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Abstract

We revisit self-fulfilling rollover crises by exploring the potential uncertainty introduced by a
gap (however small) between an auction of new debt and the payment of maturing liabilities.
It is well known (Cole and Kehoe, 2000) that the lack of commitment at the time of auction
to repayment of imminently maturing debt can generate a run on debt, leading to a failed
auction and immediate default. We show that the same lack of commitment leads to a rich
set of possible self-fulfilling crises, including a government that issues more debt because
of the crisis, albeit at depressed prices. Another possible outcome is a “sudden stop” (or
forced austerity) in which the government sharply curtails debt issuance. Both outcomes
stem from the government’s incentive to eliminate uncertainty about imminent payments
at the time of auction by altering the level of debt issuance. An interesting aspect of the
novel crisis equilibria is that the government always transacts at prices associated with the
most optimistic beliefs. That is, beliefs induce the government to change debt issuances
to a level at which prices are invariant to beliefs, even if this means a sharp reduction or
increase in equilibrium issuances relative to the best-case scenario. The distortion of debt
policy generates a large increase in spread volatility in both a one-period and a multi-period
quantitative debt model.



1 Introduction

Sovereign debt crises involve high spreads and, at the extreme, failed auctions that lead to

an inability to service maturing debt. These crises seem only weakly tied to fundamentals

and also appear to exhibit some degree of cross-country contagion. A standard approach to

understanding these events is to treat them as arising from a self-fulfilling run on sovereign

debt; specifically, a failed auction that precipitates an immediate default on maturing debt.

The canonical analysis of Cole and Kehoe (2000) formalizes this notion by relaxing the as-

sumption (implicit in Eaton and Gersovitz (1981) and much of the sovereign debt literature)

that a government can commit to repay maturing bonds prior to auctioning new bonds. The

Cole and Kehoe (2000) model essentially treats the auction and the decision to repay as

occurring simultaneously, since the default decision is perfectly predictable given the price

of the government debt at the current auction. Moreover, it generates two possible prices for

that debt in equilibrium, either the price implied by assuming that upcoming repayments

will be made for sure, or the (zero) price implied by assuming that they will not be repaid for

sure. As a result, the Cole and Kehoe (2000) model has a fairly limited scope for debt crises;

in particular, a crisis always coincides with a zero price and immediate default. Hence, it

suggests that an alternative approach is necessary to understand the many real-world crises

in which governments successfully auction new bonds but at steeply depressed prices, or in

which governments significantly restrict the amount of bonds they issue in order to avoid a

failed auction.

To develop this alternative approach, we start by sharpening the focus on the gap in

time between a debt auction and the repayment decision for maturing bonds. Participants

in sovereign debt auctions understand that the funds raised will be used, at least in part,

for near-term interest and principal payments. However, the auction and repayment are

distinct events. This asynchronicity opens up the realistic possibility of there being shocks

to the government’s payoff to default or repayment that are not known at the time of the

auction. We show that this uncertainty (which can be arbitrarily small) generates a rich set

of self-fulfilling equilibria beyond the two extremes focused on by Cole and Kehoe (2000).

Moreover, because these outcomes include successful auctions, the government potentially

has an incentive to manipulate quantities to avoid extreme outcomes. We show that there are

situations in which a government can avoid a failed auction either by significantly restricting

the amount of bonds issued at auction to secure a favorable price, or by issuing larger

quantities at fire-sale prices in order to have sufficient cash on hand to cover upcoming

liabilities. The additional predictions from this alternative approach conform more readily

to many of the important debt crises that we see in the data.
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Our model starts with the familiar Cole and Kehoe (2000) framework in which a coor-

dination failure can lead to a failed auction and subsequent default.1 We then extend their

framework by assuming that the participants in sovereign debt auctions understand that the

funds raised will be used, at least in part, for near-term interest and principal payments

and that there is uncertainty about the government’s relative payoff between default and

repayment. This uncertainty may involve the costs (political or economic) to default or the

size of a bailout the government receives from a third party, like the International Monetary

Fund or European Union. We show that even if this uncertainty is arbitrarily small, it can

lead to a rich set of self-fulfilling debt crises.

To build intuition, assume that the uncertainty is over a random benefit (or cost) of

default that is drawn from a distribution with finite support. Also, hold future equilibrium

behavior constant. Assume the state variables (the amount of debt due and the endowment)

are such that if creditors coordinate on the best possible price at today’s auction, the govern-

ment repays maturing liabilities with probability one; that is, regardless of the realization

of the random return to default, the government honors maturing liabilities. However, if

creditors coordinate on a price of zero, the government defaults with probability one, as

repayment is too painful absent new auction revenue regardless of the realization of the

random return to default. The latter scenario is the traditional Cole-Kehoe crisis. Now

suppose creditors focus on the intra-period risk, where “intra-period” refers to the gap in

time between the auction of new debt and repayment of maturing debt. We show that there

also exists an intermediate price that is supported by a threshold for the random return to

default. If the random return is higher than this threshold, then the government defaults on

maturing debt. If the random return is lower, the government repays. The price at auction

is therefore the probability that the random return is lower than the threshold times the

best possible price. That is, bond prices, while strictly positive, are discounted to reflect

intra-period risk. The concern about intra-period risk is self-fulfilling, as there is a price that

can be supported by alternative creditor beliefs that removes all such risk. Moreover, the

multiplicity is static in nature – holding constant future beliefs, there are multiple outcomes

that can occur at today’s auction. Such an intermediate equilibrium price survives even as

we take the variance of the intra-period uncertainty to zero.

1There are two main traditions in the self-fulfilling debt crisis literature: (i) Calvo (1988) and (ii) Cole and
Kehoe (2000). The former tradition focuses on the link between prices today and budget sets (and incentives
to default) tomorrow. See Lorenzoni and Werning (2013) and Ayres et al. (2015) for recent papers in the
Calvo tradition. The Cole and Kehoe (2000) model features multiple pairs of prices and contemporaneous
default decisions that satisfy equilibrium conditions, with multiplicity reminiscent of a bank run. Recent
papers in this tradition include Conesa and Kehoe (2011) and Aguiar et al. (2015). In an antecedent to this
paper, Aguiar and Amador (2013) construct off-equilibrium mixed-strategy prices in a Cole-Kehoe framework
to address the possibility of buybacks of long-term debt during a failed auction.
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This raises the question of what is the government’s best response to such intermediate

beliefs at auction. In the canonical rollover crisis, this is never an issue as the government

raises zero revenue for any level of debt issuance. However, under the alternative set of

beliefs, the government faces a depressed but positive price schedule.

To understand the government’s optimal debt issuance, suppose that under the best-case

price, the government would issue some amount of debt B∗. We show under fairly general

conditions that when facing a discounted (but not zero) price schedule, the government

chooses among two options. The first of these is to sufficiently reduce its borrowing so as to

eliminate intra-period uncertainty and generate a price consistent with a zero probability of

default in the upcoming settlement. This outcome is a “sudden stop” (or forced austerity),

in which the crisis is manifested by a sharp reduction in the amount of debt the government

issues. This choice is optimal if the level of maturing debt is relatively low; otherwise, the

reduced amount of auction revenue is too small relative to maturing debt to credibly repay

with probability one.

The second option is to issue more debt than B∗. In particular, the government raises a

sufficient amount of revenue at auction that it repays maturing debt with probability one.

By generating sufficient funds at auction, the government finds it relatively painless to repay

immediately maturing bonds, eliminating intra-period uncertainty. However, the higher level

of debt issuance raises the probability of default in future periods. Hence, the government

trades intra-period certainty for a prolonged period of greater risk going forward. We show

that this is indeed preferable to compensating lenders for intra-period risk. In this scenario,

the government responds to low prices by borrowing more. This choice is optimal if the level

of maturing debt is relatively high.

Note that because of the government’s best response, we may not observe intra-period

risk playing a direct role along the equilibrium path. Rather, such risk steers the government

away from its otherwise optimal debt-issuance policy to a level at which it avoids paying the

cost of such risk. If it overissues relative to the best-case benchmark, then the high spreads

reflect default risk in future periods, not compensation for intra-period uncertainty. This

result is established for small levels of potential intra-period risk. If such risk is sufficiently

large, then the government may not have the ability to eliminate all such risk by altering its

debt issuance decision. In that case, the intermediate price may become the only possible

outcome that can be supported in equilibrium.

The same logic applies if the uncertainty is about the size of a potential bailout at the

time of repayment. In particular, there may be a threshold size of bailout that separates

repayment from default. If creditors focus on this aspect of the government’s decision, such

a threshold becomes a self-fulfilling outcome. Hence, uncertainty over bailouts can become
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the central focus of the debt auction. This possible scenario adds an interesting perspective

to the events in Europe around the 2010-2012 debt crises.

The gap in time between auctions of new debt and scheduled repayments, regardless of

how short, lies at the heart of our model as well as many real life debt crises. As motivation,

consider the canonical rollover crisis of Mexico. The Mexican government entered 1995,

having just devalued the peso to stem the sudden reversal in credit inflows and the loss

of international reserves.2 This was coupled with a significant share of short-term dollar-

indexed bonds (tesobonos) coming due. In the first quarter of 1995, the government had only

$8 billion in foreign reserves, while nearly $10 billion in tesobono debt was due to mature in

the first quarter and an additional $19 billion before the end of 1995. Tesobono auctions were

occurring weekly, and by early January 1995 it became clear that creditors were hesitant

to purchase enough bonds to roll over maturing debt. The Clinton administration’s initial

proposed response met resistance from the U.S. Congress, adding to the uncertainty. By the

end of January, the administration had successfully circumvented the need for Congressional

approval and teamed up with international financial institutions to rescue Mexico. This

crisis dynamic is captured in our environment by modelling creditors – at the time of an

auction – as uncertain about whether the government can raise sufficient funds from a third

party to cover any shortfall due to a potentially under-subscribed auction.

This concentration of maturity and rapid sequence of events as the crisis worsened seems

quite common. Similar sequences of events played out in the European crisis of the 2010s.

For example, Portugal had financing needs of 56.5 billion euros in 2011, nearly 30 billion

of which was maturing debt. The government was able to raise only 16.7 billion in bond

markets and turned to the EU and IMF for another 37.8 billion. To take another EU

example, Italy had over 53 billion euros maturing in the month of September 2011, alone

(relative to average monthly tax revenue of 57 billion). When Italian yields started to spike

in the summer of 2011, whether this debt could be rolled over (with or without assistance)

became a central concern. Italy did not default and avoided a direct bailout (although it

indirectly benefited from a host of European Central Bank activities), and ended 2011 with

more debt outstanding than at the start of the year. This outcome of successfully navigating

a crisis but at the cost of additional debt will be an equilibrium outcome in our model. The

key factor in all these episodes is high-frequency uncertainty about events between today’s

auction and the next bond payment.

The paper initially establishes these insights in an analytical model. We then explore how

2Right after the first devaluation on December 20th, the government lost $4.5 billion in reserves in a
single day defending the peso. This led the government to announce that it was abandoning targeting the
exchange rate on December 22. At the December 27 tesobono auction only $28 million of the $416 million
in bonds on offer were sold. See Whitt Jr. (1996) for a description and detailed analysis of events.
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the presence of intra-period risk (both on and off the equilibrium path) changes the model’s

quantitative predictions. To do this in a transparent way, we start with a standard one-

period quantitative model in the spirit of Eaton and Gersovitz (1981), Aguiar and Gopinath

(2006), and Arellano (2008) and focus on Mexico. In the standard model, absent a highly

non-linear cost of default, which essentially forgives default in low endowment states, the

government rarely defaults and spread volatility is very low. We show that allowing credi-

tors to coordinate on the “desperate deal” intermediate price schedule makes it possible to

match the observed volatility of Mexican spreads with linear default costs. The equilibrium

jump in spread volatility is driven entirely by the government over borrowing in response to

the depressed price schedule.3 In contrast, in the model without belief shocks or with the

canonical Cole-Kehoe rollover crises there is no over borrowing and, consequently, spread

volatility is much lower. We then proceed to the long-term debt case and show that the key

insight regarding over borrowing and spread volatility continues to apply. In the appendix,

we confirm that these quantitative findings carry over to the case of Italy. We also confirm

that our findings for Mexico are robust to assuming that the government keeps only half of

the auction revenue in default as opposed to all of it.

2 Model

2.1 Environment

We consider a single-good, discrete-time environment. There is a small open economy that

(initially) has access to international capital markets. We assume that the economy’s aggre-

gate consumption and saving decisions are made by a sovereign government. The economy

receives a stochastic endowment Yt ∈ Y ≡ [Y , Y ], with 0 < Y < Y < ∞. For this section,

we assume Yt is i.i.d. over time. The government’s preferences over the sequence of aggre-

gate consumption {Ct}∞t=0 is given by E0

∑∞
t=0 β

tu(Ct), where β ∈ (0, 1) and u : R+ → R is

continuously differentiable, strictly increasing, and strictly concave.

The rest of the world is populated by risk-neutral lenders who discount at the rate

R−1 = (1+r∗)−1. The government has access to a one-period, non-contingent discount bond

on which it can default. Let B denote the outstanding stock of bonds at the start of a

period; note that B > 0 indicates the government is a net debtor, and B < 0 a net creditor.

To rule out Ponzi schemes, we place an upper bound on debt, B > 0; that is, B ∈ (−∞, B].

We assume B is strictly greater than the natural borrowing limit, and hence never binds in

3The “sudden stop” response to the crisis occurs at lower debt levels, while the typical best response near
the ergodic mean level of debt is to issue additional debt during a crisis.
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equilibrium.

2.2 Timing

The timing of events within a period is depicted in Figure 1. The government enters with

a debt payment due in the current period of B. At the start of the period, the endowment

Y is realized. A sunspot that coordinates creditor beliefs, ρ, is also realized. The sunspot

will be discussed in detail in Section 2.7. After observing the states s ≡ (Y, ρ, B), and given

an equilibrium price schedule q(s, B′), the government decides how much debt to issue (or

assets to buy), denoted by B′.

After the auction, the government decides whether or not to repay the outstanding debt

B. The fact that the default/repayment decision takes place after the auction is crucial

to the analysis. This timing follows Cole and Kehoe (2000) and differs from Eaton and

Gersovitz (1981) and the existing quantitative literature. However, relative to Cole-Kehoe,

we enrich the setting by allowing for additional information to arrive between the auction

and repayment. The original Cole-Kehoe analysis had perfect foresight within a period.

Let V R(s, B′) denote the value of the government if it repays B after issuing B′ in

state s. The value functions will be defined below. If the government defaults, it receives

V D(s, B′) + σϵ, where σ > 0 is a parameter and ϵ is a shock that affects the returns to

default. This shock becomes known only after the auction, but prior to the default decision.4

A natural interpretation of ϵ is the high frequency realization of political payoffs to default

that are orthogonal to output and the quantity of debt due. We show below that we can

recast the shock as a bailout of random size from a third party like the IMF or the ECB.

We assume ϵ is distributed i.i.d. over time with cdf F and a continuous density on

support [0, 1].5 We assume F ′(ϵ) ≥ α > 0 on [0, 1] for some strictly positive constant α. We

shall show that as σ → 0, and the uncertainty over payoffs becomes negligible, we do not

necessarily converge to the perfect-foresight equilibria of Cole and Kehoe (2000). That is,

an arbitrarily small amount of uncertainty about default payoffs opens a door to a richer set

of self-fulfilling crises than that studied by Cole and Kehoe (2000).

Much of the novel economics in this paper stems from thinking carefully about the gap in

time between the auction of new bonds and repayment of old bonds. Given its importance

in the analysis, it is useful to say a few things about the timing assumption. In the Eaton-

Gersovitz model, prior to auctioning new bonds the government can commit to repayment

4There is a long history of such random payoffs to default. See the handbook chapters of Eaton and
Fernandez (1995) and Aguiar and Amador (2014) as well as more recent papers by Aguiar et al. (2019) and
Chatterjee et al. (2020).

5Given the parameter σ, the (bounded) size of the support of ϵ can be normalized to one without loss.
The location of the support shifts the value of default by a constant.
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of maturing bonds as well as to the amount of bonds to be auctioned that period. With

one-period bonds, this decouples the current auction from the risk faced by existing bonds.

Introducing longer maturity bonds gives rise to dilution risk as well as multiplicity.6 In

Eaton-Gersovitz, the multiplicity is tied to the inability to commit to future bond issuances,

as the one-period bond model has a unique equilibrium (Auclert and Rognlie (2016)). It is

instructive to abstract from dilution risk while maintaining the gap between the issuance of

new debt and repayment of old. The timing in Figure 1 does exactly that. Our multiplicity

exists separate from dilution risk because it is fundamentally “static” in nature: We could

have risk-free prices from period t+1 onwards, but still have multiple outcomes in period t.

Figure 1: Timing Within a Period

Initial
State: s

Auction
B′ at price
q(s, B′)

ϵ realized

No Default

Default

V R(s, B′)

V D(s, B′)+σϵ

Next
Period: s′

2.3 The Government’s Problem

We shall consider equilibria such that the equilibrium outcome is a function of s = (Y, ρ, B)

and the credit history. If the government has not defaulted in the past, it faces an equilibrium

price schedule for new debt B′ given by q(s, B′). The government takes the schedule as given

but recognizes that the price of its debt may vary with B′.

Let V (s) denote the equilibrium value of the government in good credit standing prior to

the period’s auction. We can characterize the government’s problem recursively by iterating

on V . In particular, let V0(s) describe the conjectured government’s continuation value

starting from the next period, and we shall construct the value at the start of today’s

period, V1. The equilibrium V will be the fixed point of this mapping.

Working backwards through the current period, if the government repays, it obtains

6See Stangebye (2020) and Aguiar and Amador (2020).
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value:

V R(s, B′) = u(Y + q(s, B′)B′ −B) + βE [V0(s
′)|B′] (1)

if Y + q(s, B′)B′ − B ≥ 0. If Y + q(s, B′)B′ − B < 0, then repayment is infeasible. For

infeasible allocations, we set the government’s value to minus infinity, as default will always

dominate this value.

If the government defaults, it consumes its endowment and the revenue from the period’s

bond auction and then remains in financial autarky thereafter. In this section, we abstract

from reentry to financial markets. Letting V D ≡ Eu(Y ′)/(1− β), we define:

V D(s, B′) ≡ u(Y + q(s, B′)B′) + βV D. (2)

Strategic default implies that the government repays if and only if:

ϵ ≤ 1

σ
·
[
V R(s, B′)− V D(s, B′)

]
︸ ︷︷ ︸

≡∆(s,B′)

, (3)

where the expression in brackets defines ∆(s, B′) as the net benefit of repayment when

ϵ = 0. Conditional on (s, B′), the equilibrium probability of repayment within the period is

therefore F (σ−1∆(s, B′)).7

At the time of auction, the government’s problem is to choose B′ ≤ B to maximize the

expected end-of-period value: V1(s) = maxB′ E
{
max⟨V R(s, B′), V D(s, B′) + σϵ⟩

}
, where

expectation is over the realization of ϵ. With some rearranging (see appendix), we obtain:

V1(s) = max
B′≤B

{
V D(s, B′) + σ − σ

∫ 1

σ−1∆(s,B′)
F (ϵ)dϵ

}
. (4)

The right-hand side of (4) depends on the equilibrium value function through ∆. Hence,

equation (4) implicitly defines an operator T , conditional on q, that maps V0 to V1 = TV0.

Given a price schedule, the solution to the government’s problem V is the fixed point of this

operator. It will be clear in what follows that the economics behind the self-fulfilling crises

we study do not rely on the fact that the continuation value function is the same as the

current value function. That is, the insights carry over to a finite horizon model or other

7Note that if the government has assets (B < 0), we have ∆ > 0. Nevertheless, from (3), if ϵ is large
enough, the government may prefer to walk away from its asset position. In that event, we assume that
the counter-party continues to pay out on the assets (in accordance with the risk-free interest rate paid on
assets), but the payments are lost to the government due to an un-modelled deadweight loss. As σ → 0, this
event never arises in equilibrium.
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non-stationary environments.

Random Bailout: Before proceeding, we highlight that another interpretation of the

intra-period risk is uncertainty over the size of a potential bailout from a third party, like

the IMF or the ECB. Suppose at the time of settlement, the government seeks assistance

from the third party. The third party agrees to transfer σε conditional on repayment, with

ε drawn from a distribution with support [0, 1]. The value of repayment conditional on the

draw of ε is:

u (Y −B + q(s, B′)B′ + σε) + βE[V (s′)|B′].

The value of default is V D(s, B′) given in equation (2). The government repays as long as:

u (y −B + q(s, B′)B′ − σε) ≥ u (Y + q(s, B′)B′) + βV − βE[V (s′)|B′].

Rearranging, we have repayment if and only if:

ε ≥ 1

σ
· u−1 [u (Y + q(s, B′)B′) + βV − βE[V (s′)|B′]]− Y +B − q(s, B′)B′
︸ ︷︷ ︸

≡∆̂(s,B′)

,

where u−1 is the inverse of the utility function. This expression takes the same form (with

a reversed inequality) as the benchmark model’s expression (3). Hence, we can recast the

intra-period uncertainty as ambiguity about whether (and by how much) the government

will be assisted in repaying maturing debt.

2.4 The Lenders’ Problem

Given the small open economy and risk-neutral lenders, prices must satisfy a break-even

condition. Specifically, let ∆(s, B′) be part of an equilibrium, and let B(s) denote the

government’s equilibrium policy function for debt issuance. The price schedule q : S ×
(−∞, B] → [0, R−1] must equate the expected return on sovereign debt to the risk-free

rate. Assets (B′ ≤ 0) always carry the risk-free price R−1. For B′ ∈ (0, B], the break-even

condition is:

q(s, B′) = R−1 × F (σ−1∆(s, B′))× E
[
F (σ−1∆(s′,B(s′)))|B′] if B′ ∈ (0, B]. (5)

Our timing implies that bondholders are vulnerable to two default decisions, one in the

current period immediately after auction and one after next period’s auction. Since next

period’s default probability depends on next period’s debt choice, the pricing also depends

9



on the government’s borrowing policy function B.
The definition of equilibrium is standard:

Definition 1. An equilibrium consists of a price schedule q, a government value function

V with associated policy B such that: (i) V and B solve the government’s problem (4) given

q; and (ii) q satisfies the break-even condition (5) given B.

2.5 Static Multiplicity

It is useful to describe the multiplicity inherent in the environment by focusing on a single

period, holding future (equilibrium) behavior constant. In particular, let {q,B, V } denote a

“continuation equilibrium” that governs behavior from next period onwards. The multiplicity

in the model is inherently “static” in the sense that we can hold continuation play fixed while

supporting alternative prices and policies in the current period.

Fix an initial state, (Y,B), and a choice of debt to be auctioned, B′ ∈ (0, B]. Given fixed

(Y,B,B′), the only thing that varies are beliefs about government behavior at settlement. In

particular, from (5) the key determinant of alternative equilibrium prices is the probability

of default at settlement, F (σ−1∆(s, B′)). Beliefs are captured in our notation by the state

variable ρ. For now, we suppress this state variable (for the current period) and construct

alternative candidate outcomes for a given (Y,B,B′) and a fixed continuation equilibrium

(which implicitly includes a distribution over next period’s beliefs). After establishing the

type of equilibrium behavior that can be supported, we map ρ to particular outcomes.

Given a continuation equilibrium, we can define the reference price that satisfies (5)

assuming the government will repay maturing bonds B with probability one at settlement.

This replicates (for the current period) the Eaton-Gersovitz assumption that the government

can commit to repayment of maturing bonds prior to the current period’s auction. Hence,

we use the subscript EG to identify this reference price, which is defined by:

qEG(B
′) ≡ R−1E [F (∆(s′,B(s′)))|B′] . (6)

The difference between (6) and (5) is we have set F (σ−1∆(s, B′)) = 1, reflecting the zero

probability of default in the current period. This makes qEG an upper bound on the equilib-

rium price schedule conditional on the continuation equilibrium. Given the i.i.d. assumptions

and the fact that qEG is determined by next period’s default decisions, qEG is a function only

of B′. We are holding B′ fixed for the present discussion, and hence for the remainder of the

sub-section we subsume the argument of qEG when convenient.

Fixing (Y,B,B′), let q̃ ∈ [0, qEG] denote a candidate equilibrium price for the newly

auctioned bonds. From (5), q̃ is qEG multiplied by the probability of default in the current
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Figure 2: Within-Period Price Determination
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(c)
Depiction of equilibrium condition equation (8). Panel (a) depicts the benchmark case of zero, qEG, and an
interior price all being possible equilibria; Panel (b) the case of zero and two interior prices; and Panel (c)
for a sole price, which is interior.

period. Given q̃, let

∆̃ ≡ u(Y −B + q̃B′)− u(Y + q̃B′) + βE [V (s′)|B′]− βV D. (7)

The probability of repayment this period is the probability that ∆̃ ≥ σϵ. The equilibrium

condition (5) can be written as:

q̃

qEG

= F
(
σ−1∆̃

)
≡ F̃ (q̃/qEG), (8)

where the last term uses the definition of ∆̃ in (7) and the fact that qEG is held constant for

this exercise to define the probability of repayment as a function of the ratio q̃/qEG. Our

candidate q̃ satisfies the conditions for equilibrium if and only if it satisfies equation (8).

Equation (8) maps [0, 1] into itself. The static multiplicity then arises from the fact that

there may be multiple valid solutions to (8).

We now discuss three possible classes of equilibrium prices. To guide the discussion,

Figure 2 is a heuristic diagram depicting the fixed point problem of equation (8). In each

panel of the figure, we let q̃/qEG vary between zero and one on the horizontal axis and plot

F̃ (·). From (8), valid equilibrium prices consist of points where this function intersects the

45-degree line. F̃ inherits the continuity of u, and the concavity of u implies that F̃ is

weakly increasing when the government enters the period with debt, and strictly increasing

for q̃ ∈ [0, qEG] such that σ−1∆̃ ∈ (0, 1).8 This is the case depicted in Figure 2. For B ≤ 0,

the government enters the period with assets; the proof of Proposition 2 establishes that the

8The proof of Proposition 3 establishes the concavity of F̃ on (0, 1) for a broad class of distributions F
and utility functions.
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government will never default in this case for small σ. We initially focus on panel (a), and

then discuss the remaining two panels at the end of this section.

The “Eaton-Gersovitz” Price: One possibility is that q̃ = qEG is an equilibrium; that

is, there is zero intra-period risk of default. To establish when this is a valid equilibrium

price, define the value of repayment at the Eaton-Gersovitz price by

V R
EG(Y,B,B′) ≡ u (Y + qEG(B

′)B′ −B) + βE [V (s′)|B′] . (9)

Similarly, define the associated default value at price qEG by V D
EG(Y,B

′) + σϵ, where:

V D
EG(Y,B

′) ≡ u(Y + qEG(B
′)B′) + βV D. (10)

The Eaton-Gersovitz price is a valid equilibrium price for (Y,B,B′) if and only if

V R
EG(Y,B,B′)− V D

EG(Y,B
′) ≥ σ. (11)

This implies that ∆̃ ≥ σ for ∆̃ defined in equation (7) evaluated at q̃ = qEG. In panel (a)

of Figure 2, qEG is a valid equilibrium as F̃ (1) = 1. In this scenario, by facing a high price

at auction, the government’s burden of repayment (both in terms of consumption today and

debt going forward) is relatively low and the threat of default at settlement is therefore zero.

The Cole-Kehoe “Failed-Auction” Price: A second possibility is that q̃ = 0 is an

equilibrium. This is reminiscent of the canonical Cole-Kehoe rollover crisis, in which B′ raises

zero at auction and the government defaults at settlement with probability one. Specifically,

define9

V R
CK(Y,B,B′) ≡ u(Y −B) + βE [V (s′)|B′] . (12)

Note that as q̃ = 0, the value of repayment depends on B′ only through the continuation

value (as B′ ∈ s′). For q̃ = 0 to be an equilibrium price, (8) requires:

V R
CK(Y,B,B′)− u(Y )− βV D ≤ 0.

In panel (a) of Figure 2, zero is a valid equilibrium as F̃ (0) = 0. In this scenario, because

of failure to raise any revenue at auction, the burden of repayment of maturing bonds is

relatively high, leading to default with probability one at settlement, rationalizing the zero

9The government always purchases assets at risk-free prices, so V R
CK(., ., B′) = V R

EG(., ., B
′) for B′ ≤ 0.
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price.

Interior Prices: The third possibility is that there exists ϵ̃ ∈ [0, 1] at which the government

is indifferent to repayment and default. In particular, consider a ϵ̃ such that:

σϵ̃ = u (Y −B + F (ϵ̃)qEGB
′)− u (Y + F (ϵ̃)qEGB

′) + βE[V (s′)|B′]− βV D. (13)

In this case, the auction price is q̃ = F (ϵ̃)qEG, and whether the government repays or defaults

after the auction depends on the realization of ϵ ≷ ϵ̃. The government strictly prefers to

repay if ϵ < ϵ̃ and default if ϵ > ϵ̃, and ϵ = ϵ̃ is the measure-zero point of indifference. We

refer to this case as an interior price:

Definition 2. For a given (s, B′), an equilibrium price q(s, B′) = F (ϵ̃)qEG(B
′) is interior

if ϵ̃ ∈ [0, 1] satisfies (13). The price is strictly interior if ϵ̃ ∈ (0, 1).

At strictly interior prices, the government faces strictly positive but depressed (relative

to qEG) prices. At auction, the bonds are priced as if they are a standard “Eaton-Gersovitz”

bond combined with a lottery on the realization of ϵ ≷ ϵ̃.

Such an interior price is a generic feature of the static multiplicity inherent in the model.

By this, we mean that if there are multiple prices that can be supported in equilibrium, then

an interior price can also be supported. In particular, at a given (Y,B,B′), if the government

prefers to repay when facing qEG and to default when the price is zero, then there exists an

interior equilibrium price:

Proposition 1. For a fixed (Y,B,B′), suppose that (i) V R
EG(Y,B,B′) − V D

EG(Y,B
′) ≥ σ,

and (ii) V R
CK(Y,B,B′)− V D

CK(Y ) ≤ 0, then there exists an interior equilibrium price. If the

inequalities in (i) and (ii) are strict, then there exists a strictly interior equilibrium price.

In panel (a) of Figure 2, as F̃ (0) = 0 and F̃ (1) = 1, there must be a x ∈ [0, 1] such that

F̃ (x) = x. As depicted, x ∈ (0, 1), and hence constitutes a third distinct equilibrium price.

There are also the knife-edge cases with only two valid prices, with either ϵ̃ = 0 or ϵ̃ = 1

satisfying equation (13).

Note that Proposition 1 does not require any restrictions on the distribution of ϵ other

than compact support and a continuous cdf. The fact that Proposition 1 holds regardless of

the size of σ is noteworthy given the empirical motivation. The time between an auction of

new bonds and repayment of old may be quite short in practice. Even if the magnitude of

high-frequency risk is arbitrarily small, the proposition establishes that the mere presence

of such risks remains relevant for equilibrium price determination. One contribution of this

paper is to incorporate such uncertainty into a model of self-fulfilling debt crises.
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In this spirit, we sharpen the characterization of multiplicity using two approaches. One

is place no restrictions on F and let σ → 0, thereby studying the impact of arbitrarily

small intra-period risk. An alternative view is that asset prices show significant volatility at

high frequencies, particularly during crises, and therefore high-frequency risk may indeed be

significant. Hence, the second approach is to place some structure on F without restricting

σ to be arbitrarily small. We tackle each in turn.

Proposition 1 does not rule out that there may be more than one interior fixed point

to equation (8). Moreover, the proposition provides sufficient conditions for an interior

equilibrium, but it is silent on whether an interior price can be supported in other scenarios.

The next proposition states that for small σ there is at most one interior price, and generically

there exists either one equilibrium price or three:

Proposition 2. For a given (Y,B,B′), there exists a K > 0 such that if σ < K, then there

are only three possible equilibrium price configurations:

(i) Zero is the only equilibrium price;

(ii) qEG is the only equilibrium price; or

(iii) {0, qEG, F (ϵ̃)qEG} can all be supported as equilibrium prices, where ϵ̃ ∈ [0, 1] is the

unique solution to equation (13).

Proposition 1 gives sufficient conditions for an interior price. Proposition 2 states they are

also necessary for small σ.10

The preceding propositions characterized the static multiplicity for arbitrarily small intra-

period risk. As noted above, an alternative view is that there is a non-negligible chance that

significant information arrives between an auction and the next payment of debt. We now

explore the scenario in which σ >> 0. In particular, we show that there is a large class

of utility functions and densities F for which there exist at most three possible equilibrium

prices:

Proposition 3. Suppose Y > B > 0 and qEG(B
′)B′ > 0. If u′′(c) is strictly increasing in

c ≥ 0 and F ′(ϵ) is weakly decreasing in ϵ ∈ [0, 1], then there are at most three q̃ that satisfy

(8), with at most two interior. If q̃ = 0 is not an equilibrium, then there is at most one

equilibrium price that satisfies (8).

10One can consider the limiting case of σ = 0 as a price that makes the government indifferent to default
and repayment, which is supported as an equilibrium by the government randomizing over the default
decision. We formalize this notion in Appendix B.
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Panels (b) and (c) in Figure 2 consider the scenario discussed in Proposition 3. In

particular, in Panel (b), B′ is such that there are three possible equilibrium prices, but

qEG(B
′) is not among them. Rather, the highest possible price is associated with some

risk of immediate default. A second interior price is associated with a greater chance of

default within the period. Zero remains an equilibrium as well, which is associated with

probability-one immediate default.

In Panel (c), B′ is such that zero is no longer an equilibrium price. The only equilibrium

price is an interior price. Again, this arises when σ is large enough that there is always a

substantial risk (but not certainty) of default at settlement. In particular, such an outcome

requires that the government strictly prefers to repay when ϵ = 0 when facing a zero price

and strictly prefers to default when ϵ = 1 when facing the Eaton-Gersovitz price. From

Proposition 2, this requires a σ bounded away from zero.

Not depicted in Figure 2 are the straightforward cases in which q̃ = 0 or q̃ = qEG(B
′) are

the unique equilibrium prices. For the former, the F̃ curve is below the 45-degree line for the

entire domain. That is, even at the best possible price, the government strictly prefers to

default. For the latter, even at a zero price the government strictly prefers to repay, implying

the F̃ curve lies above the 45-degree line over the entire domain [0, 1].

2.6 Regions of Multiplicity

We now discuss how the possibility of multiplicity varies with the states (Y,B) and choice B′.

We continue focusing on static multiplicity by fixing a continuation value V and associated

policy B, and then analyzing alternative equilibrium behavior in the current period. For

the formal analysis, there is no need to place additional restrictions on future equilibrium

behavior (beyond those in the equilibrium definition); for clarity, the heuristic diagrams

used in the exposition will assume that E [V (s′)|B′] and qEG(B
′) are continuous and weakly

decreasing in B′.11

To get a better sense of when and how multiplicity arises in our environment, we use

Figure 3. Both panels have the same set of curves, but are evaluated at different points

in the state space (Y,B). The solid hump-shaped line depicts V R
EG(Y,B,B′) as we vary B′

and fix (Y,B). The non-monotonicity comes from the fact that as we increase B′, current

consumption increases (subject to being on the upward part of the debt Laffer curve; that

is, d[q(B′)B′]/dB′ > 0). However, an increase in B′ weakly reduces the continuation value.

11As a technical aside, the continuity of V (s) in B is relatively straightforward to prove in the one-period-
debt Eaton-Gersovitz model (see, for example, Auclert and Rognlie (2016) and Aguiar and Amador (2019)).
The complication introduced by the Cole-Kehoe timing is that the price schedule q depends on both B and
B′, and, depending on the equilibrium selection assumptions, q is potentially discontinuous in B and hence
the budget set can shift discontinuously in the state variable B.
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Figure 3: Value Functions

B′0

V R
CK

V R
EG

V D
EG

V D
EG + σ

BEG BEGB∗EG

V D
CK

V D
CK + σ

(a) Canonical “Crisis Zone”

B′0

V R
CK

V R
EG

V D
EG

V D
EG + σ

BCK BEGB∗EG

V D
CK

V D
CK + σ

(b) Extended “Crisis Zone”
Depiction of V R

i and V D
i , i = EG,CK, as functions of B′. Panel (a) depicts the canonical Crisis Zone

in which 0 is a valid price for all B′ > 0, and qEG is valid on the domain [BEG, BEG]. B∗
EG depicts the

optimum conditional on facing the qEG schedule. Panel (b) is the same figure, but drawn for a higher initial
net endowment Y −B. Zero is valid only for B′ ≥ BCK and qEG for [0, BEG].

Once B′ reaches the downward sloping part of the Laffer curve, V R
EG unambiguously weakly

declines in B′. The peak of V R
EG indicates the optimal issuance policy given qEG, which is

denoted B∗
EG in the figure.12

We also include the value of repayment in the event of a failed auction, V R
CK(Y,B,B′)

defined in equation (12) (i.e., the value if B′ > 0 were to be issued at a zero price). V R
CK

is depicted in Figure 3 by the downward sloping dashed line. For B′ > 0, V R
CK(Y,B, ·)

depends on B′ only through continuation value, which we depict as decreasing in debt carried

forward. As no revenue is raised at auction, V R
CK is less than V R

EG (on the domain such that

qEG(B
′)B′ > 0). For B′ < 0, V R

CK tracks V R
EG, as assets are always purchased at risk-free

prices.

In the figure, we also include the upper and lower limits for the value of default given Y

and the price schedule qEG, which are the lines labeled V D
EG and V D

EG + σ in the figure. The

default values are increasing in B′ as long as auction revenue is increasing; that is, as long

as B′ is on the upward sloping portion of the debt Laffer curve.

The horizontal dotted lines labeled V D
CK and V D

CK + σ give the range of default values

under a zero price. These are invariant to the choice of B′, as the price of issued bonds is

always zero. The V D
EG lines equal their V D

CK counterparts when B′ = 0, as auction revenue

is zero regardless of price.

12We cannot state analytically that the function is continuous and single peaked. In our quantitative
explorations, V R

EG typically turns out to be single peaked, with a few exceptions such as that discussed in
footnote 28.
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In Panel (a) we depict the canonical “Crisis Zone” studied by Cole-Kehoe. Specifically,

V R
CK is less than V D

CK for all B′ ≥ 0. That is, if the government cannot raise a positive

amount at auction, it strictly prefers to default regardless of the realization of ϵ. Thus, zero

is an equilibrium price for all B′ > 0.

On the other hand, if the government faced the qEG schedule, it would issue B′ = B∗
EG

and would repay at settlement with probability one. This is because V R
EG(Y,B,B∗

EG) >

V D
EG(Y,B

∗
EG) + σ. Hence, both default and repayment can be supported in equilibrium.

Due to the lack of commitment to repayment after the auction, the Eaton-Gersovitz

price schedule may be valid on only a subset of the debt-issuance domain even under the

“best” equilibrium beliefs. Specifically, qEG(B
′) is a valid equilibrium price schedule only

if V R
EG(Y,B,B′) ≥ V D

EG(Y,B
′) + σ. Define: BEG(Y,B) ≡ {B′ ∈ [0, B] | V R

EG(Y,B,B′) ≥
V D
EG(Y,B

′) + σ}. On this domain, the Eaton-Gersovitz price is consistent with zero prob-

ability of default at settlement. As we are fixing (Y,B) in this discussion, we shall drop

the arguments of BEG when convenient. If V R
EG and V D

EG are continuous in B′, BEG is a

closed set, although it may be the empty set if default dominates repayment at all levels

of debt issuances. When V R
EG(Y,B, .) − V D

EG(Y, .) is single peaked and continuous, as it is

depicted in Figure 3, we have BEG = [BEG, BEG], where BEG(Y,B) ≡ minBEG(Y,B) and

BEG(Y,B) ≡ maxBEG(Y,B). Outside of BEG, there is a possibility that the government

defaults even if it had auctioned debt at the Eaton-Gersovitz price, eliminating the Eaton-

Gersovitz price schedule as a potential equilibrium outcome for such B′.

By Proposition 1, given that q = 0 is an equilibrium price for all B′ > 0 in panel (a), an

interior price can be supported in equilibrium for B′ ∈ BEG. Specifically, the equilibria map

to the example in Panel (a) of Figure 2. We do not depict the value when facing this third

price schedule, although by construction it lies between V D
CK and V D

EG + σ.

Collecting results, in the scenario depicted in Panel (a) of Figure 3, there are three

possible equilibrium price schedules (and combinations thereof): A zero price for all B′ > 0,

as well as both the Eaton-Gersovitz price and the interior price for B′ ∈ BEG.

Following Cole and Kehoe (2000), the standard construction of a rollover crisis equilib-

rium is to allow a run to occur only if a zero price is valid for all B′ > 0. That is, the

government is unable to auction any amount of debt. This is the case depicted in panel (a).

However, this is an overly narrow view of failed auctions. To explore this, we introduce and

discuss panel (b).

Panel (b) is nearly identical to Panel (a); the lone difference is that the intercept of V R
CK

is greater than V D
CK . The difference between panels (a) and (b) reflects different initial states

(Y,B), such that V R
EG in panel (b) is shifted up relative to the default payoffs. Hence, even at

a zero price for new bond issuances, the government strictly prefers to repay maturing bonds
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at ϵ = 0. This rules out zero as an equilibrium price in the neighborhood of B′ = 0. Define

BCK(Y,B) ≡
{
B′ ∈ [0, B] | V R

CK(Y,B,B′) ≤ V D
CK(Y )

}
. If B′ ∈ BCK , then a zero price is

supportable in equilibrium. The following states that BCK is non-empty if B is high enough

or Y is low enough:

Proposition 4. A necessary and sufficient condition for BCK(Y,B) ̸= ∅ is

u(Y −B)− u(Y ) + βσEϵ ≤ 0. (14)

As βσEϵ > 0, the proposition says that a zero price can be supported for some B′ ∈ [0, B]

if B is high enough (and strictly positive) and Y is low enough (as u′(Y −B) > u′(Y ) when

B > 0).

For a given (Y,B) such that (14) holds, let BCK ≡ inf BCK(Y,B). When E[V (s′)|B′] is

continuous and weakly decreasing in B′, as depicted in Figure 3, BCK = [BCK , B]. In Figure

3 Panel (b), a zero price is not an equilibrium for B′ < BCK , but a failed auction is possible

if the government were to auction B′ ≥ BCK . Hence, if creditors coordinate on the lowest

possible price, the government faces a positive price for a non-trivial but truncated domain

of debt issuances. We shall discuss this in more depth in Section 2.8.

As V R
EG lies above V D

EG+σ at B′ = 0, the Eaton-Gersovitz price is valid for all B′ ≤ BEG;

that is BEG = [0, BEG]. Thus, the distinction with Panel (a) is that in Panel (b) the Cole-

Kehoe price schedule has a restricted domain, while the Eaton-Gersovitz price domain is

no longer truncated on the left. As was the case in Panel (a), there are three supportable

equilibrium price schedules over part of the domain in Panel (b). Specifically, for B′ ∈
BCK ∩ BEG, there is an interior equilibrium price.

2.7 Equilibrium Beliefs and Prices

We now discuss how we map the possible equilibrium prices to the creditor belief sunspot ρ.

In particular, we consider three possible belief regimes, each roughly corresponding to one of

the three types of prices discussed above. We index beliefs by the exogenous state variable

ρ ∈ {P,C,O}. The element “P” denotes pessimistic (or “worst-case”) beliefs, “O” denotes

optimistic (or “best-case”) beliefs, and “C” denotes “concerned.” Note that these beliefs

differ in regard to the imminent repayment of maturing debt; beliefs over future outcomes

are held fixed, although it is straightforward to introduce persistence in belief regimes.13

For all beliefs, q(s, B′) = R−1 for B′ ≤ 0. For expositional simplicity, we omit this domain

from the characterizations below. It is also useful to define qI(Y,B,B′) as the largest interior

13It is also straightforward to induce cross-country contagion, as is commonly observed during debt crises,
either through correlation in the inter-period shock ϵ or through the draw of the belief regime ρ.
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Figure 4: Price Schedules
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Price schedules associated with Figure 3 Panels (a) and (b), respectively. The downward sloping dashed line
is qEG and the horizontal line at 0 is qCK . The “optimistic” price schedule is the shaded line, which overlaps
with qEG on BEG in Panel (a) and B′ ≤ BEG in Panel (b). The “pessimistic” price schedule is zero for
B′ > 0 in Panel (a) and for B′ > BCK in Panel (b), and qEG otherwise. The “concerned” price schedule is
labelled qI on the domain where it differs from the optimistic price.

price, when an interior price exists:14

qI(Y,B,B′) = max
ϵ∈[0,1]

{F (ϵ)qEG(B
′) s.t. Equation (13) holds} .

Recall that the above analysis established conditions under which the interior price, when it

exists, is unique, in which case the max operator just returns this price.

If ρ = O, then creditors coordinate on the highest possible equilibrium price for each state

(Y,B,B′).15 In particular, q(s, B′) evaluated at ρ = O equals qEG(B
′) if B′ ∈ BEG(Y,B).

If B′ lies outside BEG, then the EG price is not supportable, and we assume creditors

coordinate on the highest interior price (qI), if one exists, and, if no interior price exists,

creditors coordinate on zero. From Proposition 2, we know that as σ → 0, there is no interior

price if qEG(B
′) is not supportable, and hence this implies the price is unambiguously zero

for B′ > 0 such that B′ /∈ BEG.

Panels (a) and (b) of Figure 4 depict the price selection associated with the scenarios

of the respective panels of Figure 3. Figure 4 assumes σ → 0 for expositional simplicity.

14Note that solutions to equation (13) are the zeros of a continuous function, and hence constitute a closed
set. Thus, the maximal element is well defined.

15Creditor beliefs cannot be manipulated directly by the government through its actions; that is, belief
regimes are not conditional on B or B′. Nevertheless, the sensitivity of prices to beliefs varies with B′ and
this matters for optimal policy.
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The downward sloping dotted line is qEG(B
′). The shaded portion of that line depicts the

optimistic price schedule when B′ ∈ BEG. Recall that for Figure 3 Panel (a), BEG > 0,

and hence there is an interval in the neighborhood above B′ = 0 in which the Eaton-

Gersovitz price is not sustainable in equilibrium. As σ → 0, Proposition 2 states that the

only sustainable price on this domain is zero. For B′ ∈ BEG, the optimistic price schedule

is qEG. For B′ > BEG, the only sustainable price is again zero for small σ. In Panel (b)

of Figure 3, we have BEG = 0, and hence the optimistic price schedule tracks qEG for all

B′ ≤ BEG in Panel (b) of Figure 4.

If ρ = P , then creditors coordinate on the lowest possible equilibrium price. Specifically,

for ρ = P and B′ > BCK(Y,B), we have q(s, B′) = 0. For B′ < BCK , a zero price is not

sustainable, and we set the price to qI if an interior price exists and qEG otherwise. For

B′ = BCK ≡ inf BCK(Y,B), we set q equal to a strictly positive price (either qI > 0 or qEG);

otherwise, the domain on which prices are strictly positive is open as B′ ↑ BCK , and the

optimal debt issuance policy may not be well defined.

In Panel (a) of Figure 4, the pessimistic price schedule is the horizontal dashed line at

zero. Recall that in Figure 3 Panel (a) we depicted the canonical Cole-Kehoe Crisis Zone

with BCK = 0. Hence, a zero price is supportable for all B′ > 0. In panel (b), however,

BCK > 0. Hence, the pessimistic beliefs track qEG for a non-trivial portion of the positive

domain. As depicted, our selection ensures that q is upper semi-continuous at BCK , and

hence the zero price applies only for B′ > BCK .

If ρ = C, creditors focus on the within-period uncertainty and coordinate on the largest

interior price, if one exists (and otherwise coordinate on the optimistic price). In particular,

q(Y,B, ρ = C,B′) =





qI(Y,B,B′) if qI(Y,B,B′) > 0

q(Y,B, ρ = O,B′) otherwise,
(15)

where, as with ρ = P , we restrict qI > 0 to ensure a well-behaved budget set. Hence, for

concerned beliefs, creditors coordinate on the price associated with the highest supportable

indifference thresholds. The coordination on the highest root is chosen so that if the boundary

case of ϵ̃ = 1 satisfies (13), then qEG is the equilibrium price. We will return to this feature

when we discuss the government’s debt issuance policy below. As established in Proposition

2, if σ is small, then there is at most one interior price, and this additional level of selection

is without loss.

In Panel (a) of Figure 4, we have a well defined interior price on BEG. As the government

is indifferent to default when facing qEG at the boundaries of this domain, the interior price

coincides with qEG at BEG and BEG. On the interior of BEG, there is a strictly interior price.
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In Panel (b), an interior price is only sustainable on [BCK , BEG]. At BCK , the government

is indifferent to default at the zero price. Hence, qI approaches zero as B′ ↓ BCK . As before,

qI approaches qEG as B′ ↑ BEG.

The fact that qI(Y,B, ·) is non-monotonic in B′ reflects the two sources of risk. As the

government auctions more debt it relaxes the burden on repaying maturing bonds. For

B > 0, concavity of u implies that more auction revenue increases u(Y −B+qB′) more than

u(Y + qB′), raising the likelihood of repayment at settlement. However, an increase in B′

may lower the continuation value and increase the probability of default. The net effect is

ambiguous. In Panel (a), we depict the latter effect dominating and qI is always decreasing.

In Panel (b), the former effect dominates and the interior price is increasing in B′.

The non-monotonicity reflects that the interior price captures elements of both a failed

auction and the standard Eaton-Gersovitz concerns about future default. That is, creditors

worry whether the government is raising enough auction revenue to repay maturing debt

in the current period as well as about whether the government will default in the next

period. The pessimistic beliefs put all the weight on the former, generating a zero price.

The optimistic beliefs put all the weight on the latter, generating the Eaton-Gersovitz price.

And the interior price is a mixture of the two.

The price schedule depends on maturing debt B as well as new issuances, and the com-

parative static with respect to B is also not necessarily monotone. While it is perhaps

counter-intuitive that more legacy debt is not always a negative for current spreads, this

property is the combination of two intuitive forces. On the one hand, a lower B reduces

the scope for negative outcomes (either qCK or qI), favoring the Eaton-Gersovitz price. This

may generate a higher price conditional on ρ ̸= O, as the only sustainable price becomes qEG

as B falls. However, if an interior price exists, it may increase as B declines. This reflects

that the point of indifference between repayment and default occurs at a lower auction price

the smaller is outstanding debt. That is, governments with low amounts of legacy debt are

less prone to a crisis, but conditional on such a government having a crisis, it will involve a

relatively severe spike in spreads to make default a credible threat.16

Note that under any of the beliefs discussed above, the government may face a discon-

tinuous price schedule. Clearly, the government will never issue B′ just to the right of a

discontinuous drop in the price schedule when the continuation value is decreasing in B′.

16More precisely, the comparative statics are such that the interior price increases in B for small σ. Recall
that this is the case depicted in Panel (a) of Figure 2, and an increase in B shifts the increasing part of the
F̃ curve to the right, increasing the point of intersection with the 45-degree line. For large σ, there may be
multiple interior prices with differing comparative statics (panel (b) of Figure 2), or a unique interior price
that is the maximal price sustainable with any beliefs (panel (c)) that has the opposite comparative static
to the small σ case.
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Such a debt issuance raises less revenue and depresses the continuation value. The next

subsection discusses optimal debt issuance and formally confirms that intuition. Moreover,

we establish that there are conditions under which the government will never issue debt at

any part of the domain with a strictly interior price. That is, the government will optimally

choose a debt level that zeroes out intra-period default risk.

2.8 Debt Policy Functions

We now discuss the government’s optimal debt issuance policy given an equilibrium price

schedule and continuation value. We will show that for all three belief regimes, as σ → 0,

the government either issues at Eaton-Gersovitz prices or defaults with probability one. The

impact of creditor beliefs is on what level of issuances (if any) the government undertakes at

auction. Observed equilibrium prices will differ across beliefs due to the differences in debt

issuances, but the observed equilibrium prices will all be points on the best possible price

schedule.

We begin with perhaps the most surprising insight. Namely, under certain general con-

ditions, in equilibrium the government will never issue debt at a strictly interior price:

Proposition 5. For a given s ∈ S with ρ = C, consider two possible debt issuances {B′
1, B

′
2}

with q(s, B′
i) interior i = 1, 2. If (i)

q(s,B′
1)

qEG(B′
1)

≤ q(s,B′
2)

qEG(B′
2)
, and (ii) q(s, B′

1)B
′
1 ≤ q(s, B′

2)B
′
2,

then B′
2 weakly dominates B′

1 as a policy choice, and strictly dominates if either of the two

inequalities is strict.

The first condition says that the intra-period risk of B′
2 is less than that of B′

1. In particular,

if ϵ̃i, i = 1, 2, are the respective thresholds from equation (13), then F (ϵ̃2) ≥ F (ϵ̃1), making

it less likely the government defaults at settlement after issuing B′
2. The second condition

says that B′
2 raises more auction revenue than B′

1.

Proposition 5 states that, when choosing over the interior price schedule, the government

favors less intra-period risk and more auction revenue, all else equal. Applying this result

to Figures 3 and 4, the government strictly prefers to issue at BEG instead of any debt level

that fetches an interior price and raises less revenue:

Corollary 1. For a given s ∈ S with ρ = C, suppose there exists BEG = maxBEG such that

q(s, BEG) = qI(s, BEG) = qEG(BEG). Then for any B′ such that (i) q(s, B′) < qEG(B
′) and

(ii) q(s, B′)B′ ≤ qEG(BEG)BEG, the government finds BEG strictly preferable to B′.

At BEG, the auction occurs at the Eaton-Gersovitz price, but at a debt level that is elevated

relative to B∗
EG. By issuing additional debt, the government can eliminate the risk of not
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repaying maturing debt at settlement, but at the cost of raising the probability of default

next period.

Proposition 5 implies that the government will never issue debt on the interior of BEG,

unless BEG is on the wrong side of the debt Laffer curve. On the interior, the government

receives a low price due to concern about intra-period risk. As the government is indifferent

at the margin to such risk, it has an incentive to choose debt that minimizes intra-period risk.

The proposition says that the government will issue debt such that there is zero intra-period

risk.17 That is, it will issue debt only at the EG price in equilibrium. Hence, the primary

impact of concerned beliefs is not to deliver an interior price on the equilibrium path, but

rather to push the government to issue an alternative level of debt. In particular, it may

lead the government to issue more debt than it would under the optimistic beliefs. This

result will also be echoed in the policy functions of the quantitative model in Section 3; in

particular, see Figure 6.

For the case depicted in panel (a) of Figure 3, the proposition states that the government

will issue at BEG > B∗
EG. In particular, the result states that the points on the interior of

(BEG, BEG) are dominated by the right end point. Given that V D
EG is strictly increasing for

B′ ≤ BEG, BEG also dominates BEG. The proposition leaves open the possibility that the

government may issue B′ > BEG, if that raises more revenue at auction. In that case, the

government is attracted by the extra revenue, which it keeps in the case of default. However,

Proposition 2 states that as σ → 0, the points outside of BEG have a price that approaches

zero, and hence these alternatives are also dominated.

For the case of panel (b) of Figure 3, the government will issue either BCK or BEG,

assuming B′ > BEG does not raise additional revenue. Issuing BCK yields the Eaton-

Gersovitz price, as even at a zero price the government does not default. It is in general

ambiguous whether the repayment value atBCK is greater or less than the repayment value at

BEG. The proposition establishes that issuances on the interior of (BCK , BEG) are dominated

by BEG. In the case of panel (b), therefore, the government may over-issue or under-

issue relative to B∗
EG when facing concerned beliefs. The common implication is that the

government’s debt issuance yields the Eaton-Gersovitz price in equilibrium, but the quantity

of issuance is distorted relative to B∗
EG.

For large σ, there may be an interior price at B′ > BEG which raises enough additional

revenue that it warrants risking default at settlement (and keeping the revenue) rather

than issuing BEG and securing the EG price. In our simulations of the quantitative model

17This intuition uses the fact that fixing B′, the government always prefers a better price in exchange for a
lower probability of intra-period default. It leaves out the impact on the continuation value from increasing
B′. The proof establishes that, under concerned beliefs, the former effect dominates the latter.

23



presented in Section 3, issuance at B′ > BEG under concerned beliefs does not happen in

equilibrium.

Slow Motion Crises: Despite the i.i.d. beliefs and the static nature of multiplicity,

Proposition 5 states that concern about rollover risk can lead to a prolonged crisis. If BEG

is preferable and BEG > B∗
EG, then concerned beliefs lead to “over borrowing” relative to

optimistic beliefs. While the price obtained is the Eaton-Gersovitz price, it will imply high

spreads due to the greater level of debt issuance. The concerned beliefs induce over borrowing

because the creditors are worried that if the government were to issue less debt, it would not

have adequate revenue to credibly repay maturing debt at settlement. In this case, current

over borrowing can lead to a prolonged, slow motion crisis in which the government over

issues today, raising the possibility of future default. This is reminiscent of the dynamics

of Lorenzoni and Werning (2013)’s slow-moving crises, but in our case the multiplicity is

entirely static. In particular, conditional on issuing BEG, the equilibrium price is unique.

However, the off-equilibrium beliefs about intra-period risk lead the government to issue

more debt than is optimal under optimistic beliefs. In the quantitative analysis, we shall see

that such crises are indeed a frequent outcome along the equilibrium path.

We now turn to debt issuance under the more familiar optimistic and pessimistic beliefs.

Under optimistic beliefs, the government faces the best supportable price schedule. For

σ → 0, this implies the government will optimize over B′(−∞, 0] ∪ BEG conditional on

the qEG(B
′) price schedule. This is similar to the standard problem under intra-period

commitment, with the only difference introduced by the current timing being that not all B′

are consistent with guaranteed repayment at settlement. That is, BEG does not necessarily

include allB′ such that qEG(B
′) > 0, as the government has the option to default immediately

after the auction.18 As in the standard model, if Y is low enough and B high enough, the

government defaults with probability one. In that case, the value of default dominates any

achievable repayment value. This can be considered a “fundamental” default in the sense

that default occurs regardless of creditor beliefs.

Under pessimistic beliefs, the government faces a price of zero for B > BCK . If BCK = 0,

we are in the standard Cole-Kehoe crisis scenario. That is, the government cannot issue

any amount of debt at a positive price. It therefore has the option of purchasing assets and

repaying B or defaulting with probability one. If BCK > 0, there is a range of debt that

carries a strictly positive price. As σ → 0, this price becomes the Eaton-Gersovitz price.

Issuing a small amount of debt at this price may dominate outright default (or purchasing

18For large σ, the government facing optimistic creditors may choose to issue debt at an interior price; in
particular, for large σ there are debt levels which cannot sustain qEG but have a strictly positive price.
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assets). If so, then the equilibrium outcome of pessimistic beliefs is not default but truncated

debt issuance.

Sudden Stops: This last outcome corresponds to “forced deleveraging” or a “sudden

stop” crisis. If BCK > 0, even under pessimistic beliefs, the government can issue some

debt at strictly positive prices. However, it cannot issue to the level of the optimistic beliefs

optimum, B∗
EG (see Panel (b) of Figure 3). For this to be an equilibrium outcome, (Y,B)

must be more favorable than in the canonical rollover crisis, but at the same time, Y must

be low enough and B high enough that BCK(Y,B) < BEG. Just as in the rollover crisis,

whether or not the government is forced to delever depends upon the realization of the

sunspot variable. Interestingly, the forced deleveraging choice may also be the equilibrium

outcome under concerned beliefs. From Proposition 5 and the subsequent discussion, we

know that as σ → 0, the government will issue either at BEG or the pessimistic-beliefs

optimal issuances. Which it chooses depends on whether V R
EG(Y,B,BCK) ≷ V R

EG(Y,B,BEG).

In the quantitative analysis, we show that at low levels of debt, sudden stops do occur, but

over-borrowing/slow-motion crisis is the norm for the majority of the ergodic distribution.

2.9 Long-Term Debt and Buybacks

The insights from the one-period bond model carry over to bonds of longer duration, al-

though there are quantitative differences discussed in Section 3. The new conceptual margin

introduced by extended maturity is that the sovereign can repurchase existing debt. This

raises the issue of how creditor beliefs affect incentives and prices for debt buybacks.

We assume that the sovereign borrows by issuing long-term non-contingent bonds. These

bonds pay a coupon every period up to and including the period of maturity, which, without

loss of generality, we normalize to the risk-free rate r∗. With this normalization, a risk-free

bond will have an equilibrium price of one. For tractability, we consider a bond with random

maturity, as in Leland (1994).19 We assume there is only one maturity traded and λ is a

primitive parameter of the environment.

The government’s value functions are the same as in the one-period case, except that

consumption in the event of repayment is Y − (r∗ + λ)B + q(s, B′)[B′ − (1 − λ)B] and in

default is Y + q(s, B′)[B′ − (1− λ)B]. When B′ − (1− λ)B > 0, the government is adding

to its (non-maturing) debt stock and the situation is similar to the one-period debt case

analyzed previously. That is, the price of newly issued debt depends on investor beliefs

about repayment at settlement of coupon and maturing principal (r∗ + λ)B.

19See also Hatchondo and Martinez (2009), Chatterjee and Eyigungor (2012) and Arellano and Rama-
narayanan (2012).
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More interestingly, when B′ − (1 − λ)B < 0 the government is buying back some of its

debt rather than issuing more debt. Since the buyback takes place at the time of the auction,

any funds spent on the buyback are sunk.

The analog of our interior price condition with one period debt (13) is now given by

σϵ̃ =u(Y − (r∗ + λ)B + q̃ × [B′ − (1− λ)B])− u(Y + q̃ × [B′ − (1− λ)B])

+ βE [V (s′)|s, B′]− βEV D(s′), (16)

where q̃ = F (ϵ̃)qEG. Note that the right-hand side of (16) is decreasing in q if there are

buybacks (B′ < (1 − λ)B), hence the right-hand side is decreasing in ϵ̃. Therefore, with

buybacks, there can be only one equilibrium price for a fixed (s, B′). This leads to the

following result:

Proposition 6. Given s and B′, if B′ < (1− λ)B, the equilibrium price q(s, B′) is unique.

Even though the equilibrium buyback price is unique, it could still reflect positive intra-

period default risk because the sovereign still has to service outstanding debt at settlement.

However, the next proposition asserts that if by reducing its buybacks the sovereign can

reduce both intra-period risk and the amount being paid out to lenders, it is optimal for it

do so. This effectively means that when buybacks occur, they occur at EG prices.

Proposition 7. Consider two possible buybacks {B′
1, B

′
2} with q(s, B′

i) interior i = 1, 2,

B′
i < (1 − λ)B and B′

1 > B′
2. If (i)

q(s,B′
1)

qEG(B′
1)

≥ q(s,B′
2)

qEG(B′
2)

and (ii) q(s, B′
1)[B

′
1 − (1 − λ)B] ≥

q(s, B′
2)[B

′
2 − (1 − λ)B] then B′

1 weakly dominates B′
2 and does so strictly if either of these

two inequalities is strict.

3 Numerical Examples

A key insight from the analytical model is that, when confronted with concerned beliefs, the

government adjusts debt issuances in order to avoid intra-period risk. This section verifies

that this feature carries over to richer, quantitative versions of the model.20 We do so in

both a one-period debt model as well as a model with longer maturity, the former to hew

closely to the analytical model and the latter as a bridge to the recent quantitative literature

building on Hatchondo and Martinez (2009) and Chatterjee and Eyigungor (2012).

Given our focus on self-fulfilling debt crises, it is important to accurately capture the

vulnerability of sovereigns to rollover risk. Governments in crisis often face large interest

20The computer code for the computation of the model can be found at https://github.com/

zstangebye/self_fulfilling_crises_revisited.git.
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and principal payments relative to available resources, despite the fact that average maturity

is on the order of five years in many emerging markets and European crisis countries. In

practice, there are discrete “lumps” in the maturity profile, where debt coming due in a

particular month is substantially larger than the amount implied by face value and average

maturity, in part due to the disproportionate issuance of bonds with maturities less than or

equal to 12 months.

Mexico and Italy are both good examples. In the first quarter of 1995, Mexico’s maturing

debt payments were nearly 90 percent of tax revenue.21 If we exclude the very short maturity

Cetes, the ratio of debt due to tax revenue is still 66%. In 2011Q4, Italy had scheduled

debt payments over the next year totaling three-quarters of tax revenue. These large debt

payments as a fraction of tax revenue made them vulnerable to a failed auction. To match

this feature in our model, we focus on interest and maturing debt relative to revenue. We

now describe how we calibrate the model to capture this vulnerability. We focus on Mexico

in the text, and report an alternative calibration for Italy in the appendix, along with some

robustness experiments.

We assume the government has access to a constant share of the endowment τY .22 Letting

G be government expenditure, the budget constraint is: G+B̂ = τY +q(s, B̂′)B̂′, where B̂ is

face value of debt. Dividing through by τ and letting C ≡ G/τ and B ≡ B̂/τ , we obtain the

standard budget constraint used throughout the paper. More precisely, we consider C/Y to

be government expenditure and B/Y to be the face value of debt, both normalized by tax

revenue.

Many aspects of the calibration of our model are similar to the literature. The model

period is a quarter. We make standard parameter choices for the risk-free rate and prefer-

ences. The quarterly risk-free rate is set to 1%; the sovereign has time-separable power-utility

preferences with CRRA = 2; and we follow Aguiar and Gopinath (2006) in setting β = 0.8.

Default involves a proportional loss of endowment as well as temporary exclusion from

financial markets. Exclusion ends with a Poisson hazard rate, after which the government is

in good credit standing with zero debt. Following Aguiar and Gopinath (2006), we set the

quarterly Poisson re-entry probability in the default state to 12.5%. Also following Aguiar

and Gopinath (2006, 2007), the rate of growth of the government’s endowment is modeled as

the sum of an AR(1) process gt and a transitory MA(1) error ηt: lnYt−lnYt−1 = gt+ηt, where

gt = (1− ρg)µg + ρggt−1 + σgϵt, ηt = σs [st − st−1] and ϵt, st ∼ N(0, 1). This is equivalent to

an environment with stochastic trend growth and i.i.d. transitory shocks. We use quarterly

21The debt due is reported in Cole and Kehoe (1996). The tax revenue is from the OECD.
22For reference, the average revenue-to-GDP ratio for Mexico is 26% in 1990Q1-2020Q3 and is 18% in

1995Q1. However, as discussed, we do not use these numbers directly in the calibration.
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Mexican real GDP data for 1980Q1-2020Q3 and estimate µg = .0033, ρg = .331, σg = .014

and σs = .011.

We turn now to the less standard aspects. To highlight our novel approach to crises,

we set the probability of ρ = P to 0 and focus on the equilibrium with transitions between

optimistic and concerned belief regimes, ρ ∈ {C,O}. We continue to assume that ρ is i.i.d.

over time, and select the probability ρ = C and the proportional default cost d to match

two key empirical moments for Mexico. We also report the canonical CK case of ρ ∈ {P,O}
and ρ ∈ {O} for reference. To capture limiting behavior as σ approaches zero, we assume

positive but minimal intra-period risk. Specifically, σ = 0.0001 and ϵ is uniform on [0, 1].23

We calibrate d and the probability of ρ = C by matching two moments. One of these is the

standard deviation of the Mexican EMBI sovereign spread, which, for the available sample

period of 1994Q1-2020Q3, is 2.3%. The second moment captures Mexico’s vulnerability to

a rollover crisis. Specifically, for Mexico, the face value of debt to quarterly tax revenue is

1.8 in 1995Q1, and this is the 97.5th percentile of the 1990Q1-2020Q3 sample. Recalling

that debt payments to revenues were 0.66 in 1995Q1, the second targeted moment is debt

payment totaling 66% of resources at the 97.5th percentile of the ergodic distribution of

debt. For the short-term debt model, debt payments and face value must coincide, but for

long-term debt model we choose additional parameters (discussed in Section 3.2) to match

the ratio of face value to revenue of 1.8 as well.24

For the one-period bond model, targeting these two moments leads to d = 0.176 and

probability of encountering a concerned belief regime of 0.8% (i.e., lenders become concerned

about intra-period risk once every 32 years). The long-term bond calibration, reported below,

involves higher costs of default and lower probability of concerned beliefs.

3.1 One-period Debt

The upper panel of Table 1 reports the one-period bond model, and the first row reports the

key moments of the base one-period debt model (the next two rows pertain to alternative

belief specifications and will be discussed later). The calibration implies that a default

occurs once every two hundred years, which is arguably too low relative to the data but a

well-known feature of one-period debt models that do not have implicit “debt forgiveness”

in low endowment states via a non-linear default cost.25 Still, the low default frequency

does not make it impossible to match the volatility of spreads. The reason is that when the

23Model moments and equilibrium properties are not sensitive to the choice of σ as long as it is small; in
Section C.3 in the appendix, we report results for σ 100 times larger.

24Holding constant payments coming due, longer maturity raises the fraction consisting of interest pay-
ments, necessitating a larger face value and effective debt burden.

25In Tomz and Wright (2013) sample of countries, default occurs roughly once every fifty years.
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concerned regime occurs, the government avoids default by issuing a significant amount of

debt at high yields, exactly as discussed in Corollary 1. The final column reports the ratio of

the standard deviations of the HP-detrended log consumption and log output, and generates

the expenditure volatility that is characteristic of emerging economies.26

Table 1: Simulated Moments: One-Period and Long-Term Bonds

97%ile Default
DebtPmt/Rev Frequency StDev(r − r∗)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

One-Period Bonds
Base, ρ ∈ {O,C} 66% 0.5% 2.3% 1.15
Optimistic, ρ ∈ {O} 66% 0.2% 0.1% 1.14
Cole-Kehoe, ρ ∈ {O,P} 61% 3.5% 0.3% 1.09

Long-Term Bonds
Base, ρ ∈ {O,C} 66% 5.2% 2.3% 1.51
Optimistic, ρ ∈ {O} 67% 4.7% 1.0% 1.53
Cole-Kehoe, ρ ∈ {O,P} 29% 0.0% 0.0% 1.29

To further understand these model moments and to relate them to the analytical model,

it is useful to consider the equilibrium price and policy functions. Figure 5 depicts the

quantitative version of Figure 4. In each panel, the thin black dashed line is the reference

price schedule qEG introduced in the analytical model; that is, it is the break-even price

of a bond if creditors were certain of repayment at the current period’s settlement. The

thick solid black line is the optimistic price schedule and the thick grey dashed line is the

concerned price schedule. All schedules are evaluated at the mean endowment growth.

Figure 5 reflects the same economics as Figure 4. In Panel (a), we are in the canonical

Cole-Kehoe Crisis Zone: If the model were to incorporate pessimistic beliefs in the current

period, the associated price schedule would be zero for all B′ > 0. For low levels of fu-

ture debt, qEG cannot be supported because insufficient revenue at today’s auction makes

repayment at the current period’s settlement non-credible. So, zero is the only equilibrium

price regardless of beliefs. There is a subset of the debt domain, labeled BEG, on which the

Eaton-Gersovitz price schedule is supportable. On this domain, an interior price schedule is

also a valid equilibrium outcome, and creditor beliefs determine which schedule is realized

at auction. For larger values of future debt, prices fall to zero again, regardless of beliefs, as

26See Aguiar and Gopinath (2007) and Kaminsky et al. (2004) on the private and public expenditure
volatility, respectively, that characterizes emerging markets.
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Figure 5: Price Schedules: Evaluated at Mean Endowment Growth
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This figure is the counterpart of Figure 4 for the quantitative model. Panel (a) depicts the case of mean g
and mean B/Y . Panel (b) depicts mean g and a low initial debt level.

the future debt burden is great enough to trigger immediate default.27

In Panel (b), legacy debt is at a level encountered along the transition path to the ergodic

distribution. At this low level, and for debt issuances less than BCK the Eaton-Gersovitz

price is the only equilibrium price possible as the government is willing to repay even without

auctioning new debt. If creditors coordinated on pessimistic beliefs, the price schedule would

be qEG for B′/Y ≤ BCK and zero otherwise. For B′/Y ∈ [BCK , BEG], three prices are

consistent with equilibrium; namely, zero, the Eaton-Gersovitz price, and an interior price.

For B′/Y > BEG, the only supportable price is zero because future debt burden is too great.

Figure 6 depicts the government’s policy function evaluated at the mean growth rate

of endowment. The policy response to the optimistic price schedule delivers the familiar

dynamics of quantitative Eaton-Gersovitz models: If the government were to consistently

face optimistic beliefs, it would issue debt quickly to approach the mean debt-to-output

ratio. Once debt is built up, endowment shocks induce small variation in debt levels until a

sufficiently low endowment shock causes default.

The policy response to the concerned price schedule is markedly different and tracks the

intuition provided in the discussion following Proposition 5, Corollary 1. At low initial debt

levels and low issuances, the concerned price schedule overlaps with the optimistic schedule

(see Figure 5b). Hence, the policies overlap on this domain in Figure 6. For initial debt

levels between 33 and 41 percent of quarterly revenue, the concerned regime induces the

27Another factor in the zero price at high debt issuances is that the government keeps the period’s auction
revenue in default, making it more difficult to sustain a positive price for high B′.
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Figure 6: Debt-Issuance Policy Functions
Policy function for new debt issuances as a function of maturing debt, evaluated
at the mean g. The monotonic black line is for optimistic beliefs, and the non-
monotonic blue line depicts the policy for concerned beliefs, which is identical to
the former for low initial debt levels. The straight line is the 45◦ line. Debt levels
to the right of the depicted lines imply certain default.

government to truncate its debt issuances: low debt levels secure the Eaton-Gersovitz price

and avoid intra-period risk. For the same reason (avoidance of intra-period risk), but with

the opposite outcome, the government over issues (relative to the optimistic policy) for debt

levels beyond 41 percent of the endowment.28

To summarize, higher debt levels increase future default risk under either belief regime.

But under concerned beliefs, intra-period default risk is very sensitive to debt issuances, with

relatively low levels of issuance generating higher risk due to concerns about whether the

government has raised enough revenue to repay old debt at settlement. This countervail-

ing force, absent under Eaton-Gersovitz timing, generates the flatter price schedule under

concerned beliefs and induces the government to issue more debt.

While the concerned price schedule is flatter in the neighborhood of BEG, it is not high.

That is, future default risk is significant, and this is reflected in spreads. In the base model,

the average spread is 0.6%, reflecting the overall low default rate. However, conditional on

the concerned regime, the average spread is 25%, which is roughly 50 times the unconditional

mean; moreover, 31% of all defaults are immediately preceded by the concerned regime.29

28The upward jump discontinuity in the concerned-belief policy function at 0.41 induces another upward
jump discontinuity in both policy functions at roughly 0.15 where (regardless of beliefs) the optimal debt
issuance increases from below 0.41 to above. The discrete jump down in next period’s expected marginal
utility of consumption as B′ crosses 0.41 causes the discrete jump up in debt issuance at B = 0.15.

29Another 10% of defaults coincide with ρ = C but these occur mostly for numerical reasons. Since BEG

is typically not exactly on the grid for B/Y , the discreteness in debt values causes default to sometimes
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Thus, the concerned regime frequently leads the government to over borrow and increases

the risk of default next period.

We now turn to the two other rows of Table 1 pertaining to the one-period bond case.

The “Optimistic” case explores the same environment, but without shifts in beliefs, i.e.,

the lenders maintain optimistic beliefs throughout. This alternative model features pricing

and policy functions similar in shape and magnitude to the solid black lines in Figures 5

and 6, respectively. While it generates commensurate debt levels, this specification cuts the

default rate by more than half and the spread volatility by a factor of 23. The “Optimistic”

case reveals that the possibility of the concerned regime, albeit rare in the base model, is

pivotal in generating defaults and spread volatility. In the “Cole-Kehoe” case, the concerned

belief regime is replaced with the pessimistic regime. The policy functions in this alternative

model resemble the dashed grey lines in Figure 6 but without the overborrowing region.

The endogenous response of the government is to de-lever slightly and, when beliefs shift,

to default rather than overborrow. This behavior increases default frequency substantially

relative to the base model but, since no overborrowing ever takes place, it reduces spread

volatility significantly as well.

3.2 Long-Term Debt

In this section, we examine the case of long-term bonds. The motivation for this investigation

is the well-known point, emphasized by Cole and Kehoe (2000) and others, that lengthening

the maturity of debt is one way to eliminate rollover crises. Nevertheless, we show in this

section that with plausible constraints on fiscal resources, rollover crises can persist with

long-term debt.

For the long-term debt model, debt payments as a fraction of revenue is (κ+λ)B, where

κ is the coupon, λ is the inverse maturity parameter and B is the (revenue normalized)

face value of inherited debt. We set κ to 3%. To pick λ, recall that Mexico’s ratio of face

value of debt to tax revenues was 1.8 in 1995Q1. This is consistent with the required debt

payments of 0.66 if λ = 0.064, or a maturity of approximately four years. With these choices

for κ and λ, the cost of default and probability ρ = C was chosen to match the same two

moments, namely, the standard deviation of spreads of 2.3% and debt-payment-to-revenue of

66% at the 97.5th percentile of the debt distribution. This required d = 0.467 and concerned

probability of 0.44% quarterly, or roughly once every 57 years.

The simulated moments of the long-term bond case are reported in the lower panel of

Table 1.30 The default frequency is now 5% annually, or once every 20 years, higher than the

dominate over-borrowing.
30The price schedules and policy functions for the long-term debt model are not depicted as they have
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average experience of emerging market economies. The elevated default frequency is a well-

known consequence of debt dilution, which induces the government to venture deeper into

the default region. Importantly, the government remains exposed to belief shocks, and when

the concerned regime materializes it overborrows just as in the one-period debt model. The

overborrowing leads to a spike in spreads and sometimes to a default in the next period.31

The other alternatives in bottom panel of Table 1 show that the concerned belief regime

is pivotal in generating spread volality just as in the one-period model. In the “Optimistic”

case, debt levels are somewhat higher but the high cost of default lowers default frequency

somewhat as well. More importantly, spread volatility declines by more than half because

there are no spikes due to belief shocks. In the “Cole-Kehoe” case, the government’s optimal

response is to stay out of the default zone completely. Since default costs are much higher

than in the one-period debt case, even a small probability of pessimistic beliefs causing a

default is too costly to risk. Both default frequency and spread volatility are zero.

In summary, there is an important commonality in outcomes between the long-term and

one-period debt models. When calibrated to the same facts, the small probability of the

concerned belief regime — and the accompanying overborrowing — significantly increases

spread volatility in both models. In the Appendix we show that this commonality across

one-period and long-term debt models holds up for the Italian case as well. We note that in

all cases of the long-term bond model, buybacks of debt never happen or are extremely rare.

4 Conclusion

In this paper, we show that uncertainty between an auction and the next payment opens the

door to a rich taxonomy of crises. In particular, we extend the nature of self-fulfilling crises

to include bond issuances at fire-sale prices during a rollover crisis. This was motivated by

the fact that crises in practice are often associated with positive issuances at abnormally high

spreads. If creditors coordinate on such short-term uncertainty, then the government has an

incentive to completely eliminate intra-period risk by adjusting the amount of debt auctioned.

This distortion generates a large increase in the volatility of spreads, in both a one-period and

a long-term bond model. The nature of “concerned” beliefs and the associated equilibrium

behavior provide a novel lens to interpret the interest rate spikes and debt dynamics observed

similar shapes to the one-period model depicted in Figures 5 and 6. On part of the domain, the concerned
belief price schedule is strictly lower than the optimistic schedule, tracking the interior price. In accordance
with Proposition 6, the equilibrium price is invariant to beliefs for debt buy backs. For low levels of initial
debt, debt issuance under the concerned regime is truncated, while we observe over borrowing near the
ergodic mean.

31The fraction of defaults coincident and immediately following ρ = C are 1.5% and 9.6% respectively.
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in recent sovereign debt crises.
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Online Appendix

Appendix A Proofs

A.1 Derivation of equation (4)

The government’s problem is to choose B′ ∈ (−∞, B] to maximize the expected end-of-period
value, where expectation is over the realization of ϵ:

V1(s) = max
B′

{
F (σ−1∆(s,B′))V R(s,B′) +

∫ 1

σ−1∆(s,B′)

[
V D(s,B′) + σϵ

]
dF (ϵ)

}

= max
B′

{
V D(s,B′) + F (σ−1∆(s,B′))∆(s,B′) + σ

∫ 1

σ−1∆(s,B′)
ϵdF (ϵ)

}
.

Using integration by parts, we can re-write this as (4).

A.2 Proof of Proposition 1

Proof. Let us define H : [0, 1] → R by

H(ϵ) ≡u (Y −B + F (ϵ)qEG(B
′)B′)− u (Y + F (ϵ)qEG(B

′)B′)− σϵ (17)

+ βE[V (s′)|B′]− βV D.

Equation (13) is satisfied at ϵ̃ if and only if H(ϵ̃) = 0. Note that ϵ only enters H via the functions u and
F , both of which are continuous. Hence, H is continuous. Premise (i) states that H(1) ≥ 0. Premise (ii)
states that H(0) ≤ 0. By continuity there is at least one ϵ ∈ [0, 1] such that H(ϵ) = 0. If H(1) > 0 and
H(0) < 0, then the ϵ that solves H(ϵ) = 0 must be strictly interior.

A.3 Proof of Proposition 2

Proof. For a given (Y,B,B′), let qEG denote qEG(B
′). If qEG = 0, the only equilibrium price is zero. If

B′ ≤ 0, the only equilibrium price is qEG = R−1, as assets always trade at the risk-free price. Thus the
proposition is trivially true for B′ ≤ 0 and qEG = 0. Henceforward, assume qEGB

′ > 0.
Define the function g : [0, 1] → R by:

g(ϵ) ≡ u (Y −B + F (ϵ)qEGB
′)− u (Y + F (ϵ)qEGB

′) + βE[V (s′)|B′]− βV D. (18)

Then H : [0, 1] → R defined in equation (17) in the proof of Proposition 1 can be written as:

H(ϵ) ≡g(ϵ)− σϵ. (19)

Zero is an equilibrium if and only if H(0) ≤ 0; qEG is an equilibrium price if and only if H(1) ≥ 0; and ϵ̃
solves equation (13) if and only if H(ϵ̃) = 0. We consider the cases of B < 0, B = 0, and B > 0 in turn:
If B < 0: If B < 0, then g(ϵ) > 0 for all ϵ ∈ [0, 1]. This uses the fact that βE[V (s′)|B′]−βV D ≥ 0. This
inequality follows from the fact that V (s) ≥ maxB′≤B E[V D(s,B′)+σϵ] ≥ V D. As g is continuous on the
compact domain [0, 1], it achieves a minimum g ≡ minϵ∈[0,1] g(ϵ) > 0. If σ < g, then H(ϵ) = g(ϵ)− σϵ ≥
g − σϵ > σ(1 − ϵ) ≥ 0. Hence, H(ϵ) > 0 for all ϵ, and qEG(B

′) is the only possible equilibrium price.
Thus, the proposition holds for B < 0 by setting K = g > 0.

If B = 0: If B = 0, then g(ϵ) = βE[V (s′)|B′] − βV D, which is independent of ϵ. If g = 0, then
H(ϵ) = −σϵ, and the only possible equilibrium price is 0 for any σ > 0. If g > 0, then, letting K = g > 0,
for σ < K, we have H(ϵ) = K − σϵ > 0. In this case, H(ϵ) ≥ H(1) > 0 and the only possible price is
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qEG. Thus, the proposition holds for B = 0.
If B > 0: If B > 0, then concavity of u implies that g(ϵ) is strictly increasing in ϵ. In particular,

g′(ϵ) = [u′ (Y −B + F (ϵ)qEGB
′)− u′ (Y + F (ϵ)qEGB

′)]F ′(ϵ)qEGB
′ > 0,

where the last inequality uses the fact that F ′(ϵ) ≥ α > 0 and qEGB
′ > 0. Let

K ≡ min
ϵ∈[0,1]

[u′ (Y −B + F (ϵ)qEGB
′)− u′ (Y + F (ϵ)qEGB

′)] fqEGB
′ > 0,

where the minimum exists, as u′ is a continuous function and is strictly positive given that g′(ϵ) > 0
for all ϵ ∈ [0, 1]. Then H ′(ϵ) = g′(ϵ) − σ ≥ K − σ. If σ < K, then H ′(ϵ) > 0. Hence there is at most
one ϵ̃ such that H(ϵ̃) = 0. If H(0) ≤ 0 ≤ H(1), then {0, qEG, F (ϵ̃)qEG} are all equilibrium prices. If
H(1) > H(0) > 0, then only qEG is an equilibrium price. If H(0) < H(1) < 0, then only zero is an
equilibrium price. Thus, the proposition holds for B > 0.

A.4 Proof of Proposition 3

Proof. Using H defined by (17) in the proof of Proposition 1, we have q̃ = 0 satisfies (8) if H(0) ≤ 0;
q̃ = qEG(B

′) if H(1) ≥ 0; and q̃ ∈ (0, qEG(B
′)) if H(ϵ̃) = 0 for some ϵ̃ ∈ (0, 1). Define

h(x) ≡ u(Y −B + x)− u(Y + x). (20)

We have

H ′(ϵ) = h′ (F (ϵ)qEG(B
′)B′)F ′(ϵ)qEG(B

′)B′ − σ. (21)

By definition of h,

h′(x) = u′(Y −B + x)− u′(Y + x)

h′′(x) = u′′(Y −B + x)− u′′(Y + x).

As B > 0 and u is strictly concave, we have h′(x) > 0 for x ≥ 0. If u′′ is strictly increasing, then
h′′(x) < 0. Hence, as ϵ increases, h′ (F (ϵ)qEG(B

′)B′) strictly decreases and F ′(ϵ) weakly decreases. As
both are positive, their product decreases and H ′ is strictly decreasing. This establishes that there are
at most two roots to H; that is, there are at most two interior prices that satisfy (13). If H(0) ≤ 0,
then q̃ = 0 satisfies (8), and there are at most three possible equilibrium prices, two of which are interior.
If H(0) > 0, then q̃ = 0 is not an equilibrium. As H(0) > 0 and H ′ is strictly decreasing, there is
at most one interior solution ϵ̃ to (13), with H ′(ϵ̃) < 0. If there is such a ϵ̃ < 1, then H(1) < 0 and
q̃ = F (ϵ̃)qEG(B

′) is the only equilibrium price. Otherwise, H(ϵ) ≥ 0 for all ϵ ∈ [0, 1], and q̃ = qEG(B
′) is

the only equilibrium price.

A.5 Proof of Proposition 4

Proof. We first establish that E[V (s′)|B′] ≥ V D+σEϵ for all B′. To see this, it is always feasible to issue
zero new debt and default with probability one on maturing debt:

V (s) ≥ u(Y ) + σEϵ+ βV D

= σEϵ+ u(Y )− Eu(Y ′) + V D,

where the second line uses the fact that V D ≡ Eu(Y ′)/(1−β). Taking expectation over s′ for any B′ ≤ B,
we have

E[V (s′)|B′] ≥ V D + σEϵ. (22)
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From the definitions of V R
CK and V D

CK , we can re-write BCK as:

BCK(Y,B) ≡
{
B′ ∈ [0, B] | u(Y −B)− u(Y ) + βE [V (s′)|B′]− βV D ≤ 0

}
. (23)

Equation (22) implies that if B′ ∈ BCK(Y,B), then

0 ≥ u(Y −B)− u(Y ) + βE [V (s′)|B′]− βV D

≥ u(Y −B)− u(Y ) + βσEϵ.

That is, (14) is a necessary condition for BCK ̸= ∅. To show that (14) is also a sufficient condition,
suppose (14) is satisfied. For B′ larger than the natural borrowing limit (which we have assumed is
strictly less than B), repayment is infeasible for any endowment realization and default occurs with

probability one. Hence, there exists a B̃ ∈ (0, B) such that E
[
V (s′)|B′ ≥ B̃

]
= σEϵ + V D. Therefore,

[B̃, B] ⊂ BCK(Y,B). As [B̃, B] ̸= ∅ when (14) holds, BCK is not empty.

A.6 Proof of Proposition 5

Proof. If q(s,B′
i) is interior for i = 1, 2, there exist respective ϵ̃i that satisfy (13). As q(s,B′

i)/qEG(B′
i) =

F (ϵ̃i), and F is strictly increasing on its support, we have ϵ̃1 ≤ ϵ̃2. By (13), we also have:

V R(s,B′
i) = V D(s,B′

i) + σϵ̃i,

for i = 1, 2. Using this, the expected payoff from B′
i at the time of auction can be written:

Emax
{
V R(s,B′

i), V
D(s,B′

i) + σϵ̃
}

= Emax
{
V D(s,B′

i) + σϵ̃i, V
D(s,B′

i) + σϵ
}

= V D(s,B′
i) + σEmax {ϵ̃i, ϵ} .

As q(s,B′
1)B

′
1 ≤ q(s,B′

2)B
′
2, we have V

D(s,B′
1) ≤ V D(s,B′

2). This, plus the fact that ϵ̃1 ≤ ϵ̃2 implies that
B′

2 weakly dominates B′
1 as a debt choice. If either q(s,B′

1)B
′
1 < q(s,B′

2)B
′
2 or ϵ̃1 < ϵ̃2, the preference

for B′
2 is strict.

A.7 Proof of Proposition 6

Proof. Fix s and B′ < (1− λ)B and let qEG denote qEG(s,B
′). For q̃ ∈ [0, qEG], define F̂ (q̃) by:

F̂ (q̃) ≡

F

(
1

σ

[
u(Y − (r∗ + λ)B + q̃ × [B′ − (1− λ)B])− u(Y + q̃ × [B′ − (1− λ)B]) + βE [V (s′)|s,B′]− βEV D(s′)

])
.

A q̃ ∈ [0, qEG] is an equilibrium price if and only if q̃/qEG = F̂ (q̃). Note that F̂ maps [0, qEG] into [0, 1],
is weakly decreasing (as B′ < (1− λ)B), and is continuous. Hence, there exists one and only one q̃ that
satisfies the equilibrium condition.

A.8 Proof of Proposition 7

Proof. Since q(s,B′
i) are interior equilibrium prices for i = 1, 2, there exist thresholds ϵ̃i ∈ [0, 1] such

that:
V R(s,B′

i) = V D(s,B′
i) + σϵ̃i, for i = 1, 2.
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Conditional on auctioning B′
i, the expected payoff is:

∫ 1

0

max
{
V R(s,B′

i), V
D(s,B′

i) + σϵ
}
dF (ϵ)

=

∫ 1

0

max
{
V D(s,B′

i) + σϵ̃i, V
D(s,B′

i) + σϵ
}
dF (ϵ)

= V D(s,B′
i) + σ

∫ 1

0

max {ϵ̃i, ϵ} dF (ϵ).

From condition (i) in the proposition statement, we have ϵ̃1 ≥ ϵ̃2, with strict inequality if (i) is strict.
As the default value is increasing in net auction revenue, from premise (ii) in the proposition, we have
V D(s,B′

1) ≥ V D(s,B′
2), with strict inequality if (ii) is strict. Thus, the expected value from auctioning

B′
1 is weakly greater than B′

2, and strictly if either (i) or (ii) is strict.

Proof. Since q(s,B′
i) are interior equilibrium prices for i = 1, 2, there exist thresholds ϵ̃i ∈ [0, 1] such

that:
V R(s,B′

i) = V D(s,B′
i) + σϵ̃i, for i = 1, 2.

Conditional on auctioning B′
i, the expected payoff is:

∫ 1

0

max
{
V R(s,B′

i), V
D(s,B′

i) + σϵ
}
dF (ϵ)

=

∫ 1

0

max
{
V D(s,B′

i) + σϵ̃i, V
D(s,B′

i) + σϵ
}
dF (ϵ)

= V D(s,B′
i) + σ

∫ 1

0

max {ϵ̃i, ϵ} dF (ϵ).

From condition (i) in the proposition statement, we have ϵ̃1 ≥ ϵ̃2, with strict inequality if (i) is strict.
As the default value is increasing in net auction revenue, from premise (ii) in the proposition, we have
V D(s,B′

1) ≥ V D(s,B′
2), with strict inequality if (ii) is strict. Thus, the expected value from auctioning

B′
1 is weakly greater than B′

2, and strictly if either (i) or (ii) is strict.

Appendix B Mixed Strategy Equilibria: σ = 0

In this appendix, we formalize the notion that as σ → 0, the equilibrium converges to a mixed-
strategy equilibrium in which the government randomizes over default or repayment. That is,
suppose the government’s decision at settlement is to pick a probability of repayment: p ∈ [0, 1].
When facing a price q̃, the government’s best response is:

p = 1 if u(Y −B + q̃B′) + βE[V (s′)|B′] > u(Y + q̃B′) + βV D;

p = 0 if u(Y −B + q̃B′) + βE[V (s′)|B′] < u(Y + q̃B′) + βV D; and (24)

p ∈ [0, 1] if u(Y −B + q̃B′) + βE[V (s′)|B′] = u(Y + q̃B′) + βV D.

Similarly, the lenders’ best response to an anticipated p at settlement is to bid q̃ = p × qEG at
auction. A mixed-strategy equilibrium price is a pair (p, q̃) that satisfies q̃ = pqEG and equation
(24). Following the steps behind Proposition 1, it is straightforward to see that if (p = 1, q̃ = qEG)
satisfies the first inequality in (24), and (p = 0, q̃ = 0) satisfies the second, then there is also a
unique p ∈ (0, 1) with an interior q̃ = pqEG ∈ (0, qEG) that satisfies the third line of (24).

Reminiscent of Harsanyi (1973) purification, the mixed strategy price is the limit of the pure-
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strategy interior price as σ → 0:

Proposition A.1. Given (Y,B,B′) with B′ > 0, suppose V R
EG(Y,B,B′) > V D

EG(Y,B
′) and V R

CK(Y,B,B′) <
V D
CK(Y ). Let σn be a monotone decreasing sequence converging to zero. Then there exist an integer

N < ∞ and a sequence ϵ̃n satisfying (13) for each σn for n > N . Moreover, p = limn→∞ F (ϵ̃n)
and q̃ = limn→∞ F (ϵ̃n)qEG(B

′) exist and satisfy (24).

Proof. First, note that B ̸= 0. To see this, when B = 0, we have

V R
EG(Y, 0, B

′)− V D
EG(Y ) = β

(
EV (s′)− V D

)
= V R

CK(Y, 0, B′)− V D
CK(Y ),

which is inconsistent with the inequalities in the proposition’s premise. Hence, we take B′ ̸= 0 in what
follows. As (Y,B,B′) is fixed throughout, we drop these arguments from the notation below. The premise
implies V R

EG > V R
CK , and hence it must be the case that qEG > 0.

Define h : [0, 1] → R by:

h(x) ≡ u(Y −B + xqEGB
′)− u(Y + xqEGB

′).

h represents the net current period flow utility from repayment over default when the price is xqEG. By
strict concavity of u and qEGB

′ > 0, we have h′(x) ≷ 0 when B ≷ 0. The inequalities in the premise
imply:

h(1) + β
(
EV (s′)− V D

)
> 0 > h(0) + β

(
EV (s′)− V D

)
.

By continuity of h, there exists a p ∈ [0, 1] such that h(p) + β
(
EV (s′)− V D

)
= 0. At price q̃ = pqEG,

the government is indifferent to defaulting or repaying when σ = 0. At price q̃ and if the government
randomizes by defaulting with probability 1−p, the lenders break even. Hence, (q̃, p) is a mixed strategy
equilibrium.
Let K > 0 be defined as in Proposition 2. Let σ̄ ≡ V R

EG − V D
EG, which is strictly positive by the

proposition’s premise. Let N be defined by:

N ≡ inf{n ≥ 0|σn < min {σ̄,K}} .

As the sequence σn is monotonically decreasing, for n > N , we have

V R
EG − V D

EG − σn > V R
EG − V D

EG − σ̄ = 0,

and hence qEG is supportable as an equilibrium price. As V R
CK < V D

CK , zero is also an equilibrium price.
For each n > N and associated σn, by Proposition 2, there exists a unique ϵn such that equation (13)
holds. Define pn ≡ F (ϵn). From (13) and the fact that ϵ̃n ≤ 1, we have

0 ≤ h(pn)− h(p) = σnϵ̃n ≤ σn.

Hence, as σn → 0, h(pn)− h(p) → 0. To establish convergence in the arguments of h, define

κ ≡ min
x∈[0,1]

|h′(x)|.

As h′ is continuous and h′ is either strictly positive or negative for all x ∈ [0, 1] given B ̸= 0, κ > 0 is
well defined. Note that by definition

h(pn)− h(p) ≥ κ|pn − p|.

Hence, h(pn)− h(p) → 0 implies |pn − p| → 0.
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Appendix C Further Numerical Experiments

Several additional numerical experiments to further examine the implications of our model are
reported here.

C.1 Italy Calibration

Using real GDP from 1960Q1-2020Q3,32 we estimate the same process for endowment as reported
for Mexico in the text. The estimated parameters are: µg = 0.002, ρg = 0.579, σg = 0.008, and
σz = 0.0097.

For 2011, tax revenue net of social security contributions was 474,863 million euros, which was
29.0% of GDP.33 The replication data provided by Bocola and Dovis (2019) reports that 373,000
million euros of debt was scheduled to come due in the year following 2011Q4. Debt payments as
a ratio of tax revenues net of social security contributions thus totaled 78.5% and the face value of
total debt securities relative to tax revenue was 334% (or 97% of GDP). 2011Q4 represented a debt
burden relative to tax revenue that is the 93rd percentile of the Bocola-Dovis dataset. We therefore
target debt payments of 78.5% of resources at the 93rd percentile of the model’s ergodic distribution
of debt. For the long-term model, to match the associated face value given a 3% coupon, we set
λ = 0.0286, or a maturity of roughly three years (35 quarters).

With regard to sovereign spreads, for the period 1999Q1-2020Q4 the spread between Italian
and German five-year bonds had a standard deviation of 1.05%.34

We targeted the standard deviation of the spread and the ratio of debt payments to resources
at the 93rd percentile, assuming β = 0.95. For the one-period debt model, this requires d = 0.14
and the probability of the concerned regime of 0.4% per quarter; for the long-term bond model, it
requires d = 0.665 and a probability of the concerned regime of 0.3% per quarter.

The model’s moments are reported in Table 2. Italy has a less volatile output process, a higher
level of the debt payment coming due, and a lower volatility of the spread than Mexico. When we
calibrate the base model for both the one-period and long-term bond cases, we are able to hit these
targets. When we only have ρ = O beliefs, the default rate and the spread volatility essentially fall
to zero with one-period bonds. In the long-term bond case with ρ = O beliefs, the temptation to
engage in debt dilution leads to almost as many defaults but substantially less volatility relative to
the base case. Once again, the Cole-Kehoe version with one period debt and ρ ∈ {O,P} generates
a lot more default in the one-period bond case, but not much volatility, and essentially no defaults
and no spread volatility with long-term bonds. All of these results mirror those found for Mexico.

C.2 Partial Retention of Auction Revenue

Beyond allowing for long-term debt, another aspect of capturing sovereign debt crises is getting
investor returns in default right. In Cole-Kehoe, it is assumed that the government can keep all of
the proceeds of an auction, while Eaton-Gersovitz effectively assume that it can keep none. Viewed
in terms of a quarterly period length, with weekly auctions, both assumptions seem extreme. This
leads us to also consider the intermediate case with long-term debt where the government gets to
keep 1/2 of the auction proceeds in the event of default, the rest being split pro-rata among the

32Italian data are from from OECD.stat (https://stats.oecd.org).
33Social security contributions were 211,637 million euros leading to total tax revenue of 686,500 million

euros.
34The German and Italian data are 5-year yields from Deutsche Bundesbank and Banca D’Italia, respec-

tively, as reported in Haver Analytics G10 summary statistics database.
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Table 2: Simulated Moments for Italy

93%ile Default
DebtPmt/Rev Frequency StDev(r − r∗)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

One-Period Bonds
Base, ρ ∈ {O,C} 79% 0.1% 1.1% 1.11
Optimistic, ρ ∈ {O} 79% 0.0% 0.0% 1.11
Cole-Kehoe, ρ ∈ {O,P} 74% 2.1% 0.1% 1.07

Long-Term Bonds
Base, ρ ∈ {O,C} 79% 0.9% 1.1% 1.41
Optimistic, ρ ∈ {O} 80% 0.8% 0.5% 1.44
Cole-Kehoe, ρ ∈ {O,P} 53% 0.0% 0.0% 1.50

Table 3: Long-Term Model Moments with Partial Retention

97%ile Default
DebtPmt/Rev Frequency StDev(r − r∗)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Base, ρ ∈ {O,C} 66% 5.8% 2.3% 1.51
Optimistic, ρ = O 67% 5.3% 1.1% 1.54
Cole-Kehoe, ρ ∈ {O,P} 37% 0.0% 0.0% 1.41

government’s creditors (old and new) under the assumption that the auction revenue is not repatri-
ated until all outstanding claims are settled. The assumption that bondholders receive payments (if
any) in proportion to the face value of their claims reflects the pari passu and acceleration clauses
typically included in sovereign bond contracts.

When we calibrate the model to our two Mexican moments, with maturity set to be the same
as in the long-term case and with the retention set to 1/2, we find that d = 0.455 and concerned
probability of 0.25% quarterly. The results are reported in Table 3 and, strikingly, closely mirror
the results (for the 100% retention case) reported in the bottom panel of Table 1.

C.3 Larger Interim Shocks

To examine the sensitivity of our results to a larger volatility of the interim shock σ, we scaled the
shock by a factor of 100 and recalculated the results for the original calibration for Mexico. The
results are virtually unchanged relative to our baseline for Mexico.

C.4 Alternate Timing Assumption: Eaton-Gersovitz

In this section, we explore model predictions for the Eaton-Gersovitz timing, namely, the assump-
tion that new debt can be issued only if old debt is paid off. This assumption effectively reverses
the timing of the default decision and the auction. Since the shock to the default payoff comes
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Table 4: Base Model Moments with Larger Interim Shocks

97%ile Default
DebtPmt/Rev Frequency StDev(r − r∗)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Short-Term 64% 0.4% 2.3% 1.16
Long-Term 66% 5.3% 2.2% 1.51

before the auction it is no longer an intraperiod shock, and given its small variance, it can be safely
removed for the purpose of this exercise.

Table 5: Base Model Moments Under EG Timing

97%ile Default
DebtPmt/Rev Frequency StDev(r − r∗)

Model (Quarterly) (Annualized) (Annualized) StDev(ln c)
StDev(ln y)

Short-Term 254% 0.3% 0.1% 1.78
Long-Term 77% 2.1% 0.3% 1.22

The results, displayed in Table 5, show that in both the one-period and long-term debt cases,
debt payments (and debt levels) rise substantially; in the one-period case, it rises by nearly an
order of magnitude. The expansion in debt speaks to the importance of the commitment to use
auction revenue for repayment of inherited debt implicit in the EG timing. But, aside from this,
both default frequency and spread volatility fall to very low levels in the one-period debt case.
While the long-term debt case generates a higher frequency of default, the volatility of spreads
still remains quite low. These findings are consistent with what the literature finds if nonlinear
default costs are ignored. Also, as shown in Aguiar et al. (2016), even allowing for the possibility
of nonlinear default costs cannot deliver the observed spread volatility for Mexico.
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