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Abstract

We introduce the concept of the ignorance equivalent to effectively summa-
rize the payoff possibilities of an agent who is facing a finite Rational Inattention
(RI) problem. The ignorance equivalent is a unique fictitious action that does
not distort learning incentives when added to the agent’s menu but also makes
ignorance optimal. In doing so, it allows us to restate the RI problem as a choice
over a richer menu without learning. The approach provides new insights for
menu expansion, the formation of consideration sets, the trading of informa-
tion, and belief elicitation. We fully characterize the relationship between the
ignorance equivalent and the optimal choice in the original RI problem. When
multiple RI agents with different learning costs interact, the ignorance equiva-
lent emerges in equilibrium, facilitating trade that allows agents to emulate the
first-best learning strategy.
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1 Introduction

In the face of risk and incomplete information, agents typically seek and acquire
information and thus effectively shape the uncertainty that they take on. Yet, the ex-
act details of this information acquisition process are usually unobservable. Rational
Inattention (RI) posits that agents can condition their choice on any state-dependent
signal but face an additive cost from generating, accessing or processing (“learning”)
that information [Sims, 2003]. The result is an endogenous information structure that
responds to incentives and changes in the environment. RI has been documented to
reproduce empirical regularities in a variety of contexts, from portfolio design to price
setting.

The agent’s rich learning possibilities are at once a strength and a hindrance to
the integration of the RI framework in broader economic models. Learning introduces
complementarities between actions, since a diverse menu allows the agent to better
tailor her action choice to the realized state. This gives rise to interesting behavioral
predictions: For example, even actions that are unattractive by themselves can open
up new learning opportunities when used in combination with the existing actions
and can considerably reshape behavior. Similarly, even a small information shock may
lead the agent to reassess her learning strategy entirely and rely on different actions.
However, the ability to generate such complex behavior comes at a cost. Outside
a handful of special cases that admit a closed-form solution, the sheer size of the
information structure — each learning strategy is a joint probability distribution of
actions and states — can make it hard to identify and communicate the key insights.

We introduce the concept of an ignorance equivalent to summarize the most per-
tinent features of a finite RI problem for a broad class of information costs. The
ignorance equivalent is a fictitious action with state-dependent payoffs that makes
the agent no better or worse off whether added to or in place of the original menu of
choices. That is, the ignorance equivalent is just attractive enough for the agent to
forgo all existing learning opportunities and yet generates no new profitable learning
opportunities when added to the menu. We show that the ignorance equivalent exists
and is unique, and argue that it is a parsimonious way to compare across learning
strategies, menus, and beliefs.

The ignorance equivalent is reminiscent of the certainty equivalent for choice prob-
lems under risk. Both concepts preserve key properties of the original problem but
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reduce its complexity by abstracting from learning and risk, respectively. Both con-
cepts incorporate all salient aspects of beliefs: Regardless of their (possibly subjective)
priors, two agents with the same ignorance equivalent use the same learning strate-
gies, and two agents with the same certainty equivalent purchase the same lotteries.
And just as the certainty equivalent naturally emerges when a risk-neutral company
designs the most profitable insurance contract, so the ignorance equivalent emerges
when the menu itself is strategically designed.

The primary challenge to characterizing the ignorance equivalent is to ensure
that no new profitable learning opportunities arise when it is added to the menu.
Starting with an optimal strategy over the original menu, we show that it is possible
to design a fictitious action that qualifies as an ignorance equivalent and is no more
attractive than the original strategy at all possible beliefs about the state. Quite
naturally, this is sufficient to rule out any new profitable learning opportunities and,
more surprisingly, it is also necessary because of the rich learning possibilities in the RI
framework. Together with the agent’s indifference at the prior, this dominance ‘across
beliefs’ proves instrumental to derive the key properties of the ignorance equivalent.
The first and foremost property is quite immediate now: Agents with different priors
self-select into their appropriate ignorance equivalent.

We show that one can recast any finite RI problem as a choice over a richer menu
without learning. We construct what we term the learning-proof menu from the col-
lection of ignorance equivalents across all priors. The key observation is that, by
the self-selection property, adding an ignorance equivalent to the menu generates no
profitable learning opportunities regardless of the agent’s prior. Any agent is thus
indifferent between the original and the learning-proof menu — and since uncondi-
tional choice is always optimal in the latter, learning becomes mute and the agent’s
problem effectively turns into a ‘fixed-information’ expected utility maximization over
the learning-proof menu.

The learning-proof representation succinctly summarizes how an RI agent’s learn-
ing and action choices respond to changes in the decision problem. For instance, a
researcher may want to know whether an agent will adjust her learning strategy if
a new action becomes available. A priori, the researcher would have to analyze the
welfare impact of complex learning strategies that involve all available actions. As
it turns out, it is sufficient to consider only those that rely on the original ignorance
equivalent and the new action — resulting in a much more tractable condition. Re-
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latedly, a newly available action may increase the appeal of a previously unchosen
action because of the learning complementarities. The learning-proof menu allows us
to identify which existing, but currently not chosen, actions may ever be used in re-
sponse to a menu expansion. Quite simply, actions that belong to the learning-proof
menu will be chosen if the right new action is made available; actions that do not will
remain unchosen in all expanded menus.

The learning-proof menu is also helpful when determining the value that an agent
assigns to a specific signal structure. This value depends not just on the precision
of the signal but also on whether the new information complements or replaces the
agent’s endogenously acquired information, which is determined endogenously by the
menu at the agent’s disposal. For instance, even an informative signal may not induce
any changes in the ignorance equivalent and thus may have no effect on her optimal
behavior. In that sense, the local geometry of the learning proof menu characterizes
which information is ‘actionable’ for the RI agent.

In addition, ignorance equivalence has relevance for experimental design. For in-
stance, it informs a principal on how to design a menu of state-dependent transfers
that incentivize an RI agent to acquire and disclose an arbitrary signal. The princi-
pal’s expected cost for this ‘indirect’ learning differs from the agent’s cost by only a
constant that reflects outside options. And if the principal does not want the agent
to learn (for example, because he wants to elicit the agent’s unknown prior without
generating belief-distorting learning incentives), he should design transfers such that
the resulting menu is learning-proof.

In multiplayer contracting, the ignorance equivalent takes on an important strate-
gic role: It allows RI agents with different learning technologies to coordinate on
the socially optimal (joint) learning strategy. We here provide a simple example to
illustrate how the ignorance equivalent emerges naturally in equilibrium.

Example. An investor (she) is looking to place her wealth in one of several different
assets with state-dependent returns. Being a rationally inattentive agent, the investor
will typically exert some effort into learning more about the state before making her
investment choices. The ignorance equivalent would be a fund with state-dependent
returns that, if available, the agent would be willing to unconditionally purchase – yet
the agent would be no worse off in its absence. But what if no such fund is available?

As it turns out, this fund is exactly what an asset manager (he) with access to
cheaper information would offer to attract the investor’s business. The manager does
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not want to reveal any free information through his fund design, and he also wants to
avoid investor learning because it leads to missed business opportunities and adverse
selection issues. Offering the ignorance equivalent enables the manager to extract
the maximal information rents. It also implements the social optimum because all
information acquisition is done by the more astute learner (the manager). �

Very broadly, we show that agents can emulate the socially optimal allocation,
including any associated learning, by trading the opportunity among themselves using
terms dictated by an appropriately defined ignorance equivalent. We also show that
this may require contracts with state-dependent transfers, and that therefore the
first best can be unachievable if states remain non-verifiable ex-post. This echoes an
important insight from Crémer and Khalil [1992], because the possibility of learning
can cause trades to fail even when they yield positive surplus to all involved agents.
Our analysis goes beyond this simple case: We study the optimal allocation of an
opportunity among any number of agents with different menus and learning costs.
In the example, the opportunity is generated by the investor’s wealth and a menu
specifies which financial assets can be purchased by each agent. As an industry
insider, the manager may have lower cost and a bigger menu than a retail investor.
Importantly, the ignorance equivalent is not only relevant to avoid learning: It can
also be used to induce the right kind of learning by the right agents. In a team setting,
for instance, the opportunity may represent a purchase decision of a new technology
and involve agents across many units, resulting in comparative learning advantages
and heterogeneous payoffs from each technology. The optimal teams solution may
involve a sequence of cost-benefit investigations and involve multiple agents before
settling on a final choice.

Paper structure. Section 2 clarifies notation and recaps the standard Rational
Inattention problem. Section 3 introduces the ignorance equivalent and its key prop-
erties, and Section 4 defines the learning-proof menu. Section 5 and Section 6 show
how these tools are useful to analyze behavior in situations with a single or multiple
rationally inattentive agents, respectively. Section 7 discusses the related literature
and Section 8 concludes. All proofs are in the Appendix.
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2 Rational Inattention Problem

The rationally inattentive decision maker has to implement an action from the finite
menu A.1 Payoffs of each action depend on an unknown state of the world i ∈ I :=

{1, ..., I}. The ex-ante likelihood of all states are captured by a full support prior
π ∈ int(∆I). No two actions are payoff equivalent, and we identify an action a ∈ A
by its state-dependent payoffs (a1, ..., aI) ∈ RI .

The agent can condition her choice on the outcome of a costly signal S = 〈S, q〉,
where S refers to a finite signal realization space and q ∈ (∆S)I denotes the condi-
tional probabilities qi(s) of realization s in state i. Upon observing a signal realization
s, the agent updates her belief to πs according to Bayes’ rule and selects a utility-
maximizing action in arg maxa∈A π

s · a. We denote the cost of signal S under prior
belief ρ ∈ ∆I by c(S,ρ) ∈ [0,∞), and discuss admissible cost functions in Section 2.1.

The welfare of a choice problem (A,π, c) is obtained by optimizing over expected
consumption utility net of learning costs,

W (A,π, c) = sup
S=〈S,q〉

∑
s∈S

(π · q(s))

(
max
a∈A

πs · a
)
− c(S,π). (RI)

Since additional actions weakly increase achievable utility maxa π
s · a, welfare is

menu-monotone, W (A,π, c) ≤ W (A′,π, c) whenever A ⊆ A′, a property also known
as ‘preference for flexibility’ [Kreps, 1979]. And since consumption utility and learning
costs interact additively, optimal learning is unaffected when all payoffs are shifted
by the same vector v ∈ RI (Lemma A.3).

To simplify language, we say that an agent “follows learning strategy S = 〈A, q〉”
if each signal realization identifies a recommended action that the agent implements.
By Lemma A.4, restricting the agent to such learning strategies incurs no loss of gen-
erality. We say that “unconditional implementation of a is optimal” if the degenerate
learning strategy with q(a) = 1 is optimal, and that “it is optimal to implement a
with positive probability” if at least one learning strategy with q(a) > 0 is optimal.2

1Our notation carries over to compact menus, as long as learning is restricted to finite signals.
For the cost functions that we consider, this is without loss of generality (Lemma A.1).

2Throughout, we use the convention that v ≥ w if and only if vi ≥ wi ∀i, that v > w if and only
if v ≥ w and v 6= w, and that v � w if and only if vi > wi ∀i.
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2.1 Admissible learning costs

The agent’s cost function is uniformly posterior separable [Caplin et al., 2022] and
prior-concave. Specifically, there exists a differentiable, convex potential function
φ : ∆I → R such that

c(〈S, q〉,π) =
∑
s∈S

(π · q(s))φ(πs)− φ(π) (UPS+)

is concave in the prior belief π.3 Within that class, leading examples are Mutual
Information [Sims, 2003], some variants of the Tsallis costs [Caplin et al., 2022] and
Total Information [Bloedel and Zhong, 2020], which subsumes the Wald cost by Morris
and Strack [2019] and the Fisher Information of Hébert and Woodford [2020].

While mathematically concise, the potential function in (UPS+) does not identify
which specific features of the agent’s learning technology are driving our results. We
instead base our proofs and discussions on five economically meaningful properties of
the learning cost. As we show in Lemma A.2, they are jointly equivalent to (UPS+);
but most results hold even without the last property.

(C1) Cost is continuous: For any signal space S and any cutoff ĉ ∈ R, the pre-images{
(q,π) ∈ (∆S)I ×∆I | c(〈S, q〉,π) ≷ ĉ

}
are open.

Continuity is instrumental in ensuring that the choice problem (RI) admits an optimal
solution, and that welfare is locally continuous in the prior belief (Lemma A.7).

(C2) Free information disposal: Cost function c(·,π) is non-decreasing in the Black-
well order and c(S, ·) is weakly concave in the prior for all S.

Condition (C2) is best explained by introducing an ‘assistant’ to the decision maker.
For Blackwell monotonicity,4 suppose the assistant draws a signal and then, depending
on its realization, communicates a garbled message to the agent. Since the garbling
is uncorrelated with the state, the agent is weakly less informed than the assistant,
and thus should incur a weakly lower cost. Blackwell monotonicity gives rise to the
well known ‘obedience principle,’ which allows us to restrict attention to learning

3For twice-differentiable potentials, Bloedel and Zhong [2020] provide a test for prior-concavity
that is based on the Hessian of φ.

4Signal S = 〈S, q〉 is Blackwell more informative than signal S̃ = 〈S̃, q̃〉 if for each s ∈ S, there
exists a lottery ms ∈ ∆S̃ such that q̃ =

∑
s∈S m

sq(s) [Blackwell, 1953].
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strategies (Lemma A.4). For prior-concavity, suppose the assistant privately observes
a free signal about the state. The concavity of c(S, ·) then simply states that it
should be no more expensive (in expectation) for the agent to implement a particular
learning strategy S with access to the assistant’s information than it is without.5

Prior-concavity implies in particular that welfare W is convex in the prior belief
(Lemma A.5).

The next property considers an RI agent who faces a binary choice between payoff
vector a and an outside option 0. Both options are equally attractive ex ante, but
the choice is payoff-relevant, π · |a| > 0.

(C3) Ties are broken through learning: For any belief π ∈ ∆I and any payoff vector
a ∈ RI that has zero expected utility π · a = 0 but is nonzero with positive
probability, π · |a| > 0, there exists a binary signal S = 〈{0, 1} , q〉 whose cost
is below the expected benefit, c(S,π) <

∑
i∈I πiqi(1)ai.

The property asserts that some learning is optimal, no matter how small the stakes a
or how extreme the belief π. This rules out fixed costs for learning and ensures that
the agent can randomize across actions at no cost (Lemma A.6). Since the choice of
a is arbitrary, the condition also guarantees that there exists a noisy enough signal
whose expected benefit outweighs the cost by any arbitrary factor (Lemma A.9).

The final two properties compare costs across sequential learning strategies, where
the agent first draws a signal S = 〈S, q〉 and, upon observing s ∈ S, draws a sec-
ond signal Ss = 〈Ss, qs〉. We denote this contingency plan as (S, {Ss}), and write
S × {Ss} for the one-shot implementation of the same process.6 It is appealing to
assume that the one-shot implementation costs no more than the contingency plan,
as a patient agent would otherwise exploit any possible cost savings. By assuming
that c(S,π) is already the cost-minimizing envelope over all sequential information
strategies [Bloedel and Zhong, 2020], one can avoid more cumbersome notation.

(C4) Sequential information acquisition brings no cost savings: In expectation, any
contingency plan (S, {Ss}) costs no less than the one-shot signal S × {Ss},
c(S,π) +

∑
s∈S(π · q(s)) c(Ss,πs) ≥ c(S × {Ss} ,π).

5The link between prior-concavity and the agent’s value of information has previously been dis-
cussed by Denti et al. [2022] and Bloedel and Zhong [2020].

6Formally, S × {Ss} is the signal 〈S ×
⋃

s∈S S
s, q̃〉 with q̃i((s, s̃)) = qi(s)q

s
i (s̃).
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The property yields an optimal stopping result [Hébert and Woodford, 2019, Zhong,
2019]: If the agent implements a ∈ A at some posterior ρ, then she would do so
unconditionally if her prior were ρ (Lemma A.8).

The opposite inequality feels more restrictive.

(C5) Sequential information acquisition incurs no extra costs: In expectation, any
contingency plan (S, {Ss}) costs no more than the one-shot signal S × {Ss}
c(S,π) +

∑
s∈S(π · q(s)) c(Ss,πs) ≤ c(S × Ss,π).

We do not mention this property anywhere in the proofs for Sections 3 and 4. This
matters in particular when we analyze joint learning between heterogeneous agents
in Section 6, as the social cost from their optimal joint learning sequence is only
guaranteed to satisfy properties (C1) to (C4).

3 Ignorance Equivalent

The central concept of our paper is the notion of the ignorance equivalent. The
ignorance equivalent of an RI problem (A,π, c) is a payoff vector α ∈ RI that, as
a fictitious action, leaves the agent no worse as a replacement of menu A and yet
delivers no welfare gains as an addition to the menu A.

Definition 1. The payoff vector α ∈ RI is an ignorance equivalent of the RI
problem (A,π, c) if and only if

W ({α} ,π, c) ≥ W (A,π, c) and W (A,π, c) ≥ W (A ∪ {α} ,π, c).

Intuitively, the first condition means the agent would be willing to commit to
always implement α, forgoing any learning opportunities that are present in A. The
second condition means that she would also commit to never implement α, forgoing
any learning opportunities that arise when α is added to the original menu. Together,
the two conditions imply that W ({α} ,π, c) ≥ W (A ∪ {α} ,π, c), but since larger
menus weakly raise welfare, all inequalities are binding. In this sense, the payoff vector
α is such that the agent can forgo all learning opportunities, old or new, without loss
or gain. It is thus appropriately called an ‘ignorance equivalent.’

The ignorance equivalent is reminiscent of the certainty equivalent for lotteries.
Neither is typically available to the agent, unless we are considering degenerate lot-
teries or a decision problem where no learning is optimal. Yet, both concepts allow
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{x | x - S}

π

−c(S,π)1

ρ

−c(S,ρ)1

a1

a2

α

aS

Figure 1: Dominated payoff vectors and construction of the ignorance equivalent.

us to abstract from the crux of the underlying economic problem (risk, learning) to
reduce its complexity, all while preserving its key properties to enable comparative
statics. The similarity between the two concepts extends to their construction: Just
like the certainty equivalent is equal to the highest payment that is dominated by the
lottery, we now show that the ignorance equivalent is equal to the payoff vector with
the highest expected utility that is dominated by an optimal learning strategy.

Formally, this is what we mean with dominance by a learning strategy: An agent
with belief ρ ∈ ∆I obtains expected utility ρ · x from implementing action x un-
conditionally and incurs no learning costs. If instead the agent follows the learning
strategy S = 〈A, q〉, she achieves expected consumption utility aSi =

∑
a∈A qi(a)ai

in each state i. Welfare is obtained by weighing these state-wise expectations by
the agent’s belief and subtracting the signal cost. Payoff vector x is dominated by
learning strategy S if the latter yields weakly larger welfare for any belief ρ. As we
shall see later, the reference to other beliefs is what rules out profitable new learning
opportunities that may arise from the addition of x to the menu.

Definition 2. Payoff vector x is dominated by a learning strategy S = 〈A, q〉,
denoted x - S, if and only if

ρ · x ≤ ρ · aS − c(S,ρ) ∀ρ ∈ ∆I.

Figure 1 sketches a sample RI problem (A,π, c) with two states (on either axis)
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and two actions (a1 and a2) to illustrate the concept of dominance. The learning
strategy S implements action a2 with probability 1/4 in state 1 and with probability
1 in state 2, leading to expected consumption utility aS1 = 1

4
a2

1 + 3
4
a1

1 and aS2 =

a2
2. For each belief, the signal cost determines the maximal expected utility for any

dominated payoff vector. We indicate this upper bound for prior π as a dashed
line and for belief ρ as a dotted line. The intersection of all such lower half-spaces
forms the set of dominated payoff vectors, which is thus naturally closed, convex and
unbounded below. The concavity of c(S, ·) determines the curvature of the boundary,
and the cost c(S, ·) determines its distance to aS . As a special case of interest, Total
Information [Bloedel and Zhong, 2020] describes (UPS+) costs that are linear in the
prior, c(S,π) = π · ∆S for an appropriately defined ∆S ∈ [0,∞)I . In this case,
dominance x - S is simply equivalent to the vector inequality x ≤ aS −∆S and the
boundary is ‘maximally curved’ around a single point, so much so that it is actually
nondifferentiable.

Our first result shows how to obtain the ignorance equivalent of (A,π, c) from any
optimal signal using the dominance relationship, and establishes the existence and
uniqueness of the ignorance equivalent.7

Theorem 1. Each RI problem (A,π, c) admits a unique ignorance equivalent α ∈ RI .
It is obtained from any optimal learning strategy S as the payoff vector that maximizes
expected utility over all S-dominated payoff vectors,

α = arg max
x-S

π · x. (1)

Three arguments are key to the result:
First, unconditional implementation of the best S-dominated payoff vector α

is as attractive as following strategy S. Using Fenchel’s strong duality theorem,
Lemma A.11 shows that the optimization problems

w̄S = sup
x∈RI
{π · a | x - S} and wS = inf

ν∈∆∆I
E[ν]=π

E[ρ · aS − c(S,ρ) | ρ ∼ ν] (2)

7Existence and uniqueness of the ignorance equivalent can be established for the larger class
of posterior separable costs and derived from the Lagrangian Lemma in Caplin et al. [2022], as
explained in Online Appendix B.1.2. In the main paper, our restriction to (UPS+) costs guarantees
that the ignorance equivalent does not just exist but also has the properties that make it an attractive
summary of the RI problem (see also Online Appendix B.2.2).

11



are each other’s dual. The former (w̄S) maximizes the agent’s welfare, assuming she
implements a dominated payoff vector x - S unconditionally. The latter (wS) com-
putes the agent’s worst-case welfare from following strategy S, when an adversarial
nature can reveal free information before the signal is drawn – or, equivalently, nature
triggers a belief update to priors ρ drawn from any Bayes-plausible distribution ν.
This belief update may change expected signal costs, but only to the agent’s benefit
because of prior-concavity (C2). The worst case occurs under no free information,
and hence wS = π · aS − c(S,π).

Strong duality asserts that both problems attain the same welfare, w̄S = wS . In
the case of an optimal signal — which exists by continuity of the cost (C1) — we
obtain wS = W (A,π, c). Since this value is finite, duality also guarantees that the
supremum is attained, ensuring that α = arg maxx-S π · x is well-defined with

W ({α} ,π, c) = w̄S = wS = W (A,π, c). (3)

Visually, this means that the set of dominated payoff vectors {x | x - S} in Figure 1
touches the dashed line that describes the net utility from implementing S under
prior π.

Second, dominance α - S is sufficient to rule out new learning opportunities that
arise from adding α to the original menu A: Whenever a potential strategy over
menu A ∪ {α} recommends implementation of α at some posterior ρ, the agent is
just as well off by instead continuing with strategy S and relying only on actions in
menu A. By sequential optimality (C4), the agent can thus achieve at least as much
welfare by restricting attention to menu A, and W (A ∪ {α} ,π, c) = W (A,π, c).
Together, these three steps construct a payoff vector that satisfies both conditions of
Definition 1 and thus establish existence of the ignorance equivalent.

The final step establishes that the ignorance equivalent is unique, even if the (RI)
problem admits multiple optimal signals. The proof relies heavily on the flexibility of
learning, which drives the agent to break all ties through learning (C3). This property
allows us to construct a welfare-enhancing sequential strategy from any two distinct
candidate ignorance equivalents. And by sequential optimality (C4), these welfare
gains could be realized even in a one-shot implementation.
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Necessity of dominance. Theorem 1 implies that imposing dominance is not just
sufficient to rule out learning opportunities – it is also necessary.8 It may surprise that
there is no loss in requiring the optimal signal to be preferable to the unconditional
implementation of α for all beliefs, including those occurring with zero probability.
There is indeed no welfare gain in relaxing the optimization in Equation (1) to a
larger domain that requires S only to be preferable to payoff vector x ‘locally,’ that
is, for beliefs within an open neighborhood of the prior π. Prior-concavity of the cost
(C2) implies that if x achieves the same welfare as S under prior π and is preferable
to S at some posterior ρ, then it also delivers welfare gains at the local perturbation
ρε := (1− ε)π + ερ for arbitrarily small ε > 0.9 In turn, property (C3) ensures that
the agent could build a profitable learning strategy from any local welfare gains, even
if they occur in a direction in which the agent does not, currently, update her beliefs.

Connection with optimal strategies. While the ignorance equivalent is always
unique for any RI problem (A,π, c), there may exist multiple optimal learning strate-
gies. Nevertheless, the construction in Theorem 1 establishes a one-to-one relation-
ship between the agent’s ignorance equivalent α and the set of all optimal strategies,
which are exactly those that dominate α. This relationship can be stated implicitly,
as in Equation (1), or explicitly, as in Lemma A.13 in the appendix. In particu-
lar, for Shannon entropy costs with potential φ(ρ) = λ

∑
i∈I ρi ln(ρi), the expression

simplifies to
αi = aSi − λ

∑
a∈A
q(a)>0

qi(a) ln(πai /πi)

for any optimal learning strategy S = 〈A, q〉.
Since the dominance relationship does not depend on the prior π, any two RI

problems (A,π, c) and (A,π′, c) that share the same ignorance equivalent also share
all optimal learning strategies.

Corollary 1. If the ignorance equivalent of RI problems (A,π, c) and (A,π′, c) is
the same, then so is the set of optimal learning strategies.

Even though their ignorance equivalents coincide, the posterior beliefs of the
8In situations with multiple optimal signals, Theorem 1 requires that each of them dominates α.
9Formally, ρε ·x = ερ ·x+ (1− ε)π ·x. If x is strictly preferable to S under prior ρ and as good

as as S under π, the expected payoff under ρS is strictly larger than ε[ρ · aS − c(S,ρ)] + (1− ε)[π ·
aS − c(S,π)], which by prior-concavity (C2) is at least ρε · aS − c(S,ρε).
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agents will still diverge in general – but they seek out the same information sources
and display the same state-dependent stochastic behavior.

Continuity of the ignorance equivalent is another consequence of this one-to-one
correspondence linking the ignorance equivalent and the set of optimal learning strate-
gies. Since the optimal RI signals are upper hemicontinuous by Berge’s Theorem
(Lemma A.7), the ignorance equivalent is continuous in the prior.

Corollary 2. The mapping π 7→ α(A,π,c) is continuous at any prior π ∈ int(∆I).

Self-selection. By definition, the ignorance equivalent generates no additional learn-
ing under the agent’s prior. Theorem 1 further implies that the ignorance equivalent
must be dominated, and thus it generates no additional learning opportunities un-
der any prior, regardless of whether it is the one it was designed for. We refer to
this result as the ‘self-selection’ property of the ignorance equivalent for the following
reason: Suppose two RI agents with different priors face the same menu and cost func-
tion. Adding both ignorance equivalents to the menu would not be welfare-enhancing
for either agent, yet both would now be willing to forgo learning by unconditionally
implementing their respective ignorance equivalent.

Corollary 3. Let α denote the ignorance equivalent of RI problem (A,π, c). For any
belief ρ ∈ ∆I, the ignorance equivalent of (A,ρ, c) is equal to that of (A∪{α} ,ρ, c).

Self-selection is a direct consequence of dominance, α - S. Dominance implies
that no matter the agent’s interim belief, continuing with strategy S is always at
least as attractive as implementing α. An agent who follows the optimal strategy for
(A ∪ {α} ,ρ, c) can achieve the same welfare in (A,ρ, c) by simply continuing with
S whenever her strategy calls for α. For that reason, the set of optimal learning
strategies grows (under the set-inclusion ordering) as ignorance equivalents are added
to the menu. In that sense, adding an ignorance equivalent may give rise to additional
optimal strategies, but it does not ‘distort’ the agent’s previous choice.

On a technical note, our uniqueness result relies on the full-support assumption
on the prior. For beliefs on the boundary ρ ∈ ∆I \ int(∆I), the ignorance equivalent
is unique with probability one but can have arbitrary payoffs in the zero-probability
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states,10 and Corollary 3 should be understood to say that the set of ignorance equiv-
alents is unchanged when α is added to the menu.

4 Learning-Proof Menu

By design, the agent’s learning ability becomes obsolete once her ignorance equivalent
is added to the menu. The agent is no better off than she was before the menu
expansion — but she is now also no worse off if she were to lose access to her learning
technology. The collection of ignorance equivalents across all priors thus forms a
fictitious menu that captures all the payoff possibilities of the RI agent regardless of
her belief.

Definition 3. Lettingα(A,π,c) denote the ignorance equivalent of RI problem (A,π, c),
the learning-proof menu for menu A under cost c is given by

Ā :=
{
α(A,π,c) | π ∈ int(∆I)

}
.

By studying the agent’s choice over this fictitious menu Ā rather than the original
menu A, one can speak to situations with flexible learning without having to account
for state-dependent stochastic choices. The learning-proof menu owes much of its
appeal to properties it inherits from its various equivalent characterizations.

Alternative characterizations. The menu Ā is ‘learning-proof’ because regard-
less of the agent’s prior, learning brings no welfare gains over the best unconditional
action choice. At the same time, Ā does not distort the agent’s choice because it
maintains all optimal learning strategies over the original menu A by Corollary 3.

Theorem 2. For any menu A and cost function c, the learning-proof menu Ā is the
smallest set such that for any prior π ∈ int(∆I),

(a) Ignorance is an optimal strategy in (Ā,π, c), W (Ā,π, c) = maxa∈Ā π · a.

(b) Any strategy that is optimal in (A,π, c) is also optimal in (Ā,π, c).

10Formally, one can recast the problem by dropping the dimensions with zero probability and
redefining costs as the infimum over all signals that are Blackwell-equivalent over the remaining
states.
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Since the learning strategies of the original menu remain optimal, the problems
(A,π, c) and (Ā,π, c) also share the same ignorance equivalent by Theorem 1.

The learning-proof menu accurately captures the agent’s payoff possibilities be-
cause it can be constructed from the agent’s welfare function. Indeed, because each
ignorance equivalent is uniquely maximal in some direction π ∈ ∆I, the learning-
proof menu represents the upper boundary11 of the strictly convex set⋂

π∈∆I

{
x ∈ RI | π · x ≤ W (A,π, c)

}
. (4)

This characterization has direct implications for the comparative statics of Ā: Any
change in the problem parameters that raises agent welfare across all priors will move
this boundary outward. Examples of such changes include the addition of new actions
to the menu A or reductions in the learning cost c.

Characterization (4) also yields an analogy to standard producer theory: Hotelling’s
lemma states that if a firm maximizes expected profit over a strictly convex produc-
tion set, its optimal production vector is equal to the price-gradient of its profit
function. In our case, the agent maximizes expected utility over (the upper boundary
of) a strictly convex set of ‘feasible’ payoffs. The optimum identifies the ignorance
equivalent, which is thus equal to the gradient of welfare with respect to the prior.

Similarly, the learning-proof menu accounts for all learning opportunities of the
agent because it can be constructed from the set of learning strategies. Theorem 1
shows that each ignorance equivalent is obtained by maximizing expected utility
across all dominated payoff vectors and across all learning strategies. The upper
boundary of the union over all dominated payoff vectors,⋃

q∈(∆A)I

{
x ∈ RI | x - 〈A, q〉

}
(5)

is thus also equal to the learning-proof menu Ā. Figure 2 illustrates this construction
of the learning-proof menu by plotting Ā in a simple RI problem with two states and
three actions, along with three sample strategies Sk. For each learning strategy, the
solid labeled line indicates the maximal dominated payoff vectors x - Sk. Strategies
S1 and S2 rely only on actions in the original menu and are feasible in RI problem

11Point x is part of the upper boundary of X ⊆ RI if and only if x ∈ Y for any closed superset
Y ⊇ X and x+ y /∈ X for any y > 0.
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Figure 2: Construction of the Learning-Proof Menu Ā (thick solid line) for an RI
problem with two states and three actions (action payoffs are indicated as black
dots).

(A,π, c). They are therefore included in the union of Equation (5). Strategy S1

is optimal at π since it is tangent to Ā at that prior. Strategy S2 is optimal at a
prior that leans more toward state 1. There are other learning strategies that are not
optimal at any prior: For those, all dominated payoff vectors lie strictly below Ā.
Strategy S0 implements α unconditionally at no cost. It is an example of a learning
strategy that becomes newly feasible in menu Ā. Strategy S0, too, is optimal at prior
π. Yet by the self-selection property (Corollary 3), none of the newly feasible learning
strategies dominate additional payoffs vectors.

Reduced-Form approach. If the learning-proof menu Ā is known, one can iden-
tify the solution to the original (RI) problem in two steps by first locating the igno-
rance equivalent α through the expected utility maximization problem maxa∈Ā π ·a.
Theorem 1 then identifies the full set of optimal learning strategies as exactly those
that dominate α. The convenience of this approach is that the first step does not
have to account for learning at all, and the second step is independent of the prior
belief.

This logic may at first sound circular, as we define the learning-proof menu from
the ignorance equivalent, which in turn is obtained from the optimal learning strategy.
In Sections 5 and 6, we however show that the learning-proof menu often emerges
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endogenously in economic applications. And so to the extent that Ā can be observed
through the equilibrium contract terms, it allows inferences on the agent’s optimal
learning or problem fundamentals such as π.

Anchor Actions. The intersection A = A ∩ Ā contains all actions that are im-
plemented unconditionally under at least one prior. We call these actions anchors,
because they connect the ‘fictitious’ learning-proof menu Ā to the ‘physical’ menu A.
There are several equivalent characterizations for these actions.

Corollary 4. Fix a menu A and a cost function c. For any available action a ∈ A,
the following are equivalent:

(a) Action a is an anchor of the learning-proof menu, a ∈ Ā.

(b) It is optimal to implement a unconditionally for some prior π ∈ ∆I.

(c) It is optimal to implement a with positive probability for some prior π∈ ∆I.

(d) There exists no prior ρ ∈ ∆I such that the ignorance equivalent of (A,ρ, c)
dominates a statewise, α(A,ρ,c) > a.

Characterization (c) points out that the RI agent always restricts her attention
to anchor actions, even at priors where ignorance is not an optimal strategy. The
literature uses the term consideration set [Caplin et al., 2018] to refer to the (typically
small) submenu of actions that are implemented with positive probability. Corollary 4
implies that the union of consideration sets across priors yields exactly the set of
anchors.12

Characterization (d) describes in what sense non-anchor actions a ∈ A \ Ā are
suboptimal: It is not just that each RI agent, depending on her prior, finds some
other learning strategy more attractive. It is also true that the learning-proof menu
contains a payoff vector α(A,ρ,c) that dominates a statewise. By Theorem 1, this also
implies that there exists a specific learning strategy S (any one that is optimal under
prior ρ) which all agents, irrespective of their prior, strictly prefer to a.

12The equivalence between (b) and (c) follows directly from the optimal stopping rule (Lemma A.8)
that has previously been derived by Hébert and Woodford [2019], Zhong [2019]. We include both
characterizations for clarity.
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5 Applications with a Single RI Agent

Recasting access to learning as access to a better menu yields new theoretical in-
sights on the comparative statics of choice. In this section, we focus on situations in
which a researcher or principal either seeks to learn from or about a single rationally
inattentive agent.

5.1 Menu Expansion

When new actions are added to the menu, a rationally inattentive agent re-calibrates
her entire learning strategy. As a result, the comparative statics of the consideration
set depend in complex ways on the full menuA and the cost function. Fortunately, the
ignorance equivalent and the learning-proof menu bring structure to menu expansion.
To determine whether a new action is implemented with positive probability, it is
without loss of generality to replace the original menu with its ignorance equivalent.13

And since the ignorance equivalent can be derived from the optimal learning strategy
(Theorem 1), the result also means that unchosen actions do not affect regardless of
whether a new action is attractive.

Theorem 3. Let α denote the ignorance equivalent of RI problem (A,π, c). The
following hold for any payoff vector a+ ∈ RI :

(a) W (A ∪ {a+} ,π, c) > W (A,π, c) ⇐⇒ W ({α,a+} ,π, c) > W ({α} ,π, c).

(b) W (A ∪ {a+} ,π, c) ≥ W ({α,a+} ,π, c).

The absolute welfare gains from the new addition can be larger in the full menu
(claim b), since the diversity of action payoffs in the menu A presents more oppor-
tunities for profitable learning. As such, previously unchosen actions may affect how
often and in which contingencies the new action is implemented.

The menu expansion result can be used in reverse to check whether ignorance is
optimal: Unconditional implementation of an available action a ∈ A is optimal if
and only if there exist no profitable learning opportunities in any binary submenu
{a,a′} ⊆ A. The analyst does not need to worry about more complicated learning
deviations that incorporate multiple other actions.

13In the case of Shannon entropy costs, this result is mathematically related to the ‘market entry
condition’ in Caplin et al. [2018].
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Corollary 5. Consider an RI problem (A,π, c). An available payoff vector a ∈ A is
implemented with probability 1 if and only if

W ({a,a′} ,π, c) ≤ W ({a} ,π, c) ∀ a′ ∈ A.

Anchor actions describe a ‘latent’ consideration set not only because appropriate
changes in the prior can induce the agent to implement any anchor action with positive
probability (Corollary 4(c)). The same is true if we keep the prior fixed and instead
introduce a new action to the menu.

Theorem 4. Given an RI problem (A,π, c), the following two are equivalent for any
action a ∈ A:

(a) Action a is an anchor action a ∈ A ∩ Ā.

(b) There exists a payoff vector a+ ∈ RI such that it is optimal to implement a
with positive probability in RI problem (A ∪ {a+} ,π, c).

Matějka and McKay [2015] show by example that adding a new action to the RI
agent’s menu may ‘activate’ a previously unchosen action, which now is implemented
with positive probability. This activation is a distinguishing feature of Rational Inat-
tention and is absent in fixed-information or random-utility models. Theorem 4 shows
that it is exactly the anchor actions that can be activated this way.

It is worth highlighting that it is too vague to ask whether a novel action a+ would
be ‘attractive’ to an agent facing RI problem (A,π, c): The answer may be negative
if only a+ is added to the menu but positive if a+ is added alongside other actions.
Learning introduces complementarities between actions, and thus the attractiveness
of any single action is always menu dependent. For example, suppose payoff a+

j is
large and positive, but the action has negative payoff consequences in all other states,
a+
i < 0 for all i 6= j. When the agent is close to certain that j is to be, a+ can bring

large consumption gains relative to her existing option A = {0}. Yet, the cost of a
sufficiently informative signal may remain prohibitive unless the agent also has access
to an action that does well in the opposite contingency.

By combining Theorems 3 and 4, we nevertheless obtain a comprehensive answer
for both interpretations of the question: To identify actions that are attractive if
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added in isolation, one has to look no further than the ignorance equivalent. To
identify actions that are attractive in some supermenu A′ ⊇ A, the learning-proof
menu is the answer: If a+ is located on or above Ā,14 the action becomes an anchor in
A∪{a+} and can be activated by the simultaneous addition of some complementary
action. Conversely, if a+ is located below Ā, activation is impossible.

5.2 Trading Information

Since the learning-proof menu allows us to abstract away from state-dependent choices,
it is particularly well suited to study situations in which a principal wants to trade
information with a rationally inattentive agent. We consider three scenarios:

Selling information. A principal wants to sell an exogenous signal at the high-
est possible price to a rationally inattentive agent. The agent’s willingness to pay
depends on whether this information would replace or complement her own informa-
tion acquisition, and whether it helps her discriminate between the choices at her
disposal.15

Corollary 6. An agent facing RI problem (A,π, c) is willing to pay at most∑
s∈S

(π · q(s)) max
a∈Ā

(πs · a)−max
a∈Ā

π · a

for access to a signal S = 〈S, q〉.

In particular, the local geometry of the learning-proof menu around the ignorance
equivalent determines whether the agent benefits from access to noisy information,
and thus whether her willingness to pay for a diffusion signal is positive. The tangent
space of the surface Ā at the ignorance equivalent, V , determines what local informa-
tion is actionable for the agent. If a signal realization updates her belief orthogonally,
πs − π ⊥ V , then small enough belief updates merely cause the supporting hyper-
plane to rotate, but it remains tangent at α. Such a signal realization changes the
agent’s belief about the world, but not in a way that causes her to change her igno-
rance equivalent or, by Corollary 1, her optimal learning strategy. If this is true for
all signal realizations, then the information has no value to the agent.

14Formally, a+ is on or above Ā if there exists v � 0 with v · a+ ≥ v · a for all a ∈ Ā.
15In Online Appendix B.2.3, we illustrate the interaction between exogenous information and

endogenous learning with a concrete example.
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Buying information. A principal wants to purchase signal S = 〈S, q〉 at minimal
cost from a risk-neutral, rationally inattentive agent. Both share the prior π. The
principal can offer a set of state-dependent transfers to the agent but cannot indepen-
dently verify the agent’s learning. Thus, he has to design the payoffs in a way that
incentivizes the agent to pick payoff as with probability qi(s) conditional on state i.
To further complicate his task, any menu offer from the principal has to contain the
non-empty set A0. In the simplest case, A0 = {0} simply captures that the agent’s
participation is voluntary.

Corollary 7. The cost of incentivizing an RI agent to reveal signal S is given by

c(S,π) +W (A0,π, c),

where A0 contains all mandatory offers, π is their common prior and c is the agent’s
learning cost.

Since the cost function of the principal and the agent differ only by a constant,
this means that the principal will either not engage with the agent or learn exactly the
same amount as if he had direct access to the agent’s learning technology. Moreover,
the proof in Appendix A.3 is constructive in that it identifies exactly how the principal
can structure the optimal transfer menu A.

In mechanism design and delegation problems, ‘mandatory offers’ may appear
endogenously, out of the principal’s desire to contract with multiple distinct agent
types. For instance, Yoder [2022] considers a two-state setup where the principal is
unaware of the agent’s cost. When learning is unobservable,16 information acquisition
and truth-telling both have to be incentivized through the design of the transfer menu
A. Letting A0 denote the transfers intended for other agent types and the outside
option 0, the formulation in Corollary 7 implies that the resulting information rent
for an agent with cost c is exactly equal to W (A0,π, c).

Eliciting beliefs. A principal wants to identify an RI agent’s unknown prior belief
without learning distortions as in Tsakas [2020]. For example, a marketing company
may want to gauge the subjective beliefs about a new product within a representative

16This is in contrast to Yoder [2022], who focuses on situations with hard information and allows
the principal to condition the transfer either directly on the acquired signal or on the realized
posterior belief, thereby removing the need to incentivize truth-telling.
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sample of consumers. Unincentivized belief elicitation is subject to all the standard
pitfalls of stated preference, but too strong incentives might lead the agent to invest
in learning, making her less representative of the population as whole. The solution
is to tie each announcement to a state-dependent payment, and the analyst’s job is
to design this menu of transfers A in a way that discourages learning but incentivizes
truth-telling. The analyst is successful if A itself is learning-proof, A = Ā, and each
belief announcement π maps to a transfer aπ ∈ A that maximizes expected utility,
aπ = arg maxa∈A π · a.

If A has points of non-differentiability, several announcements may map to the
same transfer. In the extreme, unincentivized belief elicitation collapses all announce-
ments to the single payoff vector A = {0}.

Intuitively, the spread of A governs the difference in payoff when the agent an-
nounces π or ρ and thus decreases the appeal of lying. At the same time, menus with
a larger spread also provide incentives for learning – to counteract that, the curvature
of the menu needs to be sufficiently high. The learning-proof menu tells the analyst
how to transform any candidate set of transfers A0 into a menu Ā0 that maintains
the same spread but avoids learning.

6 Optimal Allocation with Multiple RI Agents

Ignorance equivalence also plays an important role in multiplayer settings. We de-
scribe a generic allocation problem and analyze whether the first-best solution is
implementable when agents can learn. We study two scenarios with one common
theme: State-dependent terms informed by the ignorance equivalent align agents’
learning incentives with those of the social planner.

Generic Setup. A single opportunity has to be allocated to one of finitely many
RI agents k ∈ {1, ..., K}. The agent who eventually executes the opportunity gets
access to a menu of actions, Ak, and enjoys the resulting state-dependent payoffs. All
other agents receive a payoff of zero. All agents share a common prior π0 about the
state of the world, and cost functions ck capture their respective learning costs. The
opportunity initially rests with agent 1, but it is transferable as long as it has not
been executed. Agents may learn at any time, and such learning does not execute
the opportunity.
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To determine the social optimum, we consider a planner with direct access to the
joint menu AP =

⋃K
k=1Ak and multiple learning technologies with costs

{
ck
}K
k=1

.
The planner may save learning costs through sequential optimization, in which the
realization of one signal determines the design of the next. Bloedel and Zhong [2020]
define the planner’s indirect cost cP as the one-shot equivalent of the optimization
over sequential experiments with direct cost function mink c

k. By optimally assigning
learning and opportunity ownership, the planner can generate social surplus

∆ = W (AP ,π0, cP )−W (A1,π0, c1) (6)

relative to the autarky allocation, in which agent 1 executes the opportunity.
The goal of this section is to show when and how agents can emulate the planner’s

choices through trade. To establish a trade between agents k and `, both agents need
to agree on terms t ∈ RI . If they do, agent k releases the opportunity to agent `, who
in turn pays the former ti once the state i realizes. If at least one agent objects, the
opportunity remains with agent k. Both agents can learn and selectively participate
only in those contingencies that are most favorable for them. As is standard in the
mechanism design literature, we do not let the agents propose other trades.

Examples. Pre-trade learning opportunities abound in a range of economic appli-
cations. We give four concrete examples:

• Finance. Agent 1 is looking to invest his wealth, and the menu A1 captures the
state-dependent returns of each feasible portfolio. Agents k > 1 are investment
managers who are raising funds. Each manager could invest the wealth into
portfolios Ak, yielding a potentially larger return due to their improved fund
access and lower research costs.

• Procurement. Agent 1’s business needs to produce some parts using one out of
several technologies with state-dependent costs A1. Agents k > 1 are suppliers
with access to technologies Ak, and their expertise gives them easier access to
relevant information on the availability of inputs.

• Real Estate. Home owner 1 is contemplating a range of last-minute fixes A1

that could affect the sale price of his house. Agents k > 1 specialize in property
redevelopment, and each has grandiose plans Ak for the same lot. Although
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Agent 1’s fixes do not technically preclude the realization of another agent’s
vision, it is socially wasteful to renovate a house before demolition. Our model
applies as long as the planner would select a single project in AP : The choice
of the project can depend on learning, but we do not allow him to assign a
sequence of projects.

• Teams. A firm is considering the purchase of a new technology that will benefit
workers across many specialized units. Some workers are uniquely qualified to
learn about specific characteristics of the technology, and the optimal teams so-
lution may involve a sequence of cost-benefit investigations by multiple workers
before settling on a final choice.

The ‘opportunity’ grants its owner the right to purchase any available tech-
nology and full control over access. Once the purchase is complete, the state
realizes, and the owner can sell non-exclusive access rights to all his collabora-
tors, thereby extracting the entire surplus in each state.

Absolute Advantage. We start with a situation in which agent K has weakly
lower costs than everyone else and can access a weakly larger menu, so that cP = cK

and AP = AK . This ranking makes unconditional trade socially optimal and allows
us to focus entirely on implementability constraints. Our goal is to characterize the
entire set of terms T that incentivize agents 1 and K to participate unconditionally.

Agent 1 can either participate for a payoff of t or decline trade in favor of any
other option a ∈ A1. Unconditional participation is optimal if and only if t is the
ignorance equivalent of the RI problem W (A1 ∪ {t} ,π0, c1). By Corollary 5, this is
equivalent to

W ({t} ,π0, c1) ≥ W ({a, t} ,π0, c1) ∀a ∈ A1, (7)

which imposes lower bounds on the terms t.
Agent K can either participate and then implement any a ∈ AK for a payoff of

a− t, or decline trade for a zero payoff. Unconditional participation is optimal if and
only if removing the option to reject does not lower welfare,

W ((AK − {t}) ∪ {0} ,π0, cK) ≤ W (AK − {t} ,π0, cK).

Since the optimal strategy is unaffected by an unconditional shift of all payoff vectors
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Figure 3: Transfers T that implement unconditional trade.

(Lemma A.3), this can equivalently be stated asW (AK∪{t} ,π0, cK) ≤ W (AK ,π0, cK),

or by Theorem 3 with reference to the ignorance equivalent αK of (AK ,π0, cK),

W (
{
αK , t

}
,π0, cK) ≤ W (

{
αK
}
,π0, cK), (8)

imposing an upper bound on the terms t.
Together, Equations (7) and (8) fully characterize the set T of terms that imple-

ment unconditional trade in line with the social optimum. They do so by relying on
binary learning strategies only, even for complex problems with many states and rich
menus. Figure 3 illustrates the construction in a simple two-state example. Agent 1’s
menu comprises all payoffs marked •; agent K’s menu also contains those marked ◦.
Agent K’s learning advantage manifests itself by the higher curvature of his learning-
proof menu ( for agent 1, for agent K). Equation (7) imposes a lower bound on
the transfers for each of agent 1’s actions ( ), and Equation (8) imposes an upper
bound through agent K’s ignorance equivalent ( ). The set is bounded because
learning incentives depend on the full vector t rather than just its expected payoff.
In particular, trade can fail even at terms that yield positive surplus to both agents,
with W (A1,π0, c1) < π0 · t < W (AK ,π0, cK).

The selection of terms within T determines the split of the optimal surplus ∆

across the two agents agents and thus captures their relative bargaining power. In
particular, if one agent can extend a take-it-or-leave-it (TIOLI) offer, the equilibrium
features unconditional trade at terms equal to his opponent’s ignorance equivalent.
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In this way, the agent in power secures the entire surplus ∆. He can do no better by
proposing a plan with partial trade either: Incentive compatibility requires nonnega-
tive surplus for the opponent, lest outright rejection be a profitable deviation.

The surplus can be split between more than two agents. An example of this arises
when agent 2 plays the role of a platform with A2 = ∅, and her ability to form or
restrict matches grants her some bargaining power. In that setting, the full surplus
is realized no matter at what terms t1 ∈ T platform 2 buys the opportunity from
agent 1 and at what terms tK ∈ T she sells it to agent K. The difference π · (tK− t1)

constitutes the expected platform profits. In particular, if the platform has TIOLI
power, she can secure the entire surplus ∆ by buying at terms α1 and selling at terms
αK . She could also claim a smaller flat fee τ by choosing terms with tK − t1 = τ1,
thereby shielding platform profits entirely from the state.

The construction also speaks to whether ‘rich’ opportunities are harder to trade.
Although a menu with diverse options is no more attractive than one with just the
ignorance equivalent α, it offers more incentives for learning. This can shrink the set
of terms that implement the first best: Indeed, each additional action in Agent 1’s
menu A1 imposes another lower bound through Equation (7). This is true even when
his ignorance equivalent remains unchanged, as is the case for action × in Figure 3.
In contrast, diversity of options for Agent K does not affect implementability of the
first best, since his menu only enters Equation (8) through the ignorance equivalent
αK . Economically speaking, this is because the richness in Agent 1’s menu offers him
potential alternatives to trade, whereas the richness in Agent K’s menu matters only
conditional on trade.

Finally, the construction of T also answers whether state-dependent payment
terms are necessary to achieve the first-best surplus. In Figure 3, the menu pay-
offs are heavily skewed in favor of state 1. This asymmetry generates an incentive to
learn unless the suggested transfer is also higher in that state. In general, uncondi-
tional trade can be achieved with constant payment terms only when T contains a
point on the diagonal {τ1 | τ ∈ R}. A natural follow-up question is what happens
when states are unverifiable and payment terms need to be constant across states.
Would Agent 1 sometimes make an offer so generous that Agent K always accepts,
or always make a less generous offer that Agent K sometimes declines? — In Online
Appendix B.2.4, we answer this question for the specific two-state example of Figure 3
by relying on the equivalence between learning ability and access to fictitious pay-
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offs. We show that when Agent 1 gets to make a take-it-or-leave-it offer, the Perfect
Bayesian Equilibrium features partial trade and pre-trade learning by both agents.

Comparative Advantages. To showcase the versatility of the ignorance equiv-
alent, we now allow for non-nested menus and non-ordered cost functions, thereby
incorporating agents’ comparative advantages in terms of feasible payoffs or learn-
ing. To focus on learning incentives rather than truth-telling constraints, we assume
that learning produces hard information in line with Yoder [2022]: Learning itself
is non-contractible, but the realization of any signal draw is publicly observable, so
that agents share the same beliefs at all times.17 In Online Appendix B.2.5, we for-
mally define the dynamic game that results from allowing agents to acquire costly
information and trade the opportunity among themselves until someone executes it.
We show that the first-best allocation remains implementable: Agents can realize
surplus ∆ in a subgame-perfect equilibrium that features repeated trades with terms
chosen from the learning proof menu ĀP resulting from menu AP under cost cP .18

The key intuition is that trading at terms arg maxa∈ĀP ρ · a at all (joint) beliefs ρ
aligns agents’ learning incentives with those of the planner.

Claim. Agents emulate the planner’s strategy in a Perfect Bayesian Equilibrium by
repeatedly trading at terms chosen from the planner’s learning-proof menu.

This result speaks to the ‘teams’ literature and its focus on optimal compensation
schemes that induce cooperation among workers with a common task [Bergemann
and Välimäki, 2002, Holmström and Milgrom, 1990, Itoh, 1991, among others]. If
the task is one of pure information acquisition, the result implies that heterogeneous
workers can effectively organize themselves as long as they are able to write binding,
state-contingent contracts. In equilibrium, the ‘decision power’ (viz. ‘opportunity’)
changes hands repeatedly, and information is acquired sequentially by various agents
working together. This simplifies for the manager: As long as she ensures that transfer
promises are honored ex-post, she does not have to worry about tailoring incentives
to the relative learning skills of each individual worker. Instead, she can address
the team as if it were one worker with cost function cP and let workers organize
themselves.

17Yoder [2022] calls this results-based contracting.
18Although the cost function cP may not be belong to the (UPS+) family, we show that it satisfies

properties (C1) to (C4), and hence the learning-proof menu ĀP is well defined.
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7 Related Literature

Rational inattention models are widely used to model flexible learning in both the
applied and theoretic literature, in fields ranging from finance to political economy
(see Maćkowiak et al. [2018] for a survey). The most common approaches to RI mod-
els fall broadly into two categories: For tractability reasons, most applied research
relies on special cases that admit an analytic solution (e.g., a Linear-Quadratic Gaus-
sian setup and Shannon-entropy costs, or costs that are infinite except for Gaussian
signals). Theory research typically relies on the ‘posterior-based approach’ [Caplin
et al., 2022]. In this section, we discuss how ignorance equivalence stands to benefit
both applied and theoretic research.

First, ignorance equivalence does not impose any functional form or domain re-
strictions on the agent’s learning technology. As such, it identifies robust features
of rationally inattentive behavior, thereby generalizing and extending results from
prior research. For instance, Caplin et al. [2018] derive a ‘market entry condition’
for the specific case of Shannon entropy costs to judge whether an agent stands to
benefit from a newly available action. Theorem 3 derives an analogous expression for
any (UPS+) cost function, including those that do not satisfy the Invariance under
Compression axiom of the Shannon cost function [Caplin et al., 2022]. Matějka and
McKay [2015] show in a numeric example (also with Shannon costs) that menu ex-
pansion can raise the appeal of a previously unchosen action, a distinguishing feature
that is absent in random utility models of stochastic choice. Theorem 4 proves that it
is exactly the set of anchor actions that can be ‘activated’ through menu expansion.

By tying our proofs to economically meaningful properties of the cost function, our
work follows in the vein of [Bloedel and Zhong, 2020, Denti et al., 2022, Hébert and
Woodford, 2020, Mensch, 2018, Pomatto et al., 2018], who axiomatize various cost
functions. Our cost assumptions are compatible with some, but not all, of the studied
cost specifications, and we rely heavily on Bloedel and Zhong [2020]’s characterization
of costs that are sequential learning proof. Yet, our primary focus is not on character-
izing which cost functions are compatible with (C1) to (C5) — rather, we argue that
these intuitively appealing properties enable summary statistics that abstract away
from learning. None of these other papers condense the ‘payoff possibilities’ into a
single vector in the spirit of our ignorance-equivalent approach.

Second, ignorance equivalence is related to the posterior-based approach, but lends
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itself to different questions. For background, the posterior-based approach expresses a
signal as a Bayes-plausible distribution over posterior beliefs, and states Equation (RI)
equivalently as

W (A,π, c)− φ(π) = sup
µ∈∆∆I
E[µ]=π

∫
∆I

(max
a∈A

ρ · a− φ(ρ))dµ(ρ).

The optimal behavior is then characterized implicitly through the concave upper
envelope over the ‘net utility’ functions ρ 7→ ρ·a−φ(ρ). Ignorance equivalence can be
seen as the dual of this approach. Concavification determines the least upper bound
to W (A,π, c) − φ(π) for each belief — ignorance equivalence maximizes expected
utility over the set of dominated payoff vectors.19 We believe that both views are
useful.

From a technical perspective, the posterior-based approach is very general. It
does not require prior-concavity and can even accommodate potentials that depend
on the prior belief [Caplin et al., 2022]. The ignorance-equivalent approach, on the
other hand, is more parsimonious because it transforms the high-dimensional search
for an optimal signal (a distribution over posteriors, an element of ∆∆I) into a lower-
dimensional choice (an action from the learning-proof menu, an element of RI). This
reduction in complexity and the geometry of the learning-proof menu can be exploited
to improve numerical solution methods that stand to benefit the applied literature,
as we do in Armenter et al. [2021] for Shannon entropy costs.

From a conceptual perspective, the posterior-based approach puts the agent’s be-
liefs front and center, and its obvious parallels to Bayesian Persuasion [Gentzkow and
Kamenica, 2014, Kamenica and Gentzkow, 2011] are helpful in information-design ap-
plications. In contrast, the ignorance-equivalence approach is particularly promising
in scenarios where payoffs are determined endogenously, as in the applications that
we discuss in Sections 5 and 6. By describing signals via the induced state-dependent
choices q(a) rather than the induced posteriors πa, we obtain a clear distinction
between prior beliefs and behavior. This separation is helpful in particular when
comparing across agents with different beliefs, as in Corollary 1.

There is also a large literature that still models learning much more rigidly, where
the agent simply chooses whether to ‘uncover’ the state at a cost. Sometimes, this

19Online Appendix B.1.2 formally establishes the connection between the ignorance equivalent
and the Lagrangian Lemma in Caplin et al. [2022].
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binary choice reflects the actual mechanics of the information acquisition process.
Other times, the modeling decision is motivated more by tractability rather than
realism and could fail to capture important features, like the intensive margin of
learning or the agent’s endogenous focus on the most salient aspects of a multifaceted
decision. By recasting the agent’s ability to learn as if she had access to a richer menu,
ignorance equivalence opens new doors to incorporate flexible learning in multiplayer
settings with transfers. Importantly, the applications in Sections 5 and 6 highlight
that ignorance equivalence is useful not only in settings where learning is, in fact, to be
avoided. Indeed, a principal can use it specifically to elicit the ‘right kind’ of learning
from an agent, and a team can use it to coordinate learning across members of differing
expertise. The fundamental reason is that the learning-proof menu does not just make
ignorance optimal; it also maintains optimality of the original learning strategy — as
well as any ‘intermediate’ strategy that involves less informative signals. In this way,
the learning-proof menu can induce a continuum of information acquisition strategies,
including the one that maximizes the principal’s (or social) welfare.

8 Conclusion

The ignorance-equivalent approach simplifies the description of optimal agent behav-
ior under costly learning. In essence, it points out that the agent’s ability to learn
acts as if she instead had access to a fictitious action whose payoffs are given by the
ignorance equivalent. In allocation problems in which multiple agents interact, this
ignorance-equivalent action often emerges as part of the surplus-maximizing trading
scheme. The same is true in experimental settings in which the analyst is free to de-
sign payoffs in a way that boosts his ability to, for instance, identify the agent’s prior.
Yet, even in menus where the ignorance equivalent is only a conceptual shortcut, it
characterizes the full set of optimal signals and allows for parsimonious comparisons
across learning strategies, menus, and beliefs. Much like the certainty equivalent re-
duces the complexity of economic problems with exogenous uncertainty, the ignorance
equivalent allows us to abstract away from learning by simply maximizing expected
utility over a larger menu.
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A Proofs

A.1 Properties of the cost function

We first establish that as long as the state space is finite, it is without loss of generality
to assume that the optimal signal is finite, even when the menu contains infinitely
many actions.20 Since we are deriving this result algebraically from the (UPS+)
specification, it is more convenient to represent a signal (equivalently) as a distribution
over posteriors σ ∈ ∆∆I.

Lemma A.1. For any compact menu A, welfare under (UPS+) cost c,

W (A,π, c) = sup
σ∈∆∆I
E[σ]=π

∫
∆I

(max
a∈A

ρ · a− φ(ρ))dσ(ρ) + φ(π),

is maximized at a signal with finite support.

Proof. The integral is affine in σ, and thus maximized at one of the extreme points
of the space M = {σ ∈ ∆∆I | E [σ] = π}. By Winkler [1988], extreme points of
M are exactly those probability distributions whose support contains at most |I|
posteriors.

Next, we show that the properties (C1) to (C5) are jointly equivalent to the
(UPS+) family. The proof draws heavily on Bloedel and Zhong [2020]’s characteri-
zation of sequentially optimal cost functions, and often refers to them verbatim.

Lemma A.2. Conditions (C1) to (C5) are jointly equivalent to the family of (UPS+)
costs.

Proof. Suppose c belongs to the (UPS+) family, which explicitly requires prior-
concavity and implies Blackwell-monotonicity (C2) by convexity of φ. Continuity
(C1) follows directly from that of the potential φ. Bloedel and Zhong [2020] establish
that any uniformly posterior separable cost satisfies indifference to sequential learn-
ing, implying that the inequalities in (C4) and (C5) both hold. For (C3), fix any
π ∈ ∆I and a ∈ RI with π · a = 0 and π · |a| > 0. For any ε > 0 small enough,
consider the binary signal Sε = 〈{0, 1} , qε〉 with qεi (1) = 1

2
(1 + εai) ∈ (0, 1), and note

20We thank Tommaso Denti for pointing us in the right direction.
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that π · qε(0) = π · qε(1) = 1/2 since π · a = 0. By Taylor’s theorem, cost grows less
than linearly in ε,

lim
ε→0

c(Sε,π)

ε
= lim

ε→0

c(S0,π)

ε
+
∂c(Sε,π)

∂ε

∣∣∣∣
ε=0

= lim
ε→0

1

ε
0 +

1

2

∑
i∈I

∇iφ(π)(aiπi − aiπi) = 0,

while the benefit grows linearly in ε,
∑

i∈I πiq
ε
i (1)ai = ε

2

∑
i∈I πia

2
i . In particular,

benefits strictly outweigh costs for ε small enough.
Conversely, suppose c satisfies (C1) to (C5). By Bloedel and Zhong [2020], (C4)

and (C5) jointly restrict costs to the uniformly posterior separable family with a
convex potential φ, which means it only remains to show that φ is differentiable.
For convenience, we extend φ to all of RI≥0 by imposing homogeneity of degree one
φ(kρ) = kφ(ρ) [as in Hébert and Woodford, 2019]. This extension is differentiable in
RI≥0 if and only if φ itself is differentiable in ∆I. Fix any belief π ∈ ∆I. Continuity
of φ is implied by (C1), or an arbitrarily noisy belief perturbation would have costs
bounded below by a positive constant, strictly above the free uninformative signal.
To show differentiability, let G denote the set of subgradients of φ at π, defined as
the set of all vectors g ∈ RI such that

φ(ρ)− φ(π) ≥ g · (ρ− π) ∀ρ ∈ ∆I.

Continuity and convexity of φ imply that G is nonempty, and φ is differentiable at π
if and only if G is a singleton. (If π is on the boundary, G needs to be unique only
on the positive probability states.) Note that homogeneity of degree one implies in
particular that

φ((1 + k)π)− φ(π) = kφ(π) ≥ kg · π ∀k ∈ (−1,∞),

which is binding at k = 0 and thus implies that π · g = φ(π) for all subgradients
g ∈ G. Assume now by contradiction that g and h are both elements of G, and they
differ in at least one state to which π assigns positive probability. Define the payoff
vector a = g − h, which by the above yields expected utility zero, but is nonzero
with positive probability. By (C3), the agent would break her indifference between a
and 0 with a binary signal. For convenience, we refer to the signal using the marginal
likelihood q of implementing a, and the shift in posterior ∆ = πa − π, so we can
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write the inequality in (C3) as

0 > q [φ(π + ∆)− φ(π)] + (1− q)
[
φ

(
π − q

1− q
∆

)
− φ(π)

]
− q(π + ∆) · a.

However, substituting both terms in square brackets with a lower bound from one of
the subgradients, the right side is bounded below by

q∆ · (g − h− a)− qπ · a = 0.

As a result, φ is differentiable, and the c belongs to the (UPS+) family.

Lemma A.3. Shifting the menu by a vector v ∈ RI from A to A + {v} increases
consumption utility from each learning strategy by the same constant π · v, and thus
does not alter optimal learning.

Proof. After the shift, the consumption utility of any learning strategy S = 〈A, q〉
equals∑

a∈A

(π · q(a)) (πs · (a+ v)) =
∑
a∈A

(π · q(a)) (πs · a) +
∑
a∈A

(π · q(a)) (πs · v) .

Since consumption utility and learning costs interact additively, optimal learning is
unaffected when all payoffs are shifted by the same vector v ∈ RI (Lemma A.3).

Lemma A.4. Under (C2), it is without loss of generality in RI problem (RI) to
restrict attention to learning strategies 〈A, q〉.

Proof. For any signal S = 〈S, q〉 and conditional selection as ∈ A for each s ∈ S,
we can define the learning strategy Ŝ = 〈A, q̂〉 with q̂i(a) =

∑
s∈S:as=a qi(s) for each

a ∈ A. This learning strategy achieves the same expected consumption utility and
is Blackwell less informative than the original signal S. By (C2), it thus achieves a
weakly higher welfare. It is therefore without loss of optimality to restrict attention
to learning strategies only.

Lemma A.5. Under (C2), welfare W is convex in the prior belief.

Proof. Convexity follows readily from the linearity of the consumption utility and
the fact that signal costs are prior-concavity (C2). Formally, let S be the optimal
learning strategy for RI problem (A, tπ+(1− t)π′). The welfare is bounded above by
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the linear interpolation of the welfare achieved in (A,π) and (A,π′) when the same
strategy is used.

W (A,tπ + (1− t)π′, c) =
I∑
i=1

(tπi + (1− t)π′i)
∑
a∈A

q(a|i)ai − c(S, tπ + (1− t)π′)

≤ t

[
I∑
i=1

πi
∑
a∈A

q(a|i)ai − c(S,π)

]
+ (1− t)

[
I∑
i=1

π′i
∑
a∈A

q(a|i)ai − c(S,π′)

]
≤ tW (A,π, c) + (1− t)W (A,π′, c).

Lemma A.6. Properties (C2) and (C3) imply that any pure-noise signal S = 〈S, q〉
with qi(s) ≡ qj(s) ∀i, j ∈ I and s ∈ S is free, and the agent can freely randomize
across actions.

Proof. All pure-noise signals are Blackwell equivalent, and thus have the same cost
c0 by (C2). Suppose by contradiction that c0 > 0 and consider any two states j, k ∈
support(π). Let a ∈ RI be such that

aj =
c0

2πj
, ak = − c0

2πk
and ai ≡ 0 ∀i ∈ I \ {j, k} .

By (C3), there exists a binary signal S ′ = 〈{0, 1} , q〉 with

c(S ′,π) <
∑
i∈I

πiqi(1)ai = (qj(1)− qk(1))
c0

2
≤ c0.

However, S ′ is Blackwell more informative than any pure-noise signal, and so mono-
tonicity (C2) implies that the left side is weakly bounded below by c0, creating a
contradiction.

Lemma A.7. Under (C1) and (C2), welfare W is finite and continuous in the prior
belief π. Moreover, there exists an upper hemicontinuous correspondence Q∗ : ∆I →
(∆A)I with nonempty and compact values, such that a learning strategy S = 〈A, q〉
is optimal in RI problem (A,π, c) if and only if q ∈ Q∗(π).

Proof. Since it is without loss of generality to restrict attention to learning strategies
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(Lemma A.4), we restate (RI) as a choice over conditionals

W (A,π, c) = sup
q∈(∆A)I

∑
a∈A

∑
i∈I

πiqi(a)ai − c(〈A, q〉,π)

and define Q∗(π) to be the set of conditionals that achieve this supremum. Since the
objective is continuous over the compact domain (∆A)I×∆I, the claim then follows
by Berge’s Theorem of the Maximum.

Lemma A.8. Suppose (C4) holds. Consider an optimal learning strategy S = 〈A, q〉
to RI problem (A,π, c). Let a ∈ support(q) be an action that is implemented with
positive probability, and πa the associated posterior belief, πai = πiqi(a)

π·q(a)
. In RI problem

(A,πa, c), unconditional implementation of a is optimal, W (A,πa, c) = πa · a.

Proof. Since unconditional implementation is feasible, clearly W (A,πa, c) ≥ πa · a.
By contradiction, suppose W (A,πa, c) > πa · a and consider the sequential strategy
where the agent first draws S and follows its recommendation except for when it
evaluates to a, when she instead continues with an optimal strategy for (A,πa, c).
This sequential strategy achieves utility

I∑
i=1

πi
∑

a′∈A\{a}

qi(a
′)a′i + (π · q(a))W (A,πa, c)− c(S,π).

Since W (A,πa, c) > πa · a, this is strictly larger than

I∑
i=1

πi
∑
a∈A

qi(a)ai − c(S,π),

which implies that this sequential strategy achieves strictly higher utility than signal
S alone. By (C4), the same is true for its one-shot equivalent, contradicting the
optimality of S in (A,π, c).

Lemma A.9. Consider any belief π ∈ ∆I and any two actions with the same expected
utility, u := a ·π = a′ ·π, that differ in at least one positive probability state. Under
(C2) and (C3), and any L > 0, there exists a learning strategy 〈{a,a′} , q〉 such that
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the change in consumption utility outweighs the signal cost by more than a factor L,

I∑
i=1

πi(qi(a)ai + qi(a
′)a′i)− u > L c(〈{a,a′} , q〉,π).

Proof. The payoff vector ã = 1
L

(a−a′) has zero expected utility π · ã = 1
L

(u−u) = 0

and is non-zero with positive probability since ai 6= a′i for some i with πi > 0. By
condition (C3), there exists a signal S = 〈{0, 1} , q〉 with

∑
i∈I πiqi(1)ãi > c(S,π).

By (C2), the agent incurs the same cost for the Blackwell-equivalent learning strategy
where she implements a′ after signal 0 and a after signal 1. Multiplying both sides
with L, we obtain∑

i∈I

πiqi(1)(ai − a′i) =
∑
i∈I

πi(qi(1)ai + qi(0)a′i)− u > L c(S,π).

A.2 Ignorance equivalent

Duality. Fenchel’s duality theorem allows us to apply strong duality results to op-
timization problems with infinitely many constraints. For our purposes, the following
variant is strong enough – we formally derive it from Borwein and Zhu [2005, Theorem
4.4.3] in Online Appendix B.1.1.

Lemma A.10 (Fenchel Duality for Linear Constraints). For any Lebesgue measurable
function Φ : ∆I → R and any belief π ∈ int(∆I), the two optimization problems

p∗ = inf
ν∈∆∆I
E[ν]=π

E[Φ(ρ) | ρ ∼ ν] and d∗ = sup
a∈RI
{π · a | ρ · a ≤ Φ(ρ) ∀ρ ∈ ∆I}

achieve the same bound, p∗ = d∗. Moreover, the supremum is attained whenever that
bound is finite.

When Φ is convex, the primal is trivially optimized at the degenerate distribution
that puts full weight on π, and hence the optimum in the dual attains Φ(π).

Lemma A.11. Let Φ : ∆I → R denote a convex function over ∆I. Then for any
π ∈ int(∆I), the optimization problem

sup
a∈RI
{π · a | ρ · a ≤ Φ(ρ) ∀ρ ∈ ∆I} (9)
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admits a maximum at some a∗ ∈ RI with objective value π · a∗ = Φ(π).

Proof. Since (9) corresponds to the dual d∗ in Lemma A.10, its objective value is
equal to that of

inf
ν∈∆∆I
E[ν]=π

E[Φ(ρ) | ρ ∼ ν].

In turn, convexity of Φ and Jensen’s inequality imply that the infimum is attained
when full weight is placed on π, implying d∗ = Φ(π) ∈ R. By duality, the supremum
is also attained and achieves objective value Φ(π).

Existence and Uniqueness. Lemma A.11 implies that the agent is always indif-
ferent between a signal and its most attractive dominated payoff vector.

Lemma A.12. Under (C2), for any learning strategy S and any interior belief π ∈
int(∆I), the payoff vector a(S,π) = arg maxx-S π · x exists and satisfies

π · a(S,π) = π · aS − c(S,π). (10)

Proof. By definition, dominance x - S is equivalent to ρ · x ≤ Φ(ρ) ∀ρ ∈ ∆I, with
an upper bound function Φ(ρ) = ρ ·aS − c(S,ρ) that is convex by prior-concavity of
the cost (C2). The result then follows by Lemma A.11.

Of particular interest is the case where S is optimal under a specific prior π, in
which case Lemma A.12 asserts that there exists a point α - S that achieves expected
utility W (A,π, c). We now show that α constitutes the ignorance equivalent.

Proof of Theorem 1: We start with existence of the ignorance equivalent and then
focus on uniqueness.

Existence. Continuity of the cost function (C1) ensures that the RI problem (A,π, c)
admits an optimal learning strategy S (Lemma A.7). By Lemma A.12, there exists
a point α - S such that the first inequality in Definition 1 binds, W ({α} ,π, c) =

π ·α = W (A,π, c).
To show that the second inequality in Definition 1 also holds, let S̃ = 〈A∪{α} , q〉

denote an optimal learning strategy for RI problem (A ∪ {α} ,π, c). If q(α) = 0,
then the strategy does not rely on the presence of α, and is thus also feasible in
(A,π, c). If q(α) > 0, let ρ denote the agent’s posterior belief upon observing
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realization α. Consider the sequential strategy where the agent draws S̃ and follows
its recommendation except for realization α, when she instead draws and follows S.
The only change in the agent’s payoff occurs conditional on realization α, when she
achieves expected utility ρ · aS − c(S,ρ) rather than ρ · α. Since α - S and hence
ρ ·α ≤ ρ · aS − c(S,ρ), the sequential strategy weakly increases welfare. A one-shot
implementation of this same strategy is weakly cheaper by (C4) and thus forms a
lower bound for W (A,π, c) that weakly exceeds W (A ∪ {α} ,π, c).

Uniqueness. By contradiction, suppose that there exist α1 6= α2 that both satisfy
Definition 1. Since

u := W (
{
α1
}
,π, c) = W (A,π, c) = W (

{
α2
}
,π, c),

the two payoff vectors achieve the same expected utility u.
By Lemma A.9, there exists a signal S0 = 〈{α1,α2} , q0〉 such that

I∑
i=1

πi(q
0
i (α

1)α1
i + q0

i (α
2)α2

i )− u > 2c(S0,π). (11)

We use this signal to construct an improved strategy in menu A∪
{
αk
}
for either

k = 1 or k = 2. Specifically, suppose that the agent first draws signal S0. If its
realization α` is available, ` = k, the agent implements that action and otherwise
proceeds with the optimal strategy for (A,π`, c), where π` is the posterior belief
after observing α`. The welfare of this strategy in menu A ∪

{
αk
}
is

V k :=

[
I∑
i=1

πiq
0
i (α

k)αki

]
+ (q0(α¬k) · π)W (A,π¬k, c)− c(S0,π).

It is comprised of the agent’s expected continuation utility after either of the two
outcomes of the binary signal S0, net its information costs.

The sum can be written as

V 1 + V 2 =
I∑
i=1

πi
[
q0
i (α

1)α1
i + q0

i (α
2)α2

i

]
− 2c(S0,π)

+ (q0(α1) · π)W (A,πα1

, c) + (q0(α2) · π)W (A,πα2

, c).
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The first line is strictly larger than W (A,π, c) by Equation (11), and the second is
weakly larger than that by prior-convexity of W (Lemma A.5). As a consequence,
V k > W (A,π, c) for at least one k. Since the strategy is feasible, it also follows
that W (A∪

{
αk
}
,π, c) ≥ V k. Because the addition of αk to the menu A generates

additional learning opportunities, it is not an ignorance equivalent.

Corollaries.

Proof of Corollary 1: Let α denote the ignorance equivalent, and consider any
learning strategy S. Uniqueness of the ignorance equivalent implies that α is domi-
nated by any optimal signal according to Definition 2. So when this inequality does
not hold, S cannot be not optimal in either RI problem.

Conversely, unconditional implementation of the ignorance equivalent must, by
Definition 1, achieve at least as much utility as following signal S under both priors
π and π′. Dominance α - S implies that the opposite inequality also holds at both
π and π′, and so S achieves maximal welfare in both RI problems.

Lemma A.13. The ignorance equivalent of RI problem (A,π, c) can be computed
from an optimal learning strategy S as

α = aS − c(S,π)1 + (1πT − diag(1))∇π c(S,π)

where aS captures the expected consumption utility that the agent achieves by following
S conditional on state i, aSi =

∑
a∈A qi(a)ai, 1 is an I-dimensional vector of ones

and diag(1) is the I-dimensional identity matrix.

Proof. Unconditional implementation of the payoff vector α achieves the same welfare
as following signal S, since

π ·α = π · aS − c(S,π) + (πT − πT)∇π c(S,π)︸ ︷︷ ︸
=0

.

Nevertheless, the payoff vector α is dominated by signal S, since for all ρ ∈ ∆I,

ρ ·α = ρ · aS − c(S,π) + (πT − ρT)∇π c(S,π) ≤ ρ · aS − c(S,ρ),

where the inequality follows by prior-concavity (C2) of the cost function. Indeed,
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since the inequality

(1− t)c(S,π) + tc(S,ρ) ≤ c(S, (1− t)π + tρ) ∀t ∈ [0, 1]

is binding at t = 0, the local derivative with respect to t is steeper on the right,

c(S,ρ)− c(S,π) ≤ (ρT − πT)∇πc(S,π).

Proof of Corollary 2: Consider a sequence of beliefs {πn}∞n=0 that converges to
a prior π0 ∈ int(∆I), and let αn denote the ignorance equivalent of RI problem
(A,πn, c), and Sn an optimal learning strategy. By Lemma A.7, the correspondence
of optimal learning strategies is upper hemicontinuous with nonempty and compact
values. In other words, there exists a convergent subsequence Snk such that S0 =

limk→∞ Snk is optimal in RI problem (A,π0, c). The S0-dominated payoff vector that
maximizes expected payoff under π is thus, by Theorem 1, equal to the ignorance
equivalent α0.

Moreover, by uniqueness of the ignorance equivalent, any convergent subsequence
of signals generates the exact same limit vector α0. It is a well-known result from real
analysis that uniqueness of the limit implies that any bounded sequence,21 and hence
{αn}∞n=0 itself, converges to α0.

Proof of Corollary 3: Let S and S+ denote optimal learning strategies for RI prob-
lems (A,π, c) and (A∪{α} ,ρ, c) respectively. By Theorem 1, α is weakly dominated
by S under any belief. In particular, this implies that whenever S+ recommends im-
plementation of α at some posterior σ, the agent achieves weakly higher welfare by
relying on S instead. The one-shot implementation Sρ of this strategy is admissible
in (A,ρ, c), yet achieves weakly higher welfare than S+ by (C4). This implies

W (A,ρ, c) ≥ ρ · aSρ − c(Sρ,ρ) ≥ ρ · aS+ − c(S+,ρ) = W (A ∪ {α} ,ρ, c),

with the opposite inequality binding by menu-monotonicity. In particular, Sρ is opti-
mal in both RI problems (A,ρ, c) and (A∪ {α} ,ρ, c). By Theorem 1, the ignorance

21By contradiction, suppose the sequence {αn}∞n=0 does not converge. By definition, this implies
that there exists ε > 0 and a subsequence {αnk} with ‖αnk − α0‖ > ε for all k ∈ N. Still, the
associated learning strategies have bounded conditionals, and thus admit a convergent subsequence.
The Bolzano-Weierstrass Theorem asserts that this bounded subsequence admits a convergent sub-
subsequence, but its limit payoff vector must be different from α0.
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equivalent for both problems is thus equal to the unique arg maxx-Sρ π · x.

A.3 Learning-Proof Menu

Proof of Theorem 2: Let A′ denote the smallest set that satisfies the two proper-
ties. Fix any prior π ∈ int(∆I) and let S denote a learning strategy that is optimal
in (A,π, c). By property (a), A′ needs to contain the ignorance equivalent of RI
problem (A′,π, c). By property (b), strategy S is also optimal in (A′,π, c). The
most attractive S-dominated payoff vector thus identifies the ignorance equivalent
under both RI problems (A′,π, c) and (A,π, c) by Theorem 1. In particular, the two
ignorance equivalents are equal to each other, and so A′ contains all the elements of
Ā according to Definition 3.

Conversely, fix any belief π and let S ′ denote an optimal strategy in RI problem
(A ∪ Ā,π, c). By Lemma A.1, it is without loss of generality to assume that S ′

only relies on finitely many actions A ⊆ Ā in addition to those in A. By iterative
application of Corollary 3, the ignorance equivalent of (A ∪ A,π, c) is the same as
that of (A,π, c), and hence the same is true of welfare W (A∪ Ā,π, c) = W (A,π, c).
By menu-monotonicity, the former is weakly larger than W (Ā,π, c). The agent can
achieve this upper bound through unconditional implementation of α(A,π,c), making
ignorance optimal in (Ā,π, c) and establishing property (a). For property (b), note
that the equality of welfare across the two menus implies that any optimal strategy
S in (A,π, c) remains optimal in (Ā,π, c) – provided that it is still feasible. And
indeed, whenever S recommends an action a ∈ A at some posterior ρ, Lemma A.8
guarantees that a itself is the ignorance equivalent of RI problem (A,ρ, c), and hence
is included in Ā.

Proof of Corollary 4: We proceed in steps.
(a) ⇔ (b): Definition 3 states that a ∈ Ā if and only if it is the ignorance

equivalent of (A,π, c) for some prior π ∈ ∆I. Since a ∈ A, Definition 1 collapses
to just requiring that unconditional implementation of a is optimal, W (A,π, c) =

W ({a} ,π, c).
(b) ⇔ (c): Since unconditional implementation implies that a is chosen with

positive probability, (b) trivially implies (c). Lemma A.8 formalizes the converse
claim.

(b)⇒ (d): Proving the contrapositive claim, assume also that there exists ρ ∈ ∆I
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such that α(A,ρ,c) > a. In particular, for any prior π, we have π · a < π · α(A,ρ,c).

By self-selection of the ignorance equivalent (Corollary 3), adding α(A,ρ,c) to the
menu is not welfare-enhancing under π, implying in particular that its unconditional
implementation can achieve at most utility W (A,π, c). Taken together, at any prior
π,

π · a < π ·α(A,ρ,c) ≤ W (A,π, c),

proving that unconditional implementation of a is suboptimal.
(d) ⇒ (a): Proving the contrapositive claim, assume that a is not part of the

learning-proof menu Ā. Since we can write the learning-proof menu as the upper
boundary of an intersection of half-spaces with positive orthogonality vectors by
Equation (4), a lies strictly below each individual half-space. As a consequence,
the ray {a+ t1 | t ≥ 0} crosses the learning-proof menu at some point α ∈ Ā, and
by Definition 3, this point represents the ignorance equivalent under some prior.

Menu Expansion. In this subsection, we rely on all cost properties (C1) to (C5).
For any RI problem (A,π, c), we define the set of π-dominated payoff vectors

Āπ =
{
x ∈ RI | W (A ∪ {x} ,π, c) ≤ W (A,π, c)

}
(12)

as those that do not increase the welfare of an agent with prior π when added to
the menu. We first establish Theorem 3, which ensures that Āπ can equivalently be
stated by replacing all references to A with the ignorance equivalent {α}.

Proof of Theorem 3: We start by proving part (b). Let S0 denote an optimal
learning strategy for RI problem ({α,a+} ,π, c) and S1 an optimal learning strategy
for (A,π, c). Consider a sequential strategy where the agent first draws S0 and follows
its recommendation except for when it evaluates to α, when she draws and follows S1.
The sequential strategy is weakly more attractive because S1 dominates α, implying
W (A ∪ {a+} ,π, c) ≥ W ({α,a+} ,π, c).

We now establish part (a). The backwards implication is a direct consequence of
the argument we just made, since W ({α,a+} ,π, c) > W ({α} ,π, c) implies that

W (A ∪
{
a+
}
,π, c) ≥ W (

{
α,a+

}
,π, c) > W ({α} ,π, c) = W (A,π, c),

where the first inequality restates claim (b) and the last equality follows from the
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definition of the ignorance equivalent.
Next, we provide a direct proof of the forward implication,

W (A ∪
{
a+
}
,π, c) > W (A,π, c) =⇒ W (

{
α,a+

}
,π, c) > W ({α} ,π, c).

To do so, let S+ = 〈A∪{a+} , q+〉 denote an optimal learning strategy for RI problem
(A ∪ {a+} ,π, c), and S = 〈A, q〉 one for (A,π, c). Let ∆ = W (A ∪ {a+} ,π, c) −
W (A,π, c) > 0 denote the difference in the welfare between the two strategies.

Consider an agent who relies on S+ with probability ε and on S otherwise. Since
the gains from S+ are realized only with probability ε, this strategy yields welfare
W (A,π, c) + ε∆. Note also that mixing changes the marginal likelihood that a+ is
implemented, but not its associated posterior π+.

We now suggest a Blackwell-equivalent implementation strategy that proceeds in
two steps: First, the agent draws a binary signal S0

ε = 〈{−,+} , q0
ε〉 which pools all

realizations other than a+ by returning − with probability q0
ε(−) = 1− εq+(a+). If

S0
ε evaluates to +, the agent implements a+ at the same posterior π+ as above. If S0

ε

evaluates to −, the agent updates her belief to π−ε and draws S1
ε , which conditions on

‘not a+’ by returning a ∈ A with probability εq+i (a)+(1−ε)qi(a)

1−εq+i (a)
in state i. Since the agent

is indifferent across all Blackwell-equivalent sequential information strategies under
(C4) and (C5), this strategy too yields welfare W (A,π, c) + ε∆. Welfare can only
increase if we replace signal S1

ε by the ignorance equivalent αε of the corresponding
RI problem (A,πε−, c), hence

(π · q0
ε(−))(π−ε ·αε) + (π · q0

ε(+))(π+ · a+)− c(S0
ε ,π) ≥ W (A,π, c) + ε∆. (13)

By the law of total probability, the average posterior is equal to the prior, allowing
us to express the posterior π−ε as a function of the prior π and the posterior π+,

(π · q0
ε(−))π−ε = π − (π · q0

ε(+))π+ = π − ε(π · q+(a+))π+,

with both π and π+ independent of ε.
We now show that replacing αε with α still achieves a positive welfare gain for

small enough ε. First, prior-continuity of the ignorance equivalent (Corollary 2)
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implies that there exists ε > 0 such that

(π · q+(a+))π+ · (α−αε) < ∆

2
.

Second, the self-selection property of the ignorance equivalent (Corollary 3) further
implies that π · (α − αε) ≥ 0, and so the welfare loss of replacing αε with α is
bounded below by

(π · q0
ε(−))π−ε · (α−αε) = π · (α−αε)− ε(π · q+(a+))π+ · (α−αε) > −ε∆

2
. (14)

Taken together, Equations (13) and (14) imply that the agent can achieve welfare

(π · q0
ε(−))π−ε ·α+ (π · q0

ε(+))(π+ · a+)− c(S0
ε ,π) ≥ W (A,π, c) + ε

∆

2

by drawing S0
ε and implementing α upon realization − and a+ otherwise. Since

this strategy is feasible in RI problem ({α,a+} ,π, c), it implies in particular that
W ({α,a+} ,π, c) > W ({α} ,π, c).

Inductive application of this result yields a binary characterization of situations
where ignorance is optimal.

Proof of Corollary 5: Suppose first that unconditional implementation of a ∈ A is
optimal in RI problem (A,π, c). By optimality, W ({a} ,π, c) = W (A,π, c), and by
menu-monotonicity, the latter is weakly larger than W ({a,a′} ,π, c) for each a′ ∈ A.

Conversely, suppose condition W ({a,a′} ,π, c) ≥ W ({a} ,π, c) holds for each
a′ ∈ A. We prove by induction that unconditional implementation of a is optimal in
RI problem (A,π, c), starting with the trivial case A = {a} and adding actions one-
by-one. For the inductive step, assume W ({a} ,π, c) = W (A,π, c) for some subset
A ⊆ A, and consider what happens when a′ ∈ A \ A is added to the menu. Since
a ∈ A, the assumption satisfies all the conditions of Definition 1, and a denotes the
ignorance equivalent of (A,π, c). By Theorem 3(a), the condition W ({a,a′} ,π, c) ≤
W ({a} ,π, c) then implies that W (A ∪ {a′} ,π, c) ≤ W (A,π, c). Menu-monotonicity
implies the opposite inequality and thus

W (A ∪ {a′} ,π, c) = W (A,π, c) = W ({a} ,π, c).
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We now turn back to our definition of π-dominated payoff vectors in Equation (12)
and rewrite it in a way that fits Lemma A.11. To do so, we let S(k,σ)

π denote the binary
signal that, starting from prior π, reaches posterior σ with marginal likelihood k ∈
(0, 1). By the law of total probability, the same signal reaches posterior 1

1−kπ−
k

1−kσ

with marginal likelihood 1 − k. For k > 0 small enough, all probabilities are non-
degenerate. We also define function Φπ : ∆I → R as

Φπ(σ) := σ ·α(A,π,c) + lim
k↓0

1

k
c(S(k,σ)

π ,π) (15)

= σ ·α(A,π,c) + φ(σ) +
∂

∂k

[
(1− k)φ

(
1

1− k
π − k

1− k
σ

)]
k=0

= σ ·α(A,π,c) + φ(σ)− φ(π) +∇φ(π) · (π − σ),

and use it to restate Āπ.

Lemma A.14. The function Φπ given in Equation (15) is convex and finite-valued,
and Āπ =

{
x ∈ RI

∣∣σ · x ≤ Φπ(σ) ∀σ ∈ ∆I
}
.

Proof. By Theorem 3(a), Āπ can be stated with reference to the ignorance equivalent
α = α(A,π,c) alone, Āπ =

{
x ∈ RI | W ({α,x} ,π, c) ≤ W ({α} ,π, c)

}
. And since

the menu {α,x} is binary, any feasible strategy can be described as drawing S(k,σ)
π

for a small enough k, and implementing x at posterior ρ and α otherwise. Relative
to unconditional implementation of α, relying on this costly signal improves welfare
by

kσ · x+ (π − kσ) ·α− c(S(k,σ)
π ,π)− π ·α = kσ · (x−α)− c(S(k,σ)

π ,π),

which has the same sign as σ · (x− α)− 1
k
c(S(k,σ)

π ,π). As k converges to zero from
above, k ↓ 0, the weighted cost term shrinks. This is because for any t ∈ [0, 1],
S(tk,σ)
π can be implemented in two steps by an uninformative coin flip that triggers a

draw of S(k,σ)
π with probability t, and otherwise recommends action α. By Blackwell

monotonicity (C2) and sequential optimality (C4), this implies the monotonic ranking
1
tk
c(S(tk,σ)

π ,π) ≤ 1
k
c(S(k,σ)

π ,π). In other words, the signal is welfare-enhancing for any
k > 0 if and only if

σ · x > inf
k>0

{
σ ·α+

1

k
c(S(k,σ)

π ,π)

}
= Φπ(σ) ∀σ ∈ ∆I,
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warranting the suggested formula for Āπ. And since costs are finite for any small
enough k > 0, the infimum Φπ(σ) is finite-valued.

It remains to show that the function Φπ : ∆I → R is convex. Consider a two-
stage process that first flips an uninformative coin that triggers a draw of S(k,σ)

π

with probability t, and otherwise triggers a draw of S(k,σ′)
π . Overall, this process

recommends action x at posterior tσ+(1−t)σ′ with marginal likelihood k. Again, the
one-shot implementation is weakly cheaper by (C2) and (C4), c(S(k,tσ+(1−t)σ′),π) ≤
tc(S(k,σ)

π ,π) + (1− t)c(S(k,σ′)
π ,π). Convexity follows since

Φπ(tσ + (1− t)σ′) = (tσ + (1− t)σ′) ·α+ lim
k↓0

1

k
c(S(k,tσ+(1−t)σ′)

π ,π)

≤ t

[
σ ·α+ lim

k↓0

1

k
c(S(k,σ)

π ,π)

]
+ (1− t)

[
σ′ ·α+ lim

k↓0

1

k
c(S(k,σ′)

π ,π)

]
= tΦπ(σ) + (1− t)Φπ(σ′).

We now show that under any other prior ρ, the set Āπ contains a point that is
implemented unconditionally when present.

Lemma A.15. For any prior ρ ∈ int(∆I), unconditional implementation of the
payoff vector aρ = arg max

{
ρ · x | x ∈ Āπ

}
is optimal in any RI problem (A′,ρ, c)

where the finite menu A′ ⊆ A ∪ Āπ contains aρ.

Proof. By Lemmas A.11 and A.14, the point aρ satisfies ρ · aρ = Φπ(ρ). By contra-
diction, assume that there exists a learning strategy S = 〈A′, q〉 that achieves higher
welfare than unconditional implementation of aρ under prior ρ,∑

i∈I

ρi
∑
a∈A′

qi(a)ai − c(S,ρ) > ρ · aρ = Φπ(ρ).

By definition of Φπ, this implies that there exists k > 0 small enough such that∑
i∈I ρi

∑
a∈A′ qi(a)ai− c(S,ρ) > ρ ·α+ 1

k
c(S(k,ρ)

π ,π). Rearranging terms, we obtain

k
∑
i∈I

ρi
∑
a∈A′

qi(a)ai + (π − kρ) ·α− c(S(k,ρ)
π ,π)− kc(S,ρ) > π ·α.

This strict inequality implies that unconditional implementation of α is not optimal
in RI problem (A′ ∪ {α} ,π, c); it is strictly dominated by a sequential strategy
where S(k,ρ)

π is drawn first, and upon realization x, the agent draws and follows signal
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S, otherwise she implements α. This contradicts the binary characterization for
optimality of ignorance (Corollary 5) since by definition of Āπ, none of the actions
a ∈ A′ ⊆ A ∪ Āπ yields a welfare improvement by itself.

Building on this, we prove Theorem 4, which states that any anchor can be ‘acti-
vated’ by adding the right action to the menu.

Proof of Theorem 4: Suppose first that a is an anchor action. Since anchor a
is part of the learning-proof menu, there exists a prior ρ ∈ int(∆I) such that a is
implemented unconditionally in (A,ρ, c), and thus denotes the ignorance equivalent.
Fix any k ∈ (0, 1) small enough such that the belief ρ+ = 1

1−kπ −
k

1−kρ has full
support. By Lemmas A.11 and A.14, there exist payoff vectors α,a+ ∈ Āρ such that
π · α = Φρ(π) and ρ+ · a+ = Φρ(ρ

+). Moreover, by Lemma A.15, unconditional
implementation of α and a+ is optimal in RI problems (A ∪ {a+,α} ,π, c) and
(A ∪ {a+,α} ,ρ+, c), respectively. In particular,

W (A ∪
{
a+
}
,π, c) ≤ W (A ∪

{
a+,α

}
,π, c) = π ·α.

We now show that the agent can achieve this upper bound for welfare by following
a learning strategy S(t,ρ)

π that implements action a at posterior ρ with marginal
likelihood t, and otherwise implements action a+ at posterior ρ+.

To do so, note that for any k > 0 small enough, the following two sequential
learning strategies are Blackwell equivalent for an agent with prior ρ:

• Draw S(k,π)
ρ and then, conditional on reaching posterior π, draw S(t,ρ)

π .

• Flip an uninformative coin that triggers a draw of S(k(1−t)/(1−tk),ρ+)
ρ with prob-

ability 1− tk and reveals no information otherwise.

Since sequential implementation yields neither gains nor losses by (C4) and (C5),
both strategies have the same expected cost,

c(S(k,π)
ρ ,ρ) + kc(S(t,ρ)

π ,π) = (1− tk)c(S(k(1−t)/(1−tk),ρ+)
ρ ,ρ).
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Rearranging terms and taking the limit k ↓ 0, we find

c(S(t,ρ)
π ,π) = (1− t) lim

k↓0

1− tk
k(1− t)

c(S(k(1−t)/(1−tk),ρ+)
ρ ,ρ)− lim

k↓0

1

k
c(S(k,π)

ρ ,ρ)

(15)
= (1− t)[Φρ(ρ+)− ρ+ · a]− [Φρ(π)− π · a]

= (1− t)ρ+ · (a+ − a)− π · (α− a).

Subtracting this cost from the consumption utility tρ · a+ (1− t)ρ+ · a+, we obtain
the welfare under signal S(t,ρ)

π ,

tρ · a+ (1− t)ρ+ · a+ − [(1− t)ρ+ · (a+ − a)− π · (α− a)]

= [tρ+ (1− t)ρ+]︸ ︷︷ ︸
=π

·a+ π · (α− a) = π ·α.

As a result, it is optimal for the agent to implement a with positive probability t > 0

in RI problem (A ∪ {a+} ,π, c).
Conversely, suppose a ∈ A \ Ā is not an anchor. By Corollary 4(d), there exists

a prior ρ such that a < α(A,ρ,c). By construction of the ignorance equivalent in
Theorem 1, a is thus strictly dominated by any optimal learning strategy S of RI
problem (A,ρ, c). In particular, as long as the menu contains A, the agent is always
strictly better off following strategy S rather than implementing a, no matter her
belief. By sequential optimality (C4), implementing a is also strictly suboptimal
among one-shot strategies.

Proof of Corollary 6: The agent’s willingness to pay is equal to the expected change
in welfare,

∑
s∈S(π · q(s))W (A,πs, c) −W (A,π, c). The claim then follows because

Theorem 2 implies that for all priors ρ ∈ int(∆I),

W (A,ρ, c) = ρ ·α(A,ρ,c) 2(b)
= ρ ·α(Ā,ρ,c) = W (Ā,ρ, c) 2(a)

= max
a∈Ā

ρ · a.

The result generalizes to the boundary of the simplex by continuity of the welfare
function Lemma A.7.

Proof of Corollary 7: Suppose the principal offers the menu A0 ∪ {as | s ∈ S}
with as = arg max

{
πs · a

∣∣a ∈ Āπ} . Since none of the added options are welfare-
enhancing, the agent’s welfare is bounded above by π ·α, and we now show that the
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agent achieves this upper bound by drawing S and selecting action as after realization
s. Doing so yields consumption utility πs ·as with marginal likelihood q(s) = π ·q(s)

for a cost of c(S,π). By Lemmas A.11 and A.14, we can write∑
s∈S

q(s)(πs · as)− c(S,π) =
∑
s∈S

q(s)Φπ(πs)− c(S,π) (16)

=
∑
s∈S

q(s)

(
πs ·α+ lim

k↓0

1

k
c(S(k,πs)

π ,π)

)
− c(S,π)

= π ·α+ lim
k↓0

1

k

(∑
s∈S

q(s)c(S(k,πs)
π ,π)

)
− c(S,π)

The term in parentheses captures the cost of a sequential strategy where an assis-
tant first draws an uninformative signal that returns each s ∈ S with unconditional
probability q(s), and then flips an informative coin that yields heads at posterior πs

with probability k. Suppose the agent announces s if the coin returns heads and says
nothing otherwise. The assistant’s announcement is then Blackwell equivalent to a
strategy where the agent draws S with probability k and maintains prior π otherwise.
Since the agent is indifferent across all sequential strategies (C4) and (C5) and costs
are Blackwell-monotone (C2), the term

∑
s∈S q(s)c(S

(k,πs)
π ,π) is equal to kc(S,π).

From Equation (16), it follows that S achieves π · α and is thus indeed optimal for
the agent. And since the agent receives the payoff π · α = W (A0,π, c) that he is
guaranteed in any offer A ⊇ A0, the principal is making minimal transfers.
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B Online Appendix

B.1 Additional Explanations

B.1.1 Duality

Proof of Lemma A.10: Let V denote the Banach space of all finite signed measures
over ∆I, and V+ = {v ∈ V | v ≥ 0} the subset of nonnegative measures. Along with
the total variation norm ‖ · ‖V , this forms a Banach space [Cohn, 1997, p.219]. We
endow RI with the `1 norm ‖ · ‖1 for convenience, and let M : V → RI denote the
linear map that assigns to each measure ν the Lebesgue integral Mν =

∫
∆I ρdν.

The map M is bounded since
∫

∆I ρidν ∈ [−ν−(∆I), ν+(∆I)] for each i and hence
‖Mν‖1 ≤ |I|(ν+(∆I)+ν−(∆I)) = |I|‖ν‖V , where ν+ and −ν− denote the upper and
lower variation respectively. For any set B, we further define the indicator function
χB(b) that is 0 whenever b ∈ B and ∞ otherwise. This function is lower semi-
continuous and convex whenever B is closed and convex.

We now define two functions f : V → R∪ {+∞} and g : RI ×R→ R∪ {+∞} as

f(ν) =

∫
∆I

Φ(ρ)dν + χV+(ν) and g(x) = χ{π}(x).

Since convexity and lower semi-continuity are preserved under addition, f and g are
both convex and lower-semicontinuous. Moreover, in the notation of Borwein and
Zhu [2005, Theorem 4.4.3],

0 ∈ core(domg −Mdomf) = core({π} − [0,∞)I+1),

and therefore strong duality holds:

inf
ν∈V

f(ν) + g(Mν) = sup
〈x∗,·〉∈(RI)∗

−f ∗(M∗〈x∗, ·〉)− g∗(−〈x∗, ·〉), (17)

where (RI)∗ denotes the space of all linear forms over RI , M∗ is the adjoint operator
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and the convex conjugates assign to each linear form a supremum

f ∗(〈ν∗, ·〉) = sup
v∈V
〈ν∗, v〉 − f(v) = sup

v∈V+
〈ν∗, v〉 −

∫
∆I

Φ(ρ)dv

=

0 if 〈ν∗, v〉 ≤
∫

∆I Φ(ρ)dv ∀v ∈ V+

∞ otherwise,

g∗(〈x∗, ·〉) = sup
x∈RI
〈x∗,x〉 − g(x) = 〈x∗,π〉.

Using these expressions, we can equivalently write the duality (17) asinfν∈V+
∫

∆I Φ(ρ)dν

s.t.
∫

∆I ρdν = π
=

sup〈x∗,·〉∈(RI)∗ 〈x∗,π〉

s.t. 〈M∗〈x∗, ·〉, v〉 ≤
∫

∆I Φ(ρ)dv ∀v ∈ V+.

The constraint on the left side implies in particular that

ν(∆I) =

∫
∆I

1dν = 1 ·
∫

∆I
ρdν = 1 · π = 1,

and hence it is without loss of generality to restrict attention to probability measures
ν ∈ ∆∆I, making this infimum equal to p∗ from the claim.

As for the right side, the definition of the adjoint states that 〈M∗〈x∗, ·〉, v〉 =

〈x∗,Mv〉, and since any linear form over RI can be expressed as a scalar product
with a vector in RI , we can also write the duality (17) as

p∗ =

{
supa∈RI a · π
s.t. a ·Mv = a ·

∫
∆I ρdv ≤

∫
∆I Φ(ρ)dv ∀v ∈ V+.

We rewrite the constraint as

0 ≤
∫

∆I
(Φ(ρ)− a · ρ)dv ∀v ∈ V+,

and make a few simplifying observations: First, the inequality is unaffected by positive
scaling of v, so it is without loss of generality to restrict attention to probability
measures v ∈ ∆∆I. Moreover, the right side is most binding when v is a degenerate
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distribution, so it is also without loss of generality to simply write (17) as

p∗ =

{
supa∈RI a · π
s.t. 0 ≤ Φ(ρ)− a · ρ ∀ρ ∈ ∆I,

which is now equal to d∗ from the claim.
Moreover, the Fenchel duality theorem also asserts that whenever p∗ = d∗ is finite,

then the supremum is attained.

B.1.2 Posterior-separable Costs

Although our proof of Theorem 1 relies on prior-concavity (C2) and sequential learn-
ing (C4), a unique ignorance equivalent exists for a larger class of cost functions.22

Indeed, consider any posterior-separable cost of the form

c(〈S, q〉,π) =
∑
s∈S

(π · q(s))φπ(πs)− φπ(π), (PS)

which differs from Equation (UPS+) in that the convex and differentiable potential
φπ can depend on the prior, and does not need to induce prior-concavity.

Let S denote a learning strategy that is optimal in RI problem (A,π, c). By
Caplin et al. [2022, Lemma 1], there exists a vector θ ∈ RI such that, for any a that
is chosen with positive probability and for any optimal posterior πs,

ρ · a′ − φπ(ρ)− ρ · θ ≤ πs · a− φπ(πs)− πs · θ ∀ρ ∈ ∆I,∀a′ ∈ A. (18)

Moreover, the existence of such a θ guarantees optimality of the signal S.
By symmetry, the value on right side of the inequality needs to be the same,

independentently of the choice of the optimal action a or the optimal posterior πs.
Moreover, since the inequality also holds for any θ+k1 with k ∈ R, it is without loss
of generality to normalize the right side to zero. Under this normalization, we can
also express welfare succinctly as

W (A,π, c) =
∑
a∈A

(π · q(a))(πa · a− φπ(πa)) + φπ(π) = π · θ + φπ(π).

22We thank an anonymous referee for pointing this out to us.
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The ignorance equivalent can be obtained from this optimal Lagrangian vector as

α := ∇φπ(π) + θ + (φπ(π)− π ·∇φπ(π))1. (19)

Indeed, this payoff vector α achieves the same welfare as the optimal signal since

π ·α = π · θ + φπ(π) = W (A,π, c). (20)

Moreover, the addition of α to the menu does not introduce any new learning oppor-
tunities since

ρ ·α− φπ(ρ)− ρ · θ = φπ(π)− φπ(ρ)− (π − ρ) ·∇φπ(π) ≤ 0 (21)

by concavity of φ. In other words, Equation (18) holds with the same θ for the
degenerate strategy that puts full weight on α, making this optimal even in the large
menu A∪{α}. Moreover, both constraints (20) and (21) have to be satisfied, making
the payoff vector in (19) the unique candidate.

B.2 Examples

B.2.1 Non-Existence of an Ignorance Equivalence

In this section, we show by example that an ignorance equivalent may fail to exist
when the cost function does not satisfy (C4).

In particular, we consider prior-independent costs

c(〈S, q〉,π) =

[
1

I

∑
i∈I

H
(
qi
)
−H

(
1

I

∑
i∈I

qi

)]2

,

where H(p) =
∑

s∈S p(s) ln(p(s)) denotes the Shannon entropy of probability mass
function p. This cost function measures the square of the mutual information between
the conditional probabilities qi and the mean probability 1

I

∑
i∈I qi. It is well known

that mutual information is continuous and strictly increasing in the Blackwell order.
By taking the unconditional mean rather than (as is standard) weighting each term by
πi, the cost function becomes prior-independent and therefore trivially prior-concave.
In addition, let a1 = (1, 0), a2 = (0, 1), A = {a1,a2} and π =

(
1
2
, 1

2

)
. The exact
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choice of the menu and the prior matter only in so far as we want to guarantee that
some learning is optimal in RI problem (A,π, c). We claim that this RI problem does
not admit an ignorance equivalent.

Indeed, let S = 〈A, q〉 denote an optimal learning strategy, with expected state-
wise consumption of aS . For convenience, we determine S using Mathematica (see
code at the end of this section) and verify that it involves a strictly positive amount of
learning, c(S,π) > 0. By definition, the expected utility of any candidate ignorance
equivalent α has to be equal to the net utility as S,

π ·α = W ({α} ,π, c) = W (A,π, c) = π · aS − c(S,π).

At the same time, an agent facing RI problem (A ∪ {α} ,π, c) could follow signal
S̃ = 〈A ∪ {α} , q̃〉 with qi(α) ≡ t ∈ (0, 1) and q(ak) ≡ (1 − t)q(ak). This strategy
is Blackwell equivalent to a two-stage strategy where the agent first tosses an unin-
formative coin. The coin returns heads with probability t, prompting the agent to
implement α, and tails with probability 1 − t, prompting her to follows S. Beliefs
are unaffected by the coin toss, and so the agent’s expected consumption utility is
equal to tπ ·α+ (1− t)π · aS . However, the cost of strategy S̃ is strictly below that
of its two-stage implementation, with c(S̃,π) = (1 − t)2c(S,π). Consequently, the
net utility of S̃ exceeds W (A,π, c), implying that adding α to the menu is strictly
welfare enhancing,

W (A ∪ {α} ,π, c) ≥ tπ ·α+ (1− t)π · aS − (1− t)2c(S,π)

= tW ({α} ,π, c) + (1− t)W (A,π, c) + t(1− t)c(S,π)

> W (A,π, c).

The incompatibility between the two properties of Definition 1 is linked to the fact
that c violates sequential-learning proofness (C4). This means that even though S
dominatesα, the agent is not able to realize the full welfare potential of (A∪{α} ,π, c)
without relying on the ‘moderate’ payoffs α.23

23To avoid confusion: The issue is not that S̃ is strictly cheaper than the two-step implementation
described above. (C4) allows for that. The issue is that S is strictly more expensive than a two-stage
implementation where the agent first follows S̃ and replaces action α with another instance of S.
The former costs c(S,π) while the latter merely costs (1− t)2c(S,π) + tc(S,π).
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Code: Non-existence under violation of (C4).
1 Clear["Global‘*"];

We consider a setup with two states and two actions:

2 a1={1,0};

3 a2={0,1};

The prior is equal to

4 pi1=0.5;

5 pi={pi1,1-pi1};

A learning strategy is written as a matrix where entry (i,a) denotes the likelihood of
implementing action a conditional on state i. Costs are given by the prior-independent
function

6 p={1/2,1/2};

7 c[q_?(MatrixQ[#,NumericQ]&),pi_]:= Sum[ If[ q[[i,a]]>0, p[[i]]q[[i,a]]

Log[q[[i,a]] / p.q[[;;,a]]] , 0] , {i,1,Dimensions[q][[1]]} ,

{a,1,Dimensions[q][[2]]} ]^2

This function denotes the squared reduction in Shannon entropy, but relative to
the fixed state distribution p rather than the prior pi. This has the advantage of
ensuring that the function trivially satisfies (C1) and (C2).

We now compute the optimal signal:

8 q={{q1a1,1-q1a1},{1-q2a2,q2a2}};

9 W[q_?(MatrixQ[#,NumericQ]&),pi_] := pi.Total[{a1,a2}*Transpose[q]]-c[q,pi]

10 NMaximize[{W[q,pi],0<=q1a1<=1,0<=q2a2<=1},{q1a1,q2a2}]

� {0.777046, {q1a1 → 0.855844, q2a2 → 0.855844}}

11 qopt={{q1a1,1-q1a1},{1-q2a2,q2a2}}/.%[[2]];

This involves a strictly positive amount of learning,

12 c[qopt,c]>0

� True
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B.2.2 Failure of Self-Selection

To illustrate the role that (C2) plays in our results, we here show that self-selection
(Corollary 3) fails for a concrete example with a cost function that satisfies all prop-
erties save for prior-concavity. Self-selection is crucial for our subsequent results, as
the construction of the learning-proof menu rests upon the absence of welfare gains.

Specifically, we consider a uniformly posterior-separable cost function with the
convex and differentiable potential φ(π) = −

∑
i∈I πi(1−πi). We study a three-state

problem with two actions A = {(1, 0, 0), (0, 1, 0)} and a uniform prior π =
(

1
3
, 1

3
, 1

3

)
.

To streamline exposition, we verify all claims algebraically with Mathematica and
provide the code at the end of this section.

Using the tools from Online Appendix B.1.2, we locate the unique ignorance equiv-
alent equivalent for this posterior separable function at α =

(
31
24
, 31

24
, 19

24

)
. We then

show that adding this action α to the menu is strictly welfare-enhancing for an agent
who puts a higher likelihood on state 3, with prior ρ =

(
1
10
, 1

10
, 8

10

)
. In particular,

W (A,ρ, c) = 0.18 < ρ ·α = 0.225 ≤ W (A ∪ {α} ,ρ, c),

thus contradicting Corollary 3. Finally, we show that that this cost function violates
(only) prior-concavity (C2). Intuitively, prior-concavity allows us to connect global
welfare gains to local welfare gains in the ‘necessity of dominance’ argument (Sec-
tion 3). Without it, there may be strict welfare gains at prior ρ even though there
are none for local priors around π.

Code: Violation of Corollary 3 without (C2).
1 Clear["Global‘*"];

There are three states and two actions with payoffs

2 a1={1,0,0};

3 a2={0,1,0};

The UPS potential is given by

4 φ[{r1_,r2_,r3_}]:=Sum[-r (1-r),{r,{r1,r2,r3}}]

For notational convenience, we explicitly define its gradient as

5 Dφ[{p1_,p2_,p3_}]=D[φ[{p1,p2,p3}],{{p1,p2,p3},1}];

and verify that the potential is convex by checking for positive Eigenvalues of the
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Hessian,

6 Eigenvalues[D[φ[{p1,p2,p3}],{{p1,p2,p3},2}]]

� {2,2,2}

We claim that the ignorance equivalent at

7 pi={1/3,1/3,1/3};

is equal to

8 α={5/8,5/8,1/8};

and hence using formula (19),

9 θ = α-Dφ[pi]-{1,1,1}(φ[pi]-pi.Dφ[pi])

� {31/24,31/24,19/24}

This satisfies the constraints (18) since for any beliefs r and any available action a,
the expression r.a-φ[r]-r.θ is maximized at 0.

10 r={r1,r2,r3};

11 Maximize[{r.a1-φ[r]-r.θ,{0<=r1,0<=r2,0<=r3,r1+r2+r3 == 1}},{r1,r2,r3}]

12 Maximize[{r.a2-φ[r]-r.θ,{0<=r1,0<=r2,0<=r3,r1+r2+r3 == 1}},{r1,r2,r3}]

� {0, {r1 → 7/12, r2 → 1/12, r3 → 1/3}}
� {0, {r1 → 1/12, r2 → 7/12, r3 → 1/3}}

For this reason, we know that we have found the correct ignorance equivalent.
We now show that adding this α to the menu is strictly welfare enhancing for an

agent with prior

13 rho={1/10,1/10,8/10};

Sticking to the posterior-based approach, we know we can find W({a1,a2},rho,c) by
maximizing over Bayes-plausible posteriors. In particular, we maximize q(r.a1-φ[r])
+(1-q)(s.a2-φ[s]), which is the convex combination over the agent’s net utility at
r and s, weighed according to q. The constraints ensure that both posteriors are
valid, and that the average posterior equals the prior rho. Doing so determines the
maximal net utility of the agent, and we obtain actual welfare by adding φ[rho] back
in.

14 r={r1,r2,r3};

15 s={s1,s2,s3};

16 Maximize[{q(r.a1-φ[r])+(1-q)(s.a2-φ[s]),{0<=r1,0<=r2,0<=r3,r1+r2+r3 ==

1,0<=s1,0<=s2,0<=s3,s1+s2+s3 == 1,0<=q<=1,q r + (1-q)s ==

61



rho}},{r1,r2,r3,q,s1,s2,s3}]

17 W=%[[1]]+φ[rho] (∗ In mathematica, % refers to the last computed output. ∗)

� {13/25, {r1→1/5, r2→0, r3→4/5, q→1/2, s1→0, s2→1/5, s3→4/5}}
� 9/50

In particular, the agent’s welfare without access to α is equal to

18 W //N

� 0.18

However, if α is available to the agent, she can in particular choose to implement it
unconditionally, which yields a lower bound for W({a1,a2,α},rho,c),

19 rho.α//N

� 0.225

This shows that adding α affects the welfare of an agent who differs only in prior
belief, contrary to the result we obtain in Corollary 3.

Lastly, we verify that prior-concavity is the only property not satisfied by the UPS
cost function considered here. Without loss of generality, we denote a signal by a list
of state-dependent probabilities, where qs={qs1,qs2,qs3} denotes the likelihood for
realization s∈{x,y,z} conditional on each of the states i∈{1,2,3},

20 c[q_,pi_]:=Sum[(pi.qs) φ[(pi*qs)/pi.qs],{qs,q}]-φ[pi]

Continuity (C1) holds by continuity of the expectation and that of φ. Blackwell
monotonicity holds because φ is convex (as verified above). Bloedel and Zhong [2020]
show that indifference to sequential information acquisition (C4) and (C5) hold for
any UPS functions, including this one. The differentiability of the potential further
implies that ties are broken through learning (C3), as detailed in Lemma A.2.

However, prior-concavity does not hold. We illustrate this by focusing on the
optimal signal under prior pi,

21 q={{r1,r2,r3}/(2pi) /.Maximize[{r.a1-φ[r]-r.θ,

{0<=r1,0<=r2,0<=r3,r1+r2+r3==1}}, {r1,r2,r3}][[2]], {r1,r2,r3}/(2pi)}

/.Maximize[{r.a2-φ[r]-r.θ,{0<=r1,0<=r2,0<=r3,r1+r2+r3==1}},

{r1,r2,r3}][[2]]

� {{7/8,1/8,1/2},{1/8,7/8,1/2}}

This is optimal because it achieves the same welfare at pi as unconditional implemen-
tation of α,
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22 (pi*q[[1,;;]]).a1+(pi*q[[2,;;]]).a2-c[q,pi] == pi.α

� True

However, α is no longer dominated by this signal q because

23 (rho*q[[1,;;]]).a1+(rho*q[[2,;;]]).a2-c[q,rho] < rho.α

� True

And indeed, we can verify that prior-concavity fails here,

24 Plot[c[q,t pi +(1-t)rho],{t,0,1}]

�

This breaks the step in the ‘dominance of necessity’ argument, where we go from an
arbitrary prior where α is welfare-enhancing to a local perturbation with the same
property.

B.2.3 Exogenous Information and Endogenous Learning

Figure 4 illustrates the interaction between exogenous and endogenous information
for an RI agent of prior π with access to three actions and a learning technology that
results in ignorance equivalent α and learning-proof menu Ā. Left to her own devices,
the agent employs learning strategy S(q,r) that yields posteriors πq and πr. If she
instead obtains this signal from the principal, her welfare increases from π ·α to π ·
x(q,r), and she would be willing to pay at most her endogenous information acquisition
cost c(S(q,r),π). By sequential optimality (C4), the same is true for any Blackwell
less informative signal: The potential welfare gain is exactly equal to the agent’s
own learning cost as the signal purchase replaces endogenous learning. Suppose the

63



α

πq
πr

πtπs

x(q,r)
x(q,s) x(q,t)

Ā

Figure 4: Willingness to pay for exogenous information.

principal offers a signal that yields more conclusive evidence in favor of state 1,
yielding posteriors πq and πs. The agent still relies on the same two actions but
implements the high-payoff action more often, so that welfare increases further to
π ·x(q,s). This signal is therefore more valuable to her than the first one, albeit only if
she can acquire it at a cost strictly below her endogenous information acquisition cost.
If the possible evidence in favor of state 1 grows even further, to posteriors πq and πt,
the agent may eventually implement different actions, which further raises the welfare
gains. Still, her willingness to pay remains strictly below her endogenous information
acquisition cost. It is also possible to design signals that have no value to her. Here,
this is the case if we add a third state that occurs with likelihood π·3 = 1

2
in all

previously discussed beliefs, and where all actions achieve a zero payoff. If, in addition,
costs are linear in regards to that state, c(S, tπ+(1−t)π′) = tc(S,π)+(1−t)c(S,π′)
whenever π1/π2 = π′1/π

′
2, then the agent derives no benefit from learning about the

relative likelihood of state 3: It does not help her identify the most profitable action,
nor does it make her learning any easier.

B.2.4 Constrained Optimum

In Figure 5(a), we illustrate how to determine the optimal offer and acceptance strate-
gies for one particular t /∈ T . This state-independent transfer is above the threshold
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(a) Construction

(b) Expected payoff for Agent 1

Figure 5: Partial trade when states are unverifiable
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for unconditional acceptance t but below the threshold for unconditional rejection t̄.24

As discussed above, Agent K can either accept the trade and then implement one of
the actions a ∈ AK for a payoff of a − t, or he can settle for his outside option 0.
Shifting all payoffs by t, we can thus identify his optimal acceptance strategy from
the learning-proof menu over AK ∪ {t} under cost cK (indicated in orange). Agent
K rejects the offer at a posterior ρR orthogonal to the learning-proof menu at t, and
accepts the offer at a posterior ρA orthogonal at the other anchor action.

Using backwards induction, Agent 1 realizes that offering terms t will yield ex-
pected payoff t ·ρA conditional on trade happening, and W (A1,ρR, c1) otherwise. By
drawing equi-profit lines through t and tangent to his learning-proof menu, he deter-
mines the ‘full-trade equivalent’ transfers tW . As far as Agent 1 is concerned, offering
t is equivalent to certain trade at tW — and this is true for all beliefs between ρA and
ρR. However, tW is not attractive enough to warrant an unconditional offer, as can
be seen by the fact that it lies below one of the lower bounds from Equation (7). The
learning-proof menu over A1∪

{
tW
}
(drawn in dark red) reveals the equilibrium offer

strategy: Agent 1 draws a noisy signal and either offers the trade t at posterior ρO

or implements the action that favors state one at posterior ρ∅. If the trade is offered,
Agent K draws a more accurate signal and either rejects at posterior ρR or accepts
at posterior ρA, in which case he goes on to implement action ◦.

Figure 5(b) plots the resulting payoff to Agent 1 across a range of state-independent
transfers. For low prices t < t, trade happens whenever Agent 1 wants it to, and thus
his payoff increases monotonically with the price t. For high prices t > t̄, trade never
happens and Agent 1 receives his autarky payoffW (A1,π, c1). Agent 1’s optimal price
includes partial trade and corresponds to the equilibrium constructed in Figure 5(a).

B.2.5 Comparative Advantage and Repeated Trade

Notation. For each belief π ∈ ∆I, we let Sπ denote the first signal acquired by the
planner with prior π in an optimal learning sequence that minimizes the expected
number of draws. We denote the associated distribution over posterior beliefs as
νπ ∈ ∆∆I. By optimality,

W (AP ,π, cP ) =

∫
ρ∈∆I

W (AP ,ρ, cP )dνπ − min
k∈{1,...,K}

ck(Sπ,π), (22)

24These thresholds can be computed analogous to Equation (8) and Equation (7), respectively,
using Agent K’s menu and cost.
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and since the number of draws is minimized across all optimal learning sequences,
a degenerate distribution indicates that the principal implements the best action
unconditionally at this belief,

νπ = δπ =⇒ W (AP ,π, cP ) = max
a∈AP

π · a. (23)

We also let Kπ denote the set of agents who can emulate the next step of the planner’s
strategy. Formally, if νπ = δπ, then agents in Kπ = arg maxk maxa∈Ak π ·a are those
with access to the optimal action; otherwise agents in Kπ = arg mink c

k(Sπ,π) are
those who can implement Sπ at minimal cost. The minimality of draws also implies
that Kπ ∩Kρ = ∅ for any ρ ∈ support(νπ), for otherwise the principal could collapse
signals Sπ and Sρ into a single draw.

Preliminaries. In order to guarantee that the learning-proof menu ĀP is well-
defined, we need to verify that cP satisfies properties (C1) to (C4). Continuity, Black-
well monotonicity and prior-concavity are maintained under minimization. Theorem
1 and Lemma 9 in Bloedel and Zhong [2020] ensure that these properties are also
preserved under sequential optimization and that sequential learning cannot further
improve upon cP . And since in particular cP ≤ c1, the principal also breaks all
payoff-relevant ties through learning. Therefore, ĀP is well-defined and Theorem 2
holds.

Game structure. We more formally describe the trading protocol as an infinite-
period dynamic game. Each period consists of a simultaneous move game where all
but one player can acquire any signal of their choice. (Drawing an uninformative
signal models inaction.) One player can either learn or act: If there is no outstanding
offer, the owner of the opportunity κ can extend a TIOLI offer to some other agent
` at terms t ∈ RI , or implement an action a ∈ Aκ. If there is an outstanding offer
at the beginning of the period, agent ` can accept or reject the offer. A rejection
deactivates the offer, and the game proceeds to a period without outstanding offers.
The game starts without any outstanding offer and with agent 1 as the owner. The
game ends when an action is implemented, at which point the state i becomes public
knowledge. Learning costs are incurred immediately and privately by the agent who
draws the signal, but all agents are able to observe the resulting information, leading
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to a common belief update at the end of each period. Trades represent transfer
commitments that are due at the end of the game: Each agent pays ti for any offers
t that he has accepted and receives t′i from anyone who has accepted one of his offers
t′. In addition, the last owner reaps the payoffs from the implemented action, ai.

Candidate equilibrium. We define a strategy profile by indexing each history
by the agents’ common belief π and the current owner κ, as well as potentially
an outstanding offer from κ to some other agent ` with terms t. Our candidate
equilibrium is as follows:

(i) At a history (π, κ) without an outstanding offer, but with κ ∈ Kπ and νπ = δπ,
owner κ implements the optimal action arg maxa∈Aκ π ·a. No other agent does
any learning.

(ii) At a history (π, κ) without an outstanding offer, but with κ ∈ Kπ and νπ 6= δπ,
owner κ draws signal Sπ. No other agent does any learning.

(iii) At a history with an outstanding offer from owner κ to agent ` at terms t under
belief π, agent ` analyzes RI problem (ĀP ∪ {t} ,π, c`). He accepts the offer
whenever there exists an optimal strategy that does not rely on t. In particular,
this includes all instances where the terms are at or below ĀP . Agent ` rejects
the offer if unconditional implementation of t is optimal. (If indifferent, he
defaults to acceptance.) If neither is optimal, he draws an optimal signal that
maximizes π · q(t). No other agent does any learning.

(iv) At a history (π, κ) without an outstanding offer and with κ /∈ Kπ, owner κ
extends a take-it-or-leave-it offer with terms arg maxt∈ĀP π · t to one of the
agents in Kπ. No other agent does any learning.

Subgame payoffs. We claim that the expected continuation payoff after any his-
tory (π, κ) without an outstanding offer is equal to W (AP ,π, cP ) for owner κ and
zero for everyone else. (If there is an outstanding offer, the owner’s payoff is bounded
above by W (AP ,π, cP ) but is possibly smaller.) As a consequence, everyone val-
ues opportunity ownership as granting access to the learning-proof menu ĀP . We
establish this claim by backwards induction:
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(i) At a terminal history (π, κ) without an outstanding offer, but with κ ∈ Kπ and
νπ = δπ, Equation (23) guarantees that owner κ earns an expected payoff of
W (AP ,π, cP ) by implementing his best action. Everyone else is inactive and
earns a payoff of zero.

(ii) At a history (π, κ) without an outstanding offer, but with κ ∈ Kπ and νπ 6=
δπ, owner κ incurs learning costs of cκ(Sπ,π). The game then proceeds with
histories (ρ, κ), with ρ distributed according to νπ. By backwards induction
and Equation (22), the continuation payoff for owner κ is thus equal to∫

ρ∈∆I
W (AP ,ρ, cP )dνπ − cκ(Sπ,π) = W (AP , π, cP ),

and zero for everyone else. No other agent does any learning.

(iii) At a history with an outstanding offer from owner κ to agent ` at terms t
under belief π, trade happens whenever W (ĀP ∪ {t} ,π, c`) ≤ W (ĀP ,π, c`).
By backwards induction, this results in a continuation payoff of π · t for κ,
and W (AP ,π, cP ) − π · t for `. Since this implies in particular that π · t ≤
W (ĀP ,π, c`) ≤ W (ĀP ,π, cP ), the inductive hypothesis holds.

If the terms are so high that t is the ignorance equivalent of RI problem (ĀP ∪
{t} ,π, c`), no learning occurs and the game simply proceeds to history (π, κ)

without an outstanding offer. Again, the inductive hypothesis holds.

At all other terms, agent ` draws a costly signal S` that updates beliefs to the
Bayes-plausible distribution ν`. Regardless of whether trade occurs or not, the
sum of the continuation payoffs between agents ` and κ is bounded above by∫

ρ∈∆I
W (AP ,ρ, cP )dν` − c`(S`,π) (24)

by backwards induction. Agent ` can guarantee himself a continuation payoff of
zero by rejecting, so his optimal payoff is nonnegative. In turn, this bounds the
continuation payoff of owner κ above by (24), which is at most W (AP ,π, cP ),
thus confirming the inductive hypothesis.

(iv) At a history (π, κ) without an outstanding offer and with κ /∈ Kπ, the suggested
terms are on ĀP and represent an expected transfer of π · t = W (AP ,π, cP ) by
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Theorem 2. By backwards induction, this results in payoffs π ·t = W (AP ,π, cP )

for agent κ and W (AP ,π, cP )−π · t = 0 for agent `. All other agents earn zero.

Optimality. From these subgame payoffs, it also follows that no agent has a prof-
itable deviation. The owner earns

∫
ρ∈∆IW (AP ,ρ, cP )dν − cκ(S,π) by deviating to

a learning strategy S with associated belief distribution ν, π · a by deviating to a
game-ending move of implementing action a, and at mostW (AP ,π, cP ) by extending
any other offer. All are bounded above by his subgame payoff of W (AP ,π, cP ). The
acceptance strategy in (iii) is already chosen to be optimal across agent `’s feasible
subgame payoffs. And any other agent who would engage in learning will face only
costs but no benefits.

Moreover, agents emulate the first-best strategy on the equilibrium path, and thus
reap social surplus ∆.
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