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Abstract

We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is
specified up to a set of conditional moment restrictions. This analysis is based on the nonparametric
exponentially tilted empirical likelihood (ETEL) function, which is constructed to satisfy a sequence
of unconditional moments, obtained from the conditional moments by an increasing (in sample size)
vector of approximating functions (such as tensor splines based on the splines of each conditioning
variable). The posterior distribution is shown to satisfy the Bernstein-von Mises theorem, subject to
a growth rate condition on the number of approximating functions, even under misspecification of
the conditional moments. A large-sample theory for comparing different conditional moment models
is also developed. The central result is that the marginal likelihood criterion selects the model that
is less misspecified, that is, the model that is closer to the unknown true distribution in terms of the
Kullback-Leibler divergence. Several examples are provided to illustrate the framework and results.
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1 Introduction

We tackle the problem of prior-posterior inference in models where the only available information about

the unknown parametére © C RP? is supplied in the form of a set @bnditionalmoment restrictions
E”[p(X,0)|2] = 0, (1.1)

wherep(X, 0) is ad-vector of known functions of &% -valued random vectak and the unknow,

and P is the unknown conditional distribution of given aR% -valued random vectaZ. We suppose

thatd > p, letting the number of conditional moments exceed the number of parameters. This is a
conditional moment restricted model because the moments constrain the set of possible distributions
P. We say that the model is correctly specified if the true data generating prégdssin the set

of distributions constrained to satisfy these moment conditions for sbrae©, while the model is
misspecified ifP, is not in the set of implied distributions for alyc ©.

A different starting point is that with unconditional moments, &y[g(X,0)] = 0. Such models
have recently attracted interest in the Bayesian community as distributional assumptions are entirely
bypassed. Prior-posterior analysis is based on the empirical likelihood, for exdmphr (2003 and
many others, or the exponentially tilted empirical likelihood (ETEL), aSahennactf?z00% andChib]
Shin‘and_Simon{?0T8§. The latter paper provides the large sample theory under misspecification, and
introduces the use of marginal likelihoods for comparing unconditional moment models, including the
relevant framework for comparing such models and the large-sample model consistency of the marginal
likelihoods.

Although the conditional moments imply that the functigi(s(, #) are uncorrelated witl¥, i.e.,
E”[p(X,0) ® Z] = 0, where® is the Kronecker product operator, it is inappropriate to use these un-
conditional restrictions alone as a substitute for the conditional moments. This is because the conditional
moments assert even more, thak, ¢) is uncorrelated with any measurable, bounded functiad, ajr
if Z is square-integrable, that it is uncorrelated vty Z2-measurable function of. Thus, in order
to assemble the set of unconditional moments that are equivalent to the conditional moments we must
consider all such functions, which is only feasible as the samplensiees to infinity. A general result
due toDonald, Imbens and Newd¥003 states that this equivalent set of unconditional moments can be
constructed by approximating functiops (Z) = (¢f(2),...,q%(Z))’, such as tensor product splines

obtained from splines of each variableanwith the number of such functions, denotedi&yincreasing



with n. Then, instead ofI(1), inference based on the expanded unconditional moment conditions
E”[p(X,0) ® ¢"(Z)] =0 (1.2)

is valid. This is then how we proceed in this paper.

The transformation into unconditional moments introduces, however, some challenges for the prior-
posterior analysis that are different from those addressécthin,_Shin-and_Simon{?0T8. For one,
quantities that are bounded with fixed moment restrictions, now diverge Avitl©On determining the
rate of this divergence (and thus stabilizing the growth), we show that under correct specification of the
conditional moments, the posterior distributionéo$atisfies the Bernstein-von Mises (BvM) theorem
with asymptotic posterior variance equal to the semiparametric efficiency bound dertubdnmberiain
(T987). As aresult, Bayesian credible sets are asymptotically valid efficient confidence sets. Conversely,
sets based on unconditional versions of the conditional moments with aAixed general, are not
optimal.

Second, we consider misspecified conditional moment models, which occur widely in practice, and
establish a similar BvM-type phenomenon. Just aKimin and van der Vaar{Z012, our theorem
establishes that the posterior distribution of the centered and scaled pargfméterd, ), whered, is the
pseudo-true value, converges to a Normal distribution with a random mean that is bounded in probability.
Again, the proof of this result, which requires fixing conditions under which the ETEL function satisfies
a stochastic LAN expansion with increasing moments, is substantially more complicated than in the
unconditional moment case.

Third, we develop a large sample theory for comparing competing conditional moment models by
marginal likelihoods. Despite some similarities, the model comparison framework here is different from
the one in our previous work. For one, the comparison of these models does not require that the models
are reformulated to have the same number of conditional moments. The models can be compared directly
as stated in terms of marginal likelihoods. We show that, under regularity conditions which are different
than in the unconditional case, the model picked by the marginal likelihood, in the limit, is the model that
is less misspecified. This is also the model that is closest to the true distribution in the Kullback-Leibler
divergence.

Conditional moments often supply the only source of information abBouExamples of this include
causal inference, as Rosenbaum and Rub(fi983, where one assumes that the potential outcomes are

independent of the treatment variable conditioned on covariates, and in missing at random problems as
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considered biHrisfache and Pafilg@017), and numerous others. Our analysis makes possible Bayesian
inference for a large class of models that appeared to be outside the scope of the Bayesian paradigm.
In addition, our results here extend and complete the wolRih,_Shin-and Siman{Z018 on uncon-
ditional moments. Our treatment also complements the papers on conditional moment models from a
Bayesian viewpoint that are based on non-ETEL approaches and reflect other concerns. For instance,
a0 and Jiang?0T7), Elorens and_Simon{Z012 P01, Kato (2013, Chen,_Christensen and Tamer
(?0T8 andliao-and Simon(Z0TY allow the moment function to contain a non-parametric component
that is estimated by a sieve type approximation method, or a Gaussian process prior, permitting the
possibility that the non-parametric component is only partially identified, but within a quasi-Bayesian
formulation based on a pseudo-likelihood. None of these papers tackles the problem of misspecification,
or the problem of model comparisons.

The rest of the paper is organized as follows. In Sediigre sketch the conditional moment setting
more formally and provide a motivating example. In Sectibwe describe the construction of the
sequence of unconditional moments by an increasing (in sample size) vector of approximating functions.
We then supply results on the large sample behavior of the posterior distribution in both the correct and
misspecified moment models. In Sectébwe turn to the problem of model comparisons and determine
the large sample behavior of the marginal likelihood. In Sediame provide an application of our
techniques to a causal inference problem. Sedii@oncludes. Technical proofs of the theorems are

included in the supplementary appendix.

2 Setting and Motivation

Let X := (X, X!)" be anR%-valued random vector and := (7}, X')' be anR%-valued random
vector. The vectorg and X have elements in common if the dimension of the subve&tors non-

zero. Moreover, we denoté” := (X', Z})" € R% and its (unknown) joint distribution bj. By abuse

of notation we useP also to denote the associated conditional distribution. We suppose that we are
given a random samplé’y.,, = (Wy,...,W,) of W. Hereafter, we denote big"[.] the expectation

with respect taP and byE”’[-|-] the conditional expectation with respect to the conditional distribution
associated wittP.

The parameter of interestésc © C RP, which is related to the conditional distributidghthrough



the conditional moment restrictions

E”[p(X,0)|Z] =0, 2.1)
wherep(X, 6) is ad-vector of known functions. Many interesting and important models in statistics fall
into this framework.

Example 1 (Linear model with heteroscedastic error) Suppose that
EP[(Y -6y — 0, X)|Z] =0, (2.2)

wherep(X,0) = (Y — 0y — 01 X), Z = (1, X) andd = 1. This conditional moment restriction model
is consistent with the data generating process (DBP 0y + 61 X +¢, wheres = h(X)U, and(X,U)
follow some unknown distributiof?, with E(U) = 0, and the functiom(X), the heteroscedasticity

function, is unknown. If we specify the restrictions
EP[(Y =0y —0:X)|Z] =0 and EP[(Y -6y —6,X)*Z] =0, (2.3)
where nowp (X, ) is a(2 x 1) vector of functions, we additonally impose conditional symmetey of

Of course, the conditional moment model is different from the unconditional moment model. For

example, in Example 1, the unconditional moment conditions
E”[(Y — 00— 6:1X) @ (1,X)] =0, (2.4)

which impose the assumptions thahas mean zero and is uncorrelated with are weaker but, if the

conditional model is correct, less informative abut

3 Prior-Posterior Analysis

3.1 Expanded Moment Conditions

One way to estimate the conditional moment model is by estimating the conditional expectation directly,
as in the frequentist approach kitamura, Tripathi and Alrf?004). This approach does not seem to
generalize easily, if at all, to the Bayesian setting. An alternative approach, that we adopt, is based
on recognizing that the conditional moments i1j are a functional equation and, therefore, consti-
tute a continuum of unconditional moment conditions. Under certain circumstanceB|amm§ 1982

Chamberlainl987), a countable number of unconditional moment restrictions that are equivalent to the
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conditional moment restrictions if{l) is guaranteed. This is the basis of the frequentist approaches
in Donald_and Newey?0071), Airand Chen(?003 andCarrasco and Florer(®000) where, after trans-
forming the conditional moment restrictions into unconditional moment restrictions, the resulting set of
unconditional moments are analyzed under a sieve approach or a Tikhonov regularization approach. Fol-
lowing Donald, Imbens and Newdi003), the equivalent set of unconditional moments can be obtained
through approximating functions.

Let ¢5(2) = (¢%(2),...,¢%(2))", K > 0, denote aK-vector of real-valued functions o,
for instance, splines, truncated power series, or Fourier series. Suppose that these functions satisfy the

following condition for the distributiorP.

Assumption 3.1 For all K, E[¢5(Z2)' ¢ (Z)] is finite, and for any functiom(z) : R% — R with

E”[a(Z)?] < oo there areK x 1 vectorsy,, such that ag{ — oo,
E"[(a(2) - ¢"(2)'yk)?] — 0.

Now if EX[p(X,0) p(X,0)] < oo, thenDonald, Tmhens and Newd003 Lemma 2.1) established
that: (1) if equation®) is satisfied withd = 6., thenEX[p(X,0,) ® ¢ (Z)] = 0 for all K; (2) if
equation @) is not satisfied, thele”[p(X, 0.) ® ¢% (Z)] # 0, for all large enoughk..

Thus, under the stated assumptions, the conditional moment restrictions are equivalent to the limit of

a sequence of unconditional moment restrictions
E”[g(W,0)] = 0, (3.1)
whereg(W, 0) := p(X,0) ® ¢ (Z), with K — oo, are theexpanded functions

Example 1 (continued) Letx = (x1,...,z,) € R™ denote the sample data, alid;,...,7x) the K
knots, where the exterior knots and 7 i are the minimum and maximum valueswyfand the interior
knots are specified quantile pointsof Letq” () = (q1(z),. .., qx (x))’ denote (say) natural cubic
spline basis functions, whetg(z) is the cubic spline basis function located7gt Let B denote the
(n x K) matrix of these basis functions evaluatedecatvhere theith row of B is given byg” (z;)’. Let
(y — 6y — 01z) and (y — Oy — 61x)® each denoter x 1 vectors wherey = (y1,...,y,). Then, the

expanded functiong(W, §) = g(x, 0) for the sample observations are thex 2K functions
g(W,0) = [p(z,0) ® ¢" (z)] = [(y — 6o — O1z) © B i (y — b — 612)* © B, (3.2)
wherea ® B denotes the Hadamard product, andenotes matrix concatenation (column binding).
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In our numerical examples we use the natural cubic spline ba&lhibfand Greenben@01() based
on Z to constructy™ (Z), with K fixed at a given value, as in sieve estimationZltonsists of more
than one element, say,, Z,, Z3) whereZ; and Z, are continuous variables ari; is binary, then
the basis matrix3 is constructed as follows. Let; denote the: x 1 sample data oty; (j < 3). Let
Z = (z1,22,21 © 29,21 © 23, 22 © z3) denote ther x 5 matrix of the continuous data and interactions
of the continuous data and the binary data. Now supgosg...,7,x) are K knots based on each
column of Z and letB; denote the correspondingx K matrix of cubic spline basis functions. Then,

the basis matrix3 is given by
B=|B,:B: B} B} B Z3|,

whereB; (j = 2,3,4,5) is then x (K —1) matrix in which each column aB; is subtracted from its first
and then the first column is dropped, €8@b and Greenher(?010). Thus, the dimension of this basis
matrix isn x (5K — 4 + 1). To define the expanded functions, tetX , #) (I < d) denote a x 1 vector
of thelth element ofp( X, 0) evaluated at the sample data matkx Then, the expanded functions for
the sample observations are obtained by multiplyf(dX, §) by the matrixB and concatenating. We

use versions of this approach to construct the expanded functions in our examples.
3.2 Posterior distribution

The conditional model1) is semiparametric and is characterized by two parameters: the data distribu-
tion P and the structural paramet&rwhich is assumed to be finite dimensional. For a given valug ,of
the prior on(0, P) is specified as (6)7(P|0, K), where the prior o is standard. Our default prior on
6 is a product of independent studerdistributions with 2.5 degrees of freedom on each component of
6. The conditional prior orP, given (6, K), can be viewed as a sieve type prior where the hierarchical
parameter’ has a degenerate prior with a point mass at a given value. In establishing the asymptotic
properties of the posterior distribution, however, wellegjrow to infinity with the sample size to ensure
that 1) and @) are equivalent in the limit. Fixind< at a specific value in a finite-sample analysis
only impacts the posterior variance.

Priors on P designed to incorporate overidentifying moment restrictions are thoSEmm#nnach
(P009), Kitamira and OfSY20717), Shin (2014 andElorens and Simon(Z01Y. Our prior(P|0, K)
follows from SchennackfZ00%. To construct this prior, we first model the joint data distributi®rof

W as a mixture of uniform probability densities, a construction which is capable of approximating any
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distribution as the number of mixing components increases. Then, a prior is placed on the center of the
d,-dimensional hypercubes such that the corresponding mixture satisfies the moment restrictions for a
given (6, K). The resulting posterior is well-defined for every valugof

By integrating outP with respect to this priofr(P|0, K') one gets the integrated likelihood

n

p(Wial0, K) = [ 5i(0), (3.3)
=1

which is the ETEL function and wherg;(6),: = 1,...,n} are the probabilities that minimize the KL
divergence between the probabilitigs, . . . , p,,) assigned to each sample observation and the empirical
probabilities(%, cel %), subject to the conditions that the probabilities, . . . , p,) sum to one and that
the expectation under these probabilities satisfies the given unconditional moment condifprishat
is,{pi(6),i =1,...,n} are the solution of the following problem:
n n n
max Z [—pi log(np;)] subject tOZZpi =1, Zpig(wi, )=0, p;>0 (3.4)
Phoeobn 2y i=1 i=1
(seeSchennachZ00% for a proof). In practice, we compute the ETEL probabilities from the dual

(saddlepoint) representation as

A(0) g(w;,0)

pi(0) :== ~ i =1,...,n), 3.5
pi(0) Z?:l 30) 9 (w;.0) (7 n) (3.5)

Ly~ eN9(wif) s the estimated tilting parameter (segy. CSiszar

n

where X(G) = argminycpax

By multiplying the ETEL function by the prior density 6f the posterior distribution now takes the

form R
n A(0) g(w;,0)

(0] win, K) o 7(0) [| =
=1

- , 3.6
S, NOs(w;0) 59

which we summarize by MCMC simulations, for example, the one block tailored Metropolis-Hastings
(M-H) algorithm ofChib-and Greenhéer@99%, or the Tailored Randomized Block Metropolis-Hastings

algorithm ofChib-and Ramamurth(Z0T1).

Example 1 (continued) To illustrate the prior-posterior analysis, we create a set of simulated data
{yi, i}, with covariatesX ~ U(—1,2.5), interceptdy = 1, slopef; = 1, andg; is distributed
according tog; ~ SN (m(x;), h(z;),s(x;)), whereSN (m, h, s) is the skew normal distribution with

location, scale, and shape parameters given(hy h, s), each depending on;. Whens is zero,e; is



normal with meann and standard deviatioh. We setn(z;) = —h(x;)\/2/7s(x;)/(1/1 + s(x;)?) so
that E[¢|X] = 0.

Suppose thak(z) = /exp(1 + 0.7z + 0.222) and s(z) = 1 + 2?. We estimate the model using
EF[e|Z] = 0, Z = (1, X), without the need to model the heteroscedasticity or the skewness functions.
Then, under the default independent studeptior with mean 0, dispersion 5, and degrees of freedom
2.5, implying a prior standard deviation @25 (2.5) /(2.5 — 2))1/2 = 11.18, the marginal posterior
distributions ofd, and #; are summarized in panel (a) of Tallefor two different sample sizes. We
note from the dispersion of the posterior distribution, that the posterior distributions ofthadind 6,
shrink to the true value at th¢/n-rate. In the next section we formally establish this behavior. For
comparison, we also compute the posterior distributioritaf 61) under the weaker assumption that
¢; is mean zero and uncorrelated witf). The relevant moment restrictions, given as@iid), are a
subset of the expanded moment conditions. As can be seen from panels (a) and (b) Bfifigimsing
the (correct) conditional moment restrictions leads to about a 25% reduction in the posterior standard

deviation off;, for each of the two sample sizes.

Panel (2)E”[¢]z] =0 Mean SD Median Lower Upper Infef

n = 500 0, 0.896 0.073 0.895 0.755 1.040 1.107
#; 1127 0.084 1.126 0.964 1.2961.117

n = 2000 6 0.976 0.034 0976 0910 1.042 1.119
f; 1.040 0.041 1.040 0.961 1.1211.093

Panel (b)E"[c] =0, E[ex] =0 Mean SD Median Lower Upper Infef

n = 500 fp 0.854 0.079 0854 0.704 1.010 1.092
f1 1198 0.115 1.196 0.980 1.4321.141

n = 2000 0y 0.962 0.036 0.962 0.893 1.032 1.092

f; 1.053 0.055 1.053 0.947 1.1621.101

Table 1: Difference between inferences from conditional (top panel) vs unconditional moments (bottom
panel). Data is generated from a regression model with conditional heteroscedasticity and skewness. The
true value offy is 1 and that ob; is 1. Results are based on 20,000 MCMC draws beyond a burn-in

of 1000. “Lower” and “Upper” refer to the 0.05 and 0.95 quantiles of the simulated draws, respectively,
and “Ineff” to the inefficiency factor.

3.3 Asymptotic properties

Consider now the large sample behavior of the posterior distributién\dk letd, and P, respectively,

denote the true value of and of the data distributio?. As notation, when the true distributid®, is



involved, expectationE”[-] (resp.E”’[-|-]) are taken with respect t8, (resp. the conditional distribution
associated withP,). In addition, we denote

O0p(X,0
pe(X,0) := %,

S(2) = Blp(X,0.)p(X,0.)|Z), and pe(X,0.) := 6%p;(X,0)/0000.

D(Z) := E”[py(X, 6.)|Z],

For a vectorq, ||a|| denotes the Euclidean norm. For a mat#ix||A|| denotes the operator norm (the
largest singular value of the matrix). Finally, [&t:= supp(Z) denote the support & and/,, o(W;) :=
log pi(0).

The first assumption is a normalization for the second moment matrix of the approximating functions

which is standard in the literature, seq.Newey(T997) andDonald et al (2003.

Assumption 3.2 For each K there is a constant scalag(K) such thatsup,.z [|¢% (2)|| < ¢(K),
EP[¢¥(Z)¢¥ (Z)'] has smallest eigenvalue bounded away from zero uniformiy,iandvK < ((K).

The bound((K) is known explicitly in a number of cases depending on the approximating functions
we useDonald ef al (2003 provide a discussion and explicit formulas fg) in the case of splines,
power series and Fourier series. We also reféd@mey (1997 for primitive conditions for regression

splines and power series.

Assumption 3.3 The dataW; := (X;,Z;), i« = 1,...,n are i.i.d. according toP, and (a) there
exists a uniqued, € O that satisfiesE”[p(X,0)|Z] = 0 for the true P,; (b) © is compact; (c)
EP[supgpee |lp(X, 0)]|?|Z] is uniformly bounded o.

This assumption is the same Bsnald et al.(Z003 Assumption 3). Part (d) of this assumption
imposes a Lipschitz condition which, together with part (c), allows application of uniform convergence
results. The following three assumptions are also the same as the ones requimniaiy et al (2003

to establish asymptotic normality of the Generalized Empirical Likelihood (GEL) estimator.

Assumption 3.4 (a) 0. € int(0); (b) p(X, ) is twice continuously differentiable in a neighborhddd
of 0., EF [supgey [ po(X, 0)11|2] and EX[[|p;99(X, 64)[|?|Z], j = 1,...d, are uniformly bounded on
Z; (c) EP[D(X)D(X)'] is nonsingular.

Assumption 3.5 (a) X(Z) has smallest eigenvalue bounded away from zero; (b) for a neighbotliood
of 0., EF [supgey, [|p(X, 0)|*|2] is uniformly bounded o, and for alld € U, ||p(X, ) — p(X, 6| <
§(X)|0 — 6.]| andEF[5(X)?|Z] < 0.



Assumption 3.6 There isy > 2 such thaB” [supyce [|p(X, 0)]?] < 0o and((K)2K/n'~2/7 — 0.

The last assumption is about the prior distributiort @ind is standard in the Bayesian literature on

frequentist asymptotic properties of Bayes procedures.

Assumption 3.7 (a) w is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b)is positive on a neighborhood 6f.

We are now able to state our first major result in which we establish the asymptotic normality and

efficiency of the posterior distribution of the local paramétes /n(6 — 6..).

Theorem 3.1 (Bernstein-von Mises)Under Assumption81-37, if K — oo, ((K)K?/\/n — 0, and

if foranyd > 0, de > 0 such that as — oo

19—6+]1>6 T i

P < sup l Z (gn,G(Wz) - gn,e*(Wz)) < _6> - 17 (37)

then the posterior distribution(\/n(6 — 6.)|W1.,) converges in total variation towards a random Nor-
mal distribution, that is,

sup [(v/n(6 = 0) € BIWin) = N, 0, o, (B)] = 0. (3:8)

whereB C O is any Borel setj,, 9, := —\/Lﬁ S Vo.D(Z)'2(Z;) " p(Xi, 0+) is bounded in proba-

bility and V5, := (EF[D(2)'2(2)"'D(2)]) .

We note that the centering,, ., of the limiting normal distribution satisfie% Yo dl"%ﬁg(e*) —

V, ' Ay, > 0. We also note that the conditigi{K ) K2/\/n — 0 in the theorem implieg/n — 0,

which is a classical condition in the sieve literature. This condition is required to establish a stochastic
Local Asymptotic Normality (LAN) expansion, which is an intermediate step to prove the BvM result,
as we explain below. The LAN expansion is not required to establish asymptotic normality of the GEL
estimators, which explains why our condition is slightly stronger than the condjti&h K /\/n — 0
required byDonald, Imbens and New€y003. On the other hand, our condition is weaker than the con-
dition ((K)2K?/\/n — 0 required byDonald, Tmbens and Newg®009 to establish the mean square
error of the GEL estimators. The asymptotic covariance of the posterior distribution coincides with the
semiparametric efficiency bound giver@mamberlair{T987) for conditional moment condition models.

This means that, for every € (0,1), (1 — «)-credible regions constructed from the posteriof @fre

10



(1 — a)-confidence sets asymptotically. Indeed, they are correctly centered and have correct volume.
The proof of this theorem is given in the supplementary appendix and consists of three steps. In the

first step we show consistency of the posterior distributiof, alamely:

7 (V)0 = 0.]] > M| Wi) 20 (3.9)
for any M,, — oo, asn — oo. To show this, the identification assumptidd) is used. In the second
step we show that the ETEL function satisfies a stochastic LAN expansion:

1 _
s Zﬂn ooin) (W, Zm WV A, = SHV ] = 0p(1), (340)

whereH denotes a compact subsetRf and%:lAn,g* 4, N(0, %:1). As the ETEL function is an
integrated likelihood, expansioB{0) is better known as integral LAN in the semiparametric Bayesian
literature, see.g. Bickel'and Kleijn (2012 Section 4). In the third step of the proof we use arguments,
seee.g.the proof ofVan der Vaar{1998 Theorem 10.1), to show thd @) and 1) imply asymptotic
normality ofr(y/n(6—60.) € B|W.,). While these three steps are classical in proving the Bernstein-von
Mises phenomenon, establishif§X0) raises challenges that are otherwise absent. This is because the
ETEL function is a nonstandard likelihood that involves estimated paranjk%éﬁs) || whose dimension

is dK, which increases witm. Therefore, we first need to determine the rate of growtrﬂjdf, of
L3577 | g(W;,0)| and of the norms of the empirical counterpartsxZ) and(Z). While [XCAIES
expected to converge to zero in the correctly specified case, the rate of convergence is slowel/than

In the supplementary appendix we show tﬂﬁ(re*)n = O,(y/K/n) under the previous assumptions.

3.4 Misspecified model

We now generalize the preceding BvM result for the important class of misspecified conditional moment
models, building on the theory derived(iib, Shin and Simor{Z018 in connection with misspecified

unconditional moment models.

Definition 3.1 (Misspecified model)We say that the conditional moment conditions model is misspec-
ified if the set of probability measures implied by the moment restrictions does not contain the true
data generating procesB for any ¢ € O, thatis, P ¢ P where? = | Jyqo Py and Py = {Q €

My z; E®[p(X,0)|Z] = 0 a.s.} with M,z the set of all conditional probability measuresXfZ.
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In essence, ifd1) is misspecified then there is oc © such thatE”[p(X,0) ® ¢ (Z)] = 0 almost
surely for everyK large enough. Now, for every € © defineQ*(0) as the minimizer of the Kullback-
Leibler divergence of. to the modelP, := {Q € M;E®Q[g(W,0)] = 0}, whereM denotes the set

of all the probability measures d&?». That is,Q*(0) := arginf gep, K(Q||Px), whereK (Q||Ps) :=
[log(dQ/dP,)dQ. If we suppose that the dual representation of the Kullback-Leibler minimization
problem holds, then th&,-density ofQ*(#) has the closed formdQ*(0)/dP.J(W;) = %

where), denotes the tilting parameter and is defined in the same way as in the correctly specified case:
Ao 1= Ao(0) := in EF[eN W), 3.11
(0) = arg min E-e ] (3.11)
We also impose a condition to ensure that the probability meagures J,., Py, which are implied
by the model, are dominated by the true probability measyrerhis is required for the validity of the
dual theorem. Therefore, followirtgueishi(?0T3 Theorem 3.1), we replace AssumptiBrs (a) by the

following.

Assumption 3.8 For a fixedd € ©, there exist€) € Py such that) is mutually absolutely continuous
with respect taP, whereP, := {Q € M; E?[g(W, )] = 0} andM denotes the set of all the probability

measures ofR%

This assumption implies th& is non-empty. A similar assumption is also madekbgijn-and van der
Vaart(?012 andChib, Shin‘and Simor(?0T18 to establish the BvM under misspecification. The pseudo-
true value of the parametérec © is denoted by, and is defined as the minimizer of the Kullback-Leibler

divergence between the trd& andQ*(0):
0o = arginfoeo K (P.]|Q"(0)). (3.12)

whereK (P, ||Q*(0)) := [log(dP,/dQ*(0))dP.. Under the preceding absolute continuity assumption,

the pseudo-true valug is available as

o B log [ O 3.13
o — argmaX9€® og m . ( . )

Note that)\,(6,), the value of the tilting parameter at the pseudo-true véjués nonzero because the
moment conditions do not hold.

Assumption33B implies thatK (Q*(6.)||Px) < co. We supplement this with the assumption that
K(P,]|Q*(0,)) < oo and thatK (P.||Q*()) < oo, V§ € O. Because consistency in misspecified
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models is defined with respect to the pseudo-true vidluere need to replace AssumptiBid (b) by the
following Assumptiori3® (b) which, together with Assumptid®i9 (a), requires the prior to put enough

mass to balls aroung,.

Assumption 3.9 (a) 7 is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b) The prior distributianis positive on a neighborhood @, whered, is as

defined in(BT3.

In the next assumption we denote fyt(O) the interior of© and byl{ a ball centered at, with radius

h/+/n for someh € H and’H a compact subset &t.

Assumption 3.10 The datalV; := (X;, Z;),i = 1,...,n are i.i.d. according taP, and

(@) The pseudo-true valug € int(©) is the unique maximizer of
Ao (8)E" [g(W, 0)] — log E” [exp{ Ao (8) g(W, 0)}],

where® is compact;

(b) \o(0) € int(A(0)), whereA(0) is a compact set for everye © and )\, is as defined iff83-11);

(c) p(X,0) is continuous at each € © with probability one;

(d) p(X, ) is twice continuously differentiable in the neighborh@odf 0., EX [supgey, |l pe(z, 0)|*1Z]
andE [supgey, et )'9:O||p.00(2,0)||?| Z], j = 1,...d, are uniformly bounded oveZ;

(e) for the neighborhoot¥ of 6,
EP [ sW0) | o(X, 0.)|1*l¢" (2)]l] = O(K)
and forall§ € U, ||p(X,0) — p(X,0)|| < 6(X)||6 — 6., EP[6(X)?|Z] < oo and
E7 [0 W) 5(X)?|1¢5 (2)]%) = O(K),
(f) for the neighborhood/ of 6, and fork = 1,2, j = 2, 4 it holds that
B fsup e Vo0 g(W,, )] = O(C() k)

andE [supyey, €20 (0)'9W:0| (W, 0)[19] = O(¢(K ) %K), where((K) is as defined in Assumption
B2
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() E[ete)9W0) p(X 0,)p(X,0,)'|Z] has smallest eigenvalue bounded away from zero;

(h) if H is a compact subset &?, it holds

o (A dX(Ba)) g
}SllégE[g(Wzﬁo)]( 10 7 h = Op(n~"77),

=1

where)(0,) is the solution o, [e*(?*)'9(Wibo) g (. 9,)] = 0, andE,[] := 2 37 [-] is the empirical

mean operator.

AssumptionBTD (a) guarantees uniqueness of the pseudo-true value and is a standard assumption in
the literature on misspecified models (geg. White (T982). AssumptionZT0(d) is the misspecified
counterpart of Assumptidii2 (a) and3B (b). Remark that the presence of the exponentigf>)'9(W:0-)

inside the expectations in AssumptiBarD (e)-(g) is due to the fact that in the misspecified case the
pseudo-true value of the tilting parameter(d,) is not equal to zero as it is in the correctly specified
case. Assumption3T0(e) and (f) impose an upper bound on the rate at which the normiswdctor
and(dK x p)-matrices are allowed to increase. AssumpfoRD(g) is the misspecified counterpart of
Assumptiori35 (a). Finally,BT0(h) guarantees that one of the terms in the random vektor, , which

is introduced in Theorer®2 below, is bounded in probability.

Our next important theorem, the BvM theorem for misspecified models, now follows.

Theorem 3.2 (Bernstein-von Mises (misspecified)l.et Assumption81, B2, 386, B8, 39 and B0
hold. Assume that there exists a const@nt 0 such that for any sequendéd,, — oo,
1< 9
P sup = (b g(Wi) = Lng,(Wi)) < —CM2/n | —1, (3.14)
16—00]1>M /v ™ i

asn — oo. If K — oo, ((K)K?\/K/n — 0, then the posteriors converge in total variation towards a

Normal distribution, that is,

e (B)‘ 2, (3.15)

n,0o0 >

sup ‘ﬂ(\/ﬁ(H —0,) € B[Wi) — N,y
B

whereB C © is any Borel set)\,, ¢, is a random vector bounded in probability am;j is a nonsingular

matrix.

The expressions fady, is given in EZ30) in the supplementary appendix. Just aKiaijn-and van der
Vaart (2?0717, this theorem establishes that the posterior distribution of the centered and scaled parameter

Vv/n(6 — 6,) converges to a Normal distribution with a random mean that is bounded in probability. Its
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proof is based on the same three steps as the proof of Théalgnthe correctly specified case with
replaced by the pseudo-true vallie There are however important differences in proving that the ETEL
function satisfies a stochastic LAN expansion in the misspecified case. First of all the Iiﬁ(wcgf
iS Ao (65), which is different from zero. Therefore, several terms that were equal to zero in the LAN
expansion for the correctly specified case are non-zero in the misspecified case and we have to deal with
their limit in distribution. Second, the quanti% >, g(Wi, 6,) is no longer centered on zero, which
leads to an additional bias term. Part of the behavior of this term is controlled by AssufBffikih).

Furthermore, our proof makes use of a stochastic LAN expansion of the ETEL function, which we
prove (under the assumptions of the theorem) takes the form

sup ;en,el (W;) — ;zn,go(Wi) — W Ag, Ny — %h’Agoh = 0,(1),

whereA,, g, and. Ay, are as in the statement of Theor8m.

4 Model Comparisons

We now turn our attention to the problem of comparing competing conditional moment models. We
suppose that the models in the model space are misspecified, which is arguably the most pervasive case
in practice. We are concerned with establishing the large sample optimality of the formal Bayesian rule
of picking the model with the largest value of the marginal likelihood.

Let M, denote the’th model in model space. Each model is characterized by a parafietad
an extended moment functiaff (W, 0). For each model,, we impose a prior distribution fof,
and obtain the posterior distribution based BrB), Let m(W1.,|M,) denote the marginal likelihood of

model M, , which we calculate from the marginal likelihood identity(@iib (T99%5):
=0 =1 ¢
logm(Wi.,|My) = log (0 | Mg) + log p(Wi. |0, M) —log w(0 |Wh.p, My), (4.2)

and the method dEhih-and Jeliazkoy2001). In this expressiond is any point in the support of the

posterior (such as the posterior mean).

Remark 4.1 Comparison of conditional moment condition models differs in one important aspect from
the framework for comparing unconditional moment condition models that was establighiihjrshin
and_Simon(Z07T8, where it is shown that to make the unconditional moment condition models compa-

rable it is necessary to linearly transform the moment functions so that all the transformed moments
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are included in each model. This linear transformation consists of adding an extra parameter differ-

ent from zero to the components of the vegt@, 17) that correspond to the restrictions not included

in a specific model. When comparing conditional moment models, however, this transformation is not
necessary because the convex hulls associated with different expanded models have the same dimension

asymptotically.
4.1 Model selection consistency

Let us suppose that our collection of models among which we want to make a selection cdntains
models. At least/ — 1 of these models are misspecified and one can be either misspecified or correctly
specified. Moreover, suppose that the best maddgis selected by the size of the marginal likelihoods.
Then, in Theoren’1 we show that this criterion in the limit picks the modef, with the smallest

KL divergence betweet® and the corresponding*(6*), whereQ*(#*) is such thatk (Q*(6)||P) =
infgep,, K(Q||P) andPy is defined in SectioB2,

Theorem 4.1 Let the assumptions of Theoréd® hold. Let us consider the comparison Hf< oo
modelsM,, ¢ = 1,...,J, such that/ — 1 of these models each has at least one misspecified moment
condition, that is,M, does not satisfy Assumpti8iB (a), V¢ # j, and model\/; can be either correctly

specified or contain some misspecified moment condition. Then,

n—oo

lim P <logm(W1:n;Mj) > nggxlog m(len;Mg)> =1
J
if and only if K (P||Q*(#%)) < miny; K (P||Q*(6%)), whereK (P||Q) := [ log(dP/dQ)dP.

Note that if one model in the contending set of models is correctly specified, then this model will have
zero KL divergence and, therefore, according to Thed&nthat model will have the largest marginal
likelihood and will be selected by our procedure.

To understand the ramifications of the preceding result, suppose that we are interested in comparing

models with the same moment conditions but different conditioning variables:
Model 1: EP[p(X,8)|Z,] = 0, Model 2: EF [p(X, )| Z5] = 0, (4.2)

whereZ; and Z, may have some elements in common, in particdlamight be a subvector of; (or
vice versa). A situation of this type, where we are unsure about the validity of instrumental variables, is

the following.
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Example 2 (Comparing IV models) Consider the following model with three instrumehtsZ,, Zs):
Y =0+ 01X + e,
X = f(Z1,Z2, Z3) + eq,
Z, ~ U0,1], Zo ~U0,1], and Zs3~ B(0.4),
where(ey, e2)” are non-Gaussian and correlated, which maké the outcome model correlated with

the errore;. We let the true value &f = (6, 6:) be(1,1). Moreover, suppose that thi's are relevant

instruments, that is;ov(X, Z;) # 0 for j < 3, and
3
F(Z1, 22, Z3) = 6 (\/0.321 + \/0.722) (1 = V032 —V0.725) 25 + Z1 Zo(1 — Z3).  (4.3)

We consider a situation in which some instruments are valid and some are not, and we are interested in
selecting valid instruments from a set of instruments. To this end, we geferate, 7 ) from a Gaus-

sian copula whose covariance matrix3s= [1,0.7,0.7;0.7,1,0;0.7, 0, 1] such that the marginal dis-
tribution of e; is the skewed mixture of two normal distributidghS\ (0.5, 0.5%) 4+ 0.5M (0.5, 1.118?)

and the marginal distribution of2 is A/(0,1). Under this setupZ; is now an invalid instrument. We

consider the following three models

My EP (Y — 00— 0,X)| 21, Zy, Z3] = 0, (4.4)
Mo EP[(Y — 0y — 0, X)| 21, Z3] =0, (4.5)
M3 EP[(Y — 0y — 01X)| 2o, Z3] = 0. (4.6)

Becaus€Z; is an invalid instrument, boti1; and M5 are wrong.

In M, our basis matrixB is made from the variable&z;, z2, 21 ©® 22,21 ® 23,22 ® 23), each
using five knots, concatenated with the vectgr This matrix B has 22 columns, which equals the
number of expanded moment conditions. The prioffcand 6 is the product of studeritdistributions
with mean zero, dispersion 5, and degrees of freedom equal to 2.5. Estimation and calculation of the
marginal likelihood forM5 and Mg are special cases o¥1;.

Tablel calculates the marginal likelihoods of all the three models for two simulated samples. Note
that the model with the valid instrument84;) is correctly specified and it has the highest marginal

likelihood, in conformity with our theory.
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Table 2: Model comparison: IV regression example

./\/l1 M2 MB

n =500  Marginal Likelihood -3160.65 -3130.36 -3118.76
(0.032) (0.123) (0.004)

n = 2,000 Marginal Likelihood -15350.08 -15262.06 -15217.79
(0.188) (0.370)  (0.001)

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.
Numerical standard errors are in parenthesis.

5 Application: Moment-Based Causal Inference

An important application of our methods is to problems that arise in causal inference. For specificity,
we consider here the estimation of causal parameters in the sharp regression-discontinuity (RD) design.
Another example, the average treatment effect (ATE) estimation under a conditional independence as-

sumption, is deferred to the supplementary appendix.

RD-ATE in a Sharp design. Suppose that the data arise from the following data generating mecha-
nism,

Y=01-X)g(Z)+ Xq(Z) +e,

whereX = 1{Z > 7} andE¥[¢|Z] = 0. We define the RD-ATE as
RD-ATE = g1(7) — go(7),

whereg(7) is the left limit of go(Z) andg, (7) is a right limit of g1 (Z).

For illustrative purposes, suppose that
go(2) =05+27Z and ¢1(Z) =0.8+2Z,

whereZ = 2(Z* — 1) andZ* ~ 2B(2,4), € is independently drawn frolN ~ (m(Z),h(Z),s(Z))
with m(Z) = —h(Z)\/2/7s(Z) (/1 + 5(Z)%), h(Z) = 0.7(2 — Z?), ands(Z) = 3+ Z2. Under this
set up, the true value of RD-ATE at the break-pointf 0) is 0.3. We estimate the RD-ATE with three
different sample sizes, = 500, 2000, 8000.

Our prior-posterior analysis is based on the conditional mean independence assumtion =
0, without any further assumptions abautWe estimatey,(Z) andg; (Z) separately for data on either

side ofr using the conditional moment restrictiods’ [Y —60,0—0,1Z|Z] = 0, wherej = 0,1. We use 5
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knots to convert the conditional expectation into the expanded moment conditionswwhé&no, 2000,
and 10 knots whem = 8000. The prior of @, 601, 610,011) is an independent studenprior with

mean 0, dispersion 5, and degrees of freedom 2.5.

(@) (2, y;) scatter plot{ = 500) (b) RD-ATE,n = 500

[

1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2

" L 1 1
0.2 0.4 0.6 0.8 1 0.2 0 0.2 0.4 0.6 0.8
2 RD-ATE

(c) (zi,y:) scatter ’p|0t’(L = 8000) (d) RD-ATE, n = 8000

obk-=-

|

1 L . L
02 0.4 06 08 1 0.2 0 0.2 0.4 06 0.8
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-1 -0.8 -0.6 -0.4 -0.2

Figure 1: In the left panels, grey dots represent realizatiors;of;). Blue and red lines arg)(z;) and
g1(z;) evaluated at the posterior mean-£ 500, 8000). Right panels have the posterior distributions of
the RD-ATE. Results are based on 20,000 MCMC draws beyond a burn-in of 1000.

The results from this analysis are reported in Fidliead Table3. The left panels of the figure have
a scatter plot of the data and the estimated regression functions at the posterior mean of the parameters.
The right panels of the figure have the histogram approximation to the posterior distribution of the RD-
ATE. One can see that the posterior distribution puts high mass around the true RD-ATE value of 0.3,

and that the posterior distribution shrinks around this value with

Table 3: Posterior summaries for RD-ATE

Mean SD Median Lower Upper Inief

n=>500 0.311 0.147 0314 0.016 0.594 1.137
n=2000 0.324 0.088 0.324 0.153 0.496 1.093
n =8000 0.293 0.040 0.293 0.214 0.3731.073
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6 Conclusion

In this paper we have developed a Bayesian framework for analyzing an important and broad class of
semiparametric models in which the distribution of the outcomes is defined only up to a set of conditional
moments, some of which may be misspecified. We have derived BvM theorems for the behavior of
the posterior distribution under both correct and incorrect specification of the conditional moments, and
developed the theory for comparing different conditional moment models through a comparison of model
marginal likelihoods.

Our theory and examples, taken together, show that our framework makes possible the formal
Bayesian analysis of a new, large class of problems that were hitherto difficult, or not possible, to tackle

from the Bayesian viewpoint.

Supplementary Material

Technical proofs of all the results developed in the paper are in the supplementary appendix.
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