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Abstract

Currently, there is growing interest in dynamic stochastic general equilibrium (DSGE)

models that have more parameters, endogenous variables, exogenous shocks, and observables

than the Smets and Wouters (2007) model, and substantial additional complexities from non-

Gaussian distributions and the incorporation of time-varying volatility. The popular DYNARE

software package, which has proved useful for small and medium-scale models is, however, not

capable of handling such models, thus inhibiting the formulation and estimation of more re-

alistic DSGE models. A primary goal of this paper is to introduce a user-friendly MATLAB

software program designed to reliably estimate high-dimensional DSGE models. It simulates

the posterior distribution by the tailored random block Metropolis-Hastings (TaRB-MH) algo-

rithm of Chib and Ramamurthy (2010), calculates the marginal likelihood by the method of

Chib (1995) and Chib and Jeliazkov (2001), and includes various post-estimation tools that are

important for policy analysis, for example, functions for generating point and density forecasts.

Another goal is to provide pointers on the prior, estimation, and comparison of these DSGE

models. An extended version of the new Keynesian model of Leeper, Traum, and Walker (2017)

that has 51 parameters, 21 endogenous variables, 8 exogenous shocks, 8 observables, and 1,494

non-Gaussian and nonlinear latent variables is considered in detail.
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1 Introduction

Over the past 20 years or so, dynamic stochastic general equilibrium (DSGE) models have become the

mainstay of macroeconomic policy analysis and forecasting. Currently, there is growing interest in DSGE

models that have more parameters, endogenous variables, exogenous shocks, and observables than the

Smets and Wouters (2007) model and substantial additional complexities from non-Gaussian distributions,

as in Chib and Ramamurthy (2014) and Cúrdia, Del Negro, and Greenwald (2014), and the incorporation

of time-varying volatility, as in Justiniano and Primiceri (2008).1 This is because these higher-dimensional

DSGE models are more realistic and have the potential to provide better statistical fit to the data. Despite

wide spread use of Bayesian estimation techniques, based on Markov chain Monte Carlo (MCMC) sim-

ulation methods (see Chib and Greenberg, 1995; Herbst and Schorfheide, 2016, for further details about

these methods), the estimation of high-dimensional DSGE models is challenging. The popular DYNARE

software package, which has proved useful for small and medium-scale models is, however, currently not ca-

pable of handling the preceding DSGE models, thus inhibiting the formulation, estimation and comparison

of such models for policy analysis and prediction.

A primary goal of this paper is to introduce a user-friendly MATLAB software program for estimating

high-dimensional DSGE models that contain Student-t shocks and stochastic volatility. Estimation of such

models is recognized to be challenging because of the complex mapping from the structural parameters

to those of the state space model that emerges from the rational expectations solution of the equilibrium

conditions. Our package relies on the tailored random block Metropolis-Hastings (TaRB-MH) algorithm

of Chib and Ramamurthy (2010) to deal with these challenging models. Recent applications of this

algorithm to DSGE models include, e.g., Born and Pfeifer (2014); Rathke, Straumann, and Woitek (2017);

Kulish, Morley, and Robinson (2017); Kapetanios, Masolo, Petrova, and Waldron (2019), while applications

to other problems in economics include Kim and Kang (2019) and Mele (2020), among many others.

The TaRB-MH algorithm may appear to require work, but random blocking and tailoring are central to

generating efficient exploration of the posterior distribution. The TaRB-MH algorithm is also available in

DYNARE, but only for models without Student-t shocks and stochastic volatility. Even there, however,

we have found in experiments that its implementation is not as efficient as the one in our package.

The marginal likelihood (the integral of the sampling density over the prior of the parameters) plays a

central role in Bayesian model comparisons. In our package, we calculate this quantity by the method of

1See also, e.g., Dave and Malik (2017); Chiu, Mumtaz, and Pinter (2017); Franta (2017); and Liu (2019) for macroeconomic
implications of fat-tailed shocks and stochastic volatility.
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Chib (1995) and Chib and Jeliazkov (2001). The marginal likelihood is also available in DYNARE, but it

is obtained by a modified version of the Gelfand and Dey (1994) method (also see, for example, Justiniano

and Primiceri (2008) and Cúrdia, Del Negro, and Greenwald (2014), for use of this method in DSGE

models with Student-t shocks and stochastic volatility). The latter method, however, is not as reliable as

the Chib and Jeliazkov (2001) method. It is subject to upward finite-sample bias in models with latent

variables and runs the risk of misleading model comparisons (see Sims, Waggoner, and Zha, 2008; Chan

and Grant, 2015, for such examples). As this point is not well recognized in the DSGE model literature, we

document its performance in simulated examples. It is shown to mistakenly favor models with fatter tails

and incorrect time-varying variance dynamics. Finally, our package includes various post-estimation tools

that are important for policy analysis, for example, functions for generating point and density forecasts.

Another goal is to provide pointers on dealing with high-dimensional DSGE models that promote

more reliable estimation and that are incorporated by default in our package. Because of the complex

mapping from the structural parameters to those of the state space form, standard prior assumptions

about structural parameters may still imply a distribution of the data that is strongly at odds with

actual observations. To see if this is the case, we sample the prior many times, solve for the equilibrium

solution, and then sample the endogenous variables. Second, we suggest the use of a training sample to

fix the hyperparameters. Although training sample priors are common in the vector autoregression (VAR)

literature, they are not typically used in the DSGE setting. We also suggest the use of the Student-t

family of distributions as the prior family for the location parameters. This tends to further mitigate the

possibility of prior-sample conflicts and leads to more robust results. Finally, we invest in the most efficient

way of sampling the different blocks, for example, sampling the non-structural parameters and the latent

variables by the integration sampler of Kim, Shephard, and Chib (1998).

The rest of the paper is organized as follows. The next section outlines a prototypical high-dimensional

DSGE model for the subsequent analysis. Sections 3–5 present a practical user guide on how to run our

MATLAB package called DSGE-SVt.2 We also provide pointers on prior construction, posterior sampling,

and model comparison accompanied by both empirical results and simulation evidence. Section 6 conducts

an out-of-sample forecast analysis. Section 7 concludes. The appendix contains a detailed summary of the

high-dimensional DSGE model (Appendix A) and a small-scale DSGE model used in Section 6 (Appendix

B).

2The package is publicly available at https://sites.google.com/a/slu.edu/tanf/research. The results reported in this paper
can be replicated by running the program demo.m.
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2 High-Dimensional DSGE Model

As a template, we consider an extended version of the new Keynesian model of Leeper, Traum, and

Walker (2017) that includes both fat-tailed shocks and time-varying volatility. This high-dimensional

DSGE model consists of 51 parameters, 21 endogenous variables, 8 exogenous shocks, 8 observables, and

1, 494 non-Gaussian and nonlinear latent variables. For model comparison purposes, we also follow Leeper,

Traum, and Walker (2017) and consider two distinct regimes of the policy parameter space—regime-M

and regime-F—that deliver unique bounded rational expectations equilibria.

The Leeper-Traum-Walker model consists of 36 log-linearized equilibrium equations and can be ex-

pressed generically in the form

Γ0pθ
Sq

p36�36q

xt � Γ1pθ
Sq

p36�36q

xt�1 � Ψ
p36�8q

εt � Π
p36�7q

ηt, (2.1)

where θS is a vector of 27 structural parameters, xt is a vector of 36 model variables, εt is a vector of 8 shock

innovations, ηt is a vector of 7 forecast errors, and pΓ0,Γ1,Ψ,Πq are coefficient matrices with dimensions

indicated below them.

Suppose now, following Chib and Ramamurthy (2014), that the shock innovations follow a multivariate

Student-t distribution, i.e., εt � tνp0,Σtq. Here, ν denotes the degrees of freedom and Σt is a diagonal

matrix with the time-varying volatility σ2
s,t for each individual innovation εst on its main diagonal, where

s refers to the shock index.3 For estimation convenience, it is useful to represent each element of εt as a

mixture of normals by introducing a Gamma distributed random variable λt,

εst � λ
�1{2
t eh

s
t {2εst , λt � G

�ν
2
,
ν

2

	
, εst � Np0, 1q. (2.2)

For further realism, following Kim, Shephard, and Chib (1998), the logarithm of each volatility hst � lnσ2
s,t

collected in an 8 � 1 vector ht evolves as a stationary p|φs|   1q process

hst � p1 � φsqµs � φsh
s
t�1 � ηst , ηst � Np0, ω2

sq, (2.3)

where we collect all the volatility parameters pµs, φs, ω
2
sq in a 24 � 1 vector θV .

Equations (2.1)–(2.3) is the type of high-dimensional DSGE model that is of much contemporary

interest. This model is completed with a measurement equation that connects the state variables xt to the

3It is straightforward to introduce, as in Cúrdia, Del Negro, and Greenwald (2014), an independent Student-t distribution
with different degrees of freedom for each shock innovation. For exhibition ease, we do not consider this generalization.
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observable measurements yt. Then, given the sample data y1:T on an 8�1 vector yt for periods t � 1, . . . , T ,

the goal is to learn about (i) the model parameters θ � pθS, θV q, (ii) the non-Gaussian latent variables

λ1:T needed for modeling Student-t shocks, and (iii) the nonlinear latent variables h1:T representing log

volatilities. By now, the general framework for doing this inference, based primarily on Bayesian tools, is

quite well established. If πpθq denotes the prior distribution, then MCMC methods are used to provide

sample draws of the augmented posterior distribution

πpθ, λ1:T , h1:T |y1:T q 9 fpy1:T , λ1:T , h1:T |θq � πpθq � 1tθ P ΘDu,

where fpy1:T , λ1:T , h1:T |θq is the likelihood function and 1tθ P ΘDu is an indicator function that equals one

if θ is in the determinacy region ΘD and zero otherwise.

Conceptual simplicity aside, sampling this posterior distribution is computationally challenging. These

computational challenges are magnified in larger dimensional DSGE models. For this reason, in our view,

there is an urgent need for a simple toolbox that makes the fitting of such models possible, without any

attendant set-up costs. The DGSE-SVt MATLAB package is written to fulfill this need. For example,

the subfolder “user/ltw17” contains the following files for the Leeper-Traum-Walker model, which are

extensively annotated and can be modified, as needed, for alternative model specifications:

• user_parvar.m—defines the parameters, priors, variables, shock innovations, forecast errors, and

observables.

• user_mod.m—defines the model and measurement equations.

• user_ssp.m—defines the steady state, implied, and/or fixed parameters.

• user_svp.m—defines the stochastic volatility parameters.

• data.txt—prepared in matrix form where each row corresponds to the observations for a given

period.

Our MATLAB package is readily deployed. Once the user supplies the above model and data files,

the posterior distribution, marginal likelihood, and predictive distributions (and other quantities) are

computed via the single function, tarb.m, as will be illustrated below. A printed summary of the results

will be recorded in the MATLAB diary file mylog.out, which is saved to the subfolder “user/ltw17”.
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3 Prior Construction

In the Bayesian estimation of DSGE models, an informative prior distribution (such as those on the policy

parameters φπ, γg, γz - see Appendix A) can play an important role in emphasizing the regions of the

parameter space that are economically meaningful. It can also introduce curvature into the posterior

surface that facilitates numerical optimization and MCMC simulations.

When it comes to high dimensions, however, constructing an appropriate prior becomes increasingly

difficult because of the complex mapping from the structural parameters to those of the state space form.

Consequently, a reasonable prior for the structural parameters may still imply a distribution of the data

that is strongly at odds with actual observations. For instance, Figure 1 shows the implied distributions

for selected sample moments under the original regime-M prior and model specification of Leeper, Traum,

and Walker (2017) (red dashed lines). Most notably, this prior places little or no mass in the neighborhood

of the actual mean of government spending and the actual standard deviations of investment, government

spending, debt, and hours worked (vertical lines). After taking the model to data, we also find that the

posterior mass for several parameters (e.g., the habit parameter h, the nominal rigidity parameters ωp and

ωw, and the government spending persistence ρg) lies entirely in the far tail of the corresponding prior,

thereby introducing fragility to the inferences. To cope with these issues, we suggest a two-step approach

for constructing the prior that can avoid such prior-sample conflict.

3.1 Sampling the Prior

The first step follows the sampling the prior approach in, e.g., Geweke (2005) and Chib and Ergashev

(2009). In particular, one starts with a standard prior for the structural parameters. Here we take that to

be the prior in Leeper, Traum, and Walker (2017), reproduced in Table A.1 of Appendix A.4 Alongside, one

specifies an initial prior for the volatility parameters θV , say one that implies a fairly persistent volatility

process for each shock innovation. Then, one samples this joint prior a large number of times (say 10,000).

For each parameter draw θpgq, g � 1, . . . , G, from the prior, under which the model has a unique bounded

solution, one simulates a sample of T observations y
pgq
1:T . Finally, one computes the implied distributions of

various functions of the data (such as the sample mean, standard deviation, and autocorrelation) and one

checks whether these are close to the corresponding values in the actual data. If not, one adjusts some or all

4Because some parameters are held fixed under each regime, effectively, θ has 49 elements and θS has 25 elements.
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Figure 1: Distributions of simulated selected quantities obtained by sampling the prior, and then the outcomes
given drawings from the prior. Notes: Each panel compares the resulting densities under Gaussian shocks with
constant volatility (red dashed line) with that under Student-t shocks with stochastic volatility (shaded area).
Vertical lines denote the real data counterparts.
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marginal components of the prior and repeats the above process.5 This procedure is implemented through

the following block of code. The sampling results will be stored in the MATLAB data file tarb_prior.mat,

which is saved to the subfolder “user/ltw17”.

npd = 10000; % number of prior draws

T = 200; % number of periods

sdof = 5; % shock degrees of freedom

ltw17 = tarb(@tarb_spec ,[],’npd’,npd ,’periods ’,T,’sdof’,sdof);

tarb(@sample_prior ,ltw17);

It is clear from Figure 1 that under the adjusted prior, reported in Table A.1 of Appendix A, the

Leeper, Traum, and Walker (2017) model extended with Student-t shocks and stochastic volatility implies

distributions of the data that capture the corresponding real data quantities in their relatively high density

regions (shaded areas).

3.2 Training Sample Prior

In the second step, given the adjusted prior from the first step, one uses the TaRB-MH algorithm to

estimate the DSGE model on the initial 50 observations running from 1955:Q1 to 2008:Q4. The posterior

draws from this run are used to form the prior. Specifically, the prior type of each parameter is left

unchanged, but its location (dispersion) are set to the corresponding mean (twice standard deviation).

At this point, we suggest that each location parameter µ of the volatility process be assigned a Student-t

distribution with 2.1 degrees of freedom. This two-step construction tends to avoid stark conflict between

the prior and the likelihood.

4 Posterior Sampling

We use two primary steps to sample the posterior distribution. The first step samples the 25 structural pa-

rameters in θS from the conditional posterior πpθS|y1:T , θ
V , λ1:T , h1:T q by the TaRB-MH algorithhm of Chib

and Ramamurthy (2010). The second step samples the remaining blocks, including the 24 volatility param-

eters in θV , the 166 non-Gaussian latent variables in λ1:T , and the 1,328 nonlinear latent variables in h1:T ,

from the conditional posterior πpθV , λ1:T , h1:T |y1:T , θ
Sq by the Kim, Shephard, and Chib (1998) method.

5In the Leeper, Traum, and Walker (2017) setting with Gaussian shocks and constant volatility, this step suggests that
the original prior for the standard deviation parameters should be adjusted. Alternatively, one could also adjust other
components of the prior for θS .
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Iterating the above cycle until convergence produces a sample from the joint posterior πpθ, λ1:T , h1:T |y1:T q.

We provide a brief summary of these steps and refer readers to the original papers for further details.

4.1 Sampling Structural Parameters

The first step entails sampling θS from

πpθS|y1:T , θ
V , λ1:T , h1:T q 9 fpy1:T |θ

S, λ1:T , h1:T q � πpθ
Sq � 1tθ P ΘDu

using the TaRB-MH algorithm. To form a random partition θS � pθS1 , . . . , θ
S
Bq, we initialize θS1 with

the first element from a permuted sequence of θS and start a new block with every next element with

probability 1� p. As a result, the average size of a block is given by p1� pq�1. In our benchmark setting,

we set p � 0.7 so that each block contains three to four parameters on average. To generate a candidate

draw, we tailor the Student-t proposal density to the location and curvature of the posterior distribution

for a given block using and the BFGS quasi-Newton method (available as a MATLAB function csminwel

written by Chris Sims).6

We also introduce a new procedure, i.e., tailoring at random frequency, to accelerate the TaRB-MH

algorithm. The idea is similar in essence to grouping the structural parameters into random blocks. Because

the tailored proposal density in the current iteration may remain efficient for the next few iterations, there

is typically no need to re-tailor the proposal density in every iteration. Nevertheless, there is still a chance

that the re-tailored proposal density will be quite different from the recycled one. Therefore, randomizing

the number of iterations before new blocking and tailoring ensures that the proposal density remains well-

tuned on average. The reciprocal of this average number, which we call the tailoring frequency ω, as well as

a number of optional user inputs (e.g., the blocking probability p), can be specified flexibly in the program

tarb.m. In our benchmark setting, we set ω � 0.5 so that each proposal density is tailored every second

iteration on average.

4.2 Sampling Latent Variables and Volatility Parameters

The second step involves augmenting the remaining blocks with 1,328 shock innovations ε1:T and then

sampling the joint posterior πpθV , ε1:T , λ1:T , h1:T |y1:T , θ
Sq. To this end, Gibbs sampling is applied to the

6The same optimization procedure is applied to obtain a starting value θS,p0q for the chain. This procedure is repeated
multiple times, each of which is initialized at a high density point out of a large number of prior parameter draws. The
optimization results will be stored in the MATLAB data file chain init.mat, which is saved to the subfolder “user/ltw17”.
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following conditional densities

πpε1:T |y1:T , θ, λ1:T , h1:T q, πpλ1:T |y1:T , θ, ε1:T , h1:T q, πpθV , h1:T |y1:T , θ
S, ε1:T , λ1:T q.

The first density is sampled with the disturbance smoother of Durbin and Koopman (2002). The second

density is sampled as in Chib and Ramamurthy (2014) based on a mixture normal representation of the

Student-t distribution. We invest in the most efficient way of sampling the last density by the integration

sampler of Kim, Shephard, and Chib (1998).

4.3 Results

We apply the above steps as coded in our MATLAB package to estimate the high-dimensional DSGE

model based on the post-training sample of 166 quarterly observations from 1967:Q3 to 2008:Q4. With the

ultimate goal of forecasting in mind, we present the estimation results for the model of best fit among all

competing specifications. This specification stands out from an extensive model search based on a marginal

likelihood comparison, as described in the next section. It has regime-M in place and features heavy-tailed

shocks with 5 degrees of freedom and persistent volatilities. The posterior sampling is implemented in the

following block of code. The estimation results will be stored in the MATLAB data file tarb_full.mat,

which is saved to the subfolder “user/ltw17”.

p = 0.7; % blocking probability

w = 0.5; % tailoring frequency

M = 11000; % number of draws including burn -in

N = 1000; % number of burn -in

ltw17 = tarb(@tarb_spec ,ltw17 ,’prob’,p,’freq’,w,’draws ’,M,’burn’,N);

tarb(@sample_post ,ltw17);

Because the TaRB-MH algorithm is simulation efficient, a large MCMC sample is typically not required.

We consider a simulation sample size of 11,000 draws, of which the first 1,000 draws are discarded as the

burn-in phase. Figure 2 provides a graphical comparison of the prior and posterior distributions of each

structural parameter. The Bayesian learning is clear from the graphs. In particular, the data imply

quite high habit formation and relatively high degrees of price and wage stickiness. See also Table A.2 of

Appendix A for a detailed summary of the posterior parameter estimates.

Figure 3 plots the estimated historical log-volatility series for 1967:Q3 to 2008:Q4. Overall, these

estimates display clear countercyclical time variation, with pronounced increases in volatility accompanying

10
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Figure 2: Marginal prior and posterior distributions of each structural parameter. Notes: Each panel compares
the prior (red dashed line) with the posterior (shaded area). Vertical lines denote posterior means. The kernel
smoothed posterior densities are estimated using 10, 000 TaRB-MH draws.

the recessions. For several shock innovations, volatility becomes lower by historical standards since the

1980s so that the Great Moderation is also evident.

To see the sampling efficiency of the TaRB-MH algorithm, it is informative to examine the serial

correlation among the sampled draws. Figures A.1–A.2 of Appendix A display the autocorrelation function

for each element of θ. As can be observed, the serial correlations for most parameters decay quickly to

zero after a few lags. Another useful measure of the sampling efficiency is the so-called inefficiency factor,

11
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Figure 3: Stochastic volatility of each shock innovation. Notes: Blue dashed lines denote median estimates, while
blue shaded areas delineate 90% highest posterior density bands. Vertical bars indicate recessions as designated
by the National Bureau of Economic Research.

which approximates the ratio between the numerical variance of the estimate from the MCMC draws and

that from the hypothetical i.i.d. draws. An efficient sampler produces reasonably low serial correlations

and hence inefficiency factors. Figure 4 compares the inefficiency factors resulting from two different

sampling schemes, each corresponding to a choice of the tailoring frequency ω P t0.5, 1.0u with the same

blocking probability p � 0.7. Compared with the more efficient setting that tailors in every iteration

12
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Figure 4: Inefficiency factor of each parameter. Notes: The horizontal axis indicates parameter indices. The
vertical line separates the structural (indexed by 1–25) and volatility (indexed by 26–49) parameters.

(ω � 1.0), our benchmark setting that tailors on average every second iterations (ω � 0.5) leads to very

similar inefficiency factors, ranging from 3.37 (1.74) to 103.56 (68.97) with most values below 20 (15) for

the structural (volatility) parameters. In conjunction with a rejection rate of approximately 50% in the

M-H step, the small inefficiency factors suggest that the chain mixes well. Moreover, choices of ω have no

material effect on the sampling efficiency for most volatility parameters because of the use of the integration

sampler that is tailored in every iteration.

While single blocking or infrequent tailoring can greatly reduce the overall runtime, it may also add

considerably to the average inefficiency factor. Therefore, in practice, we suggest setting p P r0.6, 0.9s and

ω P r0.2, 1.0s to maintain a good balance between runtime and simulation efficiency.

4.4 Simulation Evidence

We also estimate the same high-dimensional DSGE model based on a simulated data set that is generated

under fat-tailed shocks with 15 degrees of freedom and persistent volatilities. We set the sample size

to 200, which is meant to be 50 years of quarterly observations, and use the initial 50 observations to

construct a training sample prior. Table A.1 of Appendix A lists the parameter values used for the data

13
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generating process under regime-M (column ‘DGP’).7 Figure A.3 provides a graphical comparison of priors

and posteriors. For most parameters, the posterior mass concentrates around the corresponding true value.

Figure A.4 further reveals that the estimated log-volatility series largely captures the level and all major

trends of the true series for each shock innovation. These plots are relegated to Appendix A.

5 Marginal Likelihood

Given the output of the efficient TaRB-MH algorithm, we suggest calculating the marginal likelihood by

the method of Chib (1995), as modified for M-H chains in Chib and Jeliazkov (2001). This method is

computed via the identity

mpy1:T |Mq �
1
c
fpy1:T |M, θq � πpθ|Mq � 1tθ P ΘDu

πpθ|M, y1:T q
,

where M denotes the model label, c �
³
θPΘD

πpθ|Mqdθ, and the right-hand-side terms are evaluated at a

single high density point θ�. We obtain the likelihood ordinate by a mixture version of the Kalman filter

introduced by Chen and Liu (2000), as facilitated by the conditionally Gaussian and linear structure of the

DSGE model solution. In our application, we find that 10,000 particles are sufficient to deliver a robust

estimate of fpy1:T |M, θ�q. We obtain the high-dimensional ordinate in the denominator after decomposing

it as

πpθ�|M, y1:T q � πpθ�1 |M, y1:T q � πpθ
�
2 |M, y1:T , θ

�
1q � � � πpθ

�
B|M, y1:T , θ

�
1 , . . . , θ

�
B�1q,

where B refers to the number of blocks, and then estimate each of these reduced ordinates from the MCMC

output of reduced runs.

An interesting point is that these reduced runs are independent of each other and can be done in

parallel. Thus, all reduced ordinates can be estimated at the cost of one reduced run, regardless of the size

of B. This parallel computation is built into our MATLAB package. In our application, we set the total

number of blocks to B � 15, including seven almost equally sized blocks for θS arranged first, followed by

eight blocks pµ, φ, ω2q for θV . All ordinates are then simultaneously estimated using MATLAB’s multi-core

processing capacity via its Parallel Computing Toolbox.

7The DGPs for the structural parameters correspond to their full sample (1955:Q1–2014:Q2) regime-M estimates reported
in Leeper, Traum, and Walker (2017).
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5.1 Reliability

We recommend the Chib and Jeliazkov (2001) method because it is reliable and because other methods do

not generalize to our high-dimensional DSGE models with non-Gaussian and/or nonlinear latent variables.8

As shown in Chib and Ramamurthy (2010), efficient MCMC estimation automatically delivers an efficient

estimate of the conditional posterior ordinate πpθb, . . . , θB, λ1:T , h1:T |M, y1:T , θ
�
1 , . . . , θ

�
b�1q from the output

of the reduced MCMC simulation in which θb is a fixed block and the remaining structural parameters,

if any, form random blocks.9 The marginal likelihood estimation is implemented in the following block of

code. The estimation results will be stored in the MATLAB data file tarb_reduce.mat, which is saved to

the subfolder “user/ltw17”.

B = 7; % number of blocks for structural parameters

ltw17 = tarb(@tarb_spec ,ltw17 ,’blocks ’,B);

tarb(@marg_lik ,ltw17)

Figure 5 displays the sequence of posterior ordinate and marginal likelihood estimates from the best fit

model, as functions of the number of MCMC draws, for efficient and (relatively) less efficient TaRB-MH

implementations. These estimates settle down quickly (after say 1,000 draws are made) and converge to

the same limit point, leading to an estimated log marginal likelihood of about �1, 579.65 with a numerical

standard error of about 0.12. This underscores the point that, since the Chib (1995) method is underpinned

by whatever MCMC algorithm is used in the posterior simulation, the efficiency of the MCMC simulator

is germane to the calculation of the marginal likelihood.

5.2 Regime Comparison

Because regimes M and F of the Leeper, Traum, and Walker (2017) model imply completely different

mechanisms for price level determination and therefore different policy advice, identifying which policy

regime produced the real data is key to making good policy choices. While it is difficult to explore the

entire model space, we perform extensive regime comparisons by estimating the marginal likelihood for

both regimes with four choices of the degrees of freedom ν P t2.1, 5, 15, 30u and three choices of the volatility

8For instance, the modified harmonic mean (MHM) estimator of Gelfand and Dey (1994), used, for example, in Justiniano
and Primiceri (2008) and Cúrdia, Del Negro, and Greenwald (2014) in medium-scale DSGE models with Student-t shocks
and stochastic volatility, always favors a model specification with stronger latent features, e.g., shocks with fatter tails or
volatilities with more persistence. This extreme result emerges even when the true model exhibits weak evidence of these
features, such as those considered in Section 5.3.

9In contrast, Justiniano and Primiceri (2008, p. 636) and Herbst and Schorfheide (2016, p. 97) estimate the posterior
ordinate in a single block, with the random-walk M-H, both detrimental to getting reliable and efficient marginal likelihood
estimates, as already documented in Chib and Jeliazkov (2001).
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Figure 5: Recursive posterior ordinates and marginal likelihood. Notes: Ordinates 1–7 (8–15) correspond to
structural (volatility) parameters. The last panel depicts the estimated marginal likelihood. Black solid lines
(with cross marker) correspond to the benchmark setting (p � 0.7, ω � 0.5). All estimates are in logarithm scale.

persistence φ P t0.1, 0.5, 0.95u. The resulting model space contains a total of 24 relevant models that are

simultaneously confronted with the data over the period from 1967:Q3 to 2008:Q4, similar in spirit to the

Bayesian model scan framework proposed by Chib and Zeng (2019).10

10All computations performed in this section are executed on the High Performance Computing Cluster maintained by
Saint Louis University (https://sites.google.com/a/slu.edu/atg/home).
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Table 1: Log marginal likelihood estimates

φ � 0.1 (weak) φ � 0.5 (moderate) φ � 0.95 (strong)

ν M F M F M F

30 (light) �1640.73 �1650.03 �1627.24 �1638.81 �1597.72 �1609.69

p0.15q p0.15q p0.14q p0.15q p0.12q p0.13q

15 (fat) �1622.26 �1631.66 �1612.62 �1624.22 �1586.70 �1596.68

p0.14q p0.14q p0.13q p0.13q p0.12q p0.13q

5 (heavy) �1605.77 �1616.95 �1600.18 �1611.05 �1579.65 �1593.11

p0.15q p0.14q p0.14q p0.13q p0.12q p0.12q

2.1 (heavy) �1622.31 �1629.38 �1618.37 �1630.84 �1602.76 �1615.60

p0.15q p0.15q p0.14q p0.12q p0.11q p0.12q

Notes: Numerical standard errors are reported in parentheses. All estimates are obtained using 15 reduced TaRB-MH runs
under the benchmark setting (p � 0.7, ω � 0.5), including 7 runs for the structural parameters and 8 runs for the volatility
parameters. 10,000 posterior draws are made for each reduced run.

Two aspects of the marginal likelihood estimates reported in Table 1 are worth highlighting. First,

the data systematically prefer regime-M over regime-F in all cases, which corroborates the regime ranking

found by Leeper, Traum, and Walker (2017) with Gaussian shocks and constant volatility. The small

numerical standard errors point to the numerical accuracy of the marginal likelihood estimates. Second,

reading the table by row (column) for each regime suggests that the data exhibit quite strong evidence in

favor of heavy-tailed shocks (persistent volatility process). Indeed, each feature is important for improving

the fit, even after accounting for the other, and the model that fits best is regime-M with ν � 5 and

φ � 0.95.

5.3 Simulation Evidence

This section furnishes additional evidence that demonstrates the reliability of the Chib (1995) method.

For each regime, we generate 20 data sets of 100 quarterly observations using the subsample parameter

estimates reported in Leeper, Traum, and Walker (2017), which are also reproduced in Table A.3 of

Appendix A. We then estimate three versions of each regime model that differ in the volatility specification.

Based on the marginal likelihood estimates, we count the number of times that each of the six regime-

volatility specifications is picked across the 20 simulated data sets. Table 2 summarizes the simulation

results.

The first data generating process assumes that regime-M is in place and the shock innovations follow
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Table 2: Number of picks for each model specification

DGP 1: regime-M with ν � 15 DGP 2: regime-F with φ � 0.5

ν regime-M regime-F φ regime-M regime-F

30 (light) 4 0 0.1 (weak) 0 9

15 (fat) 15 0 0.5 (moderate) 0 10

5 (heavy) 1 0 0.9 (strong) 0 1

Notes: The shock innovations have constant volatility under DGP 1 and follow Gaussian
distribution under DGP 2. The number of simulations performed for each DGP is 20.

a multivariate Student-t distribution with fat tails, i.e., ν � 15, and constant volatility. For each regime,

we fit the model with three degrees of freedom: ν � 30 (light), ν � 15 (fat), and ν � 5 (heavy). As can

be seen from the left panel of Table 2, the correct degrees of freedom is picked 15 times and the correct

policy regime is always picked. We have also computed the marginal likelihood by the MHM method as

implemented in Justiniano and Primiceri (2008). We find that nearly all data sets favor the lowest degrees

of freedom, i.e., ν � 5.

The second data generating process assumes that regime-F is in place and the shock innovations follow

a multivariate Gaussian distribution with moderate time-varying volatility, i.e., φ � 0.5. For each regime,

we fit the model with three degrees of persistence in volatility: φ � 0.1 (weak), φ � 0.5 (moderate), and

φ � 0.9 (strong). As shown in the right panel of Table 2, with only one exception, the data overwhelmingly

favor weak to moderate degrees of persistence in volatility under the true regime, which is preferred by

all data sets over the alternative regime. However, the computation based on the MHM method always

overestimates the importance of stochastic volatility and selects φ � 0.9. This result emerges despite the

fact that all data sets are relatively short-lived and generated by a model with ‘close’ to constant volatility

process.

6 Prediction

Because a good understanding of the current and future state of the economy is essential to develop and

implement sound economic policies, generating a predictive distribution for the future path of the economy

constitutes an important part of the policy analysis. To facilitate this goal, our MATLAB package also

produces, as a byproduct of the efficient TaRB-MH algorithm and the marginal likelihood computation

by the Chib (1995) method, the joint predictive distribution for all observable variables at any forecasting

horizon. For illustration purposes, Section 6.1 presents such a predictive distribution based on the best-
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fitting model that is selected by the marginal likelihood comparison. Using the predictive distribution for

wages as an example, Section 6.2 highlights the importance of allowing for non-Gaussian structural shocks

with time-varying variances in the context of out-of-sample prediction. Finally, Section 6.3 evaluates the

predictive performance by comparing the accuracy of point and density forecasts between a small-scale

DSGE model and our high-dimensional DSGE model.

6.1 Sampling the Predictive Distribution

Let y1:T be the data used to perform estimation, inference, and model selection. In addition, denote

yT�1:T�h the future path of the observables in the model economy. Then, the predictive distribution is

defined as

ppyT�1:T�h|y1:T q �

»
ppyT�1:T�h|y1:T , θq � ppθ|y1:T qdθ,

where the above integration is numerically approximated by first sampling the posterior ppθ|y1:T q a large

number of times by the TaRB-MH algorithm and then simulating a future path y
pgq
T�1:T�h for each parameter

draw. This amounts to moving model variables forward with θ and y1:T . We call ppyi,T�h|y1:T q the h-step-

ahead predictive distribution for the ith variable generated in period T .

Now we generate the one-quarter-ahead predictive distribution for all eight observables based on the

best-fitting model as measured by the marginal likelihood. Throughout the entire forecasting horizon,

this model operates under regime-M model and has Student-t shocks with stochastic volatilities. The first

predictive distribution is generated using observations from the third quarter of 1967 to the fourth quarter

of 2008, which is about six months before what the Business Cycle Dating Committee of the National

Bureau of Economic Research dates as the end of the Great Recession. The forecasting horizon starts from

the first quarter of 2009 and ends at the second quarter of 2014, covering the whole economic recovery

period from the Great Recession. Sampling the predictive distribution is specified in the following block

of code.

head = 50; % training sample size

tail = 22; % forecasting sample size

h = 1; % forecasting horizon

ltw17 = tarb(@tarb_spec ,ltw17 ,’datrange ’,[head tail],’pred’,h);

Figure 6 displays the median forecasts with 90% credible bands computed from the predictive distri-

bution of regime-M over the full forecasting horizon. Overall the model performs quite well in tracking the

recovery path of most observables.
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Figure 6: DSGE-model forecast of each observable. Notes: Each panel compares the one-quarter-ahead posterior
forecast of regime M with real data (black solid lines). Blue dashed lines denote median forecasts, while blue
shaded areas delineate 90% highest predictive density bands.

6.2 Importance of Non-Gaussian Shocks

As the marginal likelihood comparison reveals, one needs a flexible way to model structural shocks in

the model economy to explain the U.S. macroeconomic variables. The need of flexible distributional

assumptions, such as Student-t shocks with stochastic volatility, can also be seen from our generated

20



chib, shin & tan: high-dimensional dsge models

Figure 7: Predictive distribution and data for wages. Notes: Predictive distributions are constructed using data up
to 2008:Q4. The one-step-ahead prediction corresponds to 2009:Q1. The left panel plots 90% prediction intervals
of regime-M under Gaussian shocks with constant variance (labeled CV-N, thick line) and Student-t shocks with
time-varying variance (labeled SV-t, thin line). The right panel plots the time series of wages (solid line). Dashed
lines delineate two standard deviations from the mean for two sub-samples, i.e., pre- and post-2000.

predictive densities as well. The left panel of Figure 7 plots the 90% credible sets for wages based on two

predictive distributions: one under Gaussian shocks with constant variance and another under Student-t

shocks with time-varying variance. It is noticeable that the uncertainty bands are much wider for the

model under Student-t shocks with time-varying variance. To understand this stark difference, the right

panel of Figure 7 plots the time series of wages over the full sample. As pointed out by Champagne

and Kurmann (2013), wages in the U.S. have become more volatile over the past 20 years. For example,

the standard deviation of wages was 0.55 between 1955:Q1 and 1999:Q4, and 1.05 between 2000:Q1 and

2014:Q2. The heightened volatility of wages after 2000 is captured by the model with stochastic volatility,

which adaptively widens the predictive distribution for wages. On the other hand, the model with constant

variance misses this important change in volatility. In turn, its predictive distribution of wages is too

narrow, underestimating the uncertainty in the future path of wages. In general, allowing for time-varying

volatility produces similar improvements in the quality of DSGE-based interval and density forecasts

(see, e.g., Diebold, Schorfheide, and Shin, 2017). Thus, we expect that our toolbox, by making it easy to

incorporate non-Gaussian errors and time-varying variances, will be useful for researchers and policymakers

interested in better out-of-sample performance of DSGE models.
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Table 3: Point forecast comparison, RMSE

Model h � 1Q h � 2Q h � 4Q h � 8Q

(a) Consumption growth

Small-scale 0.32 0.28 0.25 0.28

Regime-M 0.44 (0.06) 0.48 (0.20) 0.50 (0.22) 0.48 (0.12)

Regime-F 0.40 (0.23) 0.39 (0.16) 0.36 (0.38) 0.37 (0.11)

(b) Inflation rate

Small-scale 0.26 0.32 0.46 0.58

Regime-M 0.24 (0.40) 0.28 (0.31) 0.37 (0.12) 0.44 (0.04)

Regime-F 0.34 (0.00) 0.53 (0.08) 0.86 (0.10) 1.14 (0.14)

(c) Federal funds rate

Small-scale 0.21 0.38 0.64 0.94

Regime-M 0.06 (0.00) 0.12 (0.01) 0.19 (0.01) 0.42 (0.01)

Regime-F 0.06 (0.00) 0.12 (0.02) 0.18 (0.02) 0.22 (0.01)

Notes: Each entry reports the RMSE based on the point forecast with the p-value of Diebold-Mariano (DM) tests of equal
MSE in parentheses, obtained using the fixed-b critical values. The standard errors entering the DM statistics are computed
using the equal-weighted cosine transform (EWC) estimator with the truncation rule recommended by Lazarus, Lewis, Stock,
and Watson (2018).

6.3 Predictive Performance Comparison

Although regime-M yields a higher marginal likelihood relative to regime-F, one may still be interested in

knowing how the two policy regimes compare in terms of the quality of point and density forecasts over

the forecasting horizon. It is also interesting to compare the forecasts from a medium-scale DSGE model

with those from a small-scale one when both models are equipped with Student-t shocks and stochastic

volatility. Specifically, we compare the point and density forecasts generated from regimes M and F, and a

small-scale DSGE model described in Appendix B. Starting from the first quarter of 2009, we recursively

estimate the three models and generate one-quarter-ahead to two-year-ahead point and density forecasts

until the second quarter of 2014, which results in 22 quarters of evaluation points for the one-quarter-ahead

prediction. Since the small-scale model contains fewer observables, our evaluation exercise only considers

the common set of observables: consumption growth, inflation rate, and federal funds rate. The aim of

this comparison is to get information about the strengths and weaknesses of DSGE model elaborations.
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Table 4: Density forecast comparison, average CRPS

Model h � 1Q h � 2Q h � 4Q h � 8Q

(a) Consumption growth

Small-scale 0.21 0.2 0.19 0.2

Regime-M 0.26 (0.08) 0.28 (0.28) 0.29 (0.31) 0.28 (0.20)

Regime-F 0.23 (0.40) 0.22 (0.41) 0.21 (0.72) 0.22 (0.46)

(b) Inflation rate

Small-scale 0.15 0.18 0.26 0.34

Regime-M 0.14 (0.48) 0.17 (0.53) 0.23 (0.29) 0.28 (0.11)

Regime-F 0.20 (0.00) 0.31 (0.03) 0.52 (0.05) 0.69 (0.08)

(c) Federal funds rate

Small-scale 0.13 0.24 0.43 0.67

Regime-M 0.04 (0.00) 0.07 (0.02) 0.13 (0.01) 0.27 (0.01)

Regime-F 0.04 (0.00) 0.07 (0.02) 0.12 (0.02) 0.19 (0.01)

Notes: Each entry reports the average CRPS over the evaluation period with the p-value of Diebold-Mariano (DM) tests
of equal CRPS in parentheses, obtained using the fixed-b critical values. The standard errors entering the DM statistics are
computed using the equal-weighted cosine transform (EWC) estimator with the truncation rule recommended by Lazarus,
Lewis, Stock, and Watson (2018).

In each model, for each observable and forecasting horizon, the point prediction is the mean of the

corresponding predictive distribution. Let pyi,t�h|t denote the h-step-ahead point prediction for the ith

variable generated at time t. To compare the quality of point forecasts, we report the root mean squared

error (RMSE) for the point prediction

RMSEppyi,t�h|t, yi,t�hq �
gffe 1

22 � h

2014:Q2�h¸
t�2009:Q1

�
yi,t�h � pyi,t�h|t�2

,

where 2014:Q2�h denotes h-quarters before 2014:Q2 and yi,t�h is the actual value for the ith variable at

time t � h. The model with a smaller RMSE is preferred as the smaller forecast error is desirable. To

compare the precision of predictive densities, we compute the continuous ranked probability score (CRPS),

which is defined as

CRPSpFi,t�h|tpzq, yi,t�hq �

»
R

�
Fi,t�h|tpzq � 1tyi,t�h ¤ zu

�2
dz,
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where Fi,t�h|tpzq is the h-step-ahead predictive cumulative distribution of the ith variable generated at

time t. The CRPS is one of the proper scoring rules, and the predictive distribution with a smaller CRPS

is preferred as this measure can be viewed as the divergence between the given predictive distribution and

the unattainable oracle predictive distribution that puts a probability mass only on the realized value.

Tables 3 and 4 report the RMSE and average CRPS, respectively, of consumption growth, inflation rate,

and federal funds rate based on all three models.

Forecasts from the medium-scale models are significantly more accurate for the federal funds rate at all

horizons. On the other hand, forecasts from the small-scale model are more accurate for the consumption

growth at all horizons, although the difference is only statistically significant at the one-quarter-ahead

horizon. The major difference between regimes M and F lies in the inflation forecasts, and the model

under regime-M produces forecasts with lower RMSEs (CRPSs). The RMSE (CRPS) gaps get wider as

the forecasting horizon extends, and the RMSE (CRPS) from regime-M becomes more than half of that

from regime-F. In contrast, the forecasts from regime-F fare slightly better for the consumption growth at

all horizons and are most accurate for the federal funds rate at the two-year-ahead horizon.

In sum, there is no clear winner in this comparison. The small-scale model performs better for forecast-

ing consumption growth. The medium-scale model, on the other hand, performs the best under regime-M

for forecasting the inflation rate but does not generate better forecasts under regime-F except for forecast-

ing the federal funds rate in the long run. Although the evaluation period is too short-lived to draw a

definite conclusion, the results from this out-of-sample forecasting exercise indicate that there is still room

for improvement, even for the more complex models.

7 Concluding Remarks

We have given pointers on the fitting and comparison of high-dimensional DSGE models with latent

variables and shown that the TaRB-MH algorithm of Chib and Ramamurthy (2010) allows for the efficient

estimation of such models. We emphasize the importance of training sample priors, which is new in the

DSGE context, and the use of the Student-t, as opposed to the normal family, as the prior distribution for

location-type parameters. In addition, we show that the method of Chib (1995) and Chib and Jeliazkov

(2001), in conjunction with a parallel implementation of the required reduced MCMC runs, can be used

to get reliable and fast estimates of the marginal likelihood. With the help of a user-friendly MATLAB

package, these methods can be readily employed in academic and central bank applications to conduct

DSGE model comparisons and to generate point and density forecasts. Finally, in ongoing work, we
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are applying this toolkit, without modification and any erosion in performance, to open economy DSGE

models that contain more than twice as many parameters and latent variables as the model showcased in

this paper. Findings from this analysis will be reported elsewhere.
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Appendix

Siddhartha Chib, Minchul Shin, and Fei Tan

Appendix A Leeper-Traum-Walker Model

A.1 Linearized System

Unless otherwise noted, we let x̂t � lnxt � lnx denote the log-deviation of a generic variable xt from its

steady state x. We also divide a non-stationary variable Xt by the level of technology At and express the

detrended variable as xt � Xt{At.

A.1.1 Firms

The production sector consists of firms that produce intermediate and final goods. A perfectly com-

petitive final goods producer uses intermediate goods supplied by a continuum of intermediate goods

producers indexed by i on the interval r0, 1s to produce the final goods. The production technology

Yt ¤
�³1

0
Ytpiq

1{p1�ηpt qdi
	1�ηpt

is constant-return-to-scale, where ηpt is an exogenous price markup shock, Yt is

the aggregate demand of final goods, and Ytpiq is the intermediate goods produced by firm i.

Each intermediate goods producer follows a production technology Ytpiq � Ktpiq
α
�
AtL

d
t piq

�1�α
�AtΩ,

where Ktpiq and Ldt piq are the capital and the amount of “packed” labor input rented by firm i at time

t, and 0   α   1 is the income share of capital. At is the labor-augmenting neutral technology shock,

and its growth rate uat � lnpAt{At�1q equals γ ¡ 0 when At evolves along the balanced growth path. The

parameter Ω ¡ 0 represents the fixed cost of production.

Intermediate goods producers maximize their profits in two stages. First, they take the input prices,

i.e., nominal wage Wt and nominal rental rate of capital Rk
t , as given and rent Ldt piq and Ktpiq in perfectly

competitive factor markets. Second, they choose the prices that maximize their discounted real profits.

Here we introduce the Calvo pricing mechanism for nominal price rigidities. Specifically, a fraction 0  

ωp   1 of firms cannot change their prices each period. All other firms can only partially index their prices

by the rule Ptpiq � Pt�1piq
�
π
χp
t�1π

1�χp
�
, where Pt�1piq is indexed by the geometrically weighted average

of past inflation πt�1 and steady state inflation π. The weight 0   χp   1 controls the degree of partial

indexation.

The production sector can be summarized by four log-linearized equilibrium equations in terms of six

parameters pα,Ω, β, ωp, χp, η
pq, seven endogenous variables pŷt, k̂t, L̂t, r̂

k
t , ŵt, xmct, π̂tq, and one exogenous
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shock ûpt :

Production function: ŷt �
y � Ω

y

�
αk̂t � p1 � αqL̂t

�
(A.1)

Capital-labor ratio: r̂kt � ŵt � L̂t � k̂t (A.2)

Marginal cost: xmct � αr̂kt � p1 � αqŵt (A.3)

Phillips equation: π̂t �
β

1 � βχp
Etπ̂t�1 �

χp
1 � βχp

π̂t�1 � κpxmct � ûpt (A.4)

where κp � rp1� βωpqp1� ωpqs{rωpp1� βχpqs, η̂
p
t � lnp1� ηpt q � lnp1� ηpq, η̂pt is normalized to ûpt � κpη̂

p
t ,

and Et represents mathematical expectation given information available at time t.

A.1.2 Households

The economy is populated by a continuum of households indexed by j on the interval r0, 1s. Each opti-

mizing household j derives utility from composite consumption C�
t pjq, relative to a habit stock defined in

terms of lagged aggregate composite consumption hC�
t�1 where 0   h   1. The composite consumption

consists of private Ctpjq and public Gt consumption goods, i.e., C�
t pjq�Ctpjq � αGGt, where αG governs

the degree of substitutability of the consumption goods. Each household j also supplies a continuum of

differentiated labor services Ltpj, lq where l P r0, 1s. Households maximize their expected lifetime utility

E0

8°
t�0

βtubt
�
lnpC�

t pjq � hC�
t�1q � Ltpjq

1�ξ{p1 � ξq
�
, where 0   β   1 is the discount rate, ξ ¡ 0 is the inverse

of Frisch labor supply elasticity, and ubt is an exogenous preference shock.

Households have access to one-period nominal private bonds Bs,t that pay one unit of currency at time

t� 1, sell at price R�1
t at time t, and are in zero net supply. They also have access to a portfolio of long-

term nominal government bonds Bt, which sell at the price PB
t at time t. Maturity of these zero-coupon

bonds decays at the constant rte 0   ρ   1 to yield the average duration p1 � ρβq�1. Households receive

bond earnings, labor and capital rental income, lump-sum transfers from the government Zt, and profits

from firms Πt. They spend income on consumption, investment It, and bonds. The nominal flow budget

constraint for household j is given by

p1 � τCqPtCtpjq � PtItpjq � PB
t Btpjq �R�1

t Bs,tpjq � p1 � ρPB
t qBt�1pjq �Bs,t�1pjq

�p1 � τLq

» 1

0

WtplqLtpj, lqdl � p1 � τKqRk
t vtpjqK̄t�1pjq � ΨpvtqK̄t�1pjq � PtZtpjq � Πtpjq,

where Wtplq is the nominal wage charged by the household for type l labor service. Consumption and labor

income are, in nominal terms, subject to a sales tax τC ¡ 0 and a labor income tax τL ¡ 0, respectively.
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Effective capital Kpjq, which is subject to a rental income tax τK ¡ 0, is related to physical capital

K̄pjq via Ktpjq � vtpjqK̄t�1pjq, where vtpjq is the utilization rate of capital chosen by households and

incurs a nominal cost of Ψpvtq per unit of physical capital.11 Physical capital is accumulated by households

according to K̄tpjq � p1 � δqK̄t�1pjq � uit

�
1 � S

�
Itpjq
It�1pjq

		
Itpjq, where 0   δ   1 is the depreciation rate,

Sp�qIt is an investment adjustment cost, and uit is an exogenous investment-specific efficiency shock.12

There are perfectly competitive labor packers that hire a continuum of differentiated labor inputs Ltplq,

pack them to produce an aggregate labor service, and then sell it to intermediate goods producers. The

labor packer uses the Dixit-Stiglitz aggregator for labor aggregation Ldt �
�³1

0
Ltplq

1{p1�ηwt qdl
	1�ηwt

, where

Ldt is the aggregate labor service demanded by intermediate goods producers, Ltplq is the lth type labor

service supplied by all the households and demanded by the labor packer, and ηwt is an exogenous wage

markup shock.

For the optimal wage setting problem, we adopt the Calvo-pricing mechanism for nominal wage rigidi-

ties. Specifically, of all the types of labor services within each household, a fraction 0   ωw   1 of wages

cannot be changed each period. The wages for all other types of labor services follow a partial indexation

rule Wtplq � Wt�1plq
�
πt�1e

uat�1

�χw pπeγq1�χw , where Wt�1plq is indexed by the geometrically weighted av-

erage of the growth rates of nominal wage in the past period and in the steady state, respectively. The

weight 0   χw   1 controls the degree of partial indexation.

The household sector can be summarized by 10 log-linearized equilibrium equations in terms of 17 pa-

rameters ph, γ, αG, ρ, τ
C , τK , τL, ψ, β, γ, s, δ, ξ, ωw, χw, ρa, η

wq, 15 endogenous variables pλ̂t, ĉ
�
t , ĉt, ĝt, R̂t, π̂t, P̂

B
t , r̂

k
t , v̂t, q̂t, ît, k̂t,

ˆ̄kt, ŵt, L̂tq,

and four exogenous shocks pûat , û
b
t , û

i
t, û

w
t q:

Optimal consumption: λ̂t � ûbt �
h

eγ � h
ûat �

eγ

eγ � h
ĉ�t �

h

eγ � h
ĉ�t�1 �

τC

1 � τC
τ̂Ct (A.5)

Composite consumption: ĉ�t �
c

c� αGg
ĉt �

αGg

c� αGg
ĝt (A.6)

Consumption Euler: λ̂t � R̂t � Etλ̂t�1 � Etπ̂t�1 � Etûat�1 (A.7)

Bond pricing: R̂t � P̂B
t �

ρPB

1 � ρPB
EtP̂B

t�1 �
ρ

R
EtP̂B

t�1 (A.8)

Optimal capital utilization: r̂kt �
τK

1 � τK
τ̂Kt �

ψ

1 � ψ
v̂t (A.9)

Optimal physical capital: q̂t � Etλ̂t�1 � λ̂t � Etûat�1 � βe�γp1 � τKqrkEtr̂kt�1

�βe�γτKrkEtτ̂Kt�1 � βe�γp1 � δqEtq̂t�1 (A.10)

11Define the parameter 0   ψ   1 such that Ψ2p1q
Ψ1p1q �

ψ
1�ψ .

12Sp�q satisfies S1peγq � 0 and S2peγq � s ¡ 0.
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Optimal investment: ît � �
1

1 � β
ûat �

1

p1 � βqse2γ
q̂t � ûit �

β

1 � β
Etît�1

�
β

1 � β
Etûat�1 �

1

1 � β
ît�1 (A.11)

Effective capital: k̂t � v̂t �
ˆ̄kt�1 � ûat (A.12)

Capital law of motion: ˆ̄kt � r1 � p1 � δqe�γspp1 � βqse2γûit � îtq

�p1 � δqe�γpˆ̄kt�1 � ûat q (A.13)

Wage equation: ŵt � �κw

�
ŵt � ξL̂t � ûbt � λ̂t �

τL

1 � τL
τ̂Lt

�
�

1

1 � β
ŵt�1

�
β

1 � β
Etŵt�1 �

χw
1 � β

π̂t�1 �
1 � βχw

1 � β
π̂t �

β

1 � β
Etπ̂t�1

�
χw

1 � β
ûat�1 �

1 � βχw � ρaβ

1 � β
ûat � ûwt (A.14)

where κw � rp1�βωwqp1�ωwqs{rωwp1�βqp1�p1{ηw�1qξqs, η̂wt � lnp1�ηwt q� lnp1�ηwq, η̂wt is normalized

to ûwt � κwη̂
w
t , ˆ̃uit is normalized to ûit �

1
p1�βqse2γ

ˆ̃uit, and λt is the Lagrange multiplier associated with the

household’s budget constraint. We set the capital, labor, and consumption tax rates to their constant

steady states so that τ̂Kt � τ̂Lt � τ̂Ct � 0.

A.1.3 Monetary and Fiscal Policy

The central bank implements monetary policy according to a Taylor-type interest rate rule. The govern-

ment collects revenues from capital, labor, and consumption taxes, and sells nominal bond portfolios to

finance its interest payments and expenditures. The fiscal choices must satisfy the government budget

constraint PB
t Bt � τKRK

t Kt � τLWtLt � τCPtCt � p1� ρPB
t qBt�1 � PtGt � PtZt, where we have assumed

the lump sum transfers are equal across households, i.e.,
³1
0
Ztpjqdj � Zt, and fiscal instruments follow the

simple rules specified below.

The government sector can be summarized by seven log-linearized equilibrium equations in terms of thir-

teen parameters pτC , τK , τL, β, γ, ρ, ρr, ρg, ρz, φπ, φy, γg, γzq, sixteen endogenous variables pb̂t, r̂
k
t , k̂t, ŵt, L̂t,

ĉt, π̂t, P̂
B
t , ĝt, ẑt, ŷt, ît, v̂t, R̂t, ŝ

b
t , ŝtq, and four exogenous shocks pûat , û

m
t , û

g
t , û

z
t q:

Government budget constraint:
b

y
b̂t � τKrk

k

y

�
τ̂Kt � r̂kt � k̂t

�
� τLw

L

y

�
τ̂Lt � ŵt � L̂t

�
�τC

c

y
pτ̂Ct � ĉtq �

1

β

b

y

�
b̂t�1 � π̂t � P̂B

t�1 � ûat

�
�
b

y

ρ

πeγ
P̂B
t �

g

y
ĝt �

z

y
ẑt (A.15)
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Aggregate resource constraint: ŷt �
c

y
ĉt �

i

y
ît �

g

y
ĝt � ψ1p1q

k

y
v̂t (A.16)

Monetary policy rule: R̂t � ρrR̂t�1 � p1 � ρrq
�
φππ̂t � φyŷt

�
� ûmt (A.17)

Fiscal policy rule: ĝt � ρgĝt�1 � p1 � ρgqγgŝ
b
t�1 � ûgt (A.18)

ẑt � ρz ẑt�1 � p1 � ρzqγz ŝ
b
t�1 � ûzt (A.19)

Real primary surplus: ŝt � τKrk
k

s

�
τ̂Kt � r̂kt � k̂t

	
� τLw

L

s

�
τ̂Lt � ŵt � L̂t

	
�τC

c

s
pτ̂Ct � ĉtq �

g

s
ĝt �

z

s
ẑt (A.20)

Debt-to-output ratio: ŝbt � b̂t � ŷt (A.21)

where sbt�1 �
PBt�1Bt�1

Pt�1Yt�1
denotes the market value of the debt-to-GDP ratio, s � τKrkk�τLwL�τCc�g�z,

0   ρr, ρg, ρz   1 measure policy smoothness, φπ, φy ¡ 0 and γg, γz are policy parameters, and pûmt , û
g
t , û

z
t q

are exogenous policy shocks.

A.1.4 Exogenous Processes

All exogenous shocks follow autoregressive processes

ûst � ρesû
s
t�1 � εst , s P ta, b, i, p, w,m, g, zu, (A.22)

where ρes P p0, 1q and the innovations εst are serially uncorrelated and independent of each other at all

leads and lags.

A.2 Original System

Since the economy features a stochastic trend induced by the permanent technology shock At, some vari-

ables are not stationary. To induce stationarity, we therefore detrend these variables as: yt �
Yt
At

, c�t �
C�t
At

,

ct �
Ct
At

, kt �
Kt
At

, k̄t �
K̄t
At

, it �
It
At

, gt �
Gt
At

, zt �
Zt
At

, bt �
PBt Bt
PtAt

, wt �
Wt

PtAt
, λt � ΛtAt. The model’s

equilibrium system in terms of the detrended variables can be summarized as follows.

Production function:

yt∆
p
t � kαt pL

d
t q

1�α � Ω (A.23)
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Capital-labor ratio:

kt
Ldt

�
wt
rkt

α

1 � α
(A.24)

Real marginal cost:

mct � p1 � αqα�1α�αprkt q
αw1�α

t (A.25)

Intermediate goods producer’s optimal price:

Et

�
8̧

k�0

pβωpq
kλt�kȳt�k

�
π�t

k¹
s�1

�πt�s�1

π

	χp π

πt�s
� p1 � ηpt�kqmct�k

��
� 0 (A.26)

Evolution of aggregate price index:

1 � p1 � ωpqpπ
�
t q

� 1

η
p
t � ωp

��πt�1

π

	χp π
πt

�� 1

η
p
t

(A.27)

Optimal consumption:

λtp1 � τCt q �
ubt

c�t � θc�t�1e
�uat

(A.28)

Composite consumption:

c�t � ct � αGgt (A.29)

Consumption Euler equation:

λt � βRtEt
�
λt�1e

�uat�1

πt�1

�
(A.30)

Bond pricing relation:

PB
t � Et

�
1 � ρPB

t�1

Rt

�
(A.31)

Optimal capital utilization:

p1 � τKt qr
k
t � ψ1pvtq (A.32)
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Optimal physical capital:

qt � βEt
�
λt�1

λt
e�u

a
t�1
�
p1 � τKt�1qr

k
t�1vt�1 � ψpvt�1q � p1 � δqqt�1

��
(A.33)

where qt is the real price of capital in terms of consumption goods (i.e., Tobin’s Q).

Optimal investment:

1 � qtũ
i
t

�
1 � S

�
ite

uat

it�1



� S 1

�
ite

uat

it�1



ite

uat

it�1



� βEt

�
qt�1

λt�1e
�uat�1

λt
ũit�1S

1

�
it�1e

uat�1

it


�
it�1e

uat�1

it


2
�

(A.34)

Effective capital:

kt � vtk̄t�1e
�uat (A.35)

Law of motion for capital:

k̄t � p1 � δqe�u
a
t k̄t�1 � ũit

�
1 � S

�
ite

uat

it�1




it (A.36)

Optimal wage:

Et

�
8̧

k�0

pβωwq
kλt�kL̄t�k

�
w�
t

k¹
s�1

�
πt�s�1e

uat�s�1

πeγ


χw πeγ

πt�se
uat�s

�
p1 � ηwt�kqu

b
t�kL̄

ξ
t�k

p1 � τLt�kqλt�k

��
� 0 (A.37)

where

L̄t�k �

�
w�
t

wt�k

k¹
s�1

�
πt�s�1e

uat�s�1

πeγ


χw πeγ

πt�se
uat�s

�� 1�ηwt�k
ηw
t�k

Ldt�k (A.38)

Evolution of aggregate wage index:

w
� 1
ηwt

t � p1 � ωwqpw
�
t q

� 1
ηwt � ωw

��
πt�1e

uat�1

πeγ


χw � πeγ

πteu
a
t



wt�1

�� 1
ηwt

(A.39)

Government budget constraint:

bt � τKt r
k
t kt � τLt wtLt � τCt ct �

1 � ρPB
t

PB
t�1

bt�1

πteu
a
t
� gt � zt (A.40)
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Aggregate resource constraint:

yt � ct � it � gt � ψpvtqk̄t�1e
�uat (A.41)

A.3 Steady States

To solve for the steady states, we calibrate β � 0.99, α � 0.33, δ � 0.025, the average maturity of gov-

ernment bond portfolio AD � 20, ηw � ηp � 0.14, g{y � 0.11, b{y � 1.47, τC � 0.023, τK � 0.218, and

τL � 0.186. By assumption, v � 1, ψpvq � 0, and Speγq � S 1peγq � 0. The remaining steady states can be

solved as follows.

From AD:

ρ �

�
1 �

1

AD



1

β
(A.42)

From (A.30):

R �
eγπ

β
(A.43)

From (A.31):

PB �
β

eγπ � ρβ
(A.44)

From ũi � 1 and (A.34):

q � 1 (A.45)

From (A.33):

rk �

eγ

β
� p1 � δq

1 � τK
(A.46)

From (A.32):

ψ1p1q � rkp1 � τKq (A.47)
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From (A.26):

mc �
1

1 � ηp
(A.48)

From (A.25):

w �
�
mcp1 � αq1�αααprkq�α

� 1
1�α (A.49)

From (A.24):

k

L
�

α

1 � α

w

rk
(A.50)

From ∆p � 1, the final goods producer’s zero profit condition, and (A.23):

Ω

L
�

�
k

L


α
� rk

k

L
� w (A.51)

From (A.51):

y

L
�

�
k

L


α
�

Ω

L
(A.52)

From (A.35):

k̄ � keγ (A.53)

From (A.36):

i

L
�
�
1 � p1 � δqe�γ

�
eγ
k

L
(A.54)

From (A.41):

c

L
�
y

L

�
1 �

g

y



�
i

L
(A.55)

From (A.40):

z

L
�

��
1 �

R

πeγ



b

y
�
g

y

�
y

L
� τC

c

L
� τLw � τKrk

k

L
(A.56)
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From (A.29):

c�

L
�
c

L
� αG

g

y

y

L
(A.57)

From (A.37) and (A.39):

L �

�
wp1 � τLq

p1 � τCqp1 � ηwq

1

p1 � θe�γq c
�

L

� 1
ξ�1

(A.58)

from which all level variables can be calculated from the steady state ratios given above.

A.4 Taking Model to Data

Define the private sector’s one-step-ahead endogenous forecast errors as

ηxt � x̂t � Et�1x̂t, x P tλ, π, i, q, rk, w, PBu. (A.59)

The model consists of 36 log-linearized equilibrium equations and can be cast into the rational expectations

system �������
Γee0 Γez0 Γed0

0 I 0

r0, Is 0 0

�������loooooooooomoooooooooon
Γ0pθ

Sq
p36�36q

�������
xet

xzt

xdt

�������loomoon
xt

p36�1q

�

�������
Γee1 Γez1 0

0 P 0

0 0 I

�������loooooooomoooooooon
Γ1pθ

Sq
p36�36q

�������
xet�1

xzt�1

xdt�1

�������loomoon
xt�1
p36�1q

�

�������
0

I

0

�������loomoon
Ψ

p36�8q

εt
p8�1q

�

�������
0

0

I

�������loomoon
Π

p36�7q

ηt
p7�1q

, (A.60)

where I denotes the identity matrix, P � diag
�
ρea, ρeb, ρei, ρep, ρew, ρem, ρeg, ρez

�
,

xet
p21�1q

� rŷt, ĉ
�
t , ĉt, k̂t,

ˆ̄kt, v̂t, L̂t, xmct, b̂t, ĝt, ẑt, R̂t, ŝ
b
t , ŝt, λ̂t, π̂t, ı̂t, q̂t, r̂

k
t , ŵt, P̂

B
t s

are the endogenous variables,

xzt
p8�1q

� rûat , û
b
t , û

i
t, û

p
t , û

w
t , û

m
t , û

g
t , û

z
t s

are the exogenous shocks,

xdt
p7�1q

� rEtλ̂t�1,Etπ̂t�1,Etı̂t�1,Etq̂t�1,Etr̂kt�1,Etŵt�1,EtP̂B
t�1s
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are the conditional expectations of the last seven elements of xet�1,

εt
p8�1q

� rεat , ε
b
t , ε

i
t, ε

p
t , ε

w
t , ε

m
t , ε

g
t , ε

z
t s
1

are the shock innovations, and

ηt
p7�1q

� rηλt , η
π
t , η

i
t, η

q
t , η

rk

t , η
w
t , η

PB

t s1

are the forecast errors.

Here, the first row of (A.60) stacks the 21 structural equations (A.1)–(A.21), the second row stacks

the 8 shock processes (A.22), and the third row stacks the 7 definitional equations (A.59). The unknown

parameters θ consist of the structural parameters

θS
p27�1q

� r100γ, ξ, h, αG, ψ, s, ωp, ωw, χp, χw, φπ, φy, γg, γz, ρr, ρg, ρz, ρea, ρeb, ρei, ρep, ρew, ρem, ρeg, ρez, L̄, π̄s

and the volatility parameters

θV
p24�1q

� rµa, µb, µi, µp, µw, µm, µg, µz, φa, φb, φi, φp, φw, φm, φg, φz, ω
2
a, ω

2
b , ω

2
i , ω

2
p, ω

2
w, ω

2
m, ω

2
g, ω

2
zs.

Conditional on θS and independent of the volatility processes, the above structural system can be solved

by the procedure of Sims (2002) to deliver a linear solution of the form

xt � GpθSq
p36�36q

xt�1 �MpθSq
p36�8q

εt, (A.61)

which is then estimated over a vector yt of 8 observables stacked in y1:T � ry1, . . . , yT s
1, including log

differences (denoted dl) of consumption, investment, real wage, government spending, and government

debt; log (denoted l) hours worked, inflation, and nominal interest rate.13 The observables are linked to

13See the Online Appendix of Leeper, Traum, and Walker (2017) for details on data construction.
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the model variables xt via the following measurement equations:�������������������������

dlConst

dlInvt

dlWaget

dlGovSpendt

dlGovDebtt

lHourst

lInflt

lFedFundst

�������������������������looooooooomooooooooon
yt

�

�������������������������

100γ

100γ

100γ

100γ

100γ

L̄

π̄

π̄ � 100pγ{β � 1q

�������������������������loooooooooooomoooooooooooon
D

�

�������������������������

ĉt � ĉt�1 � ûat

ît � ît�1 � ûat

ŵt � ŵt�1 � ûat

ĝt � ĝt�1 � ûat

b̂t � b̂t�1 � ûat

L̂t

π̂t

R̂t

�������������������������loooooooooomoooooooooon
Zxt

. (A.62)

Let λ1:T � rλ1, . . . , λT s
1 contain all non-Gaussian latent states and h1:T � rh11, . . . , h

1
T s

1 contain all

nonlinear latent states. In our empirical application (T � 166), λ1:T and h1:T have a total of 1,494 elements.

In conjunction with the shock volatility specifications (2.2) and (2.3), equations (A.61) and (A.62) form

a state space representation of the DSGE model whose conditional likelihood function fpy1:T |θ, λ1:T , h1:T q

can be evaluated with the Kalman filter.

A.5 Tables and Figures

• Table A.1 lists the marginal prior distributions and the true values for the high-dimensional DSGE

model under regime-M.

• Table A.2 summarizes the posterior parameter estimates for the model of best fit.

• Table A.3 reproduces the subsample posterior parameter estimates reported in Leeper, Traum, and

Walker (2017), which are used to generate the simulated data sets in Section 5.3.

• Figures A.1–A.2 display the autocorrelation function for each model parameter.

• Figures A.3–A.4 compare the model’s estimated parameters and volatilities, respectively, with their

true values.
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Appendix B Small-Scale DSGE Model

A log-linear approximation to the model’s equilibrium conditions around the steady state can be summa-

rized as follows:

Dynamic IS equation: ĉt � Etĉt�1 �
1

τ
pR̂t � Etπ̂t�1 � Etẑt�1q (B.1)

New Keynesian Phillips curve: π̂t � βEtπ̂t�1 � κĉt (B.2)

Monetary policy: R̂t � ρRR̂t�1 � p1 � ρRqrψ1π̂t � ψ2pĉt � ĝtqs � εR,t (B.3)

Technology shock: ẑt � ρz ẑt�1 � εz,t (B.4)

Government spending shock: ĝt � ρgĝt�1 � εg,t (B.5)

Here, τ ¡ 0 is the coefficient of relative risk aversion, 0   β   1 is the discount factor, κ ¡ 0 is the slope

of the new Keynesian Phillips curve, ψ1 ¡ 0 and ψ2 ¡ 0 are the policy rate responsive coefficients, and

0 ¤ ρR, ρz, ρg   1. Moreover, ct is the detrended consumption, πt is the inflation between periods t�1 and

t, Rt is the nominal interest rate, zt is an exogenous shock to the labor-augmenting technology that grows

on average at the rate γ, and gt is an exogenous government spending shock. Finally, the shock innovations

εt � rεR,t, εz,t, εg,ts
1 follow a multivariate Student-t distribution, i.e., εt � tνp0,Σtq, where Σt � diag

�
eht
�

and each element of ht � rhRt , h
z
t , h

g
t s
1 follows a stationary process

hst � p1 � φsqµs � φsh
s
t�1 � ηst , ηst � Np0, ω2

sq, s P tR, z, gu. (B.6)

The model is estimated over three observables, including log difference of consumption, log inflation, and

log nominal interest rate. The observables are linked to the model variables via the following measurement

equations, �������
dlConst

lInflt

lFedFundst

������� �

�������
γpQq

πpQq

πpQq � rpQq � γpQq

��������

�������
ĉt � ĉt�1 � ẑt

π̂t

R̂t

������� , (B.7)

where pγpQq, πpQq, rpQqq are connected to the model’s steady states via γ � 1�γpQq{100, β � 1{p1�rpQq{100q,

and π � 1 � πpQq{100. Table A.4 lists the marginal prior distributions for the small-scale DSGE model

parameters.
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Table A.1: Priors and true values for high-dimensional DSGE model parameters

Structural parameters Volatility parameters

Name Density p1, 2q DGP Name Density p1, 2q DGP

100γ N p0.40, 0.05q 0.25 µa tν p�7.0, 2.0q �4.6

ξ G p2.00, 0.50q 1.77 µb tν p�7.0, 2.0q �4.6

h B p0.50, 0.20q 0.99 µi tν p�7.0, 2.0q �4.6

αG U p�1.75, 1.75q �0.25 µp tν p�7.0, 2.0q �4.6

ψ B p0.60, 0.15q 0.16 µw tν p�7.0, 2.0q �4.6

s N p6.00, 1.50q 5.46 µm tν p�7.0, 2.0q �4.6

ωp B p0.50, 0.20q 0.92 µg tν p�7.0, 2.0q �4.6

ωw B p0.50, 0.20q 0.91 µz tν p�7.0, 2.0q �4.6

χp B p0.50, 0.20q 0.06 φa B p0.95, 0.01q 0.99

χw B p0.50, 0.20q 0.18 φb B p0.95, 0.01q 0.99

φπ, regime-M N p1.50, 0.20q 0.90 φi B p0.95, 0.01q 0.99

φπ, regime-F B p0.50, 0.15q n/a φp B p0.95, 0.01q 0.99

φy N p0.125, 0.05q 0.10 φw B p0.95, 0.01q 0.99

ρr B p0.50, 0.20q 0.71 φm B p0.95, 0.01q 0.99

γg, regime-M N p0.15, 0.10q 0.26 φg B p0.95, 0.01q 0.99

γz, regime-M N p0.15, 0.10q �0.11 φz B p0.95, 0.01q 0.99

ρg B p0.50, 0.20q 0.98 ω2
a IG-2 p2.00, 0.05q 0.10

ρz, regime-F B p0.50, 0.20q n/a ω2
b IG-2 p2.00, 0.05q 0.10

ρea B p0.50, 0.20q 0.23 ω2
i IG-2 p2.00, 0.05q 0.10

ρeb B p0.50, 0.20q 0.40 ω2
p IG-2 p2.00, 0.05q 0.10

ρei B p0.50, 0.20q 0.69 ω2
w IG-2 p2.00, 0.05q 0.10

ρep B p0.50, 0.20q 0.74 ω2
m IG-2 p2.00, 0.05q 0.10

ρew B p0.50, 0.20q 0.18 ω2
g IG-2 p2.00, 0.05q 0.10

ρem B p0.50, 0.15q 0.39 ω2
z IG-2 p2.00, 0.05q 0.10

ρeg B p0.50, 0.15q 0.13

ρez, regime-F B p0.50, 0.15q n/a Fixed parameters

L̄ N p468, 5.00q 481.12 Regime-M: ρz � 0.98, ρez � 0.80

π̄ N p0.75, 0.25q 0.60 Regime-F: γg � γz � 0

Notes: Density p1, 2q refer to Gamma (G), Normal (N), Beta (B), and Student-tν (ν � 2.1 degrees of freedom) distributions
with means and standard deviations indicated in parentheses; Uniform (U) distribution with lower and upper bounds; Inverse-

Gamma type-1 (IG-1) distribution with parameters ν and s, where ppσq9σ�ν�1 exp p� νs2

2σ2 q; Inverse-Gamma type-2 (IG-2)

distribution with parameters α and β, where ppω2q9pω2q�α�1 exp p� β
ω2 q. The effective priors are truncated at the boundary

of the determinacy region.
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Table A.2: Posterior summary of DSGE model parameters

Structural parameters Volatility parameters

Name Mean 90% HPD Ineff Name Mean 90% HPD Ineff

100γ 0.22 r0.16, 0.28s 4.4 µa �0.33 r�0.74, 0.08s 4.9

ξ 1.65 r0.77, 2.41s 12.3 µb 6.41 r5.73, 7.06s 69.0

h 0.99 r0.98, 0.99s 103.6 µi �0.93 r�1.56, �0.35s 5.8

αG �0.09 r�0.19, �0.00s 5.2 µp �5.55 r�6.02, �5.04s 9.9

ψ 0.20 r0.11, 0.29s 9.0 µw �3.63 r�4.27, �2.98s 13.7

s 7.35 r5.14, 9.57s 6.2 µm �4.59 r�5.46, �3.76s 2.7

ωp 0.91 r0.89, 0.94s 20.9 µg 0.79 r0.45, 1.18s 5.1

ωw 0.84 r0.79, 0.89s 13.6 µz 1.78 r1.09, 2.46s 43.0

χp 0.09 r0.01, 0.16s 6.3 φa 0.95 r0.94, 0.97s 2.0

χw 0.07 r0.02, 0.11s 3.4 φb 0.95 r0.93, 0.96s 2.0

φπ 1.00 r0.71, 1.31s 20.6 φi 0.95 r0.94, 0.97s 1.7

φy 0.17 r0.13, 0.22s 7.2 φp 0.95 r0.93, 0.97s 1.9

ρr 0.76 r0.70, 0.82s 15.7 φw 0.95 r0.93, 0.97s 1.7

γg 0.27 r0.16, 0.37s 17.8 φm 0.95 r0.94, 0.97s 2.0

γz �0.07 r�0.20, 0.07s 39.9 φg 0.95 r0.93, 0.96s 2.3

ρg 0.98 r0.97, 0.99s 12.0 φz 0.95 r0.93, 0.97s 2.0

ρea 0.24 r0.12, 0.35s 3.5 ω2
a 0.02 r0.01, 0.04s 15.0

ρeb 0.38 r0.26, 0.50s 4.5 ω2
b 0.02 r0.01, 0.04s 14.1

ρei 0.64 r0.54, 0.73s 15.1 ω2
i 0.05 r0.01, 0.10s 13.1

ρep 0.74 r0.66, 0.80s 24.0 ω2
p 0.03 r0.01, 0.06s 8.7

ρew 0.45 r0.35, 0.58s 31.1 ω2
w 0.05 r0.01, 0.08s 12.6

ρem 0.57 r0.46, 0.68s 16.1 ω2
m 0.10 r0.03, 0.17s 7.5

ρeg 0.06 r0.01, 0.11s 3.9 ω2
g 0.02 r0.01, 0.03s 24.9

L̄ 474.43 r473.31, 475.50s 23.9 ω2
z 0.03 r0.01, 0.05s 19.2

π̄ 0.27 r0.00, 0.47s 3.4

Notes: The posterior means and 90% highest probability density (HPD) intervals are computed using 10, 000 posterior
draws from the TaRB-MH algorithm. The estimated model has regime-M in place and Student-t shocks with ν � 5 degrees
of freedom.
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Table A.3: True values for DSGE model parameters

Name Regime-M Regime-F Name Regime-M Regime-F

100γ 0.34 0.27 ρea 0.23 0.30

ξ 1.78 2.25 ρeb 0.47 0.22

h 0.96 0.96 ρei 0.76 0.47

αG �0.24 �0.38 ρep 0.48 0.61

ψ 0.35 0.31 ρew 0.36 0.20

s 7.08 3.47 ρem 0.52 0.87

ωp 0.94 0.95 ρeg 0.16 0.29

ωw 0.81 0.74 ρez 0.80 0.90

χp 0.21 0.11 100σa 0.80 1.18

χw 0.19 0.06 100σb 14.54 16.95

φπ 1.34 0.19 100σi 0.44 1.30

φy 0.16 0.21 100σp 0.09 0.13

ρr 0.79 0.37 100σw 0.27 0.23

γg 0.25 0 100σm 0.15 0.21

γz �0.06 0 100σg 1.63 2.05

ρg 0.97 0.95 100σz 3.57 0.78

ρz 0.98 0.97

L̄ 470.67 468.98

π̄ 0.70 0.75

Notes: The DGPs under regimes M and F correspond to their post-Volcker (1955:Q1–1979:Q4) and pre-Volcker (1982:Q1–
2007:Q4) estimates reported in Leeper, Traum, and Walker (2017), respectively.
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Table A.4: Priors for small-scale DSGE model parameters

Structural parameters Volatility parameters

Name Density p1, 2q Name Density p1, 2q

τ G p2.00, 0.50q µR tν p�5.0, 2.0q

κ G p0.20, 0.10q µζ tν p�5.0, 2.0q

ψ1 N p1.50, 0.20q µg tν p�5.0, 2.0q

ψ2 G p0.125, 0.05q φR B p0.95, 0.01q

γpQq N p0.40, 0.05q φζ B p0.95, 0.01q

πpQq G p0.75, 0.25q φg B p0.95, 0.01q

ρR B p0.50, 0.20q ω2
R IG-2 p2.00, 0.05q

ρz B p0.50, 0.20q ω2
ζ IG-2 p2.00, 0.05q

ρg B p0.50, 0.20q ω2
g IG-2 p2.00, 0.05q

Notes: See Table A.1.
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Figure A.1: Autocorrelation function of each structural parameter. Notes: Red horizontal lines correspond to an
autocorrelation of 0.1.
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Figure A.2: Autocorrelation function of each volatility parameter. Notes: See Figure A.1.
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Figure A.3: Marginal prior and posterior distributions of each structural parameter. Notes: Each panel compares
the prior (red dashed line) with the posterior (shaded area). Vertical lines denote the true parameter values. The
kernel smoothed posterior densities are estimated using 10, 000 TaRB-MH draws.
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Figure A.4: Stochastic volatility of each shock innovation. Notes: Each panel compares the model’s estimated
log-variances with their true values (red solid line). Blue dashed lines denote median estimates, while shaded areas
delineate 90% highest posterior density bands.
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