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A Monte Carlo Simulation

A.1 DGP for Table 1

X
(500×n)

= F
(500×2)

ΛT

(2×n)

+ e
(500×n)

.

We observe a panel with T = 500, where the cross-sectional dimension varies across simulations
(see Table 1 in the main paper). The variables exhibit the following factor structure: With Ftk

i.i.d.∼
N(0, 1), k = 1, 2 for all t, Λ is a matrix of ones and zeros such that:

Xj = F1 + ej, for j ∈ Ac2
Xj = F1 + F2 + ej, for j ∈ A2.

The cardinality of A2 is varied from n
1
4 to n

3
4 .

Finally, we allow the idiosyncratic errors to exhibit both cross-sectional as well as intertemporal
correlation. We follow Onatski [2010] and model the errors as follows:

eti = ρet−1,i) + (1− ρ2)1/2vti

vti = βvt,i−1) + (1− β2)1/2uti, uti
i.i.d.∼ N(0, 1),

with (ρ, β) = (0.3, 0.3) to allow for modest correlations in the error terms.
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A.2 Empirical Violations of Orthogonality Assumptions

Online Appendix Figure 1: Empirical frequency for λ·kλ·l
‖λ·k‖‖λ·l‖ for l 6= k, l, k ∈ {1, . . . , 6}, in baseline

DGP. Figure based on 1000 realizations. Under Assumption 1(b), all off-diagonal entries in Λ′Λ should be
zero.
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A.3 Robustness to tuning parameters

Since all our results involve asymptotic rate arguments, multiplicative constants have no effect
on our results. Online Appendix Figure 2 shows the finite sample implications for the choice
of a in g(n) = a

√
loglog(n) Throughout the paper, we set a = 0.7, in which case g(n) =

0.7
√
loglog(n) ≈ 1 for most relevant sample sizes.

Online Appendix Figure 2 illustrates that our results are robust to the choice of a. Note that only
estimators based on Υ̂2

k (TR and TC) are affected by the choice of a. With the possible exception
of the ED estimator of Onatski [2010], our proposed estimators dominate existing estimators for
all values of a considered.
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Online Appendix Figure 2: Empirical behavior of estimators as the tuning parameter a is varied in g(n) =
a
√
loglog(n) to determine the number of elements z in the partial sum used to construct Υ̂u

k . Note that
EC, ER, ED and EC√n are unaffected by this choice. Data generated by baseline DGP, with (n, T ) =
(300, 500), (ρ, β) = (0.3, 0.1), θ = 1, and r1 = 6. Figure based on 500 replications.
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A.4 Results Under Unfavorable DGP

(a) Thresholding based on Υ̂0
k (EC) (b) Thresholding based on Υ̂2

k (TC)

(c) Maximum ratio of two subsequent values of Υ̂0
k

as in Ahn and Horenstein [2013] (ER)
(d) Maximum ratio of two subsequent values of Υ̂2

k

(TR)

(e) Difference of two subsequent eigenvalues as in
Onatski [2010] (ED)

(f) Thresholding based on Υ̂0
k (EC√n)

Online Appendix Figure 3: Percentage of simulations correctly estimating the true number of factors
as both cross-sectional and intertemporal correlation is varied. All factors affect all outcomes. r = 6,
(n, T ) = (300, 500), θ = 1.5. For each entry in Λ, λik = 1 + νik, where ηik ∼ N(0, 1). Figure based on
500 replications.

5



(a) Thresholding based on Υ̂0
k (EC) (b) Thresholding based on Υ̂2

k (TC)

(c) Maximum ratio of two subsequent values of Υ̂0
k

as in Ahn and Horenstein [2013] (ER)
(d) Maximum ratio of two subsequent values of Υ̂2

k

(TR)

(e) Difference of two subsequent eigenvalues as in
Onatski [2010] (ED) (f) Thresholding based on Υ̂0

k (EC√n)

Online Appendix Figure 4: Average number of factors estimated as both cross-sectional and intertemporal
correlation is varied. All factors affect all outcomes. r = 6, (n, T ) = (300, 500), θ = 1.5. For each entry in
Λ, λik = 1 + νik, where ηik ∼ N(0, 1). Figure based on 500 replications.
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Online Appendix Figure 5: Empirical behavior of estimators as the relative variance of idiosyncratic noise
increases. All factors affect all outcomes. r = 6, (n, T ) = (300, 500), (ρ, β) = (0.3, 0.1). For each entry
in Λ, λik = 1 + νik, where ηik ∼ N(0, 1). Figure based on 500 replications.
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n T ER TR PC PC√n TC ED

100 100 1.06 / 0.00 1.82 / 0.00 15 / 0.00 9.78 / 0.00 8.94 / 0.00 1.42 / 0.00
100 150 1.04 / 0.00 1.64 / 0.02 15 / 0.00 7.32 / 0.10 6.96 / 0.30 1.72 / 0.00
150 100 1 / 0.00 1.92 / 0.00 15 / 0.00 8.66 / 0.00 10.2 / 0.00 1.62 / 0.00
150 250 1.02 / 0.00 2.4 / 0.04 15 / 0.00 4.04 / 0.02 5.66 / 0.54 2.06 / 0.02
150 500 1.02 / 0.00 3.8 / 0.24 14.6 / 0.00 3.54 / 0.00 5.36 / 0.42 3.1 / 0.12
300 250 1 / 0.00 4.78 / 0.24 15 / 0.00 3.08 / 0.00 5.68 / 0.46 2.36 / 0.00
300 500 1 / 0.00 5.56 / 0.78 15 / 0.00 2.94 / 0.00 5.86 / 0.86 4.66 / 0.50
300 750 1 / 0.00 5.96 / 0.96 13 / 0.00 3.04 / 0.00 5.96 / 0.96 5.74 / 0.86
500 250 1 / 0.00 4.5 / 0.16 15 / 0.00 2.88 / 0.00 5.9 / 0.54 2.86 / 0.02
500 500 1 / 0.00 5.98 / 0.98 15 / 0.00 2.86 / 0.00 5.98 / 0.98 5.22 / 0.66
500 750 1 / 0.00 5.98 / 0.98 14.1 / 0.00 2.9 / 0.00 5.98 / 0.98 5.94 / 0.94

1000 1e+03 1 / 0.00 6 / 1.00 13.3 / 0.00 2.88 / 0.00 6 / 1.00 6 / 1.00

Online Appendix Table 1: Performance of different estimators as the sample size is varied along a grid of
(n, T ). All factors affect all outcomes, with (ρ, β) = (0.3, 0.1), θ = 1.5, and r = 6. Each entry depicts
a combination r̂/%, where r̂ is the average number of estimated factors, and % is the percentage correctly
classifying r = 6. In each row, the highest percentage is highlighted. For each entry in Λ, λik = 1 + νik,
where ηik ∼ N(0, 1). In each row, the highest percentage is highlighted. Table based on 500 replications.
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B Mathematical Appendix

B.1 Auxiliary Lemmata

Lemma 4. Under Assumptions 1-3, for all n and T,

1

T

T∑
s=1

T∑
t=1

E
(
e′set
n

)2

≤ C.

Proof. See Lemma 1(i) in Bai and Ng [2002], using Assumption 3 (b).

Lemma 5. Under Assumptions 1-4, for any fixed K, let A be a T ×K matrix A such that A′A =

TIK . Define α1 = maxk αk, k = 1, 2, . . . , K.

Then:

1

T 2

∣∣trace(A′FΛ′e′A)
∣∣ = Op(n

1
2
α1).

Proof.

∣∣trace(A′FΛ′e′A)
∣∣ =

∣∣∣∣∣∣trace(A′[
r∑

k=1

Fkλ
′
·ke
′]A)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r∑

k=1

trace(A′[Fkλ
′
·ke
′]A)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
r∑

k=1

‖A′‖‖Fk‖‖λ′·ke′‖‖A‖

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r∑

k=1

‖A‖2‖Fk‖
√∑

t

(
∑
i

λiketi)2

∣∣∣∣∣∣
By Assumption 4(a), the innermost sum is Op(n

1
2
αk). We conclude:

1

T 2

∣∣trace(A′FΛ′e′A)
∣∣ ≤
∣∣∣∣∣∣
r∑

k=1

‖ 1√
T
A‖2‖ 1√

T
Fk‖
√

1

T

∑
t

(
∑
i

λiketi)2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r∑

k=1

Op(1)×Op(n
1
2
αk)

∣∣∣∣∣∣
= Op(n

1
2
α1),
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which completes the proof. We note that in most cases at least one factor will be strong, corre-
sponding to α1 = 1. In that case, the above rate becomes Op(

√
n).

Lemma 6. Under Assumptions 1- 4, for any fixed K, let A be a T ×K matrix A such that A′A =

TIK . Define α1 = maxk αk, k=1, 2, . . . , K.

sup
A

(A′
XX ′

T
A− A′FΛ′ΛF ′

T
A) = Op(n

1
2
α1)

Proof.

sup
A

(
A′
XX ′

T 2
A− A′FΛ′ΛF ′

T 2
A
)

= sup
A
A′
(eΛF ′
T 2

+
FΛ′e′

T 2
+
ee′

T 2

)
A

≤ sup
A
A′
(eΛF ′
T 2

+
FΛ′e′

T 2

)
A+ sup

A
A′
ee′

T 2
A

= Op(n
1
2
α1) +Op(1),

where the last equality follows from Lemma 5 and Assumption 3(e).

Lemma 7. Denoting the singular value decomposition of 1√
T
X by UΣV ′, let F̂1 =

√
TU1. Then,

under Assumptions 1- 4:

F̂ ′1F1

T
= 1 +Op(n

− 1
2
α1),

and for l = 1, . . . , r

F̂ ′1Fl
T

= Op(n
− 1

4
α1).

Proof. Decompose F̂1 as follows:

F̂1 = F (
F ′F

T
)−

1
2 ξ1 + V̂ such that V̂ ′F = 0. (1)
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Since F̂ ′1F̂1

T
= ξ′1ξ1 + V̂ ′V̂

T
, this implies ξ′1ξ1 ≤ 1. Further,

F̂ ′1
FΛ′ΛF ′

T 2
F̂1 = [F (

F ′F

T
)−

1
2 ξ1 + V̂ ]′

(
FΛ′ΛF ′

T 2

)
[F (

F ′F

T
)−

1
2 ξ1 + V̂ ]

= ξ′1
(F ′F
T

) 1
2 Λ′Λ

(F ′F
T

) 1
2 ξ1

= ξ′1IrΛ
′ΛIrξ1

= ξ′1D
(n)
r ξ1,

by Assumptions 1(b) and (c), and

1

T 2

(
F̂ ′1FΛ′ΛF ′F̂1 − F̂ ′1XX ′F̂1

)
=

1

T 2

(
F̂ ′1FΛ′ΛF ′F̂1 − F ′1FΛ′ΛF ′F1

)
+

1

T 2

(
F ′1FΛ′ΛF ′F1 − F̂ ′1XX ′F̂1

)
= Op(n

1
2
α1) (by Lemma 6).

The second term on the RHS is simply the difference between the largest eigenvalue of XX ′/T
and FΛ′ΛF ′/T . Following the reasoning in the proof of Theorem 1 that difference is Op(n

1
2
α1). It

follows that the first term on the RHS is also Op(n
1
2
α1). We therefore obtain

1

T 2

(
F̂ ′1FΛ′ΛF ′F̂1 − F ′1FΛ′ΛF ′F1

)
= ξ′1D

(n)
r ξ1 − d1 (2)

= (ξ2
11 − 1)d1 +

r∑
l=2

ξ2
1ldl (3)

= Op(n
1
2
α1). (4)

We distinguish two cases. Case 1: (ξ2
11 − 1) = Op(n

− 1
2
α1). Since ξ2

1l > 0 ∀l, and ξ′1ξ1 ≤ 1, it
follows that also ξ2

1l = Op(n
− 1

2
α1) for l = 2, . . . , r.

Case 2: If (ξ2
11 − 1) is larger, the terms in 3 must cancel. Because d1 > d2 > . . . > 0, this

implies that ξ2
11− 1 = Op(n

− 1
2
α1). Since ξ′1ξ1 ≤ 1, it follows that ξ2

1l = Op(n
− 1

2
α1) for l = 2, . . . , r

and V̂ ′V̂
T

= Op(n
− 1

2
α1). Since also, by (1),

F̂ ′1F

T
=

1

T

[
F
(F ′F
T

)−1/2
ξ1 + V̂

]′
F

= ξ′1
(F ′F
T

)−1/2F ′F

T

= ξ′1,
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it follows that
(
F̂ ′1F1

T

)2

−1 = Op(n
− 1

2
α1), and therefore F̂ ′1F1

T
= 1+Op(n

− 1
2
α1). It then also follows

that, for l = 2, . . . , r : F̂ ′1Fl
T

= Op(n
− 1

4
α1).

Lemma 8. Denoting the singular value decomposition of 1√
T
X by UΣV ′, let F̂ =

√
TU[1:K].

Then, under Assumptions 1-4, for each k = 1, . . . , K and l = 1, . . . , r:

• For k < l: F̂ ′kFl
T

= Ōp(n
1
4
α1− 1

2
αk)

• For k = l: F̂ ′kFl
T

= 1 + Ōp(n
1
2
α1−αl)

• For k > l: F̂ ′kFl
T

= Ōp(n
1
4
α1− 1

2
αl).

Proof. The result for the first row of F̂ ′F
T

is given in Lemma 7. For the remaining columns we
repeat the steps above in orthonormal subspaces. Our strategy is therefore similar to the one
followed in Stock and Watson [2002]. However, allowing for varying factor strengths requires a
more nuanced consideration of the subsequent principal components. Additionally, unlike Stock
and Watson [2002], we explicitly derive the rates of convergence for all quantities of interest.

Using the same reasoning as in the previous lemma, we decompose F̂k, the kth column of F̂ ,
as follows:

F̂k = F (
F ′F

T
)−

1
2 ξk + V̂k such that V̂ ′kF = 0.

This implies ξ′kξk ≤ 1,

F̂ ′k
FΛ′ΛF ′

T 2
F̂k = ξ′kIrDrIrξk,

and

1

T 2

(
F̂ ′kFΛ′ΛF ′F̂k − F̂ ′kXX ′F̂k

)
=

1

T 2

(
F̂ ′kFΛ′ΛF ′F̂k − F ′kFΛ′ΛF ′Fk

)
+

1

T 2

(
F ′kFΛ′ΛF ′Fk − F̂ ′kXX ′F̂k

)
= Op(n

1
2
α1),

again using Lemma 6. Following the reasoning in the proof of Theorem 1, the second term on the
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RHS is Op(n
1
2
αk). This implies for the first term that

1

T 2

(
F̂ ′kFΛ′ΛF ′F̂k − F ′kFΛ′ΛF ′Fk

)
= ξ′kDrξk − dk

= (ξ2
kk − 1)dk +

∑
l 6=k

ξ2
kldl

= Op(n
1
2
α1).

Because d1 > d2 > . . . > 0, this implies that

• For k = l: ξ2
kk = 1 +Op(n

1
2
α1−αl)

• For k < l: ξ2
kl = Op(n

1
2
α1−αk)

• For k > l: ξ2
kl = Op(n

1
2
α1−αl) (Since ξ′kξk ≤ 1).

We further note that F̂ ′kF

T
≤ 1 and hence ξ2

kl = Op(1) ∀l. This also implies a lower bound on the
factor strength, indicated by αk, for which ξ2

k is guaranteed to converge: αk > 1
2
α1.

Lemma 9. With F̂ defined as before, define a (r × K) matrix H = Λ′ΛF ′F̂
T
D̂−1
K , where D̂K

is a diagonal matrix with the K largest eigenvalues of X′X
T

on the main diagonal. Then, under

Assumptions 1-4:

1

T

T∑
t=1

(F̂tk −H ′k·Ft)2 = Op(n
1−2αk),

where H ′k· denotes the kth row of H ′.

Proof. Note that by the properties of eigenvectors and eigenvalues F̂ = XX′

T
F̂ D̂−1

K . Then:

F̂ − FH =
XX ′

T
F̂ D̂−1

K − FΛ′Λ
F ′F̂

T
D̂−1
K

=
1

T
(XX ′ − FΛ′ΛF ′)F̂ D̂−1

K

=
1

T
(ee′ + eΛF ′ + FΛ′e′)F̂ D̂−1

K .

This is related to the decomposition first derived in Bai and Ng [2002] and used extensively in
the literature since its introduction (e.g. Bai [2003], Choi [2012]). The following derivations
therefore follow those in Bai and Ng [2002] and Bai [2003], who consider only strong factors. For

13



a particular t we may write:

F̂t −H ′Ft =
1

T
D̂−1
K F̂ ′(eet + eΛFt + FΛ′et) (5)

= D̂−1
K

(
1

T

T∑
s=1

F̂se
′
set +

1

T

T∑
s=1

F̂sF
′
sΛ
′et +

1

T

T∑
s=1

F̂se
′
sΛFt

)
.

Because (I + II + III)2 ≤ 3(I2 + II2 + III2), by Cauchy-Schwarz and submultiplicity of the
norm: ‖F̂t −H ′Ft‖2 ≤ ‖D̂−1

r ‖23(It + IIt + IIIt), where:

It =
1

T 2
‖

T∑
s=1

F̂se
′
set‖2

IIt =
1

T 2
‖

T∑
s=1

F̂sF
′
sΛ
′et‖2

IIIt =
1

T 2
‖

T∑
s=1

F̂se
′
sΛFt‖2.

Thus 1
T

∑T
t=1 ‖F̂t−H ′Ft‖2 ≤ ‖D̂−1

K ‖2 1
T

∑T
t=1 3(It + IIt + IIIt), while for each individual factor

estimate F̂k, k = 1, 2, . . . , r, 1
T

∑T
t=1(F̂tk −H ′kFtk)2 ≤ ‖d̂−1

k ‖2 1
T

∑T
t=1 3(Itk + IItk + IIItk), with

the r-by-1 vector F̂s replaced by the scalar F̂sk in each of It, IIt and IIIt above.
Consider each of the above three terms separately:

1

T

T∑
t=1

Itk =
1

T

T∑
t=1

‖ 1

T

T∑
s=1

F̂ske
′
set‖2

≤ 1

T

T∑
t=1

(
‖ 1

T

T∑
s=1

F̂sk[e
′
set − E(e′set)]‖2 + ‖ 1

T

T∑
s=1

F̂sk E(e′set)‖2

)
= Op(n).

Since this part does not involve any non-standard assumptions (it does not involve the factor
loadings), the last equality follows using the same arguments as in the proof of Theorem 1 in Bai
and Ng [2002] using Lemma 4 and Assumption 3(c). Details are not worth repeating. For the next
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part:

1

T

T∑
t=1

IItk =
1

T

T∑
t=1

1

T 2
‖

T∑
s=1

F̂skF
′
sΛ
′et‖2

≤ 1

T

T∑
t=1

[
‖Λ′et‖2

(
1

T

T∑
s=1

‖Fs‖2

)(
1

T

T∑
s=1

‖F̂sk‖2

)]

=
1

T

T∑
t=1

[
‖Λ′et‖2Op(1)

]
= Op(n

α1),

by Assumption 4(a). Finally, for IIItk one can show in a similar manner that

1

T

T∑
t=1

IIItk =
1

T

T∑
t=1

1

T 2
‖

T∑
s=1

F̂ske
′
sΛFt‖2

= Op(n
α1).

Consequently,

1

T

T∑
t=1

‖F̂tk −H ′k·Ft‖2 ≤ d̂−2
k 3(Itk + IItk + IIItk)

≤ Op(n
−2αk)

(
Op(n) +Op(n

α1) +Op(n
α1)

)
= Op(n

1−2αk).

Proof of Lemma 3. First note that

H = Λ′Λ
F ′F̂

T
D̂−1
K =


d1
d̂1

F ′1F̂1

T
d1
d̂2

F ′1F̂2

T
· · · d1

d̂K

F ′1F̂K
T

d2
d̂1

F ′2F̂1

T
d2
d̂2

F ′2F̂2

T

...
... . . .

dr
d̂1

F ′rF̂1

T
· · · dr

d̂K

F ′rF̂K
T

 ,

where dk and d̂k denote the kth entry on the diagonal of Λ′Λ and D̂K respectively. Consider entry
Hlk at position (l, k). First note that Hkk = dk

d̂k

F ′kF̂k
T

= (1 + Op(n
− 1

2
αk))(1 + Ōp(n

1
2
α1−αk)) =

15



1 +Op(n
1
2
α1−αk) by Lemma 8. Next, consider the case αk ≥ αl. By Lemma 8

Hlk =
dl

d̂k

F ′l F̂k
T

= Op(n
αl−αk)Ōp(n

1
4
α1− 1

2
αk) = Ōp(n

1
4
α1− 1

2
αk).

Finally, from Lemma 9:

(F̂ ′k − FH·k)′(F̂ ′k − FH·k)
T

=
F̂ ′kF̂k
T

+H ′·k
F ′F

T
H·k − 2

F̂ ′kF

T
H·k = Op(n

1−2αk). (6)

Further,

F̂ ′kF̂k
T

+H ′·k
F ′F

T
H·k − 2

F̂ ′kF

T
H·k = 1 +

r∑
l=1

H2
lk − 2

r∑
l=1

F̂ ′kFl
T

Hlk (7)

= 1 +H2
kk − 2

F̂ ′kFk
T

Hkk +
r∑
l 6=k

H2
lk − 2

r∑
l 6=k

F̂ ′kFl
T

Hlk. (8)

Since Hkk = 1 + Op(n
1
2
α1−αk), it follows that 1 + H2

kk − 2
F̂ ′kFk
T
Hkk = Op(n

1
2
α1−αk). Combining

this with (6)-(8), we obtain

r∑
l 6=k

H2
lk − 2

r∑
l 6=k

F̂ ′kFl
T

Hlk +Op(n
1
2
α1−αk) = Op(n

1−2αk)

r∑
l 6=k

(
H2
lk − 2

F̂ ′kFl
T

Hlk

)
= Op(n

1
2
α1−αk) +Op(n

1−2αk)

r∑
l 6=k

( dl
d̂k

)2
F ′l F̂k
T

2

− 2

(
F̂ ′kFl
T

)2
dl

d̂k

 = Op(n
1
2
α1−αk) +Op(n

1−2αk)

r∑
l 6=k

dl

d̂k

(
F ′l F̂k
T

)2[ dl
d̂k
− 2
]

= Op(n
1
2
α1−αk) +Op(n

1−2αk).

Split the sum above into three parts according to the relationship between αk and αl and start with
the elements for which αk > αl. Then,

dl

d̂k

(
F ′l F̂k
T

)2[ dl
d̂k
− 2
]

= Op(n
αl−αk)Op(n

1
2
α1−αk)Op(1) = op(n

1
2
α1−αk).

Next, consider elements in the sum for which αk = αl. Then,

dl

d̂k

(
F ′l F̂k
T

)2[ dl
d̂k
− 2
]

= Op(n
1
2
α1−αk)Op(1) = Op(n

1
2
α1−αk).
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Finally consider the remaining terms. First note that for the remaining sum the upper limit for the
entire sum still holds, as the terms in the first two cases are small enough. Further note that all
terms in this remaining sum are positive with probability 1. Thus, each term is bounded by its
overall sum and for all k such that αk < αl:

dl

d̂k

(
F ′l F̂k
T

)2[ dl
d̂k
− 2
]

= Op(n
1
2
α1−αk) +Op(n

1−2αk). (9)

Since the LHS in (9) is equal to H2
lk up to a negligible term, this establishes that H·k = ιk +

Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) in this last case, thus finishing the proof.

Proof of Lemma 2. Revisit the decomposition from Lemma 9. It follows that

F̂tk −H ′k·Ft = d̂−1
k

(
1

T

T∑
s=1

F̂ske
′
set +

1

T

T∑
s=1

F̂skF
′
sΛ
′et +

1

T

T∑
s=1

F̂ske
′
sΛFt

)
= d̂−1

k

(
Itk + IItk + IIItk,

)
.

Start with Itk and decompose as follows:

Itk =
1

T

T∑
s=1

F̂ske
′
set

≤ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)e′set +
1

T
H ′k·

T∑
s=1

Fse
′
set

≤ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)[e′set − E(e′set)] +
1

T
H ′k·

T∑
s=1

Fs[e
′
set − E(e′set)]

+
1

T

T∑
s=1

(F̂sk −H ′k·Fs)E(e′set) +
1

T
H ′k·

T∑
s=1

Fs E(e′set).

For the first part:

‖ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)[e′set − E(e′set)]‖

≤
(

1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

)1/2(
1

T

T∑
s=1

[e′set − E(e′set)]
2

)1/2

. (10)
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By Lemma 9 the first term is Op(n
1
2
−αk). For the second term inside the brackets of (10):

1

T

T∑
s=1

[e′set − E(e′set)]
2 =

n

T

T∑
s=1

[
1√
n
e′set − E(e′set)]

2.

This isOp(n) by Assumption 3(c), and thus the first part of the decomposition of It isOp(n
1
2
−αk)Op(

√
n) =

Op(n
1−αk). For the second part in the decomposition of Itk:

H ′k·
1

T

T∑
s=1

Fs[e
′
set − E(e′set)] = [ιk +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk)]Op(1)

= Op(1) +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk),

by Assumption 3(d). Next consider the third part of Itk:∣∣∣∣∣∣ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)E(e′set)

∣∣∣∣∣∣ ≤
(

1

T

T∑
s=1

(F̂sk −H ′k·Fs)2

) 1
2 n√

T

( T∑
s=1

E(
e′set
n

)2

) 1
2

=
n√
T
Op(n

1
2
−αk)Op(1) = Op(n

1−αk),

by Lemma 9 and Assumption 3(b). Finally, for the last part of Itk, 1
T
H ′k·

∑T
s=1 Fs E(e′set) =

Op(1) +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk), since

E

∣∣∣∣∣∣
T∑
s=1

FsE(e′set)

∣∣∣∣∣∣ ≤ max
s
‖Fs‖

T∑
s=1

|E(e′set)| ≤ C

by Assumption 3(b) and using the fact that maxs ‖Fs‖ < C. It follows that

Itk = Op(n
1−αk).

Next, consider IItk:

IItk =
1

T

T∑
s=1

F̂skF
′
sΛ
′et

=
1

T

T∑
s=1

(F̂sk −H ′k·Fs)F ′sΛ′et +H ′k·
1

T

T∑
s=1

FsF
′
sΛ
′et.
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For the second part:

H ′k·
1

T

T∑
s=1

FsF
′
sΛ
′et = H ′k·(

1

T

T∑
s=1

FsF
′
s)(Λ

′et) = H ′k·Λ
′et

= [ιk +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk)]Op(n

1
2
α1)

= Op(n
1
2
α1) +Op(n

3
4
α1− 1

2
αk) +Op(n

1
2

+ 1
2
α1−αk).

For the first part:

‖ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)F ′sΛ′et‖ ≤
(

1

T

T∑
s=1

‖(F̂sk −H ′k·Fs)‖2

)1/2(
1

T

T∑
s=1

‖F ′sΛ′et‖2

)1/2

.

Further:

1

T

T∑
s=1

‖F ′sΛ′et‖2 ≤ ‖Λ′et‖2 1

T

T∑
s=1

‖Fs‖2 = Op(n
α1),

and by Lemma 9
(

1
T

∑T
s=1 ‖(F̂sk −H ′k·Fs)‖2

)1/2
= Op(n

1
2
−αk). Therefore:

IItk =
1

T

T∑
s=1

F̂skF
′
sΛ
′et

=
1

T

T∑
s=1

(F̂sk −H ′k·Fs)F ′sΛ′et +H ′k·
1

T

T∑
s=1

FsF
′
sΛ
′et

≤ Op(n
1
2
α1) +Op(n

3
4
α1− 1

2
αk) +Op(n

1
2

+ 1
2
α1−αk).

Finally, consider IIItk:

IIItk =
1

T

T∑
s=1

F̂ske
′
sΛFt

=
1

T

T∑
s=1

(F̂sk −H ′k·Fs)e′sΛFt +H ′k·
1

T

T∑
s=1

Fse
′
sΛFt.

Start with the first term:

‖ 1

T

T∑
s=1

(F̂sk −H ′k·Fs)e′sΛFt‖ ≤
(

1

T

T∑
s=1

‖(F̂sk −H ′k·Fs)‖2

)1/2(
1

T

T∑
s=1

‖e′sΛ‖2

)1/2

‖Ft‖

= Op(n
1
2
−αk)Op(n

1
2
α1)Op(1) = Op(n

1
2

+ 1
2
α1−αk).
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For the second term:

H ′k·
1

T

T∑
s=1

Fse
′
sΛFt = H ′k·

n
1
2
α1

√
T

( 1

n
1
2
α1
√
T

T∑
s=1

Fse
′
sΛ
)
Ft

= [ιk +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk)]Op(n

1
2
α1− 1

2 )Op(1)

= Op(n
1
2
α1− 1

2 ) +Op(n
1
2
α1−αk) +Op(n

3
4
α1− 1

2
− 1

2
αk),

using Assumption 4(b). It follows that

IIItk = Op(n
1
2

+ 1
2
α1−αk) +Op(n

1
2
α1− 1

2 ) +Op(n
1
2
α1−αk) +Op(n

3
4
α1− 1

2
− 1

2
αk)

= Op(n
1
2

+ 1
2
α1−αk).

Combining these partial results we obtain that

F̂tk −H ′k·Ft = d̂k
−1

(It + IIt + IIIt)

= Op(n
−αk)

(
Op(n

1−αk) +Op(n
1
2
α1) +Op(n

3
4
α1− 1

2
αk) +Op(n

1
2

+ 1
2
α1−αk)

)
= Op(n

−αk)

(
Op(n

1−αk) +Op(n
1
2
α1)

)
= Op(n

1−2αk) +Op(n
1
2
α1−αk).

Lemma 10. Under Assumptions 1-4, with F̂ and H defined as in the previous lemmata:

(F̂k − FH·k)′ei
T

= Op(n
1−2αk).

Proof.

(F̂k − FH·k)′ei
T

=
1

T

T∑
t=1

(F̂tk −H ′k·Ft)eti

= d̂−1
k

(
1

T 2

T∑
t=1

T∑
s=1

F̂ske
′
seteti +

1

T 2

T∑
t=1

T∑
s=1

F̂skF
′
sΛ
′eteti +

1

T 2

T∑
t=1

T∑
s=1

F̂ske
′
sΛFteti

)
= d̂−1

k

(
Ik + IIk + IIIk

)

20



Ik =
1

T 2

T∑
t=1

T∑
s=1

F̂ske
′
seteti

=
1

T 2

T∑
t=1

T∑
s=1

(F̂sk −H ′k·Fs)e′seteti +
1

T 2

T∑
t=1

T∑
s=1

H ′k·Fse
′
seteti

=
1

T 2

T∑
t=1

T∑
s=1

(F̂sk −H ′k·Fs)[e′set − E(e′set)]eti +
1

T 2

T∑
t=1

T∑
s=1

H ′k·Fs[e
′
set − E(e′set)]eti

+
1

T 2

T∑
t=1

T∑
s=1

(F̂sk −H ′k·Fs)E(e′set)eti +
1

T 2

T∑
t=1

T∑
s=1

H ′k·Fs E(e′set)eti.

Consider these four terms in turn:

1

T 2

T∑
s=1

T∑
t=1

(F̂sk −H ′k·Fs)[e′set − E(e′set)]eti

≤
(

1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

) 1
2
(

1

T

T∑
s=1

( 1

T

T∑
t=1

[e′set − E(e′set)]eti
)2
) 1

2

≤
√
n

(
1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

) 1
2
(

1

T

T∑
s=1

( 1

T

T∑
t=1

1√
n

[e′set − E(e′set)]eti
)2
) 1

2

≤
√
nOp(n

1
2
−αk)Op(1) = Op(n

1−αk),

where the boundedness of the last term follows from Assumption 3(c). For the next term, ignoring
H , take expectations:

E
[

1

T 2

T∑
t=1

T∑
s=1

Fs[e
′
set−E(e′set)]eti

]
= E

[
1

T

T∑
t=1

(
1√
nT

T∑
s=1

Fs[e
′
set − E(e′set)]

)
eti

]

≤ 1

T

T∑
t=1

E
(
‖ 1√

nT

T∑
s=1

Fs[e
′
set − E(e′set)]‖2

) 1
2 (

E(eti)
2
) 1

2

= O(1).

For the third term:

1

T 2

T∑
t=1

T∑
s=1

(F̂sk −H ′k·Fs)E(e′set)eti

≤
(

1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

) 1
2
(
n

T

T∑
t=1

T∑
s=1

|E(
e′set
n

)|2 1

T

T∑
t=1

e2
ti

) 1
2

= Op(n
1
2
−αk)Op(

√
n) = Op(n

1−αk),
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using Lemma 4. Finally, ignoring H , take expectations of the last term:

E
[

1

T 2

T∑
t=1

T∑
s=1

Fs E(e′set)eti

]
≤ 1

T

T∑
t=1

T∑
s=1

(
‖Fs‖2

) 1
2 E(

e′set
n

)
(
E e2

ti

) 1
2 = O(1),

since both the first and third term in the final sum is bounded and using Assumption 3(b). Therefore
Ik = Op(n

1−αk) +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) = Op(n

1−αk). Next consider IIk:

IIk =
1

T 2

T∑
t=1

T∑
s=1

F̂skF
′
sΛ
′eteti

=
1

T 2

T∑
t=1

T∑
s=1

(F̂sk −H ′k·Fs)F ′sΛ′eteti +
1

T 2

T∑
t=1

T∑
s=1

H ′k·FsF
′
sΛ
′eteti.

Again consider both terms separately and start with the second:

1

T 2

T∑
t=1

T∑
s=1

H ′k·FsF
′
sΛ
′eteti = H ′k·

(
1

T

T∑
s=1

FsF
′
s

)
1

T

T∑
t=1

n∑
j=1

λjetjeti

= H ′k·

(
1

T

T∑
s=1

FsF
′
s

)(
1

T

T∑
t=1

n∑
j=1

λj[etjeti − E(etjeti)] +
1

T

T∑
t=1

n∑
j=1

λj E(etjeti)

)

≤ H ′k·

(
1

T

T∑
s=1

FsF
′
s

)(
C√
T
√
n

T∑
t=1

n∑
j=1

[etjeti − E(etjeti)] +
n∑
j=1

λj E(
e′jei

T
)

)
= [ιk +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk)][Op(1) +O(1)],

where the boundedness of the last term follows from Assumption 3(b). Similarly for the first term:

1

T 2

T∑
s=1

T∑
t=1

(F̂sk −H ′k·Fs)F ′sΛ′eteti

≤
(

1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

) 1
2
(

1

T

T∑
s=1

( 1

T

T∑
t=1

F ′sΛ
′eteti

)2
) 1

2

≤
(

1

T

T∑
s=1

‖F̂sk −H ′k·Fs‖2

) 1
2
(

1

T

T∑
s=1

(
F ′s

1

T

T∑
t=1

n∑
j=1

λjetjeti
)2
) 1

2

= Op(n
1
2
−αk)Op(1),

using the same arguments as above. We conclude that IIk = Op(1) +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk).

Finally, using similar arguments as in the proof of IIk, one can show that the same bounds apply
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to IIIk, and it follows that

(F̂k − FH·k)′ei
T

= d̂−1
k

(
Ik + IIk + IIIk

)
= Op(n

−αk)

(
Op(n

1−αk) +Op(1) +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk)

)
= Op(n

1−2αk).

Lemma 11. Under Assumptions 1-4, let z = nτg(n), τ ∈ [0.5, 1], such that (i) g(n)→∞ and (ii)

g(n)/nε → 0 for any ε > 0 as n → ∞. With slight abuse of notation, the estimated loadings λ̂ik
are ordered such that, for each k,

∣∣∣λ̂1k

∣∣∣ ≥ ∣∣∣λ̂2k

∣∣∣ ≥ . . . ≥
∣∣∣λ̂nk∣∣∣. Then

(a) If αk > max{1+τ
3
, α1+4τ

6
}: 1

z

∑z
i=1 λ̂

2
ik − 1

z

∑z
i=1 λ

2
ik = Ōp(n

1
4
α1− 1

2
αk) + Ōp(n

1−2αk)

(b) If αk ≤ max{1+τ
3
, α1+4τ

6
}: 1

z

∑z
i=1 λ̂

2
ik − 1

z

∑z
i=1 λ

2
ik = Op

(
nαk
nτg(n)

)
.

Proof. By Theorem 3:

λ̂ik − λik = Ōp(n
1
4
α1− 1

2
αk) + Ōp(n

1−2αk).

Since

1

z

z∑
i=1

λ̂2
ik −

1

z

z∑
i=1

λ2
ik =

1

z

z∑
i=1

(λ̂2
ik − λ2

ik),

this is just an average (squared) deviation and the result in part (a) immediately follows.
Next consider the case αk ≤ τ :

1

z

z∑
i=1

λ2
ik ≤

1

z

n∑
i=1

λ2
ik =

n−τ

g(n)
ψk(Λ

′Λ) = Op

(
nαk−τ

g(n)

)

and, similarly

1

z

z∑
i=1

λ̂2
ik ≤

1

z

n∑
i=1

λ̂2
ik =

n−τ

g(n)
ψk

(
X ′X

T

)
= Op

(
nαk−τ

g(n)

)
.

Combined they imply the stated bound on the difference.
Finally, consider the case max{1+τ

3
, α1+4τ

6
} < αk ≤ τ . In those situations both bounds above

apply and imply convergence to zero. For αk > max{1+τ
3
, α1+4τ

6
}, the first bound is the tighter

one and thus applies.
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Lemma 12. There exists a constant c > 0 such that limn→∞P (Υ̂u
zk/n

(1+ 1
2
u)αk− 1

2
u < c) = 0 for

k = 1, . . . , rmax.

Proof. First note that

1

z

z∑
λ̂2
ik ≥

1

n

n∑
λ̂2
ik =

1

n
ψk

(
X ′X

T

)
.

It follows that

Υ̂u
zk = ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)u
≥ ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik

) 1
2
u

≥ ψk(
X ′X

T
)

[
1

n
ψk(

X ′X

T
)

] 1
2
u

= n−
1
2
uψk(

X ′X

T
)1+ 1

2
u.

For αk > 0, there exists a c1 > 0 such that

limn→∞P

(
ψk(

X ′X

T
)/nαk < c1

)
= 0

and thus

limn→∞P
(

Υ̂u
zk/n

(1+ 1
2
u)αk− 1

2
u ≥ c

)
= 1.

Finally, if αk = 0, since ψk(X
′X
T

) > ceig > 0 for k = r + 1, . . . , [dn] this implies that there exists
a positive constant c2 such that

Υ̂u
zk ≥ c2n

− 1
2
u.

B.2 Proofs of Corollary 4 and Theorem 4

Proof of Corollary 4. First consider k = r1 + 1, . . . , rmax. Then, by Theorem 1, ψk

(
XX′

T

)
=

Op(1) and thus there exists a finite c1 > 0, limn→∞P

(
ψk

(
XX′

T

)
≥ c1

)
= 0. Further, by

Assumption 3 (e), there exists a constant c2 > 0, such that P

(
ψk∗

(
XX′

T

)
≥ c2

)
= 1 for k∗ =
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r1 + 1, . . . , rmax. Then, for any finite c3 > 0,

limn→∞P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > c3log(n)



= limn→∞

[
P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > c3log(n)

∣∣∣∣∣ψk+1

(
XX ′

T

)
< c2

P

(
ψk+1

(
XX ′

T

)
< c2

)

+ P

(

ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > c3log(n)

∣∣∣∣∣ψk+1

(
XX ′

T

)
≥ c2

P

(
ψk+1

(
XX ′

T

)
≥ c2

)]

= limn→∞P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > c3log(n)

∣∣∣∣∣ψk+1

(
XX ′

T

)
≥ c2

+ 0

≤ limn→∞P

(
ψk

(
XX ′

T

)
> c2c3log(n)

)
= 0.

Next, consider k = 1, . . . , r1 − 1. We already established that, for any finite q1 > 0,

limn→∞P

(
ψk

(
XX ′

T

)
> q1

√
n

)
= 1.
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It then immediately follows that there exists an h > 0 such that

limn→∞P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > h
√
n



= limn→∞

[
P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) > h
√
n

∣∣∣∣∣ψk+1

(
XX ′

T

)
< q1

√
n

P

(
ψk+1

(
XX ′

T

)
< q1

√
n

)

+ P


ψr

(
XX′

T

)
ψk+1

(
XX′

T

) > h
√
n

∣∣∣∣∣ψk+1

(
XX ′

T

)
≥ q1

√
n

P

(
ψr+1

(
XX ′

T

)
≥ q1

√
n

)]

= limn→∞P


ψk

(
XX′

T

)
ψk+1

(
XX′

T

) ≥ h
√
n

∣∣∣∣∣ψk+1

(
XX ′

T

)
≥ q1

√
n

+ 0

≤ limn→∞P

(
ψr

(
XX ′

T

)
> q1hn

)
.

But since there exists a finite q2 > 0 with limn→∞P

(
ψk

(
XX′

T

)
> q2n

)
= 0, letting h = q2

q1

establishes limn→∞P


ψk

(
XX′
T

)
ψk+1

(
XX′
T

) > h
√
n

 = 0. Finally, consider k = r1. By Assumption 5,

αk > .5 and thus limn→∞P

(
ψk

(
XX′

T

)
> q1

√
n

)
= 1 for any finite q1 > 0. On the other hand,

ψr1+1

(
XX′

T

)
= Op(1) and thus there exists a q2 > 0, such that P

(
ψr1+1

(
XX′

T

)
≥ q2

)
= 0.
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Then, for any finite q3 > 0

limn→∞P


ψr1

(
XX′

T

)
ψr1+1

(
XX′

T

) > q3

√
n



= limn→∞

[
P


ψr1

(
XX′

T

)
ψr1+1

(
XX′

T

) > q3

√
n

∣∣∣∣∣ψr1+1

(
XX ′

T

)
< q2

P

(
ψr1+1

(
XX ′

T

)
< q2

)

+ P


ψr1

(
XX′

T

)
ψr1+1

(
XX′

T

) > q3

√
n

∣∣∣∣∣ψr1+1

(
XX ′

T

)
≥ q2

P

(
ψr1+1

(
XX ′

T

)
≥ q2

)]

= limn→∞P


ψr1

(
XX′

T

)
ψr1+1

(
XX′

T

) > q3

√
n

∣∣∣∣∣ψr1+1

(
XX ′

T

)
< q2

+ 0

≥ limn→∞P

(
ψr1

(
XX ′

T

)
> q2q3

√
n

)
= 1.

Choosing q3 = h
q2

, this completes the proof.

A key step in the proof of Corollary 4 makes use of the following class of (infeasible) quantities
Υu
zk. For u ∈ [0, 2]:

Υu
zk = ψk

(
ΛF ′FΛ′

T

)
Suzk = ψk

(
ΛF ′FΛ′

T

)(
1

z

z∑
i

λ2
ik√

1
n

∑n
i=1 λ

2
ik

)u
,

where, with some abuse of notation, the squared loadings λ2
ik are sorted in decreasing order. We

obtain the following lemma.

Lemma 13. Under Assumptions 1-2, choose a threshold z = nτg(n), τ ∈ [0, 1], such that (i)

g(n)→∞ and (ii) g(n)/nε → 0 for any ε > 0 as n→∞. Then, for any given factor k ≤ r, with

u ∈ [0, 2]:

(a) If αk > τ : Υu
zk � n(1− 1

2
u)αk+ 1

2
u

(b) If αk ≤ τ : Υu
zk � n(1+ 1

2
u)αk+( 1

2
−τ)ug(n)−u.

Further, for k = r + 1, . . . , rmax: Υu
zk = 0.
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Proof. Using Assumption 1 we can rewrite Υu
zk as follows:

Υu
zk = ψk

(
ΛF ′FΛ′

T

)
Suzk = ψk

(
ΛF ′FΛ′

T

)(
1

z

z∑
i

λ2
ik√

1
n

∑n
i=1 λ

2
ik

)u

= ψk
(
Λ′Λ

)
(
n∑
i=1

λ2
ik)
− 1

2
u
(n 1

2

z

z∑
i

λ2
ik

)u
= ψk

(
Λ′Λ

)1− 1
2
u
n

1
2
u
(1

z

z∑
i

λ2
ik

)u
. (11)

First consider scenario (a). With αk > τ , the last part of (11) is simply an average of the square of
the z largest loadings. Combining Assumption 2(a) with the fact that|λik| < C ∀i, we immediately
have Υu

zk � n(1− 1
2
u)αkn

1
2
u.

Next, for part (b), let αk ≤ τ : There are only |Ak| � nαk “large” loadings in the sum of
equation (11), and Assumption 2 implies that

1

z

z∑
i

λ2
ik =

1

z

∑
i∈Ak

λ2
ik +

1

z

∑
i 6∈Ak

λ2
ik �

nαk−τ

g(n)
,

and it follows that Υu
zk � n(1− 1

2
u)αkn

1
2
u n(αk−τ)u

g(n)u
.

For k > r, λik = 0 ∀i, and this completes the proof.

Proof of Theorem 4. First note that:

Υ̂u
zk −Υu

zk = n
1
2
u

[
ψk
(X ′X
T

)1− 1
2
u(1

z

z∑
i

λ̂2
ik

)u − ψk(ΛF ′FΛ′

T

)1− 1
2
u(1

z

z∑
i

λ2
ik

)u]
.

Because ab− cd = (a− c)d+ (b− d)c+ (a− c)(b− d) we may write

Υ̂u
zk −Υu

zk = n
1
2
u

[
I + II + III

]
,

where

I =

(
ψk
(X ′X
T

)1− 1
2
u − ψk

(ΛF ′FΛ′

T

)1− 1
2
u
)(1

z

z∑
i

λ2
ik

)u
II =

((1

z

z∑
i

λ̂2
ik

)u − (1

z

z∑
i

λ2
ik

)u)
ψk
(ΛF ′FΛ′

T

)1− 1
2
u

III =

(
ψk
(X ′X
T

)1− 1
2
u − ψk

(ΛF ′FΛ′

T

)1− 1
2
u
)((1

z

z∑
i

λ̂2
ik

)u − (1

z

z∑
i

λ2
ik

)u)
.
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First consider the difference in I:

ψk
(X ′X
T

)1− 1
2
u − ψk

(ΛF ′FΛ′

T

)1− 1
2
u

= n(1− 1
2
u)αk

[(
ψk
(ΛF ′FΛ′

Tnαk

)
+ ψk

(X ′X
Tnαk

)
− ψk

(ΛF ′FΛ′

Tnαk

))1− 1
2
u

− ψk
(ΛF ′FΛ′

Tnαk

)1− 1
2
u
]

= n(1− 1
2
u)αk

[(
ψk
(ΛF ′FΛ′

Tnαk

)
+ εψk

)1− 1
2
u

− ψk
(ΛF ′FΛ′

Tnαk

)1− 1
2
u
]
,

where εψk = Op(n
− 1

2
αk) following the reasoning in the proof of Theorem 1. Using Newton’s

generalized binomial theorem:

(
ψk
(ΛF ′FΛ′

Tnαk

)
+ εψk

)1− 1
2
u

− ψk
(ΛF ′FΛ′

Tnαk

)1− 1
2
u

=
∞∑
w=0

Γ(2− 1
2
u)

Γ(2− 1
2
u−w)

w!
ψk
(ΛF ′FΛ′

Tnαk

)1− 1
2
u−w

εwψk − ψk
(ΛF ′FΛ′

Tnαk

)1− 1
2
u

= Op(n
− 1

2
αk) + op(n

− 1
2
αk).

We can thus distinguish between two cases as follows:
For αk > τ : I = n(1− 1

2
u)αk [Op(n

− 1
2
αk) + op(n

− 1
2
αk)]Op(1) = Op(n

( 1
2
− 1

2
u)αk).

For αk ≤ τ : I = n(1− 1
2
u)αk [Op(n

− 1
2
αk) + op(n

− 1
2
αk)]Op

(
nαk

nτg(n)u

)
= Op(n

( 1
2

+ 1
2
u)αk−τug(n)−u).

Next, consider the difference in II . For (a), with αk > τ :

(1

z

z∑
i

λ̂2
ik

)u − (1

z

z∑
i

λ2
ik

)u
=
(1

z

z∑
i

λ2
ik +

1

z

z∑
i

λ̂2
ik −

1

z

z∑
i

λ2
ik

)u − (1

z

z∑
i

λ2
ik

)u
=
(1

z

z∑
i

λ2
ik +

1

z

z∑
i

(λ̂2
ik − λ2

ik)
)u − (1

z

z∑
i

λ2
ik

)u
= u

[1
z

z∑
i

λ2
ik

)u−1(1

z

z∑
i

(λ̂2
ik − λ2

ik)
]

+ 1{u>1}
u(u− 1)

2

[(1

z

z∑
i

λ2
ik

)u−2(1

z

z∑
i

(λ̂2
ik − λ2

ik)
)2]

+ . . . ,

where the third equality follows from the generalized binomial theorem for nonnegative exponents.
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Later terms will be dominated. Thus:

II =
[
1{u>0}[Ōp(n

1
4
α1− 1

2
αk) + Ōp(n

1−2αk)]

+ 1{u>1}[Ōp(n
1
2
α1−αk) + Ōp(n

2−4αk)]
]
Op(n

(1− 1
2
u)αk)

= 1{u>0}[Ōp(n
1
4
α1− 1

2
αk) + Ōp(n

1−2αk)]Op(n
(1− 1

2
u)αk).

Similarly, by Lemma 11, the same rate holds if max{1+τ
3
, α1+4τ

6
} < αk ≤ τ . On the other hand, if

αk ≤ max{1+τ
3
, α1+4τ

6
}, by Lemma 11:

(1

z

z∑
i

λ̂2
ik

)u − (1

z

z∑
i

λ2
ik

)u
=

1

zu


 z∑

i

λ̂2
ik

u

−

 z∑
i

λ2
ik

u


=
1

nτug(n)u
1{u>0}[Op(n

uαk)−Op(n
uαk ]

= 1{u>0}Op(n
(αk−τ)ug(n)−u),

which in turn implies that

II = 1{u>0}Op(
n(αk−τ)u

g(n)u
)Op(n

(1− 1
2
u)αk) = 1{u>0}Op(

n(1+ 1
2
u)αk−τu

g(n)u
).

Using the derivations above, it is straightforward to see that III = Op(II).
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We therefore conclude that, for αk > max{1+τ
3
, α1+4τ

6
}:

Υu
zk − Υ̂u

zk = n
1
2
u

[
I + II + III

]
= n

1
2
u

[
Op(n

( 1
2
− 1

2
u)αk) + 1{u>0}[Ōp(n

1
4
α1− 1

2
αk)

+ Ōp(n
1−2αk)]Op(n

(1− 1
2
u)αk)

]
= n

1
2
u

[
Op(n

( 1
2
− 1

2
u)αk) + 1{u>0}

[
Op(min{n(1− 1

2
u)αk , n(1− 1

2
u)αk+ 1

4
α1− 1

2
αk})

+Op(min{n(1− 1
2
u)αk , n(1− 1

2
u)αk+1−2αk

]]
= n(1− 1

2
u)αk+ 1

2
u

[
Op(n

− 1
2
αk) + 1{u>0}

[
Op(min{1, n

1
4
α1− 1

2
αk})

+Op(min{1, n1−2αk})
]
,

]
= n(1− 1

2
u)αk+ 1

2
u

[
Op(n

− 1
2
αk) + 1{u>0}

[
Ōp(n

1
4
α1− 1

2
αk)Ōp(n

1−2αk)
]]
.

For (c), with αk ≤ max{1+τ
3
, α1+4τ

6
}:

Υu
zk − Υ̂u

zk = n
1
2
u

[
I + II + III

]
= n

1
2
u

[
Op(

n( 1
2

+ 1
2
u)αk−τu

g(n)u
) + 1{u>0}Op(

n(1+ 1
2
u)αk−τu

g(n)u
)

]
=
n(1+ 1

2
u)αk+( 1

2
−τ)u

g(n)u

[
Op(n

− 1
2
αk) + 1{u>0}Op(1)

]
.

We conclude, combining the above with Lemma 13, that

1. For αk > max{1+τ
3
, α1+4τ

6
}: Υ̂u

zk = Υu
zk + op(Υ

u
zk),

2. For 0 < αk ≤ max{1+τ
3
, α1+4τ

6
}: Υ̂u

zk = Υu
zk + 1{u>0}Op(Υ

u
zk) + op(Υ

u
zk),

3. For αk = 0 and k > r: Υ̂u
zk = Op(n

( 1
2
−τ)ug(n)−u),

which finishes the proof.
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B.3 Arbitrage Pricing Theory

We assume that the n-vector of demeaned asset returns Rt − E(Rt) for a given t follows a factor
structure with potentially local factors as in the previous sections:

Ri − E(Ri) = λ′i
(1×r)

F
(r×1)

+ ei
(1×1)

= λK
′

i
(1×K)

FK

(K×1)

+ eKi , (12)

treating the factors as random and the errors as uncorrelated with the factors. Equation (12) empha-
sizes again that, in the framework of this paper, we can always choose to move some of the weaker
factors into the error structure at the expense of more correlation in the error term. Denote the
return of a portfolio byRp =

∑n
i wiRi, with

∑n
i wi = 1. We formalize the term “well-diversified”

by imposing a bound on the sup-norm of the weights: |wi| ≤ Wn ∀i. Following Green and Holli-
field [1992], we say that exact APT pricing holds if the mean returns are in the span of the factor
loadings and a constant vector:

E(Rj) = (1−
K∑
k

λjk)E(R∗0) +
K∑
k

λjk E(R∗k),

where the portfolios R∗k, k = 0, . . . , K∗ are “factor-mimicking” portfolios. Their construction
is detailed in the proof of Proposition 1 below, and conditions for their existence are given in
Huberman et al. [1987]. Similarly, we define exact APT to hold in the limit, if, as n increases,
there exist sequences of feasible factor-mimicking portfolios R∗nk

1, such that for any fixed j

limn→∞ E(Rj)− [(1−
K∑
k

λjk)E(R∗n0) +
K∑
k

λjk E(R∗nk)] = 0.

Finally denote by νn the return on the global minimum variance portfolio when there are n as-
sets and assume that the mean-variance frontier does not become vertical in the limit, such that
there remains a meaningful trade-off between mean and variance.2 We then obtain the following
proposition:

Proposition 1. Consider the sequence of efficient (minimum variance) portfolios for some mean

return µ 6= limn→∞νn. If

(i) Wn = o( 1
nγ

), γ > 1
2

for every such portfolio, and

(ii) limn→∞(maxj
∑n

i=1

∣∣Cov(ei, ej)
∣∣) = O(

√
n),

1R∗n0 will be the minimum-variance portfolio with zero loadings
2This is the equivalent of the “absence of arbitrage” assumption in the Hilbert space setting of Chamberlain and

Rothschild [1983].
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then exact APT pricing holds in the limit with respect to the strongestK factors, where K is defined

such that αk > γ for k = 1, 2, . . . , K and αk ≤ γ for k ≥ K + 1.

Proof. The proof largely follows the proof of Theorem 3 in Green and Hollifield [1992]. Define
the set of demeaned portfolios

Ξn = {Rp − E(Rp) : Rp =
n∑
i=1

wiRi,

n∑
i=1

wi = 1}

and construct the factor-mimicking portfolios by projecting the zero vector and the strongest K
factors k = 1, . . . , K onto Ξn, such that:

Fk = R∗nk − E(R∗nk) + ξnk,

where E(ξnkRj) = 0 for j = 1, . . . , n. For asset j, consider the combination of K factor-
mimicking portfolios with the same factor risk:

RK∗
nj = (1−

K∑
k

λjk)R
∗
n0 +

K∑
k

λjkR
∗
nk.

Let

ΠK
nj = Rj −RK∗

nj

= Rj − E(Rj) + E(Rj)− (1−
K∑
k

λjk)R
∗
n0 −

K∑
k

λjkR
∗
nk

= cKj +
K∑
k

λjkFk + eKj − (1−
K∑
k

λjk)[R
∗
n0 − E(R∗n0)]−

K∑
k

λjk[R
∗
nk − E(R∗nk)]

= cKj + (1−
K∑
k

λjk)ξ
n0 +

K∑
k

λjkξnk + eKj , (13)

with

cKj = E(Rj)−

(1−
K∑
k

λjk)E(R∗n0) +
K∑
k

λjk E(R∗nk)

 .

Recalling thatWn denotes the sup-norm on the asset weightswi, we can invoke the following result
by Green and Hollifield [1992].

Theorem (Theorem 1 of Green and Hollifield [1992]). The efficient portfolio with mean µ 6= ν is
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well diversified (i.e. |wi| ≤ Wn ∀i) if and only if the return, R∗, on every portfolio with weights

that sum to one, satisfies

∣∣E(R∗)− E(Rz)
∣∣ ≤ ∣∣∣∣Wn

γn

∣∣∣∣ n∑
i=1

∣∣Cov(R∗, Ri)
∣∣ ,

and the payoff, Π∗, on every hedge position with weights that sum to zero, satisfies

∣∣E(Π∗)
∣∣ ≤ ∣∣∣∣Wn

γn

∣∣∣∣ n∑
i=1

∣∣Cov(Π∗, Ri)
∣∣ ,

where γn is uniformly bounded away from zero by the assumption of no asymptotic arbitrage.

Therefore, if the efficient frontier contains a well-diversified portfolio, this implies that

∣∣∣E(ΠK
nj)
∣∣∣ ≤ ∣∣∣∣Wn

γn

∣∣∣∣ n∑
i=1

∣∣∣Cov(ΠK
nj, Ri)

∣∣∣ ,
because Πn

j is the return on a hedge position with weights summing to zero. By (13),Cov(ΠK
nj, Ri) =

Cov(eKi , e
K
j ) and thus:

∣∣∣E(ΠK
nj)
∣∣∣ ≤ ∣∣∣∣Wn

γn

∣∣∣∣ n∑
i=1

∣∣∣Cov(eKi , e
K
j )
∣∣∣

=

∣∣∣∣Wn

γn

∣∣∣∣ n∑
i=1

∣∣Cov(Fwλi + ei, F
wλj + ej)

∣∣
≤
∣∣∣∣Wn

γn

∣∣∣∣ ( n∑
i=1

r∑
k=K+1

λikλjk +
n∑
i=1

∣∣Cov(ei, ej)
∣∣ )

=

∣∣∣∣Wn

γn

∣∣∣∣ ( r∑
k=K+1

λjk

n∑
i=1

λik +
n∑
i=1

∣∣Cov(ei, ej)
∣∣ )

=

∣∣∣∣Wn

γn

∣∣∣∣ ( r∑
k=K+1

λjk

∑
i∈Ak

λik +
∑
i 6∈Ak

λik

+
n∑
i=1

∣∣Cov(ei, ej)
∣∣

=

∣∣∣∣Wn

γn

∣∣∣∣ ( r∑
k=K+1

λjk
[
O(nαk) +O(

√
n)
]

+
n∑
i=1

∣∣Cov(ei, ej)
∣∣

≤
∣∣∣∣Wn

γn

∣∣∣∣ ( r∑
k=K+1

O(nαk) +O(
√
n) +O(

√
n)

)
≤
∣∣∣∣Wn

γn

∣∣∣∣ (O(nαK+1) +O(
√
n) +O(

√
n)

)
.
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We therefore conclude that

limn→∞

E(Rj)−

(1−
K∑
k

λjk)E(R∗n0) +
K∑
k

λjk E(R∗nk)




= limn→∞

∣∣∣E(ΠK
nj)
∣∣∣ = limn→∞WnO

(
max(nαK+1 ,

√
n
)

= 0,

whenever Wn = o
(

min(n−αK+1 , n−
1
2 )
)

. This completes the proof.

Proposition 1 states that exact APT holds in the limit if the efficient portfolios are well diversi-
fied. Further, the number of factors that are priced depends directly on the degree of diversification
of the portfolios on the efficient frontier. The better diversified these portfolios are (the smaller
Wn), the smaller the number of factors that have a non-zero factor premium.

In particular, with Wn = o( 1√
n
), which yields diversification in the sense of Chamberlain and

Rothschild [1983] and Chamberlain [1983], Proposition 1 establishes that exact APT pricing holds
in the limit with respect to the r1 factors affecting proportionally more than

√
n of the assets

(factors with αk > .5).
Proposition 1 holds under more general conditions than the approximate factor model of Cham-

berlain and Rothschild [1983]. We do not require all eigenvalues of the error covariance matrix to
be bounded, but explicitly allow for additional, weaker factors. Instead of ruling out the existence
of such weaker factors, Proposition 1 establishes that they will not be priced.

B.4 Aggregate Fluctuations in the Economy

Firm i produces a quantity Sit of the consumption good. Firm-level growth rates have a factor
structure as follows:

∆Si,t+1

Sit
=
Si,t+1 − Sit

Sit
= λiFt+1 + σiεi,t+1, (14)

where σi <∞ is firm i’s volatility, and the εi,t+1 are uncorrelated random variables with mean zero
and unit variance. Thus, firms’ growth rates may be correlated through the presence of the first
component. However, we do not impose the factors to be pervasive and likely λik = 0 for most
firm-factor combinations. Intuitively, these factors can correspond to economy-wide shocks but
also industry shocks, including shocks that affect as few as two firms. Thus (14) is quite general.
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In this stylized model, GDP growth is given by:

∆Yt+1

Yt
=

1

Yt

n∑
i=1

∆Si,t+1 =
n∑
i=1

Sit
Yt

[λiFt+1 + εi,t+1]

=
n∑
i=1

Sit
Yt
λiFt+1 +

n∑
i=1

Sit
Yt
εi,t+1.

It follows that the variance of GDP growth at time (t + 1) conditional on time t information is
equal to

V art

 n∑
i=1

Sit
Yt
λiFt+1 +

n∑
i=1

Sit
Yt
εi,t+1

 = V art

 n∑
i=1

Sit
Yt
λiFt+1

+ V art

 n∑
i=1

Sit
Yt
εi,t+1


= V art

 n∑
i=1

Sit
Yt

r∑
k=1

λikFk,t+1

+
n∑
i=1

(
Sit
Yt

)2

σ2
i .

For ease of notation, consider firms of equal size (Sit = Yt
n

) and normalize the factors such that
V ar(Fkt) = 1. Further assume that, for a given k, the factor loadings are 1 on a subset of size
|Ak| � nαk and zero everywhere else3. Then:

V art

(
∆Yt+1

Yt

)
=

r∑
k=1

∑
i∈Ak

1

n

2

+
n∑
i=1

1

n2
σ2
i

�
r∑

k=1

n2αk−2 +Op(
1

n
). (15)

Absent any factors (r = 0), clearly σGDP =
√
V art(

∆Yt+1

Yt
) = σ√

n
, and idiosyncratic fluctuations

disappear in the aggregate at rate
√
n. Next, consider an economy with r shocks, where r1 is the

number of factors with αk > .5:

V art

(
∆Yt+1

Yt

)
�

r1∑
k=1

n2αk−2 +
r∑

k=r1+1

n2αk−2 +
σ

n

=

r1∑
k=1

n2αk−2 +Op(
1

n
).

Equation (15) establishes that the important shocks are those with αk > 1
2

and that the standard
rate of convergence breaks down whenever shocks exist that affect more than

√
n firms.

3Defining the loadings instead in a more general way as in Assumption 2 does not alter any conclusions.
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This is in line with the granularity conditions derived in Gabaix [2011], who considers hetero-
geneous firm sizes that may grow with n. Intuitively, with the growth rate of the economy given by
the sum of both the idiosyncratic and factor shocks in our context, we can think of the sector shocks
as additional but larger firms. Then the economy consists of n + r components (with r << n).
Proposition 2 in Gabaix [2011] establishes that σGDP � 1√

n
only if the largest firm has a relative

weight of at most Wn = O( 1√
n
). This corresponds exactly to the limit on sector size stated above.

The key implication for the purposes of this paper is that, in order to understand the origins
of fluctuations, the important shocks are precisely those that affect proportionally more than

√
n

firms.
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C Additional Results for Empirical Application
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Online Appendix Figure 6: Absolute value of 25 largest loadings for factors 2-7. Each line corresponds to
the largest 25 loadings (in absolute value) for a specific factor. Solid lines correspond to the “local” factors
3, 5, and 6.

Factor 3 Factor 5 Factor 6

PPI: Int. Material: Supplies & Components Nonfarm: Unit Nonlabor Payments tb6m-tb3m
PPI: Industrial Commodities Nonfarm: Unit Labor Cost GS1-Tb3m

PPI: Finished Consumer Goods Nonfarm: Real Compensation Per Hour GS10-Tb3m
PPI: Crude Petroleum Defl by PCE(LFE) BS: Real Compensation Per Hour S&P’S STOCK PRICE INDEX

Gasoline and other energy goods PPI: Finished Consumer Foods DOW JONES IA
BS: Real Compensation Per Hour Food & beverages for off-premises consump Consumer Loans, All Commercial Banks

Nonfarm: Real Compensation Per Hour Nonfarm: Output Per Hour of All Persons BAA-GS10 Spread
BS: Implicit Price Deflator PPI: Finished Consumer Goods

ISM Manufacturing: Prices Paid Index

Online Appendix Table 2: Variables corresponding to largest loadings for factors 3, 5 and 6, the most local
factors. Red coloring indicates a negative loading, while black indicates a positive loading. For factor 3,
we note that six of the nine variables, printed in bold, represent price indices as classified in the handbook
chapter of Stock and Watson [2016]. Additionally the fourth entry, while classified as an “Oil market
variable,” also represents a price index. The remaining two variables are both classified as “Productivity
and Earnings” and it is worth noting that they have the opposite sign. Next, of the five series classified as
“Productivity and Earnings” in the data, all five of these are associated with factor 5, emphasized in bold.
The remaining three entries are all price indices. The 6th factor is highly concentrated on spreads and stock
market indicators (again emphasized in bold). In fact, this factor is associated with a negative return on the
stock market and an increase in the interest rate spread. The 6th factor could thus be interpreted as indicating
a flight from stocks into safe assets, such as bonds.

38


	Monte Carlo Simulation
	DGP for Table 1
	Empirical Violations of Orthogonality Assumptions
	Robustness to tuning parameters
	Results Under Unfavorable DGP

	Mathematical Appendix
	Auxiliary Lemmata
	Proofs of Corollary 4 and Theorem 4
	Arbitrage Pricing Theory
	Aggregate Fluctuations in the Economy

	Additional Results for Empirical Application

