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This study examines key default determinants of fintech loans, using loan-level data from the LendingClub
consumer platform during 2007-2018. We identify a robust set of contractual loan characteristics, borrower
characteristics, and macroeconomic variables that are important in determining default. We find an
important role of alternative data in determining loan default, even after controlling for the obvious risk
characteristics and the local economic factors. The results are robust to different empirical approaches. We
also find that homeownership and occupation are important factors in determining default. Lenders,
however, are required to demonstrate that these factors do not result in any unfair credit decisions. In
addition, we find that personal loans used for medical financing or small business financing are more risky
than other personal loans, holding the same characteristics of the borrowers. Government support through
various public-private programs could potentially make funding more accessible to those in need of medical
services and small businesses without imposing excessive risk to small peer-to-peer (P2P) investors.

Keywords: big data, crowdfunding, financial innovation, household finance, lasso selection methods, machine
learning, peer-to-peer lending, P2P/marketplace lending

JEL Codes: D10, D14, G20, G21, G 29

1 Department of Data Science, Economics and Finance at EDHEC Business School, 24 Avenue Gustave Delory, CS 50411,
59057 Roubaix Cedex, France, phone: +33 (0)3 20 15 45 00; email: christophe.croux@edhec.edu.

2 Federal Reserve Bank of Philadelphia, USA; phone: +1 (215) 574-7284; email: julapa.jagtiani@phil.frb.org.

3 Data engineering at Amazon.com, 33 Rives de Clausen 31, 2165 Luxembourg; phone: +352 26 73 33 00; email:
ttark@amazon.com.

4 Department of Data Science, Economics and Finance at EDHEC Business School, 24 Avenue Gustave Delory, CS 50411,
59057 Roubaix Cedex 1, France; phone: +33 (0)3 20 15 45 00; email: milos.vulanovic@edhec.edu.

*Corresponding author

The authors thank Ken Benton, Mitchell Berlin, Harshali Damle, Bill Francis, Frank Fagan, Bob Hunt, Edward Lawrence,
Prabesh Luitel, Snejina Panayotova, Robinson Reyes, Abdus Samad, Zvi Wiener, participants at the Financial Engineering
and Business Society Conference at University of Economics in Prague, and participants at the Multinational Financial
Society Conference at the Hebrew University for their helpful comments. Thanks also to Adam Lyko, Erik Dolson, and
Blerta Hima for their research assistance.

Disclaimer: This Philadelphia Fed working paper represents preliminary research that is being circulated for discussion
purposes. The views expressed in these papers are solely those of the authors and do not necessarily reflect the views of
the Federal Reserve Bank of Philadelphia or the Federal Reserve System. Any errors or omissions are the responsibility of
the authors. No statements here should be treated as legal advice. Philadelphia Fed working papers are free to download
at https://philadelphiafed.org/research-and-data/publications/working-papers.

1


mailto:christophe.croux@edhec.edu
mailto:julapa.jagtiani@phil.frb.org
mailto:ttark@amazon.com
mailto:milos.vulanovic@edhec.edu

1. Introduction

The market for consumer loans in peer-to-peer (P2P) or marketplace lending (MPL)
settings, which started soon after the recent financial crisis, has become an important innovation
that changed the entire financial landscape. Fintech lenders match lenders and borrowers,
attempting to eliminate the redundant financial intermediaries.5> Buchak et al. (2018) state that
fintech lenders filled the mortgage credit gap created by the contraction of mortgage activities from
traditional banks following the recent financial crisis and the Dodd-Frank Wall Street Reform and
Consumer Protection Act. Tang (2019), observing regulatory change as an exogenous shock to bank
credit supply, documents that P2P lending is a substitute for bank lending in terms of serving
inframarginal customers. Added to their positioning as an efficient financial intermediary, fintech
lenders use nontraditional data (alternative data) along with sophisticated modeling using artificial
intelligence (AI) or machine learning (ML) algorithms to identify low-risk borrowers (often from
the pool of borrowers with low credit scores) and to price credit more accurately, which represent
a major divergence from the traditional banking; see Vallée and Zeng (2019).6

While most fintech lenders started as P2P lenders, they have recently supplemented
funding through securitization, where fintech asset-backed securities (ABS) investors would invest
in a fraction of the loan pool, rather than investing in a specific loan.” There have been concerns
around the funding side of fintech loans — whether loans are made to borrowers who may be
overleveraged and, consequently, natural candidates for bankruptcy — see Wang and Overby
(2018). This would potentially impose excessive risk to fintech ABS investors. In addition, there
have also been concerns related to whether this undue risk-taking from the entrants in financial
intermediation warrants further inspection by regulators; see Philippon (2016) and Braggion,
Manconi, and Zhu (2018). The institutional settings of P2P loan markets lead to a situation in which
individual suppliers of capital bear all the risk. The risk increases when the platforms determine the
funding interest rates themselves, ignoring auctions or other alternative standard supply-and-
demand mechanisms; see Wei and Lin (2016). Therefore, to ensure the continuation of marketplace

lending, the question of returns to investors in this market and the level of defaults are crucial ones.

5Funk et al. (2011) provide a review of the literature on P2P lending from its start, from 2005 until 2011, and
concludes that P2P lending is becoming an essential source of funding for individuals and small businesses.

6 Buchak et al. (2018) report that fintech lenders use a different set of information to determine interest rates
compared with other lenders.

7 According to Klafft (2008), P2P platforms have been defined as online intermediaries in which applicants
place requests to obtain loans and suppliers of funds make bids to fund these loans. He dates their emergence
to the year 2005. Klafft (2008) seems to have one of the earliest studies on the topic, although we were able
to find only an abstract of the proceedings paper.



In this paper, we explore important factors that determine fintech loan performance, and we focus
on the risk-return tradeoff on fintech lending and investments.

Research has shown that the credit decision process used by fintech lenders has been
evolving rapidly over the years. A few studies that examine fintech loan defaults use data in the
earliest years of the market analyzing the performance of less than 10 percent of resolved loans.
Thus, their findings warrant further examination. Jagtiani and Lemieux (2019) find that the models’
usage by LendingClub consumer platforms, for example, changed dramatically from 2007 to 2015.
Specifically, they find that the correlation between the ratings assigned by LendingClub, and FICO
scores decline from about 80 percent for loans that were issued in 2007, to only about 35 percent
for loans issued in 2015. They also find that, over the years, an increasing number of consumers
with low FICO scores have been able to access credit at a lower cost through the fintech lending
platform. Other research studies find consistent results regarding the impact of fintech lending on
consumer credit access. Danisewicz and Elard (2018) examine how financial technology affects
personal bankruptcy. They document that the suppression of access to a new financial technology
used by marketplace lending platforms leads to a higher incidence of personal bankruptcy filings.
They conclude that fintech lending platforms have improved the screening process and the
efficiency of financial intermediaries. Fintech lenders have increasingly used more and more big
data and nontraditional data, in conjunction with more complex algorithms using Al/ML techniques
to obtain a more complete picture of borrowers’ financial lives.

Given rapid changes in fintech lending and the entire financial landscape in recent years, we
include more recent loans originated in the 2015-2018 period by LendingClub consumer platforms
in this study. Our samples include 1,345,549 individual personal loans that were issued during the
period 2008-2018 on the LendingClub consumer platform. We contribute to the existing literature
in two important ways. First, we include a more comprehensive set of risk factors than what has
already been included in previous studies. Because of the change in the reporting of individual
financial positions, LendingClub has provided much more detailed statistics, which enables us to
observe a more comprehensive set of independent variables or default determinants than what
previous studies were able to account for. Second, we have conducted a more robust analysis that
includes a type of ML process (i.e., the least absolute shrinkage and selection operator (lasso)
method of supervised learning). This method allows us to identify the important variables in a large
set of potential determinants of loan defaults. The lasso selection method has been found to have
excellent properties; see Tibshirani (1996); Meier, Van De Geer, and Biihlmann (2008); Belloni et al.
(2012); Belloni and Chernozhukov (2013); Belloni, Chernozhukov, and Wei (2014); Chernozhukov,



Hansen, and Spindler (2015); and Belloni et al. (2016). The method shrinks regression coefficients
by penalizing their magnitude and provides a narrow set of important variables, making the results
easier to interpret and resolving the problem of multicollinearity; see Meinshausen and Yu (2009).
The lasso techniques have also been widely used in the financial economics literature for the
prediction of expected returns; see Freyberger, Neuhierl, and Weber (2017); Chinco, Clark-Joseph,
and Ye (2019); Kozak, Nagel, and Santosh (2019). The lasso techniques also seem to be the best for
both the variable selection and the prediction of the corporate bankruptcy likelihood; see Tian, Yu,
and Guo (2015).

We report that relevant contractual loan characteristics, borrower risk characteristics
(submitted when applying to the LendingClub platform), and some relevant macroeconomic
variables are essential in determining the probability of default of individual loans. Specifically, loan
applicants who apply for a longer-term loan (60 months rather than 36 months) exhibit a higher
likelihood of default. Similarly, loan applicants who have lower assigned credit score by
LendingClub, those who are renters (not homeowners) at the moment of loan application, those
who are classified as elementary or machine operators and assemblers in the standard occupation
classification, and those who use the loan proceeds to finance medical expenses or small business,
exhibit a higher likelihood of default. In contrast, those loan applicants who apply for loans to
finance their wedding expenditures, home improvements, and car purchases, and who are classified
as managers or professionals exhibit a lower probability of default. Interestingly, although fintech
lenders tend to reach out to consumers with low credit scores (below prime consumers), the
average default rate (unweighted) based on the LendingClub personal loan platform is found to be
only 20 percent for the period 2007-2018 (including periods following the financial crisis); thus, on
average, 80 percent of the borrowers did not default.

We note that, while homeownership and occupation are important in determining default
risk (controlling for the risk characteristics of the borrowers), lenders cannot freely include these
factors in their credit risk and pricing model. For example, lenders may include the homeownership
factor in evaluating borrowers’ ability to pay, but they would be required to demonstrate that using
such a variable does not disadvantage individuals who are members of groups (e.g., because of their
race, gender, or age) that are protected under the federal fair lending laws - i.e., the Equal Credit

Opportunity Act (ECOA) and the Fair Housing Act (FHA).8

8 Homeownership may be correlated with other characteristics which are prohibited bases under the federal fair
lending laws.



In addition, our findings suggest that personal loans used for medical financing or small
business financing are more risky than other personal loans, holding the same risk characteristics
of the borrowers and economic conditions. Borrowers in need of funding for medical services and
small business owners who use personal loans to fund their businesses are more likely to default
than other borrowers. This implies that these loans should be segmented out for appropriate risk
pricing to be fair to small P2P investors. On the other hand, it may be unfair to leave these
borrowers with little access to affordable funding, since illness may not be in their control and since
small businesses are so important to local economic growth. The solution to medical financing is
beyond the scope of this paper. For small business owners, a similar program currently available to
(more established) small businesses through current Small Business Administration (SBA)
programs could potentially be extended to cover newer and smaller small businesses, which do not
have sufficient business financial history.® These small businesses owners have turned to personal
loans as their funding sources (as reflected in our personal loan data we collected from the
LendingClub consumer platform) to offer nontraditional data about themselves for lenders to
evaluate their true creditworthiness.10

The rest of the paper is organized as follows. Section 2 presents the literature review.
Section 3 discusses the data sources, the data collection process, and a full description of the sample
and subsamples. Section 4 presents the empirical approaches and our findings. Section 5 discusses

the conclusions and policy implications.

2. The Literature Review

The majority of the fintech lending literature has focused on the impact on consumers in
terms of their credit access, fair lending, consumer privacy, etc. Berger and Gleisner (2009) analyze
the role of intermediaries in developing the P2P market using about 14,000 observations from the
lending platform Prosper. They find that borrowers using these platforms have easier access to
financing compared with the standard banking intermediaries. Duarte, Siegel, and Young (2012)
use photographs of the borrowers from the Prosper lending platform, and by constructing an
algorithm of perceived trustworthiness, they show that the best-perceived borrowers receive the

lowest interest rates. Wei and Lin (2016) examine matching mechanisms of supply and demand in

9 The Small Business Administration (SBA) currently provides support on small business loans, but this is not
relevant for the personal loan data that we use in this paper.

10 For people requiring medical services, the potential solution may not be strictly the financing. Medical debt
has been one of the causes for millions of Americans to file for bankruptcy. Consumer credit scores are also
likely to be downgraded when their medical debt gets transferred to collection agencies.
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the P2P market; they study whether the obtained equilibrium interest rates are optimal ones and
whether the choice of the matching mechanism determines the rates of default. They report that the
likelihood of loan approval increases and the obtained interest rates are higher when fintech
lenders impose a matching mechanism.

Wang and Overby (2018) exploit the timing variation in the approval by the states for
LendingClub to operate within the borders and report that regulatory approval is causing higher
bankruptcy filing rates in given states. Buchak et al. (2018) examine how the technological
advantage of P2P platforms and the regulatory environment impacts the growth of marketplace
lending. They report that P2P lenders were more active in refinancing and able to serve more
creditworthy customers than traditional banks. Jagtiani and Lemieux (2018), using data from the
LendingClub consumer platform, find that fintech lending has penetrated areas that are likely to be
underserved by traditional lenders, such as those that have fewer bank branches per capita and in
markets with highly concentrated credit card lending. They also find that the portion of
LendingClub loans increases in areas where the local economy is not performing well.

Balyuk (2018), using data from the Prosper lending platform, finds that borrowing on the
P2P platform eases further access to traditional banking sector products. Hertzberg et al. (2018),
using LendingClub data, suggest that borrowers’ choice of maturity could serve as the screening
mechanism of private information. Vallee and Zeng (2019) model the behavior of the P2P platform
and suggest that prescreening of borrowers’ financial positions leads to the higher quality of loans
offered to investors. Havrylchyk et al. (2019) examine the determinants of consumer demand for
fintech loans, using data from the Prosper and the LendingClub consumer platforms. They attribute
arise in P2P lending to the deleveraging of the banks and find that marketplace lending is a
substitute for traditional banking. Balyuk and Davydenko (2019) document that marketplace
lending has outgrown financial intermediation function, and it is further positioning itself as a
gatekeeper in the market for personal financial information.

Fintech P2P lending, which started in the personal lending space, has recently expanded
into small business lending (SBL), auto refinancing, and mortgage lending. Jagtiani, Lambie-Hanson,
and Lambie-Hanson (2019) examine all mortgage loan applications and originations using Home
Mortgage Disclosure Act (HMDA) data and compare mortgage loans across different types of
lenders. They find evidence that fintech lenders have higher market shares in areas where
consumers have lower credit scores on average. More interesting, they find an increasing share of

mortgage loans that are originated by fintech lenders in areas where there was a higher frequency



of mortgage denial by traditional lenders in the previous period. Borrowers may have turned to
fintech lenders as they had trouble getting credit through the traditional channel.

There have also been studies that explore the roles of nontraditional data used by fintech
lenders and the impact on the pricing of credit. Jagtiani and Lemieux (2019) use LendingClub loans
specified by the applicants that the proceeds would be used to pay off credit card balances. They
compare these LendingClub loans with (loan-level) data from FR Y-14M, which contain traditional
credit card loans issued by large CCAR banks. Their results indicate that alternative data and
complex modeling have been increasingly used by fintech lenders to more accurately evaluate and
price credit risk. Moreover, Jagtiani and Lemieux (2019) find that, after controlling for the
borrowers’ risk characteristics, borrowers pay significantly less on their fintech loans than what
they would have had to pay on their credit card borrowing. For more background on the use of big
data, alternative data, and ML by fintech lenders to make faster and better credit decisions, see
Jagtiani, Vermilyea, and Wall (2018) and Goldstein, Jagtiani, and Klein (2019).11

A few existing studies examine fintech loan performance and default risk. Carmichael
(2014) applies a discrete hazard time model to analyze a sample of LendingClub loans issues in the
period 2007-2013. He reports that default is determined by the borrower’s FICO score, recent
credit inquiries, annual income, and loan purposes. Serrano-Cinca, Gutiérrez-Nieto, and Lopez-
Palacios (2015), using a sample of 24,449 individual loans obtained from the LendingClub platform
during the period 2008-2014, test for default determinants. They report that loan purpose, the
applicant’s annual income, the current housing situation, and the level of indebtedness are
significant in determining loan default. Emekter et al. (2015) study the loan performance of 61,451
LendingClub loans and report that borrowers with high FICO scores and those with a low debt-to-
income (DTI) ratio are less likely to default. In addition, Purovi¢ (2017) reports that LendingClub
loans with a longer maturity are riskier, while the lowest level of risk is for loan applicants who
specify that they would use the loans to pay off credit card balances or for debt consolidation. In
this paper, we use a significantly higher dimensional data set in modeling loan performance, and we
conduct a more robust analysis using ML techniques. Our results provide deeper insights into
fintech loan performance and assess the potential impact on lenders and investors participating in

this innovative market.

111n addition, Hughes, Jagtiani, and Moon (2019) find that LendingClub became as efficient in lending as the
largest U.S. banks (CCAR banks), although LendingClub belongs to a smaller size group as of 2016.



3. The Data and Descriptive Statistics

3.1

The Data Sources

We use data from several sources and merge them appropriately. In summary, all the

information about loan characteristics and the borrowers’ characteristics come from the

LendingClub website. We then match local economic factors that are specific to the borrowers’ local

community to each loan observation. The most granular level we could match is to the 3-digit zip

code because the borrowers’ address is reported in a 3-digit zip.12

Fintech Loan-Level Data from LendingClub

Fintech loan-level data are collected from the LendingClub consumer platform, a total of
1,345,549 personal unsecured installment loan observations, with two different maturities
(3 years or 5 years).

LendingClub posts its data on the public website, providing plenty of information about
individual loans originated through its consumer platform since its establishment in 2007,
with monthly payment updates for each loan. The variables include information on
contractual loan characteristics, applicant characteristics, institutional investor
characteristics, and other relevant statistics. More details on how these data are used in the
analysis are provided in the Appendix.

Our sample includes all loans originated by the LendingClub consumer platform from 2007
to 2018. The volume was quite trivial in the beginning. Most of the observations are loans
originated after the year 2012. We include in the statistics only loans with clear ending
resolutions. Consequently, to be included in our analysis, the loan has to be either repaid
fully or charged off.

To avoid potential misreporting of extreme values, we carefully check these variables and

trim extreme values when appropriate.

Local Economic Variables from Various Data Sources

Aside from data provided by LendingClub, we use statistics provided by the Federal Reserve
Bank of St. Louis’s FRED Economic Data for information on prevailing daily Treasury bill
rates.

The International Standard Classification of Occupations (ISCO-08) is used to classify
applicants, based on their employment area. Based on that standard, we classify every

applicant into one of the 10 base occupation categories.

12 There are 929 3-digit zips in the United States compared with more than 6,000 5-digit zips.
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e The Internal Revenue Services (IRS) is our data source for variables on the taxable income
per county/zip code area of an applicant for available years. As the borrower’s address
(location) is reported by LendingClub in a 3-digit zip code, we calculate the average taxable
income specific to each 3-digit zip.

e The Chicago Board Options Exchange (CBOE) and its Global Markets section provide the
daily value of the volatility index (VIX).

e The Bureau of Economic Analysis (BEA) provides current GDP and real GDP variables at the
county level. We are able to translate the county-specific GDP into the 3-digit zip level GDP.
There are 3,142 counties for the 929 3-digit zips in the U.S.

General Economic Conditions and Market Sentiments

e The Policy Uncertainty website provides a few indices developed first by Baker, Bloom, and
Davis (2016) that in various ways show uncertainty levels and macroeconomic
environment.

o Finally, the daily level of the returns of the Russell 2000 Index is downloaded from the
Policy Uncertainty website. We use this variable to proxy for the overall market

performance.13

3.2 The Sample Summary Statistics

Table 1 reports the temporal distribution of the sample, primary applicant characteristics,
and loan terms. The crucial variable for the study; namely, the default rate of individual loans,
stands at 20 percent of approved loans on average of the overall 1,345,549 loans, 268,043 loans
defaulted over the period 2007-2018. Jagtiani, Lambie-Hanson, and Lambie-Hanson (2019) show
that fintech lenders tend to reach out to those consumers with lower credit scores and lower
income (those who are likely to be underserved). On a similar note, Bhanot (2017) observes the
behavior of 4,883 first-time online borrowers and concludes that consumers who failed to repay
the loan do that primarily because of financial distress. Therefore, one must be careful to not
compare fintech loan default rates with a traditional personal loan originated by commercial banks
without appropriately controlling for the risk characteristics of the borrowers.

Figures 1 to 4 show more granular characteristics of the charged-off loans from our loan

sample from the LendingClub consumer platform over the period 2007-2018 by loan purposes

13 Korteweg (2019) surveys studies of returns in private equity investment and acknowledges wide usage of
the Russell 2000 Index as a comparison benchmark (https://www.ftserussell.com/products/indices/russell-

us).
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(Figure 1), by the borrower’s homeownership or housing situation (Figure 2), by the borrower’s
rating grades assigned by LendingClub (Figure 3), and by loan rates charged by LendingClub
(Figure 4). The figures show that LendingClub’s rating grades and loan rates are highly correlated
with default risk.

Figure 5 shows the distribution of loan annual percentage rate (APR) for each of the rating
grades from A to G. The least risky borrowers (A-rated) pay less than 10 percent APR, and the rate
is capped at 36 percent APR for the most risky borrowers (G-rated). Finally, Figure 6 shows that the
majority of loans originated by LendingClub in each year has been of the shorter maturity of 36
months rather than 60 months.

In Table 1 Panel A, the temporal distribution of P2P loans shows that fintech loan volume
was growing increasingly monotonically during the period 2008-2014. It peaked at 433,872 loans
originated in 2014, and then the volume started to decline. This decline in the volume of loans from
2014 primarily reflects the fact that only loans with the exact resolution of the payment are
included in our analysis and are not indicating a decline in the overall volume of origination by the
LendingClub platform. For example, a loan issued at the end of 2014 with five years of maturity is
still not resolved and consequently is not included in our sample.

The key variables that determine the applicant’s risk characteristics are reported in Panel B
of Table 1. The risk premium, which is calculated as the difference between the interest APR on the
loan and the matching Treasury risk-free rate, was monotonically increasing from 2007 until 2013
when it reaches its peak at 14.42 percent and then declines afterward.* If we consider
microfinance loans as comparable and a predecessor of P2P lending, then the risk levels of fintech
loans were lower compared with approximately 30 percent risk premium on microfinance loans as
reported in Rosenberg, Gaul, Ford, and Tomilova (2013), lower than the interest rates of credit card
mail offers extended to households as reported in Demyanyk and Kolliner (2014) and Adams
(2018), and lower than risk-adjusted rates on bank loans as reported in de Roure, Pelizzon, and
Thakor (2019). Overall, our data indicate that consumers could potentially benefit from the lower
funding cost through fintech loans.

Panel B also reports the various statistics related to a local economic environment in which
the borrowers are located. The GDP growth rate ranges from 1.65 percent to 2.59 percent, with an
average over the observation period of 2.13 percent. Whether the loan applicant is a homeowner is

another key variable; about 50 percent of the applicants for LendingClub loans owned a home,

14 Figure 5 presents APR distribution by the LendingClub assigned grade.
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which is lower than the national average for the general U.S population that is about 60-plus
percent as reported in Shiller (2007), 63.70 percent as reported in Goodman and Mayer (2018), and
64.30 percent homeownership rate for the end of 2018 based on the Federal Reserve Bank of St.
Louis’s FRED Economic Data.1> About 40 percent of the applicants reported renting. The smaller
homeownership ratio for LendingClub borrowers implies that fintech loans might serve as a last
resort for nonhomeowners who do not have a home as collateral, although homeownership is not
one of the risk factors directly included in LendingClub’s models for credit decisions.16

The bottom row of Panel B reports the frequency of loans that did not require a verification
process to verify income sources by the LendingClub platform. The data show a rising trend of
verification from a negligible number in 2007 (where most loans were not verified) to about 30
percent in 2011-2012 and has stayed flat at approximately 30 percent. In Table 1 Panel C, the
purposes of the loans are reported with associated frequency. Two categories stand out (i.e., credit
card repayment and debt consolidation that together consist of approximately 80 percent of all the
loans originated through the platform during 2007-2018). The ratio of loans that are used to pay
off credit card balances and for debt consolidation rose in more recent years, to around just under
90 percent starting in 2014-2015. As reported later in this paper, we find that these loans used for
debt consolidation or to pay off credit card balances are less likely to default than loans for other
purposes.

Table 2 reports descriptive statistics for all variables used in the study. Their number, mean,
median, and extreme values are reported. Potential important factors that determine the successful
repayment of the loan or its default and charge-off are divided into four categories: contractual loan
characteristics, individual borrower risk characteristics (as of the date of loan origination),
economic environment factors (which may impact P2P market and the default frequency), and
those factors that describe the nature of the involvement of investors and lending institutions in the
P2P loan market.

The most important contractual loan characteristics are the amount of the loan, the
maturity of the loan (3 years or 5 years) and interest rate of the loan, with an average loan amount

of $14,370, average loan maturity of 41.8 months, and average interest rate of 13.37 percent APR.

15 See https://fred.stlouisfed.org/series/RHORUSQ156N.

16 The homeownership variable is not one of the traditional risk factors lenders commonly use in credit
decisions because they tend to be correlated with race or other prohibited bases and therefore could violate
fair lending laws. The Equal Credit Opportunity Act (ECOA) and the Fair Housing Act generally prohibit
lending practices that have a disproportionately negative impact on a prohibited basis (disparate impact),
even though the creditor has no intent to discriminate and the practices appear neutral.
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For the set of borrowers’ characteristics, these variables are self-reported by the borrower and are
increasingly becoming more frequently verified by LendingClub (Balyuk and Davydenko, 2019).
They also include employment record, annual income, various financial positions, and credit
characteristics as of the application date. On average, 62 percent of the time the applicant has less
than 10 years of work experience, with an average income of $75,582, and an average DTI ratio of
about 18 percent. It is interesting to note that 32 percent of the applicants were delinquent on other
loans within the last two years. An average applicant has almost six years (average 70.5 months) of
credit record, with 11.58 credit lines on average and a 52.8 percent credit utilization ratio. The
collection of all this personal information by marketplace lending institutions is important; the
financial literature recognizes that personal financial information and experience affect risk-taking
levels; see Koudijs and Voth (2016). Since the LendingClub consumer platform requires that
consumers have FICO scores of at least 640, those who do not have credit scores and those with
thin files are not eligible to apply on the platform. The primary benefit to these consumers seems to
be the use of alternative data by fintech lenders, which allow them to access credit at a lower cost.
A set of macroeconomic variables explains the environment surrounding the local market in
the period under observation. Table 2 reports the risk premium of the loans, average county per
capita household income, county/zip code area average income, county GDP rates and levels,
volatility levels at the loan issuance date, policy uncertainty indices as well as monthly returns of
the equity markets.1” On average, personal loans originated through the LendingClub consumer
platform carry a risk premium of 12.94 percent, which is much smaller than credit card rates but
also could be a good investment option compared with other investment alternatives. One concern
among investors has been whether the default rate on fintech loans would suddenly jump during
bad times. Some borrowers are expected to be more adversely affected during a recession than
others. In this paper, we explore characteristics of the borrowers who are more likely to default.
Finally, Table 2 reports Institutional Investor Characteristics, indicating that 50 percent of these

loans are entirely funded by institutional investors, rather than small individual investors.18

17 Mollick (2014) shows that geography is an important factor in the fundraising success of marketplace
lending.

18 Balyuk and Davydenko (2019) report that about 90 percent of issued P2P loans are now funded by
institutional investors. Our reporting of lower percentage is primarily due to the selection of only resolved
loans by the end of 2018 in analysis. Krdussl et al. (2019) attributes an increase in the interest of institutional
investors for the P2P market to high risk-adjusted performance of portfolios composed from individual loans
originated on the LendingClub platform.
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3.3 Characteristics of the Subsamples (Based on Loan Payment Outcome)

We divide the loan samples into two segments, based on their payment performance:
default and charge-off (268,043 loans) and paid off in full (1,077,550 loans). Table 3 presents
descriptive statistics for these two subsamples. We compare their means for statistical differences,
where the t-statistics and p-values are reported in the last three columns, with a corresponding
number of stars (one, two, and three) indicating significance level (at the 10 percent, 5 percent, and
1 percent, respectively).

On average, larger loans are associated with a higher probability of default (i.e.; loans that
were charged off are larger than the loans that were paid off in full, with the average origination
amount of $15,475 for defaulted loans, relative to $14,119 for good loans. As expected, charged-off
loan applicants were identified essentially as being riskier, and they are required to pay a higher
risk premium, with average contractual interest rates of 15.75 percent compared with 12.78
percent for those that were paid off in full. The difference between these two rates is likely to be
even more significant if accounting for fees, which are usually higher for more risky borrowers.

In addition, longer-term loans are associated with a higher risk of default. One explanation
is that the longer maturity leads to the long interval of exposure to the various shocks to individual
financial position. Specifically, 40 percent of defaulted loans had a five-year maturity (60 percent
with a three-year maturity) relative to only 20 percent of nondefaulted loans being five-year loans
(80 percent with a three-year maturity).1? In addition to their preference for longer maturity loans,
borrowers who default on the loans also have lower self-reported income $69,678 (compared with
$77,059), exhibit a higher DTI ratio of 20 percent (relative to 17.62 percent), have a higher
percentage of recent delinquencies of 35 percent (relative to 31 percent), and had more credit
inquiries in the last six months, with average of 0.81 inquiry (compared with 0.66). Defaulters
exhibit a shorter time since the previous delinquency of 33.68 months (compared with 34.36
months), have a higher average number of open credit lines of 11.93 (compared with 11.50), have a
higher average number of derogatory accounts of 0.24 (compared with 0.21 accounts), have a
smaller total revolving line of $15,293 (compared with $16,377), with a higher average credit
utilization ratio of 56 percent (compared with 52 percent), pay more late fees averaging 12 percent
(compared with only 2 percent), and have more credit accounts of 5.29 on average (compared with
4.51 accounts). Those who defaulted have a statistically higher percentage of all bankcard accounts
with more than 75 percent utilization ratio, at 51.89 percent of all cards (compared with 45.41

percent of all cards with at least a 75 percent utilization ratio). Finally, they also have a higher

19 Figure 6 reports temporal distribution of loans based on the maturity choice.

13



number of public recorded bankruptcies of 0.15 (compared with 0.13) and a higher number of tax
liens at 0.06 (compared with 0.05). These statistics could be useful in designing a loan program that
would help alleviate risk to small P2P investors. For example, a combination of DTI, annual income,
and credit utilization should be used in determining the loan amount and maturity of the loans that
consumers are given.

Table 3 also reports how subsamples differ concerning macroeconomic indicators. A
subsample of loan applicants that eventually defaulted on their loans exhibits almost a 3 percent
higher risk premium than applicants who paid off the loans in full — a 15.57 percent risk premium
compared with 12.59 percent for the nondefaulted segment. In addition, defaulted borrowers live
in counties with lower current and real GDP levels ($66,000 versus $67,800), counties with lower

GDP annual growth (2.22 percent versus 2.26 percent), and they live in a lower-income community.

4. The Empirical Approach and Findings

To set up a baseline for the further tests, we examine the likelihood of the default of
individual loans in which the dependent variable is a dummy that represents the status of loan
payment. We code the dependent variable as being charged-off equal to 1 if the applicant defaulted
on the loan and the loan is consequently charged off. Otherwise, the variable takes value 0 if the
loan is fully paid within the observation period. It might be that the maturity of the loan has been
modified, due to early payment or extension. Since our sample only consists of loans with clear
ending resolutions, the dependent variable is also well defined for the modified loans.

At first, we apply logistic regression approach in which the dependent variable charge-off is
regressed on the set of independent variables that were reported in Table 3. This approach is
standard in the literature examining personal or corporate defaults and enables us to determine
which risk characteristics significantly impact the likelihood of default for the sample of our fintech
loans; see Bastos (2010). We report the results of these logistic regressions in Table 4.

We recognize that there are limitations under the logistic regression approach because of
its high dimensionality (with more than 100 independent variables) and that they potentially blur
the results. To address this, we further strengthen our approach by introducing the lasso selection
method, which was initially developed in Tibshirani (1996), and consequently further enhanced by
Belloni and Chernozhukov (2013), Belloni et al. (2012), Belloni et al. (2014), and Belloni et al.
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(2016).20 Using the lasso selection method, we could select a set of variables that may be more
important in determining default of individual fintech loans. The selected variables and coefficients
are reported in Table 5. Once the lasso procedure selects a set of variables that are most likely to
have an impact on defaults, we use logistic regression to reestimate the coefficients based on a
smaller set of independent variables. The new set of logistic regression results obtained from the

lasso selection method are reported in Table 6.

4.1 The Basic Logistic Regression Analysis

Determining the likelihood of loan default is an old and interesting question in economics.
The recent financial innovations such as P2P lending enabled by highly powerful intermediary
electronic platforms would allow researchers to have testing ground unseen before. Our knowledge
of the factors that are important in determining the loan performance of this market is critical to its
long-term success in expanding credit to those who have been underserved.

As a first step to determining the determinants of default, we use a dummy variable on the
status of loan payment as the dependent variable and a set of contractual loan characteristics,
individual applicant characteristics, macroeconomic variables, and institutional investor risk
characteristics as independent variables. Our final sample used in the logistic regression consists of
1,064,490 loans, in which every independent variable has an observed value (not missing). Our
sample observations are representative and significantly more comprehensive than in previous
studies.

Table 4 presents the results of our logistic regression. We discuss variables here that show
high statistically significant impact on the likelihood of default on these individual loans. When it
comes to contractual loan characteristics, the most important determinant of default seems to be
loan maturity. We find that people who decide to take out a longer-term loan (five-year maturity)
are more likely to default, even after controlling for other risk characteristics and economic
environment; these results are consistent with those found in Hertzberg et al. (2018). Again, the
logistic regression results also confirm that the borrowers who were charged lower interest rates
by LendingClub are less risky, and they are less likely to default, even after controlling for all the
other relevant risk characteristics. This result agrees with Ryan and Zhu (2018) findings, based on

data from the Prosper lending platform, noting that Prosper during the post-2013 period was

20 Machine learning statistical techniques are offering strong additional power in analyzing behavior of
economic agents; see Varian (2014), Mullainathan and Spiess (2017), Athey (2018), Bjorkegren and Grissen
(2019).

15



better ex ante in judging the most appropriate interest rate to charge the borrowers that later
became delinquent and defaulted.

Loan purposes could also play a role in determining default. We find that the probability of
default increases if the loan is taken to fund a small business, while the likelihood of default
decreases if the purpose of the loan is to fund wedding expenditures. The higher the level of
reported collections in the last year (excluding medical expenses), the higher the probability of
default. In addition, borrowers who applied for the loans individually have a higher chance of
default than a joint loan application.

Borrower characteristics at the moment of loan origination have implications on loan
performance. Borrowers who belong to the category of professionals have a lower likelihood of
default. Although with the lower degree of statistical significance, similar results are reported for
applicants classified as associate professionals. Workers belonging to classifications as elementary
occupations, machine operators and assemblers, service and sales workers, and craft and trade
workers all exhibit a higher likelihood of default, even after controlling for other risk characteristics
and economic environment.

Housing status impacts the likelihood of default as well. Borrowers who are homeowners
(or have an outstanding mortgage) have a lower likelihood of default, while renters are associated
with an increased likelihood of the default. Borrowers with higher DTI ratio or with a higher
number of credit inquiries in the last two years are more likely to default. A variable with the
highest coefficient of all in the analysis (1.80) is one documenting whether an applicant used to pay
late fees. Apparently, the likelihood of default is significantly higher for applicants who in the recent
past used to pay late fees on their credit accounts.

Macroeconomic conditions also impact the likelihood of default on behalf of applicants. The
macroeconomic variable with a high coefficient is the return on the Russell 2000 Index, implying
that the positive return on the index is associated with an increased likelihood of default overall,
after controlling for all the risk characteristics of loans and borrowers. We also find a higher
likelihood of default for loans financed entirely by institutional investors.

Most important, our results also show that LendingClub’s models used to predict the
borrower’s likelihood of default are accurately reflected in the credit rating assigned by
LendingClub: grade A (best) to G (worst). We find that applicants who were classified in the top
score grade A, B, and C exhibit a lower probability of default. The size of the coefficient on these
three subscores increase monotonically, indicating that borrowers with an A-rated score have a

lower probability of default than the borrowers with a B-rated score, and consequently, the
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borrowers with a B-rated score are less likely to default compared with those who are C-rated. Our
findings confirm that LendingClub has the right risk-assessment tools when evaluating borrowers
and their likelihood of default. These results are also consistent with Jagtiani and Lemieux (2019),
who also find that, while the rating grades assigned by LendingClub are accurate in predicting loan
default, these rating grades have minimal correlation with borrowers’ FICO scores, which have

been primarily used for a credit decision, especially for credit card loan applications.

4.2 The Lasso Selection Method and Post-Lasso Logistic Regression Analysis

To further improve the predictive accuracy and to improve the variable selection accuracy
(with about 100 independent variables), we use the lasso selection method to help us streamline
the variable set. Of the initial set of 99 independent variables (used earlier in Table 4), the lasso
selection method selects only 58 variables to be included. These variables are grouped in an
identical way as in the summary statistics tables and presented in Table 5.

We then apply the logistic regression that includes only the selected 58 independent
variables. The final regression has 1,095,012 individual loans, in which the dependent variable
charged-off is regressed against 58 lasso method selected independent variables that describe
contractual loan characteristics, borrower characteristics, macroeconomic conditions, and
involvement of institutional investors. The results are reported in Table 6.

Most of the variables that are significant in the baseline logistic regression (Table 4)
continue to be significant (Table 6), but there are notable improvements. Reported results on the
contractual loan characteristics show similar coefficients and directions as previously reported,
while there is an increase in the level of information provided on the impact of the loan purpose
variables on the likelihood of default. Namely, almost all loan purposes are statistically significant at
the 1 percent level. The default likelihood increases if the loans are taken with the purpose of
financing home improvement, major purchases, medical-related expenses, small business-related
costs, and moving expenses. On the contrary, the likelihood of default decreases when the loans are
used to finance car purchases, repay credit card debt, house purchases, and wedding expenditures.
Similar to the previous results reported in Table 4, when the applicant exhibits an increasing
number of collections in the last year, excluding medical expenses, and when the loan is applied for

individually, the likelihood of default increases.
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The borrower’s occupation and homeownership continue to be important.2t Unlike renters,
homeowners are less likely to default. Most of the variables that are seen as having negative
implications on creditworthiness — such as the DTI ratio (prior to application), number of
delinquencies two years prior to the issuance of the loan, the number of credit inquiries prior to the
loan, and the number of derogatory public records —are associated with an increased likelihood of
default. As in the original regression, the indicator of whether an applicant used to pay late fees
before obtaining loans shows a high economic significance and increases the likelihood of default.
Similarly, an increase in the level of reported public bankruptcies increases the likelihood of
default.

In post-lasso selection regression, macroeconomic variables exhibit similar results as
before. Risk premium and the returns on the Russell 2000 Index (in the month of the loan
application) increase the likelihood of default. Although the magnitude is not strong, higher
volatility of the equity options in the month of loan origination seems to be associated with a lower
probability of default. The improvement in the growth of GDP is related to a lower likelihood of loan
default. Finally, the likelihood of default decreases if the higher amount of the loan is financed by
institutional investors.

Once again, we find that the ratings assigned by LendingClub remain important factors in
determining loan performance and default likelihood. The results are robust in supporting the use
of alternative data and appropriate ML analysis in credit decisions. Using alternative data in credit
decisions has become a new trend in the financial landscape and regulations.

On the other hand, there are concerns about consumer privacy and fair lending associated
with the use of these data and ML algorithms in credit decisions, and this has become a popular
topic of debate. Regulators attempt to strike the right balance in encouraging fintech innovations
while providing consumer privacy and fair lending protections. Several important questions have
remained unanswered. What data about consumers could be shared? Who owns the consortium
data? Who is responsible when information about consumers is shared with outside parties and
causes damages to consumers? Which alternative data could be used to those who have been

denied credit and which could be used to expand credit to the underserved? Are consumers

21 The likelihood of default decreases when an applicant is classified as belonging to the following groups:
managers, professionals, technicians, and associate professionals. Opposite results are reported for the
following employment occupation classifications: elementary occupations, machine operators, services and
sales workers, and craft and related trade workers as they exhibit a higher likelihood of default and
consequent loan charge-offs.
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becoming too leveraged because of additional funding access provided through the fintech

platform?

4.3 Robustness Checks for Sample Selection Bias

Our observed sample for the analysis includes only loans that have a clear ending resolution
and consequently were either charged off or fully paid off loans. This potentially creates an issue of
the sample selection as the loans included in the period after 2013 for five-year loans and loans
included after 2015 for three-year loans may be overrepresenting defaulted loans. To address the
issue of the sample restriction, we conduct two procedures. The results are in Table 7.

First, we create a subsample including loans only in which we have ending outcome as the
only possibility for all of them. This subsample contains 651,555 loans that are free of possible
selection bias, or about 59.51 percent of the total loans used to the full-sample analysis, as reported
in Table 6. Second, we apply a Heckman-type correction for sample selection - see Heckman (1979)
and Marchenko and Genton (2012). This method is very popular for linear models, and it has been
extended to binary choice models (Van de Ven and Van Pragg (1981)), and the application is
available via standard software (De Luca and Perotti (2011)). The binary regression model is
complemented with a selection equation, having a binary dependent variable equal to 1, if the loan
has “clear ending resolution” and 0 otherwise. The selection equation is estimated from a much
larger sample, including the loans that were still unresolved at the end of the observation period,
yielding a total of 2,023,934 observations. The regressors used in the selection equation are the
duration (between issuing the loan and the end of the observation period), the time to maturity,
and the interest rate. It turns out that the results are pretty robust to the specification of the
regressors in the selection equation.

In the first four columns of Table 7, we present the original results (taken from Table 6); in
the next four columns, the results based on the subsample of 651,555 loans as described above, and
in the last four columns, the results with the Heckman correction. The only significant difference is
for the dummy variable “LC credit rating F (Y/N).” This variable is positively related to the
likelihood of default estimating the model from the full sample and negatively related to the
likelihood of default when using the subsample. In the subsample analysis, our loan observations
stop at the 2013 origination year (for five-year loans) and stop at the 2015 origination year (for
three-year loans). Thus, the subsample analysis is based on older loans, which could be driving the
differences in the findings. In the early years, LendingClub was comparatively closer in assigning a

credit score to standard scoring systems as with FICO than in later years (after 2015 origination);
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see Jagtiani and Lemieux (2019). For the model with the Heckman correction, all estimation results
except one are very similar to those reported in Table 6 (in the first four columns). We conclude
that the detected important drivers for fintech loan default are not significantly affected by the

selecting mechanism to construct our sample.

5. The Conclusions and Policy Implications

This paper examines the default determinants of loans in P2P lending settings using loan-
level data from the LendingClub consumer platform during the period 2007-2018. We examine a
number of factors that may potentially be important in determining fintech loan defaults. We
started with a comprehensive set of contractual loan characteristics, borrower characteristics, and
macroeconomic variables as independent variables (total about 100 independent variables), using
logistic regression analysis, and find interesting results indicating potential important roles of
nontraditional data in credit decisions.

To further validate results and explore whether an alternative set of explanatory variables
would become significant in determining fintech defaults, we also conduct an alternative analysis
using a more robust methodology, using lasso selection methods to narrow our initial
comprehensive set of 100 explanatory variables before applying the logistic regression analysis.
The process reduced the number of independent variables from 100 to 58 variables. The logistic
regression analysis was applied on these selected variables (post-lasso selection), and the results
are very similar (but with additional insights around the impact of loan purposes on default) to the
initial results from the previous step.

Overall, we find that borrowers who choose to take loans with a longer maturity (five-year
loans), those with lower assigned credit scores, nonhomeowners, and those belonging to
elementary or machine operators and assemblers (not a manager or executive) are more likely to
default. In addition, after controlling for borrowers’ risk characteristics, we find that loan purposes
also play a role; for example, loans that are used to finance medical expenses or small business
costs (rather than paying off credit card balances or funding wedding expenses) exhibit a higher
likelihood of default. Borrowers who use loan proceeds to finance a wedding, house purchase-
related, and car purchases experience lower likelihood of default. More important, the results show
that LendingClub’s own rating scores are highly accurate in predicting defaults, and it is significant
even after controlling for the obvious risk characteristics of the borrowers, loan characteristics, and
the local economic factors. The results are also robust to alternative empirical approaches, with and

without the lasso selection process.
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Our findings are consistent with an argument that the use of alternative data in credit
decision could result in creditworthy “subprime” borrowers being able to access credit at a much
lower cost than they otherwise would. Jagtiani and Lemieux (2019) find that most of the “invisible
prime” borrowers, who have been rated poorly by the traditional credit scoring process, have a
very low default probability that is similar to the default probability of (traditional) super-prime
borrowers, suggesting that regulators could consider allowing lenders to use certain alternative
data to identify good borrowers from the traditionally subprime pool as a way to expand credit
access to low-score borrowers.

Our results overall suggest that homeownership and occupation are important in
determining default, controlling for credit ratings, and other risk factors. However, we note that
such variables cannot be incorporated into underwriting or pricing models without careful
examination by the lender to demonstrate that they do not result in disparate treatment that would
adversely affect members of groups protected under the nation’s federal fair lending laws — i.e,,
the Equal Credit Opportunity Act (ECOA) and the Fair Housing Act (FHA).22

More broadly, it has become more common now that lenders would subscribe to data
analytic services from outside vendors. Potential violations of privacy and fair lending laws might
potentially lie inside the “black box” provided by third-party vendors. While third-party vendor risk
has always been a concern among bank regulators, the nature of the risk has changed significantly
in the new financial landscape, where many of the credit decisions for loans that are on banks’
balance sheet may be largely determined by the models used by data aggregators and Al vendors.
The uncertainty may be greater for those nonbank lenders that are not subject to regular in-depth
banking examinations (by federal and/or state banking regulators) and may be too small to fall
under the supervision of the Consumer Financial Protection Bureau.

In addition, our overall results indicate that certain loan purposes (controlling for risk
characteristics of the borrowers and economic conditions) such as medical financing and small
business financing are riskier than other loan purposes. This would imply that they should be
segmented out for more appropriate risk evaluation and fair pricing for P2P investors. It is
interesting to observe that, in late 2014, LendingClub also established a separate lending platform
that deals with small business loans only, aiming to serve those small firms that cannot access
business loans through the SBA program but requiring larger loans than what they could get on the

consumer platform. That small business platform later became part of the Opportunity Funds in

22 The concern is that such variables may be correlated with race, age, color, national origin, religion, or gender.
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2019.23 In addition, a separate lending platform was later established to serve those with specific
medical needs (financing through a doctor’s office), subject to a different process and credit risk
models.

As for policy implications, we note that borrowers in need of funding for medical services
and for small businesses are more risky than other borrowers, and they may have difficulties
getting access to affordable funding sources. While the SBA currently provides support for more
established small businesses that have some track records, newer and smaller small business
owners (without sufficient business credit history) have had to turn to personal loans as their
funding sources, as reflected in our personal loan data from the LendingClub consumer platform.
Some government support has begun and could be expanded to support small businesses. For
example, more public-private partnerships with fintech firms could be expanded, such as the
partnership in 2019 between LendingClub, the (nonprofit) Community Development Financial
Institution (CDFI), and Funding Circle (another fintech small business lending platform). More
programs like this one would help to enhance access to affordable credit for small businesses
without imposing excessive credit risk to small P2P investors.

In closing, we note that there remain uncertainties around fintech credit decisions, given
the rapid advance in technology. Some small community banks find themselves in fierce
competition with fintech lenders in their own local community. Others have benefited greatly
through the various partnership programs with fintech platforms, as a way to digitize their credit
decisions without a large investment in their own in-house technology. Investors are interested in
understanding whether fintech lenders would replace traditional banks or become part of the
traditional bank holding companies. The recent announcement of LendingClub to acquire Radius
Bancorp is consistent with a belief that fintech lending and retail banking would likely converge
over time. This is apparently an opportune time for researchers to further explore the impact of

fintech on consumers, lenders, fintech investors, and the financial system overall.

23 See more details at Bloomberg News (April 23, 2019); https://www.bloomberg.com/press-releases/2019-

04-23/lendingclub-partners-with-opportunity-fund-and-funding-circle-increasing-financial-inclusion-and-

small-businesses-access-to-c.
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Figure 1

The figure shows the temporal distribution of the charged-off loans by loan purpose. Borrowers
while requesting a loan report the purpose of the loan and then LendingClub classifies it within the
categories: car, home improvement, moving expenses, vacation expenses, credit card refinancing,
house purchase-related, other, debt consolidation, major purchase, renewable energy, educational
expense, medical expense, and small business expense.

Charged Off Rate Distribution by Loan Purpose over Origination Years
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Figure 2

The figure shows the temporal distribution of the charged-off loans by homeownership. While
applying for a loan, borrowers state their homeownership status, and LendingClub classifies it
within the categories: mortgage, none, other, rent, and own.

Charged Off Rate Distribution by Homeownership over Origination Years
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Figure 3
The figure shows the temporal charge-off rate based on LendingClub’s assigned credit score at the
loan origination.

Charged Off Rate by Rating Grade and Origination Year
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Figure 4
The figure shows the temporal distribution of the charge-offs based on the issuance interest rate.
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Figure 5
The figure shows the annual percentage rate (APR) obtained by borrowers as a function
of the credit score assigned by Lending Club.

APR Distribution by Rating Grade
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Figure 6
The figure shows the temporal distribution of loans based on maturity. LendingClub originates
loans with only two maturities: 36 months and 60 months.
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Appendix 1: Variables Definition

The Appendix 1 presents in detail how every independent variable is defined.

Code
1

100
101

102

103
104

105
106

107

108
109

111

112

113

114

115

116

200
201

202

Variable
Loan payment status

Description

Current status of the loan. We create
dependent variable charged off, based on
the payment status.

Loan characteristics

Percentage of
requested loan funded
by Lending Club

Loan amount

Funded amount
Loan maturity

Interest rate on loan
Monthly payment

LC credit rating

LC subcredit rating
Income verification
status

Loan purpose
description

Number of collections
in the last year
excluding medical
collections

Months since most
recent 90-day or worse
rating

Application type
individual (Y/N)

The number of
delinquent accounts
Total current balance

The ratio of funded loan amount to
requested loan amount by borrower.

The listed amount of the loan applied for
by the borrower. If at some point in time,
the credit department reduces the loan
amount, then it will be reflected in this
value.

The total amount committed to that loan at
that point in time.

Maturity of the loan. Values are in months
and can be either 36 or 60. (Y/N)

Interest rate

The monthly payment owed by the
borrower if the loan originates.

Lending Club assigned loan grade (Y/N) at
issuance

LC assigned loan subgrade (Y/N)
Indicates if income was verified by
Lending Club, not verified, or if the income
source was verified. We use this
information to create dummy variables.
(Y/N)

Loan description category provided by the
borrower. Purposes are: car purchase,
credit card consolidation, debt
consolidation, home improvement, house
purchase related, major purchase, medical
expense, moving expense, other, small
business related, vacation financing and
wedding related expenditure, educational
related, renewable energy related. (Y/N)

Number of collections in 12 months
excluding medical collections

Months since most recent 90-day or worse
rating

Indicates whether the loan is an individual
application or a joint application with two
co-borrowers (Y/N)

The number of accounts on which the
borrower is now delinquent

Total current balance of all accounts

Borrower Characteristics

Employment title

Employment length

The job title supplied by the Borrower
when applying for the loan. The
International Standard Classification of
Occupations (ISCO-08) is used to create
dummy variables.

Employment length in years. Possible
values are between 0 and 10 where 0
means less than one year and 10 means
ten or more years. (Y/N)

50

Variable type

Dummy variables based on the payment status.

Ratio
$ amount

$

Dummy variables based on the term months.
Percentage

$
Dummy variable
Dummy variables based on the subgrade issued.

Dummy variables based on whether verification
was conducted

Dummy variables based on the purpose of loan.

Integer

Integer

Dummy variables based on the type of application.

Integer

$

The International Standard Classification of
Occupations (ISCO-08) is used to create dummy
variables.

Dummy variables based on the employment length.



203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
218

219

220

221

222

223
224

225

226

227

228

229

Homeownership

Annual income self-
reported
Borrower zip code

Borrower's debt-to-
income ratio prior to
loan application

Delinquency in 2 years
prior to the loan

Earliest credit line
opened

Credit inquiries in past
6 months prior to the
loan

Months since the last
delinquency

Months since the last
public record

The number of open
credit lines

Number of derogatory
public records

Total credit revolving
balance

Percentage of
revolving line utilized
The total number of
credit lines

Late fees paid (Y/N)
Total revolving high
credit/credit limit
Number of trade
accounts opened in last
2 years

Average current
balance of all accounts
Total open to buy on
revolving bankcards
Credit limit usage ratio

Charge-offs in last year
Delinquent amount

Number of months
since first loan
Number of months
since first revolving
account

Number of months
since last revolving
account

Number of months
since last account
Number of mortgage
accounts

The homeownership status provided by
the borrower during registration or
obtained from the credit report. Our
values are: Rent, Own, Mortgage and
Other. We use this information to create
dummy variables. (Y/N)

The self-reported annual income provided
by the borrower during registration.

The first 3 numbers of the zip code
provided by the borrower in the loan
application.

A ratio calculated using the borrower’s
total monthly debt payments on the total
debt obligations, excluding mortgage and
the requested LC loan, divided by the
borrower’s self-reported monthly income.
The number of 30+ days past-due
incidences of delinquency in the
borrower's credit file for the past 2 years
The month the borrower's earliest
reported credit line was opened

The number of inquiries in past 6 months
(excluding auto and mortgage inquiries)
The number of months since the
borrower's last delinquency.

The number of months since the last
public record.

The number of open credit lines in the
borrower's credit file.

Number of derogatory public records

Total credit revolving balance
Percentage of revolving line utilized.

The total number of credit lines currently
in the borrower's credit file

Late fees received to date.
Total revolving high credit/credit limit

Number of trade accounts opened in past
24 months.

Average current balance of all accounts

Total open to buy on revolving bankcards.
Ratio of total current balance to high
credit/credit limit for all bankcard
accounts.

Number of charge-offs within 12 months
The past-due amount owed for the
accounts on which the borrower is now
delinquent.

Months since oldest bank installment
account opened

Months since oldest revolving account
opened

Months since most recent revolving
account opened

Months since most recent account opened

Number of mortgage accounts

51

Dummy variables based on the homeownership

$

Integer
Ratio

Integer

Integer

Integer
Integer
Integer
Integer
Integer

$
$

Integer

$
$

Integer

$
Ratio

Ratio

Integer

$

Integer

Integer

Integer
Integer

Integer



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251
252

253

254

255

Months since most
recent bankcard
account opened
Months since most
recent bankcard
delinquency

Months since most
recent inquiry

Months since most
recent revolving
delinquency

Number of accounts
ever 120 or more days
past due

Number of currently
active bankcard
accounts

Number of currently
active revolving trades
Number of satisfactory
bankcard accounts
Number of bankcard
accounts

Number of installment
accounts

Number of open
revolving accounts
Number of revolving
accounts

Number of revolving
trades with balance >0
Number of satisfactory
accounts

Number of accounts
currently 120 days
past due (updated in
past 2 months)
Number of accounts
currently 30 days past
due (updated in past 2
months)

Number of accounts 90
or more days past due
in last 2 years

Number of accounts
opened in last year
Percent of trades never
delinquent

Percentage of all
bankcard accounts >
75% of limit

Number of public
record bankruptcies
Number of tax liens
Total high
credit/credit limit
Total credit balance
excluding mortgage
Total bankcard high
credit/credit limit
Total installment high
credit/credit limit

Months since most recent bankcard
account opened.

Months since most recent bankcard
delinquency

Months since most recent inquiry.

Months since most recent revolving
delinquency.

Number of accounts ever 120 or more
days past due

Number of currently active bankcard
accounts

Number of currently active revolving
trades

Number of satisfactory bankcard accounts
Number of bankcard accounts

Number of installment accounts

Number of open revolving accounts
Number of revolving accounts

Number of revolving trades with balance
greater than zero

Number of satisfactory accounts

Number of accounts currently 120 days
past due (updated in past 2 months)

Number of accounts currently 30 days past
due (updated in past 2 months)

Number of accounts 90 or more days past
due in last 24 months

Number of accounts opened in past 12
months

Percent of trades never delinquent

Percentage of all bankcard accounts > 75%
of limit.

Number of public record bankruptcies
Number of tax liens

Total high credit/credit limit
Total credit balance excluding mortgage

Total bankcard high credit/credit limit
Total installment high credit/credit limit
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Integer

Integer

Integer

Integer

Integer

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Integer

Integer

Integer

Integer
Integer

Percentage

Percentage
Integer
Integer
Ratio

Ratio

Ratio

Ratio



300

301

302

303

400
401

402

403

404

405

406

407

408

409

410

411

412

701

Institutional Investors Characteristics

Loan financing by
investor (whole or
fractional)

The loan amount
funded by the
investors

Fraction of the loan
funded by the
investors

The initial listing status of the loan from
the perspective of the investor. Possible
values are - Whole and Fractional. Created
dummy variables based on these values.

(Y/N)

The loan amount funded by the investors.
The ratio of the loan amount financed by
investors to total funded amount.

Macroeconomic Variables

Risk premium

Average income on
tax-based data
VIX average

Current GDP in
thousand dollars based
on BEA

Real GDP in thousand
dollars based on BEA

GDP Growth in
percentage

Policy-related
economic uncertainty
based on NEWS
Disagreement among
local economic
forecasters

CPI disagreement
measure

Forecast of 10-year
dollar-weighted sum of
expiring tax
Policy-related
uncertainty index

Russell 2000 Index
level

Post charge-off
recovery (Y/N)

Difference of interest rate of loan to T-bill
rate of loan month issual

Average income on tax data based on zip
code provided by IRS

Average of VIX index on the month of loan
issued

Current GDP in thousand dollars based on
Bureau of Economic Analysis December
12th announcement.

Real GDP in thousand dollars

GDP Growth in percentage

Policy related economic uncertainty based
on NEWS

Disagreement among local economic
forecasters

CPI disagreement measure

Each year’s forecast is a 10-year horizon
dollar-weighted sum of expiring tax.

Policy-related uncertainty index draws on
the Federal Reserve Bank of Philadelphia's
Survey of Professional Forecasters.

Russell 2000 monthly data added based on
month of loan issued.

Post charge off gross recovery. Borrowers
paid some amount after charged off.

Dummy variables based on the listing status.

Ratio

Percentage

$. Average income from tax data based on zip code
collected from Internal Revenue Service.

Integer. Average difference of open and close index
values on month of loan issual. Collected from
CBOE Global Markets, Inc.

$. Based on data provided by Bureau of Economic
Analysis December 12th announcement. GDP data
is merged based on county-zip code.

$. Based on data provided by Bureau of Economic
Analysis December 12th announcement. GDP data
is merged based on county-zip code.

Percentage. Based on data provided by Bureau of
Economic Analysis December 12th announcement.
GDP data are merged based on county-zip code.
Data are collected from
http://www.policyuncertainty.com and merged
based on loan issue date.

Data are collected from
http://www.policyuncertainty.com and merged
based on loan issue date.

Data are collected from
http://www.policyuncertainty.com and merged
based on loan issue date.

Data are collected from
http://www.policyuncertainty.com and merged
based on loan issue date.

Russell 2000 Index data included based on loan
issue date.
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