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Abstract

Presently there is growing interest in DSGE models that have more parameters, endogenous

variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and

substantial additional complexities from non-Gaussian distributions and the incorporation of

time-varying volatility. The popular DYNARE software package, which has proved useful for

small- and medium-scale models is, however, not capable of handling such models, thus in-

hibiting the formulation and estimation of more realistic DSGE models. A primary goal of this

paper is to introduce a user-friendly MATLAB software program designed to reliably estimate

high-dimensional DSGE models. It simulates the posterior distribution by the tailored random

block Metropolis-Hastings (TaRB-MH) algorithm of Chib and Ramamurthy (2010), calculates

the marginal likelihood by the method of Chib (1995) and Chib and Jeliazkov (2001), and

includes various post-estimation tools that are important for policy analysis, for example, func-

tions for conducting impulse response and variance decomposition analyses, and point and

density forecasts. Another goal is to provide pointers on the fitting of these DSGE models.

An extended version of the new Keynesian model of Leeper, Traum and Walker (2017) that

has 51 parameters, 21 endogenous variables, 8 exogenous shocks, 8 observables, and 1,494 non-

Gaussian and nonlinear latent variables is considered in detail.
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1 Introduction

Over the past 20 years or so, dynamic stochastic general equilibrium (DSGE) models have become the main-

stay of macroeconomic policy analysis and forecasting. Presently there is growing interest in DSGE models

that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and

Wouters (2007) model and substantial additional complexities from non-Gaussian distributions, as in Chib

and Ramamurthy (2014) and Cúrdia, Del Negro and Greenwald (2014), and the incorporation of time-

varying volatility, as in Justiniano and Primiceri (2008).1 This is because these higher-dimensional DSGE

models are more realistic and have the potential to provide better statistical fit to the data. Despite wide

spread use of Bayesian estimation techniques, based on Markov chain Monte Carlo (MCMC) simulation

methods [see Chib and Greenberg (1995) and Herbst and Schorfheide (2016) for further details about these

methods], the estimation of high-dimensional DSGE models is challenging. The popular DYNARE software

package, which has proved useful for small- and medium-scale models is, however, currently not capable of

handling the preceding DSGE models, thus inhibiting the formulation, estimation and comparison of such

models for policy analysis and prediction.

A primary goal of this paper is to introduce a user-friendly MATLAB software program for estimating

high-dimensional DSGE models that contain Student-t shocks and stochastic volatility. Estimation of such

models is recognized to be challenging because of the complex mapping from the structural parameters

to those of the state space model that emerges from the rational expectations solution of the equilibrium

conditions. Our package relies on the tailored random block Metropolis-Hastings (TaRB-MH) algorithm

of Chib and Ramamurthy (2010) to deal with these challenging models. Recent applications of this

algorithm to DSGE models include, e.g., Born and Pfeifer (2014), Rathke, Straumann and Woitek (2017),

Kulish, Morley and Robinson (2017) and Kapetanios et al. (2019), while applications to other problems in

economics include Kim and Kang (2019) and Mele (2020), amongst many others. Two defining features

of this algorithm are worth mentioning. One is the random clustering of the structural parameters θS

at every iteration into an arbitrary number of blocks. Each block is then sequentially updated through

an M-H step. Another is the adaptation of the proposal density to the location and curvature of the

posterior distribution for a given block using a mix of simulated annealing and a deterministic optimizer.

The TaRB-MH algorithm may appear to require work, but random blocking and tailoring are central to

generating efficient exploration of the posterior distribution. The TaRB-MH algorithm is also available in

1See also, e.g., Dave and Malik (2017), Chiu, Mumtaz and Pinter (2017), Franta (2017), and Liu (2019) for macroeconomic
implications of fat-tailed shocks and stochastic volatility.
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DYNARE, but only for models without Student-t shocks and stochastic volatility. Even there, however,

we have found in experiments that its implementation is not as efficient as the one in our package.

The marginal likelihood (the integral of the sampling density over the prior of the parameters) plays a

central role in Bayesian model comparisons. In our package we calculate this quantity by the method of

Chib (1995) and Chib and Jeliazkov (2001). The marginal likelihood is also available in DYNARE, but it

is obtained by a modified version of the Gelfand and Dey (1994) method (also see, for example, Justiniano

and Primiceri (2008) and Cúrdia, Del Negro and Greenwald (2014), for use of this method in DSGE models

with Student-t shocks and stochastic volatility). The latter method, however, is not as reliable as the Chib

and Jeliazkov (2001) method. It is subject to upward finite-sample bias in models with latent variables

and runs the risk of misleading model comparisons [see Sims, Waggoner and Zha (2008) and Chan and

Grant (2015) for such examples]. As this point is not well recognized in the DSGE model literature, we

document its performance in simulated examples. It is shown to mistakenly favor models with fatter tails

and incorrect time-varying variance dynamics. Finally, our package includes various post-estimation tools

that are important for policy analysis, for example, functions for conducting impulse response and variance

decomposition analyses, and point and density forecasts.

Another goal is to provide pointers on dealing with high-dimensional DSGE models that promote more

reliable estimation and that are incorporated by default in our package. Due to the complex mapping from

the structural parameters to those of the state space form, standard prior assumptions about structural

parameters may still imply a distribution of the data that is strongly at odds with actual observations. To

see if this is the case, we sample the prior many times, solve for the equilibrium solution, and then sample

the endogenous variables. Second, we suggest the use of a training sample to fix the hyperparameters.

Although training sample priors are common in the vector autoregression (VAR) literature, they are not

typically used in the DSGE setting. We also suggest the use of the Student-t family of distributions

as the prior family for the location parameters. This tends to further mitigate the possibility of prior-

sample conflicts and leads to more robust results. Finally, we invest in the most efficient way of sampling

the different blocks, for example, sampling the non-structural parameters and the latent variables by the

integration sampler of Kim, Shephard and Chib (1998).

The rest of the paper is organized as follows. The next section specifies a prototypical high-dimensional

DSGE model for the subsequent analysis. Section 3 provides pointers on prior formulation, posterior

sampling, and model comparison accompanied by both empirical results and simulation evidence. Section

4 conducts an out-of-sample forecast analysis. Section 5 concludes. The appendix contains a detailed

summary of the implied equilibrium and steady state relations (Appendix A), a practical user guide on
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how to run our MATLAB package called ‘TaRB-t-SV’ (Appendix B), and a description of the small-scale

DSGE model used in Section 4 (Appendix C).2

2 High-Dimensional DSGE Model

As a template, consider the new Keynesian model of Leeper, Traum and Walker (2017) that fills fiscal

details into an otherwise standard medium-scale DSGE model presented in Christiano, Eichenbaum and

Evans (2005) and Smets and Wouters (2007). To make this model more realistic, we introduce fat-tailed

shocks and time-varying volatility. The resulting model is high-dimensional, consisting of 51 parameters,

21 endogenous variables, 8 exogenous shocks, 8 observables, and 1, 494 non-Gaussian and nonlinear latent

variables. This section outlines the model structure briefly to conserve space. Unless otherwise noted,

we let x̂t � lnxt � lnx denote the log-deviation of a generic variable xt from its steady state x. We also

divide a non-stationary variable Xt by the level of technology At and express the detrended variable as

xt � Xt{At.

2.1 Firms

The production sector consists of firms that produce intermediate and final goods. A perfectly com-

petitive final goods producer uses intermediate goods supplied by a continuum of intermediate goods

producers indexed by i on the interval r0, 1s to produce the final goods. The production technology

Yt ¤
�³1

0
Ytpiq

1{p1�ηpt qdi
	1�ηpt

is constant-return-to-scale, where ηpt is an exogenous price markup shock, Yt is

the aggregate demand of final goods, and Ytpiq is the intermediate goods produced by firm i.

Each intermediate goods producer follows a production technology Ytpiq � Ktpiq
α
�
AtL

d
t piq

�1�α
�AtΩ,

where Ktpiq and Ldt piq are the capital and the amount of ‘packed’ labor input rented by firm i at time t,

and 0   α   1 is the income share of capital. At is the labor-augmenting neutral technology shock and

its growth rate uat � lnpAt{At�1q equals γ ¡ 0 when At evolves along the balanced growth path. The

parameter Ω ¡ 0 represents the fixed cost of production.

Intermediate goods producers maximize their profits in two stages. First, they take the input prices,

i.e., nominal wage Wt and nominal rental rate of capital Rk
t , as given and rent Ldt piq and Ktpiq in perfectly

competitive factor markets. Second, they choose the prices that maximize their discounted real profits.

Here we introduce the Calvo-pricing mechanism for nominal price rigidities. Specifically, a fraction 0  

ωp   1 of firms cannot change their prices each period. All other firms can only partially index their prices

2The toolbox is publicly available at https://sites.google.com/a/slu.edu/tanf.
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by the rule Ptpiq � Pt�1piq
�
π
χp
t�1π

1�χp
�
, where Pt�1piq is indexed by the geometrically weighted average

of past inflation πt�1 and steady state inflation π. The weight 0   χp   1 controls the degree of partial

indexation.

The production sector can be summarized by four log-linearized equilibrium equations in terms of six

parameters pα,Ω, β, ωp, χp, η
pq, seven endogenous variables pŷt, k̂t, L̂t, r̂

k
t , ŵt, xmct, π̂tq, and one exogenous

shock ûpt :

Production function: ŷt �
y � Ω

y

�
αk̂t � p1 � αqL̂t

�
(2.1)

Capital-labor ratio: r̂kt � ŵt � L̂t � k̂t (2.2)

Marginal cost: xmct � αr̂kt � p1 � αqŵt (2.3)

Phillips equation: π̂t �
β

1 � βχp
Etπ̂t�1 �

χp
1 � βχp

π̂t�1 � κpxmct � ûpt (2.4)

where κp � rp1� βωpqp1� ωpqs{rωpp1� βχpqs, η̂
p
t � lnp1� ηpt q � lnp1� ηpq, η̂pt is normalized to ûpt � κpη̂

p
t ,

and Et represents mathematical expectation given information available at time t.

2.2 Households

The economy is populated by a continuum of households indexed by j on the interval r0, 1s. Each opti-

mizing household j derives utility from composite consumption C�
t pjq, relative to a habit stock defined in

terms of lagged aggregate composite consumption hC�
t�1 where 0   h   1. The composite consumption

consists of private Ctpjq and public Gt consumption goods, i.e., C�
t pjq�Ctpjq � αGGt, where αG governs

the degree of substitutability of the consumption goods. Each household j also supplies a continuum of

differentiated labor services Ltpj, lq where l P r0, 1s. Households maximize their expected lifetime utility

E0

8°
t�0

βtubt
�
lnpC�

t pjq � hC�
t�1q � Ltpjq

1�ξ{p1 � ξq
�
, where 0   β   1 is the discount rate, ξ ¡ 0 is the inverse

of Frisch labor supply elasticity, and ubt is an exogenous preference shock.

Households have access to one-period nominal private bonds Bs,t that pay one unit of currency at time

t� 1, sell at price R�1
t at time t, and are in zero net supply. They also have access to a portfolio of long-

term nominal government bonds Bt, which sell at the price PB
t at time t. Maturity of these zero-coupon

bonds decays at the constant rte 0   ρ   1 to yield the average duration p1 � ρβq�1. Households receive

bond earnings, labor and capital rental income, lump-sum transfers from the government Zt, and profits

from firms Πt. They spend income on consumption, investment It, and bonds. The nominal flow budget
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constraint for household j is given by

p1 � τCqPtCtpjq � PtItpjq � PB
t Btpjq �R�1

t Bs,tpjq � p1 � ρPB
t qBt�1pjq �Bs,t�1pjq

�p1 � τLq

» 1

0

WtplqLtpj, lqdl � p1 � τKqRk
t vtpjqK̄t�1pjq � ΨpvtqK̄t�1pjq � PtZtpjq � Πtpjq

where Wtplq is the nominal wage charged by the household for type l labor service. Consumption and labor

income are, in nominal terms, subject to a sales tax τC ¡ 0 and a labor income tax τL ¡ 0, respectively.

Effective capital Kpjq, which is subject to a rental income tax τK ¡ 0, is related to physical capital

K̄pjq via Ktpjq � vtpjqK̄t�1pjq, where vtpjq is the utilization rate of capital chosen by households and

incurs a nominal cost of Ψpvtq per unit of physical capital.3 Physical capital is accumulated by households

according to K̄tpjq � p1 � δqK̄t�1pjq � uit

�
1 � S

�
Itpjq
It�1pjq

		
Itpjq, where 0   δ   1 is the depreciation rate,

Sp�qIt is an investment adjustment cost and uit is an exogenous investment-specific efficiency shock.4

There are perfectly competitive labor packers that hire a continuum of differentiated labor inputs Ltplq,

pack them to produce an aggregate labor service and then sell it to intermediate goods producers. The

labor packer uses the Dixit-Stiglitz aggregator for labor aggregation Ldt �
�³1

0
Ltplq

1{p1�ηwt qdl
	1�ηwt

, where

Ldt is the aggregate labor service demanded by intermediate goods producers, Ltplq is the lth type labor

service supplied by all the households and demanded by the labor packer, and ηwt is an exogenous wage

markup shock.

For the optimal wage setting problem, we adopt the Calvo-pricing mechanism for nominal wage rigidi-

ties. Specifically, of all the types of labor services within each household, a fraction 0   ωw   1 of wages

cannot be changed each period. The wages for all other types of labor services follow a partial indexation

rule Wtplq � Wt�1plq
�
πt�1e

uat�1

�χw pπeγq1�χw , where Wt�1plq is indexed by the geometrically weighted av-

erage of the growth rates of nominal wage in the past period and in the steady state, respectively. The

weight 0   χw   1 controls the degree of partial indexation.

The household sector can be summarized by ten log-linearized equilibrium equations in terms of seven-

teen parameters ph, γ, αG, ρ, τ
C , τK , τL, ψ, β, γ, s, δ, ξ, ωw, χw, ρa, η

wq, fifteen endogenous variables pλ̂t, ĉ
�
t , ĉt,

ĝt, R̂t, π̂t, P̂
B
t , r̂

k
t , v̂t, q̂t, ît, k̂t,

ˆ̄kt, ŵt, L̂tq, and four exogenous shocks pûat , û
b
t , û

i
t, û

w
t q:

Optimal consumption: λ̂t � ûbt �
h

eγ � h
ûat �

eγ

eγ � h
ĉ�t �

h

eγ � h
ĉ�t�1 �

τC

1 � τC
τ̂Ct (2.5)

Composite consumption: ĉ�t �
c

c� αGg
ĉt �

αGg

c� αGg
ĝt (2.6)

3Define the parameter 0   ψ   1 such that Ψ2p1q
Ψ1p1q � ψ

1�ψ .
4Sp�q satisfies S1peγq � 0 and S2peγq � s ¡ 0.
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Consumption Euler: λ̂t � R̂t � Etλ̂t�1 � Etπ̂t�1 � Etûat�1 (2.7)

Bond pricing: R̂t � P̂B
t �

ρPB

1 � ρPB
EtP̂B

t�1 �
ρ

R
EtP̂B

t�1 (2.8)

Optimal capital utilization: r̂kt �
τK

1 � τK
τ̂Kt �

ψ

1 � ψ
v̂t (2.9)

Optimal physical capital: q̂t � Etλ̂t�1 � λ̂t � Etûat�1 � βe�γp1 � τKqrkEtr̂kt�1

�βe�γτKrkEtτ̂Kt�1 � βe�γp1 � δqEtq̂t�1 (2.10)

Optimal investment: ît � �
1

1 � β
ûat �

1

p1 � βqse2γ
q̂t � ûit �

β

1 � β
Etît�1

�
β

1 � β
Etûat�1 �

1

1 � β
ît�1 (2.11)

Effective capital: k̂t � v̂t �
ˆ̄kt�1 � ûat (2.12)

Capital law of motion: ˆ̄kt � r1 � p1 � δqe�γspp1 � βqse2γûit � îtq

�p1 � δqe�γpˆ̄kt�1 � ûat q (2.13)

Wage equation: ŵt � �κw

�
ŵt � ξL̂t � ûbt � λ̂t �

τL

1 � τL
τ̂Lt

�
�

1

1 � β
ŵt�1

�
β

1 � β
Etŵt�1 �

χw
1 � β

π̂t�1 �
1 � βχw

1 � β
π̂t �

β

1 � β
Etπ̂t�1

�
χw

1 � β
ûat�1 �

1 � βχw � ρaβ

1 � β
ûat � ûwt (2.14)

where κw � rp1�βωwqp1�ωwqs{rωwp1�βqp1�p1{ηw�1qξqs, η̂wt � lnp1�ηwt q� lnp1�ηwq, η̂wt is normalized

to ûwt � κwη̂
w
t , ˆ̃uit is normalized to ûit �

1
p1�βqse2γ

ˆ̃uit, and λt is the Lagrange multiplier associated with the

household’s budget constraint. We set the capital, labor, and consumption tax rates to their constant

steady states so that τ̂Kt � τ̂Lt � τ̂Ct � 0.

2.3 Monetary and Fiscal Policy

The central bank implements monetary policy according to a Taylor-type interest rate rule. The govern-

ment collects revenues from capital, labor, and consumption taxes, and sells nominal bond portfolios to

finance its interest payments and expenditures. The fiscal choices must satisfy the government budget

constraint PB
t Bt � τKRK

t Kt � τLWtLt � τCPtCt � p1� ρPB
t qBt�1 � PtGt � PtZt, where we have assumed

the lump sum transfers are equal across households, i.e.,
³1
0
Ztpjqdj � Zt, and fiscal instruments follow the

simple rules specified below.

The government sector can be summarized by seven log-linearized equilibrium equations in terms of thir-

teen parameters pτC , τK , τL, β, γ, ρ, ρr, ρg, ρz, φπ, φy, γg, γzq, sixteen endogenous variables pb̂t, r̂
k
t , k̂t, ŵt, L̂t,
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ĉt, π̂t, P̂
B
t , ĝt, ẑt, ŷt, ît, v̂t, R̂t, ŝ

b
t , ŝtq, and four exogenous shocks pûat , û

m
t , û

g
t , û

z
t q:

Government budget constraint:
b

y
b̂t � τKrk

k

y

�
τ̂Kt � r̂kt � k̂t

�
� τLw

L

y

�
τ̂Lt � ŵt � L̂t

�
�τC

c

y
pτ̂Ct � ĉtq �

1

β

b

y

�
b̂t�1 � π̂t � P̂B

t�1 � ûat

�
�
b

y

ρ

πeγ
P̂B
t �

g

y
ĝt �

z

y
ẑt (2.15)

Aggregate resource constraint: ŷt �
c

y
ĉt �

i

y
ît �

g

y
ĝt � ψ1p1q

k

y
v̂t (2.16)

Monetary policy rule: R̂t � ρrR̂t�1 � p1 � ρrq
�
φππ̂t � φyŷt

�
� ûmt (2.17)

Fiscal policy rule: ĝt � ρgĝt�1 � p1 � ρgqγgŝ
b
t�1 � ûgt (2.18)

ẑt � ρz ẑt�1 � p1 � ρzqγz ŝ
b
t�1 � ûzt (2.19)

Real primary surplus: ŝt � τKrk
k

s

�
τ̂Kt � r̂kt � k̂t

	
� τLw

L

s

�
τ̂Lt � ŵt � L̂t

	
�τC

c

s
pτ̂Ct � ĉtq �

g

s
ĝt �

z

s
ẑt (2.20)

Debt-to-output ratio: ŝbt � b̂t � ŷt (2.21)

where sbt�1 �
PBt�1Bt�1

Pt�1Yt�1
denotes the market value of the debt-to-GDP ratio, s � τKrkk�τLwL�τCc�g�z,

0   ρr, ρg, ρz   1 measure policy smoothness, φπ, φy ¡ 0 and γg, γz are policy parameters, and pûmt , û
g
t , û

z
t q

are exogenous policy shocks.

Following Leeper, Traum and Walker (2017), we consider two distinct regions of the policy parameter

space pφπ, γg, γzq that deliver unique bounded rational expectations equilibria. The conventional active

monetary/passive fiscal policy regime, or regime-M, has the monetary authority to raise the nominal

rate aggressively in response to inflation and the fiscal authority to adjust expenditures and tax rates to

stabilize debt. The alternative passive monetary/active fiscal policy regime, or regime-F, has monetary

policy respond weakly to inflation while fiscal instruments adjust weakly to debt.

2.4 Exogenous Processes

All exogenous shocks follow autoregressive processes

ûst � ρesû
s
t�1 � εst , s P ta, b, i, p, w,m, g, zu (2.22)

where ρes P p0, 1q and the innovations εst are serially uncorrelated and independent of each other at all

leads and lags. We complete the model by assuming a multivariate Student-t distribution for the shock
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innovations collected in an 8 � 1 vector εt, i.e., εt � tνp0,Σtq, where ν denotes the degrees of freedom and

Σt is an 8� 8 diagonal matrix with time-varying volatility σ2
s,t of εst on its main diagonal.5 For estimation

convenience, it is useful to represent each element of εt as a mixture of normals by introducing a Gamma

distributed random variable λt,

εst � λ
�1{2
t eh

s
t {2εst , λt � G

�ν
2
,
ν

2

	
, εst � Np0, 1q (2.23)

where, following Kim, Shephard and Chib (1998), the logarithm of each volatility hst � lnσ2
s,t collected in

an 8 � 1 vector ht evolves as a stationary p|φs|   1q process:

hst � p1 � φsqµs � φsh
s
t�1 � ηst , ηst � Np0, ω2

sq. (2.24)

2.5 Taking Model to Data

Define the private sector’s one-step-ahead endogenous forecast errors as

ηxt � x̂t � Et�1x̂t, x P tλ, π, i, q, rk, w, PBu. (2.25)

The model consists of 36 log-linearized equilibrium equations and can be cast into the rational expectations

system �������
Γee0 Γez0 Γed0

0 I 0

r0, Is 0 0

�������loooooooooomoooooooooon
Γ0pθ

Sq
p36�36q

�������
xet

xzt

xdt

�������loomoon
xt

p36�1q

�

�������
Γee1 Γez1 0

0 P 0

0 0 I

�������loooooooomoooooooon
Γ1pθ

Sq
p36�36q

�������
xet�1

xzt�1

xdt�1

�������loomoon
xt�1
p36�1q

�

�������
0

I

0

�������loomoon
Ψ

p36�8q

εt
p8�1q

�

�������
0

0

I

�������loomoon
Π

p36�7q

ηt
p7�1q

(2.26)

where I denotes the identity matrix, P � diag
�
ρea, ρeb, ρei, ρep, ρew, ρem, ρeg, ρez

�
,

xet
p21�1q

� rŷt, ĉ
�
t , ĉt, k̂t,

ˆ̄kt, v̂t, L̂t, xmct, b̂t, ĝt, ẑt, R̂t, ŝ
b
t , ŝt, λ̂t, π̂t, ı̂t, q̂t, r̂

k
t , ŵt, P̂

B
t s

are the endogenous variables,

xzt
p8�1q

� rûat , û
b
t , û

i
t, û

p
t , û

w
t , û

m
t , û

g
t , û

z
t s

5It is straightforward to introduce an independent Student-t distribution with different degrees of freedom for each shock
innovation. For exhibition ease, we do not consider this generalization.
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are the exogenous shocks,

xdt
p7�1q

� rEtλ̂t�1,Etπ̂t�1,Etı̂t�1,Etq̂t�1,Etr̂kt�1,Etŵt�1,EtP̂B
t�1s

are the conditional expectations of the last seven elements of xet�1,

εt
p8�1q

� rεat , ε
b
t , ε

i
t, ε

p
t , ε

w
t , ε

m
t , ε

g
t , ε

z
t s
1

are the shock innovations, and

ηt
p7�1q

� rηλt , η
π
t , η

i
t, η

q
t , η

rk

t , η
w
t , η

PB

t s1

are the forecast errors.

Here the first row of (2.26) stacks the 21 structural equations (2.1)–(2.21), the second row stacks

the 8 shock processes (2.22), and the third row stacks the 7 definitional equations (2.25). The unknown

parameters θ consist of the structural parameters

θS
p27�1q

� r100γ, ξ, h, αG, ψ, s, ωp, ωw, χp, χw, φπ, φy, γg, γz, ρr, ρg, ρz, ρea, ρeb, ρei, ρep, ρew, ρem, ρeg, ρez, L̄, π̄s

and the volatility parameters

θV
p24�1q

� rµa, µb, µi, µp, µw, µm, µg, µz, φa, φb, φi, φp, φw, φm, φg, φz, ω
2
a, ω

2
b , ω

2
i , ω

2
p, ω

2
w, ω

2
m, ω

2
g, ω

2
zs.

Conditional on θS and independent of the volatility processes, the above structural system can be solved

by the procedure of Sims (2002) to deliver a linear solution of the form

xt � GpθSq
p36�36q

xt�1 �MpθSq
p36�8q

εt (2.27)

which is then estimated over a vector yt of 8 observables stacked in y1:T � ry1, . . . , yT s
1, including log

differences (denoted dl) of consumption, investment, real wage, government spending, and government

debt; log (denoted l) hours worked, inflation, and nominal interest rate.6 The observables are linked to the

6See the Online Appendix of Leeper, Traum and Walker (2017) for details on data construction.
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model variables xt via the following measurement equations:�������������������������

dlConst

dlInvt

dlWaget

dlGovSpendt

dlGovDebtt

lHourst

lInflt

lFedFundst

�������������������������

�

�������������������������

100γ

100γ

100γ

100γ

100γ

L̄

π̄

π̄ � 100pγ{β � 1q

�������������������������

�

�������������������������

ĉt � ĉt�1 � ûat

ît � ît�1 � ûat

ŵt � ŵt�1 � ûat

ĝt � ĝt�1 � ûat

b̂t � b̂t�1 � ûat

L̂t

π̂t

R̂t

�������������������������

. (2.28)

Let λ1:T � rλ1, . . . , λT s
1 contain all non-Gaussian latent states and h1:T � rh11, . . . , h

1
T s

1 contain all

nonlinear latent states. Further collect them in z1:T � rλ11:T , h
1
1:T s

1, which in our empirical application

(T � 166) has a total of 1,494 elements. In conjunction with the shock volatility specifications (2.23) and

(2.24), equations (2.27) and (2.28) form a state space representation of the DSGE model whose conditional

likelihood function fpy1:T |θ, z1:T q can be evaluated with the Kalman filter.

3 Estimation

The general framework for estimating DSGE models, employing Bayesian tools, is by now quite well

established. The state space model (2.27)–(2.28) is supplemented by a prior distribution πpθq summarizing

the researcher’s initial views of the model parameters. This prior information is updated with the sample

information via Bayes’ theorem,

πpθ, z1:T |y1:T q 9 fpy1:T , z1:T |θq � πpθq � 1tθ P ΘDu

where fpy1:T , z1:T |θq is the joint likelihood function and the joint posterior distribution πpθ, z1:T |y1:T q char-

acterizing the researcher’s updated beliefs is calculated up to the normalization constant. Moreover,

1tθ P ΘDu is an indicator function that equals one if θ is in the determinacy region ΘD and zero otherwise.

This posterior distribution is typically summarized by MCMC methods, but in the current high-dimensional

context, there is still little experience on how an MCMC sampling procedure should be implemented to

estimate the model.

11
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Figure 1: Distributions of simulated selected quantities obtained by sampling the prior, and then the outcomes
given drawings from the prior. Notes: Each panel compares the resulting densities under Gaussian shocks with
constant volatility (red dashed line) with that under Student-t shocks with stochastic volatility (shaded area).
Vertical lines denote the real data counterparts.
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3.1 Prior Distribution

Table A.1 of Appendix A lists the marginal prior distributions for all model parameters.7 The priors

on the structural parameters follow closely Leeper, Traum and Walker (2017), and those on the volatility

parameters imply a fairly persistent volatility process for each shock innovation. In the Bayesian estimation

of DSGE models, an informative prior distribution (such as those on the policy parameters φπ, γg, γz)

can play an important role in shifting the posterior distribution toward regions of the parameter space

that are economically meaningful. It can also introduce curvature into the posterior surface that facilitates

numerical optimization and MCMC simulations (such as the tailoring of proposal densities in the TaRB-MH

algorithm).

When it comes to high dimensions, however, developing an appropriate prior becomes increasingly

difficult due to the complex mapping from the structural parameters to those of the state space form.

Consequently, a reasonable prior for the structural parameters may still imply a distribution of the data

that is strongly at odds with actual observations. For instance, Figure 1 shows the implied distributions

for selected sample moments under the original regime-M prior and model specification of Leeper, Traum

and Walker (2017) (red dashed lines). Most notably, this prior places little or no mass in the neighborhood

of the actual mean of government spending and the actual standard deviations of investment, government

spending, debt, and hours worked (vertical lines). After taking the model to data, we also find that the

posterior mass for several parameters (e.g., the habit parameter h, the nominal rigidity parameters ωp and

ωw, and the government spending persistence ρg) lies entirely in the far tail of the corresponding prior,

thereby introducing fragility to the inferences. To cope with these issues, we suggest a two-step approach

for constructing the prior that can avoid such prior-sample conflict.

3.1.1 Sampling the Prior

The first step follows the sampling the prior approach in, e.g., Geweke (2005) and Chib and Ergashev

(2009). In particular, start with a standard prior for the structural parameters. Here we take that to

be the prior in Leeper, Traum and Walker (2017). Alongside, specify an initial prior for the volatility

parameters θV . Then sample this joint prior a large number of times (say 1,000) and simulate a data set

ypgq for each parameter draw θpgq, g � 1, . . . , G, under which the model has a unique bounded solution.

Finally, compute the implied distributions for various functions of the data (such as the sample mean,

standard deviation, and autocorrelation) and check whether these are close to corresponding values in

7Because some parameters are held fixed under each regime, effectively, θ has 49 elements and θS has 25 elements.
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the actual data. If not, adjust some or all marginal components of the prior for θ and repeat the above

process.8

It is clear from Figure 1 that under the adjusted prior, reported in Table A.1 of Appendix A, the

Leeper, Traum and Walker (2017) model extended with Student-t shocks and stochastic volatility implies

distributions of the data that capture the corresponding real data quantities in their relatively high density

regions (represented by the shaded areas).

3.1.2 Training Sample Prior

In the second step, given the adjusted prior from the first step, use the TaRB-MH algorithm to estimate

the DSGE model on the initial 50 observations running from 1955:Q1 to 2008:Q4. The posterior draws

from this run are used to form the prior. Specifically, keep the prior type of each parameter unchanged

but set its location (dispersion) to the corresponding mean (twice standard deviation). At this point, we

suggest that each location parameter µs, s P ta, b, i, p, w,m, g, zu of the volatility process be assigned a

Student-t distribution with 2.1 degrees of freedom. This two-step construction tends to avoid any stark

conflict between the prior and the likelihood.

3.2 Sampling Steps

We use two primary steps to sample the posterior distribution. These are executed in the program

tarb_full.m. The first step samples the 25 structural parameters in θS from the conditional poste-

rior πpθS|y1:T , θ
V , λ1:T , h1:T q by the Chib and Ramamurthy (2010) TarB-MH algorithhm, and the second

step samples the remaining blocks, including the 24 volatility parameters in θV , the 166 non-Gaussian

latent variables in λ1:T , and the 1,328 nonlinear latent variables in h1:T , from the conditional posterior

πpθV , λ1:T , h1:T |y1:T , θ
Sq by the Kim-Shephard and Chib (1998) method. Iterating the above cycle until

convergence produces a sample from the joint posterior πpθ, z1:T |y1:T q. We provide a brief summary of

these steps and refer readers to the original papers for further details.

8In the Leeper, Traum and Walker (2017) setting with Gaussian shocks and constant volatility, this step suggests that the
original prior for the standard deviation parameters 100σs, s P ta, b, i, p, w,m, g, zu, each of which follows an Inverse-Gamma
type-2 distribution with mean 0.1 and standard deviation 1, should be adjusted. Alternatively, one could also adjust some
or all marginal components of the prior for θS .
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3.2.1 Sampling Structural Parameters

The first step entails sampling θS from

πpθS|y1:T , θ
V , z1:T q 9 fpy1:T |θ

S, z1:T q � πpθ
Sq � 1tθ P ΘDu (3.1)

using the TaRB-MH algorithm. To fix ideas, consider the gth iteration where a random partition of B

blocks from a permuted sequence of θS has been formed, i.e., θS � pθS1 , . . . , θ
S
Bq. Specifically, we initialize

θS1 with the first element of this shuffled sequence, and start a new block with every next element with

probability 1� p. As a result, the average size of a block is given by p1� pq�1. In our benchmark setting,

we set p � 0.7 so that each block contains three to four parameters on average. This effectively breaks a

25-dimensional sampling problem into about seven smaller ones. The random block feature is also useful as

the researcher typically does not have a priori knowledge about the correlation pattern of θS. Now suppose

the blocks θ
S,pgq
1:b�1 � pθ

S,pgq
1 , . . . , θ

S,pgq
b�1 q have been updated in the current iteration, whereas the remaining

blocks θ
S,pg�1q
b:B � pθ

S,pg�1q
b , . . . , θ

S,pg�1q
B q and zpg�1q take values in the previous iteration. In summary:

1. Use the simulated annealing (SA) optimization method (available as a MATLAB built-in function

simulannealbnd) to obtain an initial solution to

θ̂
S

b � arg min
θSb

� ln fpy1:T |θ
S,pgq
1:b�1, θ

S
b , θ

S,pg�1q
b�1:B , zpg�1qq � πpθSb q.

This SA version of the posterior mode is further used to initiate the BFGS quasi-Newton method

(available as a MATLAB function csminwel written by Chris Sims) that refines the initial solution.

csminwel also approximates the inverse of the Hessian matrix evaluated at θ̂
S

b , denoted by V̂b, and

returns it as a byproduct.9

2. Generate a candidate draw from the tailored Student-t proposal density

θ
S,pgq
b � tνpθ̂

S

b , V̂bq

where the degrees of freedom parameter is set to ν � 15. The local tailoring feature allows for sizable

moves from the neighborhood of the current parameter draw.

9The same optimization procedure, executed in the program chain init.m, is repeated multiple times to obtain a starting
value θS,p0q for the chain.
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3. Accept θ
S,pgq
b as the updated value of θSb with probability

α � min

#
1,

fpy1:T |θ
S,pgq
1:b�1, θ

S,pgq
b , θ

S,pg�1q
b�1:B , zpg�1qq � πpθ

S,pgq
b q

fpy1:T |θ
S,pgq
1:b�1, θ

S,pg�1q
b , θ

S,pg�1q
b�1:B , zpg�1qq � πpθ

S,pg�1q
b q

�
tνpθ

S,pg�1q
b |θ̂

S

b , V̂bq

tνpθ
S,pgq
b |θ̂

S

b , V̂bq

+
.

We also introduce a new procedure, i.e., tailoring at random frequency, to accelerate the TaRB-MH

algorithm. The idea is similar in essence to grouping the structural parameters into random blocks. Because

the tailored proposal density in the current iteration may remain efficient for the next few iterations, there

is typically no need to re-tailor the proposal density in every iteration. Nevertheless, there is still a chance

that the re-tailored proposal density will be quite different from the recycled one. Therefore, randomizing

the number of iterations before new blocking and tailoring ensures that the proposal density remains well-

tuned on average. The reciprocal of this average number, which we call the tailoring frequency ω, as well as

a number of optional user inputs (e.g., the blocking probability p), can be specified flexibly in the program

tarb_spec.m. In our benchmark setting, we set ω � 0.5 so that each proposal density is tailored every

second iteration on average. In general, we suggest setting p P r0.6, 0.9s and ω P r0.2, 1.0s to maintain a

good balance between runtime and simulation efficiency.

3.2.2 Sampling Latent Variables and Volatility Parameters

The second step involves augmenting the remaining blocks with 1,328 shock innovations ε1:T � rε11, . . . , ε
1
T s

1

and then sampling the joint posterior πpθV , ε1:T , λ1:T , h1:T |y1:T , θ
Sq. To this end, Gibbs sampling is applied

to the following conditional densities

πpε1:T |y1:T , θ, λ1:T , h1:T q, πpλ1:T |y1:T , θ, ε1:T , h1:T q, πpθV , h1:T |y1:T , θ
S, ε1:T , λ1:T q (3.2)

using the steps below:

1. Sample ε1:T from the first density in (3.2)

πpε1:T |y1:T , θ, λ1:T , h1:T q � πpε1:T |y1:T , θ
S, λ1:T , h1:T q

with the disturbance smoother of Durbin and Koopman (2002) applied to the state space form

(2.27)–(2.28), where each εst � Np0, ehst {λtq, s P ta, b, i, p, w,m, g, zu, due to the gamma-normal

representation (2.23).
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2. Sample λ1:T from the second density in (3.2)

πpλ1:T |y1:T , θ, ε1:T , h1:T q 9
T¹
t�1

fpεt|λt, htq � πpλtq

by independently sampling each λt from

λt � G
�
ν � nε

2
,
ν � ε1tΣ

�1
t εt

2



, Σt � diag

�
eht
�

as in Chib and Ramamurthy (2014), where nε � 8 is the dimension of εt.

3. Following Kim, Shephard and Chib (1998), the nonlinear measurement equation (2.23) can be trans-

formed into a linear one by squaring and taking logarithm. In conjunction with the volatility state

equation (2.24), this leads to the state space model

hst � p1 � φsqµs � φsh
s
t�1 � ηst

ε̃st � hst � est

for s P ta, b, i, p, w,m, g, zu, where ε̃st � lnλtpε
s
tq

2 and est � lnpεstq
2. Practically, we set ε̃st � lnrλtpε

s
tq

2�

cs with c � 10�5 being an offset constant, and accurately approximate the distribution of est by the

10-component mixture normal density proposed by Omori et al. (2007),

ppestq �
10̧

k�1

qk � pNpe
s
t |s

s
t � kq

where sst is an indicator variable and pNp�|s
s
t � kq denotes a normal density function with mean

mk, variance v2
k, and component probability qk. Now, to sample the last density in (3.2), we

further augment the remaining blocks with 1,328 indicator variables s1:T � rs11, . . . , s
1
T s, where

st � rsat , s
b
t , s

i
t, s

p
t , s

w
t , s

m
t , s

g
t , s

z
t s, and sample the joint posterior πps1:T , θ

V , h1:T |y1:T , θ
S, ε1:T , λ1:T q by

sampling the conditional densities

πps1:T |y1:T , θ, ε1:T , λ1:T , h1:T q

πpθV , h1:T |y1:T , θ
S, ε1:T , λ1:T , s1:T q � πpθV |y1:T , θ

S, ε1:T , λ1:T , s1:T q � πph1:T |y1:T , θ, ε1:T , λ1:T , s1:T q

using these steps:
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(a) Sample each ss � rss1, . . . , s
s
T s

1, s P ta, b, i, p, w,m, g, zu, independently from

πpss|y, θ, ε, λ, hq 9
T¹
t�1

fpε̃st |h
s
t , s

s
tq � πps

s
tq

where fp�|hst , s
s
t � kq is a normal density function with mean hst � mk and variance v2

k, and

πpsst � kq � qk, k � 1, . . . , 10.

(b) Sample θV marginalized over h1:T (the ‘integration sampler’ in Kim, Shephard and Chib (1998))

by sampling each triplet pµs, φs, ω
2
sq, s P ta, b, i, p, w,m, g, zu, independently from

πpµs, φs, ω
2
s|y, θ

S, ε, λ, sq 9 fpε̃s|µs, φs, ω
2
s, s

sq � πpµs, φs, ω
2
sq

using a tailored proposal density, where ε̃s � rε̃s1, . . . , ε̃
s
T s

1 and fpε̃s|µs, φs, ω
2
s, s

sq is available from

the Kalman filter, followed by the sampling of each hs � rhs1, . . . , h
s
T s

1, s P ta, b, i, p, w,m, g, zu,

using the ‘filter-forward-sample-backward’ method of Carter and Kohn (1994).

3.2.3 Results

We apply the above steps as coded in our MATLAB package to estimate our high-dimensional DSGE

model based on the post-training sample of 166 quarterly observations from 1967:Q3 to 2008:Q4. With

the ultimate goal of forecasting in mind, we present the estimation results for the model of best fit among

all competing specifications. This specification stands out from an extensive model search based on a

marginal likelihood comparison, as described in the next section. It has regime-M in place and features

heavy-tailed shocks with ν � 5 degrees of freedom and persistent volatilities.

Because the TaRB-MH algorithm is simulation efficient, a large MCMC sample is typically not required.

We consider a simulation sample size of 11,000 draws, of which the first 1,000 draws are discarded as the

burn-in phase. Figure 2 provides a graphical comparison of the prior and posterior distributions of each

structural parameter. The Bayesian learning is clear from the graphs. In particular, the data imply

quite high habit formation and relatively high degrees of price and wage stickiness. See also Table A.2 of

Appendix A for a detailed summary of the posterior parameter estimates.

Figure 3 plots the estimated historical log-volatility series for 1967:Q3 to 2008:Q4 based on the h

draws. Overall, these estimates display clear countercyclical time variation, with pronounced increases in

volatility accompanying the recessions. For several shock innovations, volatility becomes lower by historical

standards since the 1980s so that the Great Moderation is also evident.
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Figure 2: Marginal prior and posterior distributions of each structural parameter. Notes: Each panel compares
the prior (red dashed line) with the posterior (shaded area). Vertical lines denote posterior means. The kernel
smoothed posterior densities are estimated using 10, 000 TaRB-MH draws.

3.2.4 Simulation Evidence

We also estimate the same high-dimensional DSGE model based on a simulated data set that is generated

under fat-tailed shocks with ν � 15 degrees of freedom and persistent volatilities. We set the sample

size to 200, which is meant to be 50 years of quarterly observations, and use the initial 50 observations

to construct a training sample prior. Table A.1 of Appendix A lists the parameter values used for the
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Figure 3: Stochastic volatility of each shock innovation. Notes: Blue dashed lines denote median estimates, while
blue shaded areas delineate 90% highest posterior density bands. Vertical bars indicate recessions as designated
by the National Bureau of Economic Research.

data generating process under regime-M (column ‘DGP’).10 Figure A.3 provides a graphical comparison

of priors and posteriors. For most parameters, the posterior mass concentrates around the corresponding

true value. Figure A.4 further reveals that the estimated log-volatility series largely captures the level and

10The DGPs for the structural parameters correspond to their full sample (1955:Q1–2014:Q2) regime-M estimates reported
in Leeper, Traum and Walker (2017).
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all major trends of the true series for each shock innovation. These plots are relegated to Appendix A.

3.3 Marginal Likelihood

Given the output of the efficient TaRB-MH algorithm, we suggest calculating the marginal likelihood by

the method of Chib (1995), as modified for M-H chains in Chib and Jeliazkov (2001). This method is

implemented in the program tarb_reduce.m. We show the use of the marginal likelihoods in comparing

regime-M with Student-t shocks with regime-F with stochastic volatility. Other models could be of interest

as we discuss below.

Recall that the marginal likelihood is the quantity

mpy1:T |Mq �
1

c

»
fpy1:T |M, θq � πpθ|Mq � 1tθ P ΘDu dθ

where M denotes the model label and c �
³
θPΘD

πpθ|Mqdθ. In the Chib (1995) approach, this is computed

via the identity

mpy1:T |Mq �
1
c
fpy1:T |M, θq � πpθ|Mq � 1tθ P ΘDu

πpθ|M, y1:T q

where the right-hand-side terms are evaluated at a single high density point θ�. We obtain the likelihood

ordinate by a mixture version of the Kalman filter introduced by Chen and Liu (2000), as facilitated by the

conditionally Gaussian and linear structure of the DSGE model solution. In our application, we find that

10,000 particles are sufficient to deliver a robust estimate of fpy1:T |M, θ�q. We obtain the high-dimensional

ordinate in the denominator after decomposing it as

πpθ�|M, y1:T q � πpθ�1 |M, y1:T q � πpθ
�
2 |M, y1:T , θ

�
1q � � � πpθ

�
B|M, y1:T , θ

�
1 , . . . , θ

�
B�1q

where B refers to the number of blocks (that is under our control), and then estimate each of these reduced

ordinates from the MCMC output of reduced runs (see Chib (1995) and Chib and Jeliazkov (2001) for

further details).

An interesting point is that these reduced runs are independent of each other and can be done in

parallel. Thus, all reduced ordinates can be estimated at the cost of one reduced run, regardless of the size

of B. This parallel computation is built into our MATLAB package. In our application, we set the total

number of blocks to B � 15, including seven almost equally sized blocks for θS arranged first, followed by

eight blocks pµs, φs, ω
2
sq, s P ta, b, i, p, w,m, g, zu, for θV . All ordinates are then simultaneously estimated

using MATLAB’s multi-core processing capacity via its Parallel Computing Toolbox.
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3.3.1 Reliability

Figure 4: Recursive posterior ordinates and marginal likelihood. Notes: Ordinates 1–7 (8–15) correspond to
structural (volatility) parameters. The last panel depicts the estimated marginal likelihood. Black solid lines
(with cross marker) correspond to the benchmark setting (p � 0.7, ω � 0.5). All estimates are in logarithm scale.

We recommend the Chib and Jeliazkov (2001) method because it is reliable and because other methods

do not generalize to our large-scale DSGE models with non-Gaussian and/or nonlinear latent variables.11

11For instance, the modified harmonic mean (MHM) estimator of Gelfand and Dey (1994), used, for example, in Justiniano
and Primiceri (2008) and Cúrdia, Del Negro and Greenwald (2014) in medium-scale DSGE models with Student-t shocks
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As shown in Chib and Ramamurthy (2010), efficient MCMC estimation automatically delivers an efficient

estimate of the conditional posterior ordinate πpθb, . . . , θB, z1:T |M, y1:T , θ
�
1 , . . . , θ

�
b�1q from the output of

the reduced MCMC simulation in which θb is a fixed block and the remaining structural parameters, if

any, form random blocks.12 Figure 4 displays the sequence of posterior ordinate and marginal likelihood

estimates from the best fit model, as functions of the number of MCMC draws, for efficient and (relatively)

less efficient TaRB-MH implementations. These estimates settle down quickly (after say 1,000 draws are

made) and converge to the same limit point, leading to an estimated log marginal likelihood of about

�1579.65 with a numerical standard error of about 0.12. This underscores the point that, since the Chib

(1995) method is underpinned by whatever MCMC algorithm is used in the posterior simulation, the

efficiency of the MCMC simulator is germane to the calculation of the marginal likelihood.

3.3.2 Regime Comparison

Because regimes M and F of the Leeper, Traum and Walker (2017) model imply completely different mecha-

nisms for price level determination and therefore different policy advice, identifying which monetary-fiscal

regime produced the real data is key to making good policy choices. While it is difficult to explore

the entire model space, we perform extensive regime comparisons by estimating the marginal likeli-

hood for both regimes with four choices of ν P t2.1, 5, 15, 30u and three choices of φs P t0.1, 0.5, 0.95u,

s P ta, b, i, p, w,m, g, zu. The resulting model space contains a total of 24 relevant models that are si-

multaneously confronted with the data over the period from 1967:Q3 to 2008:Q4, similar in spirit to the

Bayesian model scan framework proposed by Chib and Zeng (2019).13

Two aspects of the marginal likelihood estimates reported in Table 1 are worth highlighting. First,

the data systematically prefer regime-M over regime-F in all cases, which corroborates the regime ranking

found by Leeper, Traum and Walker (2017) with Gaussian shocks and constant volatility.14 The small

numerical standard errors point to the numerical accuracy of the marginal likelihood estimates. Second,

reading the table by row (column) for each regime suggests that the data exhibit quite strong evidence in

favor of heavy-tailed shocks (persistent volatility process). Indeed, each feature is important for improving

and stochastic volatility, always favors a model specification with stronger latent features, e.g., shocks with fatter tails or
volatilities with more persistence. This extreme result emerges even when the true model exhibits weak evidence of these
features, such as those considered in Section 3.3.3.

12In contrast, Justiniano and Primiceri (2008, p. 636) and Herbst and Schorfheide (2016, p. 97) estimate the posterior
ordinate in a single block, with the random-walk M-H, both detrimental to getting reliable and efficient marginal likelihood
estimates, as already documented in Chib and Jeliazkov (2001).

13All computations performed in this section are executed on the High Performance Computing Cluster maintained by
Saint Louis University (https://sites.google.com/a/slu.edu/atg/home).

14We also find the reversed regime ranking with the inclusion of the recent financial crisis sample, a period of nearly zero
policy rate and unprecedented fiscal stimulus that regime-F policy rules embody. See Section 4 for more details.
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Table 1: Log marginal likelihood estimates

φs � 0.1 (weak) φs � 0.5 (moderate) φs � 0.95 (strong)

ν M F M F M F

30 (light) �1640.73 �1650.03 �1627.24 �1638.81 �1597.72 �1609.69

p0.15q p0.15q p0.14q p0.15q p0.12q p0.13q

15 (fat) �1622.26 �1631.66 �1612.62 �1624.22 �1586.70 �1596.68

p0.14q p0.14q p0.13q p0.13q p0.12q p0.13q

5 (heavy) �1605.77 �1616.95 �1600.18 �1611.05 �1579.65 �1593.11

p0.15q p0.14q p0.14q p0.13q p0.12q p0.12q

2.1 (heavy) �1622.31 �1629.38 �1618.37 �1630.84 �1602.76 �1615.60

p0.15q p0.15q p0.14q p0.12q p0.11q p0.12q

Notes: Numerical standard errors are reported in parentheses. All estimates are obtained using 15 reduced TaRB-MH runs
under the benchmark setting (p � 0.7, ω � 0.5), including 7 runs for the structural parameters and 8 runs for the volatility
parameters. 10,000 posterior draws are made for each reduced run.

Table 2: Number of picks for each model specification

DGP 1: regime-M with ν � 15 DGP 2: regime-F with φ � 0.5

ν regime-M regime-F φ regime-M regime-F

30 (light) 4 0 0.1 (weak) 0 9

15 (fat) 15 0 0.5 (moderate) 0 10

5 (heavy) 1 0 0.9 (strong) 0 1

Notes: The shock innovations have constant volatility under DGP 1 and follow Gaussian
distribution under DGP 2. The number of simulations performed for each DGP is 20.

the fit, even after accounting for the other, and the model that fits best is regime-M with ν � 5 and

φs � 0.95.

3.3.3 Simulation Evidence

This section furnishes additional evidence that demonstrates the reliability of the Chib (1995) method. For

each regime, we generate 20 data sets of 100 quarterly observations using the subsample parameter esti-

mates reported in Leeper, Traum and Walker (2017), which are also reproduced in Table A.3 of Appendix

A. We then estimate three versions of each regime model that differ in the volatility specification. Based

on the marginal likelihood estimates, we count the number of times that each of the six regime-volatility

specifications is picked across the 20 simulated data sets. Table 2 summarizes the simulation results.

24



chib, shin & tan: high-dimensional dsge models

The first data generating process assumes that regime-M is in place and the shock innovations follow

a multivariate Student-t distribution with fat tails, i.e., ν � 15, and constant volatility. For each regime,

we fit the model with three degrees of freedom: ν � 30 (light), ν � 15 (fat), and ν � 5 (heavy). As can be

seen from the left panel of Table 2, the correct degrees of freedom in 15 times. The correct policy regime

is always picked.15

The second data generating process assumes that regime-F is in place and the shock innovations

follow a multivariate Gaussian distribution with moderate time-varying volatility, i.e., φs � 0.5 for

s P ta, b, i, p, w,m, g, zu. For each regime, we fit the model with three degrees of persistence in volatility:

φs � 0.1 (weak), φs � 0.5 (moderate), and φs � 0.9 (strong). As shown in the right panel of Table 2, with

only one exception, the data overwhelmingly favor weak to moderate degree of persistence in volatility

under the true regime, which is preferred by all data sets over the alternative regime.16

4 Prediction

Because a good understanding of the current and future state of the economy is essential to develop and

implement sound economic policies, generating a predictive distribution for the future path of the economy

constitutes an important part of the policy analysis. To facilitate this goal, our toolbox also produces, as

a byproduct of the efficient TaRB-MH algorithm and the marginal likelihood computation by the Chib

(1995) method, the joint predictive distribution for all observable variables at any forecasting horizon. For

illustration purposes, Section 4.1 presents such a predictive distribution based on the best fitting model

that is selected by the marginal likelihood comparison. Using the predictive distribution for wages as an

example, Section 4.2 highlights the importance of allowing for non-Gaussian structural shocks with time-

varying variances in the context of out-of-sample prediction. Finally, Section 4.3 evaluates the predictive

performance by comparing the accuracy of point and density forecasts between a small-scale DSGE model

and our high-dimensional DSGE model.

15Although not reported here, we have also computed the marginal likelihood by the MHM method as implemented in
Justiniano and Primiceri (2008). Using a larger set of grid points for ν, we find that nearly all data sets favor the lowest
value of ν. On the other hand, the computation based on the Chib (1995) method continues to find the correct value of ν.

16Like the case of regime-M with Student-t shocks, the computation based on the MHM method always overestimates the
importance of stochastic volatility and selects φs � 0.9. This result emerges despite the fact that all data sets are relatively
short-lived and generated by a model with ‘close’ to constant volatility process.
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4.1 Sampling the Predictive Distribution

Let y1:T be the data used to perform estimation, inference, and model selection. In addition, denote

yT�1:T�h the future path of the observables in the model economy. Then the predictive distribution is

defined as

ppyT�1:T�h|y1:T q �

»
ppyT�1:T�h|y1:T , θq � ppθ|y1:T qdθ

where the above integration is numerically approximated by first sampling the posterior ppθ|y1:T q a large

number of times by the TaRB-MH algorithm and then simulating a future path y
pgq
T�1:T�h for each parameter

draw. This amounts to moving model variables forward with θ and y1:T . We call ppyi,T�h|y1:T q the h-step-

ahead predictive distribution for the ith variable generated in period T .

Now we generate the one-quarter-ahead predictive distribution for all eight observables based on the

best fitting model as measured by the marginal likelihood. Throughout the entire forecasting horizon,

this model operates under regime-M model and has Student-t shocks with stochastic volatilities. The first

predictive distribution is generated using observations from the third quarter of 1967 to the fourth quarter

of 2008, which is about six months before the Business Cycle Dating Committee of the National Bureau

of Economic Research announces the end of the Great Recession. The forecasting horizon starts from the

first quarter of 2009 and ends at the second quarter of 2014, covering the whole economic recovery period

from the Great Recession. Figure 5 displays the median forecasts with 90% credible bands computed from

the predictive distribution of regime-M over the full forecasting horizon. Overall the model performs quite

well in tracking the recovery path of most observables.

4.2 Importance of Non-Gaussian Shocks

As the marginal likelihood comparison reveals, one needs a flexible way to model structural shocks in

the model economy to explain the U.S. macroeconomic variables. The need of flexible distributional

assumptions, such as Student-t shocks with stochastic volatility, can also be seen from our generated

predictive densities as well. The left panel of Figure 6 plots the 90% credible sets for wages based on two

predictive distributions: one under Gaussian shocks with constant variance and another under Student-t

shocks with time-varying variance. It is noticeable that the uncertainty bands are much wider for the

model under Student-t shocks with time-varying variance. To understand this stark difference, the right

panel of Figure 6 plots the time series of wages over the full sample. As pointed out by Champagne

and Kurmann (2013), wages in the U.S. have become more volatile over the past 20 years. For example,

the standard deviation of wages was 0.55 between 1955:Q1 and 1999:Q4, and 1.05 between 2000:Q1 and
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Figure 5: DSGE-model forecast of each observable. Notes: Each panel compares the one-quarter-ahead posterior
forecast of regime M with real data (black solid lines). Blue dashed lines denote median forecasts, while blue
shaded areas delineate 90% highest predictive density bands.

2014:Q2. The heightened volatility of wages after 2000 is captured by the model with stochastic volatility,

which adaptively widens the predictive distribution for wages. On the other hand, the model with constant

variance misses this important change in volatility. In turn, its predictive distribution of wages is too

narrow, underestimating the uncertainty in the future path of wages. In general, allowing for time-varying

volatility produces similar improvements in the quality of DSGE-based interval and density forecasts
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Figure 6: Predictive distribution and data for wages. Notes: Predictive distributions are constructed using data up
to 2008:Q4. The one-step-ahead prediction corresponds to 2009:Q1. The left panel plots 90% prediction intervals
of regime-M under Gaussian shocks with constant variance (labeled ‘CV-N’, thick line) and Student-t shocks with
time-varying variance (labeled ‘SV-t’, thin line). The right panel plots the time series of wages (solid line). Dashed
lines delineate two standard deviations from the mean for two sub-samples, i.e., pre- and post-2000.

(see, e.g., Diebold, Schorfheide and Shin (2017)). Thus, we expect that our toolbox, by making it easy to

incorporate non-Gaussian errors and time-varying variances, will be useful for researchers and policymakers

interested in better out-of-sample performance of DSGE models.

4.3 Predictive Performance Comparison

Although regime-M yields a higher marginal likelihood relative to regime-F, one may still be interested in

knowing how the two policy regimes compare in terms of the quality of point and density forecasts over

the forecasting horizon. It is also interesting to compare the forecasts from a medium-scale DSGE model

with those from a small-scale one when both models are equipped with Student-t shocks and stochastic

volatility. Specifically, we compare the point and density forecasts generated from regimes M and F, and a

small-scale DSGE model described in Appendix C. Starting from the first quarter of 2009, we recursively

estimate the three models and generate one-quarter-ahead to two-year-ahead point and density forecasts

until the second quarter of 2014, which results in 22 quarters of evaluation points for the one-quarter-ahead

prediction. Since the small-scale model contains fewer observables, our evaluation exercise only considers

the common set of observables: consumption growth, inflation rate, and federal funds rate. The aim of

this comparison is to get information about the strengths and weaknesses of DSGE model elaborations.

In each model, for each observable and forecasting horizon, the point prediction is the mean of the

corresponding predictive distribution. Let pyi,t�h|t denote the h-step-ahead point prediction for the ith
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Table 3: Point forecast comparison, RMSE

Model h � 1Q h � 2Q h � 4Q h � 8Q

(a) Consumption growth

Small-scale 0.32 0.28 0.25 0.28

Regime-M 0.44 (0.06) 0.48 (0.20) 0.50 (0.22) 0.48 (0.12)

Regime-F 0.40 (0.23) 0.39 (0.16) 0.36 (0.38) 0.37 (0.11)

(b) Inflation rate

Small-scale 0.26 0.32 0.46 0.58

Regime-M 0.24 (0.40) 0.28 (0.31) 0.37 (0.12) 0.44 (0.04)

Regime-F 0.34 (0.00) 0.53 (0.08) 0.86 (0.10) 1.14 (0.14)

(c) Federal funds rate

Small-scale 0.21 0.38 0.64 0.94

Regime-M 0.06 (0.00) 0.12 (0.01) 0.19 (0.01) 0.42 (0.01)

Regime-F 0.06 (0.00) 0.12 (0.02) 0.18 (0.02) 0.22 (0.01)

Notes: Each entry reports the RMSE based on the point forecast with the p-value of Diebold-Mariano (DM) tests of equal
MSE in parentheses, obtained using the fixed-b critical values. The standard errors entering the DM statistics are computed
using the equal-weighted cosine transform (EWC) estimator with the truncation rule recommended by Lazarus et al. (2018).

variable generated at time t. To compare the quality of point forecasts, we report the root mean squared

error (RMSE) for the point prediction

RMSEppyi,t�h|t, yi,t�hq �
gffe 1

22 � h

2014:Q2�h¸
t�2009:Q1

�
yi,t�h � pyi,t�h|t�2

where 2014:Q2�h denotes h-quarters before 2014:Q4 and yi,t�h is the actual value for the ith variable at

time t � h. The model with a smaller RMSE is preferred as the smaller forecast error is desirable. To

compare the precision of predictive densities, we compute the continuous ranked probability score (CRPS),

which is defined as

CRPSpFi,t�h|tpzq, yi,t�hq �

»
R

�
Fi,t�h|tpzq � 1tyi,t�h ¤ zu

�2
dz

where Fi,t�h|tpzq is the h-step-ahead predictive cumulative distribution of the ith variable generated at

time t. The CRPS is one of the proper scoring rules, and the predictive distribution with a smaller CRPS
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Table 4: Density forecast comparison, average CRPS

Model h � 1Q h � 2Q h � 4Q h � 8Q

(a) Consumption growth

Small-scale 0.21 0.2 0.19 0.2

Regime-M 0.26 (0.08) 0.28 (0.28) 0.29 (0.31) 0.28 (0.20)

Regime-F 0.23 (0.40) 0.22 (0.41) 0.21 (0.72) 0.22 (0.46)

(b) Inflation rate

Small-scale 0.15 0.18 0.26 0.34

Regime-M 0.14 (0.48) 0.17 (0.53) 0.23 (0.29) 0.28 (0.11)

Regime-F 0.20 (0.00) 0.31 (0.03) 0.52 (0.05) 0.69 (0.08)

(c) Federal funds rate

Small-scale 0.13 0.24 0.43 0.67

Regime-M 0.04 (0.00) 0.07 (0.02) 0.13 (0.01) 0.27 (0.01)

Regime-F 0.04 (0.00) 0.07 (0.02) 0.12 (0.02) 0.19 (0.01)

Notes: Each entry reports the average CRPS over the evaluation period with the p-value of Diebold-Mariano (DM) tests
of equal CRPS in parentheses, obtained using the fixed-b critical values. The standard errors entering the DM statistics are
computed using the equal-weighted cosine transform (EWC) estimator with the truncation rule recommended by Lazarus
et al. (2018).

is preferred as this measure can be viewed as the divergence between the given predictive distribution and

the unattainable oracle predictive distribution that puts a probability mass only on the realized value.

Tables 3 and 4 report the RMSE and average CRPS, respectively, of consumption growth, inflation rate,

and federal funds rate based on all three models.

Forecasts from the medium-scale models are significantly more accurate for the federal funds rate at all

horizons. On the other hand, forecasts from the small-scale model are more accurate for the consumption

growth at all horizons although the difference is only statistically significant at the one-quarter-ahead

horizon. The major difference between regimes M and F lies in the inflation forecasts, and the model

under regime-M produces forecasts with lower RMSEs (CRPSs). The RMSE (CRPS) gaps get wider as

the forecasting horizon extends, and the RMSE (CRPS) from regime-M becomes more than half of that

from regime-F. In contrast, the forecasts from regime-F fare slightly better for the consumption growth at

all horizons and are most accurate for the federal funds rate at the two-year-ahead horizon.

In sum, there is no clear winner in this comparison. The small-scale model performs better for fore-

30



chib, shin & tan: high-dimensional dsge models

casting the consumption growth. The medium-scale model, on the other hand, performs the best under

regime-M for forecasting the inflation rate but does not generate better forecasts under regime-F except

for forecasting the federal funds rate in the long run. Although the evaluation period is too short-lived to

draw a definite conclusion, the results from this out-of-sample forecasting exercise indicate that there is

still room for improvement even for the more complex models.

5 Concluding Remarks

We have given pointers on the fitting and comparison of high-dimensional DSGE models with latent

variables and shown that the TaRB-MH algorithm of Chib and Ramamurthy (2010) allows for the efficient

estimation of such models. We emphasize the importance of training sample priors, which is new in the

DSGE context, and the use of the Student-t, as opposed to the normal family, as the prior distribution for

location-type parameters. In addition, we show that the method of Chib (1995) and Chib and Jeliazkov

(2001), in conjunction with a parallel implementation of the required reduced MCMC runs, can be used

to get reliable and fast estimates of the marginal likelihood. With the help of a user-friendly MATLAB

package, these methods can be readily employed in academic and central bank applications to conduct

DSGE model comparisons, impulse response and variance decomposition analyses, and to generate point

and density forecasts. Finally, in ongoing work, we are applying this toolkit, without modification and any

erosion in performance, to open economy DSGE models that contain more than twice as many parameters

and latent variables as the model showcased in this paper. Findings from this analysis will be reported

elsewhere.
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Appendix

Siddhartha Chib, Minchul Shin, and Fei Tan

Appendix A Leeper-Traum-Walker Model

A.1 Equilibrium System

Since the economy features a stochastic trend induced by the permanent technology shock At, some vari-

ables are not stationary. To induce stationarity, we therefore detrend these variables as: yt �
Yt
At

, c�t �
C�t
At

,

ct �
Ct
At

, kt �
Kt
At

, k̄t �
K̄t
At

, it �
It
At

, gt �
Gt
At

, zt �
Zt
At

, bt �
PBt Bt
PtAt

, wt �
Wt

PtAt
, λt � ΛtAt. The model’s

equilibrium system in terms of the detrended variables can be summarized as follows.

Production function:

yt∆
p
t � kαt pL

d
t q

1�α � Ω (A.1)

Capital-labor ratio:

kt
Ldt

�
wt
rkt

α

1 � α
(A.2)

Real marginal cost:

mct � p1 � αqα�1α�αprkt q
αw1�α

t (A.3)

Intermediate goods producer’s optimal price:

Et

�
8̧

k�0

pβωpq
kλt�kȳt�k

�
π�t

k¹
s�1

�πt�s�1

π

	χp π

πt�s
� p1 � ηpt�kqmct�k

��
� 0 (A.4)

Evolution of aggregate price index:

1 � p1 � ωpqpπ
�
t q

� 1

η
p
t � ωp

��πt�1

π

	χp π
πt

�� 1

η
p
t

(A.5)
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Optimal consumption:

λtp1 � τCt q �
ubt

c�t � θc�t�1e
�uat

(A.6)

Composite consumption:

c�t � ct � αGgt (A.7)

Consumption Euler equation:

λt � βRtEt
�
λt�1e

�uat�1

πt�1

�
(A.8)

Bond pricing relation:

PB
t � Et

�
1 � ρPB

t�1

Rt

�
(A.9)

Optimal capital utilization:

p1 � τKt qr
k
t � ψ1pvtq (A.10)

Optimal physical capital:

qt � βEt
�
λt�1

λt
e�u

a
t�1
�
p1 � τKt�1qr

k
t�1vt�1 � ψpvt�1q � p1 � δqqt�1

��
(A.11)

where qt is the real price of capital in terms of consumption goods (i.e., Tobin’s Q).

Optimal investment:

1 � qtũ
i
t

�
1 � S

�
ite

uat

it�1



� S 1

�
ite

uat

it�1



ite

uat

it�1



� βEt

�
qt�1

λt�1e
�uat�1

λt
ũit�1S

1

�
it�1e

uat�1

it


�
it�1e

uat�1

it


2
�

(A.12)

Effective capital:

kt � vtk̄t�1e
�uat (A.13)
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Law of motion for capital:

k̄t � p1 � δqe�u
a
t k̄t�1 � ũit

�
1 � S

�
ite

uat

it�1




it (A.14)

Optimal wage:

Et

�
8̧

k�0

pβωwq
kλt�kL̄t�k

�
w�
t

k¹
s�1

�
πt�s�1e

uat�s�1

πeγ


χw πeγ

πt�se
uat�s

�
p1 � ηwt�kqu

b
t�kL̄

ξ
t�k

p1 � τLt�kqλt�k

��
� 0 (A.15)

where

L̄t�k �

�
w�
t

wt�k

k¹
s�1

�
πt�s�1e

uat�s�1

πeγ


χw πeγ

πt�se
uat�s

�� 1�ηwt�k
ηw
t�k

Ldt�k (A.16)

Evolution of aggregate wage index:

w
� 1
ηwt

t � p1 � ωwqpw
�
t q

� 1
ηwt � ωw

��
πt�1e

uat�1

πeγ


χw � πeγ

πteu
a
t



wt�1

�� 1
ηwt

(A.17)

Government budget constraint:

bt � τKt r
k
t kt � τLt wtLt � τCt ct �

1 � ρPB
t

PB
t�1

bt�1

πteu
a
t
� gt � zt (A.18)

Aggregate resource constraint:

yt � ct � it � gt � ψpvtqk̄t�1e
�uat (A.19)

A.2 Steady States

To solve for the steady states, we calibrate β � 0.99, α � 0.33, δ � 0.025, the average maturity of gov-

ernment bond portfolio AD � 20, ηw � ηp � 0.14, g{y � 0.11, b{y � 1.47, τC � 0.023, τK � 0.218, and

τL � 0.186. By assumption, v � 1, ψpvq � 0, and Speγq � S 1peγq � 0. The remaining steady states can be

solved as follows.

From AD:

ρ �

�
1 �

1

AD



1

β
(A.20)
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From (A.8):

R �
eγπ

β
(A.21)

From (A.9):

PB �
β

eγπ � ρβ
(A.22)

From ũi � 1 and (A.12):

q � 1 (A.23)

From (A.11):

rk �

eγ

β
� p1 � δq

1 � τK
(A.24)

From (A.10):

ψ1p1q � rkp1 � τKq (A.25)

From (A.4):

mc �
1

1 � ηp
(A.26)

From (A.3):

w �
�
mcp1 � αq1�αααprkq�α

� 1
1�α (A.27)

From (A.2):

k

L
�

α

1 � α

w

rk
(A.28)

From ∆p � 1, the final goods producer’s zero profit condition, and (A.1):

Ω

L
�

�
k

L


α
� rk

k

L
� w (A.29)
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From (A.29):

y

L
�

�
k

L


α
�

Ω

L
(A.30)

From (A.13):

k̄ � keγ (A.31)

From (A.14):

i

L
�
�
1 � p1 � δqe�γ

�
eγ
k

L
(A.32)

From (A.19):

c

L
�
y

L

�
1 �

g

y



�
i

L
(A.33)

From (A.18):

z

L
�

��
1 �

R

πeγ



b

y
�
g

y

�
y

L
� τC

c

L
� τLw � τKrk

k

L
(A.34)

From (A.7):

c�

L
�
c

L
� αG

g

y

y

L
(A.35)

From (A.15) and (A.17):

L �

�
wp1 � τLq

p1 � τCqp1 � ηwq

1

p1 � θe�γq c
�

L

� 1
ξ�1

(A.36)

from which all level variables can be calculated from the steady state ratios given above.

A.3 Tables and Figures

• Table A.1 lists the marginal prior distributions and the true values for the high-dimensional DSGE

model under regime-M.

• Table A.2 summarizes the posterior parameter estimates for the model of best fit.

• Table A.3 reproduces the subsample posterior parameter estimates reported in Leeper, Traum and
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Walker (2017), which are used to generate the simulated data sets in Section 3.3.3.

• Figures A.1–A.2 display the autocorrelation function for each model parameter.

• Figures A.3–A.4 compare the model’s estimated parameters and volatilities with their true values,

respectively.

Appendix B Guide to MATLAB Package

We provide a library of numerical subroutines called ‘TaRB-t-SV’ that implements the TaRB-MH algorithm

discussed in the main text. All of the subroutines are programed in MATLAB or compiled as executable

(MEX) functions. The MEX versions of these subroutines are included in the subfolders ‘mex/mac’ (for

Mac OS users) and ‘mex/win’ (for Windows OS users) to improve computational time. The subfolder

‘utils’ contains various supporting packages that will be utilized by the main programs below.

The TaRB-MH algorithm can be broken down into a sequence of easily implementable steps. These

steps can be executed with the following set of functions in the main folder ‘TaRB-t-SV’, which are

extensively annotated:

• tarb_demo.m—main function that estimates one of the DSGE models specified under the subfolder

‘user’.

• tarb_spec.m—admits all user-specified optional settings for the TaRB-MH algorithm. Like MAT-

LAB built-in functions, each setting is entered in as a string-value pair.

• chain_init.m—finds the posterior mode and its associated inverse Hessian matrix.

• tarb_full.m—implements the full MCMC run for parameter estimation.

• tarb_reduce.m—implements the reduced MCMC runs for marginal likelihood estimation.

• readme.m—displays general information about TaRB-t-SV.

• test_bench.m—preliminary DSGE model analysis.

The subfolder ‘user/ltw17’ contains the following files for the Leeper-Traum-Walker model, which can

be modified as needed for alternative model specifications:

• data.txt—prepared in matrix form where each row corresponds to the observations for a given

period.
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• user_parvar.m—defines the model parameters, variables, shock innovations, forecast errors, and

observables.

• user_mod.m—defines the model and measurement equations.

• user_ssp.m—defines the steady state, implied, and/or fixed parameters.

• user_svp.m—defines the stochastic volatility parameters.

To estimate the Leeper-Traum-Walker model with Student-t shocks and stochastic volatility, for ex-

ample, simply set the MATLAB current directory to the main folder ‘TaRB-t-SV’ and run the following

blocks of code in tarb_demo.m.

1. Specify the model, data, and save directories and generate, if needed, the required MEX files that

are compatible with the user machine.

%}

%% Housekeeping

clear

close all

clc

readme

%% User search path & mex files

modpath = [’user’ filesep ’ltw17’];

datpath = [’user’ filesep ’ltw17’ filesep ’data.txt’];

savepath = [’user’ filesep ’ltw17 ’];

spec = tarb_spec ([],’modpath ’,modpath ,’datpath ’,datpath ,’savepath ’,savepath);

OneFileToMexThemAll

%{

2. Find the posterior mode and evaluate the corresponding inverse of the Hessian matrix.

%}

%% Find posterior mode

sa_spec = optimoptions(@simulannealbnd ,... % simulated annealing

’TemperatureFcn ’,@temperaturefast ,...

’InitialTemperature ’ ,2,...

’TolFun ’,1e-3,...

’MaxTime ’ ,10,...

’Display ’,’iter’ ,...

’DisplayInterval ’ ,10);

dof = 5; % Shock degrees of freedom
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spec = tarb_spec(spec ,’sdof’,dof ,’sa’,sa_spec);

chi = 0; % tuning parameter

npd = 1000; % number of prior draws

nopt = 2; % number of optimizations

chain_init(chi ,npd ,nopt ,spec)

%{

3. Sample the posterior distribution by the TaRB-MH algorithm of Chib and Ramamurthy (2010). The

estimation results will be stored in the MATLAB data file tarb_full.mat, which is saved to the

subfolder ‘user/ltw17’.

%}

%% MCMC (full run)

p = 0.7; % blocking probability

w = 0.5; % tailoring frequency

spec = tarb_spec(spec ,’prob’,p,’freq’,w,’sa’ ,[]);

M = 11000; % number of draws including burn -in

burn = 1000; % number of burn -in

tarb_full(M,burn ,spec)

%{

4. Conditional on the estimated latent variables, find the posterior mode again and evaluate the corre-

sponding inverse of the Hessian matrix.

%}

%% Find posterior mode again

load([ savepath filesep ’tarb_full.mat’])

if exist(’chain_lamb ’,’var’)

lamb = mean(chain_lamb); % t shock: gamma precisions

spec = tarb_spec(spec ,’lamb’,lamb ,’sa’,sa_spec);

end

if exist(’chain_h ’,’var’)

h = mean(chain_h ,3); % sv: log volatilities

spec = tarb_spec(spec ,’h’,h,’sa’,sa_spec);

end

chain_init(chi ,npd ,nopt ,spec)

%{
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5. Compute the marginal likelihood by the Chib (1995) and Chib and Jeliazkov (2001) method. The

estimation results will be stored in the MATLAB data file tarb_reduce.mat, which is saved to the

subfolder ‘user/ltw17’.

%}

%% Marginal likelihood (reduced run)

spec = tarb_spec(spec ,’sa’ ,[]);

B = 7; % number of blocks

tarb_reduce(M,burn ,B,spec)

%{

Appendix C Small-Scale DSGE Model

A log-linear approximation to the model’s equilibrium conditions around the steady state can be summa-

rized as follows:

Dynamic IS equation: ĉt � Etĉt�1 �
1

τ
pR̂t � Etπ̂t�1 � Etẑt�1q (C.1)

New Keynesian Phillips curve: π̂t � βEtπ̂t�1 � κĉt (C.2)

Monetary policy: R̂t � ρRR̂t�1 � p1 � ρRqrψ1π̂t � ψ2pĉt � ĝtqs � εR,t (C.3)

Technology shock: ẑt � ρz ẑt�1 � εz,t (C.4)

Government spending shock: ĝt � ρgĝt�1 � εg,t (C.5)

Here τ ¡ 0 is the coefficient of relative risk aversion, 0   β   1 is the discount factor, κ ¡ 0 is the slope

of the new Keynesian Phillips curve, ψ1 ¡ 0 and ψ2 ¡ 0 are the policy rate responsive coefficients, and

0 ¤ ρR, ρz, ρg   1. Moreover, ct is the detrended consumption, πt is the inflation between periods t�1 and

t, Rt is the nominal interest rate, zt is an exogenous shock to the labor-augmenting technology that grows

on average at the rate γ, and gt is an exogenous government spending shock. Finally, the shock innovations

εt � rεR,t, εz,t, εg,ts
1 follow a multivariate Student-t distribution, i.e., εt � tνp0,Σtq, where Σt � diag

�
eht
�

and each element of ht � rhRt , h
z
t , h

g
t s
1 follows a stationary process

hst � p1 � φsqµs � φsh
s
t�1 � ηst , ηst � Np0, ω2

sq, s P tR, z, gu. (C.6)

The model is estimated over three observables, including log difference of consumption, log inflation, and

log nominal interest rate. The observables are linked to the model variables via the following measurement
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equations, �������
dlConst

lInflt

lFedFundst

������� �

�������
γpQq

πpQq

πpQq � rpQq � γpQq

��������

�������
ĉt � ĉt�1 � ẑt

π̂t

R̂t

������� (C.7)

where pγpQq, πpQq, rpQqq are connected to the model’s steady states via γ � 1�γpQq{100, β � 1{p1�rpQq{100q,

and π � 1 � πpQq{100. Table A.4 lists the marginal prior distributions for the small-scale DSGE model

parameters.
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Table A.1: Priors and true values for high-dimensional DSGE model parameters

Structural parameters Volatility parameters

Name Density p1, 2q DGP Name Density p1, 2q DGP

100γ N p0.40, 0.05q 0.25 µa tν p�7.0, 2.0q �4.6

ξ G p2.00, 0.50q 1.77 µb tν p�7.0, 2.0q �4.6

h B p0.50, 0.20q 0.99 µi tν p�7.0, 2.0q �4.6

αG U p�1.75, 1.75q �0.25 µp tν p�7.0, 2.0q �4.6

ψ B p0.60, 0.15q 0.16 µw tν p�7.0, 2.0q �4.6

s N p6.00, 1.50q 5.46 µm tν p�7.0, 2.0q �4.6

ωp B p0.50, 0.20q 0.92 µg tν p�7.0, 2.0q �4.6

ωw B p0.50, 0.20q 0.91 µz tν p�7.0, 2.0q �4.6

χp B p0.50, 0.20q 0.06 φa B p0.95, 0.01q 0.99

χw B p0.50, 0.20q 0.18 φb B p0.95, 0.01q 0.99

φπ, regime-M N p1.50, 0.20q 0.90 φi B p0.95, 0.01q 0.99

φπ, regime-F B p0.50, 0.15q n/a φp B p0.95, 0.01q 0.99

φy N p0.125, 0.05q 0.10 φw B p0.95, 0.01q 0.99

ρr B p0.50, 0.20q 0.71 φm B p0.95, 0.01q 0.99

γg, regime-M N p0.15, 0.10q 0.26 φg B p0.95, 0.01q 0.99

γz, regime-M N p0.15, 0.10q �0.11 φz B p0.95, 0.01q 0.99

ρg B p0.50, 0.20q 0.98 ω2
a IG-2 p2.00, 0.05q 0.10

ρz, regime-F B p0.50, 0.20q n/a ω2
b IG-2 p2.00, 0.05q 0.10

ρea B p0.50, 0.20q 0.23 ω2
i IG-2 p2.00, 0.05q 0.10

ρeb B p0.50, 0.20q 0.40 ω2
p IG-2 p2.00, 0.05q 0.10

ρei B p0.50, 0.20q 0.69 ω2
w IG-2 p2.00, 0.05q 0.10

ρep B p0.50, 0.20q 0.74 ω2
m IG-2 p2.00, 0.05q 0.10

ρew B p0.50, 0.20q 0.18 ω2
g IG-2 p2.00, 0.05q 0.10

ρem B p0.50, 0.15q 0.39 ω2
z IG-2 p2.00, 0.05q 0.10

ρeg B p0.50, 0.15q 0.13

ρez, regime-F B p0.50, 0.15q n/a Fixed parameters

L̄ N p468, 5.00q 481.12 Regime-M: ρz � 0.98, ρez � 0.80

π̄ N p0.75, 0.25q 0.60 Regime-F: γg � γz � 0

Notes: Density p1, 2q refer to Gamma (G), Normal (N), Beta (B), and Student-tν (ν � 2.1 degrees of freedom) distributions
with means and standard deviations indicated in parentheses; Uniform (U) distribution with lower and upper bounds; Inverse-

Gamma type-1 (IG-1) distribution with parameters ν and s, where ppσq9σ�ν�1 exp p� νs2

2σ2 q; Inverse-Gamma type-2 (IG-2)

distribution with parameters α and β, where ppω2q9pω2q�α�1 exp p� β
ω2 q. The effective priors are truncated at the boundary

of the determinacy region.
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Table A.2: Posterior summary of DSGE model parameters

Structural parameters Volatility parameters

Name Mean 90% HPD Ineff Name Mean 90% HPD Ineff

100γ 0.22 r0.16, 0.28s 4.4 µa �0.33 r�0.74, 0.08s 4.9

ξ 1.65 r0.77, 2.41s 12.3 µb 6.41 r5.73, 7.06s 69.0

h 0.99 r0.98, 0.99s 103.6 µi �0.93 r�1.56, �0.35s 5.8

αG �0.09 r�0.19, �0.00s 5.2 µp �5.55 r�6.02, �5.04s 9.9

ψ 0.20 r0.11, 0.29s 9.0 µw �3.63 r�4.27, �2.98s 13.7

s 7.35 r5.14, 9.57s 6.2 µm �4.59 r�5.46, �3.76s 2.7

ωp 0.91 r0.89, 0.94s 20.9 µg 0.79 r0.45, 1.18s 5.1

ωw 0.84 r0.79, 0.89s 13.6 µz 1.78 r1.09, 2.46s 43.0

χp 0.09 r0.01, 0.16s 6.3 φa 0.95 r0.94, 0.97s 2.0

χw 0.07 r0.02, 0.11s 3.4 φb 0.95 r0.93, 0.96s 2.0

φπ 1.00 r0.71, 1.31s 20.6 φi 0.95 r0.94, 0.97s 1.7

φy 0.17 r0.13, 0.22s 7.2 φp 0.95 r0.93, 0.97s 1.9

ρr 0.76 r0.70, 0.82s 15.7 φw 0.95 r0.93, 0.97s 1.7

γg 0.27 r0.16, 0.37s 17.8 φm 0.95 r0.94, 0.97s 2.0

γz �0.07 r�0.20, 0.07s 39.9 φg 0.95 r0.93, 0.96s 2.3

ρg 0.98 r0.97, 0.99s 12.0 φz 0.95 r0.93, 0.97s 2.0

ρea 0.24 r0.12, 0.35s 3.5 ω2
a 0.02 r0.01, 0.04s 15.0

ρeb 0.38 r0.26, 0.50s 4.5 ω2
b 0.02 r0.01, 0.04s 14.1

ρei 0.64 r0.54, 0.73s 15.1 ω2
i 0.05 r0.01, 0.10s 13.1

ρep 0.74 r0.66, 0.80s 24.0 ω2
p 0.03 r0.01, 0.06s 8.7

ρew 0.45 r0.35, 0.58s 31.1 ω2
w 0.05 r0.01, 0.08s 12.6

ρem 0.57 r0.46, 0.68s 16.1 ω2
m 0.10 r0.03, 0.17s 7.5

ρeg 0.06 r0.01, 0.11s 3.9 ω2
g 0.02 r0.01, 0.03s 24.9

L̄ 474.43 r473.31, 475.50s 23.9 ω2
z 0.03 r0.01, 0.05s 19.2

π̄ 0.27 r0.00, 0.47s 3.4

Notes: The posterior means and 90% highest probability density (HPD) intervals are computed using 10, 000 posterior
draws from the TaRB-MH algorithm. The estimated model has regime-M in place and Student-t shocks with ν � 5 degrees
of freedom.
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Table A.3: True values for DSGE model parameters

Name Regime-M Regime-F Name Regime-M Regime-F

100γ 0.34 0.27 ρea 0.23 0.30

ξ 1.78 2.25 ρeb 0.47 0.22

h 0.96 0.96 ρei 0.76 0.47

αG �0.24 �0.38 ρep 0.48 0.61

ψ 0.35 0.31 ρew 0.36 0.20

s 7.08 3.47 ρem 0.52 0.87

ωp 0.94 0.95 ρeg 0.16 0.29

ωw 0.81 0.74 ρez 0.80 0.90

χp 0.21 0.11 100σa 0.80 1.18

χw 0.19 0.06 100σb 14.54 16.95

φπ 1.34 0.19 100σi 0.44 1.30

φy 0.16 0.21 100σp 0.09 0.13

ρr 0.79 0.37 100σw 0.27 0.23

γg 0.25 0 100σm 0.15 0.21

γz �0.06 0 100σg 1.63 2.05

ρg 0.97 0.95 100σz 3.57 0.78

ρz 0.98 0.97

L̄ 470.67 468.98

π̄ 0.70 0.75

Notes: The DGPs under regimes M and F correspond to their post-Volcker (1955:Q1–1979:Q4) and pre-Volcker (1982:Q1–
2007:Q4) estimates reported in Leeper, Traum and Walker (2017), respectively.
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Table A.4: Priors for small-scale DSGE model parameters

Structural parameters Volatility parameters

Name Density p1, 2q Name Density p1, 2q

τ G p2.00, 0.50q µR tν p�5.0, 2.0q

κ G p0.20, 0.10q µζ tν p�5.0, 2.0q

ψ1 N p1.50, 0.20q µg tν p�5.0, 2.0q

ψ2 G p0.125, 0.05q φR B p0.95, 0.01q

γpQq N p0.40, 0.05q φζ B p0.95, 0.01q

πpQq G p0.75, 0.25q φg B p0.95, 0.01q

ρR B p0.50, 0.20q ω2
R IG-2 p2.00, 0.05q

ρz B p0.50, 0.20q ω2
ζ IG-2 p2.00, 0.05q

ρg B p0.50, 0.20q ω2
g IG-2 p2.00, 0.05q

Notes: See Table A.1.
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Figure A.1: Autocorrelation function of each structural parameter. Notes: Red horizontal lines correspond to an
autocorrelation of 0.1.
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Figure A.2: Autocorrelation function of each volatility parameter. Notes: See Figure A.1.
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Figure A.3: Marginal prior and posterior distributions of each structural parameter. Notes: Each panel compares
the prior (red dashed line) with the posterior (shaded area). Vertical lines denote the true parameter values. The
kernel smoothed posterior densities are estimated using 10, 000 TaRB-MH draws.
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Figure A.4: Stochastic volatility of each shock innovation. Notes: Each panel compares the model’s estimated
log-variances with their true values (red solid line). Blue dashed lines denote median estimates, while shaded areas
delineate 90% highest posterior density bands.
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