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Abstract

Linear factor models are generally not identified. We provide sufficient conditions for

identification: Under a sparsity assumption, we can estimate the individual loading vec-

tors using a novel rotation criterion that minimizes the ℓ1-norm of the loading matrix.

This enables economic interpretation of the factors. Existing rotation criteria (e.g., Vari-

max, Kaiser 1958) are theoretically unjustified and perform worse in our simulations.

We illustrate our method in two economic applications.
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1 Introduction
Factor models are subject to a rotational indeterminacy, meaning that the individual factors
and loading vectors are identified only up to a rotation. Although this rotational indetermi-
nacy prohibits any economic interpretation of the estimated factors, even seminal papers in
economics (e.g., Stock and Watson 2002, Ludvigson and Ng 20091) often include a discus-
sion on the economic interpretations of individual factors, usually preceded by the caveat
that such an interpretation is theoretically unjustified. For example, Stock and Watson (2002)
remark:

“Because the factors are identified only up to a k × k matrix, detailed discussion of

the individual factors is unwarranted. Nevertheless, [...] Figure 1 therefore displays the

R2 of the regression of the 215 individual time series against each of the six empirical

factors [...] Broadly speaking, the first factor loads primarily on output and employment;

the second on interest rate spreads, unemployment rates and capacity utilization rates

[...].”

We show that the assumption of sparsity in the loading matrix can solve this indetermi-
nacy, allowing a researcher to estimate how the individual factors affect the observed vari-
ables. Sparsity in the loading matrix is natural in many economic applications. It is implied
by the presence of local factors – factors that affect only a subset of the observables. Eco-
nomic examples include industry-specific shocks in a firm-level dataset.2

Formally, our first result is that the true loading matrix Λ∗ achieves the minimum of the
ℓ0-norm across rotations of the loading matrix under a sparsity assumption. Intuitively this
states that any rotation of a sparse loading vector will be less sparse. However, a rotation
criterion based directly on the sparsity pattern (ℓ0-norm) of the loading matrix will generally
be infeasible. Our next result then establishes that the true loading matrix Λ∗ also achieves a
minimum of the ℓ1-norm across rotations. Specifically, our proposed ℓ1-rotation criterion en-
ables a researcher to consistently estimate the individual loading vectors of any local factors.
Our rotation criterion is easy to implement in practice, and simply requires a

√
n-consistent

estimate of the loading space as a starting point. Despite the resemblance to regularized
estimation methods with an ℓ1-penalty, such as Sparse Principal Component Analysis, we
emphasize that there is no “shrinkage” involved in our estimator. Instead, we use the ℓ1-norm

1The two papers have a combined citation count of more than 4,500 as of October 2022.
2We formally introduce various definitions of “local” factors later on. Intuitively, the loading vector λ∗

•k of
a local factor Fk satisfies a sparsity assumption (a subset of the loadings are equal to zero), and an additional
assumption on the collinearity between λ∗

•k and remainder of the loading matrix.
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as a criterion to select the most sparse loading matrix Λ from among a set of rotations. Ap-
plying our criterion to both an international panel of daily stock returns and a panel of US
macroeconomic indicators enables us to identify individual loading vectors in both cases and
to better understand the economic structure of the data.

A byproduct of our result is a diagnostic to determine whether local factors are present
in a given dataset. This diagnostic effectively consists of counting the number of “small”
loadings in the most sparse rotation of the loading matrix, and comparing it to the number
of small loadings that could be expected if the true loading matrix was non-zero everywhere.
We find strong evidence for the existence of local factors in both of our applications.

Despite the large literature on both factor models and sparsity, little work has been done
on the intersection of the two. There are multiple papers on sparse principal components
in the statistics literature (e.g., Jolliffe et al. 2003, Zou et al. 2006), but since principal
component analysis (PCA) is a model-free dimensionality reduction technique, the object of
interest is quite different and, as long as the eigenvalues of the covariance matrix are distinct,
PCA gives a unique solution. For a Bayesian perspective, see Ročková and George (2016)
and Kaufmann and Schumacher (2019), who use sparse priors to encourage sparsity in the
loading matrix.

Kristensen (2017) considers sparse principal components to estimate a factor model, but
makes no sparsity assumptions and instead assumes that both the factors and the loading vec-
tors are orthogonal to one another (and have distinct entries on the diagonal). This means
there is no rotation invariance in his setup: under this assumption, even the principal com-
ponents estimator will identity the individual columns of Λ∗ and F (Bai and Ng, 2013). We
argue that sparsity in the loading matrix, which is both economically appealing and has sta-
tistically testable implications, is a more natural assumption in many settings than assuming
that both the factors and the loading vectors are orthogonal and that the eigenvalues of the
covariance matrix are distinct.

Another related literature considers hierarchical factor models with a known group struc-
ture (e.g., Boivin and Ng 2006, Moench et al. 2013, Choi et al. 2018). Unlike those papers,
we neither require the group structure to be known a priori, nor require a hierarchical model
in which each outcome belongs to only one group. Ando and Bai (2017), Uematsu and Yam-
agata (2022) and Freyaldenhoven (2022) also do not require knowledge of the group structure
a priori, but the focus of the first two papers is on estimation of the factor space, and the focus
of the third paper is on estimating the number of factors. Neither addresses identification of
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individual factors.3

Perhaps most closely related to our work is a large and popular literature that consid-
ers rotation criteria aimed to simplify the loading matrix in factor models, going back to at
least Carroll (1953) and Kaiser (1958) (also see Katz and Rohlf 1974, Rozeboom 1991, Jen-
nrich 2006).4 However, existing rotation criteria are generally missing formal consistency
results. To the best of our knowledge, our ℓ1-rotation is the first rotation criterion that comes
with theoretical guarantees to recover the true loading vectors under a sparsity assumption.
Remarkably, we also find that our criterion performs better than existing criteria across our
simulations.

The paper proceeds as follows. After setting up our model and fixing notation in Section
2, we discuss a simple example and give an intuitive discussion of our results in Section 3.
In Section 4, we show that the true loading matrix Λ∗ is the unique minimum of the ℓ0-norm
across rotations under exact sparsity. In Section 5, we establish that Λ∗ is also a minimum
of the ℓ1-norm across rotations and extend our results to allow for

√
n-consistent initial es-

timates of the loading space and approximate sparsity in the true loading vectors. Section 6
combines the results from Sections 4 and 5 for our main result. Section 7 provides Monte
Carlo evidence that supports our asymptotic results in finite sample. In Section 8, we apply
our results to a panel of individual stock returns as well as a panel of US macroeconomic
indicators.

2 Preliminaries
We use standard notation in the literature on factor models and assume X follows a factor
structure:

Xt
(n×1)

= Λ∗

(n×r)

Ft
(r×1)

+ et
(n×1)

∀t, or more compactly, X
(T×n)

= F
(T×r)

Λ∗′

(r×n)
+ e

(T×n)
, (1)

where Λ∗ = [λ∗
1•λ

∗
2•...λ

∗
n•]

′ = [λ∗
•1λ

∗
•2...λ

∗
•r] denotes the matrix of true factor loadings, and F

denotes the unobserved factors. We use the running indices i, j for the n variables, and k, l

for the r factors throughout. To rule out pathological cases, we will assume throughout that
rank(Λ∗) = r.

3An alternative approach to identify individual factors assumes factors are independent and non-Gaussian.
Then higher order moments become available to address the lack of identification via, e.g., Independent Com-
ponent Analysis (Hyvärinen and Oja, 2000). Also see Gouriéroux et al. (2017) or Drautzburg and Wright (2023)
for this approach to identification in structural VARs.

4For example, the Varimax criterion (Kaiser 1958) is widely used across fields with more than 9,000 citations
as of August 2021 and is included in many major statistical software applications (e.g., R, MATLAB and SAS).
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Let tr(A) denote the trace of a matrix A. We use the Frobenius norm for matrices, such
that ∥A∥2 = tr(A′A) =

∑
i,j a

2
ij . Similarly, unless otherwise noted, ∥A∥1 and ∥A∥0 will be

entrywise (pseudo-)norms, such that ∥A∥1 =
∑

i,j

∣∣aij∣∣ and ∥A∥0 counts the non-zero entries
of a matrix A. For two vectors a, b we write a ⊥ b to denote that they are orthogonal. A set in
a superscript of a vector x, always denoted by a script letter (e.g., G), defines a vector xG such
that xG

i = xi whenever i ∈ G and xG
i = 0 otherwise. We write an ≍ bn for two sequences

an, bn if an = O(bn) and bn = O(an). We normalize the length of the true loading vectors
throughout, and impose that

∑n
i=1 λ

∗2
il = n for l = 1, . . . , r. Clearly, such a normalization of

a loading vector λ∗
•k and its corresponding factor Fk is immaterial.

Equation (1) is observationally equivalent for different rotations of the loadings and fac-
tors. To see this, let H denote an arbitrary nonsingular matrix. We can redefine Λ0 =

Λ∗(H ′)−1 and F 0 = FH . This rotation may well be oblique since H does not need to
be unitary, and we make no assumption that either the factors or the loading vectors are or-
thogonal. In our view, there is no reason a priori to believe that the underlying factors, and in
particular the loading vectors, are necessarily orthogonal.

Among others, Bai and Ng (2002) showed in their seminal paper that in factor models of
large dimensions we can consistently estimate the number of factors under some regularity
conditions. We will therefore assume the true number of factors r to be known in the remain-
der of this paper.5 Throughout the paper, we assume the data has been centered, such that
E(Xi) = 0.6 Auxiliary lemmata are relegated to the Online Appendix.

3 Intuition
We start with a stylized example and an intuitive discussion of our proposed criterion.

3.1 A Stylized Example
To fix ideas, consider the following simple factor model with two factors for a vector xt of
dimension n = 207:

xt = λ∗
•1F1t + λ∗

•2F2t + et, t = 1, . . . , T, (2)

5See also Ahn and Horenstein (2013) and Onatski (2010) for alternative ways to determine the number of
factors. Freyaldenhoven (2022) addresses the issue of estimating the number of factors under the presence of
local factors, affecting only a subset of the observables.

6While unnecessary from a theoretical standpoint, normalizing the scale of the observed variables may also
be appealing in practice. Adding a normalization step will not affect any of the conclusions that follow under
some mild conditions.
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where λ∗
•k denotes the vector of loadings for factor k (denoted by Fkt), and et an idiosyncratic

noise component. We discuss the data-generating process (DGP) in more detail in Section 7.
Suppose both factors are local with the structure of the loading matrix Λ∗ given by

Λ∗ =

λ∗
1:m1,1

0

0 λ∗
(n+1)−m2:n,2

 , (3)

where m1 = m2 = 120. Thus, 120 outcomes are affected by the first factor, and 120 out-
comes are affected by the second factor. Note that, with n = 207, some outcomes are affected
by both factors. For the non-zero entries, we set λ∗

ik
i.i.d.∼ U(0.1, 2.9). Figure 1 visualizes the

resulting loading matrix Λ∗. Our goal is to recover Λ∗.

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

Figure 1: Illustration of true loading matrix Λ∗ for stylized DGP. Top panel depicts λ∗
•1, bottom panel

λ∗
•2. For each factor, the loadings associated with all 207 outcomes are depicted.

Under standard regularity conditions in the literature, it is well known that we can obtain
estimates λ0

•1, λ
0
•2, such that

λ0
i1 = H11λ

∗
i1 +H12λ

∗
i2 + op(1)

λ0
i2 = H21λ

∗
i1 +H22λ

∗
i2 + op(1),

(4)

where H is an unknown nonsingular rotation matrix (e.g., Bai 2003).7 Thus, the estimates
λ0
•1 and λ0

•2 will in population be linear combinations of the true loading vectors λ∗
•1 and λ∗

•2.
We make the following two observations (for now ignoring the op(1) term in Equation (4)):

1. Observation 1: Linear combinations of sparse loading vectors are generally dense.
For an arbitrary linear combination of the true loading vectors λ0

•1 = H11λ
∗
•1 +H12λ

∗
•2

with H11, H12 ̸= 0 we will generally have λ0
i1 ̸= 0 for i = 1, . . . , n. Thus, even though

the true loading vector λ∗
•1 is sparse (cf. Figure 1), a generic estimate λ0

•1 will generally
have non-zero entries everywhere.

7We state this result more formally in Assumption 3.
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2. Observation 2: There exists a linear combination of the estimated loading vectors
that is sparse.
Since λ0

•1 and λ0
•2 are linear combinations of λ∗

•1 and λ∗
•2, it follows that λ∗

•1 and λ∗
•2

are also linear combinations of λ0
•1 and λ0

•2. In other words, there must exist weights
w1 and w2, such that λ∗

•1 = w1λ
0
•1 + w2λ

0
•2. It then also follows that, if λ∗

•1 is sparse,
there must exist a linear combination of λ0

•1 and λ0
•2 that is sparse.

Together, these two observations form the key insight of the paper: The sparsity pattern
in the loading matrix is not invariant to rotations and can be used to achieve identification.
We next illustrate our approach to identification in this stylized DGP. By construction, the
Principal Component estimator Λ0 will estimate a rotation H of the true loadings and factors
that satisfies λ0′

•1λ
0
•2 = 0 and F 0′

•1F
0
•2 = 0.8 Figure 2 depicts this estimate. In line with

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

Figure 2: Illustration of Principal Component estimate Λ0 for stylized DGP. Top panel depicts λ0
•1,

bottom panel λ0
•2. For each factor, the loadings associated with all 207 outcomes are depicted.

Observation 1, the rotation matrix H inherent to the Principal Component estimator results
in an estimate of the loading matrix with no discernible sparsity pattern. Further, comparing
Figures 1 and 2, we conclude that neither of the estimated loading vectors closely resembles
λ∗
•1 or λ∗

•2.
Following Observation 2, we are next interested in identifying a linear combination of

λ0
•1 and λ0

•2 that is sparse. Because a rotation criterion that is directly based on the number of
non-zero elements will generally be infeasible (we return to this later), our proposed estimator
takes Λ0 as a starting point and is equal to the rotation of Λ0 that minimizes the ℓ1-norm of the
loading vectors. Figure 3 depicts the value of ∥λ•k∥1 across rotations in the space spanned
by the Principal Component estimator Λ0. Specifically, it depicts how ∥λ•k∥1 = ∥w1λ

0
•1 +

w2λ
0
•2∥1 changes as we vary the weights w1, w2, under the restriction that w2

1 + w2
2 = 1.

A convenient way to enforce this restriction, and to depict the result graphically, is to let

8To compute the Principal Component estimator, we take the singular value decomposition X = UDV ′.
The leading r columns of V are used as λ0

•1, . . . , λ
0
•r.
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[w1, w2] = [sin(θ), cos(θ)], and depict ∥λ•k∥1 as a function of the angle θ. This is depicted in
Figure 3.

Figure 3: Objective function across rotations in the space spanned by the initial estimate Λ0. Depicted
is ∥λ•k∥1 = ∥ sin(θ)λ0

•1 + cos(θ)λ0
•2∥1 as a function of the angle θ.

We find two local minima at angles θ̃1 and θ̃2. The first minimum θ̃1 corresponds to
weights of [w1 w2] = [−0.70 0.71], and consequently an estimated loading vector of λ̃•1 =

−0.70λ0
•1+0.71λ0

•2. The second minimum θ̃2 corresponds to weights of [w1, w2] = [0.84, 0.54],
and consequently a second estimated loading vector of λ̃•2 = 0.84λ0

•1 +0.54λ0
•2. Combining

[λ̃•1, λ̃•2] = Λ̃, we obtain our proposed estimator for Λ∗. Λ̃ is depicted in Figure 4. Compar-
ing Figures 1 and 4, we conclude that Λ̃ is close to Λ∗, and that we are able to identify the
individual columns of Λ∗ using our proposed criterion.

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

Figure 4: Illustration of Λ̃, the nonsingular “rotated” matrix with the smallest ℓ1-norm ∥Λ∥1 =∑
i,k |λik| for stylized DGP. Top panel depicts λ̃•1, bottom panel λ̃•2. For each factor, the loadings

associated with all 207 outcomes are depicted.

Remark 1. Even though Λ̃ is close to Λ∗, we note that λ̃ik ̸= 0 for all i, k. This is expected
because the preliminary estimate Λ0 is subject to estimation error, and our method does not
impose any regularization. Having identified the correct rotation of Λ∗, we conjecture that
standard methods in regularized estimation, or even simple thresholding, can be used to fur-
ther improve the estimate Λ̃ in practice. We leave this as an interesting avenue for future
research.

It is also worth contrasting our proposal with existing regularized estimation procedures,
such as variants of sparse PCA (cf. Kristensen, 2017). Regularizing the principal components
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is akin to obtaining a sparse approximation of Λ0 depicted in Figure 2. But this means
inducing sparsity in an object (Λ0) that will, in general, not be sparse. We instead propose to
first identify a sparse rotation of the loading matrix (Λ̃, depicted in Figure 4). Any regularized
estimation of Λ∗ could then happen in a second step (to obtain a sparse approximation of Λ̃
rather than Λ0) and is thus complementary to our approach.

Alternatively, we can approximate the number of loadings that are zero (n − ∥λ•k∥0)
directly for each rotation by counting the number of “small” loadings. Figure 5 depicts the
number of small loadings in λ•k across rotations in the space spanned by the initial estimate
Λ0, again as a function of the angle θ . While in this case, with just two factors, it is feasible
to find the rotation that minimizes the (approximate) ℓ0-norm based on a visual inspection
of Figure 5, the discontinuities and large number of local extrema of this function make this
approach infeasible in higher dimensions (we expand on this in Online Appendix B). On the
other hand, the angles θ̃1 and θ̃2 in Figure 5 are those found by minimizing the ℓ1-norm of
the loadings (which is continuous) and are identical to the local minima depicted in Figure 3.
Importantly, the minima of the ℓ1− and ℓ0−norm are close to each other, and both are close
to Λ∗.

Figure 5: Depicted is the number of small loadings Q0 =
∑n

i=1 1|λik|<1/log(n), where λ•k =
sin(θ)λ0

•1 + cos(θ)λ0
•2, as a function of the angle θ. Horizontal dashed red line represents critical

value for assessing whether there are local factors in the data.

We also use Figure 5 to illustrate how one may be able to use the estimate Λ̃ to infer
whether local factors exist in a given dataset. In Section 4.3, we suggest a diagnostic that
amounts to counting the number of small loadings in the most sparse estimated loading vector
λ̃•k. In Figure 5, this corresponds to checking whether, for either of the angles θ̃1 and θ̃2,
the number of small coefficients, indicated by the blue line, is larger than a critical value,
indicated by the horizontal red dashed line. Based on Figure 5, our diagnostic suggests the
presence of local factors in this instance.9

9In Online Appendix A, we depict the equivalent of Figure 5 if both factors affect all outcomes. There, our
diagnostic correctly suggests that no local factors are present in the data. Intuitively, if both λ∗

•1 and λ∗
•2 are

non-zero everywhere, no linear combination of the two exists with a significant sparsity pattern.
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3.2 Connection to Existing Rotation Criteria
A number of widely used rotation criteria exist aimed at simplifying the loading matrix, going
back to at least Carroll (1953) and Kaiser (1958). These existing criteria usually use quartic
functions of the loadings and maximize a variant of the following criterion function Q(·) over
rotations of an initial estimate Λ0:

Q(Λ0R) = Q(Λ) =
r∑

k=1

k−1∑
l=1

(
n∑

i=1

λ2
ikλ

2
il −

c

n

n∑
i=1

λ2
ik

n∑
j=1

λ2
jl). (5)

If we consider only orthogonal rotations for now (which is equivalent to restricting R to be
orthonormal), (5) simplifies to

Q(Λ0R) = Q(Λ) =
r∑

k=1

 n∑
i=1

λ4
ik −

c

n

 n∑
i=1

λ2
ik

2
 . (6)

For example, setting c to 0, 1, and r/2, respectively, results in the Quartimax (Carroll 1953),
Varimax (Kaiser 1958), and Equamax (Saunders 1962) rotation criteria. Considering one
loading vector at a time, it becomes clear that these are closely related to maximizing ∥λ•k∥44 =∑n

i=1 λ
4
ik, subject to a constant ℓ2-norm. In contrast, we propose to minimize ∥λ•k∥1 =∑n

i=1|λik|, subject to a constant ℓ2-norm.
To gain an intuition for the difference between the two approaches (maximizing ℓ4, min-

imizing ℓ1), it is instructive to first consider maximizing the ℓ∞-norm and contrast this with
minimizing the ℓ0-norm across rotations. Intuitively, maximizing the ℓ∞-norm identifies the
rotation with the largest entry, while minimizing the ℓ0-norm essentially identifies the rotation
with the smallest entries. Minimizing the ℓ1-norm is a relaxation of minimizing the ℓ0-norm,
while maximizing the ℓ4-norm is a relaxation of maximizing the ℓ∞-norm. Our sparsity as-
sumptions have direct implications for the behavior of the ℓ0- and ℓ1-norms, but not the ℓ4- or
ℓ∞-norms. We conjecture this is the reason why, under sparsity assumptions, formal results
have been difficult to achieve using existing rotation criteria that are quartic functions of the
loadings.

We discuss the connection between our proposed method and a variety of quartic criteria,
including criteria that result in oblique factor rotations (e.g., Hendrickson and White 1964),
further in Online Appendices B and E.
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4 Minimizing the ℓ0-norm
Let R be a r × r matrix and consider the following minimization problem:

R̃ = argmin
R

∥Λ∗R∥0, such that R is nonsingular and ∥R•k∥2 = 1 ∀k. (7)

Define Λ̃ = Λ∗R̃ as the rotation of Λ∗ corresponding to this minimum.
Our first set of results is derived under an exact sparsity pattern in the loading matrix.

Assumption 1. For each factor k, we can partition the set of indices i = 1, 2, . . . , n into a

set of indices Ak with cardinality |Ak| and its complement Ac
k, such that:

(a) λ∗
ik ̸= 0 and

∣∣λ∗
ik

∣∣ < C ∀i ∈ Ak and a constant C.

(b) λ∗
ik = 0 ∀i ̸∈ Ak.

(c) ∃c > 0, such that
∣∣λ∗

ik

∣∣ > c ∀i ∈ Ak.

Parts (a)-(b) define Ak as the support of λ∗
•k, and we may think of Ak as the “active set”

for a given factor or loading vector: it collects the indices of all outcomes affected by that
factor. On their own, parts (a)-(b) are thus merely a definition. Some results additionally
require Assumption 1(c), which requires a gap between loadings on Ak and its complement.

4.1 Two Factors (r = 2)
To keep our notation simple, we start with a simplified version of our results for the case of
two factors.

Definition 1’. Let b = max |B|, such that B ⊆ (A1 ∩ A2), and for all i ∈ B

c∗λ∗
i1 = λ∗

i2, (8)

for some constant c∗.

Define the set Ie
ℓ0
=

{
k ∈ {1, 2} :

∣∣Ac
k ∩ Al

∣∣− b > 0 for all l ̸= k
}

.

Thus, b denotes the size of the largest set of non-zero entries in the loading vectors such
that the two loading vectors are perfectly collinear on that set.10 Intuitively, requiring a lower

10Since we generally treat the factor loadings as parameters rather than random variables, we do not specify b
further in Definition 1’. More primitive conditions can be derived if we treat the loadings as random instead. For
instance, suppose |Ak| ≍ n for k = 1, 2 as n → ∞, and λ∗

ik
i.i.d.∼ N(0, σ) if i ∈ Ak, and λ∗

ik = 0 otherwise.
Then, with probability 1, λi1

λi2
̸= λj1

λj2
for all i, j ∈ A1 ∩ A2, and it follows that b = 1.
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bound on
∣∣Ac

k ∩ Al

∣∣ in the definition of Ie
ℓ0

can be thought of as our sparsity assumption:∣∣Ac
k ∩ Al

∣∣ will be larger when λ∗
•k has a significant sparsity pattern (since the set Ac

k is by
construction larger when the set Ak is small). Thus, the more outcomes are unaffected by Fk,
the more likely k ∈ Ie

ℓ0
.

To see that a naive definition of a local factor that simply requires sparsity in λ∗
•k, and

thus restricts the size of Ak (e.g. k ∈ Ie
ℓ0

⇔ |Ak| < αn for some α ∈ (0, 1)), can-
not be sufficient for identification we give the following simple counterexample. Suppose
A1 = A2 = {1, . . . , n/2}, such that the first half of the observed outcomes are affected
by both factors. Now consider a setting where only i = {1, . . . , n/2} is observed. In
such a setting, we have a traditional factor model in which both factors affect all outcomes.
Thus, the usual rotational indeterminacy (and thus lack of identification) applies. Further,
simply adding an additional n/2 “noise variables” that are unrelated to both factors for
i = {n/2 + 1, . . . , n} clearly cannot be be sufficient for identification. This illustrates why a
simple sparsity assumption on λ∗

•k is not sufficient for identification.
It is also instructive to consider the following three specific examples:

1. Suppose that λi1

λi2
̸= λj1

λj2
for all i, j ∈ A1∩A2. Then, b = 1. Further suppose that at least

two distinct outcomes are unaffected by each factor (e.g., λ∗
11 = λ∗

21 = λ∗
32 = λ∗

42 = 0,
and λ∗

12, λ
∗
22, λ

∗
31, and λ∗

41 are non-zero).
Then,

∣∣Ac
k ∩ Al

∣∣ > 1 for l ̸= k. Therefore 1, 2 ∈ Ie
ℓ0

.

2. Suppose A1 ∩ A2 = ∅ (The two factors affect different, non-overlapping groups of
outcomes).
Then, b = 0, while

∣∣Ac
k ∩ Al

∣∣ = |Al| > 0 for l ̸= k. Therefore 1, 2 ∈ Ie
ℓ0

.

3. Suppose A2 ⊆ A1 (The second factor F2 affects a subset of the outcomes affected by
F1).
Then, |Ac

1 ∩ A2| = 0, and 1 ̸∈ Ie
ℓ0

. Thus, whenever Ak is a superset of another active
set Al , k cannot be a member of the set Ie

ℓ0
.

Remark 2. Four different versions of the set I (Ie
ℓ0

, Ie
ℓ1

, Iℓ1 , Iℓ0) will appear throughout the
paper. We will generally be able to show identification for the loading vectors corresponding
to factors in these sets. They define sets of local factors (or, more precisely, the corresponding
indices) whose loadings can be identified by sparsity under various conditions. In particular,

1. Ie
ℓ0

will collect sparse loading vectors identifiable by rotating the ℓ0-norm under exact
sparsity and no estimation error (cf. Definitions 1’ and 1),
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2. Ie
ℓ1

will collect collect sparse loading vectors identifiable by rotating the ℓ1-norm under
exact sparsity and no estimation error (cf. Definitions 2’ and 2),

3. Iℓ1 will collect collect sparse loading vectors identifiable by rotating the ℓ1-norm under
approximate sparsity and allowing for estimation error (cf. Definition 3),

4. Iℓ0 will collect collect sparse loading vectors identifiable by rotating an approximate
version of the ℓ0-norm (which we introduce in Section 6) under approximate sparsity
and allowing for estimation error (cf. Definition 4).

The sets Iℓ0 and Iℓ1 are not nested (and neither are Ie
ℓ0

and Ie
ℓ1

), but as we argue throughout
the paper both capture the idea of “local factors.” That is, the more sparse λ∗

•k is, the more
likely k ∈ I for any of its four versions (Ie

ℓ0
, Ie

ℓ1
, Iℓ1 , Iℓ0). We thus expect them to be similar

in practice. Further, perhaps unsurprisingly, the conditions for identification will be more
stringent when allowing for estimation error, and thus Iℓ0 ⊆ Ie

ℓ0
and Iℓ1 ⊆ Ie

ℓ1
(this simply

states that, if a loading vector can be identified without estimation error using a particular
norm, then it can also be identified when allowing for such error). To keep the writing concise,
we will call factors in these sets simply “local” throughout, with the understanding that these
definitions are in fact slightly more restrictive and which factors fulfill the definition of a local
factor will vary depending on a) which norm we use, and b) whether we allow for estimation
error.

To gain further intuition for Definition 1’, and how it will be used in our proofs, suppose
1 ∈ Ie

ℓ0
and consider rotating λ∗

•1 – i.e., consider adding a nonzero weight w2 to λ•1 =

w1λ
∗
•1 + w2λ

∗
•2, such that |w1| ,|w2| ∈ (0, 1). Compared to λ∗

•1, λ•1 now has additional non-
zero entries on Ac

1 ∩A2. By definition, λ•1 has more than b such additional non-zero entries.
On the other hand, any entries that satisfy λ∗

i1 = −w2

w1
λ∗
i2 will be zero on λ•1. But the number

of entries that satisfy this last condition is bounded above by b. Definition 1’ thus ensures
that λ•1 is less sparse than λ∗

•1 for any w2 ̸= 0 if 1 ∈ Ie
ℓ0

.
If λi1

λi2
̸= λj1

λj2
∀i, j ∈ A1 ∩A2 (b = 1), this is guaranteed by having two outcomes affected

by the second factor that are not affected by the first factor (cf. Example 1 above). If there
is some collinearity between λ∗

•1 and λ∗
•2 (meaning b > 1), we intuitively require a larger

amount of sparsity in λ∗
•1 such that |Ac

1 ∩ A2| > b is satisfied.
The general idea, which extends to the case of r > 2, is the following: There are two

ways in which a linear combination of the true loading vectors can have a significant spar-
sity pattern: Either one of the true loading vectors is sparse, or the two loading vectors are
collinear on a large subset of outcomes (this is the set B). If k ∈ Ie

ℓ0
, this restricts the amount

12



of collinearity between the two loading vectors, or more precisely the size of the set B, rel-
ative to the amount of sparsity in λ∗

•k. To us, ruling out large subsets of outcomes on which
loading vectors are perfectly collinear does not seem very restrictive. Then, if we find a lin-
ear combination of the true loading vectors with a significant sparsity pattern, this must stem
from the fact that one of the true loading factors is indeed sparse.

Before we continue to the more general case and present a generalization of Definition 1’
that allows for r ≥ 3, we present our first formal result in the simple case in which we just
have two local factors, similar to the stylized example in the previous section.

Proposition 1. Suppose r = 2, Assumption 1(a)-(b) holds, and k ∈ Ie
ℓ0

for k = 1, 2. Then

Λ̃ = Λ∗P for some permutation matrix P .

Proof. First note that, for any permutation matrix P , ∥Λ∗P∥0 = ∥Λ∗∥0, since reordering the
columns clearly does not change the amount of sparsity.

Next, suppose that the solution to (7) is Λ̃ = Λ∗R̃, where R̃ is not a permutation matrix.
Then, at least one column λ̃•k is a linear combination of both columns in Λ∗: λ̃•k = Λ∗R•k =

λ∗
•1R1k + λ∗

•2R2k, with R2k, R1k ̸= 0. It follows that

∥λ̃•k∥0 = ∥λ∗
•1R1k + λ∗

•2R2k∥0 = |A1 ∪ A2| −|C|

= |A1|+ |A2 ∩ Ac
1| −|C|

= |A2|+ |A1 ∩ Ac
2| −|C| ,

where C is defined as the set of indices i, such that λ∗
i1

λ∗
i2
= −R2k

R1k
.

Since, by Definition 1’, |Ac
1 ∩ A2| > |C| and |Ac

2 ∩ A1| > |C|, it follows that ∥λ̃•k∥0 >

max(∥λ∗
•1∥0, ∥λ∗

•2∥0), and thus ∥Λ∗R̃∥0 > ∥Λ∗∥0.

Proposition 1 formalizes our previous claim that Λ∗ is the most sparse representation
among its rotations.

4.2 More Than Two Factors
Definition 1. Let Λ∗

•,−m be the n by (r − 1) submatrix of Λ∗ obtained by deleting the mth

column in Λ∗, let Az,−m be the support of a linear combination Λ∗
•,−mz for a given (r − 1)

vector of finite weights z, and let bk(z) = max |B|, B ⊆ Ak, such that

Λ∗Ak
i,−kz = λ∗Ak

ik ∀i ∈ B. (9)

Define the set Ie
ℓ0
=

{
k ∈ {1, . . . , r} :

∣∣Ac
k ∩ Az,−k

∣∣− bk(z) > 0 ∀z ̸= 0
}

.
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In words, bk = maxzbk(z) is the size of the largest set of non-zero loadings on λ∗
•k that

can be replicated as an exact linear combination of the remaining loading vectors. A small
value for bk (e.g., bk = r − 1) means this set is small: no large subset of outcomes exists for
which the loading vector λ∗

•k is perfectly collinear with a linear combination of the remaining
loading vectors.11 The more collinearity there exists between λ∗

•1 and a linear combination of
the remaining columns in Λ∗ (meaning a larger bk), the higher the amount of sparsity required
in λ∗

•1 such that
∣∣Ac

k ∩ Az,−k

∣∣− bk(z) > 0 is satisfied.
While we refer to factors corresponding to the various versions of the set Ie

ℓ0
as local

factors, we reiterate, following our discussion above, that simply requiring the loadings λ•k

to have a sparsity pattern is not sufficient to guarantee that k ∈ Ie
ℓ0

.

Remark 3. It will generally also be possible to identify the subspace spanned by a given
subset of loading vectors, even if their active sets are closely related, as long as they are
sufficiently distinct from the active sets of all other factors. In order not to further complicate
our notation, we will ignore this and simply consider such factors “unidentifiable.”

Next, we generalize the results of Proposition 1 to allow for more than two factors.

Corollary 1. Suppose Assumption 1(a)-(b) holds, and k ∈ Ie
ℓ0

for k = 1, . . . , r. Then

Λ̃ = Λ∗P for some permutation matrix P .

Corollary 1 is a direct consequence of Theorem 1 below. It again states that, in a model
with only local factors, any rotation of the true loading matrix will be less sparse than the
truth. Thus, the rotation with the highest degree of sparsity identifies the individual loading
vectors, up to an arbitrary relabeling of the factors. In most settings of economic interest,
there will be at least some factor Fk, such that k ̸∈ Ie

ℓ0
(for instance, a global factor). In such

a case, we obtain the following generalization of Corollary 1.

Theorem 1. Suppose Assumption 1(a)-(b) holds. Then for every l ∈ Ie
ℓ0

, there exists an index

k (which depends on l), such that R̃lk = 1 and R̃l′,k = 0 ∀l′ ̸= l.

The proof of Theorem 1 is similar to that of Proposition 1 and thus relegated to the Online
Appendix. Theorem 1 establishes the following: If the true DGP includes local factors (Ie

ℓ0

is non-empty with, say, |Ie
ℓ0
| = r∗), the corresponding r∗ columns in Λ∗ will also appear as

columns in Λ̃. This means that the loading vectors for such local factors can be identified by
maximizing the degree of sparsity in the loading matrix across rotations. Note that Theorem

11We again note that under additional assumptions, we can further specify bk. For example, suppose we treat
the loadings as random instead of fixed, and λ∗

ik
i.i.d.∼ N(0, σ) if i ∈ Ak, and λ∗

ik = 0 otherwise. Then, with
probability 1, bk = r − 1.

14



1 does not say anything about columns of Λ∗ corresponding to indices that are not in Ie
ℓ0

, or
equivalently, the remaining r−r∗ columns in Λ̃. These could be arbitrary linear combinations
of the columns in Λ∗. This is intuitive: if there are global factors with a corresponding loading
vector that has non-zero entries everywhere, identification of such loading vectors based on
a sparsity criterion will clearly be impossible.

4.3 A Diagnostic for Sparsity in Λ∗

Intuitively, if all factors affect all outcomes (|Ak| = n for k = 1, . . . , r) and loading vectors
are not (close to) collinear, even the most sparse rotation in the space spanned by the true
loading matrix will not have a significant sparsity pattern. On the other hand, if there exists a
loading vector λ∗

•k with at least a constant fraction of its loadings equal to zero, then clearly
a rotation with as many zeros exists.

We thus define the largest amount of sparsity across loading vectors for a given loading
matrix Λ as L0(Λ) = maxk(n − ∥λ•k∥0) and suggest the following diagnostic to determine
whether local factors are present:

LF = 1{L̂0(Λ̃)) ≥ γn}, where L̂0(Λ̃) = max
k

(
n∑

i=1

1{
∣∣∣λ̃ik

∣∣∣ < hn}), (10)

where hn → 0 as n → ∞. Thus, LF amounts to checking whether there exists a rotation
such that the number of loadings smaller than the threshold hn is larger than γn.12 While
deriving a formal test for the existence of local factors is beyond the scope of this paper,
Online Appendix G provides some theoretical justification for our diagnostic.

5 Minimizing the ℓ1-norm
Unfortunately, minimizing the ℓ0-norm directly is infeasible in practice for two reasons.

First, we assumed thus far that a) Λ∗ had an exact sparsity pattern, and b) we were able
to consider rotations in the true loading space instead of rotations in the space spanned by an
initial estimate of this space. In practice, if either Λ∗ is only approximately sparse, or if we
allow for estimation error in the initial estimate of the loading space, no rotation of the initial
estimate will exist that has an exact sparsity pattern. This poses a challenge to minimizing
the ℓ0-norm directly.

Second, even if a rotation with exact zeros did exist, minimizing the ℓ0-norm will gener-

12We reemphasize that counting the number of small loadings in an arbitrary rotation (e.g., using the Principal
Component estimator Λ0) would not work. In general, the number of small loadings in Λ0 will be small even
under sparsity in Λ∗ (cf. Figures 1 and 2). It is therefore crucial to first find the most sparse rotation Λ̃.

15



ally be computationally prohibitive. One can compare this to high-dimensional sparse linear
regression models, where optimal subset selection is generally infeasible. On the other hand,
a vast body of literature exists documenting both the theoretical and practical appeal of using
the ℓ1-norm instead as a regularization in linear regression models (e.g., Bühlmann and Van
De Geer 2011).13 While both minimizing the ℓ1-norm and maximizing any of the quartic
rotation criteria discussed in Section 3.2 are still non-convex problems, finding a solution to
these problems is much easier than minimizing the ℓ0-norm directly. For a geometric illus-
tration of this, see Online Appendix B (and recall our discussion surrounding Figures 3 and
5). We therefore turn our attention to the ℓ1-norm of the loading matrix next.

In what follows, we will work with an initial linear transformation of Λ∗, rather than with
Λ∗ directly. We will denote this as Λ0 = Λ∗H , where H is nonsingular. Λ0 has the property
that its columns have equal length and are orthogonal, such that Λ0′Λ0

n
= I . Intuitively, one

can think of Λ0 as the rotation of Λ∗ that is estimated by the Principal Component estimator,
at this point still ignoring any estimation error.

Consider the following optimization problem:

min
R

∥Λ0R∥1 such that R is nonsingular and ∥R•k∥2 = 1 ∀k. (11)

Noting that ∥Λ0R∥1 =
∑r

k=1 ∥
∑r

l=1 λ
0
•lRlk∥1, we see that (11) is separable in k and consists

of k identical parts up to the nonsingularity constraint. We thus consider one part at a time:

min
R•k

∥
r∑

l=1

λ0
•lRlk∥1 such that ∥R•k∥2 = 1. (12)

Importantly, Λ0′Λ0

n
= I implies ∥λ•k∥2 = ∥Λ0Υ∥2 =

√
n for any (r × 1) vector Υ with

∥Υ∥2 = 1. When considering the ℓ1-norm of λ•k for different linear combinations Υ, we
therefore hold the ℓ2-norm of λ•k constant across those combinations (and are thus looking
at “rotations” rather than arbitrary linear combinations, also see Online Appendix B).

Remark 4. Implemented directly, the optimization problem in (12) is still computationally
challenging as it involves finding minima of a non-convex function over the surface of an
r-dimensional sphere. In practice, we translate the problem into spherical coordinates, such

13We note that in the context on linear regressions, there has been some progress in implementing an ℓ0-based
approach via mixed integer optimization in recent years (e.g., see Bertsimas et al. (2016), Huang et al. (2018),
or Chen and Lee (2023).

16



that the constraint minimization problem in (12) simply becomes

min
θk

∥∥∥∥∥∥λ0
•1 cos(θ1k) + λ0

•rΠ
r−1
p=1 sin(θpk) +

r−1∑
l=2

λ0
•l cos(θl)Π

l−1
p=2 sin(θp−1,k)

∥∥∥∥∥∥
1

, (13)

an unconstrained optimization over the (r−1) angles collected in the vector θk. We then solve
(13) for a grid of starting points to find all local minima, similar to a standard implementation
of existing quartic rotation criteria such as those based on (6). See Browne (2001) for a
discussion and additional references. We discuss our transformation and the implementation
of (13) in more detail in Online Appendix F.

5.1 Two Factors (r = 2)
We again start with a simplified version of our next definition for the case of two factors,
and, to further simplify notation, start by further assuming that the two loading vectors are
orthogonal.

Definition 2”. Suppose Λ∗′Λ∗

n
= I2, and, for l ̸= k, let

βk =

∣∣∣∣∣∣
∑
i∈Ak

|λ∗
il|1{λ∗

ikλ
∗
il > 0} −

∑
i∈Ak

|λ∗
il|1{λ∗

ikλ
∗
il < 0}

∣∣∣∣∣∣ . (14)

Define the set Ie
ℓ1
=

{
k ∈ {1, 2} : ∥λ∗

•l
Ac

k∥1 > βk.
}

.

Note the similarity in the definitions of Ie
ℓ1

and Ie
ℓ0

(cf. Definition 1’): If 1 ∈ Ie
ℓ0

, the
condition |Ac

1 ∩ A2| > b required a lower bound on the number of non-zero loadings in λ•2

outside of the set A1. If 1 is in Ie
ℓ1

, Definition 2” requires a lower bound on the sum (of the
absolute values) of the loadings λ•2 outside of the set A1. Since ∥λ∗

•2
Ac

1∥1 will tend to be
larger if λ∗

•1 has a significant sparsity pattern (because the set Ac
1 is by construction larger

when the set A1 is small), the more outcomes are unaffected by Fk, the likelier k ∈ Ie
ℓ1

.
To gain intuition for how the inequality inside the definition of Ie

ℓ1
is used in the proofs,

again consider rotating λ∗
•1 — i.e., adding a (small) non-zero weight w2 to λ•1 = w1λ

∗
•1 +

w2λ
∗
•2. Compared to λ∗

•1, λ•1 now has additional non-zero entries on Ac
1 ∩A2, increasing the

ℓ1-norm of λ•1 by |w2| ∥λ∗
•2

Ac
1∥1. On the other hand, the entries on A1 may either increase or

decrease, depending on the sign of the product λ∗
i1λ

∗
i2. If λ∗

i1λ
∗
i2 > 0 (cf. the first part of (14)),

|λi1| > |λ∗
i1|. If λ∗

i1λ
∗
i2 < 0 (cf. the second part of (14)), |λi1| < |λ∗

i1|. The overall change in
the ℓ1-norm of λ•1 on A1 is thus approximately |w2| βk. The inequality inside the definition
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of Ie
ℓ1

thus ensures that λ•1 has a higher ℓ1-norm than λ∗
•1.

Dropping the assumption that the two loading vectors are orthogonal, we update our
definition of the set Ie

ℓ1
as follows:

Definition 2’. Let v•k = q1λ
∗
•1 + q2λ

∗
•2 for constants q1 and q2, such that ∥v•k∥22 = n and

λ∗
•k ⊥ v•k.14 Let

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗
ikvik > 0} −

∑
i∈Ak

|vik|1{λ∗
ikvik < 0}

∣∣∣∣∣∣ . (15)

Define the set

Ie
ℓ1
=

{
k ∈ {1, 2} : ∥vA

c
k

•k ∥1 > βk(v•k)
}
. (16)

Again consider F1. By definition of A1, ∥v
Ac

1
•1 ∥1 = q2∥λ

∗Ac
1

•2 ∥1, a constant times the sum
of the absolute values of λ∗

•2 on Ac
1. Thus, 1 ∈ Ie

ℓ1
if ∥λ∗Ac

1
•2 ∥1 > 1

q2
β1(v•1). Compared to

Definition 2”, dropping the requirement that Λ∗′Λ∗

n
= I therefore does not change the main

idea: We require a lower bound on the sum (of the absolute values) of the loadings λ∗
•2 outside

of the set A1 for 1 to be in Ie
ℓ1

.
The reason we work with v•1 instead of λ∗

•2 once we drop the assumption that Λ∗′Λ∗

n
is the

following: We would like to express all rotations of λ∗
•k in the subspace spanned by Λ∗. We

achieve this by using λ•k = w1λ
∗
•k+w2v•k, such that ∥v•k∥22 = n, λ∗

•k ⊥ v•k and w2
1+w2

2 = 1.
Rotating λ∗

•1 then amounts to adding a (small) non-zero weight w2 to λ•1 = w1λ
∗
•1 + w2v•1

and the discussion below Definition 2” still applies.
If r > 2, v•k will still be a linear combination of λ∗

•l, l = 1, . . . , r and the intuition above
directly extends to the case of r > 2. Before we consider this case, it is again instructive to
consider a few specific examples maintaining r = 2:15

1. Suppose that λ∗
ik ∈ {−ck, ck} for all i ∈ Ak and Λ∗′Λ∗

n
= I2.

Then βk = 0 (see Lemma 9). If at least one distinct outcome is unaffected by each
factor (e.g., λ∗

11 = λ∗
22 = 0, and λ∗

12 and λ∗
21 are non-zero), then 1, 2 ∈ Ie

ℓ1
.

14Note that v•k is unique up to a possible sign indeterminacy (which is immaterial since both (15) and (16)
involve taking absolute values).

15We also again consider a scenario where we treat the loadings as random variables instead. Suppose that
|Ak| ≍ n for k = 1, 2, and λ∗

ik
i.i.d.∼ N(0, σ) if i ∈ Ak, and λ∗

ik = 0 otherwise. Then, βk = Op(
√
n) = op(n).

For a longer discussion, see Online Appendix D.
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2. Suppose A1 ∩ A2 = ∅ (The two factors affect different, non-overlapping groups of
outcomes).
Then, βk = 0, and 1, 2 ∈ Ie

ℓ1
.

3. Suppose A2 ⊆ A1 (The second factor F2 affects a subset of the outcomes affected by
F1).
Then, |Ac

1 ∩ A2| = 0 implies that ∥λ∗
•2

Ac
1∥1 = 0 , and 1 ̸∈ Ie

ℓ1
. Thus, whenever Ak is a

superset of another active set Al , k cannot be a member of the set Ie
ℓ1

.

5.2 More Than Two Factors
Definition 2. Let Vk denote the set of all linear combinations v•k of λ∗

•l, l = 1, . . . , r, such

that ∥v•k∥22 = n and λ∗
•k ⊥ v•k and let

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗
ikvik > 0} −

∑
i∈Ak

|vik|1{λ∗
ikvik < 0}

∣∣∣∣∣∣ . (17)

Define the set

Ie
ℓ1
=

{
k ∈ {1, . . . , r} : ∥vA

c
k

•k ∥1 − βk(v•k) > 0 ∀v•k ∈ Vk.
}
. (18)

The only difference with Definition 2’ is that the vector v•k is no longer unique, and we
thus require the inequality inside (18) to hold for all vectors v•k that are orthogonal to λ∗

•k

and have unit length.
In Online Appendix D, we show that the inequality in the definition of Ie

ℓ1
holds with

high probability for a variety of designs of the loading matrix. There, we repeatedly simulate
different loading matrices, and record the fraction of realizations with k ∈ Ie

ℓ1
to provide

some guidance for how likely k ∈ Ie
ℓ1

in practice.

Theorem 2. Suppose Assumption 1 holds and we have access to a rotation of the true loading

matrix, Λ0 = Λ∗H , where H is nonsingular and Λ0′Λ0

n
= I . If k ∈ Ie

ℓ1
, the minimization in

(12) has a local minimum at R∗
•k, where R∗

•k satisfies λ∗
•k = Λ0R∗

•k.

Proof. Suppose k ∈ Ie
ℓ1

and consider λ•k = w1λ
∗
•k + w2v•k, where v•k is an arbitrary linear

combination of λ∗
•l, l = 1, . . . , r, such that ∥v•k∥22 = n, λ∗

•k ⊥ v•k and w2
1 + w2

2 = 1. This
can be thought of as considering all rotations of λ∗

•k in the subspace spanned by Λ∗ without
changing its length (in the standard ℓ2-sense). Next, note that v•k = vAk

•k + v
Ac

k
•k , and therefore

∥λ•k∥1 = ∥w1λ
∗
•k + w2v•k∥1 = ∥w1λ

∗Ak
•k + w2v

Ak
•k ∥1 +|w2| ∥v

Ac
k

•k ∥1
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= |w1| ∥λ∗Ak
•k ∥1 −|w2| βk(v•k) +|w2| ∥v

Ac
k

•k ∥1 (19)

= |w1| ∥λ∗
•k∥1 +|w2|

(
∥vA

c
k

•k ∥1 − βk(v•k)
)
,

where (19) follows from Lemma 3 when we consider a small neighborhood around λ∗
•k. To

make this explicit and align notation with that of Lemma 3, set w1 =
√

1− w2
2 and|w2| = ϵ.

We want to show that

√
1− ϵ2∥λ∗

•k∥1 + ϵ
(
∥vA

c
k

•k ∥1 − βk(v•k)
)
> ∥λ∗

•k∥1

⇔
(√

1− ϵ2 − 1
)
∥λ∗

•k∥1 + ϵ
(
∥vA

c
k

•k ∥1 − βk(v•k)
)
> 0

⇔
√
1− ϵ2 − 1

ϵ
+

∥vA
c
k

•k ∥1 − βk(v•k)

∥λ∗
•k∥1

> 0.

By Lemma 2, the first part can be made arbitrarily small for small enough values of ϵ. On the
other hand, the second part is strictly positive by Definition 2 and does not depend on ϵ. We
therefore conclude that for a small enough neighborhood, ∥λ•k∥1 > ∥λ∗

•k∥1 for all rotations
of λ∗

•k in the subspace spanned by Λ∗ and hence ∥λ∗
•k∥1 is a local minimum of (12).

Theorem 2 states that R∗
•k (and thus λ∗

•k) is a minimum of (12) if Fk is a local factor
(k ∈ Ie

ℓ1
). Note that any set of local minima of (12) for k = 1, . . . , r is also a local minimum

of (11). By imposing the additional constraint that R is nonsingular, we rule out that multiple
columns in R lead to the same λ∗

•k and ensure that any solution Λ̃ = Λ0R̃ to (11) spans the
same space as Λ0.

Remark 5. It is worth noting that Theorem 2 does not rule out other local minima. Ruling
out other minima is possible but requires stronger assumptions on Λ∗ that may be unlikely to
be broadly applicable in practice. We illustrate this further in Online Appendix C. Since, in
general, other local minima may exist, we turn to the question of how to select the “correct”
minima from these local minima next.

Algorithm 1. Given a rotation of the true loading matrix, Λ0 = Λ∗H , where H is nonsingu-

lar and Λ0′Λ0

n
= I:

1. Find all local minima Rp
•k, p = 1, . . . , P , to (12) and collect them in a matrix RP =

[R1
•k · · ·RP

•k] to form the “candidate matrix” Λ̄ = Λ0RP .

2. Append this matrix with Λ0 to yield the n× (P + r) matrix Λ̈ = [Λ̄ Λ0].
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3. Pick r columns of Λ̈ forming a (n × r) matrix Λ̃ such that ∥Λ̃∥0 is minimized and

rank(Λ̃) = r.

Our next result establishes that Algorithm 1 provably selects the correct local minima,
meaning that the solution to Algorithm 1 will include the loading vectors λ∗

•k for any k ∈
Ie
ℓ1
∩ Ie

ℓ0
.

Corollary 2. Suppose Assumption 1 holds. Let Λ̃ denote the solution to Algorithm 1. If

k ∈ Ie
ℓ1
∩ Ie

ℓ0
, then λ̃•l=λ∗

•k for some l = 1, . . . , r.

Proof. By Theorem 1, if k ∈ Ie
ℓ0

, λ∗
•k is part of the global minimum of (7) (it minimizes the

ℓ0-norm across all rotations).
By Theorem 2, if k ∈ Ie

ℓ1
, λ∗

•k is a local minimum of (12). Thus, there exists a column
λ̈•p in Λ̈ such that λ̈•p = λ∗

•k.
The third step of Algorithm 1 is a restricted version of (7) (since it restricts the feasible

set to a discrete set of vectors collected in RP ), but by Theorem 2, λ∗
•k is a feasible solution.

Thus, since λ∗
•k is both part of the global minimum of the ℓ0-norm, and a feasible solution

to the third step of Algorithm 1, it also minimizes the ℓ0-norm across the set of permissible
values in the third step of Algorithm 1.

Theorems 1 and 2, as well as Corollary 2, required exact sparsity and did not allow for
any estimation error in Λ0. We therefore next relax our assumptions accordingly.

Assumption 2. For each factor Fk, we can partition the set of indices i = 1, 2, . . . , n into a

set of indices Ak with cardinality |Ak| and its complement, such that as n → ∞,

(a)
∑

i ̸∈Ak

∣∣λ∗
ik

∣∣ = O(
√
n).

(b) |Ak| > c0n for some c0 > 0.

(c)
∣∣λ∗

ik

∣∣ > c ∀i ∈ Ak and
∣∣λ∗

ik

∣∣ < C ∀i for constants 0 < c,C < ∞.

(d) supi ̸∈Ak
λ∗
ik = o( 1

logn
).

(e) There exists a c > 0, such that B = {i : |λ∗
i•w| ∈ ( 1−c

logn
, 1+c
logn

)} = ∅ for any fixed (r×1)

weight vector w.

Assumption 2(a) relaxes the definition of Ak to allow for approximate sparsity. We may
still think of Ak as the active (or important) set for a given factor Fk, but Fk may now also
affect other outcomes, with Assumption 2(a) restricting how much. Assumption 2(b) can
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be thought of as a pervasiveness assumption. Together with Assumption 2(c), it states that
each factor affects a constant fraction of all outcomes, which is commonly maintained in the
literature. For the results that follow, we require access to a

√
n-consistent estimate of the

space spanned by Λ∗ and the ability to obtain such a
√
n-consistent estimate generally implies

that factors must be pervasive (Freyaldenhoven 2022).
Assumption 2(d)-(e) are only needed for Theorem 4 to accommodate our chosen approx-

imation to the ℓ0-norm. Assumption 2(d) effectively introduces a gap between loadings on
Ak and its complement, while Assumption 2(e) rules out knife-edge cases, where linear com-
binations of loading vectors are almost, but not quite collinear.

Definition 3. Define the set

Iℓ1 =
{
k ∈ {1, . . . , r} : ∥vA

c
k

•k ∥1 − βk(v•k) > cminn
3
4 ∀v•k ∈ Vk

}
(20)

for some cmin > 0 and N < ∞, whenever n > N .

The only difference between Definitions 2 and 3 is that we require a larger term on the
RHS of the inequality in (20) in order to accommodate non-zero entries of λ∗

•k on Ac
k (though

we note that both lower bounds are of order o(n)). Note that this implies that Iℓ1 ⊆ Ie
ℓ1

.
So far, we assumed access to an initial rotation of Λ∗, Λ0 = Λ∗H . In practice, we will

only have access to an estimate of such a rotation. We remain agnostic about where such an
initial estimate may come from but simply require

√
n-consistency.

Assumption 3. We have access to an initial estimate Λ0 with Λ0′Λ0

n
= I , such that (λ0

ik −
λ∗
i•H•k) = Op(

1√
n
), where H is nonsingular and the elements in H−1 are bounded above by

some constant C < ∞.

An obvious candidate that achieves
√
n consistency under some regularity conditions

(and, in particular, under the assumption that both n and T converge to infinity, and suitable
restrictions on the relative size of n and T ) would be the Principal Component estimator
(Stock and Watson 2002, Bai and Ng 2002, Bai 2003)16. This is the estimator we use in our
simulations and applications.

16A large literature exists detailing various conditions on the primitives of the model (e.g., among others, the
amount of correlation in the error term e) that allows an estimate with this rate. We also note that convergence
rates are typically derived under a simultaneous limit for both n and T . See Bai and Ng (2021) for a more
detailed discussion of the rotation matrix H , and Uematsu and Yamagata (2022) or Ando and Bai (2017) for
examples of alternative estimators under various sparsity assumptions.
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Theorem 3. Suppose n → ∞, Assumptions 2(a)-(c) and 3 hold, and k ∈ Iℓ1 . Then, there

exists a local minimum of (12) at R̄•k, with λ̄•k = Λ0R̄•k, such that

λ̄ik = λ∗
ik +Op(n

−1/4) for each i, (21)

and

1

n
∥λ∗

•k − λ̄•k∥2 = Op(n
− 1

2 ). (22)

Theorem 3 establishes that the minimization problem in (12) yields local minima that
consistently estimate the loadings (and the individual loading vectors) of local factors, even
under approximate sparsity and allowing for estimation error in the initial estimate Λ0.

While we give a formal proof in the Online Appendix, we briefly outline the arguments
here. Theorem 2 established that, under exact sparsity, and given a rotation Λ0 = Λ∗H , a local
minimum of the ℓ1-norm across rotations of Λ0 exists at λ∗

•k if k ∈ Ie
ℓ1

. In Lemma 7, we show
that an approximate version of this result holds under approximate sparsity (Assumption 2):
given a rotation Λ0 = Λ∗H , a local minimum of the ℓ1-norm across rotations of Λ0 exists that
is close to λ∗

•k if k ∈ Iℓ1 . Then, we show that, under approximation error (cf. Assumption 3),
there exists a proxy Λ̇ that is close to Λ∗, such that we can write Λ0 as a rotation of this proxy
and this proxy loading matrix Λ̇ is also approximately sparse. We then use this to show that,
if k ∈ Iℓ1 , a local minimum of the ℓ1-norm across rotations of Λ0 exists close to λ̇•k. Since
λ̇•k is close to λ∗

•k, this completes the proof.

6 Combining ℓ0-norm and ℓ1-norm
We note that Remark 5 still applies and the number of local minima may be larger than the
number of factors in Iℓ1 . To choose among the local minima when allowing for estimation
error and approximate sparsity, we use an approximate version of the ℓ0-norm, which we
denote by ∥ · ∥a. Specifically, let ∥Λ∥a denote the number of entries in Λ with

∣∣λij

∣∣ > 1
logn

.

Algorithm 2. Given a
√
n-consistent estimate Λ0 that forms an orthonormal basis of the

loading space:

1. Find all local minima Rp
•k, p = 1, . . . , P , to (12) and collect them in a matrix RP =

[R1
•k · · ·RP

•k] to form the “candidate matrix” Λ̄ = Λ0RP .

2. Append this matrix with Λ0 to yield the n× (P + r) matrix Λ̈ = [Λ̄ Λ0].
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3. Pick r columns of Λ̈ forming a (n × r) matrix Λ̃ such that ∥Λ̃∥a is minimized and

rank(Λ̃) = r.

Definition 4. Let Λ∗
•,−m be the n by (r − 1) submatrix of Λ∗ obtained by deleting the mth

column in Λ∗. Given a (r− 1) vector of finite weights z, let A∗
z,−m be the set of outcomes for

a linear combination x = Λ∗
•,−mz with xi >

1
logn

. Let b∗k(z) = max |B|, B ⊆ Ak, such that

Λ∗Ak
i,−kz ∈

(
λ∗Ak
ik − 1

log n
, λ∗Ak

ik +
1

log n

)
∀i ∈ B. (23)

Define the set Iℓ0 =

{
k ∈ {1, . . . , r} :

∣∣∣Ac
k ∩ A∗

z,−k

∣∣∣− b∗k(z) > 0 ∀z ̸= 0

}
.

Definition 4 is a generalization of Definition 1, which required an exact equality in lieu
of (23): bk = maxzbk(z) is the size of the largest set of non-zero loadings on λ∗

•k that can
be approximately replicated as a linear combination of the remaining loading vectors. A
small value for bk (e.g., bk = r − 1) means this set is small, and intuitively states that the
loading vector λ∗

•k is not too similar to the remaining loading vectors. In Online Appendix
J.2, we include a simplified version of Definition 4 for the case of two factors, analogous to
Definition 1’.

Comparing Definitions 1 and 4, we note that Iℓ0 ⊆ Ie
ℓ0

, since b∗k(z) > bk(z), and A∗
z,−m ⊆

Az,−m. This allows us to accommodate the use of ∥ · ∥a instead of ∥ · ∥0 in the final step of
Algorithm 2. In particular, under approximate sparsity and estimation error (Assumptions 2
and 3), the set Iℓ0 defines the set of loading vectors that can be identified by minimizing the
ℓa-norm. Since this result and its corresponding proof closely resemble those of Proposition
1 and Theorem 1, we relegate a formal statement with proof to the Online Appendix (see
Theorem OA1 therein). We then combine Theorems OA1 and 3 for our final result below
(Theorem 4), which is similar to Corollary 2 but allows for estimation error. It establishes
that the solution to Algorithm 2 will converge to the loading vectors of any local factor Fk,
defined as k ∈ Iℓ0 ∩ Iℓ1 .

Theorem 4. Suppose Assumptions 2 and 3 hold. Let Λ̃ denote the solution to Algorithm 2. If

k ∈ Iℓ0 ∩ Iℓ1 ,

λ̃il = λ∗
ik +Op(n

−1/4) for each i, (24)
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and

1

n
∥λ∗

•k − λ̃•l∥2 = Op(n
− 1

2 ) (25)

for some l = 1, . . . , r.

Proof. By Theorem OA1, if k ∈ Iℓ0 , there exists an λ̃•l = λ∗
•k + Op(

1√
n
) that is part of the

global minimum that minimizes the ℓa-norm across all rotations of Λ0.
By Theorem 3, if k ∈ Iℓ1 , λ∗

•k is close to a local minimum of the ℓ1-norm across all
rotations of Λ0: there exists a column λ̈•p in Λ̈ such that λ̈ip = λ∗

ik +Op(n
−1/4).

Combining the two results, there exists a column λ̈•p in Λ̈ such that ∥λ̈•p∥a = ∥λ∗
•k∥a =

∥λ̃•l∥a. Since the third step of Algorithm 2 is a restricted version of minimizing the ℓa-norm
across all rotations, but achieves the global minimum, the result follows.

Remark 6. Theorem 4 establishes identification for the loading vectors λ∗
•k, k ∈ Iℓ0∩Iℓ1 . One

shortcoming of this result is that it may not be obvious in practice which loading vectors are
in this set (and are thus identified and convey structural information), and which ones are not.
In Section 8, we discuss this further in the context of our empirical applications and present
some heuristics on how to determine which factors are in this set. Formally identifying which
loading vectors are in this set would be an interesting avenue for future research.

Before we conclude this section, it is worth noting that all results throughout concerned
the loadings Λ∗. A natural question is to what extent our consistency results for the individ-
ual loading vectors translate into consistency results for the corresponding individual factor
realizations. Perhaps surprisingly, the realizations of individual factors will generally not be
identified. In other words, knowing a loading vector λ∗

•k, and thus how the corresponding fac-
tor Fk affects all outcomes, is not sufficient to identify the corresponding factor realizations
Fkt, t = 1, . . . , T , without further assumptions.

For intuition, suppose we were to form estimates for the factor realizations at each time
period by a cross-sectional regression of the outcomes on the estimated factor loadings, such
that

Ft = (Λ̃′Λ̃)−1Λ̃′Xt for t = 1, . . . , T. (26)

Intuitively, consistency of Fkt requires knowledge of all loading vectors λ∗
•k, k = 1, . . . , r.

Thus, this usually rules out the existence of any global factors. However, a setting in which
all factors are local (in which case the entire loading matrix Λ would be identified, such that
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Λ̃ ≈ Λ∗) appears unlikely in most economic applications. It may be possible to achieve
identification of the individual factors under additional restrictions (such as orthogonality of
the factors or the loadings). We leave this for future research.

7 Simulations
This section presents results from Monte Carlo simulations to evaluate the performance of our
proposals in finite sample. We start by revisiting the baseline DGP from our stylized example
in Section 3.1 and provide some more details about this DGP. The factors Fk, k = 1, 2 are
generated jointly normal with a correlation of 0.3, unit variances, and are i.i.d. over time.
The error terms have the following correlation structure:

eti = ρet−1,i + (1− ρ2)1/2vit,

vti = βvt,i−1 + (1− β2)1/2uit, uit
i.i.d.∼ N(0, 1),

with (ρ, β) = (0.3, 0.1), which Onatski (2010) argues are good approximations to many
financial datasets. We simulate 2,000 realizations of our baseline DGP. For each realization,
we simulate new loadings in Λ∗. Our goal is to recover Λ∗.

To summarize the performance of an estimator across simulation runs, we use the cosine
similarity between the columns in Λ∗ and an estimate Λ̂. Because the factors can always be
reordered, for each true loading vector λ∗

•l, we use the maximum cosine similarity with any
estimated loading vector to measure how closely we are able to recover λ∗

•l. Formally, define
the maximum cosine similarity MCl(Λ̂) between the true loading vector λ∗

•l and an estimate
Λ̂ as

MCl(Λ̂) = max
k

λ̂′
•kλ

∗
•l

∥λ̂•k∥∥λ∗
•l∥

for l = 1, . . . , r. (27)

Thus, a value of MCl close to one means that one of the estimated loading vectors λ̂•k,
k = 1, . . . , r, is close to λ∗

•l.
The maximum cosine similarity corresponding to Figures 1-4 in Section 3.1 is depicted

in the first two columns of Table 1. The first column confirms that the Principal Component
estimator does not successfully recover either of the two loading vectors. On the other hand,
consistent with Figure 4, our proposed estimator can successfully identify the true loading
matrix Λ∗. Because both factors symmetrically affect the same number of outcomes in our
baseline DGP, the two rows look similar. While λ∗

ik
i.i.d.∼ U(0.1, 2.9) for i ∈ Ak was chosen to
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For i ∈ Ak : λ∗
ik ∼ U(0.1, 1.9) λ∗

ik ∼ N(1, 1)

Estimator Λ̂ Λ0 Λ̃ Λ0 Λ̃

MC1 0.779 0.990 0.776 0.994

MC2 0.777 0.990 0.773 0.994

Table 1: Maximum cosine similarity MCl(Λ̂) across DGPs and estimators. Λ0 refers to the Principal
Component estimator, while Λ̃ represents our proposed rotation that minimizes the ℓ1-norm across all
rotations. Depicted are averages based on 2,000 realizations.

satisfy the upper and lower bounds assumed on Λ∗ in the previous section, we also consider
λ∗
ik

i.i.d.∼ N(1, 1) for i ∈ Ak in the third and fourth column of Table 1. Column 4 demonstrates
that changing the distribution of the loadings λ∗

ik on Ak has no meaningful impact on our
results. Finally, using 1{L̂0(Λ̃) > γn} to determine whether local factors are present, we
successfully detect the existence of local factors in all 2,000 simulation runs for this DGP.

The previous results confirm that our proposed ℓ1-rotation and sparsity diagnostic work
well in our baseline DGP: we can reliably detect the presence of local factors, and can cor-
rectly recover the sparsity pattern in the loading matrix, thereby identifying the individual
loading vectors. We next consider a variety of data-generating processes to approximate a
range of situations a practitioner might encounter in practice.

7.1 Results for a Variety of Data-Generating Processes
We next vary the degree of sparsity in the loading matrix by varying the values of m1 = |A1|
and m2 = |A2|. We maintain that λ∗

ik
i.i.d.∼ N(1, 1), for i ∈ Ak. All other parameters remain

unchanged from our baseline DGP. Figure 6 depicts how well we are able to estimate the true
factor loadings λ∗

•1 and λ∗
•2 in this setting as a function of m1 and m2. Panels 6a and 6b depict

the performance of the Principal Component estimator for λ∗
•1 and λ∗

•2. Unsurprisingly, the
maximum cosine similarities are generally significantly below one. The exceptions to this are
cases in which one factor is extremely weak. In such cases, the data effectively has a factor
structure with a single factor, there is no rotational indeterminacy, and the sole strong factor
is identified.

Panels 6c and 6d depict the maximum cosine similarity for our proposed estimate Λ̃. We
are able to separately identify the two loading vectors throughout most of the parameter space
using our ℓ1-criterion. The exception occurs in the regions of the parameter space where a
factor becomes either “global” or very weak. For example, along the right edge of Figure 6c,
F1 affects all observables. Since only the loading vectors corresponding to local factors are
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(a) PC Estimator: MC1(Λ
0) (b) PC Estimator: MC2(Λ

0)

(c) Rotated Estimator: MC1(Λ̃) (d) Rotated Estimator: MC2(Λ̃)

Figure 6: Maximum cosine similarity of estimators with each of the true loading vectors λ∗
•k as a

function of the degree of sparsity in the loading matrix. mk refers to the number of non-zero entries
in the kth column of Λ∗. Figure based on our baseline DGP with λ∗

ik ∼ N(1, 1) for i ∈ Ak. Depicted
are averages over 500 realizations.

identified, and clearly 1 ̸∈ I for any of the four defintions of local factors in this region, this
is not surprising. On the opposite side of Figure 6c, only few outcomes are affected by F1.
λ∗
•1 is therefore only weakly identified, and our initial estimate of the loading space is poor,

resulting in a maximum cosine similarity less than one. We further conclude from panels
6c-6d that an identification failure for one of the loading vectors does not imply identification
failure for the other.

In Online Appendix G.1, we document the performance of our diagnostic to detect the
presence of local factors. In summary, our method detects the existence of local factors in
almost all realization whenever at least one loading vector has more than 25% of its entries
equal to zero. On the other hand, under a dense DGP, our diagnostic suggests that no local
factors are presented in at least 99% of all realizations.
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We next increase the size of the model and consider a DGP with (T, n) = (500, 300)

and r = 4, with a small amount of correlation between the factors. Specifically, let Ft ∼
N(0,ΣF ), i.i.d. over time, with

ΣF =


1.0 0.3 0.0 0.0

0.3 1.0 0.3 0.0

0.0 0.3 1.0 0.3

0.0 0.0 0.3 1.0

 .

The first factor in this DGP is “global,” while the remaining three are local to varying degrees.
Specifically, the 300-by-4 loading matrix Λ∗ has entries λ∗

ik
i.i.d.∼ N(1, 1) if i ∈ Ak, and λ∗

ik =

0 otherwise. The subsets Ak will be of varying size and dictate which variables are affected
by each factor k, with the sequence of group sizes given by {|Ak|}4k=1 = {300, 170, 96, 72}
for the four factors. The idiosyncratic component eit is created the same way it was in our
baseline DGP. Finally, we consider a variant of this DGP in which there is no exact sparsity,
but rather an approximate version thereof. Here, λ∗

ik
i.i.d.∼ N(0, 1

n
), for all i ∈ Ac

k.
Figure 7 uses a boxplot to visualize the performance of Λ0 and Λ̃. It depicts the maximum

cosine similarity for each factor across 500 realizations. The data underlying Figures 7a and
7b has an exact sparsity pattern (λ∗

ik = 0 if i ∈ Ac
k). As expected, we do not consistently

recover the true loadings using the Principal Component estimator Λ0 (cf. Figure 7a). On
the other hand, Figure 7b depicts the similarity between the truth, Λ∗, and our proposed
estimate Λ̃. Since the first factor does not exhibit any sparsity, there is no information in the
ℓ1-norm that could help identify the corresponding loading vector. As a consequence, the
similarity is below one, and identification fails for this loading vector. On the other hand, the
loading vectors of the three local factors exhibit maximum cosine similarities that are visually
indistinguishable from one in all realizations. Underlying Figures 7c and 7d is the variant of
our DGP with approximate sparsity in the loading matrix. Based on Figures 7c and 7d, the
above conclusions are unchanged. Our proposed estimator Λ̃ recovers the loading vectors
associated with the three local factors in all realizations.17

In Online Appendix E, we compare the performance of our proposed estimator to a num-
ber of existing heuristics that are currently widely used to simplify the loading matrix, in-
cluding some of the quartic criteria discussed in Section 3.2. We find that our ℓ1-rotation
performs better than these alternative methods.

17We also note that, for both DGPs (exact and approximate sparsity), our proposed diagnostic correctly
detects the presence of local factors in all simulation runs.
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(a) MCk(Λ
0) under exact sparsity
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(b) MCk(Λ̃) under exact sparsity
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(c) MCk(Λ
0) under approximate sparsity
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(d) MCk(Λ̃) under approximate sparsity

Figure 7: Each panel depicts the maximum cosine similarity of an estimator with all four of the
true loading vectors λ∗

•k. Λ0 denotes Principal Component estimator, while Λ̃ denotes estimate after
proposed rotation. The first factor is global, factors 2-4 are local. Boxplots based on 500 realizations.

8 Applications
We next apply our rotation criterion to two economic applications in which factor models
have been widely used, chosen to capture two scenarios a practitioner might encounter. First,
we consider a dataset of international stock returns. Because of the global nature of this
dataset, we expect the presence of region-specific factors in this dataset. We are therefore
interested in whether our method can detect these local factors and recover the geographic
structure of the data. Second, we consider a large panel of US macroeconomic indicators,
where it is less clear a priori whether local factors are present.

8.1 International Asset Returns
Let Rit denote the return of asset i at time t. Following the Arbitrage Pricing Theory of
Ross (1976) and Chamberlain and Rothschild (1983), we assume that unexpected returns
xit = Rit − E(Ri) follow a factor structure, such that

xit = Rit − E(Ri) = λ∗
i•Ft + eit. (28)
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We treat the common factors as unobserved, so we need to replace Ft and λ∗
i• by their esti-

mates F̂t and λ̂i•. In financial economics, these estimates are commonly obtained by Principal
Component analysis (Connor and Korajczyk 1986, Ludvigson and Ng 2007). We propose to
identify the individual loading vectors using our ℓ1-criterion.

Our dataset consists of daily returns for a large number of stocks from different parts of
the world. In particular, it includes individual stock returns for companies that were part of
the DAX30 (Germany), the FTSE100 (UK), the S&P100 (US), the CAC40 (France), or the
TA100 (Middle East) on April 23, 2015.18 In total, the data covers 272 stocks spanning 687
observations from 01/01/2011 until 03/20/2015. We determine the number of factors to be
eight using Bai and Ng (2002)’s Information Criterion with rmax = 25, and will accordingly
use r = 8 in what follows.

To estimate the space spanned by these eight factors, we then estimate the leading eight
principal components. Unsurprisingly, we find that each of the eight principal components
loads on most of the 272 individual stocks. The estimated loadings corresponding to the
Principal Component estimator Λ0 can be found in Online Appendix Figure 11.

In contrast, Figure 8 depicts our proposed estimator Λ̃. The thin dashed lines separate the
geographical groups as described above, in the order of Frankfurt, London, New York, Paris,
and Tel Aviv. In contrast to the Principal Component estimate, we see that its loading vectors
are highly concentrated on a subset of outcomes.19 It reveals strong regional dependencies
in asset returns as illustrated in Table 2. For example, λ̃•1 is almost entirely concentrated on
stocks in the US (similar to λ̃•4), λ̃•2 is concentrated on stocks in the Middle East, and λ̃•3

is concentrated on stocks in the UK. λ̃•5,λ̃•6 and λ̃•8 are European factors. The only loading
vector without a strong geographical pattern is λ̃•7. However, all 25 stocks with a loading
larger than two for this factor belong to the Oil & Gas or the Mining sector, enabling us to
clearly label this a sector-specific factor.

Revisiting Remark 6, we need to be cautious about which of the estimated loading vec-
tors can be interpreted. Some loading vectors have both a significant sparsity pattern and
distinct active sets (e.g., the second and fifth, concentrated on the Middle East and the Nat-
ural Resource sector, respectively). Thus, k ∈ Iℓ0 ∩ Iℓ1 seems plausible for k ∈ {2, 5}. In

18We further restrict the stocks in the TA100 to those with a weight by market capitalization in the TA100 of
at least 0.5%. This makes the remaining stocks comparable in size to the rest of the sample. For a more detailed
discussion of the data, see Online Appendix I.

19We again stress that there is no “shrinkage” involved in our estimator, such that our sparse representation
of the factors fits the data exactly as well as a rotation with dense loadings. This also implies that none of the
estimated loadings in Λ̃ will be exactly equal to zero. A further regularization step is beyond the scope of this
paper. See Pelger and Xiong (2021) for a potential approach to such regularization.
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Figure 8: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 8 in panel of international
asset returns. Bars correspond to the loadings of the 272 individual stocks for the kth estimated
loading vector. Geographical groups are Germany, UK, US, France, and Middle East, separated by
dashed lines.
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Factor Region Sector

1 US
2 Middle East
3 UK
4 US
5 Germany, UK, France
6 Germany, France
7 Global Natural Resources (Oil and Mining)
8 Germany, UK, France

Table 2: Interpretation of individual factors in panel of international asset returns, based on estimated
loading matrix Λ̃.

other cases (e.g., the first and fourth, both concentrated in the US), loading vectors have very
similar active sets (i.e. A1 ≈ A4), suggesting that the corresponding loading vectors are still
identified jointly, but not separately (cf. Remark 3). While this suggests that there are two
US specific factors, a further labeling of these individual factors would be unwarranted.

Finally, because we find a rotation in which all columns of Λ̃ exhibit significant sparsity,
our diagnostic suggests the existence of local factors in this dataset.

8.2 Macroeconomic Indicators
We next apply our identification strategy to a large panel of US macroeconomic indicators. In
particular, we use the FRED-QD data collected and maintained by Michael W. McCracken.20

Our final sample contains 206 quarterly observations of 166 macroeconomic variables.
Two papers that have looked into the nature of the optimal forecasting model in the con-

text of a very similar dataset are De Mol et al. (2008) and Giannone et al. (2021). Both papers
investigate how forecasts that use sparsity-inducing regularization compare to regularization
methods that do not lead to a sparsity pattern in the predictors (such as ridge regressions or
factor-augmented regressions). Specifically, De Mol et al. (2008) make the following two
observations:

1. “The high correlation of the Lasso forecast with the PC forecast suggests that our data is highly

collinear: Under collinearity, when appropriately selected, a few variables should capture the

20Data are available at https://research.stlouisfed.org/econ/mccracken/
fred-databases. Versions of this dataset have been used extensively in the literature on macroeco-
nomic forecasting (De Mol et al. 2008, Stock and Watson 2016). For a full description of the data, we refer
the reader to McCracken (2019). We use data from 1967Q1-2019Q1 and follow the transformations of the raw
data as outlined in McCracken and Ng (2016) to achieve stationarity and remove a small number of outliers.
We use only the disaggregated time series in our estimation of the factor structure and disregard the aggregates
(Boivin and Ng 2006, Stock and Watson 2016) and drop a small number of series with missing observations.
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essence of the covariation of the data and, as principal components, span approximately the

space of the common factors.”

2. “The selection [of variables by the Lasso] is different at different points in the sample, although

selected variables generally belong to the same economic category.”

Similarly, Giannone et al. (2021) find a significant sparsity pattern for the predictors (more
than 75% of their regressors have a coefficient of zero), but note that there is substantial un-
certainty about the identity of the relevant predictors. These observations can be rationalized
by the presence of local factors, with each factor affecting only a subset of the observed in-
dicators (which will generally belong to the same economic category). In such a setting, a
regularized estimator that induces sparsity in the individual components of Xt will tend to
select a single variable from each group Ak as a noisy proxy for Fkt. The selected set of
regressors will thus approximately span the space of the common factors. However, selec-
tion within groups will be unstable and sensitive to minor perturbations of the data, thereby
leading to varying variable selection from the same groups across subsamples or posterior
draws.

To determine whether a “group structure” with local factors is present in this applica-
tion, we first determine the number of factors to be eight, using the Information Criterion
of Bai and Ng (2002) with rmax = 15, and accordingly use r = 8 in what follows. To
estimate the space spanned by these eight factors, we then estimate the leading eight prin-
cipal components. Unsurprisingly, these load on most of the 166 observed outcomes. The
estimated loadings using the Principal Component estimator Λ0 can be found in Online Ap-
pendix Figure 10. In contrast, Figure 9 depicts our proposed estimator Λ̃. In order to gain
an understanding of the factors, Table 3 reproduces the grouping of variables as suggested in
McCracken (2019), which is in turn based on Stock and Watson (2012). The corresponding
groups of variables are separated by dashed lines in Figure 9.

The first factor almost exclusively drives all price variables (group 6), allowing an easy
interpretation as an aggregated price index of which we observe multiple measurements.
The second factor mainly affects a combination of interest rates, employment indicators, and
industrial production. The third factor is mainly associated with household balance sheets
and stock markets (groups 10 and 13), capturing the intuitive notion that an increase in asset
prices will be associated with an improvement in household balance sheets. Accordingly,
almost all of those indicators are associated with positive loadings, with the exception of the
dividend yield, which has a large negative loading. The picture is less clear for subsequent
factors, and we therefore refrain from interpreting additional factors. However, we note that
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Figure 9: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 8 in panel of macroeconomic
indicators. Bars correspond to the 166 individual indicators for the kth estimated loading vector.
Groups of variables are separated by dashed lines (see Table 3).
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Group Category Associated Variables

1 National Income and Product Accounts (NIPA) 1-14
2 Industrial Production 15-26
3 Employment and Unemployment 27-60
4 Housing 61-68
5 Inventories, Orders, and Sales 69-74
6 Prices 75-108
7 Earnings and Productivity 109-114
8 Interest Rates 115-127
9 Money and Credit 128-136
10 Household Balance Sheets 137-142
11 Exchange Rates 143-146
12 Other 147
13 Stock Markets 148-153
14 Non-Household Balance Sheets 154-166

Table 3: Grouping of variables in panel of US macroeconomic indicators.

our testing criterion again suggests the existence of local factors in this dataset.

9 Conclusion
We introduce a new rotation criterion to simplify the loading matrix in factor models. Our
rotation criterion minimizes the ℓ1-norm of the loadings and is theoretically appealing. Un-
like existing heuristics, such as the Varimax criterion (Kaiser 1958), we derive theoretical
guarantees for our rotation criterion if the true loading matrix is sparse: Under (approximate)
sparsity in the loading matrix, our ℓ1-rotation can be used to identify the individual loading
vectors.

Our ℓ1-rotation criterion performs well across simulations and two economic applications.
In our two applications, we find strong evidence that local factors are indeed present in the
data in both cases. In both applications our method estimates sensible economic objects,
which a researcher would not be able to recover otherwise.
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