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Abstract

We present a geometric approach to the finite Rational Inattention (RI)
model, recasting it as a convex optimization problem with reduced dimension-
ality that is well-suited to numerical methods. We provide an algorithm that
outperforms existing RI computation techniques in terms of both speed and ac-
curacy. We also introduce methods to quantify the impact of numerical inaccu-
racy on the behavioral predictions and to produce robust predictions regarding
the most frequently implemented actions.
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1 Introduction

Introduced by Sims [2003], Rational Inattention (RI) has been gaining increased ac-
ceptance as a model of information acquisition and processing, particularly in macroe-
conomics and finance. However, by and large we still do not know how effective RI
models are at explaining real-world phenomena. Maćkowiak et al. [2018, p.27] states
that “[t]he model of RI is well suited for a boom in empirical work, which has not yet
occurred,” and Gabaix [2014] notes that the limited scope of existing applied work is
partly due to the conceptual and computational complexity of RI optimization prob-
lems. Outside of a handful of special cases, RI models do not admit a closed-form
solution. Existing numerical methods are often computationally intensive and may
suffer from accuracy problems.

We introduce a geometric approach to finite RI models with the most common in-
formation cost specification, the average reduction in Shannon entropy [Caplin et al.,
2018, Matějka and McKay, 2015, Sims, 2003]. Our approach is very well suited for
numerical computation, simplifying the original problem and providing novel methods
to quantify the accuracy of its behavioral predictions.

To obtain the geometric approach, we transform each action’s payoffs across states
into what we term an “attention vector” — a simple mapping that accentuates payoff
differences when information is cheap and attenuates them when it is expensive.
The convex hull spanned by the action payoff vectors forms a convex polytope, the
“attention possibilities set.” The original RI problem is equivalent to finding the
optimal attention vector from this set, resulting in a strictly convex optimization
problem. This geometric approach is markedly simpler, reducing the dimensionality
of the original problem, providing two sets of convenient optimality conditions, and
separating the roles of prior beliefs and payoffs. Yet, it is straightforward to recover
the joint probability distribution of states and actions from the optimal attention
vector.

There are plenty of known algorithms for convex problems that can be readily used
for our geometric approach. We provide one such algorithm, adapted from standard
sequential quadratic programming with active set methods.1 Our algorithm performs
favorably compared with other approaches, delivering substantial gains in both speed
and accuracy. The attention vector transformation informs three noteworthy design

1Source codes are available on GitHub at https://github.com/mmulleri/GAP-SQP.
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features: Our choice of active sets, the stopping criterion, and a scaling routine to
avoid floating point errors.

We also provide novel methods designed to improve the accuracy and robustness
of the behavioral predictions of the model’s numerical solutions. We first propose
a precision metric that relies on the similarity of the implied attention vectors and
ensures that the joint distribution of states and actions converges to the true solution.
It does so by balancing tolerance errors on two margins: The extensive margin that
identifies which actions are chosen with positive probability, and the intensive margin
that specifies the relative frequency of each chosen action. The set of actions chosen
with positive probability, also known as the “consideration set,” is often an object of
interest by itself but is notoriously difficult to identify numerically.

We show how to obtain robust predictions regarding the most and least frequently
implemented actions despite numerical inaccuracy. Manipulating the optimality con-
ditions from the geometric approach, we derive “cover” sets of actions that, altogether,
are played with an overall probability of our choice. These covers can be used either to
approximate the consideration set or, conversely, to identify actions that are rarely, if
ever, chosen. The latter is helpful for hypothesis testing: Identifying groups of actions
that jointly have a low choice probability ensures that a rejection of the underlying
RI specification is not clouded by noise from the computation.

Finally, we provide three applications intended to illustrate some of the advantages
of our approach. The first application is based on the price-setting problem of Matějka
[2016]. We document that our algorithm is orders of magnitude faster than the well-
known Blahut-Arimoto algorithm [see Cover and Thomas, 2012] and scales well with
the size of the action and state spaces. Precision, rather than speed, is the focus of our
second application, based on the two-dimensional portfolio design problem of Jung
et al. [2019]. Our algorithm unveils some behavioral differences of importance. In
both applications, we obtain robust predictions by deploying our geometric methods,
which provide very tight estimates of the consideration set. Our third application
is a novel task-assignment problem, a complex but naturally finite RI problem that
is the ideal scenario for the geometric approach. We find that RI’s flexible and
costly learning predicts subtle adjustments in management strategy and information
acquisition — patterns that would be easy to miss without a high degree of numerical
accuracy.
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Related literature. Rational inattention models have rapidly found their way into
a variety of fields, from finance to monetary economics. We do not aim to properly
review what is by now a large literature — see Maćkowiak et al. [2018] for an excellent
survey of both theoretical and applied work with RI models. Instead we briefly discuss
previous key developments in solution methods for RI models.

Early work on RI models restricted analysis to Linear-Quadratic Gaussian (LQG)
frameworks, or assumed that the solution was Gaussian as an approximation, to
obtain analytic results that can, in turn, be embedded in an equilibrium model and
have led to many insights for aggregate phenomena.2

Sims [2006] exhorted researchers to go beyond the LQG case, and more recent
research has addressed some of the shortcomings of the LQG framework: Luo et al.
[2017] apply Gaussian techniques with constant absolute risk aversion preferences,
allowing them to study the dynamics of consumption and wealth in general equilib-
rium. Mondria [2010] allows signals to be linear combinations of the underlying state
of the economy, an approach that is also followed in Kacperczyk et al. [2016], among
others. Miao et al. [2019] make further progress in multi-variate LQG environments.
In settings where choices are discrete, some researchers use the Cardell distribution
to obtain closed forms that are amenable to empirical analysis [Bertoli et al., 2020,
Brown and Jeon, 2020, Dasgupta and Mondria, 2018].

Our methods offer an alternative to these distributional form assumptions, for
problems with finitely many states and actions. While many of the RI problems in
finance and macroeconomics feature a continuum of actions and states, the computa-
tional gains of our approach make it feasible to use very fine grids. Our applications
in Sections 5.1 and 5.2 draw on two leading examples that apply such discretization
to continuous problems, Matějka [2016] and Jung et al. [2019].

Paper structure. We formally describe the classic Rational Inattention approach
in Section 2 and introduce our geometric approach in Section 3. In Section 4, we
develop a toolkit for finite RI problems that improve the accuracy and robustness
of numerical methods. Section 5 illustrates the relevance of these new tools in three
specific applications, and Section 6 concludes.

2A necessarily incomplete list of examples is: Peng [2005], Peng and Xiong [2006], and Huang
and Liu [2007] for asset pricing; Maćkowiak and Wiederholt [2009] for monetary shocks; Gaglianone
et al. [2020] for forecasting; Van Nieuwerburgh and Veldkamp [2009] and Van Nieuwerburgh and
Veldkamp [2010] for home bias and under-diversification in asset portfolios.
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Notation. We use vector notation throughout the paper and rely on the following
conventions: Boldface letters such as x denote I-dimensional vectors. To describe
its component-wise construction, we also refer to x as [xi]. For example, [xi/yi]

describes the vector z with i-th component zi = xi/yi. When comparing vectors, we
write v ≥ w if and only if vi ≥ wi for all i, v > w if and only if v ≥ w and v 6= w,
and v � w if and only if vi > wi for all i.

2 Rational Inattention Problem

We consider the standard RI problem where an agent faces a finite menu of options
with state-dependent payoffs and can condition her choice on arbitrary but costly
signals. More accurate signals are more costly, and we follow the literature [Caplin
et al., 2018, Matějka and McKay, 2015, Sims, 2003, 2006] in focusing on information-
processing costs that are proportional to Shannon entropy.

Formally, an agent faces an unknown state of the world i ∈ I = {1, ..., I}, each
occurring with positive prior probability πi > 0. The agent has to implement a single
action a from the finite menu A, each identified by its state-dependent consumption
payoffs a = (a1, ..., aI) ∈ RI . We denote the set of probability mass functions over
the menu as ∆A. Before implementing an action, the agent can acquire information
about the state of the world, but more accurate information is more costly. By the
obedience principle, it is without loss of generality to assume that the decision maker
relies on a signal that directly recommends a specific action. We denote the resulting
conditional implementation probabilities by P ∈ (∆A)I , where Pi(a) denotes the
probability of implementing action a conditional on state i.

The optimal conditionals P maximize expected consumption utility net of in-
formation processing costs, measured as the average reduction in Shannon entropy
between prior and posterior. These costs are also known as the mutual information
and are equal to the expected Kullback-Leibler divergence between conditional and
marginal choice probabilities [Cover and Thomas, 2012],

MI(P , p |π) =
∑
i∈I

∑
a∈A

πiPi(a) ln

(
Pi(a)

p(a)

)
,
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where p(a) = π · P (a) refers to the marginal implementation probability of a.3 A
proportionality constant λ > 0 translates the informational burden from nats into
utils. Mathematically, the choice problem is parametrized by a triplet (A,π, λ),

W (A,π, λ) =


max

P∈(∆A)I, p∈∆A

∑
i∈I

∑
a∈A

πiPi(a)ai − λMI(P , p |π)

s.t. p(a) = π · P (a) ∀a ∈ A.
(RI)

The value function is nondecreasing under menu expansion,W (A,π, λ) ≤ W (A′,π, λ)

whenever A ⊆ A′, since the agent can always restrict the support of P to a subset of
available actions at no cost. RI agents frequently implement only a subset of actions
with positive probability, and we follow Caplin et al. [2018] in referring to support(P )

as the agent’s consideration set.

3 Geometric Approach

Key to our results is the equivalence between (RI) and a simpler optimization problem,
which we call the Geometric Approach (G). To get there, we show that it is without
loss of generality to relax the constraint in (RI), as the optimal marginals are always
consistent with the conditionals (see Lemma 3 in the appendix). Using standard
optimization techniques, we find that optimal conditionals are equal to

Pi(a) =
p(a)eai/λ∑

a′∈A p(a
′)ea

′
i/λ
, (1)

based on the same first-order conditions as previously reported Matějka and McKay
[2015]. As observed by Caplin et al. [2018], most terms in (RI) cancel out when we
substitute in these conditionals,

W (A,π, λ) = λmax
p∈D

∑
i∈I

πi ln

(∑
a∈A

p(a)eai/λ

)
, (2)

but only a finite set of marginals p ∈ D ⊆ ∆A is consistent with Equation (1). In
our relaxed version of (RI), this restriction falls away and any marginal in ∆A is
feasible. The resulting maximization problem is at the heart of our approach, but for

3In line with conventional notation, we assume that 0 ln 0 = 0.
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convenience we divide by the constant λ and apply a change of variables.
Specifically, we assign to each action a an attention vector β(a) := [eai/λ] ∈

(0,∞)I . This mapping accentuates differences in payoffs when the information is
cheap and attenuates them when it is costly. In particular, if action ã has a lower
payoff in state i than action a, the relative size of its attention vector,

βi(ã)

βi(a)
= e(ãi−ai)/λ,

converges to 0 as λ → 0+ and 1 as λ → ∞, so that action ã attracts almost no
attention relative to a in state i when attention costs are small, and largely equal
attention when they are large.

The convex hull over all attention vectors spanned by A,

B :=

{∑
a∈A

p(a)β(a)

∣∣∣∣∣ p ∈ ∆A

}
⊂ RI

+,

forms an ‘attention possibilities set’. We assign utility w(b) := π · ln(b) to each
attention vector b and then solve for the most attractive, feasible attention vector by
restating the optimization in Equation (2) as

max
b∈B

w(b). (G)

This strictly convex optimization problem is what we call the Geometric Approach, or
(G) for short. Figure 1 attests to why we call the approach ‘geometric’. The mapping
β transforms each available action a into an attention vector β(a) (drawn as black
dots). Their convex hull describes the set of feasible attention vectors B (shaded in
gray), and the indifference curves from the strictly convex utility function w (dashed
lines) indicate the unique optimal attention vector b∗, which always lies on the upper
boundary ∂+B = {b ∈ B | @b′ ∈ B : b′ > b} of the feasible set (drawn in blue) due to
monotonicity of w.

The geometric representation yields an immediate bound on the number of actions
that the RI agent implements with positive probability.4 The new formulation also

4Carathéodory’s Theorem states that at most I points are required to span any point in a I − 1-
dimensional convex hull [e.g. Eggleston, 1958, Theorem 18]. Since b∗ is part of the I−1-dimensional
upper boundary ∂+B, this implies that there always exists an optimal solution to (RI) that uses no
more than I actions, no matter the cardinality of the menu. For a more general treatment regarding
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β(a)
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∇w(b∗)

∇w(b)

Figure 1: Visual representation of the geometric approach.

separates the role of prior beliefs from that of payoffs: Prior π enters the objective
function through utility w — akin to preferences — but the attention possibilities
set B is entirely determined by the action payoffs a as well as the attention cost
parameter λ. This stark split proves useful to understand how the optimal attention
vector responds to changes in external parameters.

The weights that describe b∗ as a convex combination
∑
a∈A p(a)β(a) over atten-

tion vectors indicate the optimal marginals for the original (RI) problem. Condition-
als can then be derived by Equation (1). These weights may not be unique, which
happens when there are multiple optimal learning strategies in the (RI) problem.

The optimal attention vector can also be of interest by itself. The payoffs from
the pre-image β−1(b∗) describe a fictitious action that, whether added to the original
menu or offered in replacement of it, leaves the decision maker no better or worse off.
It is precisely the ignorance equivalent of the RI problem, as defined in Müller-Itten
et al. [2021], and can play a strategic role in contract games with RI agents.

The similarity of the attention vectors that span b∗ captures the amount of learn-
ing that the decision maker undertakes. In the extreme case where the optimum is
spanned by a single action, b∗ ∈ β(A), the decision maker forgoes learning altogether
and blindly implements a single action. In all other cases, the optimal choice always
involves learning. Learning is largest when b∗ is spanned by wildly different attention

the cardinality of the consideration set in infinite state spaces, see Jung et al. [2019].
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vectors, in which case the agent will closely tailor his action to the realized state.
The following example with a classic transport theme illustrates the link between the
geometric representation and the agent’s learning and choice behavior.

Example 1. Bill is choosing a transport option for an upcoming trip. He is familiar
with the train route, so this choice yields a certain payoff of zero. Upon consulting
the bus map, he sees that there are two bus routes that go to his desired destination:
One is direct and yields payoff 0.1, the other includes a long detour and yields payoff
−0.9. Unfortunately, Bill is colorblind and cannot tell whether the red or green bus
will take the detour. Regardless of trip length, the green bus is a double-decker bus,
to which Bill associates a payoff bonus of 1/3.

We can formalize this as a two-state RI problem, where the red bus takes the
detour in state 1 and the green bus in state 2:

atrain =

[
0
0

]
, ared bus =

[
-0.9
0.1

]
, agreen bus =

[
0.1+1/3
-0.9+1/3

]
, and π =

[
1/2
1/2

]
.

In the no-information benchmark where learning is impossible, Bill maximizes ex-
pected utility and decides to take the train. Conversely, if learning is free, Bill ac-
quires full information and takes the bus with the direct route. Costly learning forms
an intermediate scenario where Bill bases his choice on some, but not all, informa-
tion about the state. Figure 2 illustrates how the attention vectors β(ax) accentuate
payoff differences for small information costs λ and attenuate them for large costs.

When information costs are low (λ = 0.25), the optimal attention vector is
spanned by those of the busses and so Bill never takes the train. But contrary
to the full-information solution, he still errs occasionally by taking the detour. We
can determine his proclivity for detours by comparing the coordinates along each
axis, since Equation (1) pins down the conditional implementation probabilities for
each chosen transport option x as p(ax)β(ax)/b∗. As both busses are close to an
axis, Bill’s error rates are small but not zero: He avoids almost all detours on the
red bus, P1(ared bus) ≈ 0.04%, but accepts some on the green double-decker bus,
P2(agreen bus) ≈ 7.4%.

Under moderate information costs (λ = 0.7), the optimal attention vector is
spanned by those of the train and green bus. This indicates that Bill still acquires
some information but also hedges by taking the riskless transport option with proba-
bility p(atrain) ≈ 68%. As the spread of the attention vectors is smaller, Bill acquires

9
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1

Figure 2: Visual representation of Example 1. As learning becomes more costly, the
attention vectors of the busses move along the dashed lines, towards that of the train.
Dots indicate their position for cost parameters λ = 0.25 (top and right) and λ = 0.7
(closer to origin). The feasible set B is drawn in gray and the optimal attention vector
is indicated as a blue asterisk. Solid lines represent indifference curves.

less information. He misses out on many direct green bus trips, P1(agreen bus) ≈ 46%,
and takes quite a few detours, P2(agreen bus) ≈ 17%.

If information costs increase even further, the attention vectors for the busses move
closer to that of the train along the dashed lines. As a result, the spread decreases,
information acquisition goes down and the error rate goes up, until for some (finite)
attention costs he abandons learning altogether and sticks to train rides.

Figure 2 also illustrates how Bill’s transport choice changes if he discerns the
colors on the map with partial accuracy. If the direct route appears to be painted
more green than red, π1 > π2, this tilts all the indifference curves towards the right
but leaves the feasible set B unchanged. For small changes, Bill still uses the same
modes of transport, albeit in different contingencies. �
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3.1 Optimality conditions

The simple structure of (G) allows us to draw upon a vast literature within convex
geometry when it comes to locating the optimal attention vector. For instance, the
optimal attention vector can be succinctly characterized via linear inequality condi-
tions.

Theorem 1 (Optimality conditions). The solution b∗ ∈ B to (G) is unique and fully
identified by either of the following two optimality conditions:

(a) ∇w(b∗) · β(a) ≤ 1 for all a ∈ A.

(b) ∇w(b) · b∗ ≥ 1 for all b ∈ B.

Proof. See Appendix A.1.

Figure 1 captures the geometric intuition for this result: Condition (a) says that B
lies weakly below the hyperplane that is tangent to the indifference curve at b∗. Con-
dition (b) says that b∗ lies above all hyperplanes that are tangent to the indifference
curves at any suboptimal b ∈ B. Both hold thanks to the convexity of (G).

Both sets of optimality conditions are central to our paper. Constraints (a) are
linear over the points in the convex hull B. These constraints have been stated before
in terms of action payoffs and form the backbone for Caplin et al. [2018].5 One key
observation is that the conditions jointly imply that the inequality ∇w(b∗) · b ≤ 1

binds at the optimal attention vector b = b∗. The same must then be true for all
attention vectors that span b∗, including β(a) for all actions a that are part of an
optimal consideration set.

To our knowledge, the second set of optimality conditions is new to the RI lit-
erature. Constraints (b) are constructive in the sense that any feasible point b ∈ B
restricts the potential location of b∗ to a linear half-space dictated by the vector
∇w(b). A successive choice of feasible points bn ∈ B then allows us to “close in” on
the optimum and make precise statements about the true optimum based on numer-
ical estimates.

5Necessity was highlighted previously by Matějka and McKay [2015].
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3.2 Scaling and Posteriors

The functional form of (G) has another separability feature that is particularly helpful
for numerical evaluation: Scaling the feasible set B with a positive constant along any
dimension maintains optimality, even if the objective function is left intact. Mathe-
matically, component-wise scaling b 7→ [kibi] merely offsets the objective value by a
constant factor,

w([kibi]) =
∑
i∈I

πi · ln(kibi) = π · ln(b) + π · ln(k) = w(b) + w(k).

As a consequence, the optimum scales by the same vector as the feasible set.

Lemma 1 (Axis Scaling). Consider any scaling vector k ∈ RI
+. Attention vector b

solves (G) if and only if [kibi] solves maxb′∈{[kibi] | b∈B}w(b′).

Proof. Since w([kibi]) = w(k) + w(b) for all b ∈ B, w(b∗) ≥ w(b) for all b ∈ B if and
only if w([kib

∗
i ]) ≥ w(b′) for all b′ ∈ {[kibi] | b ∈ B}.

Scalability greatly helps reduce floating point imprecision in our numerical algo-
rithm. It also captures the fact that shifting all action payoffs by a constant vector
u ∈ RI does not affect the agent’s optimal learning strategy — after all, the payoff
boost is independent from the action choice.

Lemma 1 also allows us to identify the agent’s posterior beliefs under optimal
learning. Indeed, scaling attention vectors statewise by k∗ = ∇w(b∗) = [πi/b

∗
i ]

moves the optimum to the prior π. Similarly, it moves the attention vector for each
action to [k∗i βi(a)], which corresponds to the agent’s posterior for all actions in the
consideration set by Bayes’ rule,

Pi(a)

p(a)
πi

(1)
=

βi(a)∑
a′∈A p(a

′)βi(a′)
πi =

βi(a)

b∗i
πi = k∗i βi(a).

Although expressed differently, a similar transformation is present in previous concav-
ification procedures [Caplin et al., 2018, Gentzkow and Kamenica, 2014, Kamenica
and Gentzkow, 2011] that express the optimal (RI) solution in terms of the agent’s
optimal posterior beliefs.

While scaling to the simplex offers intuition regarding the possible posterior be-
liefs, it has one obvious draw-back: One needs to know the optimal b∗ in order to
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determine the scaling vector k∗. For conceptualization, this loop is not tragic – for
computation, it is fatal. One fundamental advantage of our approach is that it yields
a convex optimization problem where both the set of candidate points B and the
objective function w are explicitly defined.

4 Practical Implications

While there exist powerful algorithms to approximate convex optimization problems
like (G),6 some numerical noise is inevitable. One strength of the geometric approach
is that it allows us to narrow down the true optimum based on noisy estimates.

4.1 Consideration set approximations

While agent behavior is ultimately described by the conditional probabilities P , there
are instances where the primary focus is on identifying which actions are chosen
with positive probability. This consideration set reveals which products are on a
consumer’s radar, predicts possible price jumps in markets with sticky prices, and
uncovers correlations in portfolio investments. By classifying some actions as ‘never
chosen,’ it also yields a testable hypothesis for choice data that is too sparse to yield
reliable estimates of conditional (or even marginal) implementation probabilities.

We use the optimality conditions from Theorem 1 to approximate the optimal
consideration set despite numerical imprecision. To do so, we find it useful to assign
scores to each action a ∈ A based on any feasible attention vector b ∈ B. The
“b-score” of action a, written s(a|b), captures the location of β(a) relative to the
hyperplane tangent to the indifference curve at b,s : A× B → R

s(a|b) = ∇w(b) · β(a)− 1.

Actions with positive scores lie above the tangent hyperplane, those with negative
scores lie below. Rewriting Theorem 1 in this way, condition (a) states that all
actions have non-positive b∗-scores, and condition (b) states that the optimal choice

6We outline one such method in Section 4.3 and compare its effectiveness against other approaches
in Section 5.
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has a non-negative expected b-score for any b ∈ B since

∑
a∈A

p(a)s(a|b) = ∇w(b) ·

[∑
a∈A

p(a)β(a)

]
− 1 = ∇w(b) · b∗ − 1 ≥ 0. (3)

This expression is useful because it allows us to identify the most frequently chosen
actions and disregard the rest.

Partial Cover. To account for numeric noise, we generalize the notion of a con-
sideration set to describe any subset of the menu that contains the most frequently
chosen actions.

Definition 1. A set A ⊆ A is a “q-cover” of the (RI) problem (A,π, λ) if

p(A) =
∑
i∈I

πi
∑
a∈A

Pi(a) ≥ q ∈ [0, 1]

for all optimal conditionals P .

The consideration set is always a 1-cover, as are any of its supersets. Our goal
is to identify q-covers with high probability q and small cardinality |A|, in order to
isolate the most frequently chosen actions.

Starting with any feasible attention vector b, Equation (3) implies that the agent
can choose actions with negative b-scores only if she compensates by often enough
choosing actions with sufficiently positive b-scores — and when the maximal score
s̄(b) := maxa∈A s(a|b) is close to zero, actions with very low scores just cannot be
chosen often. This yields a threshold rule that can be used to generate a q-cover for
the (unknown) optimal choice based on a numerical approximation.

Corollary 1. For any b ∈ B and any q ∈ (0, 1), the set

A =

{
a ∈ A

∣∣∣∣ s(a|b) ≥ −qs̄(b)1− q

}
⊆ A

is a q-cover.

Proof. If s̄(b) = 0, all b-scores are non-positive and the attention vector b is optimal.
The set A then contains only actions with a b-score of zero, and is equal to the
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agent’s consideration set (or union of consideration sets, if there are multiple optimal
solutions). Otherwise, s̄(b) > 0 and we proceed by bounding b-scores above,

0
(3)
≤
∑
a∈A

p(a)s(a|b) ≤
∑
a∈A\A

p(a)

(
−qs̄(b)

1− q

)
+
∑
a∈A

p(a)s̄(b)

= s̄(b)

[
− q

1− q
(1− p(A)) + p(A)

]
=

s̄(b)

1− q
[p(A)− q]

Dividing by s̄(b)/(1− q) yields p(A) ≥ q.

Corollary 1 can be readily deployed to assess computation accuracy. Let b be the
researcher’s numerical estimate of the optimum and let A be a partial cover with high
q, say 95%. The researcher may find that A is pretty large, perhaps close to the full
menu A. This may indicate that computational error is substantial if the numerical
solution had a small support or, simply, the researcher had reason to expect a sparse
consideration set. Alternatively, the researcher may find that A has very few actions
or that, from the perspective of the specific application, actions in A are clustered
around only a handful of relevant values. In this case, the researcher has effectively
identified the key features of the consideration set under the true optimum.

Partial covers are also useful while searching for the right parameters to replicate
a salient fact, say, a particular action a being observed with a frequency higher than
10%. The researcher does not need a very precise estimate b of the optimum for each
parameter value: As soon as the 90%-cover excludes the aforementioned action a,
the parameter value can be rejected.

In practice (see Section 5), we find that accurate algorithms yield estimates b
that are very close to the (G) solution. The resulting q-covers typically have small
cardinality even when q is close to one, making this approach very attractive for
empirical research.

Dominated Actions. In many situations, it is even possible to rule out some dom-
inated actions altogether — effectively finding a 1-cover that is significantly smaller
than the menu. Sometimes, this is trivial: If an action delivers less payoff in each
state than a blind lottery over other actions, the action is suboptimal at any posterior
and thus would never be chosen. Tighter bounds are possible, since the optimality
conditions (a) and (b) imply that any action in the consideration set has a b∗-score
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of zero. Using numerical approximations, it is often possible to limit the location of
the possible optimal attention vector b∗, which in turn restricts the possible gradient
∇w(b∗) = [bi/πi] to some subset Ψ ⊂ RI

+. If we can bound the feasible b∗-scores for
some action a below zero,

s(a|b∗) ≤ sup
ψ∈Ψ

ψ · β(a)− 1 < 0, (4)

we can rule it out for good. The RI agent never implements this action in an optimal
solution.

Computationally, finding dominated actions is significantly slower than finding
a partial cover. A valid q-cover can be obtained from any feasible attention vector
based solely on explicit score computations, while testing for dominance requires
determining first a feasible set of gradients Ψ, and then solving maximization problem
(4) for each individual action. Still, the dominated actions approach is useful in
situations where accuracy is paramount.

4.2 Precision Metric

Even though (G) is computationally simpler, the primary object of interest is ulti-
mately the conditional choice P that predicts behavior, not the optimal attention
vector. Be it to compare model predictions to empirical data, or to write a stop-
ping criterion for numerical methods, the researcher eventually needs to decide when
two conditional choices are “similar.” We now show that the distance between im-
plied attention vectors offers a parsimonious metric to gauge similarity of the implied
conditional choice.

Definition 2. The attention distance between choices P ,P ′ ∈ (∆A)I is defined as

d(G)(P ,P
′) :=

√√√√∑
i∈I

πi

(
β−1
i

(
E[βi(a)|a ∼ Pi]

)
− β−1

i

(
E[βi(a)|a ∼ P ′i ]

))2

.

The attention distance is obtained in three steps: First, we compute the expected
attention vector [E[βi(a)|a ∼ Pi]] under each conditional P . Then, we transform the
attention vector back into the original payoff space using the inverse mapping β−1.
This transformation gets rid of any distortions introduced by axis scaling. Finally, we
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apply the standard Euclidean metric to the resulting payoff vectors, weighted by the
prior probability for each state. The weights ensure that the distance is unaffected
by a payoff-irrelevant splitting of states. Nonnegativity, symmetry, and the triangle
inequality are directly inherited from the standard Euclidean distance.

A potential shortcoming of the attention distance is its failure to distinguish be-
tween choices that imply the same attention vector. From a computational perspec-
tive, this may be a satisfactory compromise in the interest of parsimony. Indeed,
we now show that distance d(G) provides a suitable convergence criterion whenever
(RI) admits a unique solution. From any sequence of conditionals P n that converge
to the solution P under d(G), we can construct conditionals that converge in terms
of both marginal and conditional probabilities. So although the attention distance
only considers I-dimensional vectors, it is sufficient to generate convergence for all
I × |A| conditional probabilities thanks to continuity of the first-order conditions in
Equation (1).

Lemma 2. Suppose (RI) admits a unique solution P . For any sequence of condi-
tionals {P n} ⊂ (∆A)I that converges to P according to d(G), the conditionals[

(π · P n(a))βi(a)∑
a′∈A(π · P n(a′))βi(a′)

]
(5)

converge to P under the standard Euclidean metric over (∆A)I .

Proof. See Appendix A.1.

The attention distance d(G) is ideally suited to serve as a stopping criterion for
numerical solution methods since it penalizes numerical noise when it leads to sub-
stantial payoff differences and ensures that conditional choices converge to the actual
optimum. In this sense, the attention distance strikes a balance between other com-
mon stopping criteria: Methods that rely on objective values alone can lead to noisy
estimates of the model’s behavioral implications, since several conditional choices
may — and often do [Jung et al., 2019] — share very similar objective values. At
the other end, a straightforward comparison based on the Euclidean distance between
the conditional matrices P and P ′ (or the vectors of marginals p and p′) treats all
actions as equally distinct. However, numerical (RI) estimates over large menus err
along both the extensive and intensive margin: They typically misidentify both the
support of the optimal choice (the consideration set) as well as the relative frequency
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of chosen actions. The matrix distance disproportionately penalizes errors on the
extensive margin, while d(G) recognizes when a candidate consideration set contains
near-optimal actions.

4.3 Algorithm Design

The simple geometry of (G) offers fertile ground for numerical methods that solve
finite RI problems. Standard algorithmic techniques for convex problems perform
well, and the reduced dimensionality of (G) brings obvious gains in performance.

We provide an algorithm based on Sequential Quadratic Programming (SQP)
and active set methods (see, e.g. Judd [1998]), using d(G) as a stopping criterion.
The codes are available at https://github.com/mmulleri/GAP-SQP and a detailed
explanation of the code is provided in Appendix A.2. Although the optimization
methods we use are relatively unsophisticated, we find that our algorithm performs
favorably when compared to other state-of-the-art techniques that are typically used
to estimate RI models, in terms of both speed and accuracy. The methods and
ideas can also be combined with other solution methods to yield further gains in
performance.7

A few practical challenges arise when dealing with large state and action spaces,
for example when approximating continuous RI problems. This can routinely lead to
memory issues when storing and accessing the payoff matrix,8 and we briefly elaborate
on them here.

Dealing with large menus. Large menus can often be partitioned into clusters
of actions with similar payoff vectors. Sometimes, this clustering is explicit since the
menu represents a discrete approximation to a continuous choice variable, and so the
granularity of the discretization grid determines which actions are ‘lumped together’.
Even if the goal is to characterize the optimal choice over a very fine grid, active set
methods can significantly speed up the algorithm and reduce memory usage.

7For instance, one may use the Blahut-Arimoto algorithm with a very high tolerance error to
create a starting guess for the GAP-SQL algorithm. Or one may replace the SQP approach with
more advanced convex optimization algorithms.

8In the portfolio optimization (Section 5.2) the associated 3002×3002 payoff matrix would require
64.8Gb of memory.
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Practically, we start with a coarse grid over actions and increasing the grid pre-
cision stepwise. At each step, we compute the optimal attention vector bk and then
include K actions from the finer grid with the highest bk-score s(a|bk). We increase
grid precision once the 99% cover stabilizes. When K is large relative to the op-
timal consideration set, this approach can approximate large action spaces without
running into memory management issues. And while the numerical estimates of the
algorithm depend on the path of subgrids, any partial covers computed in the last
round accurately describe the optimal choice over the entire menu A.

Large state spaces. Although this step-wise optimization effectively avoids the
load of large menus, each step still relies on the entire payoff vectors for the currently
considered actions. As such, large state spaces inherently pose a bigger challenge
for our algorithm than large menus. When memory constraints are binding, a lower
threshold K may offer some relief: By reducing the number of actions that are added
to the candidate consideration set at each step, fewer payoff vectors are considered
simultaneously, but more iterations may be necessary to achieve convergence.

Approximating continuous problems. One caveat is in order when using any
discrete approximations to continuous problems: Even with a fine grid A × I over
actions and states, it is possible that unmodeled actions generate learning opportu-
nities that increase the attractiveness of actions a ∈ A, and that the approximation
thus dismisses a in error. Similarly, unmodeled states may affect the relative appeal
of actions in ways that are hard to predict, and our methods are not well suited to
judge the accuracy of our estimates for continuous state spaces. That said, it appears
in practice that the geometric approach also provides sensible numerical estimates
when applied to a fine discretization of a continuous (RI) problem, as we show in the
applications below.

5 Applications

In this section, we illustrate by way of example that both the conceptual frame-
work and the computationally tractable algorithm have the potential to expand the
purview of further research. We consider three applications: The first is a monopolist
problem with uncertain demand as proposed by Matějka [2016]. We use this well-
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known application to benchmark the GAP-SQP algorithm described in Section 4.3
against existing methods, focusing primarily on speed. The second is a portfolio choice
problem with a massive state and action space proposed by Jung et al. [2019]. We
primarily use it to highlight the precision of GAP-SQP and showcase the more robust
behavioral predictions that we develop in Section 4.1. The third is a task assignment
problem that is novel to the RI literature. It represents the ideal scenario for the (G)
approach – finite state spaces coupled with rich action spaces – and illustrates that
this combination arises naturally in economically relevant problems.

5.1 Sticky Prices [Matějka, 2016]

Our first application is based on the “rationally inattentive seller” model of Matějka
[2016]. A monopolistic seller has a per unit input cost of 1 and sets the price p facing
an isoelastic demand function whose elasticity, d+1

d
, is a random variable uniformly

distributed. Profits are given by Π(d, p) = p−
d+1
d (p−1), where the demand variable d

is the ex-ante unknown state and the price p corresponds to the seller’s action.9 As in
Matějka [2016], actions and states are discretized. As a benchmark we use a grid of
200×200 points, and we will improve the grid precision to increase the computational
demands of the problem without introducing any further complexity in the model.

For comparison to our base routine described in Section 4.3, we also solve the
model using the Blahut-Arimoto (BA) algorithm, a solution method that originated
in Rate Distortion theory and has recently gained some usage in RI problems. As with
our GAP-SQP algorithm, the BA algorithm is guaranteed to converge to the optimum
and operates with a reduced dimensionality, updating the marginal distribution over
actions. We implement both algorithms in MATLAB.10

Figure 3 documents the running times in seconds across a range of information
costs λ for our benchmark case with a grid of 200 × 200 points. As shown in panel
(a), the GAP-SQP algorithm terminates in less than 0.05 seconds in all runs, with

9The demand variable d is uniformly distributed in
(
1
9 ,

1
2

)
, following Matějka [2016], Section 4.2.

Matějka [2016] assumes a channel capacity constraint rather than information being acquired at a
cost. To match the channel capacity constraint of half a bit, we find that we need to set λ = 0.0053.

10We use a desktop computer with 16 GB of RAM and an Intel(R) 3.20 GHz Core i7-8700 processor
on a Windows 10 Enterprise 64-bit operating system. For further discussion of the BA algorithm, see
Caplin et al. [2018] and Cover and Thomas [2012]. Matějka [2016] instead used proprietary software
AMPL/LOQO to solve for the joint probability distribution. Due to licensing restrictions, we were
not able to use AMPL/LOQO to document running times. A comparable, freely available solver
(IPOPT) was substantially slower and less precise than both the GAP-SQP and BA algorithms.
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Figure 3: Running times across information costs

minimal differences across information costs. The BA algorithm, reported in panel
(b), runs in about one second when information costs are very low — and thus the
solution is very close to the full information benchmark — but is substantially slower
for higher information costs, up to 20 seconds. Both algorithms achieve very similar
objective values, with the GAP-SQP algorithm outperforming by about 10−8.11

Next we ratchet up the computation burden by increasing each grid precision up
to 600 points, adding up to 6002 = 360, 000 total grid points. As shown in Figure 4(a),
running times scale roughly linearly for the GAP-SQP algorithm. Even at a 600×600

grid running times stay well below half a second. Figure 4(b) shows that the BA
algorithm also scales well; though this means that computing times approach two
minutes for the largest grids.

We also compute the set of dominated actions as well as the 95% cover using the
output from our GAP-SQP algorithm. Figure 5 displays the GAP-SQP numerical
solution as solid bars over the full price grid — with insets at two points of the full
support of prices for visibility. The 99% cover is indicated with a dark blue back-
ground. It is identical to the consideration set of the numerical solution. Thus, even if
we had low confidence in the accuracy of the algorithm, we would be able to conclude
that the total probability of observing any price outside of this set is at most 1%.
Indeed, the main point in [Matějka, 2016] is that optimal pricing behavior is discrete,
clustering mass on a comparatively small number of points. This observation can also
be made by looking at the set of non-dominated actions (light blue background): It

11Numerical solutions for λ = 0.0053 are also very similar to those reported in Matějka [2016].
See online Appendix B.1. We thank Filip Matĕjka for sharing his numerical output.
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Figure 5: Partial cover and undominated actions

shows that the vast majority of prices are not used in any contingency. The validity
of the claim does not rely on having found the true optimum of the (RI) problem,
which makes it significantly more robust.

5.2 Portfolio Choice [Jung et al., 2019]

Our second application considers the portfolio choice problem of Jung et al. [2019],
who illustrate that RI can explain low rates of household portfolio rebalancing. In
this problem, an investor with unit wealth designs a portfolio composed of three un-
correlated assets, without restrictions on short sales or overall leverage. The investor
has constant absolute risk aversion (CARA) utility u(x) = −e−αx with risk aversion
parameter α. Asset zero is a safe asset with constant return 1.03. The returns from
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risky assets j = 1 and j = 2 are each modeled as the sum of two independent random
variables around a slightly higher mean return, 1.04 + Zj + Yj. The random variable
Zj

iid∼ N (0, σ2
z) reflects factors that are inherently unforeseeable. The random variable

Yj reflects factors that are not known at the outset but can be learned at a cost. Each
portfolio (θ1, θ2) ∈ R2 describes an available action, where θj is the position in risky
asset j and θ0 := 1 − θ1 − θ2 is the position in the safe asset. The expected utility
from the portfolio conditional on state Y = (Y1, Y2) is

U(θ,Y ) = E

[
u

(
1.03θ0 +

2∑
j=1

(1.04 + Zj + Yj)θj

)∣∣∣∣∣Y
]
. (6)

We follow Jung et al. [2019] and assume that Y follows a discrete distribution over
a 300× 300 grid that is obtained from a normal distribution N (0, 0.022I) truncated
at three standard deviations. We report results for parameter values α = 1, λ = 0.1,
and σz = 0.0173.12

We approximate the continuous menu (θ1, θ2) ∈ R2 by first (without loss of gen-
erality) imposing the upper and lower bounds given by the full-information solution,
and then iteratively doubling the grid resolution using 99% covers until we reach
513× 513 = (29 + 1)2 points.13 Jung et al. [2019] instead use a variant of the Blahut-
Arimoto algorithm that optimizes the points of support at each step of the algorithm.
We refer to this algorithm as JKMS. The algorithms reach a comparable objective
value, with GAP-SQP mildly outperforming JKMS.14 Both algorithms perform sig-
nificantly better than approximating the objective with a second-order polynomial
to obtain a Linear-Quadratic Gaussian (LQG) problem (for details, see Online Ap-
pendix B.2),15 an approach that is common in the applied literature.16

12These parameters correspond to scenario B in Jung et al. [2019]. Although not shown, the
GAP-SQP solution has larger support and achieves a higher objective value than the JKMS solution
in all four parameter scenarios.

13The iterative approach (see Section 4.3 and Appendix A.2) allows us to handle a large action
grid. However, it does not reduce the memory demands imposed by the large state space. In order
to compute the solution at the same state grid resolution as Jung et al. [2019], we opted to run the
algorithm on a computational cluster.

14The solution published in Jung et al. [2019] closes 0.607153 of the payoff gap between no and full
information, while GAP-SQP closes 0.614877 of the gap. For a comparison of the statewise payoff
distribution across algorithms, see Online Appendix B.2.

15The (continuous) LQG solution closes roughly 0.4843 of the payoff gap between no and full
information.

16Examples of LQG models include Kacperczyk et al. [2016], Luo et al. [2017], Mondria [2010],
Van Nieuwerburgh and Veldkamp [2009, 2010].
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Figure 6: Portfolio distributions under GAP-SQP (blue), JMKS (orange), and LQG
(black). In panel (a), the circle size of each portfolio θ is proportional to the proba-
bility weight p(θ), and the probability that the LQG solution falls between any two
dashed contour lines is equal to 0.2.

Turning to the behavioral implications, Figure 6(a) shows the estimated portfolio
choice probabilities across all three algorithms. The LQG solution stands out as
the only continuous solution, but even the two discrete solutions are measurably
different. Jung et al. [2019] caution that their solution method may miss solutions
with a larger support, and this is exactly what we find with GAP-SQP. The main
point in Jung et al. [2019], that portfolio rebalancing is relatively rare, remains valid —
and indeed the consideration set shrinks for higher information costs. Quantitatively,
though, GAP-SQP finds that portfolio rebalancing is substantially more common and,
occasionally, the investor makes small adjustments.

The partial covers displayed in Figure 6(b) allow more robust statements regarding
the true optimum given the state and action grid that we use. Contrary to the JKMS
estimates, it appears that the investor actually rarely takes large short positions
simultaneously on both risky assets. This may suggest that the investor looks for
good news rather than bad. Another pattern that arises from Figure 6(b) is that the
RI investor selects only portfolios from a circle, hinting that some further analytic
results are possible — and may help elucidate the relative role of risk aversion and
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Figure 7: Payoff distribution across choices, smoothed with a kernel density estimate.

information processing costs, for instance.17 Overall, the example illustrates the need
for more robust estimation techniques that not only deliver a “better estimate” but
allow a valid characterization of the true optimal choice.

Figure 7 plots the statewise payoff distribution U(θ,Y )−λMI, assuming (θ,Y ) is
distributed according to the numeric solution of GAP-SQP (blue) and the information
costMI is borne unconditionally. For comparison, we also show the payoff distribution
under no information (λ → ∞, grey dotted) and free information (λ → 0, grey
dashed).

We can compute the ignorance equivalent of this RI investment problem, ob-
tained as the pre-image β−1(b∗) of the optimal attention vector. This fictitious asset
is uniquely designed to ensure that the investor would abandon learning and select it
unconditionally, but without gaining a payoff boost in doing so [Müller-Itten et al.,
2021]. As can be seen from the payoff distribution in Figure 7, the ignorance equiv-
alent yields the same expected utility as the optimal portfolio choice with learning,
but – to dissuade learning – it avoids the lowest payoffs in a way that mimics the
full-information distribution.

5.3 Task Assignment

Our last application is designed to illustrate how the GAP geometry is particularly
helpful in RI problems when the action space is naturally large and discrete. A
manager has to assign N workers across three tasks {0, 1, 2}. Either task one or task

17A more thorough investigation of this conjecture is outside the scope of this research.

25



two is critical; task zero is never critical and represents dismissal. All but one of the
workers are skilled. The unskilled worker is not productive and prevents a skilled
worker from contributing (if there are any assigned to the same task). Output is thus
determined by the number of skilled workers assigned to the critical task, minus the
unskilled worker if he is also assigned to the critical task, n∗. We assume a simple
form of decreasing returns to scale, letting output be given by the production function
Φ(n∗) =

∑n∗

n=1 δ
n for δ = 0.9.

Despite its simple description, the task assignment problem generates a complex
optimization problem. There are 2N possible states, indicating which task is critical
c ∈ {1, 2} and the identity of the unskilled worker w ∈ {1, ..., N}. An action is a task
assignment aw for each worker w that can be summarized as a vector a ∈ {0, 1, 2}N .
There are 3N such vectors, and at least 2N that are optimal under some information
structure. We consider a fully symmetric setup with N = 10 workers, resulting in 20

states and 310 = 59, 049 potential assignments. Figure 8 summarizes expected output,
information flow, and optimal assignment strategies for a range of information costs
λ ∈ [.01, 100]. As information costs increase, the manager uses four distinct allocation
strategies (indicated by letters A to D).

When information costs are low, the manager aims for the full-information so-
lution, dismissing the unskilled worker and assigning everyone else to the critical
task (Strategy A). Initially, she acquires nearly all the information and consistently
achieves the full-information benchmark output Φ(9). As information costs go up,
the manager occasionally misidentifies the unskilled worker or, with much lower prob-
ability, the critical task.18

When λ reaches a certain threshold, the manager changes tack, sending all workers
to the task that she identifies as critical (Strategy B). Because all learning on workers
is forgone, we see a discrete drop in information acquisition that compensates the
manager for the reduction in expected output due to the unskilled worker.19 Because
the manager is initially very accurate at identifying the critical task, output once
again is near constant at Φ(8)—slightly lower than in the full-information benchmark
output Φ(9). As information costs increase, so does the likelihood of an extreme zero-
output assignment resulting from sending all workers to the misidentified critical task.

18Although not visible in Figure 8(b), there is a small but positive probability of output Φ(0) or
Φ(1) resulting from the critical task having been misidentified.

19Strategy A’s expected output decreases with the probability of misidentifying tasks or workers,
while output under Strategy B is affected only by task misidentification, by construction.
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Figure 8: Optimal management strategies under varying information costs.
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Output volatility peaks under this strategy.

Once information costs are high enough, the manager aims to hedge and acquires
little information. The first hedging strategy is to send all but one of her workers to
the task she believes to be critical, but do so with hardly any information on their
skills (Strategy C). This strategy is advantageous because the unskilled worker does
no harm when he is by himself, while the presence of a single skilled worker is useful
if the critical task is misidentified.20 As information costs increase even further, the
manager assigns an equal number of workers to either task (Strategy D), hedging
output as much as possible. What little information she still gathers concerns both
the worker and the task, but expected output quickly approaches the no-information
benchmark.

6 Conclusion

We have introduced a novel geometric approach to finite RI models and developed a
computational toolkit with a focus on robust methods for behavioral predictions. Our
hope is that our contribution enables further substantial progress in more complex,
quantitatively-relevant RI models — the kind necessary for applied work.

We conclude with some observations regarding RI models with a continuum of
actions or states. These are commonplace in macroeconomics and finance, where
researchers typically either focus on specific functional forms that can be solved an-
alytically or approximate the solution with a tractable distribution. Our methods
provide both an alternative and a complement to these distributional assumptions
through discretization of the action and state spaces. Given our computational gains,
it is possible to use very fine grids to minimize precision loss. Researchers can thus
now assess how general the analytic functional forms are or whether distributional
approximations are satisfactory. If the behavioral implications prove to be robust,
then the elegance and tractability of the analytic or approximate solutions justify
their use. If they do not, then discretization may be preferable — with the advantage
that it grants the researcher more flexibility in tailoring the payoffs and beliefs to
data.

20To an outside observer, firm output is most unpredictable over this range, as output entropy
peaks under this strategy.
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A Appendix

A.1 Additional Proofs

We start by showing that it is without loss of generality possible to relax the (RI)
optimization such that the decision maker can separately choose the marginals p ∈
∆A and conditionals P ∈ (∆A)I ,

max
p∈∆A,P∈(∆A)I

∑
i∈I

πi

[∑
a∈A

Pi(a)ai − λDKL(Pi ‖ p)

]
, (7)

where DKL(Pi ‖ p) =
∑
a∈A Pi(a) ln

(
Pi(a)
p(a)

)
denotes the Kullback-Leibler divergence

between Pi and p.

Lemma 3. The optimal conditionals P in (RI) and the relaxed problem Equation (7)
are equal, and the optimal marginals in Equation (7) satisfy p(a) = π · P (a) for all
a ∈ A.

Proof. It is an exercise in pure algebra to show that∑
i∈I

πi [DKL(Pi ‖ p)−DKL(Pi ‖π · P )]

=
∑
i∈I

πi
∑
a∈A

Pi(a) [ln(Pi(a))− ln(p(a))− ln(Pi(a)) + ln(π · P (a))]

=
∑
a∈A

π · P (a) (ln(π · P (a))− ln p(a)) = DKL(π · P ‖ p) ≥ 0,

with strict inequality whenever p(a) differs from P ’s marginals π · P (a). Conse-
quently, any other choice of p would increase costs without any consumption benefits.
By optimality, the agent avoids all unnecessary costs by setting p = π · P .

Next, we formally establish the validity of the optimality conditions that are
central to our results.

Proof of Theorem 1: Since w is strictly concave over a convex domain B, it admits
a unique maximum. We first show that the optimum b∗ necessarily satisfies both
conditions. Indeed, consider any b ∈ B \ {b∗} and let η : [0, 1] → B be defined as
η(t) = tb∗+(1− t)b. The function w ◦η represents the gain in utility as the attention
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vector moves from b towards b∗. The function is strictly increasing: If t < t′, then

(w ◦ η)(t′) >
t′ − t
1− t

w(η(1)) +
1− t′

1− t
w(η(t)) ≥ (w ◦ η)(t),

where the first inequality follows from strict concavity of w and the second from
optimality of b∗, as w(η(1)) = w(b∗) ≥ w(η(t)). Since the derivative of (w ◦ η) is
equal to ∇w(η(t)) · (b∗ − b), and ∇w(b) · b =

∑
i∈I λ

πi
bi
bi ≡ 1 by construction, the

nonnegativity of (w ◦ η)′(1) yields condition (a) and the nonnegativity of (w ◦ η)′(0)

yields (b).

We show sufficiency through the contrapositive: If b∗ is not optimal, then it
satisfies neither condition. Let b equal the true optimum and define η(t) as above.
The function (w◦η) is now strictly decreasing since w(η(0)) > w(η(t′)) by uniqueness
of the optimum and hence for any t < t′,

(w ◦ η)(t) ≥ t′ − t
t′

w(η(0)) +
t

t′
w(η(t′)) > (w ◦ η)(t′).

At t = 1, the condition (w ◦ η)′(t) < 0 violates (a) and at t = 0 it violates (b).

Proof of Lemma 2: Consider any subsequence {P nk} that converges to some condi-
tionals P̄ under the standard Euclidean metric over (∆A)I . Since P n converges to P
under d(G) and continuity of the bijective mapping β, we know that β(αP̄ ) = β(αP ).
As long as the solution to (RI) is unique, this point can be written in a unique way as
a convex combination over β(A). This implies that the marginals pnk =

∑
i∈I πiP

k
i

converge to p =
∑

i∈I πiPi.

As such, all convergent subsequences of the bounded sequence pn converge to the
same limit p∗. The Bolzano-Weierstrass theorem thus implies that pn itself converges
to p∗. By continuity of the first-order conditions (1), the convergence translates to
the conditional choice defined in Equation (5).

A.2 Algorithm description

Our base routine for small to moderate menus works as follows: We make use of the
scaling property (Lemma 1) to avoid floating point imprecision and store the normal-
ized attention vectors in a I-by-|A| matrix with entries Bia = βi(a)/maxã∈A βi(ã).
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Starting with an initial guess for the marginals,21 p0, we iteratively solve a second-
order Taylor approximation to (G),22 which after dropping constant terms yields

qk := arg maxp∈∆|A|−1

1

2
pTBTHBp− 2∇w(Bpk)TB,

where H refers to the diagonal matrix with entries Hii = πi/(Bp
k)2
i . When the

objective function w is particularly flat, it can happen that this process ‘overshoots’
and results in attention vectors bk = Bpk and b′ = Bqk that are on opposite sides of
the optimum, which can lead to long cycles. We can partially avoid this by making
sure that ∇w(b′) · bk ≤ 1, which ensures that the bounding hyperplane imposed by
the candidate b′ points away from bk. If the inequality holds, we set pk+1 := qk and
move to the next iteration. Otherwise, we know that by strict convexity of w, there
exists a point along the segment between [bk, b′] that does better than both. In that
case, we determine the candidate marginals pk+1 = tpk + (1− t)qk by identifying the
root of the monotone function ∇w(tpk + (1− t)qk) · (qk − pk) where the indifference
curve lies tangent to the segment.

We repeat this quadratic approximation until the implied IE converges, i.e. until
d(G)(P

k,P k+1) < ε, where P k is defined from pk according to (1). As a default, and
in all our applications, we use tolerance parameter ε = 10−12. By construction, our
approach ensures that the objective value w(Bpk) increases with each iteration.

When the action space is rich, the attention matrix B can require a lot of memory.
To avoid this limitation, we first apply the base routine to a coarse subgrid of the
menu, Ā0 ⊂ A. Upon convergence, we denote the estimated marginals by q0, its
associated attention vector as b0 = B0q0, and the tentative consideration set as
A0 = support(q0). We then compute the b0-scores over a finer subgrid Ā1 ⊇ Ā0. We
add the actions with the highest score to A0 until the menu reaches some maximum
cardinality K or contains all actions in some p-cover of grid Ā1. We repeatedly apply
the base routine to obtain updated estimates q1,m, b1,m and A1,m, and after each step
we augment A1,m with the actions in Ā1 that have the highest b1,m-scores. As long
as K is large enough, the p-cover eventually stabilizes, and we move to the next finer

21Practically, we use the full-information marginals by placing weight πi on arg maxa∈Aai.
22We implement this code using MATLAB’s built-in quadprog solver (Version 2019b). Since

the solver does not accept an initial guess, we use an equivalent centered problem by solving for
dp = p− pk instead.
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subgrid Ā2. We continue this process until the grid encompasses all of A and the
p-cover stabilizes.

The provided code returns the estimated choice probabilities and computes partial
covers at any desired probability level p, as described in Section 4.1. To identify
dominated actions, we restrict the set of feasible optimal gradients Ψ as follows: First,
we take the final numerical estimate b0, perturb it slightly along each dimension, and
consider the largest feasible attention vector along the perturbed ray.23 Together,
this yields a finite set of near-optimal solutions B̂ =

{
b0, ..., bI

}
⊂ B. The optimality

conditions in Theorem 1(b) imply that ∇w(bk) · b ≥ 1 for all k, and thus restricts b∗

to a small sub-region B̂ ⊂ B that is obtained by imposing these additional inequality
constraints. Since ∇iw(b) = πi/bi is strictly decreasing in bi, we obtain the linear
bounds

∇iw(b) ∈
[

πi
maxB̂ bi

,
πi

minB̂ bi

]
. (8)

Moreover, the optimality conditions in Theorem 1(a) require that the gradient∇w(b∗)

satisfies the additional linear inequality constraints

v · β(a) ≤ 1 ∀a ∈ A. (9)

Together Equations (8) and (9) form a feasible polytope Ψ for the optimal gradient
∇w(b∗). Dominated actions can thus be identified as those with a negative maximal
b∗-score, i.e. those with maxψ∈Ψψ · β(a)− 1 < 0.
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B Online Appendix

B.1 Sticky Prices [Matějka, 2016]

Additional Figures. Both the GAP-SQP and BA algorithms replicate the results
in Matějka [2016] very closely. Figure 9 shows the marginal distributions over prices
for the GAP-SQP algorithm (panel (a)) and BA algorithm (panel(b)), together with
the numerical solutions from AMPL provided by Filip Matĕjka. Solutions are so
close that we had to offset the histograms for visibility. We find that increasing grid
precision for actions does not meaningfully alter the solution.

(a) GAP-SQP algorithm
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(b) Blahut-Arimoto algorithm
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Figure 9: Replication of Matějka [2016]

Figure 10 reports the differences in the objective function value, at the computed
maximum, between the GAP-SQP and BA algorithms, for the benchmark case. The
difference is positively thorough for all the information values, indicating that the
GAP-SQL algorithm achieves greater precision despite running on a fraction of the
time of the BA algorithm. The difference, though, is very small by our choice of
stopping values.

B.2 Portfolio Choice [Jung et al., 2019]

Derivation of the LQG solution. Because of the properties of the CARA utility
function, it is possible to rewrite Equation (6) as

U(θ,Y ) = − exp

(
−α

(
1.03 +

2∑
j=1

(0.01 + Yj)θj

)
+
α2

2
(θ2

1 + θ2
2)σ2

z

)
.
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Figure 10: Objective function: GAP-SQP minus Blahut-Arimoto algorithm

We now construct a second-order approximation of this objective function around θ̂
such that

∇θU(θ̂,0) = 0 ⇐⇒ θ̂ ≈ (33.4124, 33.4124),

i.e., those portfolio shares that would be optimal if evaluated at the ex-post realization
Y = 0. Note this is not the same as the no-information solution because it does not
take into account the risk associated with Y .

Because E[Y ] = 0, the second-order Taylor approximation around (θ̂,E[Y ]) equals

Ũ(θ,Y ) = U(θ̂,0) +

[
θ − θ̂
Y − 0

]T
∇U(θ̂,0) +

1

2

[
θ − θ̂
Y − 0

]T
∇2U(θ̂,0)

[
θ − θ̂
Y − 0

]
.

The LQG approximation seeks to design a random variable, θ, to maximize

max
θ

Eθ,Y

[
Ũ(θ,Y )

]
− λMI(θ;Y ).

Cover and Thomas [2012] document a well-known solution to this problem: We
simply set θ to be jointly normal with Y . This follows from the fact that a Gaus-
sian distribution maximizes entropy for a fixed variance. It is not hard to see that,
given the choice of approximating point, the optimal mean is just θ̂. Given this, we
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need only solve for covariance matrix Σ that optimally balances smaller conditional
dispersion against information costs.

We can simplify the objective by dropping the linear terms, since they do not
depend on the covariance matrix. We can then simplify further using a couple of
well-known facts: First is the functional form for the mutual information of a pair
of multivariate normals, which has a simple closed-form expression; second is for any
random variables X1 and X2,

E[XT
1 AX2] = tr(ACov(X1,X2)) + E[X1]TAE[X2].

Plugging these in implies that solving the RI problem is tantamount to selecting a
positive-definite Σ that is consistent with the marginal distribution over Y so as to
maximize

1

2
tr
([

∇2U(θ̂,0)
]

Σ
)
− λ1

2
log

(
|Σθ| × |ΣY |
|Σ|

)
,

where | · | denotes the matrix determinant and ΣX denotes the marginal covariance
of the X.

Plugging in the optimal covariance matrix

Σ =

[
Σθ ΣθY

ΣY θ ΣY

]
=


3158.4 0 0.9453 0

0 3158.4 0 0.9453

0.9453 0 0.0004 0

0 0.9453 0 0.0004


yields the distribution found in Figure 6(a). The objective function net of information
costs is derived using Monte-Carlo methods. We take 10 million draws from the
optimal distribution and compute the sample average utility. We repeat this 100
times and take sample statistics of the estimates. This yields an average payoff, net
of information costs, of −.3220 with a 95% confidence band of [−.3221,−.3219].

Additional Figures. For comparison purposes, Figure 11 plots the statewise payoff
distribution U(θ,Y )− λMI, assuming (θ,Y ) is distributed according to the numeric
solution of GAP-SQP (blue) or JKMS (orange), and the information cost MI is borne
unconditionally.
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Figure 11: Payoff distribution across algorithm estimates, smoothed with a kernel
density estimate.
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