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Abstract

We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is
specified up to a set of conditional moment restrictions. This analysis is based on the nonparametric
exponentially tilted empirical likelihood (ETEL) function, which is constructed to satisfy a sequence
of unconditional moments, obtained from the conditional moments by an increasing (in sample size)
vector of approximating functions (such as tensor splines based on the splines of each conditioning
variable). The posterior distribution is shown to satisfy the Bernstein-von Mises theorem, subject to
a growth rate condition on the number of approximating functions, even under misspecification of
the conditional moments. A large-sample theory for comparing different conditional moment models
is also developed. The central result is that the marginal likelihood criterion selects the model that
is less misspecified, that is, the model that is closer to the unknown true distribution in terms of the
Kullback-Leibler divergence. Several examples are provided to illustrate the framework and results.
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1 Introduction

We tackle the problem of prior-posterior inference in models where the only available information about

the unknown parameterθ ∈ Θ ⊂ Rp is supplied in the form of a set ofconditionalmoment restrictions

EP [ρ(X, θ)|Z] = 0, (1.1)

whereρ(X, θ) is ad-vector of known functions of aRdx-valued random vectorX and the unknownθ,

andP is the unknown conditional distribution ofX given aRdz -valued random vectorZ. We suppose

that d ≥ p, letting the number of conditional moments exceed the number of parameters. This is a

conditional moment restricted model because the moments constrain the set of possible distributions

P . We say that the model is correctly specified if the true data generating processP∗ is in the set

of distributions constrained to satisfy these moment conditions for someθ ∈ Θ, while the model is

misspecified ifP∗ is not in the set of implied distributions for anyθ ∈ Θ.

A different starting point is that with unconditional moments, sayEP [g(X, θ)] = 0. Such models

have recently attracted interest in the Bayesian community as distributional assumptions are entirely

bypassed. Prior-posterior analysis is based on the empirical likelihood, for example,Lazar(2003) and

many others, or the exponentially tilted empirical likelihood (ETEL), as inSchennach(2005) andChib,

Shin and Simoni(2018). The latter paper provides the large sample theory under misspecification, and

introduces the use of marginal likelihoods for comparing unconditional moment models, including the

relevant framework for comparing such models and the large-sample model consistency of the marginal

likelihoods.

Although the conditional moments imply that the functionsρ(X, θ) are uncorrelated withZ, i.e.,

EP [ρ(X, θ) ⊗ Z] = 0, where⊗ is the Kronecker product operator, it is inappropriate to use these un-

conditional restrictions alone as a substitute for the conditional moments. This is because the conditional

moments assert even more, thatρ(X, θ) is uncorrelated with any measurable, bounded function ofZ, or

if Z is square-integrable, that it is uncorrelated withanyL2-measurable function ofZ. Thus, in order

to assemble the set of unconditional moments that are equivalent to the conditional moments we must

consider all such functions, which is only feasible as the sample sizen goes to infinity. A general result

due toDonald, Imbens and Newey(2003) states that this equivalent set of unconditional moments can be

constructed by approximating functionsqK(Z) = (qK
1 (Z), . . . , qK

K (Z))′, such as tensor product splines

obtained from splines of each variable inZ, with the number of such functions, denoted byK, increasing
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with n. Then, instead of (1.1), inference based on the expanded unconditional moment conditions

EP [ρ(X, θ) ⊗ qK(Z)] = 0 (1.2)

is valid. This is then how we proceed in this paper.

The transformation into unconditional moments introduces, however, some challenges for the prior-

posterior analysis that are different from those addressed inChib, Shin and Simoni(2018). For one,

quantities that are bounded with fixed moment restrictions, now diverge withK. On determining the

rate of this divergence (and thus stabilizing the growth), we show that under correct specification of the

conditional moments, the posterior distribution ofθ satisfies the Bernstein-von Mises (BvM) theorem

with asymptotic posterior variance equal to the semiparametric efficiency bound derived inChamberlain

(1987). As a result, Bayesian credible sets are asymptotically valid efficient confidence sets. Conversely,

sets based on unconditional versions of the conditional moments with a fixedK, in general, are not

optimal.

Second, we consider misspecified conditional moment models, which occur widely in practice, and

establish a similar BvM-type phenomenon. Just as inKleijn and van der Vaart(2012), our theorem

establishes that the posterior distribution of the centered and scaled parameter
√

n(θ−θ◦), whereθ◦ is the

pseudo-true value, converges to a Normal distribution with a random mean that is bounded in probability.

Again, the proof of this result, which requires fixing conditions under which the ETEL function satisfies

a stochastic LAN expansion with increasing moments, is substantially more complicated than in the

unconditional moment case.

Third, we develop a large sample theory for comparing competing conditional moment models by

marginal likelihoods. Despite some similarities, the model comparison framework here is different from

the one in our previous work. For one, the comparison of these models does not require that the models

are reformulated to have the same number of conditional moments. The models can be compared directly

as stated in terms of marginal likelihoods. We show that, under regularity conditions which are different

than in the unconditional case, the model picked by the marginal likelihood, in the limit, is the model that

is less misspecified. This is also the model that is closest to the true distribution in the Kullback-Leibler

divergence.

Conditional moments often supply the only source of information aboutP . Examples of this include

causal inference, as inRosenbaum and Rubin(1983), where one assumes that the potential outcomes are

independent of the treatment variable conditioned on covariates, and in missing at random problems as

2



considered byHristache and Patilea(2017), and numerous others. Our analysis makes possible Bayesian

inference for a large class of models that appeared to be outside the scope of the Bayesian paradigm.

In addition, our results here extend and complete the work ofChib, Shin and Simoni(2018) on uncon-

ditional moments. Our treatment also complements the papers on conditional moment models from a

Bayesian viewpoint that are based on non-ETEL approaches and reflect other concerns. For instance,

Liao and Jiang(2011), Florens and Simoni(2012, 2016), Kato (2013), Chen, Christensen and Tamer

(2018) andLiao and Simoni(2019) allow the moment function to contain a non-parametric component

that is estimated by a sieve type approximation method, or a Gaussian process prior, permitting the

possibility that the non-parametric component is only partially identified, but within a quasi-Bayesian

formulation based on a pseudo-likelihood. None of these papers tackles the problem of misspecification,

or the problem of model comparisons.

The rest of the paper is organized as follows. In Section2 we sketch the conditional moment setting

more formally and provide a motivating example. In Section3 we describe the construction of the

sequence of unconditional moments by an increasing (in sample size) vector of approximating functions.

We then supply results on the large sample behavior of the posterior distribution in both the correct and

misspecified moment models. In Section4 we turn to the problem of model comparisons and determine

the large sample behavior of the marginal likelihood. In Section5 we provide an application of our

techniques to a causal inference problem. Section6 concludes. Technical proofs of the theorems are

included in the supplementary appendix.

2 Setting and Motivation

Let X := (X ′
1, X

′
z)

′ be anRdx-valued random vector andZ := (Z ′
1, X

′
z)

′ be anRdz -valued random

vector. The vectorsZ andX have elements in common if the dimension of the subvectorXz is non-

zero. Moreover, we denoteW := (X ′, Z ′
1)

′ ∈ Rdw and its (unknown) joint distribution byP . By abuse

of notation we useP also to denote the associated conditional distribution. We suppose that we are

given a random sampleW1:n = (W1, . . . ,Wn) of W . Hereafter, we denote byEP [∙] the expectation

with respect toP and byEP [∙|∙] the conditional expectation with respect to the conditional distribution

associated withP .

The parameter of interest isθ ∈ Θ ⊂ Rp, which is related to the conditional distributionP through
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the conditional moment restrictions

EP [ρ(X, θ)|Z] = 0, (2.1)

whereρ(X, θ) is ad-vector of known functions. Many interesting and important models in statistics fall

into this framework.

Example 1 (Linear model with heteroscedastic error) Suppose that

EP [(Y − θ0 − θ1X)|Z] = 0, (2.2)

whereρ(X, θ) = (Y − θ0 − θ1X), Z = (1, X) andd = 1. This conditional moment restriction model

is consistent with the data generating process (DGP)Y = θ0 +θ1X +ε, whereε = h(X)U , and(X,U)

follow some unknown distributionP , with E(U) = 0, and the functionh(X), the heteroscedasticity

function, is unknown. If we specify the restrictions

EP [(Y − θ0 − θ1X) |Z] = 0 and EP [(Y − θ0 − θ1X)3|Z] = 0, (2.3)

where nowρ(X, θ) is a (2 × 1) vector of functions, we additonally impose conditional symmetry ofε.

Of course, the conditional moment model is different from the unconditional moment model. For

example, in Example 1, the unconditional moment conditions

EP [(Y − θ0 − θ1X) ⊗ (1, X)′] = 0, (2.4)

which impose the assumptions thatε has mean zero and is uncorrelated withX, are weaker but, if the

conditional model is correct, less informative aboutθ.

3 Prior-Posterior Analysis

3.1 Expanded Moment Conditions

One way to estimate the conditional moment model is by estimating the conditional expectation directly,

as in the frequentist approach ofKitamura, Tripathi and Ahn(2004). This approach does not seem to

generalize easily, if at all, to the Bayesian setting. An alternative approach, that we adopt, is based

on recognizing that the conditional moments in (2.1) are a functional equation and, therefore, consti-

tute a continuum of unconditional moment conditions. Under certain circumstances, see (Bierens, 1982,

Chamberlain, 1987), a countable number of unconditional moment restrictions that are equivalent to the
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conditional moment restrictions in (2.1) is guaranteed. This is the basis of the frequentist approaches

in Donald and Newey(2001), Ai and Chen(2003) andCarrasco and Florens(2000) where, after trans-

forming the conditional moment restrictions into unconditional moment restrictions, the resulting set of

unconditional moments are analyzed under a sieve approach or a Tikhonov regularization approach. Fol-

lowing Donald, Imbens and Newey(2003), the equivalent set of unconditional moments can be obtained

through approximating functions.

Let qK(Z) = (qK
1 (Z), . . . , qK

K (Z))′, K > 0, denote aK-vector of real-valued functions ofZ,

for instance, splines, truncated power series, or Fourier series. Suppose that these functions satisfy the

following condition for the distributionP .

Assumption 3.1 For all K, EP [qK(Z)′qK(Z)] is finite, and for any functiona(z) : Rdz → R with

EP [a(Z)2] < ∞ there areK × 1 vectorsγK such that asK → ∞,

EP [(a(Z) − qK(Z)′γK)2] → 0.

Now if EP [ρ(X, θ)′ρ(X, θ)] < ∞, thenDonald, Imbens and Newey(2003, Lemma 2.1) established

that: (1) if equation (2.1) is satisfied withθ = θ∗, thenEP [ρ(X, θ∗) ⊗ qK(Z)] = 0 for all K; (2) if

equation (2.1) is not satisfied, thenEP [ρ(X, θ∗) ⊗ qK(Z)] 6= 0, for all large enoughK.

Thus, under the stated assumptions, the conditional moment restrictions are equivalent to the limit of

a sequence of unconditional moment restrictions

EP [g(W, θ)] = 0, (3.1)

whereg(W, θ) := ρ(X, θ) ⊗ qK(Z), with K → ∞, are theexpanded functions.

Example 1 (continued) Let x = (x1, . . . , xn) ∈ Rn denote the sample data, and(τ1, . . . , τK) theK

knots, where the exterior knotsτ1 andτK are the minimum and maximum values ofx, and the interior

knots are specified quantile points ofx. LetqK(x) = (q1(x), . . . , qK(x))′ denote (say)K natural cubic

spline basis functions, whereqj(x) is the cubic spline basis function located atτ j . Let B denote the

(n × K) matrix of these basis functions evaluated atx, where theith row ofB is given byqK(xi)′. Let

(y − θ0 − θ1x) and (y − θ0 − θ1x)3 each denoten × 1 vectors wherey = (y1, . . . , yn). Then, the

expanded functionsg(W , θ) = g(x, θ) for the sample observations are then × 2K functions

g(W , θ) = [ρ(x, θ) ⊗ qK(x)] =
[
(y − θ0 − θ1x) � B

... (y − θ0 − θ1x)3 � B
]
, (3.2)

wherea � B denotes the Hadamard product, and
... denotes matrix concatenation (column binding).
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In our numerical examples we use the natural cubic spline basis ofChib and Greenberg(2010) based

on Z to constructqK(Z), with K fixed at a given value, as in sieve estimation. IfZ consists of more

than one element, say(Z1, Z2, Z3) whereZ1 andZ2 are continuous variables andZ3 is binary, then

the basis matrixB is constructed as follows. Letzj denote then × 1 sample data onZj (j ≤ 3). Let

Z = (z1, z2, z1 � z2, z1 � z3, z2 � z3) denote then× 5 matrix of the continuous data and interactions

of the continuous data and the binary data. Now suppose(τ j1, . . . , τ jK) areK knots based on each

column ofZ and letBj denote the correspondingn × K matrix of cubic spline basis functions. Then,

the basis matrixB is given by

B =

[

B1
... B∗

2

... B∗
3

... B∗
4

... B∗
5

... Z3

]

,

whereB∗
j (j = 2, 3, 4, 5) is then×(K−1) matrix in which each column ofBj is subtracted from its first

and then the first column is dropped, seeChib and Greenberg(2010). Thus, the dimension of this basis

matrix isn×(5K − 4 + 1). To define the expanded functions, letρl(X, θ) (l ≤ d) denote an×1 vector

of the lth element ofρ(X, θ) evaluated at the sample data matrixX. Then, the expanded functions for

the sample observations are obtained by multiplyingρl(X, θ) by the matrixB and concatenating. We

use versions of this approach to construct the expanded functions in our examples.

3.2 Posterior distribution

The conditional model (2.1) is semiparametric and is characterized by two parameters: the data distribu-

tion P and the structural parameterθ, which is assumed to be finite dimensional. For a given value ofK,

the prior on(θ, P ) is specified asπ(θ)π(P |θ,K), where the prior onθ is standard. Our default prior on

θ is a product of independent student-t distributions with 2.5 degrees of freedom on each component of

θ. The conditional prior onP , given(θ,K), can be viewed as a sieve type prior where the hierarchical

parameterK has a degenerate prior with a point mass at a given value. In establishing the asymptotic

properties of the posterior distribution, however, we letK grow to infinity with the sample size to ensure

that (2.1) and (3.1) are equivalent in the limit. FixingK at a specific value in a finite-sample analysis

only impacts the posterior variance.

Priors onP designed to incorporate overidentifying moment restrictions are those ofSchennach

(2005), Kitamura and Otsu(2011), Shin (2014) andFlorens and Simoni(2019). Our priorπ(P |θ,K)

follows from Schennach(2005). To construct this prior, we first model the joint data distributionP of

W as a mixture of uniform probability densities, a construction which is capable of approximating any
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distribution as the number of mixing components increases. Then, a prior is placed on the center of the

dw-dimensional hypercubes such that the corresponding mixture satisfies the moment restrictions for a

given(θ,K). The resulting posterior is well-defined for every value ofK.

By integrating outP with respect to this priorπ(P |θ,K) one gets the integrated likelihood

p(W1:n|θ,K) =
n∏

i=1

p̂i(θ), (3.3)

which is the ETEL function and where{p̂i(θ), i = 1, . . . , n} are the probabilities that minimize the KL

divergence between the probabilities(p1, . . . , pn) assigned to each sample observation and the empirical

probabilities( 1
n , . . . , 1

n), subject to the conditions that the probabilities(p1, . . . , pn) sum to one and that

the expectation under these probabilities satisfies the given unconditional moment conditions (3.1). That

is, {p̂i(θ), i = 1, . . . , n} are the solution of the following problem:

max
p1,...,pn

n∑

i=1

[−pi log(npi)] subject to:
n∑

i=1

pi = 1,
n∑

i=1

pig(wi, θ) = 0, pi ≥ 0 (3.4)

(seeSchennach(2005) for a proof). In practice, we compute the ETEL probabilities from the dual

(saddlepoint) representation as

p̂i(θ) :=
eλ̂(θ)′g(wi,θ)

∑n
j=1 eλ̂(θ)′g(wj ,θ)

(i = 1, . . . , n), (3.5)

where λ̂(θ) = arg minλ∈RdK
1
n

∑n
i=1 eλ′g(wi,θ) is the estimated tilting parameter (seee.g. Csiszar

(1984)).

By multiplying the ETEL function by the prior density ofθ, the posterior distribution now takes the

form

π(θ|w1:n,K) ∝ π(θ)
n∏

i=1

eλ̂(θ)′g(wi,θ)

∑n
j=1 eλ̂(θ)′g(wj ,θ)

, (3.6)

which we summarize by MCMC simulations, for example, the one block tailored Metropolis-Hastings

(M-H) algorithm ofChib and Greenberg(1995), or the Tailored Randomized Block Metropolis-Hastings

algorithm ofChib and Ramamurthy(2010).

Example 1 (continued) To illustrate the prior-posterior analysis, we create a set of simulated data

{yi, xi}n
i=1 with covariatesX ∼ U(−1, 2.5), interceptθ0 = 1, slopeθ1 = 1, and εi is distributed

according toεi ∼ SN (m(xi), h(xi), s(xi)), whereSN (m,h, s) is the skew normal distribution with

location, scale, and shape parameters given by(m,h, s), each depending onxi. Whens is zero,εi is
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normal with meanm and standard deviationh. We setm(xi) = −h(xi)
√

2/πs(xi)/(
√

1 + s(xi)2) so

thatEP [ε|X] = 0.

Suppose thath(x) =
√

exp(1 + 0.7x + 0.2x2) and s(x) = 1 + x2. We estimate the model using

EP [ε|Z] = 0, Z = (1, X), without the need to model the heteroscedasticity or the skewness functions.

Then, under the default independent student-t prior with mean 0, dispersion 5, and degrees of freedom

2.5, implying a prior standard deviation of(25 (2.5) /(2.5 − 2))1/2 = 11. 18, the marginal posterior

distributions ofθ0 and θ1 are summarized in panel (a) of Table1 for two different sample sizes. We

note from the dispersion of the posterior distribution, that the posterior distributions of bothθ0 andθ1

shrink to the true value at the
√

n-rate. In the next section we formally establish this behavior. For

comparison, we also compute the posterior distribution of(θ0, θ1) under the weaker assumption that

εi is mean zero and uncorrelated withxi. The relevant moment restrictions, given as in (2.4), are a

subset of the expanded moment conditions. As can be seen from panels (a) and (b) of Table1, imposing

the (correct) conditional moment restrictions leads to about a 25% reduction in the posterior standard

deviation ofθ1, for each of the two sample sizes.

Panel (a):EP [ε|z] = 0 Mean SD Median Lower Upper Ineff

n = 500 θ0 0.896 0.073 0.895 0.755 1.040 1.107
θ1 1.127 0.084 1.126 0.964 1.2961.117

n = 2000 θ0 0.976 0.034 0.976 0.910 1.042 1.119
θ1 1.040 0.041 1.040 0.961 1.1211.093

Panel (b):EP [ε] = 0,EP [εx] = 0 Mean SD Median Lower Upper Ineff

n = 500 θ0 0.854 0.079 0.854 0.704 1.010 1.092
θ1 1.198 0.115 1.196 0.980 1.4321.141

n = 2000 θ0 0.962 0.036 0.962 0.893 1.032 1.092
θ1 1.053 0.055 1.053 0.947 1.1621.101

Table 1: Difference between inferences from conditional (top panel) vs unconditional moments (bottom
panel). Data is generated from a regression model with conditional heteroscedasticity and skewness. The
true value ofθ0 is 1 and that ofθ1 is 1. Results are based on 20,000 MCMC draws beyond a burn-in
of 1000. “Lower” and “Upper” refer to the 0.05 and 0.95 quantiles of the simulated draws, respectively,
and “Ineff” to the inefficiency factor.

3.3 Asymptotic properties

Consider now the large sample behavior of the posterior distribution ofθ. We letθ∗ andP∗, respectively,

denote the true value ofθ and of the data distributionP . As notation, when the true distributionP∗ is
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involved, expectationsEP [∙] (resp.EP [∙|∙]) are taken with respect toP∗ (resp. the conditional distribution

associated withP∗). In addition, we denote

ρθ(X, θ) :=
∂ρ(X, θ)

∂θ′
, D(Z) := EP [ρθ(X, θ∗)|Z],

Σ(Z) := E[ρ(X, θ∗)ρ(X, θ∗)
′|Z], and ρjθθ(X, θ∗) := ∂2ρj(X, θ)/∂θ∂θ′.

For a vectora, ‖a‖ denotes the Euclidean norm. For a matrixA, ‖A‖ denotes the operator norm (the

largest singular value of the matrix). Finally, letZ := supp(Z) denote the support ofZ and`n,θ(Wi) :=

log p̂i(θ).

The first assumption is a normalization for the second moment matrix of the approximating functions

which is standard in the literature, seee.g.Newey(1997) andDonald et al.(2003).

Assumption 3.2 For eachK there is a constant scalarζ(K) such thatsupz∈Z ‖qK(z)‖ ≤ ζ(K),

EP [qK(Z)qK(Z)′] has smallest eigenvalue bounded away from zero uniformly inK, and
√

K ≤ ζ(K).

The boundζ(K) is known explicitly in a number of cases depending on the approximating functions

we use.Donald et al.(2003) provide a discussion and explicit formulas forζ(K) in the case of splines,

power series and Fourier series. We also refer toNewey(1997) for primitive conditions for regression

splines and power series.

Assumption 3.3 The dataWi := (Xi, Zi), i = 1, . . . , n are i.i.d. according toP∗ and (a) there

exists a uniqueθ∗ ∈ Θ that satisfiesEP [ρ(X, θ)|Z] = 0 for the trueP∗; (b) Θ is compact; (c)

EP [supθ∈Θ ‖ρ(X, θ)‖2|Z] is uniformly bounded onZ.

This assumption is the same asDonald et al.(2003, Assumption 3). Part (d) of this assumption

imposes a Lipschitz condition which, together with part (c), allows application of uniform convergence

results. The following three assumptions are also the same as the ones required byDonald et al.(2003)

to establish asymptotic normality of the Generalized Empirical Likelihood (GEL) estimator.

Assumption 3.4 (a) θ∗ ∈ int(Θ); (b) ρ(X, θ) is twice continuously differentiable in a neighborhoodU

of θ∗, EP [supθ∈U ‖ρθ(X, θ)‖2|Z] andEP [‖ρjθθ(X, θ∗)‖2|Z], j = 1, . . . d, are uniformly bounded on

Z; (c) EP [D(X)D(X)′] is nonsingular.

Assumption 3.5 (a) Σ(Z) has smallest eigenvalue bounded away from zero; (b) for a neighborhoodU

of θ∗, EP [supθ∈U ‖ρ(X, θ)‖4|z] is uniformly bounded onZ, and for allθ ∈ U , ‖ρ(X, θ)− ρ(X, θ∗)‖ ≤

δ(X)‖θ − θ∗‖ andEP [δ(X)2|Z] < ∞.
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Assumption 3.6 There isγ > 2 such thatEP [supθ∈Θ ‖ρ(X, θ)‖γ ] < ∞ andζ(K)2K/n1−2/γ → 0.

The last assumption is about the prior distribution ofθ and is standard in the Bayesian literature on

frequentist asymptotic properties of Bayes procedures.

Assumption 3.7 (a) π is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b)π is positive on a neighborhood ofθ∗.

We are now able to state our first major result in which we establish the asymptotic normality and

efficiency of the posterior distribution of the local parameterh :=
√

n(θ − θ∗).

Theorem 3.1 (Bernstein-von Mises)Under Assumptions3.1-3.7, if K → ∞, ζ(K)K2/
√

n → 0, and

if for any δ > 0, ∃ε > 0 such that asn → ∞

P

(

sup
‖θ−θ∗‖>δ

1
n

n∑

i=1

(`n,θ(Wi) − `n,θ∗(Wi)) ≤ −ε

)

→ 1, (3.7)

then the posterior distributionπ(
√

n(θ − θ∗)|W1:n) converges in total variation towards a random Nor-

mal distribution, that is,

sup
B

∣
∣π(

√
n(θ − θ∗) ∈ B|W1:n) −NΔn,θ∗ ,Vθ∗

(B)
∣
∣ p
→ 0, (3.8)

whereB ⊆ Θ is any Borel set,Δn,θ∗ := − 1√
n

∑n
i=1 Vθ∗D(Zi)′Σ(Zi)−1ρ(Xi, θ∗) is bounded in proba-

bility andVθ∗ :=
(
EP [D(Z)′Σ(Z)−1D(Z)]

)−1
.

We note that the centeringΔn,θ∗ of the limiting normal distribution satisfies1√
n

∑n
i=1

d log p̂i(θ∗)
dθ −

V −1
θ∗

Δn,θ∗
p
→ 0. We also note that the conditionζ(K)K2/

√
n → 0 in the theorem impliesK/n → 0,

which is a classical condition in the sieve literature. This condition is required to establish a stochastic

Local Asymptotic Normality (LAN) expansion, which is an intermediate step to prove the BvM result,

as we explain below. The LAN expansion is not required to establish asymptotic normality of the GEL

estimators, which explains why our condition is slightly stronger than the conditionζ(K)K/
√

n → 0

required byDonald, Imbens and Newey(2003). On the other hand, our condition is weaker than the con-

dition ζ(K)2K2/
√

n → 0 required byDonald, Imbens and Newey(2009) to establish the mean square

error of the GEL estimators. The asymptotic covariance of the posterior distribution coincides with the

semiparametric efficiency bound given inChamberlain(1987) for conditional moment condition models.

This means that, for everyα ∈ (0, 1), (1 − α)-credible regions constructed from the posterior ofθ are

10



(1 − α)-confidence sets asymptotically. Indeed, they are correctly centered and have correct volume.

The proof of this theorem is given in the supplementary appendix and consists of three steps. In the

first step we show consistency of the posterior distribution ofθ, namely:

π
(√

n‖θ − θ∗‖ > Mn

∣
∣W1:n

) p
→ 0 (3.9)

for anyMn → ∞, asn → ∞. To show this, the identification assumption (3.7) is used. In the second

step we show that the ETEL function satisfies a stochastic LAN expansion:

sup
h∈H

∣
∣
∣
∣
∣

n∑

i=1

`n,θ∗+h/
√

n(Wi) −
n∑

i=1

`n,θ∗(Wi) − h′V −1
θ∗

Δn,θ∗ −
1
2
h′V −1

θ∗
h

∣
∣
∣
∣
∣
= op(1), (3.10)

whereH denotes a compact subset ofRp andV −1
θ∗

Δn,θ∗
d
→ N (0, V −1

θ∗
). As the ETEL function is an

integrated likelihood, expansion (3.10) is better known as integral LAN in the semiparametric Bayesian

literature, seee.g. Bickel and Kleijn(2012, Section 4). In the third step of the proof we use arguments,

seee.g.the proof ofVan der Vaart(1998, Theorem 10.1), to show that (3.9) and (3.10) imply asymptotic

normality ofπ(
√

n(θ−θ∗) ∈ B|W1:n). While these three steps are classical in proving the Bernstein-von

Mises phenomenon, establishing (3.10) raises challenges that are otherwise absent. This is because the

ETEL function is a nonstandard likelihood that involves estimated parameters‖λ̂(θ∗)‖ whose dimension

is dK, which increases withn. Therefore, we first need to determine the rate of growth of‖λ̂‖, of

‖ 1
n

∑n
i=1 g(Wi, θ)‖ and of the norms of the empirical counterparts ofD(Z) andΣ(Z). While‖λ̂(θ∗)‖ is

expected to converge to zero in the correctly specified case, the rate of convergence is slower thann−1/2.

In the supplementary appendix we show that‖λ̂(θ∗)‖ = Op(
√

K/n) under the previous assumptions.

3.4 Misspecified model

We now generalize the preceding BvM result for the important class of misspecified conditional moment

models, building on the theory derived inChib, Shin and Simoni(2018) in connection with misspecified

unconditional moment models.

Definition 3.1 (Misspecified model)We say that the conditional moment conditions model is misspec-

ified if the set of probability measures implied by the moment restrictions does not contain the true

data generating processP for any θ ∈ Θ, that is, P /∈ P whereP =
⋃

θ∈Θ P̃θ and P̃θ = {Q ∈

MX|Z ; EQ[ρ(X, θ)|Z] = 0 a.s.} withMX|Z the set of all conditional probability measures ofX|Z.

11



In essence, if (2.1) is misspecified then there is noθ ∈ Θ such thatEP [ρ(X, θ) ⊗ qK(Z)] = 0 almost

surely for everyK large enough. Now, for everyθ ∈ Θ defineQ∗(θ) as the minimizer of the Kullback-

Leibler divergence ofP∗ to the modelPθ := {Q ∈ M;EQ[g(W, θ)] = 0}, whereM denotes the set

of all the probability measures onRdw . That is,Q∗(θ) := arginfQ∈Pθ
K(Q||P∗), whereK(Q||P∗) :=

∫
log(dQ/dP∗)dQ. If we suppose that the dual representation of the Kullback-Leibler minimization

problem holds, then theP∗-density ofQ∗(θ) has the closed form:[dQ∗(θ)/dP∗](Wi) = eλ′
◦g(Wi,θ)

EP [eλ′
◦g(Wj,θ)]

,

whereλ◦ denotes the tilting parameter and is defined in the same way as in the correctly specified case:

λ◦ := λ◦(θ) := arg min
λ∈RdK

EP [eλ′g(Wi,θ)]. (3.11)

We also impose a condition to ensure that the probability measuresP :=
⋃

θ∈θ Pθ, which are implied

by the model, are dominated by the true probability measureP∗. This is required for the validity of the

dual theorem. Therefore, followingSueishi(2013, Theorem 3.1), we replace Assumption3.3 (a) by the

following.

Assumption 3.8 For a fixedθ ∈ Θ, there existsQ ∈ Pθ such thatQ is mutually absolutely continuous

with respect toP , wherePθ := {Q ∈M;EQ[g(W, θ)] = 0} andM denotes the set of all the probability

measures onRdw .

This assumption implies thatPθ is non-empty. A similar assumption is also made byKleijn and van der

Vaart(2012) andChib, Shin and Simoni(2018) to establish the BvM under misspecification. The pseudo-

true value of the parameterθ ∈ Θ is denoted byθ◦ and is defined as the minimizer of the Kullback-Leibler

divergence between the trueP∗ andQ∗(θ):

θ◦ := arginfθ∈ΘK(P∗||Q
∗(θ)), (3.12)

whereK(P∗||Q∗(θ)) :=
∫

log(dP∗/dQ∗(θ))dP∗. Under the preceding absolute continuity assumption,

the pseudo-true valueθ◦ is available as

θ◦ = argmaxθ∈ΘEP log

(
eλ′

◦g(Wi,θ)

EP [eλ′
◦g(Wj ,θ)]

)

. (3.13)

Note thatλ◦(θ◦), the value of the tilting parameter at the pseudo-true valueθ◦, is nonzero because the

moment conditions do not hold.

Assumption3.8 implies thatK(Q∗(θ◦)||P∗) < ∞. We supplement this with the assumption that

K(P∗||Q∗(θ◦)) < ∞ and thatK(P∗||Q∗(θ)) < ∞, ∀θ ∈ Θ. Because consistency in misspecified
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models is defined with respect to the pseudo-true valueθ◦, we need to replace Assumption3.7(b) by the

following Assumption3.9(b) which, together with Assumption3.9 (a), requires the prior to put enough

mass to balls aroundθ◦.

Assumption 3.9 (a) π is a continuous probability measure that admits a density with respect to the

Lebesgue measure; (b) The prior distributionπ is positive on a neighborhood ofθ◦, whereθ◦ is as

defined in(3.13).

In the next assumption we denote byint(Θ) the interior ofΘ and byU a ball centered atθ◦ with radius

h/
√

n for someh ∈ H andH a compact subset ofRp.

Assumption 3.10 The dataWi := (Xi, Zi), i = 1, . . . , n are i.i.d. according toP∗ and

(a) The pseudo-true valueθ◦ ∈ int(Θ) is the unique maximizer of

λ◦(θ)
′EP [g(W, θ)] − log EP [exp{λ◦(θ)

′g(W, θ)}],

whereΘ is compact;

(b) λ◦(θ) ∈ int(Λ(θ)), whereΛ(θ) is a compact set for everyθ ∈ Θ andλ◦ is as defined in(3.11);

(c) ρ(X, θ) is continuous at eachθ ∈ Θ with probability one;

(d) ρ(X, θ) is twice continuously differentiable in the neighborhoodU of θ◦, EP [supθ∈U ‖ρθ(x, θ)‖4|Z]

andEP [supθ∈U eλ◦(θ◦)′gi(θ)‖ρjθθ(x, θ)‖2|Z], j = 1, . . . d, are uniformly bounded overZ;

(e) for the neighborhoodU of θ◦,

EP [eλ◦(θ◦)′g(W,θ◦)‖ρ(X, θ◦)‖
2‖qK(Z)‖] = O(K)

and for allθ ∈ U , ‖ρ(X, θ) − ρ(X, θ◦)‖ ≤ δ(X)‖θ − θ◦‖, EP [δ(X)2|Z] < ∞ and

EP [eλ◦(θ◦)′g(W,θ◦)δ(X)2‖qK(Z)‖2] = O(K),

(f) for the neighborhoodU of θ◦ and forκ = 1, 2, j = 2, 4 it holds that

EP [sup
θ∈U

eκλ◦(θ◦)′g(W,θ)‖g(Wi, θ)‖j ] = O(ζ(K)j−2K)

andEP [supθ∈U eκλ◦(θ◦)′g(W,θ)‖G(W, θ)‖j ] = O(ζ(K)j−2K), whereζ(K) is as defined in Assumption

3.2;
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(g) E[eλ◦(θ◦)′g(W,θ◦)ρ(X, θ◦)ρ(X, θ◦)′|Z] has smallest eigenvalue bounded away from zero;

(h) if H is a compact subset ofRp, it holds

sup
h∈H

E[g(Wi, θ◦)
′]

(
dλ̂(θ◦)

dθ′
−

dλ◦(θ◦)
dθ′

)

h = Op(n
−1/2),

whereλ̂(θ◦) is the solution ofEn[eλ̂(θ◦)′g(Wi,θ◦)g(Wi, θ◦)] = 0, andEn[∙] := 1
n

∑n
i=1[∙] is the empirical

mean operator.

Assumption3.10 (a) guarantees uniqueness of the pseudo-true value and is a standard assumption in

the literature on misspecified models (seee.g. White (1982)). Assumption3.10(d) is the misspecified

counterpart of Assumption3.4(a) and3.5(b). Remark that the presence of the exponentialeλ◦(θ◦)′g(W,θ◦)

inside the expectations in Assumption3.10 (e)-(g) is due to the fact that in the misspecified case the

pseudo-true value of the tilting parameterλ◦(θ◦) is not equal to zero as it is in the correctly specified

case. Assumptions3.10(e) and (f) impose an upper bound on the rate at which the norms ofK-vector

and(dK × p)-matrices are allowed to increase. Assumption3.10(g) is the misspecified counterpart of

Assumption3.5(a). Finally,3.10(h) guarantees that one of the terms in the random vectorΔn,θ◦ , which

is introduced in Theorem3.2below, is bounded in probability.

Our next important theorem, the BvM theorem for misspecified models, now follows.

Theorem 3.2 (Bernstein-von Mises (misspecified))Let Assumptions3.1, 3.2, 3.6, 3.8, 3.9 and 3.10

hold. Assume that there exists a constantC > 0 such that for any sequenceMn → ∞,

P

(

sup
‖θ−θ◦‖>Mn/

√
n

1
n

n∑

i=1

(`n,θ(Wi) − `n,θ◦(Wi)) ≤ −CM2
n/n

)

→ 1, (3.14)

asn → ∞. If K → ∞, ζ(K)K2
√

K/n → 0, then the posteriors converge in total variation towards a

Normal distribution, that is,

sup
B

∣
∣
∣π(

√
n(θ − θ◦) ∈ B|W1:n) −NΔn,θ◦ ,A−1

θ◦
(B)

∣
∣
∣

p
→ 0, (3.15)

whereB ⊆ Θ is any Borel set,Δn,θ◦ is a random vector bounded in probability andA−1
θ◦

is a nonsingular

matrix.

The expressions forAθ◦ is given in (E.30) in the supplementary appendix. Just as inKleijn and van der

Vaart(2012), this theorem establishes that the posterior distribution of the centered and scaled parameter
√

n(θ − θ◦) converges to a Normal distribution with a random mean that is bounded in probability. Its
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proof is based on the same three steps as the proof of Theorem3.1in the correctly specified case withθ∗

replaced by the pseudo-true valueθ◦. There are however important differences in proving that the ETEL

function satisfies a stochastic LAN expansion in the misspecified case. First of all the limit ofλ̂(θ◦)

is λ◦(θ◦), which is different from zero. Therefore, several terms that were equal to zero in the LAN

expansion for the correctly specified case are non-zero in the misspecified case and we have to deal with

their limit in distribution. Second, the quantity1√
n

∑n
i=1 g(Wi, θ◦) is no longer centered on zero, which

leads to an additional bias term. Part of the behavior of this term is controlled by Assumption3.10(h).

Furthermore, our proof makes use of a stochastic LAN expansion of the ETEL function, which we

prove (under the assumptions of the theorem) takes the form

sup
h∈H

∣
∣
∣
∣
∣

n∑

i=1

`n,θ1(Wi) −
n∑

i=1

`n,θ◦(Wi) − h′Aθ◦Δn,θ0 −
1
2
h′Aθ◦h

∣
∣
∣
∣
∣
= op(1),

whereΔn,θ0 andAθ◦ are as in the statement of Theorem3.2.

4 Model Comparisons

We now turn our attention to the problem of comparing competing conditional moment models. We

suppose that the models in the model space are misspecified, which is arguably the most pervasive case

in practice. We are concerned with establishing the large sample optimality of the formal Bayesian rule

of picking the model with the largest value of the marginal likelihood.

Let M` denote thè th model in model space. Each model is characterized by a parameterθ` and

an extended moment functiong`(W, θ`). For each modelM`, we impose a prior distribution forθ`,

and obtain the posterior distribution based on (3.6). Let m(W1:n|M`) denote the marginal likelihood of

modelM` , which we calculate from the marginal likelihood identity ofChib (1995):

log m(W1:n|M`) = log π(θ̃
`
|M`) + log p(W1:n|θ̃

`
,M`) − log π(θ̃

`
|W1:n,M`), (4.1)

and the method ofChib and Jeliazkov(2001). In this expression,̃θ
`

is any point in the support of the

posterior (such as the posterior mean).

Remark 4.1 Comparison of conditional moment condition models differs in one important aspect from

the framework for comparing unconditional moment condition models that was established inChib, Shin

and Simoni(2018), where it is shown that to make the unconditional moment condition models compa-

rable it is necessary to linearly transform the moment functions so that all the transformed moments
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are included in each model. This linear transformation consists of adding an extra parameter differ-

ent from zero to the components of the vectorg(θ,W ) that correspond to the restrictions not included

in a specific model. When comparing conditional moment models, however, this transformation is not

necessary because the convex hulls associated with different expanded models have the same dimension

asymptotically.

4.1 Model selection consistency

Let us suppose that our collection of models among which we want to make a selection containsJ

models. At leastJ − 1 of these models are misspecified and one can be either misspecified or correctly

specified. Moreover, suppose that the best modelM` is selected by the size of the marginal likelihoods.

Then, in Theorem4.1 we show that this criterion in the limit picks the modelM` with the smallest

KL divergence betweenP and the correspondingQ∗(θ`), whereQ∗(θ`) is such thatK(Q∗(θ`)||P ) =

infQ∈P
θ`

K(Q||P ) andPθ` is defined in Section3.4.

Theorem 4.1 Let the assumptions of Theorem3.2 hold. Let us consider the comparison ofJ < ∞

modelsM`, ` = 1, . . . , J , such thatJ − 1 of these models each has at least one misspecified moment

condition, that is,M` does not satisfy Assumption3.3(a),∀` 6= j, and modelMj can be either correctly

specified or contain some misspecified moment condition. Then,

lim
n→∞

P

(

log m(W1:n; Mj) > max
` 6=j

log m(W1:n; M`)

)

= 1

if and only ifK(P ||Q∗(θj
◦)) < min` 6=j K(P ||Q∗(θ`

◦)), whereK(P ||Q) :=
∫

log(dP/dQ)dP .

Note that if one model in the contending set of models is correctly specified, then this model will have

zero KL divergence and, therefore, according to Theorem4.1, that model will have the largest marginal

likelihood and will be selected by our procedure.

To understand the ramifications of the preceding result, suppose that we are interested in comparing

models with the same moment conditions but different conditioning variables:

Model 1:EP [ρ(X, θ)|Z1] = 0, Model 2:EP [ρ(X, θ)|Z2] = 0, (4.2)

whereZ1 andZ2 may have some elements in common, in particularZ2 might be a subvector ofZ1 (or

vice versa). A situation of this type, where we are unsure about the validity of instrumental variables, is

the following.
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Example 2 (Comparing IV models) Consider the following model with three instruments(Z1, Z2, Z3):

Y = θ0 + θ1X + e1,

X = f(Z1, Z2, Z3) + e2,

Z1 ∼ U [0, 1], Z2 ∼ U [0, 1], and Z3 ∼ B(0.4),

where(e1, e2)′ are non-Gaussian and correlated, which makesX in the outcome model correlated with

the errore1. We let the true value ofθ = (θ0, θ1) be(1, 1). Moreover, suppose that theZj ’s are relevant

instruments, that is,cov(X,Zj) 6= 0 for j ≤ 3, and

f(Z1, Z2, Z3) = 6
(√

0.3Z1 +
√

0.7Z2

)3
(1 −

√
0.3Z1 −

√
0.7Z2)Z3 + Z1Z2(1 − Z3). (4.3)

We consider a situation in which some instruments are valid and some are not, and we are interested in

selecting valid instruments from a set of instruments. To this end, we generate(e1, e2, Z1) from a Gaus-

sian copula whose covariance matrix isΣ = [1, 0.7, 0.7; 0.7, 1, 0; 0.7, 0, 1] such that the marginal dis-

tribution ofe1 is the skewed mixture of two normal distributions0.5N (0.5, 0.52) + 0.5N (−0.5, 1.1182)

and the marginal distribution ofe2 is N (0, 1). Under this setup,Z1 is now an invalid instrument. We

consider the following three models

M1 : EP [(Y − θ0 − θ1X)|Z1, Z2, Z3] = 0, (4.4)

M2 : EP [(Y − θ0 − θ1X)|Z1, Z3] = 0, (4.5)

M3 : EP [(Y − θ0 − θ1X)|Z2, Z3] = 0. (4.6)

BecauseZ1 is an invalid instrument, bothM1 andM2 are wrong.

In M1, our basis matrixB is made from the variables(z1, z2, z1 � z2, z1 � z3, z2 � z3), each

using five knots, concatenated with the vectorz3. This matrixB has 22 columns, which equals the

number of expanded moment conditions. The prior forθ0 andθ1 is the product of student-t distributions

with mean zero, dispersion 5, and degrees of freedom equal to 2.5. Estimation and calculation of the

marginal likelihood forM2 andM3 are special cases ofM1.

Table2 calculates the marginal likelihoods of all the three models for two simulated samples. Note

that the model with the valid instruments (M3) is correctly specified and it has the highest marginal

likelihood, in conformity with our theory.
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Table 2: Model comparison: IV regression example

M1 M2 M3

n = 500 Marginal Likelihood -3160.65 -3130.36 -3118.76
(0.032) (0.123) (0.004)

n = 2, 000 Marginal Likelihood -15350.08 -15262.06 -15217.79
(0.188) (0.370) (0.001)

Note: The posterior summaries are based on 20,000 MCMC draws beyond a burn-in of 1000.
Numerical standard errors are in parenthesis.

5 Application: Moment-Based Causal Inference

An important application of our methods is to problems that arise in causal inference. For specificity,

we consider here the estimation of causal parameters in the sharp regression-discontinuity (RD) design.

Another example, the average treatment effect (ATE) estimation under a conditional independence as-

sumption, is deferred to the supplementary appendix.

RD-ATE in a Sharp design. Suppose that the data arise from the following data generating mecha-

nism,

Y = (1 − X)g0(Z) + Xg1(Z) + ε,

whereX = 1{Z ≥ τ} andEP [ε|Z] = 0. We define the RD-ATE as

RD-ATE = g1(τ) − g0(τ),

whereg0(τ) is the left limit ofg0(Z) andg1(τ) is a right limit ofg1(Z).

For illustrative purposes, suppose that

g0(z) = 0.5 + Z and g1(Z) = 0.8 + 2Z,

whereZ = 2(Z∗ − 1) andZ∗ ∼ 2B(2, 4), ε is independently drawn fromSN ∼ (m(Z), h(Z), s(Z))

with m(Z) = −h(Z)
√

2/πs(Z)/(
√

1 + s(Z)2), h(Z) = 0.7(2−Z2), ands(Z) = 3 + Z2. Under this

set up, the true value of RD-ATE at the break-point (τ = 0) is 0.3. We estimate the RD-ATE with three

different sample sizes,n = 500, 2000, 8000.

Our prior-posterior analysis is based on the conditional mean independence assumptionEP [ε|Z] =

0, without any further assumptions aboutε. We estimateg0(Z) andg1(Z) separately for data on either

side ofτ using the conditional moment restrictions,EP [Y −θj0−θj1Z|Z] = 0, wherej = 0, 1. We use 5
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knots to convert the conditional expectation into the expanded moment conditions whenn = 500, 2000,

and 10 knots whenn = 8000. The prior of (θ00, θ01, θ10, θ11) is an independent student-t prior with

mean 0, dispersion 5, and degrees of freedom 2.5.

(a) (zi, yi) scatter plot (n = 500) (b) RD-ATE,n = 500

(c) (zi, yi) scatter plot (n = 8000) (d) RD-ATE,n = 8000

Figure 1: In the left panels, grey dots represent realizations of(zi, yi). Blue and red lines areg0(zi) and
g1(zi) evaluated at the posterior mean (n = 500, 8000). Right panels have the posterior distributions of
the RD-ATE. Results are based on 20,000 MCMC draws beyond a burn-in of 1000.

The results from this analysis are reported in Figure1 and Table3. The left panels of the figure have

a scatter plot of the data and the estimated regression functions at the posterior mean of the parameters.

The right panels of the figure have the histogram approximation to the posterior distribution of the RD-

ATE. One can see that the posterior distribution puts high mass around the true RD-ATE value of 0.3,

and that the posterior distribution shrinks around this value withn.

Table 3: Posterior summaries for RD-ATE

Mean SD Median Lower Upper Ineff

n = 500 0.311 0.147 0.314 0.016 0.594 1.137
n = 2000 0.324 0.088 0.324 0.153 0.496 1.093
n = 8000 0.293 0.040 0.293 0.214 0.3731.073
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6 Conclusion

In this paper we have developed a Bayesian framework for analyzing an important and broad class of

semiparametric models in which the distribution of the outcomes is defined only up to a set of conditional

moments, some of which may be misspecified. We have derived BvM theorems for the behavior of

the posterior distribution under both correct and incorrect specification of the conditional moments, and

developed the theory for comparing different conditional moment models through a comparison of model

marginal likelihoods.

Our theory and examples, taken together, show that our framework makes possible the formal

Bayesian analysis of a new, large class of problems that were hitherto difficult, or not possible, to tackle

from the Bayesian viewpoint.

Supplementary Material

Technical proofs of all the results developed in the paper are in the supplementary appendix.
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