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Abstract

We extend the theory on factor models by incorporating “local” factors into the model. Local

factors affect only an unknown subset of the observed variables. This implies a continuum

of eigenvalues of the covariance matrix, as is commonly observed in applications. We de-

rive which factors are pervasive enough to be economically important and which factors are

pervasive enough to be estimable using the common principal component estimator. We then

introduce a new class of estimators to determine the number of those relevant factors. Un-

like existing estimators, our estimators use not only the eigenvalues of the covariance matrix,

but also its eigenvectors. We find that incorporating partial sums of the eigenvectors into our

estimators leads to significant gains in performance in simulations.
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1 Introduction

Standard factor models imply a clear partition of the eigenvalues of the observed covariance ma-
trix into two sets – large eigenvalues representing factor-related variation and small eigenvalues
representing idiosyncratic variation. However, a clear separation of the eigenvalues into one set of
large eigenvalues and a second set of small eigenvalues is typically not found in practice. This is
exemplified in Figure 1, which depicts the leading eigenvalues from a large panel of US macroe-
conomic indicators. Empirical studies on Arbitrage Pricing Theory (Ross 1976) similarly point to
a continuum of factor strengths. For example, in a cross section of asset returns, Trzcinka (1986)
finds that, while the first eigenvalue dominates, the first 6 eigenvalues diverge at differing rates.

This paper develops a model that can produce the kind of eigenvalue distributions typically
found in practice by incorporating “local” factors into the model. Local factors affect only a subset
of the observed variables. Their presence implies a continuum of eigenvalues, thereby describing
data such as the one underlying Figure 1 better than a model that implies a large gap between two
sets of eigenvalues.

In such a model, in which factors affect arbitrary subsets of the observed variables, we derive
which factors are pervasive enough to be economically important and which factors are estimable
using the common principal component estimator. We will refer to these as the “relevant” factors.

We then introduce a new class of estimators to determine the number of those relevant fac-
tors. While there exists a multitude of estimators for the number of factors (e.g. Bai and Ng
2002, Onatski 2010, Ahn and Horenstein 2013), existing estimators are generally derived from
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Figure 1: 20 largest eigenvalues of the covariance matrix for a dataset of 94 macroeconomic indicators in the
US. The data is an updated vintage of the “Stock & Watson” dataset (Stock and Watson 2002, De Mol et al.
2008), a popular dataset in which factor models have been used in the literature, and has been transformed
to achieve stationarity. Solid line indicates cutoff chosen according to Bai and Ng (2002) (with rmax = 15)
to determine the number of factors.
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the empirical distribution of the eigenvalues. Under the presence of local factors, these estimators
are theoretically invalid and tend to perform poorly in practice. Instead, our proposed estimators
combine the empirical eigenvalue distribution with information obtained from the corresponding
eigenvectors. Exploiting this additional information by incorporating partial sums of the eigenvec-
tors into our estimators leads to significant gains in performance.1

To fix ideas, consider the following single factor model:

xit = λiFt + eit, i = 1, . . . , n; t = 1, . . . , T, (1)

where λi denotes the factor loading for outcome i, Ft the factor at time t, and eit an idiosyncratic
noise component. Standard factor models typically assume that

∑n
i λ

2
i diverges at rate n. Intu-

itively, this condition states that the factor is “strong” - on average, the loadings λi are bounded
away from zero. In this paper, we relax this assumption and allow that

∑n
i λ

2
i diverges at rate nα,

α ∈ [0, 1]. If α < 1, we call the corresponding factor “weak”. A factor can be weak for two
reasons. One reason could be that the factor has a weak effect on all observables. Formally, in
this case the individual loadings are modeled as drifting sequences (e.g. λ(n)

i = 1√
n
λ∗i , where λ∗i

are constants). Kleibergen (2009) and Onatski (2012) are examples of settings in which a weak
factor affects all outcomes but its associated loadings are drifting towards zero. Alternatively, a
factor can be weak because it affects only a subset of observables. This can similarly be modeled
through drifting sequences. Instead of using drifting sequences for individual factor loadings, now
the fraction of loadings that are non-zero are modeled as a drifting sequence, while the non-zero
loadings themselves are fixed. This is the approach we pursue in this paper, and we refer to factors
that are weak in this sense as “local”. A similar framework is considered in Bailey et al. (2020)
and Uematsu and Yamagata (2020).

Onatski (2009, 2010, 2012) proposes an alternative framework for weak factors through ran-
dom matrix theory, and a similar model to the one used in this paper has been considered in the
large body of literature on sparse PCA (e.g. Paul and Johnstone 2012, Cai et al. 2013). These
papers typically build on stronger assumptions on the error terms, and remain largely agnostic
about the factors themselves. By explicitly modeling the factors, we are able to impose less re-
strictive assumptions on the error structure. For a related literature on sparse factor models under a
Bayesian framework see Carvalho et al. (2008), Gao et al. (2013) and Pati et al. (2014). Finally, by
considering a continuum of factor strengths, this paper is similar in spirit to the extensive literature
in econometrics on identification with varying convergence rates (e.g. Andrews and Cheng 2012).

A number of empirical studies have postulated a structure with group-specific factors, some-
times called hierarchical factor models (e.g. Boivin and Ng 2006, Moench et al. 2013, Dias et al.

1Strictly speaking, partial sums of the estimated factor loadings. Using the standard PCA estimator, this is equiva-
lent to the eigenvectors up to a rescaling.
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2013), that is naturally related to the setting in this paper. Ando and Bai (2017) and Han (2017)
also consider group-specific (or regional) factors, but require all group sizes to be comparable to
the overall cross-sectional dimension, in which case all factors are strong asymptotically. Han and
Caner (2017) consider a model in which some factors may be less pervasive but treat all local
factors as noise. Wang (2008) and Choi et al. (2018) allow for local factors in the sense of this
paper, but require the group structure and factor strengths to be known to the practitioner a priori.
Using a similar drifting sequence framework as this paper, Uematsu and Yamagata (2020) focus
on alternatives to the PCA estimator, while Bailey et al. (2016) derive a measure of cross-sectional
dependence in the data.

Alternative approaches to estimate the number of factors in factor models include Bai and Ng
(2019), who introduce a rank restriction on the estimates, and the approximate minimum rank
problem defined in Ten Berge and Kiers (1991), which effectively attempts to find the smallest
number of factors r, such that the unexplained common variance is smaller than some threshold
δ. Gagliardini et al. (2019) propose a diagnostic criterion to determine the number of factors in an
economy with a continuum of assets, allowing for both missing observations and n much larger
than T . Neither considers the drifting sequence framework with local factors of this paper.

Before we formally introduce the model, the following are some concrete examples of eco-
nomic models to which this paper applies.

Example 1. Arbitrage Pricing Theory.
Consider an unobserved common shock that affects only a subset of the population at the company
level, for example, a new law that affects only large firms. As the number of firms, n, increases, one
reasonable assumption is that the number of large firms increases at a rate slower than n (Chudik
et al. (2011)). Unlike traditional factor models, the framework of this paper allows for this and is
in line with the empirical finding indicating that the largest eigenvalues of the sample covariance
matrix of asset returns diverge at differing rates (e.g. Trzcinka 1986) .

The empirical evidence on whether weaker factors are priced is somewhat mixed (e.g. Shukla
and Trzcinka 1990). In Section 3.2, we use the results in Green and Hollifield (1992) adapted to
our framework to derive theoretical bounds on the strength of factors that will be priced. We find
that expected returns of individual assets are determined by those factors affecting proportionally
more than

√
n assets.

Example 2. The origins of aggregate fluctuations.
There is an ongoing debate about the origins of fluctuations in the aggregate economy (see, e.g.
Foerster et al. 2011). Long and Plosser (1983) suggest that sectoral shocks may account for GDP
fluctuations. With a fixed number of sectors, these sectoral shocks affect a fixed proportion of firms
and can be viewed as aggregate shocks themselves. In contrast, Horvath (1998) investigates con-
ditions under which an economy with n sectors can have a volatility that does not decay according
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to 1√
n

. By modeling sectoral shocks as local factors affecting the corresponding subset of firms,
this can be mapped into the framework of this paper. We show in Section 3.2 that, in an econ-
omy with n firms,

√
n-convergence for the aggregate growth rate of the economy fails when there

are sectoral shocks affecting proportionally more than
√
n firms. We therefore find that aggregate

fluctuations can be attributed to sectors proportionally larger than
√
n firms.

Example 3. Macroeconomic forecasting.
In a widely cited paper Boivin and Ng (2006) investigate the properties of the principal component
estimator in finite samples. Specifically, they document conditions under which adding more data
can be undesirable for factor estimation.

Boivin and Ng (2006) use a Monte Carlo study to establish that the performance of the principal
component estimator deteriorates as more series unrelated to the factors are added, effectively
making factors local in the sense of this paper. In this paper, by tying the convergence rate of a
factor estimate to the factor’s strength, we provide a theoretical confirmation of their findings.

2 A Model with Local Factors

To set up notation, denote the pth largest eigenvalue of a matrix A by ψp(A) and the Frobenius
norm of a matrix B by ‖B‖, such that ‖B‖2 = tr(B′B) =

∑
ij b

2
ij . We make extensive use of the

notion that certain quantities diverge at particular rates and write an � bn for two sequences an, bn
if an = O(bn) and bn = O(an). We write Yn = Ōp(n

γ) as shorthand for Yn = Op(min{1, nγ}).
Finally let ιp denote a vector with a 1 at entry p and zeros everywhere else, with the dimension
varying, but obvious from context.

We consider the n-dimensional process Xt, t = 1, 2, ..., T . Let Fk, k = 1, 2, ..., r denote the
factors, and Λ = [λ·1λ·2 · · ·λ·r] = [λ1·λ2· · · ·λn·]′ denote the matrix of factor loadings. Through-
out, we use the running indices s and t for the T observations, indices i, j for the n variables, and
k and l for the r factors.

We assume that there exists a (not necessarily unique) finite r, such that the data has a static
factor representation,

X(n)

(T×n)
= F (n)

(T×r)
Λ(n)′

(r×n)
+ e(n)

(T×n)
, (2)

and the following assumptions are satisfied.

Assumption 1. There exist positive constants c,C and a diagonal matrixD(n)
r with diagonal entries

d
(n)
1 , d

(n)
2 , . . . , d

(n)
r , such that as n, T →∞:

(a) n/T → c
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(b) Λ(n)′Λ(n) = D
(n)
r , d

(n)
1 > d

(n)
2 > . . . > d

(n)
r and |λik| < C ∀i

(c) 1
T
F (n)′F (n) = Ir and|Ftk| < C ∀ t.

We treat both Λ and F as parameters of the distribution of X (as in, e.g. Onatski 2012). If F
and Λ are random and independent of each other, all results should still hold provided E ‖Ft‖4 and
E ‖λi‖4 are bounded.

Part (a) of Assumption 1 requires n and T to be comparable even asymptotically. This mainly
simplifies exposition, is common in the literature (e.g. Onatski 2012, Ahn and Horenstein 2013),
and plausible in many applications of factor models. Notably, we do not require the entries in D(n)

to diverge proportionally to n, thus allowing for weaker factors. All entries in D(n) may diverge at
different rates (or not diverge at all). Since they depend on the sample size, they should be thought
of as drifting sequences. With that in mind, to simplify notation, we will omit the superscript (n)

on matrices X , Λ, F , D and e in what follows.
We also maintain that the true factors and their loadings fulfill the orthogonality conditions

(b)-(c). Intuitively, we think of the factors in (2) as “primitive” exogenous forces. Because these
forces are primitive, they do not have common causes and it is natural to treat them as orthogonal
(Bernanke 1986). With local factors, Assumption 1(b) will be approximately true if the groups of
outcomes affected by various factors are sufficiently distinct. (For example, Assumption 1(b) will
hold exactly if the loadings are block diagonal, also see the discussion in Bai and Ng (2013)). This
is restrictive, but necessary to separately identify the factors (and their corresponding loadings).
We show in Section 5 that in practice our proposed estimators are robust to violations of this
assumption.

Assumption 2. For each factor k, the entire set of indices i = 1, 2, . . . , n can be partitioned into

a set of indices Ak with cardinality |Ak| � nαk for some αk ∈ [0, 1] and its complement such that,

as n, T →∞ for all k:

(a)
∑

i∈Ak λ
2
ik � nαk

(b)
∑

i 6∈Ak λ
2
ik < C for some C <∞.

Assumption 2 can be thought of as a sparsity assumption. It states that any given factor fulfills
the conventional pervasiveness assumption only on an unknown subset of all outcomes (Ak), while
the remaining loadings are small in the sense that their squares are summable. For the local factors
(αk < 1) the loadings of any given factor k are concentrated on an asymptotically vanishing
fraction of variables. Assumption 2 implies that the diagonal elements in dk from Assumption 1
diverge at rate αk.

As a specific example, consider a cross section of n asset returns and an industry with a size
proportional to

√
n of the assets. Suppose there exists an industry-specific factor Fl that affects
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only those assets: λil = 1 if i ∈ Al and λil = 0 if i 6∈ Al. Then,
∑

i∈Al λ
2
il �
√
n and

∑
i 6∈Al λ

2
il =

0, such that Assumption 2 holds with αl = 1/2.2 The standard assumptions in the literature
correspond to assuming αk = 1 for all factors, thus ruling out any such local factors.

Assumption 3. There exist constants c > 0, C <∞, and d ∈ (0, 1], such that

(a) E(eti) = 0, E |eti|4 ≤ C

(b)
∑T

t=1 |E
(
e′set
n

)
| ≤ C ∀s and

∑n
j=1 |E

( e′iej
T

)
| ≤ C ∀i

(c) for every (t,s), E ‖ 1√
n
[e′set − E(e′set)]‖4 ≤ C

(d) E ‖ 1√
nT

∑T
s=1 Fs[e

′
set − E(e′set)]‖2 ≤ C ∀t

(e) ψ1

(
e′e
T

)
= Op(1) and P

(
ψ[dn]

(
e′e
T

)
≥ c

)
= 1 for some d > 0.

Assumption 4. For any k, l < r:

(a) λ′·ket

n
1
2αk

= Op(1) ∀t

(b) λ′·ke
′Fl

n
1
2αkT

1
2

= Op(1).

Assumptions 3 and 4 concern the possibly correlated noise. Assumption 3 rules out that there
is too much dependence in the error terms and is standard in the literature (Bai 2003, Bai and Ng
2006). More primitive conditions can be provided that imply part (e) (see Onatski 2015, Moon
and Weidner 2017). The second part of Assumption 3 (e) ensures that at least a constant fraction
of outcomes have non-zero idiosyncratic variances. Assumption 4 is weaker than one that requires
a number of Central Limit Theorems to hold. With αk = 1 for k = 1, ..., r, it is implied by
Assumptions F2 and F3 in Bai (2003).

2.1 Defining the number of relevant factors

In standard factor models, the number of common factors is readily defined. In a model with local
factors, the definition of r is less clear. Since we allow for αk 6= 1 (and, in fact αk = 0), the
number of factors is no longer uniquely defined.

For instance, suppose there exists a factor Fr with λ1r, λ2r 6= 0, and λir = 0 otherwise. Thus,
the factor Fr affects only two outcomes (i = 1, 2). Under such a DGP, a model with r factors,
and a model with (r − 1) factors combined with some additional correlation between the error

2To explicitly write this down in terms of drifting sequences, denote the fraction of outcomes affected by factor Fl
by π(n)

l . Then, clearly π(n)
l = |Al|

n �
1√
n

.
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terms e1 and e2, will both satisfy Assumptions 1-4. We therefore treat r as an upper bound on the
number of “relevant” factors throughout this paper such that Assumptions 1-4 are satisfied, with
the understanding that some of the r factors may be too weak to be relevant in practice.

To make this precise, let r1 + r2 = r, where αk > τ for k = 1, . . . , r1 and αk ≤ τ for
k = r1 + 1, . . . , r for some fixed value of τ ∈ [0, 1). Thus, r1 is the number of factors affecting
proportionally more than nτ variables, while any additional factors are less pervasive. We can
rewrite the factor structure (2) as

X
(T×n)

= F
(T×r)

Λ′
(r×n)

+ e
(T×n)

= F s

(T×r1)
Λs′

(r1×n)
+ Fw

(T×r2)
Λw′

(r2×n)
+ e

(T×n)

= F s

(T×r1)
Λs′

(r1×n)
+ ẽ

(T×n)
,

where the weakest r2 factors are incorporated into the error term ẽ. This is effectively a factor
model with r1 factors, where ψ1(ẽẽ′/n) may no longer be bounded.

This brings up the important question of which factors are relevant. We answer this question in
Sections 3.1-3.2 based on both economic and statistical arguments. This will inform the choice of
τ and define r1, the number of relevant factors, which will be the target of estimation in Section 4.

3 Weak Asymptotics

We first show what the introduction of local factors implies for the empirical distribution of the
eigenvalues of the matrix X′X

T
. This is the quantity depicted in Figure 1 and often included in

applications to justify the use of a factor model.

Lemma 1. Under Assumptions 1 and 2:

ψk

(
ΛF ′FΛ′

T

)� nαk , k = 1, 2, . . . , r

= 0 k > r.

Proof. If k ≤ r:

ψk

(
ΛF ′FΛ′

T

)
= ψk(ΛΛ′) = ψk(Λ

′Λ)

=
n∑
i=1

λ2
ik =

∑
i∈Ak

λ2
ik +

∑
i 6∈Ak

λ2
ik � nαk +O(1)

� nαk ,
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where the equality in the second line follows from Assumption 2.
If k > r: the result immediately follows from the fact that rank(ΛF ′FΛ′) = r.

The properties of the eigenvalues of the matrix X′X
T

then follow:

Theorem 1. For any given factor k (k = 1, 2, . . . , r), under Assumptions 1-3:

ψk

(
X ′X

T

)� nαk for k = 1, 2...r

= Op(1) for k = r + 1, . . . , n.

Proof. By the singular value version of Weyl’s inequalities (Horn and Johnson 2012):

σk+l−1(A+B) ≤ σk(A) + σl(B) 1 ≤ k, l ≤ min(n, T ), k + l ≤ min(n, T ),

where σk(A) denotes the kth largest singular value of a matrixA. Therefore, for k = 1, 2, . . . , rmax:

σk(X) ≤ σk(FΛ′) + σ1(e).

Since σk(A) =
√
ψk(AA′) for any matrix A, it follows that√

ψk(XX ′) ≤
√
ψk(FΛ′ΛF ′) +

√
ψ1(ee′).

And we therefore conclude, using Lemma 1 and Assumption 3(e) respectively for the two eigen-
values on the RHS:

ψk

(
XX ′

T

)
≤ ψk

(
FΛ′ΛF ′

T

)
+ ψ1

(
ee′

T

)
+ 2

√
ψk

(
FΛ′ΛF ′

T

)√
ψ1

(
ee′

T

)
≤ C1n

αk +Op(1) +Op(n
1
2
αk) ≤ C2n

αk .

Similarly, again by Weyl’s inequalities:

σk(X − e) ≤ σk(X) + σ1(e)

⇒ σk(FΛ′) ≤ σk(X) + σ1(e)

⇒

√
ψk

(
FΛ′ΛF ′

T

)
≤

√
ψk

(
XX ′

T

)
+

√
ψ1

(
ee′

T

)

⇒

√
ψk

(
XX ′

T

)
≥
√
c1nαk −Op(1)

and we therefore also conclude that ψk(XX
′

T
) ≥ c2n

αk .
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Under a scenario with r strong factors (αk = 1 for all k = 1, 2, . . . , r), this reduces to the
standard result in the literature: the first r eigenvalues diverge at rate n (Connor and Korajczyk
1993, Bai and Ng 2002, Hallin and Liska 2007). We extend this result to allow for weaker factors
with the slower divergence rates of Theorem 1 for factors that affect only a subset of the observed
variables.3

Theorem 1 provides a possible explanation for the continuum of eigenvalues often observed,
as in Figure 1. While conventional factor models imply a large gap in the eigenvalue distribution,
the eigenvalues corresponding to local factors will fall into this gap.

Recall the earlier distinction of factors into two groups: F = [F1, . . . , Fr1 , Fr1+1, . . . , Fr] =

[F s, Fw], such that r = r1 + r2, αk > τ for k = 1, 2.., r1 and αk ≤ τ for k = r1 + 1, . . . , r for
some user specified threshold τ ∈ [0, 1]. To provide guidance on how to choose τ (which factors
are relevant), we next consider the following two questions:

1. When is a factor pervasive enough to be estimated consistently?

2. When is a factor pervasive enough to be of interest in some common economic models?

3.1 The Principal Component Estimator

We start with the first question and consider the standard estimator in the literature: estimation
of both the factors and their loadings is achieved through the principal component estimator (see
Stock and Watson 2002, Bai and Ng 2002, Bai 2003). Specifically, denoting the singular value
decomposition of 1√

T
X by UΣV ′, we obtain estimates F̂ for K factors as F̂ =

√
TU[1:K], and

Λ̂ = V[1:K]Σ[K,K], where M[1:K] denotes the leading K columns and M[K,K] the K × K matrix
consisting of the K leading columns and rows of a matrix M .

Define a (r ×K) matrix H = Λ′ΛF ′F̂
T
D̂−1
K , where D̂K is a diagonal matrix with the K largest

eigenvalues of X′X
T

on the main diagonal, and let H·k denote the kth column of H . We obtain the
following Lemma.

Lemma 2. Under Assumptions 1-4, with F̂ and H defined as above:

F̂tk −H ′·kFt = Op(n
1−2αk) +Op(n

1
2
α1−αk).

The proof for Lemma 2 can be found in Online Appendix B.1). We achieve convergence as
long as αk > 1/2. Further, in the case of r strong factors (αr = α1 = 1) and with K = r, the rates

3Theorem 1 still holds if we replace Assumption 2 with the high level assumption
∑n
i=1 λ

2
ik � nαk . The result

in Theorem 1 therefore extends to weak factors in general and does not need the sparsity pattern that is imposed by
Assumption 2.
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above reduce to
F̂t −H ′Ft = Op(

1√
n

).

This is in line with the literature (Bai 2003). Next, the orthogonality assumptions 1(b)-(c) imply
the following for the rotation matrix H .

Lemma 3. Under Assumptions 1-4, H·k = ιk +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk).

The proof for Lemma 3 can be found in Online Appendix B.1.4 In the case of r strong factors
(αr = α1 = 1), a similar result has been derived in Bai and Ng (2013). Combining Lemmata 2 and
3, we thus obtain the following:

Theorem 2. Under Assumptions 1-4,

F̂tk − Ftk = Op(n
1−2αk) +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk).

Proof. By Lemma 3: H·k = ιk +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk). Consequently, combining this with

Lemma 2:

F̂tk − Ftk = (F̂tk −H ′k·Ft) + (H ′k· − ι′k)Ft
= Op(n

1−2αk) +Op(n
1
2
α1−αk) +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk)

= Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) +Op(n

1−2αk).

This result may be of interest to a practitioner for two reasons. First, while PCA as a dimen-
sionality reduction technique is always feasible, Theorem 2 establishes a lower bound in terms of
factor strength for which we are able to prove consistency of the principal component estimator
(αk > 1

2
) under a factor model. Further, even for factors that are estimated consistently, it suggests

that the estimation of a factor becomes worse as its strength decreases (as documented in simula-
tions in Boivin and Ng 2006). The intuition is clear: as fewer cross sections carry a signal about
Fk, the precision of its estimate decreases. However, the fact that weaker factors tend to be esti-
mated with less precision seems to be largely unaccounted for in the current literature. For cases
in which factor estimates are used that correspond to weaker factors, Theorem 2 at least suggests
being cautious with respect to the standard errors of these estimates.

We also note that a similar result holds for the factor loadings, which will be important for our
results in Section 4:

4Here, and throughout the paper, we assume that the sign indeterminacy of F̂ is resolved by adding the normaliza-
tion that the diagonal elements of F̂ ′F are nonnegative.
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Theorem 3. Under Assumptions 1-4:

λ̂ik − λik = Ōp(n
1
4
α1− 1

2
αk) + Ōp(n

1
2
−αk).

Proof. By definition, with 1√
T
X = UΣV ′,

Λ̂′ = Σ[K,K]V
′

[1:K] = U ′[1:K]U[1:K]Σ[K,K]V
′

[1:K] = U ′[1:K]UΣV ′ =
1√
T
U ′[1:K]X =

F̂ ′X

T
.

Thus,

λ̂ik =
F̂ ′kXi

T
=

1

T
F̂ ′kFλi +

1

T
F̂ ′kei

= λik + (
F̂ ′kF

T
− ι′k)λi +

1

T
(F̂k − Fk)′ei +

1

T
F ′ei

= λik + (
F̂ ′kF

T
− ι′k)λi +

1

T
(F̂k − FH.k)

′ei +
1

T
(H.k − ιk)′F ′ei +

1

T
F ′ei

= λik +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) +Op(n

1−2αk),

where the last equality follows from Lemma 8 and Lemmata 3 and 10 in the Online Appendix, as
well as Assumption 4(b). Since also F̂ ′kXi

T
≤ 1

T
‖F̂‖‖Xi‖ = Op(1), this completes the proof.

Thus, we obtain convergence of the principal component estimator for both the factors and
the loadings as long as αk > 1/2. The following table provides an empirical test to assess the
adequacy of these asymptotic results in approximating finite sample properties. Two factors were
created, one strong (α1 = 1) and one weak (α2 < 1). The strength of the weak factor is varied with
α2 ∈ [0.25, 0.5, 0.75], and the correlation of the estimated factor F̂2 with its true counterpart is
depicted in Table 1. This correlation can be thought of as a measure of consistency of the principal
component estimator for the kth factor. The exact DGP can be found in Online Appendix A.1. The
numbers in Table 1 are in line with our theoretical findings: Theorem 2 suggests that the correlation
between F2 and F̂2 will approach 1 when α2 > .5. This corresponds to the third row in Table 1.
Additionally, we observe that the estimation error seems to dominate the signal when the factor
strength is below this threshold.

3.2 Which Factors Matter?

Aside from practical issues in estimating factors that affect only a subset of the cross sections, it is
also not clear which factors are of interest to a practitioner in the first place.

We next present two simplified economic models to illustrate that, in a model with local factors,

11



n 81 256 625 1296

|A2| = n1/4 0.067 0.050 0.041 0.040
|A2| = n1/2 0.109 0.099 0.089 0.079
|A2| = n3/4 0.754 0.951 0.976 0.984

Table 1: Average correlation between estimate F̂2 and truth F2 for differing factor strengths of local factor
as sample size increases. Data has one global factor F1 that affects all outcomes. Table based on 1000
repetitions. Detailed description of DGP in Online Appendix A.1.

the economically relevant factors are often also those that affect proportionally more than
√
n of

the cross sectional units (τ = 1/2). The first model builds on the Arbitrage Pricing Theory (APT)
of Ross (1976) and the second considers aggregate fluctuations in the economy.

3.2.1 Arbitrage Pricing Theory

Consider a vector of asset returns Rt, with the index j denoting an individual asset. We assume
that for a large enough number of factors r the excess returns Rt − E(Rt) follow a factor structure
that obeys Assumptions 1-4 with

Ri − E(Ri) = λiF + ei. (3)

Notably, we continue to allow for local factors with αk < 1, in line with the empirical finding
indicating that the largest eigenvalues of the sample covariance matrix of asset returns diverge at
differing rates (e.g. Trzcinka 1986).

In a model with local factors, it is natural to ask which of these factors are strong enough to
be priced. We are therefore interested in the number of factors APT dictates is needed such that
the mean returns E(Ri) are in the span of the factor loadings of those factors. Intuitively, this
boils down to the question of which factor risk is diversifiable. Exposure to factors that affect so
few outcomes (have a small enough αk) that well-diversified portfolios have negligible variance
stemming from those weaker factors should not be rewarded.

Assume that all efficient portfolios are well diversified.5 Then, we show formally in the Online
Appendix that APT pricing holds with respect to the factors affecting proportionally more than

√
n

of the assets (those factors with αk > 1/2). In other words, the mean returns are in the span of the
factor loadings of the K factors with αk > 1/2.

Instead of ruling out the existence of non-pervasive factors with αk < 1, our model allows for
the existence of local factors that affect only a small subset of assets (e.g. those in a particular

5Denoting portfolio weights by wi, with
∑n
i wi = 1, we formalize the term “well-diversified” by imposing a

bound on the sup-norm of the weights: |wi| ≤ o( 1√
n

) ∀i.
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industry). In such a model, Arbitrage Pricing Theory dictates that the relevant factors determining
the mean returns of the assets are those with αk > 1/2. Weaker, less pervasive factors with
αk ≤ 1/2 should not be priced. A more detailed discussion with a formal Proposition following
the arguments in Green and Hollifield (1992) can be found in Online Appendix B.3.

3.2.2 Aggregate Fluctuations in the Economy

There is an ongoing debate about the origins of fluctuations in the aggregate economy (e.g. Foerster
et al. 2011), since economy-wide shocks are often insufficient in explaining aggregate fluctuations
(Cochrane 1994). Gabaix (2011) provides conditions under which aggregate fluctuations can arise
in a model with heterogeneous firm sizes. Acemoglu et al. (2012) provides conditions under which
aggregate fluctuations can arise in a model with production networks with heterogeneity in cen-
trality. Here, we are interested in the conditions under which aggregate fluctuations can arise in a
model with sectoral shocks.

Consider a simple “Islands” economy with n firms. Firm i produces a quantity Sit of the
consumption good and firm-level growth rates have a factor structure for large enough r that obeys
Assumptions 1-4 with

∆Si,t+1

Sit
=
Si,t+1 − Sit

Sit
= λiFt+1 + εi,t+1. (4)

Intuitively, a firm’s growth rate is therefore a combination of shocks that may affect several firms
(e.g. economy-wide or industry shocks) and idiosyncratic shocks. However, we do not impose the
factors to be pervasive and likely λik = 0 for most firm-factor combinations.

In this stylized model, GDP growth is given by

∆Yt+1

Yt
=

1

Yt

n∑
i=1

∆Si,t+1 =
n∑
i=1

Sit
Yt
λiFt+1 +

n∑
i=1

Sit
Yt
εi,t+1.

With finite sized firms it is easy to show that the variance of GDP growth at time (t+1) conditional
on time t equals

V art

(
∆Yt+1

Yt

)
�

r∑
k=1

n2αk−2 +Op(
1

n
). (5)

By modeling sectoral shocks as local factors affecting the corresponding subset of firms, it
immediately follows from (5) that

√
n-convergence for the aggregate growth rate of the economy

fails if there are sectoral shocks affecting proportionally more than
√
n firms. In other words,

aggregate fluctuations can be attributed to sectors proportionally larger than
√
n firms.

13



This is in line with the granularity conditions derived in Gabaix (2011), who considers an
economy with heterogeneous firm sizes. Proposition 2 in Gabaix (2011) establishes that σGDP �

1√
n

only if the largest firm has a relative weight of at most Wn = O( 1√
n
). This corresponds to the

limit on sector size stated above. This is also in line with the results in Acemoglu et al. (2012).
There, an intersectoral network plays the same role as the firm size distribution in Gabaix (2011)
and the distribution of sectoral sizes in our paper – shocks that take more central positions in the
network have a disproportionate effect on aggregate output.

In order to understand the origins of aggregate fluctuations, the relevant sectors are therefore
those that consist of more than

√
n firms (αk > 1/2). A more detailed discussion of this model

can be found in Online Appendix B.4.

4 Determining the Number of Relevant Factors

The results in the previous section suggest that the relevant factors will usually be those with
αk > τ = 1/2. We next consider estimation of this number of relevant factors.

Existing estimators for the number of factors are usually derived from the distribution of eigen-
values of the matrix X′X

T
(or equivalently the singular values of 1√

T
X), and can be interpreted as

formalizing the heuristic approach based on a visual inspection of the scree plot, which dates back
to Cattell (1966). Crucially, these estimators require separability between the two groups of eigen-
values (large eigenvalues representing factor-related variation and small eigenvalues representing
idiosyncratic variation).

Theorem 1 established that, in the presence of local factors, the eigenvalues can no longer be
easily separated into two groups. This is illustrated in Figure 2a, which depicts the theoretical
rate of divergence for the kth eigenvalue if the corresponding factor has a pervasiveness αk. With
only a fixed number of outcomes affected by Fk (αk = 0), the corresponding eigenvalue remains
bounded. As the factor affects more covariates, the eigenvalue begins to diverge at an increasing
rate.

Rather than relying only on the eigenvalues, we propose that there is additional information in
the eigenvectors of X′X

T
. We show that these eigenvectors can be used to “tilt the eigenvalues” and

thereby reintroduce a gap between those corresponding to factors with αk > τ and those below
this threshold.

For intuition, consider the singular value decomposition of 1√
T
X = UΣV again. The right-

singular vectors of 1√
T
X , V , are the eigenvectors of X′X

T
. Denoting the first eigenvector (right-

singular vector) V1 by v, by construction
∑n

i=1 v
2
i = 1. Now consider the partial sum

∑n/2
i=1 v

2
i . If

the eigenvector is concentrated on its first n/2 entries, this sum is still equal to one. On the other
hand, if the entries in the eigenvector are evenly spread out,

∑n/2
i=1 v

2
i ≈ 0.5.
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Now consider a factor model with a single factor. The principal component estimator is con-
structed as λ̂ = σ1v, with σ1 denoting the largest singular value, and is therefore just a multiple
of the eigenvector v. Thus,

∑n
i λ̂

2
i = σ2

1 . Further, if all estimated loadings λ̂i are concentrated
on a small subset A,

∑
i∈A λ̂

2
i ≈ σ2

1 . On the other hand, if all n loadings are comparable in size,∑
i∈A λ̂

2
i << σ2

1 . Intuitively, measuring how concentrated the estimated loadings are on a subset
of outcomes therefore carries additional information for the pervasiveness of the corresponding
factor.

To derive this result formally, we introduce the following quantity:

Υ̂u
zk ≡ ψk

(
X ′X

T

)
Ŝuzk ≡ ψk

(
X ′X

T

)(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)u
, (6)

where, with some abuse of notation, the estimated squared loadings λ̂2
ik are sorted in decreasing

order, such that we take a partial sum over the z largest estimated loadings of the kth loading vector
in the second part.

With u = 0, the second part vanishes and Υ̂0
zk = ψk(

X′X
T

), such that Υ̂0
zk is simply equal to

the kth eigenvalue of X′X
T

. On the other hand, for u > 0, Ŝuzk 6= 1, and the second part enters.
Intuitively Ŝzk measures how concentrated the corresponding eigenvector is on its z largest entries.
The power u governs the relative weight on the eigenvalue versus the eigenvector. The behavior of
Υ̂u
zk is summarized in the following theorem.

Theorem 4. Under Assumptions 1-4, choose a threshold z = nτg(n), τ ∈ [0, 1], such that (i)

g(n) → ∞ and (ii) g(n)/nε → 0 for any ε > 0 as n → ∞. Then, for any given factor k ≤ rmax,

with u ∈ [0, 2]:

(a) If αk > τ :

Υ̂u
zk � n

1
2
u+(1− 1

2
u)αk (7)

(b) If max{1+τ
3
, α1+4τ

6
} < αk ≤ τ :

Υ̂u
zk � n(1+ 1

2
u)αk+( 1

2
−τ)ug(n)−u (8)

(c) If 0 < αk ≤ max{1+τ
3
, α1+4τ

6
}:

Υ̂u
zk � nαk for u = 0 (9)

Υ̂u
zk = Op(n

(1+ 1
2
u)αk+( 1

2
−τ)ug(n)−u) for u > 0 (10)
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(d) If αk = 0 or k > r:

Υ̂u
zk = Op(n

( 1
2
−τ)ug(n)−u). (11)

The proof of Theorem 4 can be found in Online Appendix B.2.
As Υ̂u

zk is the key quantity in what follows, we also present a corollary that simplifies the
notation and covers most cases before further discussion. We argued in Section 3 that the relevant
factors are usually those that affect proportionally more than

√
n of the outcomes. We will thus

omit the subscript z and simply write Υ̂u
zk = Υ̂u

k when z =
√
ng(n), corresponding to τ = 1/2, to

obtain the following corollary:

Corollary 1. Let z =
√
ng(n), such that (i) g(n) → ∞ and (ii) g(n)/nε → 0 for any ε > 0 as

n→∞. Then, under Assumptions 1-4, for any given factor k ≤ rmax and with u ∈ [0, 2]:

(a) If αk > 1
2
:

Υ̂u
k � n

1
2
u+(1− 1

2
u)αk

(b) If αk ≤ 1
2
:

Υ̂u
k � nαk for u = 0

Υ̂u
k = Op

(
n(1+ 1

2
u)αkg(n)−u

)
for u > 0

(c) If αk = 0 or k > r:

Υ̂u
k = Op(g(n)−u).

The theoretical rates of Corollary 1 are illustrated graphically in Figure 2b, which depicts the
behavior of Υ̂u

k as a function of factor pervasiveness αk and the parameter u.
Moving from right to left in Figure 2b, the number of covariates affected by the factor increases,

with nαk outcomes influenced by the factor. On the right, only a fixed number of covariates are
affected (αk = 0), while the left of the figure corresponds to a scenario in which the factor is
relevant for all covariates (αk = 1). With u = 0, the front of Figure 2b is identical to Figure 2a
(because Υ̂0

k = ψk(
X′X
T

)). Moving from front to back, u increases from 0 to 2 (thereby increasing
the importance of the eigenvector).

The key insight is that setting u > 0 induces a steep region in the statistic Υ̂u
k around αk = 1/2,

thereby helping to discriminate between factors above and below this threshold. While the flat
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(a) Theoretical divergence rate of Υ̂0
zk = ψk(X

′X
T ) as

a function of factor strength (αk).
(b) Theoretical divergence rate of Υ̂u

zk as a function of
both factor strength (αk) and tuning parameter u, which
governs the relative weight of eigenvalue and eigenvec-
tor, for z =

√
n
√
loglog(n)

Figure 2: Illustration of theoretical divergence rates for key quantities. Figure created with n = 500.

slope around αk = .5 in Figure 2a suggests that existing estimators, using the eigenvalues of X′X
T

(Υ̂0
k), will have low discriminatory power in distinguishing factors above and below this threshold,

Figure 2b suggests that an estimator based on Υ̂2
k will perform well in distinguishing relevant

factors with αk > 1/2 from those below this threshold.
For example, let αk ∈ (0.5, 1]. Then, Υ̂0

k � nαk , while Υ̂2
k � n. Thus, Υ̂2

k does not depend
on the factor strength for αk ∈ (.5, 1] and can distinguish local factors with αk > 1/2 from the
weakly correlated noise at the same rate as strong factors with αk = 1.

On the other hand, if αk = 1, Υ̂u
k � n, regardless of the choice of u, and if αk = 0 (or k > r),

Υ̂0
k = Op(1) and Υ̂u

k = Op(g(n)−u) if u > 0. Thus, with only strong factors, the divergence rate
of Υ̂u

k is invariant to the choice of u (up to the very slowly diverging sequence g(n)).6

4.1 Proposed Estimators for the Number of Relevant Factors

Analogous to existing estimators in the literature, but based on Υ̂2
k instead of Υ̂0

k, we consider the
following estimators:

1. An information criteria-like threshold (cf. Bai and Ng 2002, Kapetanios 2004)

2. The difference between two subsequent values (cf. Onatski 2010, Kapetanios 2010)

3. The ratio of two subsequent values (cf. Ahn and Horenstein 2013)
6In practice, we suggest using g(n) = 0.7

√
loglog(n), which is approximately equal to one for most relevant

sample sizes, and used throughout our simulations unless noted otherwise.
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4.1.1 Thresholding Estimators

We start by considering one of the estimators introduced in Bai and Ng (2002). We will denote by
EC the number k that minimizes the criterion function

ΓBN(k) = V (k) + kσ̂2

(
n+ T

nT

)
log

(
nT

n+ T

)
,

where

V (k) = min
Λ,Fk

(NT )−1

n∑
i=1

T∑
t=1

(Xti − λkiF k
t )2 =

1

nT

n∑
j=k+1

ψj(X
′X), (12)

and σ̂2 is an estimator of the unconditional variance of the idiosyncratic error. The second equality
in (12) follows from the fact that V (k) is the best approximation of X of rank k. We can alterna-
tively represent σ̂2 as V (rmax) = 1

n

∑n
j=rmax

ψj

(
X′X
T

)
for a fixed rmax > r. Unifying notation in

terms of the eigenvalues and using c = n/T , we can rewrite their estimator as:

BN = arg min
0≤k≤rmax

V (k) + kσ̂2

(
n+ T

nT

)
log

(
nT

n+ T

)
= arg min

0≤k≤rmax

1

n

n∑
l=k+1

ψl

(
X ′X

T

)
+ kσ̂2

(
c+ 1

n

)
log

(
n

c+ 1

)
= max

0≤k≤rmax
k s.t. ψk

(
X ′X

T

)
> σ̂2(c+ 1) log(

n

c+ 1
). (13)

Therefore, BN is equivalent to a thresholding on the eigenvalue distribution in our setting
(also see the discussion in Bai and Ng (2019)).7 Instead of deriving the estimator solely from the
empirical distribution of the eigenvalues, we will consider the following estimator:

FC = max
0≤k≤rmax

k s.t. Υ̂2
k > σ̂2 n

h(n)
, (14)

where the function h(n) is such that (i) h(n)→∞ and (ii) h(n)/g(n)2 → 0 as n→∞, and g(n)

fulfills the conditions stated in Theorem 4. For example, h(n) = g(n) is a valid choice.

Theorem 5. Under Assumptions 1-4, FC is a consistent estimator for the number of factors r1

such that αk > 1/2 for k = 1, . . . , r1 and αk ≤ 1/2 for k > r1.

Proof. By Theorem 1 and Weyl’s inequality, σ̂2 is bounded both above and below. Thus all rate
conditions on h(n) also hold for 1

σ̂2h(n). We first show that limn→∞ P (Υ̂2
k > σ̂2 n

h(n)
) = 1 for

7Throughout, we add a ”mock eigenvalue” Υ̂0
0 = Υ̂2

0 = σ̂2n to allow for r1 = 0. It is easy to show that our
consistency results below are unaffected by its conclusion. Further, in line with Ahn and Horenstein (2013), our
simulations suggest that our results are not sensitive to the exact choice of this mock eigenvalue.
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k = 1, . . . , r1. In this case, αk > 1/2. By Theorem 4, Υ̂2
k � n. Thus, n = Op(Υ̂

2
k). Combining

this with σ̂2

h(n)
= op(1) we obtain σ̂2 n

h(n)
= op(Υ̂

2
k) and thus

limn→∞P

∣∣∣∣∣ σ̂
2 n
h(n)

Υ̂2
k

∣∣∣∣∣ ≥ ε

 = 0

for any ε > 0. Letting ε = 1 and rearranging, it follows that

limn→∞P

(
Υ̂2
k ≤ σ̂2 n

h(n)

)
= 0 for k = 1, . . . , r1.

Next, consider the case αk ≤ 1/2. Then Υ̂2
k = Op(

n2αk

g(n)2
) by Theorem 4. But Op(n

2αk/g(n)2) =

Op(n/g(n)2) = op(σ̂
2n/h(n)) and thus for any ε > 0,

limn→∞P

∣∣∣∣∣ Υ̂2
k

σ̂2 n
h(n)

∣∣∣∣∣ ≥ ε

 = 0.

Letting ε = 1, this gives

limn→∞P

(
Υ̂2
k ≥ σ̂2 n

h(n)

)
= 0 for k > r1,

completing the proof.

While FC is therefore a consistent estimate for r1, we next derive the properties of the existing
estimator BN in a setting with local factors. The implicit target of estimation using the BN
criterion of Bai and Ng (2002) will be different than the cutoff argued for in this paper.

Corollary 2. Under Assumptions 1-4 BN is a consistent estimator for the number of factors r∗

such that αk > 0 for k = 1, . . . , r∗ and αk = 0 for k > r∗.

It is therefore clear that BN will not be a consistent estimator for r1, and will tend to overesti-
mate the number of relevant factors.

However, we can also consider an analogous estimator to BN , based on just the eigenvalues,
that is designed to estimate the number of factors with αk > .5:

BN√n = max
0≤k≤rmax

k s.t. ψk

(
X ′X

T

)
> σ̂2(c+ 1)

√
n

c+ 1
g(n). (15)

It is then easy to show that:
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Corollary 3. Under Assumptions 1-4 BN√n is a consistent estimator for the number of factors r1

such that αk > 1/2 for k = 1, . . . , r1 and αk ≤ 1/2 for k > r1.

Given the equivalence established in (13), the proofs of Corollaries 2 and 3 follow the same
arguments as the proof of Theorem 5 and are therefore omitted. While this section establishes that
both BN√n and FC are consistent estimators for r1, recall the discussion surrounding Figure 2b.
Based on the steeper slope of Υ̂2

k around the chosen threshold (
√
n), FC is expected to perform

better in finite samples.

4.1.2 Difference Estimators

Instead of choosing a cutoff value, Onatski (2010) establishes that the eigenvalues of the idiosyn-
cratic errors cluster together, while the r eigenvalues corresponding to factors will remain sepa-
rated. Based on this, one can construct an estimator based on the difference between two sub-
sequent eigenvalues. Starting from rmax and successively looking at the difference between two
subsequent eigenvalues in decreasing order, the estimator yields r̂ = AO, the first number at which
this difference becomes larger than some threshold Q:8

AO = max
0≤k≤rmax

k s.t. ψk(
X ′X

T
)− ψk+1(

X ′X

T
) ≥ Q = max

0≤k≤rmax
k s.t. Υ̂0

k − Υ̂0
k+1 ≥ Q.

Onatski (2010) considers any factors strong enough to be included in the model as soon as their
cumulative effects grow with the sample size: the target of estimation r∗ is defined as the number
of factors with limn→∞‖Ak‖ = ∞. As discussed in previous sections, there are both theoretical
and empirical reasons why a practitioner may conclude that some of these factors are too weak to
be included in the model. Instead, an estimator for the number of relevant factors could take the
form

FD = max
0≤k≤rmax

k s.t. Υ̂2
k − Υ̂2

k+1 ≥
n

h(n)
,

where h(n) is a function such that (i) h(n) → ∞ and (ii) h(n)/g(n)2 → 0 as n → ∞, and g(n)

fulfills the conditions stated in Theorem 4.

Theorem 6. Under Assumptions 1-4, FD is a consistent estimator for the number of factors r1

such that αk > 1/2 for k = 1, . . . , r1 and αk ≤ 1/2 for k > r1.

Proof. First note that, because Υ̂2
k = Op(n

2αk/g(n)2) = op(
n

h(n)
) for any k with αk ≤ 1/2,

(Υ̂2
k − Υ̂2

k+1) = op(
n

h(n)
) for k > r1.

8Under more restrictive assumptions on the error terms, Onatski (2010) proposes an appealing way to calibrate the
tuning parameter Q, exploiting the shape of the eigenvalue distribution of the idiosyncratic noise at their edge, that
unfortunately is no longer valid in the setup of this paper.
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Next consider k = r1. By Theorem 4, if αk > .5, limn→∞P
(

Υ̂2
r1
> Q1

n
h(n)

)
= 1 and, also by

Theorem 4, limn→∞P
(

Υ̂2
r1+1 < Q2

n
h(n)

)
= 1, for any finite constants Q1, Q2 > 0. Choosing Q1

and Q2 such that Q1 −Q2 = 1 gives

limn→∞P

(
(Υ̂2

r − Υ̂2
r+1) >

n

h(n)

)
= 1.

4.1.3 Ratio Estimators

Another estimator that has been introduced to the literature and shown to perform well is based on
the ratio of two subsequent eigenvalues following Ahn and Horenstein (2013):

AH = arg max
0≤k≤rmax

ψk(
X′X
T

)

ψk+1(X
′X
T

)
= arg max

1≤k≤rmax

Υ̂0
k

Υ̂0
k+1

.

Assumption 5. αk > 1
2

for k = 1, . . . , r1 and αk = 0 for k = r1 + 1, . . . , rmax.

An advantage of the ratio estimator is that it is less dependent on any tuning parameter. Be-
cause the ratio estimator explicitly relies on a large gap in the eigenvalue distribution, we require
an additional assumption of such a gap in Assumption 5 to establish consistency of ratio-based
estimators below. Assumption 5 rules out any factors affecting an increasing number of covariates
unless the number of affected covariates increases at a rate faster than

√
n. This assumption is

somewhat restrictive, but still less restrictive than the setup of Ahn and Horenstein (2013), who
impose |Ak| � n for k = 1, . . . , r. We expect that setting u > 0 should again improve the perfor-
mance of this estimator in the presence of local factors and, in line with the ER estimator above,
suggest a similar estimator based on the quantity Υ̂2

k:

FR = arg max
0≤k≤rmax

Υ̂2
k

Υ̂2
k+1

.

Theorem 7. Under Assumptions 1-5, FR is a consistent estimator for the number of factors r1

such that αk > 1/2 for k = 1, . . . , r1 and αk ≤ 1/2 for k > r1.

Proof. First consider k = r1 + 1, . . . , rmax. By Theorem 4, Υ̂2
k = Op(

1
g(n)2

) and thus for every

c1 > 0, limn→∞P
(

Υ̂2
k ≥ c1

)
= 0. Further, by Lemma 12 in the Online Appendix there exists a

constant c2 > 0, such that limn→∞P
(
nΥ̂2

k∗ ≥ c2

)
= 1 for k∗ = r1 + 1, . . . , rmax. Then, for any
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k = r1 + 1, . . . , rmax, any finite c > 0, setting c1 = cc2 yields

limn→∞P (
Υ̂2
k

Υ̂2
k+1

> cn) = limn→∞

[
P (

Υ̂2
k

Υ̂2
k+1

> cn|Υ̂2
k+1 <

c2

n
)P

(
Υ̂2
k+1 <

c2

n

)
+ P (

Υ̂2
k

Υ̂2
k+1

> cn|Υ̂2
k+1 ≥

c2

n
)P

(
Υ̂2
k+1 ≥

c2

n

)]
= limn→∞P (

Υ̂2
k

Υ̂2
k+1

> cn|Υ̂2
k+1 ≥

c2

n
) + 0 = limn→∞P (Υ̂2

k > cnΥ̂2
k+1)

≤ limn→∞P (Υ̂2
k > cc2) = limn→∞P (Υ̂2

k > c1) = 0.

Next, consider k = r1. By Assumption 5, αk > 1/2 and there exists a finite q1 > 0 such that
limn→∞P

(
Υ̂2
r1
> q1n

)
= 1. Using Assumption 5 again, Υ̂2

r1+1 = Op(
1

g(n)2
) and thus for every

q2 > 0, P
(

Υ̂2
r1+1 ≥ q2

)
= 0. Then, for any q > 0 and setting q2 = q1/q:

limn→∞P

(
Υ̂2
r1

Υ̂2
r1+1

> qn

)
= limn→∞

[
P

(
Υ̂2
r1

Υ̂2
r1+1

> qn|Υ̂2
r1+1 < q2

)
P
(

Υ̂2
r1+1 < q2

)
+ P

(
Υ̂2
r1

Υ̂2
r1+1

> qn|Υ̂2
r1+1 ≥ q2

)
P
(

Υ̂2
r1+1 ≥ q2

)]

= limn→∞

P ( Υ̂2
r1

Υ̂2
r1+1

> qn|Υ̂2
r1+1 < q2

)
+ 0


≥ limn→∞P (Υ̂2

r1
> q2qn) = limn→∞P (Υ̂2

r1
> q1n) = 1.

Finally, consider k = 1, . . . , r1 − 1. We note that in that case we already established that there
exists a finite q1 > 0 such that limn→∞P

(
Υ̂2
k+1 > q1n

)
= 1. It then immediately follows that,

for any c3 > 0,

limn→∞P

(
Υ̂2
k

Υ̂2
k+1

> c3n

)
= 0.

Corollary 4. Under Assumptions 1-5, AH is a consistent estimator for the number of factors r1.

The proof largely follows the same arguments as those in the proof of Theorem 7 and is there-
fore relegated to Online Appendix B.2.
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(a) Estimated Υ̂u
1 (b) Estimated Ŝu1

Figure 3: Empirical behavior of key quantities in simple DGP. Depicted are Υ̂u
1 = ψ1(X

′X
T )Ŝu1 and Ŝu1 as a

function of both factor strength α and tuning parameter u, which governs the relative weight of eigenvalue
and eigenvector. Data simulated with single factor of varying strength (|A| = nα), z =

√
n
√
loglog(n),

and n = 300, T = 500. Figure depicts averages based on 500 simulations.

5 Simulations

We next present simulation evidence to assess the adequacy of our asymptotic approximations in
finite sample. Throughout, we fix g(n) = 0.7

√
loglog(n).9

We start by depicting the empirical analog to Figure 2b for a simple DGP in Figure 3. The
simulated data has a single factor F1

i.i.d.∼ N(0, 1), with T = 500 and n = 300. All loadings are 1
on a random subset of covariates with cardinality |A| = nα and 0 everywhere else. Error terms uit
are i.i.d. from a standard normal distribution, and each variable Xi is centered and divided by its
standard deviation. In line with Figure 2b, we then vary α from 0 to 1 and u from 0 to 2. Figure
3a depicts the average value of Υ̂u

1 across 500 simulations. Note the close resemblance in shape to
Figure 2b. As u increases, a steep increase in Υ̂u

1 emerges around τ = .5. We take Figure 3a as
an encouraging sign that the finite sample behavior of Υ̂u

1 is well-approximated by the asymptotic
theory of Section 3 at least in this simple setting.

To provide further intuition for the shape of Figure 3a, Figure 3b depicts Ŝu1 (the eigenvector
component of Υ̂u

k). We note that the measure of concentration for the eigenvector, Ŝ2
1 , takes its

highest value at α1 = .5.
We next consider more realistic settings as they might be observed in practice and consider a

9Note that g(n) clearly fulfills the two criteria stated in Theorem 4: It grows with n, but at a very slow rate and is
dominated by nε for any ε > 0. Further, in practice, g(n) = 0.7

√
loglog(n) ≈ 1 for most relevant sample sizes. This

recommendation is therefore generic. We show in Online Appendix A.3 that our results are robust across different
values of a if we set g(n) = a

√
loglog(n).
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panel with
X

(500×300)
= F

(500×6)
Λ′

(6×300)

+ G
(500×3)

Λw′

(3×300)

+
√
θ e

(500×300)
,

where (T, n) = (500, 300) falls within the range of dimensions usually considered in the literature
and will be varied later on. The variables exhibit a factor structure with 6 relevant factors Fk, k =

1, 2...., 6, drawn from a standard normal distribution. The 500 × 6 loading matrix Λ is created by
filling random subsets of its columns with (1 + ηik), where ηik is drawn from a standard normal.
These subsets will be of varying size and dictate which variables are affected by the correspond-
ing factor, with the sequence of group sizes given by {|Ak|}6

k=1 = {n, n.85, n.75, n2/3, n2/3, n.6}
rounded to the nearest integer for the 6 factors. All other entries in Λ are zero. Note that this im-
plies that the orthogonality condition in Assumption 1(b) is in fact violated to better approximate
a factor structure as it may occur in practice. The degree of this violation is depicted in Online
Appendix Figure 1.

There are three additional factors – G1, G2, G3 – also drawn from a standard normal, but which
affect too few outcomes to be considered relevant. Their loading matrix Λw has entries (1 + ηi),
where ηi is drawn from a standard normal on random subsets of its columns with cardinalities
n1/3, n1/4 and log(n), again rounded to the nearest integer. All remaining entries are zero. Thus,
in this DGP, r1 = 6. For the idiosyncratic part, we allow for both cross-sectional and intertemporal
correlation. We model the errors as

eti = ρet−1,i + (1− ρ2)1/2vti

vti = βvt,i−1 + (1− β2)1/2uti, uti
i.i.d.∼ N(0, 1),

with baseline parameter values of (ρ, β) = (0.3, 0.1) as in Onatski (2010). The parameter θ varies
the signal-to-noise ratio and we set θ = 1.5 in our baseline model. The factor structure and
signal-to-noise ratio of our baseline DGP are designed to closely reproduce the scree plot in the
macroeconomic application (see Figure 1 in the introduction).

Figure 4 depicts the behavior of both Υ̂u
k , u ∈ {0, 2} and Ŝ2

k in simulated data from the base-
line DGP. The bold line depicts the average and the dashed lines depict the pointwise 5th and 95th
percentile of the respective quantities. As expected, the presence of local factors of varying perva-
siveness means that the eigenvalues decrease gradually with no clear gap. On the other hand, we
observe a jump at k = 6 when u = 2. The jump is due to the behavior of Suk , depicted in Figure 4b.
According to this measure, the eigenvectors corresponding to the local factors F2 to F6 are indeed
more concentrated on a subset of its entries.

We next depict the ratios and differences of subsequent values of Υ̂u
k in Figure 5. Consider an

estimator constructed as the maximum of subsequent ratios of Υ̂u
k , which are depicted in Figure 5a.

24



0 1 2 3 4 5 6 7 8 9 10

k

0

20

40

60

80

100

120

140

160

180

u=0
u=2

(a) Empirical distribution of Υ̂u
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(b) Empirical distribution of Ŝ2
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Figure 4: Illustration of key quantities in a simulated dataset. Solid line depicts average across 1000
realizations. Dashed lines illustrate 5th and 95th quantile. Data generated by baseline DGP, with (n, T ) =
(300, 500), (ρ, β) = (0.3, 0.1), r1 = 6, θ = 1.5.

In contrast to an estimator derived solely from the eigenvalues of X′X
T

(AH), which suggests the
presence of a single factor based on the average depicted here, incorporating the eigenvectors by
setting u = 2 (FR) clearly yields an estimate of r̂ = 6. For an estimator based on the differences
(Figure 5b) it is more difficult to gauge what the estimator would select from the picture, but we
similarly observe a larger jump at k = 6 as the tuning parameter u increases.
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(a) Ratio Υ̂u
k/Υ̂

u
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(b) Difference Υ̂u
k − Υ̂u
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Figure 5: Depicted are averages across 1000 replications in a simulated dataset. Data generated by baseline
DGP, with (n, T ) = (300, 500), (ρ, β) = (0.3, 0.1), θ = 1.5, r1 = 6.

We will next explore the performance of the various estimators from Section 4.1 for varying
amounts of correlation in the error terms, signal-to-noise ratios, and sample sizes. The estimators
we consider are repeated in Table 2 for reference.

Figures 6 - 7 depict the performance of various estimators for the number of factors as the
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Estimator Formula Reference

AH arg max0≤k≤rmax Υ̂0
k/Υ̂

0
k+1 Ahn and Horenstein (2013)

FR arg max0≤k≤rmax Υ̂2
k/Υ̂

2
k+1

BN max0≤k≤rmax k s.t. Υ̂0
k > σ̂2(c+ 1) log( n

c+1
) Bai and Ng (2002)

FC max0≤k≤rmax k s.t. Υ̂2
k > σ̂2 n

0.1
√
loglog(n)

BN√n max0≤k≤rmax k s.t. Υ̂0
k > σ̂2(c+ 1)

√
n
c+1

g(n)

AO max0≤k≤rmax k s.t. Υ̂0
k − Υ̂0

k+1 ≥ Q} Onatski (2010)

Table 2: Definitions of the six estimators considered throughout. For all estimators we set rmax = 15
and g(n) = 0.7

√
loglog(n) throughout our simulations. Note that g(n) = 0.7

√
loglog(n) ≈ 1 for most

relevant sample sizes. We show in Online Appendix A.3 that our results are robust across different values
of a for g(n) = a

√
loglog(n).

correlation in the idiosyncratic noise increases. In these figures, we vary the dependence structure
of the error term along a two dimensional grid of (ρ, β), altering both the amount of autocorrelation
and cross-sectional dependence. For the FC estimator, we need to prespecify a threshold function
and use h(n) = 0.1

√
loglog(n) throughout. However, we find that, in line with the literature (e.g.

Alessi et al. (2010)), the estimated number of factors can be sensitive to the choice of h(n).
Figure 6 depicts the percentage of simulations in which an estimator correctly estimates the

number of relevant factors to be 6. Figure 7 depicts the average number of factors an estimator
yields across simulations. In both figures, panel (a) uses the thresholding estimator based on Υ̂0

k

(BN ) to estimate the number of factors. Panel (b) uses the thresholding estimator based on Υ̂2
k

(FC). Panel (c) uses the maximum ratio of two subsequent values of Υ0
k = ψk(

X′X
T

) (AH) and
panel (d) uses the maximum ratio of two subsequent values of Υ2

k (FR). Both panels (a) and
(b), and (c) and (d) are therefore directly comparable to each other: panels (a) and (c) depict the
results of the existing estimators based on the eigenvalues Υ0

k, while panels (b) and (d) depict the
corresponding estimators based on Υ2

k. Panel (e) depicts the estimated number of factors using
the AO estimator of Onatski (2010), while panel (f) depicts the alternative thresholding estimator
based on the eigenvalues BN√n.

Under an exact factor structure, with (ρ, β) = (0, 0), we see from Figure 6 that only the two
estimators incorporating the additional information in the eigenvectors (Figures 6b and 6d) are able
to identify the number of relevant factors reliably. They are also more robust to the introduction of
dependence in the errors. They are on average correct in the simple case of no correlation in the
error terms and remain correct for modest levels of cross-sectional and intertemporal correlation.
In particular, when comparing panels (a) and (c) with panels (b) and (d), where the estimators are
directly comparable, we observe a clear benefit from setting u > 0. Based on Figures 6 and 7, we
conclude that the FR estimator, based on the ratio of subsequent values of Υ̂2

k, performs best across

26



(a) Thresholding based on Υ̂0
k (BN ) (b) Thresholding based on Υ̂2

k (FC)

(c) Maximum ratio of two subsequent values of Υ̂0
k

as in Ahn and Horenstein (2013) (AH)
(d) Maximum ratio of two subsequent values of Υ̂2

k

(FR)

(e) Difference of two subsequent eigenvalues as in
Onatski (2010) (AO) (f) Thresholding based on Υ̂0

k (BN√n)

Figure 6: Percentage of simulations correctly estimating the number of “relevant” factors r1 as both cross-
sectional and intertemporal correlation is varied along a grid of (ρ, β). Data generated by baseline DGP,
with (n, T ) = (300, 500), θ = 1.5, and r1 = 6. Figure based on 500 replications.
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(a) Thresholding based on Υ̂0
k (BN ) (b) Thresholding based on Υ̂2

k (FC)

(c) Maximum ratio of two subsequent values of Υ̂0
k

as in Ahn and Horenstein (2013) (AH)
(d) Maximum ratio of two subsequent values of Υ̂2

k

(FR)

(e) Difference of two subsequent eigenvalues as in
Onatski (2010) (AO) (f) Thresholding based on Υ̂0

k (BN√n)

Figure 7: Average estimate for number of factors as both cross-sectional and intertemporal correlation is
varied along a grid of (ρ, β). Data generated by baseline DGP, with (n, T ) = (300, 500), θ = 1.5, and
r1 = 6. Figure based on 500 replications.
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Figure 8: Empirical behavior of estimators as the relative variance of idiosyncratic noise increases by
varying θ. Data generated by baseline DGP, with (n, T ) = (300, 500), (ρ, β) = (0.3, 0.1), and r1 = 6.
Figure based on 500 replications.

the parameter space. Further, Onatski (2010) argues that the parameter pair (ρ, β) = (0.3, 0.1)

describes the data well in many financial applications. At those parameter values, the FC and FR
estimators clearly perform best. Specifically, on average the FR estimator yields an estimate of
5.74 factors, while the best performing existing estimator based on the eigenvalues (AO) yields
4.81 factors on average.

Fixing the correlation structure in the errors to (ρ, β) = (0.3, 0.1), Figure 8 depicts the sen-
sitivity of the estimators to the amount of noise in the data by varying θ. Estimators using the
information inherent in the eigenvectors remain correct for a larger range of θ compared to their
counterparts derived solely from the empirical eigenvalues. The FR estimator performs best in
this dimension.

For the final set of simulations we vary both the cross-sectional dimension as the well as the
time horizon of the data. Table 3 depicts the results. Each entry in Table 3 consists of two numbers
r̂/%, where r̂ is the average number of estimated factors, and % is the percentage correctly classi-
fying r = 6. In small samples all estimators perform poorly. While the ratio- and difference-based
estimators tend to underestimate the true number of factors, both estimators based on thresholding
the eigenvalues tend to overestimate the number of factors in small samples. Again comparingBN
andAH directly with FC and FR, the previous patterns are confirmed: Setting u > 0 significantly
improves the performance of the estimator.

In Online Appendix A.4, we repeat the analysis of this section with an alternative DGP that
has a strong factor structure. In particular, we use the same baseline DGP as in this section but
set λik = 1 + ηik, ηi ∼ N(0, 1), for every entry in Λ and exclude the very weak factors G. Thus

29



n T ER TR PC PC√n TC ED

100 100 1.06 / 0.00 1.82 / 0.00 15 / 0.00 9.78 / 0.00 8.94 / 0.00 1.42 / 0.00
100 150 1.04 / 0.00 1.64 / 0.02 15 / 0.00 7.32 / 0.10 6.96 / 0.30 1.72 / 0.00
150 100 1 / 0.00 1.92 / 0.00 15 / 0.00 8.66 / 0.00 10.2 / 0.00 1.62 / 0.00
150 250 1.02 / 0.00 2.4 / 0.04 15 / 0.00 4.04 / 0.02 5.66 / 0.54 2.06 / 0.02
150 500 1.02 / 0.00 3.8 / 0.24 14.6 / 0.00 3.54 / 0.00 5.36 / 0.42 3.1 / 0.12
300 250 1 / 0.00 4.78 / 0.24 15 / 0.00 3.08 / 0.00 5.68 / 0.46 2.36 / 0.00
300 500 1 / 0.00 5.56 / 0.78 15 / 0.00 2.94 / 0.00 5.86 / 0.86 4.66 / 0.50
300 750 1 / 0.00 5.96 / 0.96 13 / 0.00 3.04 / 0.00 5.96 / 0.96 5.74 / 0.86
500 250 1 / 0.00 4.5 / 0.16 15 / 0.00 2.88 / 0.00 5.9 / 0.54 2.86 / 0.02
500 500 1 / 0.00 5.98 / 0.98 15 / 0.00 2.86 / 0.00 5.98 / 0.98 5.22 / 0.66
500 750 1 / 0.00 5.98 / 0.98 14.1 / 0.00 2.9 / 0.00 5.98 / 0.98 5.94 / 0.94

1000 1000 1 / 0.00 6 / 1.00 13.3 / 0.00 2.88 / 0.00 6 / 1.00 6 / 1.00

Table 3: Table depicts the performance of different estimators as the sample size is varied along a grid of
(n, T ). Data generated by baseline DGP, with (ρ, β) = (0.3, 0.1), θ = 1.5, and r1 = 6. Each entry depicts
a combination r̂/%, where r̂ is the average number of estimated factors, and % is the percentage correctly
classifying r1 = 6. In each row, the highest percentage is highlighted. Table based on 500 replications.

αk = 1 for k = 1, . . . , 6 as is usually the case in the literature. We find that, under a strong
factor structure, estimators incorporating the partial sums in the eigenvector generally perform no
worse than existing estimators, although the AO estimator of Onatski (2010) tends to perform
particularly well in smaller samples. We therefore conclude that raising Υ̂u

k to a power u > 0 has
little implication if all factors are strong, but yields significant performance gains if local factors
are present in the data.

Based on these findings, our recommendation for estimating the number of relevant factors
is to use the FR estimator (which is also less dependent on tuning parameters compared to FC,
which require a researcher to prespecify a threshold function through the choice of h(n)) with its
implementation outlined as follows:

1. Obtain preliminary estimates F̂ , Λ̂ using the first rmax principal components, where rmax is
large enough such that ψk(X

′X
T

) is bounded for k > rmax.

2. With z = 0.7
√
log(log(n))

√
n, rounded to the nearest integer, compute

Υ̂2
zk ≡ ψk(

X ′X

T
)Ŝuzk ≡ ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)2

.
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3. Set

r̂ = FR = arg max
0≤k≤rmax

Υ̂2
k

Υ̂2
k+1

.

6 The number of relevant factors for the US Economy

We next apply our estimators to one of the standard datasets in the factor model literature in
macroeconomics (see, e.g. Stock and Watson 2005 and De Mol et al. 2008). The data contains
quarterly observations of 207 macroeconomic variables, primarily for the US economy. In particu-
lar, we use the vintage of the dataset used in the handbook chapter of Stock and Watson (2016). It
includes real activity variables, prices, productivity and earnings, interest rates and spreads, money
and credit, asset and wealth variables, oil market variables, and indicators representing interna-
tional activity. The data ranges from 1959Q1-2014Q4.10

The dataset consists of series at multiple levels of aggregation. We only use the disaggregated
time series in our estimation and, for simplicity, eliminate all series with missing observations.
This leaves 94 time series.

We start by depicting some of the key quantities introduced in this paper and provide some
intuitive discussion of those. Figure 9 depicts the behavior of both Υ̂u

k , u ∈ {0, 1, 2} and Ŝ2
k in

the data (setting u = 0 reproduces Figure 1 from the introduction). If Υ̂u
k corresponds to a local

factor with a strong effect on a subset of outcomes, it will be scaled up if u > 0. This is illustrated
in Figure 9b, which suggests the 3rd, 5th, and 6th eigenvector are particularly concentrated on its
largest loadings11. As a consequence, a visual inspection of Figure 9a indicates a drop-off at k = 3

and k = 6, suggesting the presence of either 3 or 6 factors, depending on the minimum strength of
the factors a practitioner would like to keep in her model.

Table 4 summarizes the results of the 6 estimators considered throughout this paper. While
both estimators derived from Υ̂2

k suggest the presence of 6 factors in the data, the three existing
estimators from the literature (AH , BN , AO) find evidence for 1, 8, and 3 factors respectively.

To address the problem that the estimated number of factors is sensitive to the choice of cutoff
under existing thresholding estimators, Alessi et al. (2010) suggest varying this threshold and ex-

10All variables have been transformed to achieve stationarity and a small number of outliers were removed. We
follow the same transformations as Stock and Watson (2016) and also follow their practice in removing low-frequency
trends in the data using a biweight low-pass filter, with a bandwidth of 100 quarters, as in Stock and Watson (2012).
Data are available at http://www.princeton.edu/˜mwatson/publi.html. For a full description of the
data, as well as a more detailed description of the transformations to the raw data, we refer the reader to Stock and
Watson (2016).

11This is confirmed in Online Appendix Figure 6, which depicts the distribution of the 25 largest loadings (in
absolute value) for each factor. Online Appendix Table 2 further shows which economic indicators correspond to the
largest loadings (in absolute value) associated with the three local factors.
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Figure 9: Illustration of key quantities for τ = 1/2 in a dataset of US macroeconomic indicators

ploring how the estimated number of factors changes. We conduct a similar exercise in Figure 10a,
which depicts the estimated number of factors based on BN and FC as a function of the tuning
parameter c, which multiplies the thresholds in Theorem 5 and Corollary 2. Figure 10a confirms
that incorporating the eigenvector makes the estimator less dependent on the choice of the tuning
parameter. While varying the threshold for the eigenvalues leads to a gradual increase in the num-
ber of estimated factors, indicated by the absence of a prolonged flat region, varying the threshold
for Υ̂2

k, we observe two flat regions in the graph at r̂ = 3 and r̂ = 6 respectively.
Using an estimator based on Υ̂2

k, a practitioner could alternatively vary τ and observe how the
estimated number of factors changes. We demonstrate this in Figure 10b, which depicts the value
of the FR estimator as a function of the complexity parameter τ . Figure 10b suggests that there
is one “global” factor in the data and that the second most important factor is significantly weaker
than the first one, as indicated by the first flat region of the graph. Next, the 7th factor appears to
be significantly weaker than the 6th, as indicated by the second flat region in Figure 10b. Thus,

Estimator Formula Estimated number of factors

AH arg max0≤k≤rmax Υ̂0
k/Υ̂

0
k+1 1

FR arg max0≤k≤rmax Υ̂2
k/Υ̂

2
k+1 6

BN max0≤k≤rmax k s.t. Υ̂0
k > σ̂2(c+ 1) log( n

c+1
) 8

FC max0≤k≤rmax k s.t. Υ̂2
k > σ̂2 n

g(n)
6

BN√n max0≤k≤rmax k s.t. Υ̂0
k > σ̂2(c+ 1)

√
n
c+1

g(n) 3
AO max0≤k≤rmax k s.t. Υ̂0

k − Υ̂0
k+1 ≥ Q} 3

Table 4: Estimated number of factors in macroeconomic panel for the six estimators defined in Section 4
and considered throughout.
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(a) Estimate r̂1 from thresholding based on Υ̂0
k (BN )

and Υ̂2
k (FC) as a function of constant c, which multi-

plies cutoffs from Theorem 5 and Corollary 2.
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(b) Estimate r̂1 from using the ratio estimator FR =
Υ̂2
k/Υ̂

2
k+1, k ∈ {0, . . . , 10} for varying tuning parame-

ter τ ∈ [.375, 1].

Figure 10: Illustration of estimators in dataset of US macroeconomic indicators for varying tuning param-
eters

Figure 10 suggests that the choice of r̂ = 6 is quite robust.

7 Concluding Remarks

This paper develops factor models with local factors that affect only an unknown subset of the
observables. It provides a theoretical foundation that justifies the use of both factor models and the
principal component estimator in datasets with no clear gap in the eigenvalue distribution.

We argue that factors affecting proportionally more than
√
n of the n observed variables are

often the ones of economic interest. Under some regularity conditions, this coincides with the
number of factors that can be estimated consistently using the principal component estimator.

We show that existing estimators in general do not yield a consistent estimate for this number
of “relevant” factors. To estimate the number of economically important and estimable factors,
we introduce novel estimators that exploit additional information in the eigenvectors of the covari-
ance matrix. We validate our proposal in simulations and find significant finite sample gains over
existing methods.
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