

, (11)

with equality if e′ > 0. Equations (9) – (11) thus characterize the demand for each asset in

the period-t CM.

2.3 Asset Supply

Deposits. To derive the supply of deposits, consider a banker born in period t with a

project that returns γ ∈ [0, γ̄]. Given a market interest rate rt, this banker is willing to issue

a deposit claim if

γ − (1 + rt) ≥ 0.

However, the promised repayment on this claim cannot exceed the value of the banker’s

pledgeable future income

1 + rt ≤ θγ. (12)

Note that if θ < 1 holds, this constraint is strictly tighter than the previous one, meaning

that some bankers with projects that are profitable at the market interest rate will not be

able to raise funds and invest.

Let γ̂t ∈ R+ denote the banker whose project’s payoff satisfies the pledgeability restriction

with equality in period t, that is,

γ̂t =
1 + rt
θ

. (13)

The aggregate supply of deposits then equals the measure of bankers with project returns of

at least γ̂, which equals η (γ̄ − γ̂), or

η

(
γ̄ − 1 + rt

θ

)
. (14)

Note that, for any θ, a reduction in the interest rate leads to an increase in investment by

allowing a larger number of bankers to issue debt claims. In other words, a lower interest

12 These decisions reflect agents’ strict preferences when the real return on an asset is less than β−1. All
buyers and sellers are indifferent about holding an asset whose real return equals β−1. In this case, we
simplify our notation by assuming, without any loss of generality, that only buyers potentially entering a
meeting where an asset is accepted will hold that asset.
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rate will lead to an expansion of the banking system and an increased supply of deposits.

Currency. The supply of both physical and digital currency is set by the central bank

following a price-level target rule. We assume the target grows at a constant gross rate

µ > β, so that
φt
φt+1

= µ for all t. (15)

The central bank stands ready to exchange units of both physical and digital currency for

CM goods at the desired price level each period.13 Letting M̄t ∈ R+ denote the supply of

physical currency and Ēt the supply of digital currency, the central bank’s budget constraint

is

φt
(
M̄t + Ēt

)
= φt

(
M̄t−1 + (1 + i) Ēt−1

)
+ τt,

where the lump-sum tax/transfer τt is set to balance the budget each period.

2.4 Market Clearing

Because physical currency is only used in type 1 meetings, we can write its market-clearing

equation as

λ1mt = φtM̄t. (16)

Similarly, the fact that bank deposits are only exchanged in type 2 meetings allows us to

write the market-clearing equation for the deposit market as

λ2dt = η

(
γ̄ − 1 + rt

θ

)
. (17)

Market clearing for digital currency requires

λ1e1,t + λ2e2,t = φtĒt, (18)

recognizing that es,t will be zero whenever type s sellers do not accept digital currency. An

equilibrium of the model consists of sequences of prices {rt, φt} , portfolio holdings {a1t, a2t} ,
and an allocation {q1t, q2t, γ̂t} satisfying equations (9)-(13) and (15)-(18).

In the next section, we derive the properties of equilibrium in a benchmark model with

no digital currency. We then introduce different types of digital currency in Sections 4 and

5, analyzing the resulting equilibrium allocations and welfare.

13 We could instead take the more standard approach of assuming that the total money supply grows at
a constant rate µ. With both physical and digital currency, however, the relative supply of each type
of currency is endogenous and the notation becomes more complex. Given that we focus on stationary
allocations where money is valued, the simpler approach we take here is without any loss of generality.
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3 Equilibrium with No Digital Currency

When there is no digital currency, the functions fs in the buyer’s liquidity constraint in

equation (5) are given by

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, 0) .

A buyer can only use her physical currency balances in a type 1 meeting and her bank

deposits in a type 2 meeting. The Inada condition on buyers’ utility function then implies

that the first-order conditions (9) and (10) for buyers’ portfolio choices will hold with equality.

Combining these equations with the market-clearing conditions (16) and (17) yields

L

(
mt

µ

)
=
µ

β
(19)

and

L

(
(1 + rt)

η

λ2

(
γ̄ − 1 + rt

θ

))
=

1

β (1 + rt)
. (20)

The fact that only period-t variables appear in each of these two equations shows that

an equilibrium in our model is necessarily stationary. The equations also demonstrate a

dichotomy between the money and deposit markets in our baseline model. Given the inflation

rate µ > β, equation (19) pins down real money balances independent of the interest rate

on deposits. Meanwhile, equation (20) determines the equilibrium interest rate on deposits

independent of the inflation rate. We think of our model as capturing long-run phenomena,

in which case it is not unreasonable to think that standard monetary policy has a limited

effect on real interest rates and the level of investment. Notice that inflation is not neutral,

however. A higher inflation target leads to lower production and consumption in type 1 DM

meetings and to lower welfare, as is standard in models of monetary exchange.

To guarantee the existence and uniqueness of equilibrium, we assume preferences are such

that:

(i) AL (A) is strictly increasing and (ii) lim
(1+r)→0

L−1
(

1
β(1+r)

)
1 + r

< ηγ̄.

The first assumption ensures that the demand for deposits is strictly increasing in the interest

rate, while the second guarantees that the supply of deposits is large enough to meet the

demand at some interest rate.14 The following proposition establishes the existence and

uniqueness of equilibrium in the benchmark economy. Proofs of all propositions are contained

14 If u is of the CRRA form and w is linear, for example, these assumptions are satisfied whenever the
coefficient of relative risk aversion is less than one.
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in the Appendix.

Proposition 1. The economy with no digital currency has a unique equilibrium. There is

a liquidity premium on deposits in this equilibrium if and only if η < λ2w(q∗)

γ̄− 1
βθ

. When this

condition holds, the equilibrium interest rate is a strictly increasing function of η.

When bankers’ income is fully pledgeable (θ = 1), the results for our benchmark model

follow those in Lagos and Rocheteau (2008) closely. When η is sufficiently large, productive

projects are plentiful and there is no liquidity premium on deposits, that is, 1+rN = β−1. In

this case, an investment project is funded if and only if it returns at least β−1, and production

in type 2 DM meetings equals the surplus-maximizing quantity q∗. When η is smaller,

productive projects are scarce and a liquidity premium emerges on deposits: 1 + rN < β−1.

This liquidity premium leads to overinvestment in the sense that some projects with a return

lower than β−1 are funded, which decreases the total welfare derived from CM consumption.

In addition, the quantity produced in type 2 DM meetings falls below q∗. An increase in

η in this region leads to a larger supply of deposits at any interest rate, which decreases

the equilibrium liquidity premium and moves the quantities of CM investment and of DM

production in type 2 meetings toward their efficient levels.15

In the presence of credit market frictions (θ < 1), the relationship between the liquidity

premium on deposits and the efficiency of equilibrium investment changes, and our approach

offers new insights. It remains true that when η is sufficiently large, there is no liquidity

premium on deposits and production in type 2 DM meetings is at the efficient level. However,

some bankers with socially productive projects no longer have enough pledgeable income to

credibly repay their deposits. As a result, the equilibrium investment cutoff is higher than

β−1 and the quantity of CM investment is inefficiently low. When η is smaller and high-

return projects are scarce, a liquidity premium again emerges on deposits as 1+rN falls below

β−1. This lower interest rate now increases investment toward the efficient level. In other

words, when θ < 1, a liquidity premium on deposits can partially offset the effects of the

credit market friction and thereby increase the total welfare derived from CM consumption.

At the same time, however, the quantity of the DM good produced in type 2 meetings falls

below the surplus-maximizing quantity q∗.

The result that CM investment can be inefficiently low depends on a combination of two

assumptions: bankers face the pledgeability constraint (12) and have limited funds of their

own. In Williamson (2021), bankers face a similar credit constraint but can work without

limit when young and invest the proceeds in their bank. Investment will never be inefficiently

15 For studies of how liquidity premia affect the level of investment and macroeconomic outcomes in related
environments, see Williamson (2012), Hu and Rocheteau (2013), Rocheteau and Rodriguez-Lopez (2014),
Andolfatto et al. (2016), Hu (2021) and Cui et al. (2021), among others.
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Figure 1: Equilibrium interest rate on deposits

low in that case, since any project that returns at least β−1 would be operated with internal

funds if the banker cannot borrow more cheaply. Our assumption that bankers have zero

income when young simplifies the notation, but similar results would obtain as long as this

income is sufficiently limited. When we introduce a digital currency, the fact that investment

may be inefficiently low creates the possibility that crowding out bank deposits is socially

costly.

The following example illustrates the equilibrium outcome in our benchmark model and

how this outcome varies with the pledgeability parameter θ.

Example 1. Suppose u (q) = 2
√
q, w (q) = q, and α = 1. Then the unique solutions to

equations (19) and (20) are

mN =
β

µ
and 1 + rN = min

{
θηγ̄

θβλ2 + η
,

1

β

}
.

The equilibrium quantities of DM trade are

qN1 =
β2

µ2
and qN2 = min

{(
βθηγ̄

θβλ2 + η

)2

, 1

}
,

and the equilibrium investment cutoff is

γ̂N = min

{
ηγ̄

θβλ2 + η
,

1

βθ

}
.

Figure 1 depicts the equilibrium interest rate on deposits as a function of the pledgeability
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parameter for two different values of η.16 Panel (a) corresponds to the case where η is small

enough that there is a liquidity premium when θ = 1, while panel (b) lies in the opposite case.

The equilibrium interest rate is an increasing, concave function of θ in both cases, strictly

so whenever 1 + rN < β−1. The dashed line in each panel corresponds to 1 + r = θ/β,

the interest rate at which the liquidity premium on deposits exactly offsets the effect of the

pledgeability constraint, placing the equilibrium investment cutoff γ̂ at the efficient value

β−1. When the liquidity premium is large enough that 1 + rN lies below the dashed line, the

investment cutoff is below β−1 and the equilibrium is characterized by overinvestment. As

the figure shows, overinvestment will occur whenever both (i) η is small enough that there

is a liquidity premium when θ = 1 and (ii) θ is sufficiently close to 1. When 1 + rN lies

above the dashed line, in contrast, the equilibrium investment cutoff is above β−1 and the

level of CM investment is inefficiently low. The figure shows that underinvestment always

occurs in our model when η is sufficiently large (as in panel (b)) and θ < 1, as well as when

η is smaller (as in panel (a)) and θ is sufficiently small. For the example presented above,

underinvestment occurs in equilibrium if

θ < min

{
η (βγ̄ − 1)

βλ2

, 1

}
.

It bears emphasizing that, while a liquidity premium may improve the efficiency of equi-

librium investment in our model, it still reduces the quantity of the DM good produced in

type 2 meetings below the surplus-maximizing value q∗. This tradeoff between the efficiency

of DM exchange and the quantity of CM investment will be central to understanding the

macroeconomic effects of introducing a digital currency in the sections that follow.

4 Targeted Digital Currencies

In this section, we assume it is technologically possible for the central bank to design digital

currencies that can only be used in place of a single exisiting means of payment. We begin

by studying a cash-like CBDC, which can be verified by type 1 sellers but not by type 2

sellers. We then turn to a deposit-like CBDC, which has the opposite features. In each

case, we ask whether the digital currency is desirable in the sense that it increases welfare

when the interest rate is chosen optimally. We show that a cash-like digital currency is

desirable if and only if the welfare weight ν on type 1 DM consumption is sufficiently high

and that the optimal interest rate corresponds to a modified Friedman rule. Optimal policy

for a deposit-like CBDC is more complex because it must balance the desire to facilitate

16 The figure uses β = 0.96, λ1 = λ2 = 0.5, γ̄ = 2 and ν = 1.

17



DM exchange with concerns about disintermediating banks and decreasing CM investment.

Nevertheless, we show that a deposit-like CBDC tends to be desirable when productive

projects are in scarce supply and when financial frictions are moderate. We then study the

relationship between the two optimal interest rates in a dual-CBDC system, where both

targeted CBDCs are issued.

4.1 A Cash-Like Digital Currency

A cash-like digital currency is one that can easily substitute for physical currency in trans-

actions but not for bank deposits. These assumptions represent a design that aims to mimic

both the features and the limitations of physical currency. Such a design may preserve users’

privacy, for example, and allow transfer of funds without network connectivity. It may also

minimize the fees and other costs associated with its use, particularly for small transactions.

At the same time, the design may impose caps on balances and on transaction size that

make digital currency impractical to use in large-value transactions. Balances may also be

stored on a smart card or other device that must be physically present to transfer funds. In

the context of our model, we capture this type of design by assuming that a cash-like CBDC

can be verified by – and only by – type 1 sellers.

Equilibrium. With a cash-like digital currency, the functions fs in the buyer’s liquidity

constraint in equation (5) become

f1 (a) = (m, 0, e) and f2 (a) = (0, d, 0) .

Buyers in a type 1 meeting can use their balances of physical and/or digital currency to

make purchases, while buyers in a type 2 meeting can only use bank deposits. Comparing

the first-order conditions for physical and digital currency in equations (9) and (11) shows

that a buyer entering a type 1 meeting will only hold whichever currency offers the higher

return. If the digital currency were to pay a negative interest rate, demand would be zero. If

i = 0, type 1 buyers are indifferent between the two currencies and the equilibrium paths of

{mt} and {e1t} are indeterminate, but total real money balances and all other equilibrium

quantities are unchanged. Therefore, introducing a cash-like digital currency will only affect

equilibrium consumption and welfare if it carries a positive interest rate.17

When i > 0, the first-order condition in equation (11) will hold with equality and the

17 In practice, a cash-like digital currency may attract users without paying interest if it is more convenient,
safer to use, or offers a loss-recovery mechanism. We interpret the interest rate i in our model as capturing
these non-pecuniary benefits as well as explicit interest payments.
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equilibrium quantity of real currency balances e1t will satisfy

L

(
(1 + i)

µ
e1t

)
=

µ

(1 + i) β
.

Comparing this expression with equation (19) shows that i > 0 implies buyers entering a type

1 meeting will hold larger real currency balances when the digital currency is introduced.

The solution to the bargaining problem in equation (6) then shows that the quantity of DM

production in type 1 meeting also increases. Combining the different cases, we can express

this quantity as

qC1 (1 + i) ≡ w−1

(
βL−1

(
µ

βmax {1 + i, 1}

))
. (21)

Meanwhile, the dichotomy discussed above implies that the equilibrium quantities of de-

posits, CM investment, and DM production in type 2 meetings are unchanged. The follow-

ing proposition summarizes these results, using a superscript C to denote equilibrium values

with a cash-like digital currency.

Proposition 2. Under a cash-like digital currency with i > 0, the unique equilibrium allo-

cation satisfies eC1 > mN , qC1 > qN1 and
(
qC2 , γ̂

C
)

=
(
qN2 , γ̂

N
)
.

Optimal policy. The potential benefit of introducing a cash-like CBDC in our framework

is that it allows the policy maker to increase the rate of return on currency while maintaining

the same target for the price level and inflation.18 The policy maker’s desired rate of return

on currency depends critically on the parameter ν, which measures the fraction of type 1

DM meetings that result in socially valuable consumption. The following proposition shows

that a cash-like digital currency raises welfare under the optimal policy if any only if ν is

sufficiently high.

Proposition 3. There exists ν̄ ∈ (0, 1) such that a cash-like digital currency is desirable if

and only if ν > ν̄. In this case, the optimal policy is given by

1 + iC ≡ µ

β

ν

α + (1− α) ν
. (22)

When ν is large, the policy maker wants cash buyers to have access to a better means of

payment, which we interpret as a desire to promote financial inclusion. When ν is small,

18 We think of this target as being determined by considerations outside the scope of our model, such as
stabilization policy and the zero lower bound. See Andrade et al. (2019) for a recent discussion. If the
policy maker could freely choose µ in our model, introducing a cash-like digital currency would have no
effect, in line with the results in Williamson (2021). However, the ability to use digital currency in type 1
meetings would still have implications for the desirability of a universal CBDC in Section 5 below.
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in contrast, concerns about facilitating illicit activities make a cash-like digital currency

undesirable. The interest rate in equation (22) can be thought of as a modified version of

the Friedman rule that optimally balances these two concerns. If a cash-like CBDC is not

desirable, we normalize the optimal policy to iC = 0.

4.2 A Deposit-Like Digital Currency

We next consider a deposit-like CBDC, which can be verified only by type 2 sellers. This

assumption represents a CBDC design that shares the features and limitations of bank

deposits as a medium of exchange. For example, individuals might hold accounts with the

central bank, either directly or through an intermediary, and make payments using a debit

card. However the balances are held, a design in which payments are processed over an

existing bank-based network and have a similar fee structure would tend to be deposit-like.

Equilibrium. With a deposit-like digital currency, the functions fs in the buyer’s liquidity

constraint in equation (5) become

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, e) .

Buyers in a type 1 meeting can only use their physical currency balances to make purchases,

while buyers in a type 2 meeting can use their bank deposits and/or digital currency balances.

Comparing the first-order conditions for bank deposits and digital currency in equations (10)

and (11) shows that a type 2 buyer would only choose to hold whichever asset offers the higher

return. If the nominal interest rate on the digital currency, 1+ i, is set below the equilibrium

nominal interest rate on deposits in the benchmark model, µ
(
1 + rN

)
, the demand for the

digital currency will be zero and it will have no effect on the equilibrium allocation. If these

two interest rates are equal, type 2 buyers would be indifferent between deposits and digital

currency. However, the first-order condition for deposits (10) together with the market-

clearing condition (17) would imply that equilibrium digital currency holdings must again

be zero. A deposit-like digital currency will only be held in equilibrium if the interest rate

is set higher than the nominal interest rate on deposits in the benchmark model, that is,

1 + i > µ
(
1 + rN

)
. (23)

Note that this condition can be satisfied only if there is a liquidity premium on deposits in

the benchmark model, that is, if 1 + rN < β−1. In other words, the assets that back bank

deposits must be in scarce supply for a deposit-like digital currency to play a role in our

model.
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Unlike in the previous section, a digital currency will not completely replace deposits as

a medium of exchange when condition (23) holds. As some type 2 buyers switch to holding

digital currency, the decline in deposit demand will cause the interest rate on deposits to

increase. In equilibrium, the interest rate on deposits must rise until it equals that offered

by the digital currency,

1 + i = µ
(
1 + rD

)
, (24)

where the superscript D denotes equilibrium values under a deposit-like regime. Because

individual type 2 buyers are indifferent between the two assets in equilibrium, the first-order

conditions (10) and (11) will both hold with equality and a type 2 buyer’s total holding of

spendable assets will satisfy

L

((
1 + rD

) [ η
λ2

(
γ̄ − 1 + rD

θ

)
+ eD2

])
=

1

β (1 + rD)
. (25)

The higher interest rate on deposits, rD > rN , implies through equations (13) and (17)

that the level of CM investment and the quantity of deposits issued by banks both decrease.

In other words, a deposit-like digital currency disintermediates banks to some degree and

crowds out bank-financed investment. At the same time, however, equation (25) shows

that the higher rate of return leads type 2 buyers to hold larger total spendable assets,

e2 + d. These larger asset holdings translate, through the bargaining solution in equation

(6), into larger production of the type 2 good in DM meetings. Finally, because the digital

currency cannot be used in type 1 DM meetings, the demand for physical currency and

the quantity produced in type 1 meetings are unchanged from the benchmark case. The

following proposition summarizes these results.

Proposition 4. With a deposit-like digital currency satisfying condition (23), the unique

equilibrium allocation satisfies eD2 + dD > dN > dD,
(
rD, γ̂D, qD2

)
�
(
rN , γ̂N , qN2

)
, and

qD1 = qN1 .

Optimal policy. The results in Proposition 4 point to a tradeoff the central bank faces

when setting the interest rate on a deposit-like digital currency. Raising this interest rate

increases DM output in type 2 meetings and promotes efficient exchange, but decreases CM

investment. The optimal policy balances these competing concerns. Using the stationarity

of the equilibrium allocation and omitting the terms that are unaffected by a deposit-like

digital currency, we can write the objective in equation (1) as

WD (1 + i) ≡ η

∫ γ̄

1+i
µθ

(βγ − 1) dγ + αλ2

[
u
(
qD2 (1 + i)

)
− w

(
qD2 (1 + i)

)]
(26)
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where

qD2 (1 + i) ≡ w−1

(
βL−1

(
µ

βmax {1 + i, µ (1 + rD)}

))
. (27)

Without loss of generality, we can eliminate the max term by restricting the policy maker’s

choice set to 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

]
. Using the definition of the cutoff productivity γ̂ in

equation (13), the slope of the objective function with respect to the policy choice can then

be written as

dWD

d (1 + i)
= −

(
η

µθ

)
(βγ̂ − 1) + αλ2

[
u′
(
qD2
)
− w′

(
qD2
)] dqD2
d (1 + i)

(28)

The first term in this expression measures the cost of a higher interest rate, which comes

from disintermediating banks. A marginal increase in the interest rate on digital currency

raises the equilibrium interest rate on deposits by µ−1, as shown in equation (24). A marginal

increase in the deposit rate, in turn, increases the productivity threshold for obtaining fund-

ing, γ̂, by θ−1, as shown in equation (13). Given that there is a measure η of bankers with

each productivity level, the total measure of projects that lose funding due to a marginal

increase in 1+i is thus η/(µθ). This quantity is multiplied by the social value of the marginal

project, which produces γ̂ units of CM output in the next period using one unit of CM input

this period. The second term in equation (28) measures benefit of a higher interest rate from

increased production and exchange of the DM good in type 2 meetings. The higher real re-

turn on deposits and digital currency leads buyers to hold larger real balances of spendable

assets, which increases the quantity qD2 produced and thereby increases the gains from trade

when a buyer and a type 2 seller meet.

The following proposition shows that a deposit-like digital currency is desirable if pro-

ductive projects are sufficiently scarce. It also shows that, in these cases, the solution to

the optimal policy problem is interior when credit market frictions are present and is thus

characterized by equality of the marginal cost and marginal benefit in equation (28). In the

absence of credit market frictions, the optimal policy corresponds to the Friedman rule.

Proposition 5. There exists η̄ > 0 such that η < η̄ implies a deposit-like digital currency is

desirable. The optimal policy satisfies 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

)
if θ < 1 and 1 + i = µ/β if

θ = 1.

One case where it is easy to see that a deposit-like digital currency can raise welfare is

when the equilibrium without a CBDC exhibits overinvestment. If 1 + rN < θ/β holds,

the marginal project being funded in the economy without CBDC returns less than β−1.

Introducing a CBDC that bears a slightly higher real return will crowd out these inefficient

projects while at the same time increasing the quantity produced in type 2 DM meetings
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Figure 2: Optimal policy with a deposit-like CBDC

toward the efficient level. We record this result in the following corollary.

Corollary 1. If 1 + rN < θ
β

, a deposit-like digital currency is desirable.

Figure 2 depicts the optimal interest rate on a deposit-like CBDC and the associated

welfare gain, using the same parameter values as panel (a) of Figure 1. Panel (a) in Figure

2 shows how, for this example, the optimal interest rate on a deposit-like digital currency

is strictly higher than the nominal interest rate on deposits in the baseline economy for

all values of θ. Moreover, the optimal interest rate converges to µ/β as θ approaches 1.

Panel (b) shows that the welfare gain from introducing a digital currency is largest for

intermediate values of the credit friction θ. Two competing forces are at work. On one

hand, as θ increases, the costs associated with crowding out CM investment become smaller.

In particular, the measure of projects that are crowded out by a marginal increase in the

deposit rate and the productivity of the marginal project are both proportional to θ−1. As

θ increases, therefore, the disadvantages of introducing at CBDC become smaller and the

policy maker also becomes willing to set a higher interest rate. On the other hand, however,

an increase in θ decreases the liquidity premium in the basline economy, which lowers the

benefit of a CBDC in promoting DM production and exchange. In the example depicted

here, the first effect dominates for lower values of θ, while the second effect dominates for

higher values. As a result, the welfare gain of introducing a CBDC is largest for intermediate

values of θ.
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4.3 Discussion

Costly disintermediation. Whenever there is a liquidity premium on deposits, introducing

a deposit-like CBDC can improve the efficiency of DM production and exchange by inducing

type 2 buyers to hold larger total real money balances. If there were no interaction with CM

investment, such a digital currency would always be desirable. The tradeoff in our model

comes from the combination of CBDC crowding out bank deposits and inefficiently low

investment due to the pledgeability constraint. This tradeoff distinguishes our approach from

that in Williamson (2021), where a liquidity premium necessarily leads to overinvestment.

Disintermediation in his model always raises welfare by moving the capital stock closer to

the golden rule.19 Our model, in contrast, speaks directly to policy makers’ concerns about

disintermedation being socially costly. Our results outline the conditions under which a

deposit-like CBDC is desirable despite these costs.

Market power. When banks have market power in the deposit market, the benefits of in-

troducing a deposit-like CBDC may be larger than in our competitive framework. Andolfatto

(2021) constructs a model with overlapping generations of households in which imperfectly

competitive banks hold a portfolio of reserves and loans to firms. The introduction of a

CBDC in his setting raises the interest rate on bank deposits in much the same way as

in our model. However, this change has no effect on the loan rate or on bank lending in

his model; instead, it simply decreases bank profits. Chiu et al. (2021) introduce Cournot

competition for deposits into a modified version of the model we study here. They show

that two distinct regimes arise. If the CBDC is only moderately attractive to households,

there may be little or no use of it in equilibrium. Nevertheless, the availability of this outside

option leads to both a higher interest rate on deposits and a larger quantity of deposits. In

this region, their results are similar in spirit to those in Andolfatto (2021). If the interest

rate on the digital currency is increased further, however, households begin to shift funds

out of bank deposits and into the digital currency, which causes a decline in deposits and

bank-funded investment, as in our model. To the extent that these effects are important,

our competitive framework can be thought of as providing an upper bound on the costs of

disintermediation and, therefore, a lower bound on the net benefits of introducing a deposit-

like CBDC. Moreover, the policy tradeoff at the heart of our analysis is likely to appear

in some form across different market structures whenever credit market frictions create the

possibility that investment may be inefficiently low.

19 In a related work, Hu (2021) constructs a model with a pledgeability constraint on banks and a role for
currency in some anonymous meetings to study the implementation of optimal policy through the interest
rate on excess reserves. He also finds that overinvestment necessarily occurs when a liquidity premium
emerges on bank deposits.

24



Interest on reserves. An alternative way of increasing the stock of liquid assets in the

economy would be for the central bank to provide reserves to private banks and rely on

those banks to intermediate the reserves into bank deposits. The effectiveness of such a

policy in our framework would depend critically on how bank reserves enter the plegdeability

constraint in equation (12). If bankers can only pledge a fraction θ < 1 of their matured

reserve holdings, those banks with the highest producivities γj would be able to create some

additional deposits. However, the ability of the banking system to create additional deposits

would still be limited, making the policy less effective than issuing a deposit-like CBDC.

This result is in line with Williamson (2021), who shows that allowing individuals to directly

hold claims on the central bank is more efficient than having individuals hold indirect claims

through commercial banks when collateral constraints bind.

If bankers could instead fully pledge their future income from reserve holdings to de-

positors, this alternative arrangement would be equivalent to a deposit-like CBDC in our

framework. Adrian and Mancini-Griffoli (2021) call this approach a synthetic CBDC, since

it generates the same allocation as a (deposit-like) CBDC but does not require the central

bank to deal with retail clients. Proposals for a synthetic CBDC often aim to link depositors’

claims as closely as possible to the underlying reserves. For example, creating narrow banks

that hold only central bank reserves as assets can be interpreted as a way of increasing the

pledgeability parameter θ for reserves. Our results here apply to synthetic CBDC as well as

the case where depositors hold direct claims on the central bank.

Fiscal implications. Some observers have expressed concern about the fiscal implications

of introducing an interest-bearing CBDC. Replacing physical currency with an interest-

bearing digital currency would indeed tend to reduce seigniorage revenue. Such a change

could potentially raise political-economy issues that are absent in our framework, including

for central bank independence (see, for example, the discussion in Williamson, 2021). It is

worth emphasizing, however, that paying interest on a deposit-like CBDC does not create a

fiscal burden on the public sector. In fact, if the CBDC interest rate is set below µ/β, so that

both deposits and CBDC carry a liquidity premium in equilibrium, introducing a deposit-

like CBDC creates a net fiscal benefit. In the period a deposit-like CBDC is introduced,

the public sector receives an inflow of goods in exchange for the newly issued currency. In

our model, these funds are transferred lump-sum to households. In subsequent periods, the

public sector taxes these same households to fund the interest payments on a CBDC. Given

the quasi-linear specification of preferences, agents value any stream of transfers and taxes

using discount factor β. As long as the real interest rate paid on a CBDC is less than β−1,

therefore, the present value of all future taxes will be smaller than the transfer received

by households in the initial period. One interesting avenue for future research would be

25



Figure 3: Desirability of targeted CBDCs

to explore possible implications of this benefit for fiscal policy, including the level of public

debt, and for the balance of power between the fiscal authority and the central bank.

4.4 Dual CBDCs

Figure 3 shows the combinations of parameter values (θ, ν) under which each type of digital

currency is desirable for three different values of the densitity η of the productivity distri-

bution. In line with Proposition 3, a cash-like digital currency is desirable whenever the

welfare weight ν given to the DM consumption of type 1 buyers is above a cutoff value ν̄.

This cutoff is independent of both θ and η. A deposit-like CBDC is desirable for all values of

the credit friction parameter θ when η is small enough, in line with Proposition 5, but only

for intermediate values of θ when η is larger. The figure shows that, depending on parameter

values, neither type of CBDC may be desirable, either type alone may be desirable, or both

types may be desirable.

In this last case, the central bank does not need to choose between the two types of digital

currency; it can issue both simultaneously. We call this approach a dual-CBDC system.20

Using Propositions 2 and 4, it is straightforward to show that if we expand our model to

allow the central bank to issue both targeted CBDCs at once, the equilibrium allocation will

be
(
qC1 , q

D
2 , γ̂

D
)
. In other words, the interest rate on the cash-like CBDC determines DM

production in type 1 meetings, while the interest rate on the deposit-like CBDC determines

both DM production in type 2 meetings and CM investment. Figure 3 indicates that a

dual-CBDC system tends to be optimal when ν is large and θ is in an intermediate range.

20 The possibility of simultaneously issuing two distinct types of CBDC is discussed in European Central
Bank (2020, Section 5.2).
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Figure 4: Optimal CBDC interest rates

When a dual-CBDC system is optimal, the interest rates the policy maker sets on the

two types of CBDC will typically differ. To illustrate this point, Figure 4 plots the optimal

interest rate on a cash-like CBDC (in blue) and on a deposit-like CBDC (in red) using

the parameter values from panel (a) of Figure 3. The welfare weight ν on type 1 DM

consumption is set to 0.95, which implies an optimal interest rate on a cash-like CBDC

of about 1%. When θ is small, the optimal net interest rate on a deposit-like CBDC is

negative. In this region, type 2 buyers would prefer to use the cash-like CBDC if possible.

Implementing the desired allocation requires the design of the cash-like CBDC to be truly

restrictive, meaning it cannot be used as a substitute for bank deposits. When θ is large,

the opposite issue arises: the optimal interest rate on the deposit-like CBDC is higher than

on the cash-like CBDC. Implementing the desired allocation in this region requires ensuring

the cash-like CBDC cannot be used in place of deposits.

A similar issue can arise when the optimal policy involves only one type of CBDC.

Consider, for example, parameter combinations in the northwest corner of panel (c) in Figure

3. Because ν is close to 1, the optimal interest rate on a cash-like CBDC is close to the

Friedman rule, which is much higher than the equilibrium interest rate on deposits. The

policy maker does not want a digital currency used in type 2 meetings in this region because

disintermediating banks is too costly. Implementing the desired allocation in this region

again requires having a design for the cash-like digital currency that prevents it from being

used in type 2 meetings, despite its attractive interest rate.

This discussion raises an important question: Is it truly feasible to design such restricted-

use digital currencies? Or would a CBDC necessarily be at least partially subsitutable for

both bank deposits and physical currency? For example, it may be difficult to prevent a

cash-like CBDC from being used in some online or other transactions at a distance that
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currently take place using bank deposits. The answer to this question will likely depend on

design and technological features that are yet to be determined. If a single digital currency

would end up competing with multiple existing payment methods, policy makers would need

to take this fact into account when deciding whether to introduce the currency and when

setting its interest rate. In the next section, we study the interactions that arise when a

CBDC can necessarily be recognized by all sellers and study how these interactions change

the optimal policy in our model.

5 A Universal Digital Currency

We now assume it is not technologically feasible to design targeted CBDCs that can be used

in only a single type of DM meeting. Instead, a CBDC is necessarily universal, meaning

that it can be recognized by all sellers. In this case, the central bank is more constrained.

It has a single instrument – the interest rate on the universal CBDC – and must consider

its effects on both types of DM meetings as well as on CM investment. In this section, we

derive the conditions under which this new constraint does and does not bind at the optimal

policy. We illustrate how the optimal policy changes when the constraint binds and show

that a CBDC is often still desirable even when the central bank cannot restrict its use.

5.1 Equilibrium and Optimal Policy

When a CBDC can be used universally, the buyer’s liquidity constraints in equation (5)

become

f1 (a) = (m, 0, e) and f2 (a) = (0, d, e) .

A type 1 buyer can pay with any combination of physical and/or digital currency, while a

type 2 buyer in a type 2 meeting can pay with any combination of digital currency and/or

deposits. The equilibrium conditions for this case can be written as

µ

β max {1 + i, 1}
= L

(
max {1 + i, 1}

µ
e1t

)
, (29)

1

β (1 + rt)
= L

(
(1 + rt)

[
η

λ2

(
γ̄ − 1 + rt

θ

)
+ e2t

])
, (30)

and

1 + rt ≥
(1 + i)

µ
(31)

with equality if e2t > 0. As before, a solution to these equations is necessarily stationary.

28



Given a choice of interest rate 1+ i, the analysis of equilibrium with a universal CBDC is

a straightforward extension of the analyses with targeted CBDCs above. If the policy maker

sets a negative nominal interest rate on the digital currency, i < 0, it will not be held by

type 1 buyers. In this region, a universal digital currency will generate the same equilibrium

allocation as a deposit-like currency and the results in Proposition 4 apply. If the policy

maker sets a positive nominal interest rate, i > 0, the digital currency will replace physical

currency for type 1 buyers. These are two possible cases in this region. If 1+ i ≤ µ
(
1 + rN

)
,

the digital currency will not be held by type 2 buyers. In this case, a universal digital

currency generates the same equilibrium allocation as a cash-like digital currency and the

results in Proposition 2 apply. If, instead, 1+i > µ
(
1 + rN

)
, the digital currency will also be

held by some type 2 buyers. In this case, the outcomes of type 1 meetings are determined by

Proposition 2 and both the outcomes of type 2 meetings and CM investment are determined

by Proposition 4.

The analysis of optimal policy with a universal digital currency, in contrast, is consid-

erably more complex. The policy maker will choose the nominal interest rate 1 + i in the

interval
[
µ
(
1 + rN

)
, µ/β

]
to maximize

WU (1 + i) ≡ η

∫ γ̄

1+i
θµ

(βγ − 1) dγ + αλ1

[
νu
(
qU1 (1 + i)

)
− w

(
qU1 (1 + i)

)]
(32)

+αλ2

[
u
(
qU2 (1 + i)

)
− w

(
qU2 (1 + i)

)]
,

where qU1 (1 + i) = qC1 (1 + i) from equation (21) and qU2 (1 + i) = qD2 (1 + i) from equation

(27). This problem is equivalent to the optimal policy problem with two targeted CBDCs

studied in Section 4.3 above, with the additional constraint that the two CBDC interest

rates must be equal. In the next subsection, we study when and how this constraint changes

the equilibrium allocation under the optimal policy. We then provide conditions in Section

5.3 that guarantee a CBDC is desirable when it must be universal.

5.2 Comparing Universal and Targeted CBDCs

Our next result provides a precise characterization of the conditions under which the con-

straint that the CBDC interest rate must be the same in both types of meetings does and

does not bind at the solution to the optimal policy problem.
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Proposition 6. The optimal policy under a universal CBDC implements the same allocation

as under two targeted CBDCs if and only if at least one of the following conditions holds:

(i) 1 + iC = 1 and 1 + iD = µ
(
1 + rN

)
,

(ii) 1 + iC = 1 + iD,

(iii) 1 + iC ≤ 1 + iD = µ
(
1 + rN

)
, or

(iv) 1 + iC = 1 ≥ 1 + iD.

It is straightforward to see that each of these four conditions is sufficient to ensure that

a universal CBDC can implement the same allocation as two targeted CBDCs under the

optimal policy. Condition (i) corresponds to a situation where neither of the targeted CBDCs

are desirable. The same allocation can trivially be implemented with a universal CBDC by

setting the interest rate low enough that no one chooses to hold it. In condition (ii), the

two targeted CBDCs have exactly the same optimal interest rate. Setting the interest rate

on a universal CBDC to this common value clearly leads to the same equilibrium allocation.

Under condition (iii), a deposit-like digital currency is not desirable and the optimal interest

rate on a cash-like digital currency is low enough that no type 2 buyers would choose to hold

it. In this case, the optimal policy sets iU = iC and the digital currency is only held by

type 1 buyers. Finally, under condition (iv), a cash-like digital currency is not desirable and

the optimal nominal interest rate on the deposit-like digital currency is non-positive. The

optimal policy then sets iU = iD < 0, which ensures the digital currency is only held by type

2 buyers.

The less obvious part of Proposition 6 is that these four conditions are the only situations

in a which a universal CBDC can implement the optimal allocation with two targeted CB-

DCs. In all other cases, the restriction that the CBDC interest rate must be the same in both

types of meetings binds at the optimal policy and alters the resulting equilibrium allocation.

In these cases, the policy maker sets the single CBDC interest rate considering both of the

tradeoffs discussed above: between financial inclusion and facilitating illicit activity in type

1 DM meetings and between efficient exchange in type 2 DM meetings and CM investment.

The resulting optimal policy can impact CBDC usage along both the intensive and ex-

tensive margins. On the intensive margin, the optimal universal CBDC interest rate may

be either higher or lower than the optimal rate on a targeted CBDC, which implies that

buyers of a given type may hold either larger or smaller digital currency balances. On the

extensive margin, a universal CBDC may be used in either fewer or more types of meetings

than targeted CBDCs. We illustrate these possibilities by extending the examples discussed

above to the case of a universal CBDC.
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Intensive margin effects. Consider first the optimal interest rates for the two targeted

CBDCs presented in Figure 4. The dashed green line depicts the optimal interest rate on a

universal CBDC. When θ is large (above about 0.86), the optimal universal rate lies between

the (higher) deposit-like rate and the (lower) cash-like rate. In this region, a universal CBDC

will lead to higher real balances for type 1 buyers but to lower real balances for type 2 buyers

compared with a dual-CBDC system. For one particular value of θ (about 0.86), the two

restricted rates are equal, which implies condition (ii) of Proposition 6 is satisfied and a

universal CBDC leads to the same outcome as the targeted CBDCs. For slightly lower

values of θ, the optimal universal rate again lies again between the two optimal targeted

rates. In this region, a universal CBDC leads to lower real balances for type 1 buyers and

higher balances for type 2 buyers. This same pattern applies whenever a universal CBDC is

used in both types of meetings under the optimal policy: compared to the allocation with

two targeted CBDCs, production and exchange increase for one type of meeting and decrease

for the other.

Extensive margin effects. Once θ falls below about 0.835 in the example in Figure

4, the universal interest rate that would optimally balance the policy maker’s competing

concerns becomes negative, which implies that type 1 buyers would prefer physical over

digital currency. In this region, the optimal policy is to instead set the universal rate equal

to the optimal deposit-like rate, 1 + iD, and have the digital currency only used in type 2

meetings. In other words, the constraints imposed by a universal CBDC lead in this case to

a change in CBDC usage on the extensive margin, as type 1 buyers no longer hold a CBDC

under the optimal policy.

This change in the extensive margin can also be seen in Figure 5, which depicts the

type(s) of meeting in which a universal CBDC is used under the optimal policy for the same

parameter values as Figure 3. In panel (a), a universal CBDC is used in both types of

meeting under the optimal policy when θ is large, but only in type 2 meetings when θ is

sufficiently small. Comparing this graph with panel (a) of Figure 3 verifies that, when ν

is large and θ is small, a universal CBDC is used in fewer types of meetings than are the

targeted CBDCs. At the same time, however, panel (a) also shows that a universal CBDC

is used in more types of meetings when ν is small and θ is large. In this latter region, only

a deposit-like CBDC is desirable and the optimal interest rate on this CBDC is positive.

When the CBDC is universal, the policy maker can only prevent its use in type 1 meetings

by setting an interest rate of zero or lower, which would substantially distort the allocation in

type 2 meetings as well as CM investment. Instead, the optimal policy involves an interest

rate lower than that on a deposit-like CBDC, but still positive, which implies the digital

currency will be used in both types of meeting. Comparing the other panels of Figures 3 and
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Figure 5: Desirability of a universal CBDC

5 yields additional examples where a universal CBDC circulates either more or less widely

than two targeted CBDCs.

The two figures also highlight situations in which a targeted CBDC is desirable but a

universal CBDC is not. In panel (b) of Figure 3, for example, a deposit-like CBDC is desirable

when θ is around 0.9 and ν is small. For a universal CBDC to be attractive to type 2 buyers

in this region, however, it would need to carry a positive interest rate and would, therefore,

also attract type 1 buyers. Because ν is low, such a policy is unattractive and Figure 5 shows

it is instead optimal not to issue CBDC. This region of parameter space corresponds to a

situation in which the concern about facilitating illicit activity is strong enough to make an

otherwise-useful CBDC undesirable. Another intersting case is the vertical white “stripe”in

the middle of panel (c) in Figure 5. A cash-like CBDC is desirable in this region when ν > ν̄.

If the CBDC is universal, however, it would also be attractive to type 2 buyers. The resulting

disintermedation of banks and decrease in CM investment would lower overall welfare and,

therefore, the optimal policy is not to issue a CBDC in this region.

5.3 Desirability of a Universal CBDC

While the examples above illustrate how a universal CBDC often generates lower welfare than

a pair of targeted CBDCs, Figure 5 also emphasizes that a universal CBDC is nevertheless

often desirable. The next result provides three sets of sufficient conditions for a universal

digital currency to raise welfare under the optimal policy.
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Proposition 7. A universal digital currency is desirable if any of the following sets of

conditions holds:

(i) ν >
αβ

µ− (1− α) β
and 1 + rN >

1

µ
;

(ii) ν >
αβ

µ− (1− α) β
and 1 + rN <

θ

β
; or

(iii) 1 + rN <
1

µ
and 1 + rN <

θ

β
.

In the first two cases, the policy maker would like to increase production and exchange

in type 1 meetings and, therefore, the optimal interest rate on a cash-like digital currency

would be positive. With a universal CBDC, however, the policy maker needs to also take

into account its effects on type 2 meetings and CM investment. In case (i), the nominal

interest rate on deposits in the baseline economy economy with no CBDC is strictly positive.

The policy maker can, therefore, introduce a digital currency with a small positive interest

rate that improves efficiency in type 1 meetings without affecting type 2 meetings and CM

investment. In case (ii), the baseline economy exhibits overinvestment. A universal CBDC

with a small positive interest rate will again improve efficiency in type 1 meetings and, if it

causes the interest rate on deposits to rise, will also improve efficiency in type 2 meetings

and CM investment. Finally, in case (iii), the baseline economy exhibits overinvestment and

a negative nominal interest rate on deposits. In this case, a universal CBDC that offers a

slightly higher interest rate can improve efficiency in type 2 meetings and in CM investment

without affecting production and exchange in type 1 meetings. The logic of this third case

can alternatively be stated in terms of the density η of productivities. As demonstrated in

the proof of Proposition 5, the gross interest rate on deposits in the baseline economy will

satisfy both conditions of case (iii) if η is small enough. We record this result as a corollary.

Corollary 2. There exists η̄U > 0 such that η < η̄U implies a universal digital currency

raises welfare under the optimal policy.

Turning to the question of the optimal interest rate on a universal digital currency, the

logic of the first two cases in Proposition 7 can be extended to identify a lower bound. If the

policy maker would like to increase production and exchange in type 1 meetings, then the

CBDC interest rate should be large enough to at least ensure there is not overinvestment in

the CM.

Corollary 3. If ν > αβ
µ−(1−α)β

, the optimal interest rate on a universal CBDC satisfies

1 + i ≥ θµ
β

.
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In summary, when a central bank cannot target a CBDC to compete only with a single

existing type of payment, it must choose the CBDC interest rate to balance a variety of

concerns. A universal digital currency should not be too attractive relative to cash, to avoid

facilitating illicit activities. It should offer an efficient alternative to bank deposits, but not so

much as to unduly disintermediate banks. Our analysis shows that, despite the constraints, a

CBDC is often desirable. In these cases, the CBDC may only be used in one type of meeting

under the optimal policy, even though it is universally accepted. It will tend to compete

with bank deposits when productive projects are scarce and/or credit market frictions are

strong. In contrast, a universal CBDC will tend to compete with physical currency only

when productive projects are plentiful and credit market frictions are small.

6 Central Bank Lending

When the central bank issues Ēt units of digital currency, it receives φtĒt units of CM good

in exchange. Our analysis above assumes these goods are distributed to agents as lump-sum

transfers. Might the crowding-out effect we identify be mitigated or eliminated if the central

bank were instead to lend these goods back to banks in the deposit market? To answer this

question, we now extend our model to include a central bank lending policy.

For concreteness, suppose the central bank introduces a deposit-like digital currency and

sets the interest rate i so that the equilibrium quantity of digital currency held by type

2 buyers is positive.21 In addition, suppose the central bank lends an amount b of goods

(measured per type 2 buyer) into the deposit market in each period. Letting dt continue to

denote the deposit of a typical type 2 buyer, the market-clearing condition for deposits in

equation (17) becomes

λ2 (dt + b) = η

(
γ̄ − 1 + rt

θ

)
. (33)

Note that this equation can also be interpreted as the balance-sheet identity for the banking

system; on the left-hand side are the liabilities of banks to depositors and the government,

while the funded projects on the right-hand side are the banking system’s assets. Looking at

buyers’ portfolio-choice problem, it is still the case that type 2 buyers will hold both deposits

and digital currency only if they offer the same rate of return. Combining the relationship

in (33) with the first-order condition of a type 2 buyer in equation (10) yields

1

β (1 + rt)
= L

(
(1 + rt)

(
η

λ2

(
γ̄ − 1 + rt

θ

)
+ e2t − b

))
. (34)

21 It is straightforward to show that the analysis with a universal digital currency is similar.
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The equilibrium conditions for the model with a deposit-like digital currency and central

bank lending are then equations (19), (24), and (34).

When b = 0, equation (34) reduces to (25) and the equilibrium allocation is the same as

in the previous section. In particular, the real value of digital currency held by each type 2

buyer is eD2 , which we assume here is positive. When the central bank instead sets b > 0, the

equilibrium real interest rate 1 + rt does not change, since equation (24) must still hold. It

follows immediately that the level of bank lending does not change because the measure of

projects that meet the funding constraint, given on the right-hand side of equation (33), is

unchanged. The left-hand side of this equation shows that central bank lending crowds out

buyers’ deposits in banks one-for-one, so that banks’ total liabilities dt+b remain unchanged.

Equation (34) shows that central bank lending increases the digital currency holdings of type

2 buyers, so that the difference e2t − b is unchanged. In other words, for each dollar lent

by the central bank to banks, private agents decrease their bank deposits and increase their

digital currency holdings by exactly one dollar. Since bank deposits and digital currency

holdings yield the same, unchanged return, this shuffling of funds has no effect on equilibrium

allocations. In particular, the central bank cannot mitigate a digital currency’s impact on

banks by lending to them. Instead, central bank lending causes further disintermediation of

private deposits. We summarize this result in the following proposition.

Proposition 8. Suppose eD2 > 0. If the central bank lends an amount b ∈
[
0, dD

]
in the

deposit market, (i) private bank deposits decrease by b, (ii) digital currency held by type 2

buyers increases by b, and (iii) equilibrium consumption allocations are unchanged.

This result is related to Brunnermeier and Niepelt (2019), who establish an equivalence

result between the use of public and private money. Their result can be seen in the context

of our model as follows. Suppose the central bank were to introduce a digital currency and

set the interest rate (1 + i) equal to the equilibrium nominal interest rate on deposits when

there is no digital currency, µ
(
1 + rN

)
. In the absence of central bank lending, our results

from the previous sections show that the digital currency will not be held in equilibrium,

that is, eD2 = 0. Now suppose the government lends b > 0 in the deposit market. Proposition

8 shows that type 2 buyers will substitute b units of digital currency for bank deposits, so

that eD2 becomes positive. In this way, the central bank could introduce a digital currency

that is held in equilibrium without changing the equilibrium allocation of resources, in line

with the Brunnermeier-Niepelt equivalence result.22

22 See also Niepelt (2020) and Fernández-Villaverde et al. (2021). In practice, additional operational issues
such as haircuts and acceptable collateral arise when the central bank lends to the private sector in the
process of creating CBDC; see Assenmacher et al. (2021).
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Of course, our analysis in the previous sections shows that setting (i+ i) = µ
(
1 + rN

)
is

often not the optimal policy. Instead, Proposition 5 and Figure 3 show that the policy maker

can often raise welfare by setting the interest rate higher. Proposition 8 demonstrates that

central bank lending cannot mitigate the resulting tradeoff between efficiency in exchange

and CM investment because it substitutes one form of inside money (bank deposits) with

another (a CBDC backed by loans), leaving real allocations unchanged. The fundamental

tradeoff in our model arises when the policy maker sets 1 + i to increase the real stock of

outside money, which promotes efficient exchange but tends to crowd out inside money and

decrease investment.

7 Concluding Remarks

The introduction of a central bank digital currency would represent a potentially historic

innovation in monetary policy. If households and firms choose to hold and use significant

quantities of such a currency, it could lead to a substantial shift in aggregate liquidity, that

is, in the types of assets that are used in exchange and that carry a liquidity premium. While

the possibility of such a shift has been widely discussed in policy circles, its macroeconomic

implications remain uncertain.

Our analysis shows how a fairly standard model in the New Monetarist tradition can

generate insight into these issues. In particular, it highlights important policy tradeoffs that

arise when digital currency competes with cash and with bank deposits as a medium of

exchange. If a digital currency provides current cash users with a better means of payment,

a tradeoff arises between promoting financial inclusion and facilitating illicit activities. If a

digital currency competes with bank deposits, a tradeoff arises between promoting efficient

exchange and efficient investment. If the central bank is able to design separate, targeted

digital currencies for each of these uses, it can set the interest rate and other design features

for each one to manage the relevant tradeoff. If a central bank digital currency is instead

universal, the central bank must design the single digital currency with both tradeoffs in

mind.

Our analysis shows that a cash-like digital currency is desirable if the financial inclusion

motive is sufficiently strong. A deposit-like digital currency is desirable if the supply of

productive projects is small relative to the transactions demand for deposit-like money and

tends to be desirable when financial frictions are moderate. If digital currency is universal,

these same patterns apply but interact in ways that may lead the currency to circulate either

more or less widely than targeted digital currencies would. Taken together, our results show

how a digital currency could potentially be an important tool for central banks in managing
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aggregate liquidity and provide guidance for using this new tool.

The introduction of a central bank digital currency also raises issues that lie outside the

scope of our analysis, of course. For example, policy makers have expressed concern that,

by providing a safe alternative to bank deposits, a digital currency could facilitate runs on

the banking system in periods of financial stress.23 Digital currencies can also be held and

used internationally much more easily than physical currency, which could potentially alter

capital flows and interact with domestic monetary policy. Understanding these issues and

how they relate to the fundamental effects of a CBDC identified in our analysis is a promising

area of ongoing research.

23 See, for example, Williamson (2021) and Schilling et al. (2021)
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Appendix: Proofs

Proposition 1. The economy with no digital currency has a unique equilibrium. There is

a liquidity premium on deposits in this equilibrium if and only if η < λ2w(q∗)

γ̄− 1
βθ

. When this

condition holds, the equilibrium interest rate is a strictly increasing function of η.

Proof. Equations (19) and (20) immediately imply that any equilibrium is stationary, with

mt and rt constant over time. We denote the equilibrium values by mN and rN , respectively.

Because µ > β, the properties of L imply that equation (19) has a unique solution for real

money balances, mN ∈ (0, w (q∗) /β). Moreover, the equation implicitly defines mN as a

function of µ in this region, with

dmN

dµ
=
L
(
mN

µ

)
+ mN

µ
L′
(
mN

µ

)
L′
(
mN

µ

) < 0.

That is, equilibrium real money balances are strictly decreasing in the inflation rate µ.

We can write the market-clearing equation (20) for deposits as

λ2

L−1
(

1
β(1+r)

)
1 + r

= η

(
γ̄ − 1 + r

θ

)
. (35)

The left-hand side of (35) is the demand for deposits, and the right-hand side is the supply.

Our assumptions imply that the left-hand side is a continuous, strictly increasing function of

1+r that starts below ηγ̄ and approaches λ2w (q∗) as 1+r → β−1. The demand for deposits

becomes vertical (i.e., a correspondence) when 1 + r = β−1, including all points greater than

or equal to λ2w (q∗). The right-hand side of (35) starts at ηγ̄ and is a decreasing, linear

function of 1 + r. It follows that equation (35) has a unique solution, 1 + rN , satisfying

1 + rN

{
<

=

}
1

β
as η

{
<

≥

}
λ2w (q∗)

γ̄ − 1
βθ

.

In the first case, we can differentiate through equation (35) to obtain

∂
(
1 + rN

)
∂η

= −
β
λ2

(
1 + rN

)2
(
γ̄ − 1+rN

θ

)
L′
(
AN
)

L (AN) + ANL′ (AN)− η
λ2

(1+rN )2

θ
L′ (AN)

> 0,

where

AN ≡ η

(
1 + rN

λ2

)(
γ̄ − 1 + rN

θ

)
,
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which shows that the equilibrium interest rate is strictly increasing in η in this region.

Proposition 2. Under a cash-like digital currency with i > 0, the unique equilibrium

allocation satisfies eC1 > mN , qC1 > qN1 and
(
qC2 , γ̂

C
)

=
(
qN2 , γ̂

N
)
.

Proof. Consider first an artificial economy with no physical currency, so that only digital

currency is used in type 1 DM meetings. A type 1 buyer’s real money balances, e1, would

satisfy the first-order condition

L

(
(1 + i)

µ
e1

)
=

µ

β (1 + i)
,

which implicitly defines e1 as a function of the interest rate 1 + i. The buyer’s holding of

real physical currency balances in the economy with no CBDC, mN , is equal to this value of

e1 when i = 0. Differentiating through this condition and solving yield

de1

d (1 + i)
= −

L
(

(1+i)
µ
e1

)
+ (1+i)

µ
e1L

′
(

(1+i)
µ
e1

)
(1+i)2

µ
L′
(

(1+i)
µ
e1

) > 0,

where the fact that the numerator is positive follows from our assumption that AL(A) is

strictly increasing in A. It follows that eC1 > mN holds whenever i > 0.

To see that the digital currency leads to an increase in DM production in type 1 meetings,

note that the quantity produced satisfies

α
u′
(
qC1
)

w′ (qC1 )
+ 1− α =

µ

β (1 + i)
<
µ

β
= α

u′
(
qN1
)

w′ (qN1 )
+ 1− α.

This inequality implies
u′
(
qC1
)

w′ (qC1 )
<
u′
(
qN1
)

w′ (qN1 )
,

which, in turn, implies qC1 > qN1 .

Finally, because a cash-like digital currency cannot be used in type 2 DM meetings, it

will not be held by type 2 buyers. The quantities of deposits, investment, and type 2 DM

production therefore remain unchanged.

Proposition 3. There exists ν̄ ∈ (0, 1) such that a cash-like digital currency is desirable if

and only if ν > ν̄. In this case, the optimal policy is given by equation (22).
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Proof. The first-order condition for the policy maker’s choice of interest rate can be written

as

αλ2 [νu′ (q1 (1 + i))− w′ (q1 (1 + i))] q′1 (1 + i) ≤ 0,

with equality if i > 0. The proof of Proposition 1 establishes that q1 is strictly increasing in

1 + i. Therefore, the optimal choice of interest rate has i > 0 if and only if the expression in

square brackets is positive when evaluated at i = 0, that is,

νu′
(
qN1
)
− w′

(
qN1
)
> 0 or ν >

w′
(
qN1
)

u′ (qN1 )
≡ ν̄.

Because qN1 satisfies
µ

β
= α

u′
(
qN1
)

w′ (qN1 )
+ 1− α,

we have

ν̄ =
αβ

µ− (1− α) β
.

By varying 1+ i, the policy maker can implement any quantity of DM trade between qN1 and

q∗ in type 1 meetings. The optimal choice has the property that q1 satisfies

w′ (q1)

u′ (q1)
= ν ≤ 1

The equilibrium value of q1 when i > 0 satisfies the first-order condition

µ

β (1 + i)
= α

u′ (q1)

w′ (q1)
+ 1− α.

Combining these equations yields the optimal policy in equation (22).

Proposition 4. With a deposit-like digital currency satisfying condition (23), the unique

equilibrium allocation satisfies eD2 + dD > dN > dD,
(
rD, γ̂D, qD2

)
�
(
rN , γ̂N , qN2

)
, and

qD1 = qN1 .

Proof. When 1 + i is set so that equation (23) holds, the equilibrium interest rate and the

investment cutoff rise to

1 + rD =
1 + i

µ
> 1 + rN and γ̂D =

1 + i

µθ
> γ̂N ,

respectively. The new quantity of deposits is determined by the supply function at the
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investment cutoff point:

dD =
η

λ2

(
γ̄ − 1 + i

θµ

)
.

The quantity of digital currency held by buyers heading into a type 2 meeting is

eD2 =
µ

1 + i
L−1

(
µ

β (1 + i)

)
− η

λ2

(
γ̄ − 1 + i

θµ

)
.

Note that the resulting value of eD2 is positive if and only if 1 + i > µ
(
1 + rN

)
, and eD2 is a

strictly increasing function for 1 + i ∈
(
µ
(
1 + rN

)
, µ/β

)
. It is also easy to show that dD is

strictly decreasing in 1 + i in this region and that the sum eD2 + dD is strictly increasing.

The quantity traded in type 2 meetings satisfies

µ

β (1 + i)
= α

u′
(
qD2
)

w′ (qD2 )
+ 1− α.

Given our assumptions on preferences, we have qD2 > qN when 1 + i > µ
(
1 + rN

)
.

Proposition 5. There exists η̄ > 0 such that η < η̄ implies a deposit-like digital currency

is desirable. The optimal policy satisfies 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

)
if θ < 1 and 1 + i = µ/β

if θ = 1.

Proof. The objective function in equation (26) need not be concave in 1 + i, but it is con-

tinuous on the closed interval 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

]
and, therefore, an optimal policy

exists. To characterize this policy, it is useful to set up an auxiliary problem in which the

policy maker directly chooses a real interest rate 1 + r ∈ (0, 1
β
] to maximize

Ŵ (1 + r) ≡ η

∫ γ̄

1+r
θ

(βγ − 1) dγ + αλ2 [u (q̂2 (1 + r))− w (q̂2 (1 + r))] ,

where

q̂2 (1 + r) = w−1

(
βL−1

(
1

β (1 + r)

))
.

Unlike with CBDC, which only allows the policy maker to increase the equilibrium deposit

rate, this auxiliary problem allows the policy maker to either increase or decrease 1 + r. The

Inada conditions on u imply that Ŵ is strictly increasing when 1 + r is sufficiently close to

zero and, therefore, the auxiliary problem has a solution. Let 1 + r̂ denote this solution. (If

there are multiple solutions, let 1 + r̂ denote the smallest one.)

If 1 + r̂ > 1 + rN , then, by definition, we must have Ŵ (1 + r) > Ŵ
(
1 + rN

)
. Moreover,

the nominal interest rate 1 + i = µ (1 + r̂) is contained in the policy maker’s choice set for
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the original problem and, therefore, introducing a digital currency that bears this interest

rate raises welfare. To establish the first part of the proposition, therefore, it suffices to show

that 1 + r̂ > 1 + rN holds when η is sufficiently small.

The slope of the auxiliary objective Ŵ is given by

dŴ

d (1 + r)
= −η

θ

[
β (1 + r)

θ
− 1

]
+

λ2

−L′
(
L−1

(
1

β(1+r)

)) 1− β (1 + r)

β (1 + r)3

The second term in this expression is positive for all values of 1 + r < β−1. The first term

is also positive when 1 + r < θ/β and, therefore, the solution to the auxiliary problem must

satisfy

1 + r̂ >
θ

β

for all values of η. As established in Proposition 1, 1 + rN is a strictly increasing function of

η. Moreover, as η approaches the lower bound in Assumption 1, 1 + rN approaches zero. It

follows that there exists η̄ > 0 such that 1 + rN < 1 + r̂ holds for all η < η̄, which establishes

the first part of the proposition.

For the second part of the proposition, first assume θ < 1 and evaluate the derivative

in equation (28) at 1 + i = µ/β. At this interest rate, there is no liquidity premium, which

implies that type 2 buyers will be satiated in real balances and the quantity produced in

type 2 DM meetings will be q∗. The second term in the derivative is thus zero. Because

θ < 1, the first term in the derivative is negative. It follows that the solution to the optimal

policy problem must be lower, with 1 + i < µ/β.

Finally, when θ = 1, the derivative in equation (28) is strictly positive for all 1 + i < µ
β

and, therefore, the optimal policy is 1 + i = µ
β
.

Proposition 6. The optimal policy under a universal CBDC implements the same allocation

as under two restricted-use CBDCs if and only if at least one of the following conditions holds:

(i) 1 + iC = 1 and 1 + iD = µ
(
1 + rN

)
,

(ii) 1 + iC = 1 + iD,

(iii) 1 + iC ≤ 1 + iD = µ
(
1 + rN

)
, or

(iv) 1 + iC = 1 ≥ 1 + iD.

Proof. Define 1 + rC ≡
(
1 + iC

)
/µ, 1 + rD ≡

(
1 + iD

)
/µ, and 1 + rU ≡

(
1 + iU

)
/µ as the

optimal real interest rate for the cash-like, deposit-like, and universal CBDCs, respectively.
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Note that the aforementioned set of conditions can be written in terms of the real interest

rate as

(i) 1 + rC =
1

µ
and 1 + rD = 1 + rN ,

(ii) 1 + rC = 1 + rD,

(iii) 1 + rC ≤ 1 + rD = 1 + rN , or

(iv) 1 + rC =
1

µ
≥ 1 + rD.

The equilibrium allocation (q1, q2, γ̂) under a universal CBDC will be the same as with two

restricted-use CBDCs if and only if each type of buyer faces the same rate of return on

spendable assets under both regimes. For type 1 buyers, this requirement can be written as

If 1 + rC >
1

µ
, then 1 + rU = 1 + rC ; otherwise, 1 + rU ≤ 1

µ
. (36)

In other words, if a cash-like CBDC is desirable, the interest rate on a universal CBDC must

equal the optimal cash-like rate. If a cash-like CBDC is not desirable, the interest rate on the

universal currency must be low enough that it does not change the quantity of real balances

held by type 1 buyers. The requirement for type 2 buyers is

If 1 + rD > 1 + rN , then 1 + rU = 1 + rD; otherwise, 1 + rU ≤ 1 + rN . (37)

The logic here is similar. If a deposit-like CBDC is desirable, the interest rate on a universal

CBDC must equal the optimal deposit-like rate. If it is not desirable, the interest rate on

the universal currency must be low enough that no type 2 buyer chooses to hold it.

It is straightforward to show that each of the four conditions in the proposition is sufficient

to guarantee that the requirements (36) and (37) are satisfied. Under condition (i), the

optimal policy is 1 + rU = min
{

1/µ, 1 + rN
}

. Under condition (ii), it is 1 + rU = 1 + rC =

1 + rD. Under condition (iii), the optimal policy sets 1 + rU = 1 + rC to satisfy requirement

(36); the inequality in the condition then guarantees that (37) is satisfied as well. Finally,

under condition (iv), the optimal policy sets 1+rU = 1+rD to satisfy (37) and the inequality

in the condition guarantees that (36) is also satisfied.

The less obvious part of the proposition is that it is also necessary for at least one of

these conditions to hold if a universal CBDC is to implement the same allocation as with

two restricted-use CBDCs. We establish this part of the result by showing that if conditions

(i) − (iii) are not satisfied, then requirements (36) and (37) imply that condition (iv) is

necessarily satisfied.
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We begin with conditions (i) and (ii). If condition (i) is not satisfied, then we either have

1 + rC > 1/µ or 1 + rD > 1 + rN , or both. In other words, at least one type of restricted-use

CBDC is desirable. If condition (ii) is not satisfied, the desired interest rates in the two types

of meetings are different. Requirements (36) and (37) then imply that either 1+rC = 1/µ or

1 + rD = 1 + rN must hold. In other words, if neither (i) nor (ii) is satisfied and a universal

CBDC can implement the same allocation as two restricted-use CBDCs, it must be the case

that one restricted-use CBDC is desirable and the other is not.

Now suppose that, in addition, condition (iii) is not satisfied, meaning either 1 + rC >

1 + rD or 1 + rD > 1 + rN . Suppose first that 1 + rC > 1 + rD held. Requirements (36) and

(37) imply

1 + rU ≤ min
{

1 + rC , 1 + rD
}

(38)

and, therefore, we would have 1+rU < 1+rC . Requirement (36) would then imply 1+rC =

1/µ must hold. Given that we have supposed 1 + rC > 1 + rD, it follows that condition

(iv) is satisfied. If we instead suppose 1 + rD > 1 + rN held, then (37) would require

1 + rU = 1 + rD and the fact that only one restricted-use CBDC is desirable would imply

1 + rC = 1/µ. Combining these results with equation (38) would imply 1 + rD ≤ 1/µ and

condition (iv) is again satisfied, as desired.

Proposition 7. A universal digital currency is desirable if any of the following sets of

conditions holds:

(i) ν >
αβ

µ− (1− α) β
and 1 + rN >

1

µ
;

(ii) ν >
αβ

µ− (1− α) β
and 1 + rN <

θ

β
; or

(iii) 1 + rN <
1

µ
and 1 + rN <

θ

β
.

Proof. To establish that a universal CBDC is desirable, we must show that there exists an

interest rate 1 + i such that welfare WU (1 + i) from equation (32) is strictly higher than

welfare with no digital currency, WN . We address each of the three cases in turn.

(i) Because ν > ν̄, a CBDC that pays a positive but sufficiently small interest rate will

increase the middle term on the right-hand side of equation (32), which corresonds to the

surplus from type 1 DM meetings. Moreover, µ
(
1 + rN

)
> 1 implies that if the net CBDC

interest rate is set sufficiently close to zero, it will not be held by type 2 buyers and will not

affect CM investment. It follows that there exists ε > 0 such that a universal CBDC with

interest rate 1 + i ∈ (1, 1 + ε) raises welfare.
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(ii) As in case (i), a CBDC with a sufficiently small positive interest rate will increase

the surplus from type 1 DM meetings. Separately, 1 + rN < θ/β implies that there is

overinvestment in the equilibrium with no digital currency and, therefore, setting the CBDC

interest rate slightly above µ
(
1 + rN

)
would increase both the first and third terms on the

right-hand side of equation (32). By choosing the CBDC interest rate to be slightly above

the smaller of these two values, the policy maker can ensure that some welfare terms increase

while no others decrease. In other words, there exists ε > 0 such that a universal CBDC

with interest rate

1 + i ∈
(
min

{
1, µ

(
1 + rN

)}
,min

{
1, µ

(
1 + rN

)}
+ ε
)

raises welfare.

(iii) In this case, there is again overinvestment in the equilibrium with no digital currency,

so setting 1 + i slightly larger than µ
(
1 + rN

)
will increase the first and third terms on the

right-hand side of equation (32). In addition, µ
(
1 + rN

)
< 1 implies that setting the CBDC

interest rate sufficiently close to µ
(
1 + rN

)
ensures that it will not be used in type 1 DM

meetings. If follows that there exists ε > 0 such that a universal CBDC with interest rate

1 + i ∈
(
1 + rN , 1 + rNε

)
raises welfare.

Corollary 3. If ν > αβ
µ−(1−α)β

, the optimal interest rate on a universal CBDC satisfies

1 + i ≥ θµ
β

.

Proof. The proof follows similar reasoning to case (ii) in Proposition 7. Assume that

(1 + i) /µ < θ/β holds at the optimum. Because this condition implies overinvestment,

we can find an ε > 0 with (1 + i) /µ < (1 + i+ ε) /µ < θ/β such that the interest rate

1 + i+ ε results in a higher value for the welfare function, WU . But this contradicts the fact

that (1 + i) /µ is a solution to the welfare maximization problem.
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