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Abstract

We propose probability and density forecast combination methods that are defined using the

entropy regularized Wasserstein distance. First, we provide a theoretical characterization of

the combined density forecast based on the regularized Wasserstein distance under the Gaus-

sian assumption. Second, we show how this type of regularization can improve the predictive

power of the resulting combined density. Third, we provide a method for choosing the tuning

parameter that governs the strength of regularization. Lastly, we apply our proposed method

to the U.S. inflation rate density forecasting, and illustrate how the entropy regularization can

improve the quality of predictive density relative to its unregularized counterpart.
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1 Introduction

In this paper, we study a class of density forecast combination methods based on a Wasser-

stein metric. In the univariate case, an equally weighted centroid defined by a Wasserstein

metric corresponds to a quantile averaging or vincentized center where quantiles of forecast

densities are averaged. The resulting combined density tends to be narrower than the linear

opinion rule (Geweke and Amisano, 2011; Lichtendahl et al., 2013; Busetti, 2017), which

may or not be desirable, depending on the context.

We propose to use the entropy regularized Wasserstein metric to construct a combined

density forecast. Like its unregularized counterpart, this combined probability/density can

be defined by an optimization problem, but the optimization problem in this case includes

an additional regularization term that penalizes densities with low entropy, which ensures

the combined density forecast is smooth. One advantage of this approach is that the entropy

regularized Wasserstein barycenter can be found in a much more computationally efficient

manner than its unregularized counterpart when the input densities are multi-dimensional

(Benamou et al., 2015). While computational efficiency is the most commonly cited reason for

using entropy regularization, this paper demonstrates that there is an additional advantage of

regularization when it comes to the density combination problem. It provides a way to tune

the degree of dispersion of the combined density forecast. To the best of our knowledge, this

regularized metric has not been explored in the context of the density forecasting combination

problem.

We proceed as follows. Section 2 formulates a density forecast combination problem with

a general metric. Several existing aggregation methods in the literature can be formulated

with the choice of a specific metric within this unified framework. After discussing these

existing approaches, we introduce our proposal of using the entropy regularized Wasserstein

barycenter. Section 3 provides theoretical results that describe the impact of entropy reg-

ularization on the combined density under a Gaussian assumption and discusses how this

helps improve the quality of the combined density prediction. Section 4 discusses how to set

the strength of the entropy regularization in practice and shows that our proposed selection

rule achieves a certain notion of optimality. Section 5 provides an empirical exercise that

illustrates how entropy regularization improves the quality of density prediction of the U.S.

inflation rate relative to the unregularized combined density forecast. Section 6 concludes.



2 Regularized Wasserstein barycenter for density fore-

cast combination

This section introduces the density combination problem; see, for example, Timmermann

(2006). We assume that agent i ∈ {1, . . . , N} at time t ∈ N+ provides a forecast of the

density function pit : Rd → R+, with distribution function denoted by Pit : Rd → R+, of the

random variable yt+h with h ∈ N+. We are interested in aggregating information contained

in the N agents’ forecasts to generate a better predictive distribution for yt+h.

Throughout the paper, we shall focus on density combinations that can be viewed as a

type of average over probability densities. Specifically, those that can be defined as,

pt = arg min
pt∈P

N∑

i=1

D(pit, pt), (1)

where D(pi, pj) is a measure of the discrepancy between the densities pi and pj . When D(∙)

satisfies the usual properties of a distance metric, which is the case when D(∙) is defined

as Euclidean or an unregularized Wasserstein metric, then pt is known as a Fréchet mean,

which is a generalization of the average for real numbers. We will refer to pt as a barycenter

to also encompass the more general case in which D(∙) is not a metric. As described in Eqn

(1), we restrict our attention to the case in which pt is a density forecast with each input

density having equal weight, which is known to perform quite well as a combination forecast

(Clemen, 1989).

A specific choice of metric, D(pi, pj), will lead to a different combined density, pt. Before

introducing our proposed definition of D(∙), the entropy regularized Wasserstein metric, the

next two sections introduce choices for D(pi, pj) that lead to well-known density forecast

combination methods.

2.1 Equal-weighted linear opinion rule

As a starting point let us consider D(pi, pj) := ‖pi − pj‖2
2. Then, Eqn (1) becomes

pt = arg min
pt∈P

N∑

i=1

∫
(pit − pt)

2, (2)
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which results in the following solution,

pt =
1

N

N∑

i=1

pit. (3)

This can be derived using the first-order condition with respect to pt, which is
∑N

i=1(pit−pt) =

0.

This solution is known as the linear opinion rule with equal-weighting. This is the

prototypical aggregation methods both in the forecasting literature and in practice; see, for

example, Geweke and Amisano (2011). This is a particularly tractable density combination

method, as it is equivalent to a mixture density, and it has the additional advantage of

being computationally tractable to compute. However, one disadvantage is that it does not

preserve the shape of the individual forecast densities. For example, when combining two

uni-modal densities, the resulting solution is generally bi-modal.

2.2 Quantile aggregation and the Wasserstein barycenter

In this section we consider the case in which D(∙) is defined as the p−Wasserstein metric,

which is defined as

Wp(pit, pjt) =

(

inf
ϕ∈Ω(pit,pjt)

∫
||zi − zj||

pdϕ(zi, zj)

)1/p

, (4)

where Ω(pit, pjt) is the set of all joint distributions ϕ(zi, zj) that have marginal densities

given by pit and pjt, respectively. Formally, we write

Ω(pit, pjt) =
{
ϕ : Rd × Rd → R1

+|∀A ⊂ Rd, ϕ(A,Rd) = pit(A) and ϕ(Rd, A) = pjt(A)
}

. (5)

In other words, each ϕ ∈ Ω(pit, pjt) is a coupling between the distributions pit and pjt. In

the optimal transport literature, the minimizer of (4) is also known as the optimal transport

plan. This is because, for any A,B ⊂ Rd, ϕ(A,B) can be interpreted as the amount of mass

that is moved from A to B in order to minimize E
(
‖zi − zj‖p

p

)
where zi ∼ pit and zj ∼ pjt.

For more detail on the field of optimal transport, see Villani (2003) and Galichon (2018).

A special case of this Wasserstein barycenter has a close relation to a recently proposed

probability/density forecast combination method in the forecasting literature. More specifi-

cally, suppose that input densities are univariate, and pt is defined as the squared Wasserstein
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metric, denoted by D(∙) := W 2
2 (∙); in this case, we have,

P
−1

t (τ) =
1

N

N∑

i=1

P−1
it (τ), for all τ ∈ (0, 1), (6)

where P−1
it (∙) and P

−1

t (∙) are the quantile function of agent i and of the combination method,

respectively. This forecast aggregation rule is also known as “quantile aggregation” or “Vin-

centized distribution” (Ratcliff, 1979; Lichtendahl et al., 2013; Busetti, 2017).1

The Wasserstein barycenter is known to preserve the shape of input densities, such as log-

concavity (Genest, 1992). For example, Agueh and Carlier (2011) show that the Wasserstein

barycenter of the inputs, N(μ1, S1) and N(μ2, S2), is N((μ1 + μ2)/2, S), where S is the

solution of,

S =
(
S1/2S1S

1/2
)1/2

/2 +
(
S1/2S2S

1/2
)1/2

/2; (7)

see also, Knott and Smith (1994). This is different than the linear opinion rule, which leads

to two-normal mixture density with mean (μ1 + μ2)/2 and variance
σ2
1+σ2

2

2
+ (μ1−μ2)2

4
, which,

in contrast, can be expected to be bi-modal whenever μ1 6= μ2.

Another difference between these two aggregation methods is that the variance of the

Wasserstein barycenter is smaller than that of the combined density resulting from a linear

opinion rule. This holds for a more general class of input densities as shown in Lichtendahl

et al. (2013) in the univariate case. Of course, a narrow (i.e., sharp) predictive density can

be good or bad depending on the underlying distribution of the target variable. It may be

desirable to have an ability to flexibly adjust the dispersion of the combined density.

2.3 Regularized Wasserstein barycenter

Now, we turn to our proposal. In this paper, we use a regularized Wasserstein distance

(Cuturi, 2013; Peyré and Cuturi, 2019) to combine individual probability forecasts. The

regularization term used in this approximation of the Wasserstein metric is given by the

negative differential entropy, which, when ϕ is an absolutely continuous measure, we will

define as, h(ϕ) =
∫
Rd×Rd log

(
dϕ
dλ

)
dϕ, where λ is the Lebesgue measure, and infinity otherwise.

1We prefer the representation of Eqn (1) because this definition can be easily extended to higher di-
mensional densities or mixed data types (when some inputs are continuous and others are discrete) unlike
quantile aggregation.
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We will use h(ϕ) to define the regularized Wasserstein metric as

Wp,γ(pit, pjt) =

(

inf
ϕ∈Ω(pit,pjt)

∫
||zi − zj||

pdϕ(zi, zj) + γh(ϕ)

)1/p

, (8)

where γ > 0 controls a strength of regularization. Note that ϕ is constrained by the same

two marginal restrictions as its unregularized counterpart, as described in the definition of

Ω(pit, pjt). This form of regularization is originally introduced by Cuturi (2013) in order to

estimate the Wasserstein metric in a computationally efficient manner using the iterative

proportional fitting procedure (IPFP) provided by Sinkhorn (1967).

When γ = 0, there is no regularization, so we have Wp,0(pit, pjt) = Wp(pit, pjt). One

can also show that the optimal coupling, say ϕ?
γ , satisfies limγ→0+ ϕ?

γ = ϕ?
0 when ϕ?

0 is

uniquely defined, and otherwise this limiting value is given by the element of the set of

optimal unregularized couplings with maximum entropy. Higher values of γ place more

weight on the second term in the objective function, which results in optimal couplings that

are smoother and more dispersed than their unregularized counterparts.

Defining D(pit, pjt) by W 2
2,γ(pit, pjt) results in the combined density

pt = arg min
pt∈P

N∑

i=1

W 2
2,γ(pit, pjt), (9)

which is known as the regularized Wasserstein barycenter. Benamou et al. (2015) provided

a generalization of the IPFP procedure to find this barycenter in a computationally efficient

manner. While computational efficiency is the commonly cited reason for using entropy

regularization, as we will see in the later sections, our motivation for regularization is not

entirely computational.

For the rest of the paper, we study this regularized Wasserstein barycenter, which is

pt defined in Eqn (1) using (8). First, we present analytical results under a parametric

assumption that broadens our understanding about the role of the regularization in forecast

density combination. Then, we discuss how one can empirically choose the strength of the

regularization that would achieve a certain notion of optimality.
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3 Analytical results: The impact of entropy regular-

ization

In this section we provide analytical results that describe the impact of entropy regularization

on the shape of the barycenter. To better compare this barycenter with its unregularized

counterpart in the Gaussian case, as defined above, we will focus on the regularized barycen-

ter when p1 and p2 are d-dimensional multivariate Gaussians (d ≥ 1). The regularized

Wasserstein barycenter in this case is defined as

p ∈ arg min
q

(
W2

γ (p1, q) + W2
γ (p2, q)

)
. (10)

The following theorem completely characterizes the resulting barycenter in this case. Like

the unregularized case, the theorem shows that regularization does not impact the mean of

the barycenter; however, it does have an impact on its variance-covariance matrix.

Theorem 1: Let p1 and p2 be Gaussian density functions with means μ1, μ2 ∈ Rd, and

variance matrices, S1, S2 ∈ Rd×d. The regularized Wasserstein barycenter between p1 and p2

is given by the density function of N(μB, SB), where μB ∈ Rd and SB ∈ Rd×d are defined

by,

μB :=(μ1 + μ2)/2

SB := (V/γ + I)−1 (V/2 + Iγ/2 + S2) (V/γ + I)−1

= (−V/γ + I)−1 (−V/2 + Iγ/2 + S1) (−V/γ + I)−1 ,

where V ∈ Rd×d is the unique symmetric matrix that satisfies these equalities and −Iγ <

V < Iγ.

Also, the iterates of the following series converge to V when V (0) := 0d×d,

V (k+1) = S2 − S1 + S1

(
S1 + Iγ/2 − V (k)/2

)−1
S1 − S2

(
S2 + Iγ/2 + V (k)/2

)−1
S2.

The proof of this result is included in the Appendix. We prove a slightly more general version

of the theorem where the objective function in Eqn (10) is a weighted average of W2
γ (p1, q)

and W2
γ (p2, q). The proof first finds a system of equations that holds only in the case in

which the regularized barycenter is Gaussian. Afterward, a fixed point theorem provided by

Ran and Reurings (2004) for mappings on partially ordered sets is used to show that this
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system of equations has a unique solution, so an implication is that the system characterizes

the regularized barycenter when both input densities are Gaussian.

Now, we discuss our theoretical results and their implication to the density forecast

combination problem.

Remark 1 (on location). Regularization does not affect the mean of the resulting barycen-

ter. The joint entropy of the multivariate normal does not depend on the location, and we

conjecture that this is the reason why the regularization only affects the covariance matrix

in a Gaussian case.

In the generic case this property would require that the domain is unbounded. This

property about the location does not hold for some input densities. For example, if the

domains of p1 and p2 are both [0, 1], then the optimal coupling between p1 and q converges

to the distribution on [0, 1]× [0, 1] with maximum entropy that has one marginal equal to p1

as γ diverges. This implies the other marginal, which defines q, is the uniform distribution on

[0, 1]. Similar logic applies to the optimal coupling between p2 and q. Thus, limγ→∞ Ex∼q(x) =

1/2, regardless of the means of the input densities. Then, an immediate implication of

differentiability of
dW 2

2,γ(pi,q)

dq
with respect to γ is that γ impacts the mean of the barycenter

except for some special cases when p1 and p2 are such that the resulting barycenter is already

centered around 1/2.

Remark 2 (on dispersion). Regularization tends to smooth the resulting barycenter,

leading to a more dispersed combined density. To understand this point, let us consider a

simple example below.

Simple example. Consider a case with univariate pit = N(μit, σ
2) and N = 2. Then, the

original Wasserstein barycenter (quantile averaging) is pt = N((μ1t + μ2t)/2, σ2). On the

other hand the regularized Wasserstein barycenter is pt(γ) = N((μ1t + μ2t)/2, σ2 + γ/2).

As this case exemplifies the strength of the regularization controls a dispersion of the

combined density. The heavier the regularization the greater dispersed (or, the smoother)

density we obtain. This result highlights that the entropy regularization offers an extra

flexibility to control the dispersion of the combined density. In the next section, we propose

a data-driven way to select the value of γ, the strength of the regularization.
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Remark 3. The normality assumption that we made to obtain the closed-form solution for

the barycenter is not needed in practice. The regularized barycenter of probability/density

forecasts is well-defined and computationally tractable for a broader context. One can have

multiple inputs, non-Gaussian densities, discrete/continuous/mixed distribution. This in-

cludes many interesting and empirically relevant situations in economic forecasting such as

macroeconomic and financial forecasting. Benamou et al. (2015) and Solomon et al. (2015)

describe the generalizations of IPFP that are used to calculate the regularized barycenter in

practice.

4 On choosing the strength of the regularization

This section discusses how to choose the strength of the penalization. Our empirical strategy

is to select γ by the value that most accurately fits the observed data.2 To do so, we

regard the regularized barycenter computed at time t, pt, as a predictive likelihood for yt+1.

This predictive likelihood interpretation of the barycenter can be formally justified by the

principal-agent framework similar to the one developed by Del Negro et al. (2016). Suppose

we have collected the regularized barycenters and the realized value of the target variable

from the initial period (1) to present (t). We write this collection as It. Then, we can define

a maximum likelihood estimator for γ at t with It as

γ̂mle
1:t ∈ arg max

γ≥0

t−1∑

τ=1

log pτ (yτ+1; γ), (11)

and, the combined density prediction for yt+1 at time t is

p̂(yt+1|It) = pt(yt+1; γ̂
mle
1:t ). (12)

There is a notion in which this combined density with γ̂ is optimal. Suppose that yt ∼i.i.d.

p∗(y), and assume that forecasters report a sequence of predictive densities, pi(y) for yt,

t = 1, 2, ..., T and i = 1, 2, ..., N . These forecasts are reported before the realization of yt,

and the barycenter p(y; γ) is defined by pi(y)’s and γ > 0. Then, the following can be shown

2To economize our notation we restrict our discussion to the 1-step-ahead prediction (i.e., h = 1).
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under regularity conditions,

1

T

T∑

t=1

log p(yt; γ) →p

∫
log p(y; γ)p∗(y)dy as T → ∞,

for γ ∈ Γ ∈ R+. In turn, a maximizer of the left-hand-side term also converges to the

maximizer of the right-hand-side term, which is a minimizer of

KL(p(y; γ), p∗(y)) = −
∫

log p(y)p∗(y)dy +

∫
log(p∗(y))p∗(y)dy.

Therefore, γ̂ converges to a point so-called the pseudo-true parameter that minimizes Kullback-

Leibler (KL) divergence from the regularized barycenter to the true data generating process.

In other words, we find γ that makes the resulting barycenter close to the true data generat-

ing process in the limit. This asymptotic thought experiment can be justifiable under quite

general conditions allowing for a range of serial dependence in yt as well as a flexible form

of the regularized Wasserstein barycenter implied by pi,t−1(yt)’s. We can operationalize this

by recognizing that pt−1(y; γ) can be viewed as a predictive likelihood for yt formed at time

t−1. Then, quasi-MLE theory can be invoked (e.g., White, 1982; Bollerslev and Wooldridge,

1992). We provide a simple example in which the true data generating process follows the

autoregressive (AR) process.

Simple example. Suppose that forecaster 1 and 2 use mean-zero Gaussian AR(1) process

to construct their density prediction. The two forecasts differ only by the mean reversion

parameter. That is, the means of predictive distribution for forecaster 1 and 2 are μ1t =

ρ1yt−1 and μ2t = ρ2yt−1, respectively. Based on our theory in the previous section, the

barycenter is pt−1(y; γ) = N(μt, σ2 + γ/2) where μt = (μ1t + μ2t)/2, and the log density of

the regularized barycenter at τ for yτ+1 is

log(pτ (yτ+1; γ)) = −1/2 log(2π) − 1/2 log(σ2 + γ/2) − 1/2

(
yτ+1 − μτ+1√

σ2 + γ/2

)2

, (13)

and the ML estimator for γ at time t is

γ̂mle
1:t ∈ arg max

γ≥0

t−1∑

τ=1



−1/2 log(2π) − 1/2 log(σ2 + γ/2) − 1/2

(
yτ+1 − μτ+1√

σ2 + γ/2

)2


 , (14)
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which leads to

γ̂mle
1:t = 2 × max

(
1

(t − 1)

t−1∑

τ=1

(yτ+1 − μτ+1)
2 − σ2, 0

)

. (15)

Now, suppose that the actual data generating process is

yt = ρ∗yt−1 + vt, vt ∼i.i.d. N(0, σ2
∗). (16)

When the simple average of both forecasters’ autoregressive parameter equals ρ∗, the ML

estimate for γ depends on the true conditional variance, σ2
∗, and forecasters’ conditional

variance. If the sample variance is larger than that of the forecasters, then γ is chosen so

that the resulting regularized barycenter has the same variance as the sample variance. On

the other hand, if the sample variance is smaller than that of the forecasters, then γ is set

to 0. Note that there is an asymmetry in adjusting the variance of the barycenter. This is

natural in that the regularization only makes the resulting density smoother. In practice,

this may not be a problem if the practitioner’s concern is the combined density being too

sharp (e.g., relative to the linear opinion rule).

Note that γ̂mle
1:t converges in probability to γ∞ = 2 max(σ2

∗ − σ2, 0). The KL divergence

between p(yt+1; γ) and the true conditional density of yt+1 at t is minimized at γ = γ∞. This

confirms that our selection rule for γ aims to fit the data well by shaping the regularized

barycenter as close as possible to the data generating process.

5 Empirical illustration

In this section, we illustrate our proposed method using macroeconomic data for the U.S. We

consider 14 hypothetical forecasters who produce their own 1-step-ahead forecast about the

U.S. inflation rate based on the following vector autoregression (VAR) with three variables,

Yt = Φ0 +
4∑

i=1

ΦiYt−i + et, et ∼i.i.d N(0, Σ), (17)

where Yt is a 3×1 vector that consists three quarterly macroeconomic variables, Φ0 is a 3×1

vector, Φ1, Φ2, Φ3, Φ4, Σ are 3 × 3 matrices. The first two elements of Yt are common to all

14 forecasters: the annualized quarter-over-quarter inflation rate and real GDP growth rate.

They differ by the third element of Yt. We assign each forecaster a different macroeconomic

variable from the FRED-QD database by McCracken and Ng (2020). A detailed description

10



Table 1: Variable used in empirical exercise

Yt Used by Variable description FRED-QD Mnemonic

Variable 1 All Inflation rate GDPCTPI

Variable 2 All Real GDP growth rate GDPC1

Variable 3 Forecaster 1 Real Personal Consumption Expenditures PCECC96
Forecaster 2 Industrial Production Index INDPRO
Forecaster 3 All Employees: Total Nonfarm PAYEMS
Forecaster 4 Housing Starts: Total Privately Owned Housing Units Started HOUST
Forecaster 5 Real Manufacturing and Trade Industries Sales CMRMTSPLx
Forecaster 6 Real Crude Oil Prices: West Texas Intermediate (WTI) OILPRICEx
Forecaster 7 Real Average Hourly Earnings: Manufacturing CES3000000008x
Forecaster 8 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill GS10TB3Mx
Forecaster 9 Real Commercial and Industrial Loans BUSLOANSx
Forecaster 10 Real Total Assets of Households and Nonprofit Organizations TABSHNOx
Forecaster 11 U.S. / U.K. Foreign Exchange Rate EXUSUKx
Forecaster 12 Consumer Sentiment (University of Michigan) UMCSENTx
Forecaster 13 S&P’s Common Stock Price Index: Composite S&P 500
Forecaster 14 Real Disposable Business Income CNCFx

Note: All variables are obtained from the FRED-QD database (McCracken and Ng, 2020). Inflation rate
is computed as a log difference of the GDP deflator (GDPCTPI). Real GDP growth rate is computed as a
log difference of the real GDP (GDPC1). All other variables are transformed following McCracken and Ng
(2020). We use the 2019-11 vintage data.

of the variable used in this exercise is in Table 1.

We compute each forecasters’ 1-step-ahead predictive distribution for the inflation rate

at time t as πt+1|t ∼ N([μt+1|t](1,1), [Σt+1|t](1,1)) where [x](i,j) denotes (i, j) element of vec-

tor/matrix x. These forecasters assume that the 1-step-ahead predictive distribution of Yt+1

at t is Gaussian, and they use their best guess about the predictive mean and variance to

construct the predictive distribution. More specifically, they set these two moments as,

μt+1|t = Φ̂0,t +
4∑

p=1

Y ′
t−p+1Φ̂p,t, and Σt+1|t = Σ̂t, (18)

where (Φ̂0,t, Φ̂1,t, Φ̂2,t, Φ̂3,t, Φ̂4,t, Σ̂t) is the posterior mean of p(Φ0, Φ1, Φ2, Φ3, Φ4, Σ|Yt:(t−R+1))

with a flat prior. We set R = 80, meaning that they also use the most recent 20 years of

data to construct the predictive distribution.

We let the forecasters to generate their 1-step-ahead predictive distribution for the in-

flation rate from 2001Q1 to 2018Q4. This leaves us 72 quarters for a forecast evaluation

sample. At each point in time, we also combine these 14 predictive densities based on the

regularized Wasserstein barycenter with 20 different values of the regularization parameter γ

on [0.3, 10]. As we explained in the previous section, a larger value of this parameter implies
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Figure 1: Sum of log predictive score for U.S. inflation rate (2000Q1-2018Q4)

a stronger regularization, and the resulting combined predictive density becomes smoother

with a larger variance. We also compute the combined density with γ = 0 , which leads to

“quantile aggregation” or “Vincentized distribution.”

We evaluate each forecasters, and other forecast aggregation methods by the sum of log

predictive score, which is a logarithm of the predictive density evaluated at the actualized

value, over the evaluation sample. These results are presented in Figure 1. The left panel

presents the sum of the log score for individual forecasters sorted by their performance.

There is a sizeable difference in their historical performance. The solid line represents the

performance based on the quantile aggregation, which aggregates all forecasters in the pool.

As found by other research papers (e.g., Lichtendahl et al., 2013; Busetti, 2017) the quantile

aggregation method generates a decent predictive distribution, which performs slightly better

than the ex-post top 4 forecaster.

The right panel in Figure 1 shows the historical performance of our proposed approach

with various choices of regularization parameter, γ. For a wide range of values for γ the

regularized barycenter performs better than the quantile aggregation. And it does even

better than the best individual. This is interesting because we cannot identify the best

forecaster a priori.

The optimal value of γ defined in Eqn (11) at the end of the evaluation sample would be

the value of γ that corresponds to the peak of the curve, which is about γ̂2018Q4 ≈ 1.3. If we

were to use this value at the beginning of the evaluation sample, then the mean difference
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in the log predictive score between the regularized Wasserstein barycenter and the quantile

aggregation would have been 0.12 with the heteroscedasticity and autocorrelation consistent

(HAC) standard error being 0.07. This implies that the difference in the peak of the curve

and the solid line is statistically significant at 10% confidence level.

To make the γ selection fully adaptive, we also compute the optimal γ sequentially

from the beginning to the end of the evaluation sample. Even in this case the regularized

Wasserstein barycenter performs better than the best individual forecaster and the quantile

aggregation. More specifically, the sum of the log predictive score is -93.09, and the mean

difference in the log predictive score with the quantile aggregation is 0.11 with the HAC

standard error being 0.06. This suggests that the regularized Wasserstein barycenter with

the adaptively chosen γ performs statistically better that its unregularized counterpart, the

quantile aggregation, at 10% significance level.

6 Concluding remarks

This paper proposes to use the entropy regularized Wasserstein barycenter to combine several

probability and density forecasts. The entropy regularization smooths the resulting combined

forecast, and it offers a flexible way to adjust the dispersion of the predictive density when

it is needed. We study the effect of the regularization on the combined density forecast and

provide an exact relationship between the strength of the regularization and the variance-

covariance matrix of the combined density when input densities are Gaussian. We then

provide a way to select the strength of regularization by choosing the regularized barycenter

that most closely matches the data. We apply our proposed methodology to the U.S. inflation

density forecasting and show how the entropy regularization can improve the quality of the

density forecast relative to its unregularized counterpart.

In this article, we restrict weights of each input densities on the final combined density to

be equal. This choice was intentional to focus on studying the role of entropy regularization.

In practice, however, it is possible that a subset of input densities might be superior to

others, and one may wish to put different weights on each input density. Alternatively, it is

desirable to include only a subset of input densities into the combined density and set other

weights to zero (see, for example, Diebold and Shin, 2019). For those cases, it is fruitful to

develop a data-dependent method that chooses both the regularization strength and those

weights simultaneously, which is a topic for future research.
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Appendix

Ran and Reurings (2004) provide the following fixed point theorem, which we will use in the

proof of Theorem 1.

Lemma 1 (Ran and Reurings, 2004): Let T be a partially ordered set such that every

pair x, y ∈ T has a lower bound and an upper bound. Furthermore, let d be a metric on T

such that (T, d) is a complete metric space. If F : T → T is a continuous, monotone (e.g.,

either order-preserving or order-reversing) map from T into T such that,

∃ c ∈ (0, 1) : d(F(x),F(y)) < cd(x, y), ∀x > y

and

∃ x0 ∈ T : F(x0) > x0 or F(x0) > x0,

then F has a unique fixed point, x? ∈ T. Also, for all x ∈ T,

limn→∞ Fn(x) = x?.

The following result follows from Lemma 1.

Lemma 2: Suppose λ ∈ (0, 1), T ⊂ Rd×d is the set of symmetric matrices with all eigenval-

ues in the range
(

−γ
2λ

, γ
2(1−λ)

)
, and S1, S2 ∈ Rd×d are positive definite matrices. Then there

is a unique V ? ∈ T such that F(V ?) = V ?, where

F(V ) := S2 − S1 + S1 (S1 + Iγ/2 − V (1 − λ))−1 S1 − S2 (S2 + Iγ/2 + V λ)−1 S2.

Also, for any V ∈ T, limn→∞ Fn(V ) = V ?.

Proof: Suppose A,B ∈ T and A > B. First we will establish that F(∙) is order-preserving,

which is equivalent to F(A) > F(B). Note that,

S1

(
(S1 + Iγ/2 − A(1 − λ))−1 − (S1 + Iγ/2 − B(1 − λ))−1)S1 > 0 ⇐⇒

(S1 + Iγ/2 − A(1 − λ))−1 > (S1 + Iγ/2 − B(1 − λ))−1 ⇐⇒

−A < −B ⇐⇒ A > B.
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Similar logic implies that for all such A,B ∈ T,

S2

(
(S2 + Iγ/2 + Bλ)−1 − (S2 + Iγ/2 + Aλ)−1)S2 > 0 ⇐⇒ A > B,

and since F(A) − F(B) is the sum of both of these order-preserving functions, F(∙) is also

order-preserving.

Clearly our bounds on the eigenvalues imply that F(V ) is continuous for all V ∈ T.

To show that F is a mapping from T into T, note that matrix symmetry is preserved over

addition and inversion, so F(V ) is symmetric for all V ∈ T. Also, note that,

F(−Iγ/(2λ)) = −S1 + S1 (S1 + Iγ/(2λ))−1 S1 > −Iγ/(2λ) ⇐⇒

−S
1/2
1

(
I −

(
I + S−1

1 γ/(2λ)
)−1
)

S
1/2
1 > −Iγ/(2λ) ⇐⇒

S
1/2
1

(
I −

(
I + S−1

1 γ/(2λ)
)−1
)

S
1/2
1 < Iγ/(2λ) ⇐⇒

(I + S12λ/γ)−1 < S−1
1 γ/(2λ) ⇐⇒ I > 0.

Similar logic can be used to show that F(Iγ/(2(1 − λ)) < Iγ/(2(1 − λ). This also implies

the final requirement of Lemma 1.

The only remaining requirement of Lemma 2 is the penultimate, which we will establish

for A,B ∈ T such that A > B, and using the norm, d(A,B) = Tr(A − B). Also, let

α := {1,−1}, β := {λ − 1, λ}, and ‖C‖ denote the spectral norm of C ∈ Rd×d. We will use

the property Tr(CD) ≤ ‖C‖Tr(D), where C,D ∈ Rd×d and C,D > 0; see for example, Ran

and Reurings (2004). Note that,

Tr(F(A) −F(B)) =

∑
i αiTr(Si

(
(Si + Iγ/2 + Aβi)

−1 − (Si + Iγ/2 + Bβi)
−1)Si) =

∑
i αiβiTr(Si (Si + Iγ/2 + Aβi)

−1 (B − A) (Si + Iγ/2 + Bβi)
−1 Si) =

∑
i αiβiTr

(
(Si + Iγ/2 + Bβi)

−1 SiSi (Si + Iγ/2 + Aβi)
−1 (B − A)

)
≤

∑
i αiβi

∥
∥(Si + Iγ/2 + Bβi)

−1 SiSi (Si + Iγ/2 + Aβi)
−1
∥
∥Tr (B − A) <

cTr (B − A)
∑

i αiβi = cTr (A − B) ,

where c ∈ (0, 1). The second inequality follows from the matrix Si (Si + Iγ/2 − Aβi)
−1 (re-

spectively, Si (Si + Iγ/2 − Bβi)
−1) being similar to a symmetric matrix, and with eigenvalues

contained in (0, 1) because A ∈ T (B ∈ T ) implies Iγ/2 − Aβi > 0 (Iγ/2 − Bβi > 0).
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Next we will establish Theorem 1, which is restated below. This is a slightly more general

version of the theorem in the main text where the objective function in Eqn (10) is a weighted

average of W2
γ (p1, q) and W2

γ (p2, q).

Theorem 1: Let λ ∈ (0, 1) and p1 and p2 be Gaussian density functions with means μ1, μ2 ∈

Rd, and variance matrices, S1, S2 ∈ Rd×d. The regularized Wasserstein barycenter between

p1 and p2 is given by the density function of N(μB, SB), where μB ∈ Rd and SB ∈ Rd×d are

defined by,

μB :=λμ1 + (1 − λ)μ2

SB := (V 2λ/γ + I)−1 (V λ + Iγ/2 + S2) (V 2λ/γ + I)−1

= (V 2(λ − 1)/γ + I)−1 (V (λ − 1) + Iγ/2 + S1) (V 2(λ − 1)/γ + I)−1 ,

where V ∈ Rd×d is the unique symmetric matrix that satisfies these equalities and −Iγ/(2λ) <

V < Iγ/(2(1 − λ)).

Also, the iterates of the following series converge to V when V (0) := 0d×d,

V (k+1) = S2 − S1 + S1

(
S1 + Iγ/2 − V (k)(1 − λ)

)−1
S1 − S2

(
S2 + Iγ/2 + V (k)λ

)−1
S2.

Proof: Let φ : Rd → R be defined as, φ(z) := exp(−‖z‖2
2 /γ), and, for a given function f :

Rd → R, we will denote the convolution of f(z) and φ(z) as, f(z)~φ(z) :=
∫
Rd f(t)φ(z−t)dt.

When there is little risk of confusion, we will omit the input z ∈ Rd of functions supported

on Rd in the remainder of the proof.

We will characterize the barycenter using the fact that it is the minimizer of the following

optimization problem.

minqλW
2
γ (q, p1) + (1 − λ)W2

γ (q, p2). (A.1)

To do so, note that W2
γ (q, pi) can be defined by instead solving the dual of (8), which is,

W2
γ (q, pi) = max

wi,ui

Epi
(log(wi)) + Eq(log(ui)) − γ

∫

Rd×Rd

wi(z1)ui(z2) exp(−‖z1 − z2‖
2 /γ)dz1dz2,

(A.2)
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and the optimal coupling can be defined in terms of the dual variables as, ϕi(z1, z2) =

ui(z1)φ(z1)φ(z2)wi(z2). The first order conditions of (A.2) are,

pi =wi (ui ~ φ) (A.3)

q =ui (wi ~ φ) . (A.4)

Also, since the objective function of (A.2) is differentiable, an application of the envelope

theorem implies,

δW2
γ(q,pi)

δq
= log(ui).

Thus, the optimum of (A.1) can be characterized by the following functional derivative being

zero.

δ

δq

(
λW2

γ (q, p1) + (1 − λ)W2
γ (q, p2)

)
= 0 =⇒

λ log(u1) + (1 − λ) log(u2) = 0

After combining this equality with (A.3-A.4), we have that the barycenter can be character-

ized by the system,

p1 = w1

(
u1 ~ φγ/2

)
, p2 = w2

(
u2 ~ φγ/2

)

q = u1

(
w1 ~ φγ/2

)
= u2

(
w2 ~ φγ/2

)
, and 1 = uλ

1u
1−λ
2 .

This system can be reduced to two equalities after noting that, pi = wi

(
ui ~ φγ/2

)
and

q = ui

(
wi ~ φγ/2

)
implies

q = ui

(
pi

ui~φγ/2
~ φγ/2

)
.

After combining both equalities, and noting u1 = u
(λ−1)/λ
2 , we have

q = u
(λ−1)/λ
2

(
p1

u
(λ−1)/λ
2 ~ φγ/2

~ φγ/2

)

= u2

(
p2

u2 ~ φγ/2

~ φγ/2

)

(A.5)

Let G be defined as the set of functions g : Rd → R1
+ of the form

g(z) = a exp(−(z − μg)
>V −1

g (z − μg)/2),
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where μg ∈ Rd, Vg ∈ Rd×d is a symmetric and invertible matrix, and a ∈ R1
++. It will also

be convenient to let C : G → Rd×d be defined so that C(g) = Vg and M : G → Rd be defined

so that M(g) = μg. It is well known that if g, h ∈ G are Gaussian density functions, then

gb, cg, g ~ h, gh ∈ G, where b, c ∈ R1 and b 6= 0, and it is also straightforward to show

C(gb) = Vg/b, C(cg) = Vg,

C(gh) =
(
V −1

g + V −1
h

)−1
, and C(g ~ h) = Vg + Vh.

Likewise, in the case of M(∙), we will also use the properties

M(gb) = μg, M(cg) = μg, M(gh) = C(gh)
(
V −1

g μg + V −1
h μh

)
, and M(g ~ h) = μg + μh.

Note that V −1
g + V −1

h > 0 is the necessary and sufficient condition for g ~ h to be well

defined, and it is straightforward to verify that the properties above also hold over all pairs

of g, h ∈ G when this is the case; for the case of normal density functions, see for example,

(Bromiley, 2003).

Next, we will suppose that u2 is in G, which, due to (A.5), also implies q, u1, w1, w2 ∈ G,

and then show that there exists a unique u2 ∈ G that satisfies (A.5). Since (A.1) is a

strictly convex optimization problem, when a solution to (A.1) exists, it can be characterized

uniquely by its first-order conditions.3 Thus, after providing u2 ∈ G that solves (A.5), we

will have also shown that this solution is unique even when not restricted to G.

Since φ, p1, and p2 are elements of G, and G is closed under multiplication, division,

convolution, and exponentiation to the (non-zero) power of (λ − 1)/λ, if u2 ∈ G then the

functions on both sides of the equality (A.5) will also be elements of G. Let Ui := C(ui) and

μu := M(u2). As noted above, the convolutions in (A.5) are only well defined if the following

matrix inequalities hold, so we will also require the solution to satisfy these inequalities. 4

I2/γ + U−1
i > 0 and I2/γ + U−1

i (λ − 1)/λ > 0,

3Note that, for any pair ui, wi that solves (A.1), we have that uia,wi/a, where a ∈ R1
++, are also solutions.

We avoid complications from this issue by placing the additional restriction on these dual variables that
wi(0) = 1, as this ensures strict convexity over this set of dual functions. To see that this is also without loss
of generality, note that rescaling the dual variables by uia,wi/a would not impact the objective function in
(A.2) because

∫
Rd q(z)dz =

∫
Rd pi(z)dz = 1. Also, a would not impact the first order conditions (A.3-A.4),

so it would also not have an impact on q.
4It is straightforward to verify that these inequalities are identical to the ones that ensure the optimal

coupling is integrable, as this coupling is given by, ϕi(z1, z2) = ui(z1)φ(z1)φ(z2)wi(z2). Thus, Fubini’s
theorem implies that they are also sufficient conditions for q to be integrable.
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which hold if and only if,

−2/γI < U−1
2 < 2λ/(γ(1 − λ))I. (A.6)

We can find SB by applying C(∙) to (A.5), which implies,

S−1
B =U−1

2 +
((

S−1
2 − (U2 + Iγ/2)−1)−1

+ Iγ/2
)−1

(A.7)

=U−1
2 (λ − 1)/λ +

((
S−1

1 − (U2λ/(λ − 1) + Iγ/2)−1)−1
+ Iγ/2

)−1

. (A.8)

Let bi ∈ {λ/(λ−1), 1}. After three applications of the matrix inversion lemma and simplifying

we have that, for each i ∈ {1, 2},

S−1
B − U−1

2 /bi =
((

S−1
i − (U2bi + Iγ/2)−1)−1

+ Iγ/2
)−1

=

((
S−1

i − I2/γ + 4/γ2
(
U−1

2 /bi + I2/γ
)−1
)−1

+ Iγ/2

)−1

=I2/γ − 4/γ2
(
S−1

i + 4/γ2
(
U−1

2 /bi + I2/γ
)−1
)−1

(A.9)

=I2/γ − 4/γ2Si + 4/γ2Si

(
γ2/4U−1

2 /bi + Iγ/2 + Si

)−1
Si.

This, along with equations (A.7-A.8), implies that U2 can be characterized by,

γ2/4U−1
2 − S2 + S2

(
γ2/4U−1

2 + Iγ/2 + S2

)−1
S2 =

γ2/4U−1
2 (λ − 1)/λ − S1 + S1

(
γ2/4U−1

2 (λ − 1)/λ + Iγ/2 + S1

)−1
S1.

After defining V as γ2/(4λ)U−1
2 , this implies,

V = S2 − S1 + S1 (S1 + Iγ/2 − V (1 − λ))−1 S1 − S2 (S2 + Iγ/2 + V λ)−1 S2.

Note that our requirement that U−1
2 satisfy (A.6) can be written in terms of V as, −γ/(2λ)I <

V < γ/(2(1 − λ))I, and Lemma 2 implies that there is a unique solution that satisfies these

conditions.

The functional form for SB from the statement of this theorem follows from an alternative
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ordering of the matrix inversion theorem. Specifically, starting from (A.9),

S−1
B − U−1

2 /bi = I2/γ − 4/γ2
(
S−1

i + 4/γ2
(
U−1

2 /bi + I2/γ
)−1
)−1

= −U−1
2 /bi + 4/γ2

(
γ2/4U−1

2 /bi + Iγ/2
) (

γ2/4U−1
2 /bi + Iγ/2 + Si

)−1

×
(
γ2/4U−1

2 /bi + Iγ/2
)

= −U−1
2 /bi + (2λ/(γbi)V + I) (λ/biV + γ/2I + Si)

−1 (2λ/(γbi)V + I) .

Thus,

S−1
B = (V 2λ/γ + I)−1 (S2 + V λ + Iγ/2) (V 2λ/γ + I)−1

= (V 2(λ − 1)/γ + I)−1 (S1 + V (λ − 1) + Iγ/2) (V 2(λ − 1)/γ + I)−1

After applying M(∙) to both sides of (A.5), we have

M

(

ubi
2

(
pi

u
bi
2 ~φγ/2

~ φγ/2

))

=

SB

(
U−1

2 μu/bi +
(
S−1

B − U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1)−1 (
S−1

i μi − (U2bi + Iγ/2)−1 μu

))
.

(A.10)

To simplify this expression, we will first establish three intermediate equalities. First, equa-

tions (A.7-A.8) imply

S−1
B − U−1

2 /bi =
((

S−1
i − (U2bi + Iγ/2)−1)−1

+ Iγ/2
)−1

=⇒
(
S−1

B − U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1)−1
(U2bi + Iγ/2)−1

=
(
U2bi + γ/2 (U2bi + Iγ/2) S−1

i

)−1

=
(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1
U−1

2 /bi. (A.11)

Second, (A.11) in turn implies

(
S−1

B − U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1)−1
S−1

i

=
(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1 (
I + γ/(2bi)U

−1
2

)
S−1

i . (A.12)
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Third, after an application of the matrix inverse identity to (A.7-A.8),

S−1
B = U−1

2 /bi +
((

S−1
i − (U2bi + Iγ/2)−1)−1

+ Iγ/2
)−1

(A.13)

= U−1
2 /bi + I2/γ − I4/γ2

(
I2/γ + S−1

i − (U2bi + Iγ/2)−1)−1
, (A.14)

which implies

SB =
(
U−1

2 /bi + I2/γ − 4/γ2
(
(U2bi + Iγ/2)

(
I2/γ + S−1

i

)
− I
)−1

(U2bi + Iγ/2)
)−1

=
(
U−1

2 /bi + I2/γ − 4/γ2
(
I2/γ + (I + U−1

2 γ/(2bi))S
−1
2

)−1
U−1

2 /bi (U2bi + Iγ/2)
)−1

.

Thus,

SB =
(
U−1

2 /bi + I2/γ
)−1
(
I −

(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1
)−1

. (A.15)

We will start with the coefficient on μu in (A.10). The equalities (A.11) and (A.15) imply

that this term is equal to

SB

(
U−1

2 /bi −
(
S−1

B − U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1)−1
(U2bi + Iγ/2)−1

)
μu

=
(
U−1

2 /bi + I2/γ
)−1
(
I −

(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1
)−1

×
(
I −

(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1
)

U−1
2 /biμu

=
(
U−1

2 /bi + I2/γ
)−1

U−1
2 /biμu

= (I + U22bi/γ)−1 μu.

The equalities (A.12) and (A.15) imply that the coefficient on μi in (A.10) can be written

as,

SB

(
S−1

B − U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1)−1
S−1

i μi

=
(
U−1

2 /bi + I2/γ
)−1
(
I −

(
I + S−1

i γ/2 + U−1
2 S−1

i /biγ
2/4
)−1
)−1

×
(
I + γ/2

(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1 (
I + γ/(2bi)U

−1
2

)
S−1

i μi

=
(
U−1

2 /bi + I2/γ
)−1 (

γ/2
(
I + γ/(2bi)U

−1
2

)
S−1

i

)−1 (
I + γ/(2bi)U

−1
2

)
S−1

i μi

=
(
U−1

2 γ/(2bi) + I
)−1

μi.
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After combining these terms, we can define (A.10) as the solution to

μq = (I + U22bi/γ)−1 μu +
(
U−1

2 γ/(2bi) + I
)−1

μi =⇒

(I + U22bi/γ)
(
μq −

(
U−1

2 γ/(2bi) + I
)−1

μi

)
= μu =⇒

(I + U22b1/γ)
(
μq −

(
U−1

2 γ/(2b1) + I
)−1

μ1

)
= (I + U22/γ)

(
μq −

(
U−1

2 γ/2 + I
)−1

μ2

)
.

Since the matrix inverse identity also implies,

(
U−1

2 γ/(2bi) + I
)−1

= I − (U22bi/γ + I)−1 ,

we have,

(I + U22/γ) μq − U22/γμ2 = (I + U22b1/γ) μq − U22b1/γμ1 =⇒

(1 − b1)μq = μ2 − b1μ1 =⇒

(1 + λ/(1 − λ))μq = μ2 + λ/(1 − λ)μ1 =⇒

μq = μ2(1 − λ) + λμ1.

�
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