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A Further Discussion of Assumption 3 and Its Implications

To gain intuition for the value of βk(v•k), letN+ =
∑

i∈Ak
1{λ∗ikvik ≥ 0},N− =

∑
i∈Ak

1{λ∗ikvik <
0} and suppose that N− ≤ N+ (the same result will hold for the opposite case). Then,

βk(v•k) =
∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikvik < 0}

= N+ 1

N+

∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0}︸ ︷︷ ︸
≡|v+ik|

−N− 1

N−

∑
i∈Ak

|vik|1{λ∗ikvik < 0}︸ ︷︷ ︸
≡|v−ik|

= N−
(∣∣v+

ik

∣∣−∣∣v−ik∣∣)+ (N+ −N−)
∣∣v+
ik

∣∣. (1)

Thus, the difference in Equation (1) above and Equation (9) of the main text can be decomposed
into the difference between two conditional means multiplied by N−, and the difference between
the number of terms used in each sum multiplied by a constant. While we treat Λ∗ as fixed through-
out, suppose Λ∗ was random and assume r = 2. Further suppose λik is distributed symmetrically
and independently if i ∈ Ak, and equal to zero otherwise. Then, both of terms of the decom-
position in (1) would be Op(

√
n) under some regularity conditions (e.g., λik

i.i.d.∼ N(0, σ), as in
Example 3 on Page 15 of the main text). Thus, β1(v•1) will also be Op(

√
n). Treating Λ as a fixed

parameter, we avoid making any distributional assumptions on Λ, but instead simply define the
above difference as βk(v•k).

We next illustrate the behavior of βk = maxv•k∈Vk β
k(v•k) in finite sample for a hypothetical

Λ∗. We create a n × 2 loading matrix Λ∗ with entries λ∗ik
i.i.d.∼ N(0, 1) if i ∈ Ak, and λ∗ik = 0

otherwise. Further, |A2| = n, such that A1 ⊂ A2.1 Online Appendix Figure 1 then depicts how β1

changes as we increase the size of the set A1.2 Online Appendix Figure 1 confirms that β1 grows
proportionally to the square root of the size of the set A1.

As we have just argued theoretically and showed in simulation, in many cases βk �
√
n. To

determine whether the condition in Assumption 3,

‖vA
c
k
•k ‖1 > βk(v•k), (2)

is plausible, we further need to consider ‖vA
c
k
•k ‖1 and, intuitively, under what conditions ‖vA

c
k
•k ‖1 >√

n.

1Changing the covariance structure such that Cov(λi1, λi2) 6= 0 does not affect the results below.
2Specifically, we orthonormalize Λ∗ using Gram-Schmidt, such that U ′U

n = I2, and write U = (u1, u2) = (λ∗1, v)
(Redefining λ∗1 to have unit length is in line with the setup of the paper, see Section 2). Note that, with r = 2, the set
V1 only contains two vectors that are identical up to a sign indeterminacy.
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(a) Average value of β1 across simulations.
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(b) 95th percentile of β1 across simulations.

Online Appendix Figure 1: Illustration of β1 = maxv1∈V1 β
1(v1) as a function of group size|A1|. λ∗ik

i.i.d.∼
N(0, 1) if i ∈ Ak, λ∗ik = 0 otherwise, and A1 ⊂ A2. Figure based on 1000 simulations.

Recall that, for constants q1 and q2, v•1 = q1λ
∗
•1 + q2λ

∗
•2, and thus ‖vA

c
1
•1 ‖1 = q2‖λ

∗Ac
1

•2 ‖1, a
constant times the sum of the absolute values of λ∗2i on Ac1. It can be shown that ‖v•1‖2

2 = 1 and
λ∗•k ⊥ v•k implies q2

2 = (1− [
λ∗′•1λ

∗
•2

n
]2)−1. Hence q2 ≥ 1, and ‖λ∗A

c
1

•2 ‖1 > βk is sufficient for (2) to
hold. In general, the sum of the absolute values of λ∗2i on Ac1 will be proportional to the number
of outcomes affected by F2, but not F1. This suggests that F1 ∈ F exact if there are proportionally
more than

√
n outcomes that are affected by F2, but not F1.

While, under the distribution of λ∗i1 considered above, we can infer the minimum value needed
for ‖vA

c
1
•1 ‖1 to fulfill the condition in (2) for a given group size from Online Appendix Figure 1

(e.g., at |A1| = 400, around 10), we next directly report the number of outcomes affected by F2,
but not F1 that is needed for condition (2) to hold across a number of different DGPs for Λ∗. In
particular, let

µ = (µ1, µ2) and Σ =

[
1 ρ

ρ 1

]
.

We create a 500× 2 loading matrix Λ∗ with A1 ⊂ A2 and |A1| = 300. We draw λ∗i•
i.i.d.∼ N(µ,Σ)

if i ∈ A1, λ∗i2
i.i.d.∼ N(µ2, 1) if i ∈ Ac1 ∩ A2, and λ∗ik = 0 otherwise. To get a better sense of how

demanding Assumption 3 is in practice, we then vary both µ and ρ. The results are depicted in
Online Appendix Tables 1 and 2. Each entry depicts the minimum size of Ac1 ∩ A2 for ‖vA

c
k
•k ‖1 >

βk(v•k) to hold for a given combination of µ and ρ.
Online Appendix Table 1 depicts the minimum number of entries in Ac1 ∩ A2 needed for con-

dition (2) to hold for k = 1 on average across repeated realizations. Note that, with µ = (0, 0)
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Means µk Correlation ρ

µ1 µ2 -0.4 -0.2 0 0.2 0.4

0 0 10 11 11 11 10
0 1 10 10 10 10 10
1 1 36 31 27 21 16
1 -1 16 21 26 31 36
2 2 62 53 44 36 27
2 -2 27 36 44 53 62

Online Appendix Table 1: Smallest number of entries in Ac1 ∩ A2 needed for condition (2) to hold on
average for k = 1. |A1| = |A1 ∩ A2| = 300. Table varies the distribution of λ∗ik through the parameters µ

and ρ. In particular, λ∗i•
i.i.d.∼ N(µ,Σ) if i ∈ A1, λ∗i2

i.i.d.∼ N(µ2, 1) if i ∈ Ac1 ∩ A2, and λ∗ik = 0 otherwise.
Table based on 1000 simulations.

and ρ = 0, this DGP is among those considered in Online Appendix Figure 1 (at |A1| = 300 in
the figure). It states that, under this DGP, it is sufficient if 11 outcomes are affected by F2, but not
by F1 for (2) to hold on average. In other words: on average, F1 ∈ F exact, and is thus identified,
whenever more than 11 outcomes are affected by F2, but not by F1.

Online Appendix Table 2 depicts the number of entries needed for condition (2) to hold in 95%
of all realizations. Again focusing on the case µ = (0, 0) and ρ = 0, it states that, if |Ac1 ∩ A2| ≥
28, F1 ∈ F exact in 95% of all simulations. We note that, while for some combinations of µ and
ρ, |Ac1 ∩ A2| is smaller, we need a fairly large number of outcomes affected by F2, but not by F1

in other regions of the parameter space. On the other hand, it still allows for significant overlap
between A1 and A2. Further, as we showed in Online Appendix Figure 1, the required size for
|Ac1 ∩ A2| will be smaller in cases where the “joint active set” A1 ∩ A2 is smaller than 300, which
is frequently the case in applications.

In conclusion, we impose condition (2) as a high-level assumption in Assumption 3. This
section outlined how one could alternatively treat the loadings as random, and use restrictions on
the distribution of λik to prove an upper bound on βk directly.
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Means µk Correlation ρ

µ1 µ2 -0.4 -0.2 0 0.2 0.4

0 0 25 27 28 26 25
0 1 26 27 27 26 24
1 1 58 51 45 37 32
1 -1 32 38 45 52 59
2 2 77 65 55 46 36
2 -2 35 46 56 65 75

Online Appendix Table 2: Smallest number of entries in Ac1 ∩A2 needed for condition (2) to hold in 95%
of all realizations for k = 1. |A1| = |A1 ∩ A2| = 300. Table varies the distribution of λ∗ik through the

parameters µ and ρ. In particular, λ∗i•
i.i.d.∼ N(µ,Σ) if i ∈ A1, λ∗i2

i.i.d.∼ N(µ2, 1) if i ∈ Ac1 ∩ A2, and
λ∗ik = 0 otherwise. Table based on 1000 simulations.
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B Alternative Criteria

In this section we illustrate the behavior of a number of alternative rotation criteria. We start with
our illustrative two-factor DGP from Section 3.1. For reference, we first repeat an illustration of
the `1-norm of a loading vector across all rotations of the Principal Component estimate Λ0 in
Online Appendix Figure 2a. Online Appendix Figure 2a is identical to the left half of Figure 4 in
the main text.

Recall from Equation 3 in the main text that the objective function for the Varimax criterion
can be expressed as

max
R:R′R=I

Q(Λ0R) = Q(Λ) =
r∑

k=1

 n∑
i=1

λ4
ik −

1

n

 n∑
i=1

λ2
ik

2
 (3)

and denote the argmin to (3) by R̈, and the corresponding loading matrix by Λ̈ = Λ0R̈. Noting that
Q(Λ) is additively separable in λ·k, k = 1, . . . , r (and ignoring the orthogonality constraint on R
for now), we obtain

n∑
i=1

λ4
ik −

1

n

 n∑
i=1

λ2
ik

2

(4)

as the contribution to the objective function Q(Λ) by an individual column λ•k. The restriction
R′•kR•k = 1, combined with the choice of an initial estimate Λ0 that is orthonormal, implies
that the second part of (4) is constant. Maximizing (3) is therefore equivalent to maximizing the
columnwise `4-norm, with the added restriction that the resulting loading vectors are orthonormal.

In the two-dimensional case (r = 2), the unit length restriction on λ•k means we can write
λ•k = sin(θk)λ

0
•1 + cos(θk)λ

0
•2 for some θk, making it easy to visualize rotations. We depict the

`4-norm across rotations θk for a single vector λ•k in Online Appendix Figure 2b below.
Further note that at any solution Λ̈ to (3), Λ̈′Λ̈

n
= I implies that

λ̈′•1λ̈•2 = 0

⇔
[
sin(θ1)λ0

•1 + cos(θ1)λ0
•2
]′ [
sin(θ2)λ0

•1 + cos(θ2)λ0
•2
]

= 0

⇔ sin(θ1)sin(θ2) + cos(θ1)cos(θ2) = 0

⇔ cos(θ1 − θ2) = 0

⇔ θ1 − θ2 =
π

2
+ gπ, g ∈ Z. (5)

Thus the Varimax criterion will maximize ‖λ•1‖4
4 + ‖λ•2‖4

4, where ‖λ•k‖4
4 = ‖sin(θk)λ

0
•1 +
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cos(θk)λ
0
•2‖4

4, subject to the constraint that (θ1 − θ2) fulfills the condition stated in (5) above.
We see in Online Appendix Figure 2b that, without the orthogonality restriction, the nonsingular
rotations with the largest `4-norm correspond to θ`41 and θ`42 , marked by the dashed black lines. The
restriction in (5) forces the difference between any solutions θ̈1 and θ̈2 (at the red dashed lines) to
be slightly larger than that found between θ`41 and θ`42 .

We further note that θ`41 and θ̃1 are close, but not identical. We would expect this to frequently
be the case, and gave an intuitive explanation for this in Section 3.

(a) ‖λ•k‖1 = ‖sin(θ)λ0•1 + cos(θ)λ0•2‖1 as a function of θ. Minimum achieved at θ̃.

(b) ‖λ•k‖44 = ‖sin(θ)λ0•1+cos(θ)λ0•2‖44 as a function of θ. Maximum achieved at θ`4 . Maximum under the constraint
in (5) achieved at θ̈.

Online Appendix Figure 2: Comparison of objective functions across different criteria. Figure depicts the
value of the respective objective function (`1- and `4-norm) across all rotations in the space spanned by the
initial estimate Λ0.

Finally, we also consider Promax (Hendrickson and White 1964). Promax is one of the most
commonly used oblique rotations in the literature, and a native implementation of it is included in
many statistical software including MATLAB. The Promax rotation consists of two steps. The first
step computes the Varimax rotation and raises all its entries to the fourth power to define a target
matrix. In the second step, the Promax estimate is then obtained by computing a least-square
fit from the Varimax solution to the previously defined target matrix. Due to the nature of this
criterion, there is no obvious equivalent to Online Appendix Figure 2 for the Promax criterion.

However, in order to visually assess the performance of the different rotation criteria, we next
depict the estimated loading matrix for all four of the above criteria in Online Appendix Figure
3. For reference, Panel 3a repeats the true loading matrix Λ∗. Panel 3b depicts Λ̃, the estimate
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(a) True loading matrix Λ∗.
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(b) The non-singular “rotated” matrix with smallest `1-norm ‖Λ‖1, Λ̃.
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(c) The “rotated” matrix Λ̈ that maximizes the Varimax criterion.
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(d) The non-singular “rotated” matrix with largest `4-norm ‖Λ‖4, Λ`4 .

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

(e) The “rotated” matrix ΛPROMAX that is the result of the Promax rotation.

Online Appendix Figure 3: Comparison of loading matrices across different rotation criteria. Each panel
depicts the loadings associated with all 207 outcomes, where the top diagram depicts λ′•1 and bottom panel
λ′•2. Panels 3b-3e differ in the criterion that determines θk in λ•k = sin(θk)λ

0
•1 + cos(θk)λ

0
•2.
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that minimizes the `1-norm of the loadings across rotations of Λ0, which corresponds to the lin-
ear combinations at θ̃ = [θ̃1, θ̃2] in Online Appendix Figure 2a. Panel 3c depicts Λ̈, the estimate
that maximizes the Varimax criterion across rotations of Λ0, which corresponds to the linear com-
binations at θ̈ = [θ̈1, θ̈2] in Online Appendix Figure 2b. Panel 3d depicts Λ`4 , the estimate that
maximizes the `4-norm of the loadings across rotations of Λ0, which corresponds to the linear
combinations at θ`4 = [θ`41 , θ

`4
2 ] in Online Appendix Figure 2b. Panel 3e depicts ΛPROMAX , the

estimate that maximizes the Promax criterion across rotations of Λ0.
The differences between the four estimates in Online Appendix Figure 3 are small and all four

appear to be good estimates of Λ∗. Since the DGP we considered so far is very stylized, and Online
Appendix Figure 3 is based on a single realization, we next turn to repeated simulations, and repeat
the exercise from Section 5.1 by using the same DGP underlying Figure 7 in the main text. Recall
that under this DGP, there are four factors. Of these four factors, one affects all outcomes, while the
remaining three are local. Online Appendix Figure 4 uses a boxplot to visualize the performance of
the different rotation criteria. It depicts the maximum cosine similarity as defined in Section 5 for
each factor across 100 realizations of the DGP. In line with the main text, we consider two versions
of this DGP. One in which λik = 0 for all i ∈ Ack (on the left), and one in which λik

i.i.d.∼ N(0, σ2),
σ2 = 1

n
for all i ∈ Ack (on the right).

Panels 4a and 4b are identical to Figure 7c-7d in the main text, and demonstrate that the three
local factors can be successfully recovered by our proposed criterion. The other three rotation
methods perform significantly worse. While the estimators based on both Varimax and Promax
still consistently achieve a similarity of above 0.9 for the local factors, the similarity with λ∗·2

in particular (the local factor affecting the most outcomes) is significantly lower than that of Λ̃.
Maximizing the `4-norm directly (Panels 4e-4f) performs even worse, in particular for λ∗·2.

Thus, we conclude that our proposed criterion based on the `1-norm outperforms all of the
considered quartic criteria in this simulation exercise.

9



1 2 3 4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)MCk(Λ̃) of rotated estimator (`1-norm) under ex-
act sparsity
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(b) MCk(Λ̃) of rotated estimator (`1-norm) under
approximate sparsity
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(c)MCk(Λ̈) of rotated estimator (Varimax) under ex-
act sparsity
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(d) MCk(Λ̈) of rotated estimator (Varimax) under
approximate sparsity
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(e) MCk(Λ`4) of rotated estimator (`4-norm) under
exact sparsity
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(f) MCk(Λ`4) of rotated estimator (`4-norm) under
approximate sparsity
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(g)MCk(ΛPROMAX) of rotated estimator (Promax)
under exact sparsity
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(h)MCk(ΛPROMAX) of rotated estimator (Promax)
under approximate sparsity

Online Appendix Figure 4: Maximum cosine similarity for all four factor loadings λ∗k, k=1, . . . , 4. The
first factor is global, while factors 2-4 are local. Boxplots based on 100 realizations.
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C Algorithmic Implementation

Recall the minimization problem we consider throughout to identify Λ∗ (or more precisely, an
individual column λ∗•k):

min
R•k
‖

r∑
l=1

λ0
•lRlk‖1 such that R′•kR•k = 1 ∀k. (6)

We next discuss how to implement our estimator in practice. Our implementation consists of the
following four steps.

1. We first compute the Principal Component estimator Λ0 as an initial estimate for Λ∗ that
fulfills Λ0′Λ0

n
= I .

2. Next, we find all local minima of (6). We achieve this by first drawing a random grid of
starting points R0j

•k, j = 1, . . . , J , where R0j
lk = xl

‖x‖ , x
i.i.d.∼ N(0, Ir).3 For each starting point

R0j
•k, we find the argmin of (6), denoted by R1j

•k.
4

At the end of this step, we have J candidate solutions R1j
•k.

3. In general, many of the J candidate solutions will be (close to) identical (because many start-
ing points will converge to the same local minimum). In this step, we consolidate identical
solutions into a single candidate, such that we are left with P unique rotation vectors Rp

•k.
We sort these unique rotation columns Rp

•k, p = 1, . . . , P in descending order according to
their occurrences.

At the end of this step, we have P candidate solutions Rp
•k.

4. Each candidates Rp
•k correspond to a local minimum of (6). In this last step, we combine

these solutions into the rotation matrix R̃.

WithRp
•k sorted according to their occurrences, we initialize R̈ = R1

•k and iteratively append
Rp
•k, p = 2, . . . , P whenever the resulting matrix does not become (close to) singular. Denote

the resulting r × r̈ matrix by R̈ = [R̈•1, . . . , R̈•r̈].

Finally, we distinguish two cases:

3The number of random starting points J increases with the number of factors r. In particular, for r = (2, 3, 4, 5, 6),
we find that grid sizes J = (150, 300, 1000, 2000, 3000, 5000) work well in practice. The constrained minimization
in (6) becomes numerically more difficult as r increases. We find that the performance of the MATLAB solver starts
to deteriorate for r > 6 and leave a refinement of the optimization routine for future research.

4We use fmincon, a native optimization routine included in MATLAB. We also implemented our algorithm using
fminsearch and fminunc, and found both to be significantly slower than fmincon.

11



• r̈ ≥ r: We have more candidate solutions than the number of factors. In this case, we
simply keep the most frequently found r rotation columns in R̈, and R̃ = R̈•,1:r. The
result, Λ̃ = Λ0R̃, is our proposed estimate for the loading matrix Λ∗.

• r̈ < r: There are fewer candidate solutions than the number of factors. In this case,
we iteratively append vectors ed to R̈, where ed denotes an r × 1 vector with dth entry
edd = 1, and zeros everywhere else. Note that this is equivalent to adding (r − r̈)

columns of Λ0 to Λ̈ = Λ0R̈ directly.5 The result, Λ̃, is our proposed estimate for the
loading matrix Λ∗.

5We choose the entry d to pick out the loading vector λ0•d that maximizes the minimum singular value of the
combined matrix [Λ̈, λ0•d]. Intuitively, this is the column in Λ0 that is furthest away from any linear combination of the
columns in Λ̈.

12



D Additional Figures for Macroeconomic Application
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Online Appendix Figure 5: Illustration of PCA loadings λ0
•k for k = 1, . . . , 8. Bars correspond to the

loadings associated with the individual macroeconomic indicators from Section 6.2.
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(a) Sixth most sparse rotation
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(c) Eighth most sparse rotation

Online Appendix Figure 6: Illustration of additional rotated loadings λ̃•k for k = 6, 7, 8. Bars correspond
to the loadings associated with the individual macroeconomic indicators from Section 6.2.
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E Data Appendix

E.1 Financial Data

The following procedure was used to obtain the dataset:

1. To obtain the stock symbols, the Wikipedia page for the respective stock index was scraped
on April 23, 2015.

2. The corresponding stock prices were extracted from Yahoo! Finance and converted to daily
returns.

3. The data ranges from 01/01/2011 until 03/20/2015. To avoid missing values, we dropped
all stocks that were not publicly listed during the entire timespan. We only kept the primary
listing for stocks listed on multiple stock exchanges, and only those days were kept that were
active trading days on all five stock exchanges.

After consolidating the data to correct for missing values, 272 stocks remained in the dataset span-
ning 687 observations. The complete list of stocks included is provided in Online Appendix Table
3 below. Online Appendix Table 3 also links each stock symbol to its corresponding company and
the respective primary industry.

Traded in Ticker Company Prime Standard industry group

Frankfurt ADS Adidas Clothing
Frankfurt ALV Allianz Insurance
Frankfurt BAS BASF Chemicals
Frankfurt BAYN Bayer Pharmaceuticals and Chemicals
Frankfurt BEI Beiersdorf Consumer goods
Frankfurt BMW BMW Manufacturing
Frankfurt CBK Commerzbank Banking
Frankfurt CON Continental Manufacturing
Frankfurt DAI Daimler Manufacturing
Frankfurt DBK Deutsche Bank Banking
Frankfurt DB1 Deutsche Börse Securities
Frankfurt LHA Deutsche Lufthansa Transport Aviation
Frankfurt DPW Deutsche Post Communications
Frankfurt DTE Deutsche Telekom Communications
Frankfurt EOAN E.ON Energy
Frankfurt FRE Fresenius Medical
Frankfurt FME Fresenius Medical Care Medical
Frankfurt HEI HeidelbergCement Building
Frankfurt HEN3 Henkel Consumer goods
Frankfurt IFX Infineon Technologies Manufacturing
Frankfurt SDF K+S Chemicals
Frankfurt LXS Lanxess Chemicals
Frankfurt LIN Linde Industrial gases
Frankfurt MRK Merck Pharmaceuticals
Frankfurt MUV2 Munich Re Insurance
Frankfurt RWE RWE Energy
Frankfurt SAP SAP IT
Frankfurt SIE Siemens Industrial, electronics
Frankfurt TKA ThyssenKrupp Industrial, manufacturing
Frankfurt VOW3 Volkswagen Group Manufacturing
London AAL Anglo American plc Mining
London ABF Associated British Foods Food
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Traded in Ticker Company Prime Standard industry group

London ADM Admiral Group Insurance
London ADN Aberdeen Asset Management Fund management
London AGK Aggreko Generator hire
London ANTO Antofagasta Mining
London ARM ARM Holdings Engineering
London AV Aviva Insurance
London AZN AstraZeneca Pharmaceuticals
London BA BAE Systems Military
London BAB Babcock International Consulting
London BARC Barclays Banking
London BG BG Group Oil and gas
London BLND British Land Co Property
London BLT BHP Billiton Mining
London BNZL Bunzl Industrial products
London BP BP Oil and gas
London BRBY Burberry Group Fashion
London BT-A BT Group Telecomms
London CNA Centrica Energy
London CPG Compass Group Food
London CPI Capita Support Services
London CRDA Croda International Chemicals
London CRH CRH plc Building materials
London DGE Diageo Beverages
London EXPN Experian Information
London FLG Friends Life Group Investment
London FRES Fresnillo plc Mining
London GFS G4S Security
London GKN GKN Manufacturing
London GSK GlaxoSmithKline Pharmaceuticals
London HL Hargreaves Lansdown Finance
London HMSO Hammerson Property
London HSBA HSBC Banking
London IAG International Consolidated Airlines Transport air
London IHG InterContinental Hotels Group Hotels
London IMI IMI plc Engineering
London IMT Imperial Tobacco Group Tobacco
London ITRK Intertek Group Product testing
London ITV ITV plc Media
London JMAT Johnson Matthey Chemicals
London KGF Kingfisher plc Retail homeware
London LAND Land Securities Group Property
London LGEN Legal & General Insurance
London LLOY Lloyds Banking Group Banking
London MGGT Meggitt Engineering
London MKS Marks & Spencer Group Retailer
London MRO Melrose plc Engineering
London MRW Morrison Supermarkets Supermarket
London NG National Grid plc Energy
London NXT Next plc Retail clothing
London OML Old Mutual Insurance
London PFC Petrofac Oil and gas
London PRU Prudential plc Finance
London RB Reckitt Benckiser Consumer goods
London RBS Royal Bank of Scotland Group Banking
London RDSA Royal Dutch Shell Oil and gas
London REL Reed Elsevier Publishing
London REX Rexam Packaging
London RIO Rio Tinto Group Mining
London RR Rolls-Royce Group Manufacturing
London RRS Randgold Resources Mining
London RSA RSA Insurance Group Insurance
London SAB SABMiller Beverages
London SBRY J Sainsbury plc Supermarket
London SDR Schroders Fund management
London SGE Sage Group IT
London SL Standard Life Fund management
London SMIN Smiths Group Engineering
London SRP Serco Outsourced services
London SSE SSE plc Energy
London STAN Standard Chartered Banking
London SVT Severn Trent Water
London TATE Tate & Lyle Food
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Traded in Ticker Company Prime Standard industry group

London TLW Tullow Oil Oil and gas
London TSCO Tesco Supermarket
London ULVR Unilever Consumer goods
London UU United Utilities Water
London VED Vedanta Resources Mining
London VOD Vodafone Group Telecomms
London WEIR Weir Group Engineering
London WG Wood Group Oil and gas
London WOS Wolseley plc Building materials
London WPP WPP plc Media
London WTB Whitbread Retail hospitality
New York AAPL Apple Inc. Consumer electronics
New York ABT Abbott Laboratories Pharmaceuticals
New York ACN Accenture plc Professional services
New York AIG American International Group Inc. Insurance
New York ALL Allstate Corp. Insurance
New York AMGN Amgen Inc. Biotechnology
New York AMZN Amazon.com Internet
New York APA Apache Corp. Oil and Gas
New York APC Anadarko Petroleum Corporation Oil and Gas
New York AXP American Express Inc. Consumer finance
New York BA Boeing Co. Aerospace and defense
New York BAC Bank of America Corp Banking
New York BAX Baxter International Inc medical supplies
New York BIIB Biogen Idec Biotechnology
New York BK Bank of New York Banking
New York BMY Bristol-Myers Squibb Pharmaceuticals
New York BRK.B Berkshire Hathaway Conglomerate
New York C Citigroup Inc Banking
New York CAT Caterpillar Inc Construction and Mining Equipment
New York CL Colgate-Palmolive Co. Personal Care
New York CMCSA Comcast Corporation Telecommunications
New York COF Capital One Financial Corp. Financial Services
New York COP ConocoPhillips Oil and Gas
New York COST Costco Retail
New York CSCO Cisco Systems Networking equipment
New York CVS CVS Caremark Health Care
New York CVX Chevron Oil and gas
New York DD DuPont Chemical industry
New York DIS The Walt Disney Company Broadcasting and Entertainment
New York DOW Dow Chemical Chemicals
New York DVN Devon Energy Energy
New York EBAY eBay Inc. Internet
New York EMC EMC Corporation Computer storage
New York EMR Emerson Electric Co. Electrical equipment
New York EXC Exelon Energy
New York F Ford Motor Manufacturing
New York FCX Freeport-McMoran Mining
New York FDX FedEx Courier
New York FOXA Twenty-First Century Fox, Inc Media
New York GD General Dynamics Aerospace and Defense
New York GE General Electric Co. Conglomerate
New York GILD Gilead Sciences Biotechnology
New York GM General Motors Manufacturing
New York GS Goldman Sachs Banking
New York HAL Halliburton Oilfield services
New York HD Home Depot Retail
New York HON Honeywell Conglomerate
New York HPQ Hewlett Packard Co Computer and IT
New York IBM International Business Machines Computers and Technology
New York INTC Intel Corporation Semiconductors
New York JNJ Johnson & Johnson Inc Pharmaceuticals
New York JPM JP Morgan Chase & Co Banking
New York KO The Coca-Cola Company Beverages
New York LLY Eli Lilly and Company Pharmaceuticals
New York LMT Lockheed-Martin Aerospace and Defense
New York LOW Lowe’s Retail
New York MA Masterclass Inc Banking
New York MCD McDonald’s Corp Fast Food
New York MDLZ Mondelēz International Food processing
New York MDT Medtronic Inc. Medical equipment
New York MET Metlife Inc. Financial Services
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Traded in Ticker Company Prime Standard industry group

New York MMM 3M Company Conglomerate
New York MO Altria Group Tobacco
New York MON Monsanto Agribusiness
New York MRK Merck & Co. Pharmaceuticals
New York MS Morgan Stanley Banking
New York MSFT Microsoft Software
New York NKE Nike Apparel
New York NOV National Oilwell Varco Oilfield services
New York NSC Norfolk Southern Corp Transportation (Railway)
New York ORCL Oracle Corporation Software
New York OXY Occidental Petroleum Corp. Oil and Gas
New York PEP Pepsico Inc. Beverages
New York PFE Pfizer Inc Pharmaceuticals
New York PG Procter & Gamble Co Consumer goods
New York PM Phillip Morris International Tobacco
New York QCOM Qualcomm Inc. Semiconductors, Telecommunications
New York RTN Raytheon Co (NEW) Aerospace and Defense
New York SBUX Starbucks Corporation Coffee shop
New York SLB Schlumberger Oilfield services
New York SO Southern Company Energy and Telecommunications
New York SPG Simon Property Group, Inc. Real estate
New York T AT&T Inc Telecommunications
New York TGT Target Corp. Retail
New York TWX Time Warner Inc. Media
New York TXN Texas Instruments Semiconductors
New York UNH UnitedHealth Group Inc. Health Care
New York UNP Union Pacific Corp. Transportation (Railway)
New York UPS United Parcel Service Inc Courier
New York USB US Bancorp Banking
New York UTX United Technologies Corp Conglomerate
New York V Visa Inc. Banking
New York VZ Verizon Communications Inc Telecommunications
New York WBA Walgreens Boots Alliance Pharmaceuticals, Retail
New York WFC Wells Fargo Banking
New York WMT Wal-Mart Retail
New York XOM Exxon Mobil Corp Oil and Gas
Paris AC Accor hotels
Paris ACA Crédit Agricole banks
Paris AF Air France Airline
Paris AI Air Liquide commodity chemicals
Paris AIR Airbus Group aerospace
Paris AKE Arkema chemicals chemicals
Paris ALO Alstom industrial machinery
Paris ALU Alcatel-Lucent telecommunications
Paris BN Groupe Danone food products
Paris BNP BNP Paribas banks
Paris CA Carrefour food retailers and wholesalers
Paris CAP Capgemini computer services
Paris CS AXA full line insurance
Paris DG Vinci heavy construction
Paris EDF EDF electricity
Paris EI Essilor medical supplies
Paris EN Bouygues heavy construction
Paris FP Total integrated oil and gas
Paris GLE Société Générale banks
Paris GSZ GDF Suez gas distribution
Paris KER Kering retail business
Paris LG Lafarge building materials and fixtures
Paris LR Legrand electrical components and equipment
Paris MC LVMH clothing and accessories
Paris ML Michelin tires
Paris OR L’Oréal personal products
Paris ORA Orange telecommunications
Paris PUB Publicis media agencies
Paris RI Pernod Ricard distillers and vintners
Paris RNO Renault automobiles
Paris SAF Safran aerospace and defence
Paris SGO Saint-Gobain building materials and fixtures
Paris STM STMicroelectronics semiconductors
Paris SU Schneider Electric electrical components and equipment
Paris TEC Technip oil equipment and services
Paris VIE Veolia Environnement water
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Traded in Ticker Company Prime Standard industry group

Paris VIV Vivendi broadcasting and entertainment
Paris VK Vallourec industrial machinery
Tel Aviv BEZQ Bezeq The Israel Telecommunication Corp, Ltd. Telecommunication
Tel Aviv CEL Cellcom (Israel) Telecommunication
Tel Aviv CLIS Clal Insurance Enterprises Holdings Ltd. Insurance
Tel Aviv DLEKG Delek Group Oil and Gas
Tel Aviv DSCT Israel Discount Bank Ltd Banks
Tel Aviv ESLT Elbit Systems Aerospace and Defence
Tel Aviv FRUT Frutarom Industries, Ltd. Chemicals
Tel Aviv GZT Gazit-Globe Ltd. Real Estate
Tel Aviv HARL Harel Insurance Inv. & Fin. Services Ltd Insurance
Tel Aviv ICL Israel Chemicals Ltd. Chemicals
Tel Aviv LUMI Bank Leumi Ltd. Banks
Tel Aviv MGDL Migdal Insurance and Financial Holdings Ltd. Insurance
Tel Aviv MZTF Bank Mizrahi-Tfahot Ltd Banks
Tel Aviv NICE NICE Systems Ltd. Technology
Tel Aviv ORL BAZAN - Oil Refineries Ltd Oil & Gas Producers
Tel Aviv ORMT Ormat Industries Alternative Energy
Tel Aviv OSEM Osem Food Producers
Tel Aviv POLI Bank Hapoalim Ltd. Banks
Tel Aviv PRGO Perrigo Company Pharmaceuticals
Tel Aviv PTNR Partner Communications Company Ltd. Telecommunication
Tel Aviv PZOL Paz Oil Company Ltd. Oil & Gas Services
Tel Aviv TEVA Teva Pharmaceutical Industries Ltd. Pharmaceuticals

Online Appendix Table 3: Complete list of all stocks included in the analysis of Section 6.1.
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