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Abstract

Declining internal migration in the United States is driven by increasing home attach-
ment in locations with initially high rates of population turnover. These “fast” locations
were the population growth destinations of the 20th century, where home attachments
were low, but have increased as regional population growth has converged. Using a novel
measure of attachment, this paper estimates a structural model of migration that distin-
guishes moving frictions from home utility. Simulations quantify candidate explanations of
the decline. Rising home attachment accounts for most of the decline not attributable to
population aging, and its effect is consistent with the observed spatial pattern.
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1 Introduction

Internal migration rates in the U.S. have steadily trended downward in recent decades (Molloy

et al. (2011), Kaplan and Schulhofer-Wohl (2017)). This observation is alarming for policymakers

because migration is considered a primary labor market adjustment mechanism. The decline

is pervasive across demographic strata, and explanations have proved elusive. Americans have

typically been regarded a mobile population (Moretti (2012)), pioneers always in search of better

opportunities, and there is rising concern that America has “lost its mojo” (Thompson (2016)).

This paper finds declining internal migration in the U.S. is primarily due to the increasing

importance of home attachment. Migration propensity depends strongly on home attachment,

or, in other words, preference for one’s place of origin, and these attachments have increased

on average because regional population growth has converged. Over the 20th century, the U.S.

population expanded across the continent, and Sunbelt locations of the West and South grew

explosively. New cities, populated by transplants, had high rates of gross out-migration because

of weak attachments–hence we deem these “fast locations.” In more recent decades, the popu-

lation growth rates across regions have converged, and fast locations are increasingly populated

by natives with high degrees of home attachment instead of weakly attached transplants. Conse-

quently, migration out of these places has declined. Because fast locations make up an outsized

share of total migrants, the national average has fallen. Thus, the decline is the result of not just

individual demographics, but spatial demographics: where people are residing and from where

they came.

We demonstrate empirically the role of home attachment in the national decline of labor

mobility, and that it uniquely fits the spatial pattern of the decline. We begin with a descrip-

tive analysis of migration behavior and the geographic history of population growth and home

attachment. First, we show evidence that home attachment matters for migration. At all ages

and skill levels, Americans living in their birthplaces are significantly less likely to migrate than

transplants from other places. Moreover, those living away from home are significantly more

likely to return there, indicating a preference for home, not selection on unobserved moving

costs, drives the reluctance to leave.1 Moreover, the intensity of one’s home attachment predicts

differential migration rates even among natives. More “rooted” natives, measured as those born

to native parents, are less likely to leave (and more likely to return) than the unrooted. No-

tions of home attachment are not altogether new (see the literature review below), but in this

paper, we demonstrate that spatial heterogeneity in home attachment largely explains the cross

sectional and dynamic patterns in out-migration flows.

To understand the spatial heterogeneity, we document key facts related to local migration

rates and population history. We show that local labor market in- and out-migration rates are

1Indeed, it is the high likelihood of returning home that drives the identification of home preference in our
model, as described below.

2



highly correlated, and cities vary substantially in their degree of population turnover. This pat-

tern is useful because it gives rise to our primary motivating fact: It is the “fast,” high turnover

locations whose out-mobility has slowed, while slower mobility cities have declined little or not

at all. The distinguishing feature of fast locations is their relatively recent population growth;

they are predominantly in West and South regions of the U.S., the centers of population growth

in the 20th century. Knowing that home attachment is central to an individual’s migration deci-

sion, we show how the history of population growth has affected their degree of regional nativity,

directly and over time as successive generations grow up in these newly populated regions. We

close our descriptive analysis showing the relationship between turnover and other local labor

market attributes. Fast cities have more disperse (i.e., unequal) income distributions, but other

major features like population size, mean income, education levels, or age composition do not

explain the cross sectional facts or the spatial heterogeneity in the decline.

With these facts as foundation, we develop and estimate a structural model of migration.

The model allows us to jointly account for multiple factors that affect migration propensity and

to quantify the importance of home attachment. In the model, agents differ by location of birth,

location of residence, age, education, and place in the income distribution. Migration is costly,

with costs varying by distance. Home locations offer their natives utility premia, with the size of

the premium dependent on the intensity of home attachment at time of birth. To measure the

intensity of home attachment (i.e., “roots”) our empirical model, we use a state-cohort matching

method leveraging harmonized historical census data. Using state and year of birth, we derive

the probability that an individual’s birth state is the same as his or her parents. We show the

measure is meaningfully predictive of migration propensity and destination choice probability

among natives but–as a placebo check–not among regional transplants.

We use a dynamic discrete choice model in order to incorporate multiple dimensions of

individual and spatial heterogeneity and the associated variance in opportunity sets. A nested

formulation accounts for the asymmetry of home preference in move-in and move-out elasticities.

The dynamic specification accounts for agents’ heterogeneous continuation values, so that we

can reliably estimate from a cross section the flow utility parameters free of the bias of expected

future utility flows, even when pooling data from different cohorts and origins. We derive a

simple linear estimator leveraging the properties of finite dependence and conditional choice

probability estimation, which is, to our knowledge, the first application of these techniques in a

nested logit model.2

The model delivers estimates of parameters governing utility from residing in one’s birthplace,

moving costs by age and education group and by distance, and a composite of local net income

and amenities. The identifying variation comes from differences in move rates across distance,

by type, and by at-home status; in particular, differences between birthplaces and cohorts in the

2Section 1.1 reviews related work on dynamic discrete choice model estimation.
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depth of roots helps identify the intensity of home attachment. We estimate the model on cross-

sectional data from the American Community Survey using method of moments on the derived

estimating equations. We then simulate the model using estimated parameters and population

group weights derived from the same data. We show the model fits the data well on the degree

to which agents in their birthplace move relative to those not at home without resorting to

assigning additional move costs to home status. The model can also generate heterogeneity in

move rates across local labor markets, mainly through differences in home attachment.

The key validation of the model, which derived its estimates of primitives from cross sectional

data, is its prediction of mobility rates over time outside the estimation period. Specifically, we

project migration rates in previous time periods, holding fixed the primitive parameters and

varying the economy’s attributes, such as population sizes by age and education group, at-

home status and birthplace, depth of roots, and income opportunities. The model simulation

projects a migration decline in line with the actual time series and consistent with its spatial

heterogeneity, with fast locations declining the most and slow locations the least. Note that the

model accomplishes this without changing any primitive parameters (such as move cost or the

utility premium of home attachment) but only through changing environmental factors like the

incidence and intensity of home attachment in the population.

Several factors contribute to the aggregate decline, and the model permits a decomposition of

the sources to quantify the contribution of each. Demographic factors matter for the aggregate,

but explain only a fraction of the decline and cannot rationalize the spatial pattern. Population

aging is a relevant factor, but the aging effect is mitigated by increasing educational rates and

relatively larger population growth in faster locations. Rising home attachment, however, can

explain the majority of the decline and fits the spatial pattern. From the data, the rising rates

of nativity in fast locations (and in some of these, increases in the intensity of attachment) cause

the model to predict a steady decline in mobility out of these places. Because these make up

an outsized share of migrants, the rise in home attachment accounts for a majority (roughly

two-thirds) of the national decline. Changes in income opportunities, mostly in fast locations,

explain the balance and also account for some outlier cases. We conclude that the model can

accurately depict the changes affecting migration rates over the past several decades across the

geography of the U.S.

The quantitative model indicates home attachment is empirically important in the migration

decline, but it is limited to the observed spatial distribution of population and birthplace source.3

To gain further intuition for the mechanism, we use a stylized version of the model to study

the role of home attachment in migration behavior in an economy facing shocks to location at-

tractiveness. This simulation exercise provides a laboratory environment that allows us to trace

3Put another way, home attachment is exogenous to the individual in the estimated model, but in the economy,
spatial distributions of population evolve endogenously in a path-dependent manner.
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the endogenous time profile of home attachment and its impact on migration propensity under

a controlled set of location shocks. The stylized model features home attachment that varies

according to each location’s history of population (“roots”) in comparison to environments of

fixed home attachment or none at all. Amenity shocks generate population reallocation that

eventually arrives at a new steady state, but the transition is prolonged by home attachment,

particularly when the intensity of attachment is evolving with the path of population. More-

over, endogenous home attachment generates a persistent impulse to gross migration rates that

does not resolve until long after the population reallocation has settled. We suggest that this

profile fits the experience of the U.S. economy in the 20th century, which was characterized by

continental expansion and elevated migration rates followed by a decline.

Synthesizing the descriptive evidence and its interpretation through the model, we see a nu-

anced connection of population change and migration. When economists think about migration,

they typically presume the spatial equilibrium paradigm–migration as an equilibrating force,

with households leaving bad places for better ones. This is accurate in a sense, but like many

other labor market flows (see, e.g., Davis et al. (2012)), the gross flows far exceed the resulting

net changes, and the degree of place attachment (such as home) largely determines the ratio

of gross to net. Our analysis indicates that past population changes affect this degree of place

attachment, and thus migration flows and population changes are jointly causal in an autocorre-

lated process. This perspective is important for interpretation and evaluation. Concerns about

the decline in gross mobility have presumed that it will limit needed population adjustments.

In this paper, we show such a concern is the “tail wagging the dog,” as it is actually the long

run population convergence that has driven the gross mobility decline.

We conclude with an evaluation of the migration decline in light of these findings. Rising

home attachment is, in principle, a friction to the labor market in that it reduces elasticities

to local economic shocks, a point we can easily make within our model. This is potentially a

threat to labor market efficiency–the specter of “lost mojo.” But we do not actually see direct

impacts on the ability of the economy to reequilibrate. We emphasize that the decline is not even

observed in relatively bad labor markets; to the contrary, it is the growing local labor markets

that are declining in out-migration. Moreover, trends in annual net population reallocation are

smaller than and predated by the long run trends in population growth.

The fundamental question for welfare is whether the migration decline represents an increase

in barriers or a decrease in the economic incentives to relocating. Are frictions increasing and

preventing moves that households would otherwise like to make, or do households no longer

have to incur the costs of relocating to reach their optimal location? Home attachment falls

most nearly under declining incentives to relocate. Proximity to home, friends, and family is an

idiosyncratic nontraded good, a form of horizontal location quality, and increasing fractions of

households are finding it optimal to stay in place.
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1.1 Related Literature

There are several existing studies documenting the decline in geographic labor mobility.

Fischer (2002) notes that in the U.S., migration (i.e., moving one’s local labor market) peaked

around the 1970s and 1980s, while residential mobility (moving house within a labor market)

had been steadily trending downwards for much longer. After Fischer, much of the initial work

that emerged during and soon after the Great Recession (Molloy et al. (2011), Cooke (2011),

Cooke (2013), Kaplan and Schulhofer-Wohl (2017)) emphasized the secular nature of the decline,

finding compositional and cyclical explanations insufficient in magnitude and scope, although

somewhat important in their own rights.4 The secular trend was provocative and puzzling. How

could the “death of distance” coincide with geographic sclerosis? As labor mobility is thought

to be one of the primary shock-adjustment mechanisms for regions5 and individuals,6 a natural

concern arose that low mobility will result in spatial mismatch and lower aggregate productivity.7

Several studies have offered explanations, although none has addressed the spatial pattern

we emphasize. Cooke (2013) associated coincident trends like the rise in dual-earner house-

holds and improvements in information technology that rendered migration unnecessary. Ka-

plan and Schulhofer-Wohl (2017) argued that advances in travel and information technology

have improved the signal-to-noise ratio in household-location matches, making migration more

efficiently targeted and consequently less frequent. Several studies suggest that changes in the

labor market have altered migration incentives or opportunities.8 Kaplan and Schulhofer-Wohl

(2017) also argue (in a second component to their explanation) that returns to occupations have

become more similar across space, causing migration to be less necessary. Partridge et al. (2012)

asked whether location differences are more sufficiently priced so that quantities will not adjust,

although ultimately they find reduced sensitivity of flows to spatial differences.9

One strand of this literature explicitly ties geographic mobility to job mobility, since most

geographic moves also involve job changes (Molloy et al. (2014), Molloy et al. (2017)). This

places the study of migration in the larger literature on declining labor market dynamism,

4To our knowledge, the only study to parse the migration changes across space was Frey (2009), although
Frey focused on the cyclical dynamics of net migration in the early 2000s instead of the long run secular trend
in gross migration in focus in our analysis.

5See Blanchard and Katz (1992), Bound and Holzer (2000), Carrington (1996), Zabel (2012), Hornbeck (2012).
6See Topel (1986) or Kennan and Walker (2011).
7It is also worth noting that a substantial literature is devoted to understanding why labor mobility is slow or

stagnant and not always in the expected direction (see, e.g., Sjaastad (1962), Lkhagvasuren (2012) Yagan (2019)
Notowidigdo (2011) Autor et al. (2013)).

8As two examples, Karahan and Rhee (2014) suggest that an aging population could have general equilibrium
effects on migration by causing firms to recruit workers (of all ages) locally instead of nationally. Hood (2013)
suggests that labor market shocks are becoming more similar across space.

9Partridge et al. (2012) studied net population movements, not the gross migration rates in focus in our paper,
and did not directly incorporate the history of population change as we do. Nevertheless, we reach a conclusion
they suggest, that the economy is moving to a “new long run spatial equilibrium” of sorts. Our illustrative model
in Section 6 makes this point explicit.
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which has found reductions in job mobility, flows in labor market status, firm growth rates, and

entrepreneurship.10 Our paper stakes out a distinctly geographic position and makes no direct

connection to other forms of labor market dynamism. However, we hope that our findings, or our

technique of leveraging local labor market heterogeneity to study broader trends, is informative

for that literature as well.11

In emphasizing geography, our paper takes a broad perspective on the forces influencing

migration decisions. The economics literature on migration has progressed from studying purely

pecuniary incentives12 to incorporating non tradable amenities,13 idiosyncratic preferences, and

move costs.14 This includes recent work relating migration to home attachments15 and social

capital,16 which also have substantial literatures in the population sciences outside economics.17

Our study is the first to show how long run population dynamics affect local attachments.

Finally, we offer the first quantitative dynamic spatial model studying declining migration.

Models of migration are properly understood as dynamic decision problems (Sjaastad (1962),

Topel (1986), Kennan and Walker (2011)), but in order to explain the spatial pattern, we need

more geographic and demographic detail than a stylized model can offer. To focus on the

estimation of key primitives, our approach utilizes a structural, partial equilibrium model of

location choice, with a nested formulation inspired by Monras (2018). We contribute to the

estimation of dynamic choice models using conditional choice probability (CCP) estimation.18

We derive for our model a linear method of moments estimator that is highly tractable despite

a large type space. This is, to our knowledge, the first implementation of CCP estimation on

aggregated choice data,19 and the first application via a nested logit model.20 We discuss the

model estimation in detail in section 4 and Appendix C.

10See, for example, Molloy et al. (2016), Davis et al. (2012), Davis and Haltiwanger (2014), Decker et al. (2014),
Decker et al. (2016), Hyatt and Spletzer (2013), Hyatt and Spletzer (2017).

11Some of these studies (Molloy et al. (2016), Molloy et al. (2017), and Decker et al. (2014)) describe differences
across states in rates of job mobility and changes thereof with population inflows. The patterns do not align too
closely with our findings, although we focus on outflows and there are asymmetries in flows that may be relevant.

12See Greenwood (1975) and Greenwood (1985) for reviews.
13For a seminal paper on amenities and migration, see Graves and Linneman (1979).
14See, for example, Kennan and Walker (2011), Bayer et al. (2009), Moretti (2011) Coen-Pirani (2010), Lkhag-

vasuren (2012), or Diamond (2016).
15See, for example, Dahl and Sorenson (2010), Kennan and Walker (2011), Coate (2014), Zabek (2018)
16See Carrington et al. (1996), Glaeser et al. (2002), David et al. (2010), Kan (2007), Alesina et al. (2015),

Falck et al. (2012), Hotchkiss and Rupasingha (2018)
17For some examples, see Dawkins (2006), Michielin et al. (2008), Mulder and Malmberg (2014), Belot and

Ermisch (2009), Clark and Lisowski (2019).
18For seminal work one methodologies, see Hotz and Miller (1993) and Arcidiacono and Miller (2011). For

recent applications, see Bishop (2008), Ma (2019), and Davis et al. (2017).
19Though not explicitly characterized as CCP estimation, Artuc et al. (2010) use algebraic manipulation of a

choice value function to derive an estimating equation, which bears resemblance to our approach, although their
identification method is different.

20The results of Arcidiacono and Miller (2011) apply to any generalized extreme value distribution, and they
specifically use nested logit as an example, but we are not aware of any applications of outside of conditional logit.
We show that with some additional algebra, one can still reap the computational benefits of finite dependence.
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2 Empirical Facts

We first introduce a set of novel empirical facts that help motivate, formulate, and preview

the results of the model.

2.1 Data Overview

This study relies on an assemblage of data from several different publicly available sources.

We briefly describe them here and leave details to appendices. Our migration data principally

come from two sources, the American Community Survey (ACS, obtained from Ruggles et al.

(2019)) for 2005 to 2017 and the migration flows tables from the U.S. Treasury’s Internal Revenue

Service (IRS) for 1991 to 2016. The ACS reports the respondent’s current and one-year ago

Public Use Microdata Area (PUMA) of residence, from which we can elicit migration probability

(move or not) and direction (origin-destination pairs). The IRS infers migration events from

changes in the address on individual tax returns in two successive years, publishing the total

county-to-county flows in each year, as well as the total stayers in, inflows to, and outflows from

individual counties. The IRS data underwent a change in method in the 2011-2012 tax year that

resulted in noticeable differences in the sample represented. We present the data for the period

2012-2016 but only rely on the consistent sample of 1990-2011.

The ACS and IRS data are complementary. The ACS provides information on the respon-

dent’s personal characteristics (including birthplace), but unfortunately it has not been collected

long enough to infer trends in migration flows.21 The IRS data provide rich spatial detail at a

longer horizon but not individual or household characteristics. We use the IRS for documenting

trends and their differences over space but the ACS for analyses by person type and home status,

and for the estimation of our quantitative model.

We also employ two sets of historical census data to describe the evolution of places. County

level population counts are used to show population growth trends. Census microdata, contain-

ing place of residence and place of birth, are used to construct measures of home attachment.

We utilize decennial census data from 1880 to 2010.

A fundamental issue in a study of migration is the definition of location. In this paper, we

introduce a unit of analysis we term a local labor market (LLM), which is a close cousin to a

commuting zone (CZ). Both fully partition the U.S. and delineate metropolitan agglomerations.

Most of our analysis focuses on urban areas. We derived LLMs from CZs and modified when

necessary to achieve constant boundaries or closer definitions of current metro areas. We can

map PUMAs and counties into LLMs for each year of data.22 Migration is defined as exiting

21Observation of a time trend in the ACS is further complicated by the cyclical features dominating the
available years.

22The mapping files for each decade are available to other researchers; see our websites for more details.
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one LLM for another, while moves within counties or PUMAs, or among counties or PUMAs of

the same LLM, are non-migration events.

We use LLMs instead of U.S. states in order to more closely correspond to a local labor

market. Different cities within states have different rates of mobility, offer heterogeneous labor

market opportunities and amenities, and may have materially different population composi-

tions.23 However, we are confined to use the census measure of birthplace, the respondent’s

state of birth. We allow residents of LLMs that cross state boundaries to be “at home” if they

were born in any state comprising the LLM.

Further details on data construction are discussed in Appendix E, and LLM definitions and

summary statistics are contained in Appendix F.

2.2 The Importance of Home Attachment in the Migration Decision

A critical fact to establish at the outset is that “home” occupies a special status in the choice

set; that is, home offers a utility premium not available elsewhere. There is a substantial litera-

ture in the social sciences documenting the importance of home, broadly defined, in determining

migration decisions, so while this idea is not new, we show that the measures of home available

in the ACS and census are predictive of migration propensity in the expected way.

Table 1 uses ACS data to report annual mobility rates by age and education in total and

disaggregated by birthplace status. Some well-known patterns appear: The young are more

mobile than the old, and college educated are more mobile than noncollege, especially in youth.

But among all categories, there are major differences by birthplace status: Those living away

from their birthplace are an order of magnitude more likely to migrate than those at home. The

foreign born more closely resemble those living at home, although among the college educated,

mobility rates for the foreign born are somewhat closer to the away-from-home rate.

It is important for interpretation to understand whether the difference in move rates by at-

home status is due to an actual utility-enhancing component–a preference for home–producing

strong attachment to the place, or if the gap between columns 2 and 3 is due to selection on

unobserved move costs among those who have never left their initial places. In terms of a location

decision model, the distinction will clarify whether an evolving spatial distribution of population

affects the observed distribution of move costs or the value of opportunities in the choice set. If

home is valuable, then it will be chosen more frequently even when not already living there.24

In the remainder of Table 1 we examine rate of moving home. Column 5 reports the likelihood

of returning home: the conditional choice probability to moving into one’s birth state when

23California, a state that looms large in our analysis, is a prime example. Los Angeles, San Francisco, and
Bakersfield, for instance, have population compositions and incomes substantially different from one another and
have declined in mobility at different rates.

24As at least prima facie evidence, in odds ratio models of move/stay and destination choice conditional on
moving, the coefficient on birthplace is an order of magnitude larger for inflows than for (lack of) outflows.
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Table 1: Move Rates by Age, Education, and At-Home Status

Move-Out Rate (%) Move-Home Rates

Education/ Total In From Foreign- Conditional Choice Probability (%) Log Odds Ratio,

Age Birthplace Other US Born Actual Synthetic Homers to Others
1 2 3 4 5 6 7

Noncollege
20s 5.79 4.41 12.01 4.12 35.80 4.71 3.42
30s 3.52 2.62 6.89 2.66 29.97 4.48 2.84
40s 2.35 1.68 4.40 1.77 25.63 4.18 2.86
50s 1.91 1.29 3.41 1.53 23.45 3.86 2.84

College
20s 10.02 7.33 15.02 9.89 31.32 4.84 2.69
30s 5.07 3.09 7.57 5.68 25.77 4.45 2.03
40s 2.56 1.52 3.77 2.70 18.65 4.08 1.86
50s 2.20 1.41 3.16 2.03 17.80 3.73 2.12

NOTES: The table reports mobility rates by birth place; i.e., whether the LLM is in one’s birth state or not. In column 7, “Homers” is shorthand for a
native born of an LLM living outside the LLM. (Source: ACS data.)

living away from it and migrating somewhere. Roughly one-fifth to one-third of moves are such

returns. For comparison, column 6 reports the synthetic probability of moving home if choosing

destinations at the probability of the general population of all migrants.25 These are all under

five percent, indicating that the high frequency movements home are not a coincidence of market

size, but because of special status in the mover’s choice set.

One alternative possibility to consider is that if migration networks are relatively local and

any mover does not migrate far from her initial location, then perhaps the rate of choosing home

is not a purposeful return but a coincidence of home being nearby. In Column 7, we condition

on a worker’s origin and take the log odds ratio of “homers,” natives from a destination, relative

to nonnatives. Column 7 reports the median of this ratio to be on the order of 2 to 3.5, meaning

natives are 5 to 27 times more likely to choose their home location than nonnatives migrating

from the same origin. Clearly the move-home propensity is not a coincidence of geography.

These patterns provide evidence of the existence of a home attachment via a utility premium.

This explanation is important to bear in mind as we review the spatial pattern of the mobility

decline and the evolution of population that preceded it.

2.3 Fast Locations Drive the Migration Decline

The decline in migration has been documented by several studies using different datasets

and definitions of migration, and we do not attempt here a full rehashing of all components.

Our aim is to document a fact new to the literature–that the migration decline has centered on

the highly mobile cities. Afterwards, we describe some key features of these mobile locations,

including the potential role of home attachment.

25In other words, we are adjusting the probability for the relative sizes of the LLMs. For example, because
of its size, there are mechanically more New Yorkers living about the country, and also New York is a poplar
destination.
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Figure 1: In and Out-Migration by Local Labor Market

NOTES: The figures plot in- versus out-mobility rates for U.S. LLMs. IRS Early refers to IRS data for the period 1991-1993, IRS Late is that for
2009-2011, and ACS pools over 2005-2017. (Source: IRS and ACS data.)

As an initial matter, we first clarify the language of “fast” vis-a-vis “slow” locations. Gross

migration rates are correlated–locations with high degrees of inflow also exhibit high degrees

of outflow–and there is a large variance across places in the degree of turnover.26 The use of

“fast,” for example, is a categorization strictly on the basis of population turnover (although we

will describe other associated features of fast and slow places). Figure 1 displays scatterplots of

out-mobility to in-mobility rates for 183 urban LLMs using the ACS data and the IRS data for

1991-1993 (”early”) and 2009-2011 (“late”). The strong positive relationship is evident, with

correlation coefficients near 0.9. Moreover, one can show (though we omit for brevity) that the

rates are highly persistent year over year, and the inflow/outflow correlations maintain when

splitting the population into subgroups such as age and education.27 There is a large dispersion

in turnover rates, with fast places turning over two to four times the number of residents per

year as slow places.

The fast/slow distinction is important for introducing our primary new empirical fact: The

decline in mobility is occurring primarily among fast LLMs. The plot on the left of Figure 2

compares the change in mobility rates in the IRS (from early to late) with the initial (early)

mobility of the LLM.28 The bubbles are proportional to LLM population size. The plot shows a

clear negative correlation–the size of the decline is strongly related to the LLM’s initial mobility

level for markets of various sizes.

To see the complete time series, the righthand plot in the figure shows the annual out-

26This fact is not new; see seminal work by (Ravenstein (1885), Sjaastad (1962), Miller (1973), to more recently,
Coen-Pirani (2010) and Mangum (2016)).

27Coen-Pirani (2010) reports a high degree of correlation of in- and outflows even when using fine subgrouping
cells, including occupational categories, at the geography of U.S. state.

28Here we use a market size-adjusted mobility index. The index is simply the residual from a regression of
average outflows on population size, which is inversely related. The raw data show a similar pattern, but this
index is more precise.
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Figure 2: Changes in Out-Migration Rate Over Time

NOTES: The left figure shows the change in metro level out-mobility compared to initial mobility rates; bubble size is proportional to metro
population. The right figure shows the annual out-migration rates by initial mobility tercile. The data become dashed series 2012 and following to
reflect a break in the method the IRS used to define move rates. (Source: IRS data).

migration rates for LLMs split into terciles by their mobility rate–fast, medium, and slow. The

most mobile third of cities show a strong downward trend, dropping from about 5.7 percent to

4.6 percent from 1990 to 2011 (a 21 log point decline). The change for the middle third was

much smaller, declining from about 4.3 to 4.0 percent (a seven log point decline). The least

mobile third showed essentially no decline.29

We have also used the geographic detail in the IRS data to parse the migration flows network

of origins to destinations, allowing us to check whether the slowing out-mobility is associated

with lower inflows to particular destinations. See Appendix A for more detail. The networks

of higher and lower mobility cities are not identical, and virtually everywhere, the plurality

of migration is within region. However, the trends out of each origin local labor market are

remarkably similar to all types of destinations: to near and distant locations, to small or large

LLMs, to common destinations and the infrequently visited. Thus, the declines are clearly a

general slowing from the origins.

Understanding the decline in outflows from fast locations is then essential for studying the

national mobility decline. A simple accounting exercise helps fix ideas. By definition, the fast

tercile of locations make up one-third of population but a greater share of out-migrants, about

44 percent of them in the early 1990s. Projecting how many migrants there would be in 2010

if all cities moved at 1990 levels, and taking the difference from actual as the number of “lost

migrants,” indicates that this one-third of places is responsible for 64 percent of the national

decline.30 In contrast, slow locations account for only 13 percent of the decline.

The spatial pattern invites two natural questions: What is different between fast and slow

29The differences in LLM-category trends are statistically significant by standard measures.
30As a particularly notable example, the cities of California make up 31 percent of the lost migrants, and

Southern California alone - Los Angeles, Riverside/San Bernardino, and San Diego - makes up 18 percent.
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locations? And then, what is changing?

2.4 Fast Locations: Centers of Continental Population Expansion

Which locations are fast? There is a strong regional component to current migration speed.

Table 2 lists the location of fast, medium, and slow LLMs by region of the U.S. defined so

that each region comprises one-fifth of the current U.S. population (see Appendix F for details).

These closely correspond to the standard four census regions, but with states of the Rocky

Mountains, Central Plains, and Southwest cut out as a fifth region denoted the “Frontier.”31 It

is clear that western and southern states dominate the fast locations. For instance, 87 percent

of the West’s population lives in a fast LLM, but there are only two fast LLMs in the Northeast

and Midwest combined.32

Table 2: Regional Location of Fast, Medium, and Slow LLMs

Number of LLMs Share of Regional Population

Region Fast Medium Slow Total Fast Medium Slow Omitted
Northeast 2 8 18 28 0.09 0.22 0.63 0.07
Midwest 0 22 29 51 0.00 0.19 0.55 0.26
Southeast 16 14 10 40 0.24 0.32 0.14 0.30
Frontier 16 15 4 35 0.31 0.32 0.04 0.33
West 27 2 0 29 0.87 0.06 0.00 0.06

NOTES: See Figure F1 for regional definitions. The omitted category collects select excluded LLMs (military and college towns, as described in the
main text) and rural areas unclassified as LLMs. (Source: IRS and census data.)

What is different about fast places? In short, these are LLMs and regions with a recent

history of high population growth. The lefthand plot of Figure 3 plots decadal population

growth rates from 1880 to 2010 for LLMs of each mobility tercile. Fast locations grew markedly

over the last century. Cities such as Los Angeles, Phoenix, and Las Vegas burgeoned from small

outpost towns with just a few thousand residents at the start of the 20th century to major urban

areas at its end. It is especially apparent that population growth in fast cities peaked in the

post war period and declined sharply thereafter, though they still are growing somewhat faster

than medium and slow places.

As the examples suggest, there was a major regional component to the growth trends. The

20th century was a time of continental expansion.33 The righthand plot of Figure 3 shows

population growth by region. For much of the 20th century, population growth in the Frontier

and especially the West drastically outpaced the national as a whole, as these regions transformed

from sparsely populated desert to urban growth engines. The Midwest and Northeast lagged

31Using this regional characterization, we can compare the spatial pattern of the decline in alternative datasets
containing other geographic definitions. In Appendix A, we report migration by as measured by the Current
Population Survey Annual Social and Economic Supplement (CPS-ASEC, or commonly, the March CPS).

32These are Washington DC and Manchester, New Hampshire.
33See Chinitz (1986) for a discussion of American regional transformation.
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Figure 3: Population Accumulation Over Time, by Region and by LLM Mobility Rates

NOTES: The figure reports decadal population growth rates by LLM speed category (left) and region (right). Definitions are detailed in Appendix F.
(Source: Census county population estimates, harmonized over time by Manson et al. (2018).)

throughout. The South emerged as a population destination in the latter half of the century,

and the Frontier region retains a relatively high rate of growth.34

Expansion to these new regions was relatively sudden (by historical standards), as new tech-

nologies made developable areas that were previously too remote or difficult to inhabit at a large

scale. The reasons for the growth of these areas are varied, but a common theme is water tech-

nology. In the West, urban and rural areas developed simultaneously, as rivers were harvested

for urban populations, irrigation for agriculture, and hydroelectric power for industry, including

defense industries during World War II (Luckingham (1984), Reisner (1993)).35 A notable ex-

ample (with a colorful history) is the development of Los Angeles following the completion of the

aqueduct in 1913 and its increasing use for urban water delivery in the 1920s. On the opposite

coast (with an equally colorful history), the technology of water control aided Florida’s devel-

opment, as storm water was captured and swamps were drained (Barnett (2008)). Advances

in transport technology and climate control made accessible new, desirable parts of the Amer-

ican continent (Ullman (1954), Trippett (1979), Luckingham (1984), Arsenault (1984), Glaeser

and Tobio (2008)). Railroads connected the population centers of the east to the west and the

Florida peninsula (Wiggins (1995)). Later in the 20th century, air conditioning played an im-

portant role. Besides making hot summers tolerable, air conditioning enabled the construction

of high-density residential structures and large-scale industrial production. Overall, the tech-

nological trends meant the 20th century was a particular phase of history characterized by an

opening of the American continent to urbanization at a scale not previously experienced–and

one that had converged by century’s end.

34Texas is contained in the Frontier region and is responsible for a large fraction of recent population growth.
35This contrasts with the slower rural-to-urban development of the wetter eastern U.S.
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2.5 The Evolution of At-Home Status Across Space

The history of population growth had implications for the birthplace source composition of

cities. Figure 4 uses census microdata on place of birth and place of residence to report the

proportion of residents in each set of locations that are (1) born in a state represented by their

current LLM (“At Home”), (2) born in some other U.S. state, or (3) born outside the U.S.

Separately, a line reports the ratio of at-home population to other U.S.-born (i.e., dropping the

foreign born from the calculation) to measure the share of U.S. natives who are in the LLM of

their birth.

The dominant pattern in the national total in the upper left is the fluctuation in the share

of foreign-born population, which compressed substantially after immigration restrictions in the

early-to-middle 20th century (see Abramitzky et al. (2019)). In recent decades, an increasingly

larger proportion of population growth is due to the arrival of the foreign born. However, as

Table 1 indicates, understanding the “mover class”– the U.S.-born, away-from-home population–

is most relevant for total migration rates.

Among this group, the national pattern masks the important heterogeneity by LLM speed

category. In the middle century, fast locations had a widening share of U.S.-born population

sourced from other states, as the plot of the upper right of Figure 4 shows. That is, the large

growth rates in Figure 3 were substantially made up of people moving from other regions and

populating the West and Frontier. This growth slowed, and the population share of the at-home

gradually increased, from about 60 percent in 1960 to 80 percent by 2010. As one example,

in 1960, 20 percent of the U.S.-born Los Angeles residents were from California; by 2010, that

share was 71 percent. Medium and slow places have tracked the national average in share of

U.S. versus foreign born, and among U.S. born, medium LLMs have nearly flat at-home shares

while slow LLMs have shown a small increase.

Knowing that home attachment matters greatly for migration propensity, this pattern is

the critical clue in understanding the mobility decline and its spatial pattern. The population

growth trends of the 20th century left fast locations with large shares of residents who were not

originally from those locations, and hence they were lowly attached to these new locations and

more likely to move away again. As the population growth converged, ever-larger proportions

of residents were native to these cities, putting greater shares of their populations into a more

attached status. To formally test this hypothesis requires a model of migration propensity, a

measurement of home attachment, and an accounting of coincident factors.

2.6 Local Labor Market Attributes

With population growth history as background, we now review some of the modern attributes

of LLMs in our data. Figure 4 indicated that fast locations have smaller shares of at-home

15



Figure 4: Population Share From Birthplace Source, by LLM Mobility Category

NOTES: At Home refers to living in an LLM in one’s state of birth. Other U.S. refers to a birthplace in another U.S. state not covered by the LLM.
Outside U.S. are foreign born from any other country (or non-continental U.S. states and territories). The figure panels are summarized by LLM
mobility categorization (fast, medium, and slow). Total includes all LLMs and rural areas/excluded small cities. (Source: Authors’ calculations using
census data; IRS data for LLM categorization.)

residents, which, combined with the migration propensities reported in Table 1, suggests one

major reason for their high rates of turnover. But looking within home status across LLMs

suggests there is more to the explanation. Figure 5 plots the migration propensity by birthplace

status for each age and education group, as in Table 1, but split by origin LLM mobility tercile.

Within the from “Other U.S.” group, fast, medium, and slow cities send away their transplanted

residents at similar rates, and patterns among the foreign born are mixed. Among the “At Home”

residents, however, a clear slope emerges–natives of fast locations move away at higher rates than

natives of slower locations. Thus, the fast locations not only have more nonnative residents, they

send away their natives at higher rates, suggesting the intensity of home attachment varies across

space.

Figure 4 provides a clue here as well. The lines plotted in that figure show that fast loca-

tions have lower (but increasing) rates of the U.S.-born native to their current LLM. If home

is preferable because of social and family networks, as the literature reviewed in section 1.1

indicates, stronger connections could produce stronger preferences, and hence shifting spatial

populations might impact migration incentives for several generations. Given post-war U.S.

population trends, a Boston native, for example, is far more likely to be born to parents who

were also Massachusetts natives than a Los Angeles native is likely to be born to native Califor-
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Figure 5: LLM Migration Rates by Age, Eduction, Birthplace Status

NOTES: The figure plots migration propensities by age and educational group and at-home status, split by LLM speed category. The national averages
by person type are reported in Table 1. (Source: ACS data.)

nian parents. This motivates our measure of home attachment, which we will call “rootedness.”36

To build the measure, we employ the decennial census microdata with birthplace back to 1880.

We define a measure of rootedness to be the probability of being born to parents native to one’s

own location of birth, applying the measure to current generations by matching birth cohorts

for each LLM by place of residence in the child’s first census. For example, a 30-something in

2010 was born in the 1970s and was therefore under 10 in the 1980 census. We take children

under 10 in 1980 living in, for instance, the Boston LLM, and then, using the family relationship

variables in the census, summarize the proportion of their parents who report a home state of

Massachusetts. This proportion is a proxy of how highly attached to Boston is someone born

there some t years earlier, even when possibly living in other locations by the 2000s. Appendix

E.3 contains a detailed discussion of implementation details.

Rootedness by our definition is feasibly measured, but of course is only a proxy. Birthplace

may be an imperfect measure of one’s sense of “home,” and besides, the measure is a cohort-

matched propensity and not a directly observed object. But in fact, it is highly predictive. Table

3 shows correlations of LLM attributes with mobility rates and changes thereof, beginning with

rootedness. Across LLMs, rootedness is strongly inversely correlated with migration rates, but

positively with decline, meaning already highly rooted places in 1990 declined by less. Increasing

rootedness over the two decades is correlated with greater declines. Moreover, rootedness is

correlated with the mobility of at-home residents, but not that of the not-at-home,37 rationalizing

36We certainly did not invent the terms “roots” or “rootedness,”, as these are used in a variety of contexts
across the population sciences, but we mean to use it here in a particular way.

37Appendix Figure A3 displays scatterplots of LLM move rates by at-home status to rootedness.
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Table 3: Correlation of Mobility Rates and Local Labor Market Attributes

Out-Migration Rate*

Level, 1991-1993 Change, 90s-2010s

Roots

LLM Working Age Avg. Roots, 1990 -0.56 0.56
ACS, 2005-2017

Avg. Roots, 2005-2017 All Population -0.31 na
At-home -0.36 na
Not-at-home 0.29 na

Change in LLM Working Age Avg. Roots, 1990-2010 0.15 -0.37

Incomes

Mean Noncollege -0.22 0.09
College -0.07 -0.19

Change in Mean Noncollege 0.16 -0.07
College 0.15 -0.16

Dispersion Noncollege 0.28 -0.37
College 0.20 -0.16

Change in Dispersion Noncollege -0.10 0.08
College 0.09 -0.17

Population Characteristics

LLM Size ln(pop) -0.25 -0.04

Percent College 0.03 -0.18
Change in Percent College -0.36 0.31

Percent Under 40 0.15 -0.35
Change in Percent Under 40 0.30 -0.18

*Using IRS migration data, unless otherwise noted.
NOTES: The table reports correlation coefficients of income statistics and changes to migration levels and changes. Declines in migration are negative,
so a negative correlation indicates an increase in the variable is associated with a larger magnitude decline. (Source: IRS and ACS data; 1990 census
county and microdata.)

the pattern seen Figure 5 and providing evidence that rootedness is a good candidate to measure

home attachment. We discuss additional advantages of this measure in estimation in more detail

in section 4.

Before proceeding, we check for other local labor market differences between fast and slow

cities to incorporate into a formal model. For brevity, we simply summarize some of the key

patterns via correlation statistics reported in Table 3.

The top panel considers the income distributions. The associations with mean incomes are

mixed. LLM mobility rates are negatively correlated with mean income for the non college

educated, but the change in mobility is not. Mean incomes for the college educated are weakly

correlated with declines. Growth in average income is weakly correlated with mobility rates and

decline. Certainly a model of location choice needs a role for local income opportunities or else

risks an omitted variable problem, but given these patterns, we do not expect mean incomes to

be driving the aggregate results.

There are stronger associations with income dispersion and mobility rates and declines.

Places with higher income dispersion exhibit higher turnover and greater decline in migration

18



(and among the college educated, increases in dispersion are associated with mobility declines).

We take these points seriously for two reasons. First, migration is more likely among individuals

at the higher or lower points of the income distribution compared with the middle. Furthermore,

at all points along the income distribution, migration is more likely out of LLMs with higher dis-

persion, but the correlation is stronger for lower income individuals. These patterns are depicted

in Appendix Table A1 and Figure A4. If fast places have more disperse and uncertain income

distributions, workers in these places may face more frequent or more severe shocks to income,

which could in part explain the higher tendency to out migrate. Second, changing information

availability (as in Kaplan and Schulhofer-Wohl (2017)) may make it easier for workers to avoid

or cope with these types of shocks. Therefore, we include in the model a role for heterogeneous

income distributions across places and the ability for workers at different points in those distri-

butions to migrate at different rates. We describe an income search process within a location

after introducing the basic model.

Finally, we document population characteristics that are intuitive but actually not associated

with the mobility decline, despite being predictive of an individual’s mobility propensity. The

lower panel of Table 3 shows correlations of migration levels (and changes) to rates of educational

attainment and youth in the local workforce. Faster locations have no more college graduates,

and actually, higher levels of education are associated with larger declines on average. Increases

in college-educated share are associated with less initial mobility and smaller declines. Faster

cities are slightly younger, but cities with younger workforces show larger declines. Increases in

the share of young workers are associated with larger declines. Faster cities have seen smaller

increases in college-educated share and relative increases in (that is, smaller declines in) the share

of young workers, but relative increases in young workers are associated with larger declines.

Nationally, the U.S. has experienced an aging but more educated workforce, and given the

large differences in average move rates by worker type (Table 1), we will account for these types

in the model, but Table 3 shows that composition by age and education does virtually nothing

to explain the spatial pattern in the mobility decline. Finally, the table shows larger cities are

less mobile, on average, although there is a fair amount of dispersion among cities of a given

size. There is no association in city size and mobility decline.

3 Model

To quantitatively test for the role of home attachment in determining the migration decline,

we now write down a model of location choice that incorporates the key aspects described above:

home utility and its intensity, local labor market attributes, and various types of workers. A

dynamic discrete choice model is well suited to the task of explaining costly migration decisions

for heterogeneous workers over a set of heterogeneous alternatives. Such a model is written in
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the tradition of Kennan and Walker (2011), broadly, with adjustments for our focus on spatial

heterogeneities and to be applied to cross-sectional data in which we observe one location choice

event.

3.1 Environment

The economy consists of a closed set of J distinct locations. There are a discrete M types

of people, “workers,” with individual types denoted by m, who each live for A > 1 periods.

All workers are employed. Each location offers a N -pointed discrete distribution of income. We

abstract from labor supply and cost-of-living differences between locales, though in the empirical

implementation we adjust for the latter.

Individual workers are endowed with a home location (which may or may not be their current

location) that provides them with a utility flow available nowhere else. The size of this flow

utility (the “rootedness”) is also endowed at time of birth and remains constant throughout the

workers’ lives. This flow utility is provided at any point in the income distribution and hence

is not affected by the income search process detailed below. We denote utility from home, a

function of rootedness, simply as uj=H(r).38 The rootedness of a location affects the utility

offered to its natives, and not any other workers living in the location but born elsewhere.

Time is discrete. Workers begin a period in an initial location and face the full set of J

alternatives, including their origin. Within a period, two to three substages may occur. First,

in the upper nest, workers decide whether to stay in their current location. Then, conditional

on deciding to migrate, they choose a location. In either case, a last stage in which incomes

shocks are drawn is also modeled to allow for expected income to have an impact on the location

decision. Because we do not observe income dynamics jointly with location decisions, we do not

estimate this component directly, although we can allow for it in simulation.

Workers face moving costs to relocating from their origin at the start of the period, whether

home or not. We carefully make a distinction between moving costs and idiosyncratic preferences

for particular locations. While the home premium inclines workers to prefer their birthplace

ceteris paribus, moving costs introduce frictions. These ideas are often conflated in the literature,

either as shorthand or because of data limitations.39 It is important for our model to separate a

relocation cost from an agent’s preference for a particular place. Home attachment is a dimension

of horizontal location quality, not an adjustment cost to relocation. This is especially important

38Our referring to home attachment as “preference” suggests nonpecuniary benefits, but we do not mean to
limit the scope. There can be economic benefits from trusting relationships, such as child care provided by
grandparents.

39For example, Moretti (2011) introduces a model with a distribution of location-specific preferences to study
their impact on labor mobility in response to local market shocks. Bayer et al. (2009), Diamond (2016), Bryan
and Morten (2019) put home state and/or region in the utility function (as we do), but refer to the effects as
“moving costs.” Morten and Oliveira (2016) make a more precise distinction, using relocation costs in their model
but in empirics checking for robustness to use of both distance costs and specific preferences for birthplace.
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in counterfactual simulations, where we alter the distribution of home preferences but keep

adjustment costs fixed by assumption.

3.2 Migration: Choice Across Locations

We begin in the lower nest, assuming that a worker has decided to migrate and model

the choice of location j conditional on it being different from the origin o. To account for

heterogeneity between locations in mobility rates in ways not captured by home preference,

income, or other characteristics, we allow moving costs to be dependent on the pair of locations,

representing a generic notion of “distance,” and hence we label them symmetrically mcj,o =

mco,j.

We denote types and describe the income search process below; for now, it suffices to label

the common value of a location as νj. Workers are presented with the flow value for a location,

the home utility premium if applicable, and pair-specific moving costs. Let v denote the value

of making a locational choice,

vj,o = νj + uj=H(r)−mcj,o + βEV (j). (1)

Equation (1) shows the sources of utility, the moving cost wedge, and because works live past

today (A > 1), the continuation value from choosing j, V (j). As is common in discrete choice

models, we allow for a temporal idiosyncratic preference shock term distributed Type I extreme

value with a variance determined by parameter λ. Preference shocks are important for rational-

izing the gross flows at the focus of our analysis. Expectation E is taken over future preference

shocks.40 With these shocks, the probability of choosing destination j conditional on current

location o is given by

Pr(j|o) = σjo =
exp[vj|o]

1
λ∑

i exp[v
1
λ

i|o]
. (2)

3.3 Choice of Migrating or Staying

The upper nest is the binary stay or move decision. The value of staying is consuming flow

utility in the current location, νj +uj=H(r), and being faced with the same decision next period,

Vs|o = νo + uo=H(r) + βEV (o). (3)

40For simplicity, we abstract from evolving state variables like the future path of incomes, although in principle
we could introduce them. As we describe in the estimation section, this is not a serious threat to bias in our
results.
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The value of moving is the expected value of choosing a destination optimally from maxj{vj,o}
(the ‘Emax’), from which using standard results is

Vm|o = λln
(∑

k

exp[v
1
λ

]

k|o
)
. (4)

The respective probabilities are

Pr(stay) =σs =
exp[Vs|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

(5a)

Pr(move) =σm =
exp[Vm|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

, (5b)

where the elasticity of the upper nest is governed by δ. The expected value of being faced with

a move/stay decision in some origin o gives the continuation value of locating there,

EV (o) = δln
[
exp[Vo]

1
δ + exp[Vm|o]

1
δ

]
. (6)

3.4 Income Search Within Locations

We now specify the income search process. We include this component in the model to allow

for differences in income distributions between locations or over time to affect gross migration

rates; in particular, allowing workers with especially low or high income draws to migrate at

rates higher than those of a mean worker. The estimation described below does not rely on

this feature of the model. Our goal in including an income search component is to account for

potentially heterogeneous effects on gross migration of income opportunity across locations.

The worker begins the period at some point in the income distribution, yn. Let W (n) denote

the utility afforded by income at some point n (suppressing location notation). Each period in

every location, there is a some probability γ that the worker is contacted with a new offer. If the

worker fails to get a contact, occurring with probability 1−γ, she is left to a non-optional lottery

where her new wage is drawn from the probability distribution πn′|n. Note the distribution is

conditional on her current state. The expected value of the non-optional lottery is

w0(n) =
N∑
n′

πn′|nW (yn′). (7)

Were the worker to receive a new contact, she is allowed to choose between her current income

yn and the new income yn′ . We specify this as a discrete choice subject to an idiosyncratic shock.

The new income is not only temporal but a change in her state variable to enter the next period.
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Hence, the choice conditional on a new contact is max{W (n),W (n′)}. New offers are drawn from

the same probability distribution, so the expected value conditional on making a new contact is

wc(n) =
N∑
n′

πn′|nE(max{W (yn),W (yn′)}). (8)

Combining these yields the expected utility from beginning the period at income state n

ωnj = γwc(n) + (1− γ)w0(n), (9)

where νnj is the expected income term, a component of the commonly available location utility

νj. The parameter γ represents the “ease of information” in that greater values provide more

contacts and more options, though not necessarily higher incomes in all cases. The combined

value ωnj is a function of γ, current income, yn the income available in the location, yn′ , and the

distribution of income changes, πn′|n.

We allow for the possibility that local and nonlocal searches are not equivalent (see also

Karahan and Rhee (2014)). Specifically, we allow the probability of drawing points in the

income distribution to depend on whether the income search is conducted by an incumbent

resident or someone currently residing in a different location. For example, we think it reasonable

that searching in one’s current location is in some sense “easier” than searching in a faraway

location, as even with increasing availability of information technology, local networks remain

important. Notice that this distinction is based on origin, not birth location. To operationalize

this idea, we allow for two distributions on new income shocks: πlocal and πnonlocal.41 Using data

on income dynamics, we can identify differences in income transitions between those who move

to new locations and those who do not.

As we are interested in the heterogeneity in spatial dynamics of migration, the income search

component of the model serves several purposes. The first is that income distributions have

evolved in different ways across LLMs, which might impact out-mobility. From Table 3, mobil-

ity declines are somewhat associated with increasing means of the income distribution (and to

a lesser extent, increasing variances). Moreover, the effects of income evolution on out-mobility

could be amplified in a model with a local market bias in search opportunities. Second, income

distributions are heterogenous across locations, and a common trend in information availability

could affect some more than others. Specifically, it can be readily shown (see Appendix C) that

ωnj is increasing in the variance of income because of the presence of option value in wc, and the

value of this optionality is convex in γ. Hence, more disperse income distributions (which appear

in fast LLMs, shown in Table 3) could be more affected by a change in information frictions.

41An alternative would be to use different offer arrival parameter γ, but this parameter is already very abstract
and difficult to discipline with data. Using πlocal, and πnonlocal allows us to treat γ as a parameter to study
symmetrically across locations.
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Thus we are allowing for the possibilities that heterogeneous (or heterogeneously evolving) in-

come distributions could affect the model’s predictions about migration rates. Ultimately, the

quantification of the income channel–which accompanies our main story of increasing rootedness

and nativity–will depend on the parameters and variance across locations. Finally, by incorpo-

rating local income opportunities in the model, we allow for potential nonlinear effects between

income and home preference.

3.5 Worker Types

Up to this point, we have suppressed worker types for exposition, but the relative value of

functions (4) and (6) may depend on characteristics of the worker. Birthplace and rootedness

are endowed characteristics, and because we observe one location choice event, we also treat age

and education as immutable characteristics. Location is a state variable–we observe workers in

one state, which they can alter by choosing a new location. One concern with mixing all these

types together is that they may have different continuation values of a particular choice. As we

describe below, the use of conditional choice probabilities elides the solution of the model but

still accounts for continuation values in a flexible way.

Equation 10 writes out the choice specific values from (1) with all state variables: origin k

and the worker’s endowed type m, which is her birthplace, age/cohort, and education. k changes

endogenously, but m is fixed over time.

vj,m(k, n) = µj,m + ωnj(n, k,m)︸ ︷︷ ︸
νj,m

+uj=H|m(rm)−mck,j,m + βEVm(j, n′|n). (10)

Note the introduced amenity parameter µ that can vary by type. Differences in amenities or cost

of living (conditioning on income), and how different ages and education levels might view these,

will drive location net growth (as in Gyourko et al. (2013), Moretti (2013), Diamond (2016)).

While our focus is on gross migration, accounting for net migration patterns in estimation will

help identify the parameters of interest because our data are conditioned on initial states.

4 Applying the Model to U.S. Data

We now describe how we take the model to data on U.S. LLMs. The estimation strategy

proceeds more like a location demand model than a dynamic migration model because our data

report one location choice event. While our model was written as a dynamic microeconometric

model like Kennan and Walker (2011), Bayer and Juessen (2012), or Bishop (2008), the esti-

mation uses aggregate choice probabilities (market shares) instead of, e.g., maximum likelihood

estimation on panel microdata. Hence, estimation more closely resembles a location demand
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model (such as Bayer et al. (2009) or Diamond (2016)), which emerged from the demand esti-

mation literature in the theme of Berry et al. (1995). We account for forward-looking behavior

by exploiting the structure of the logit choice model, which has a closed form solution for con-

tinuation values in a dynamic optimization problem.42 The generic idea of deriving estimating

equations relating gross flows to adjustment costs has an antecedent in Artuc et al. (2010),

although the nested structure of our model requires us to derive these in a new way, and the

sources of variation in our geographic model are quite different.

We estimate the model on a single cross section of U.S. cities, using the 2005-2017 ACS

data. This allows us to identify the preference parameters for the economy at that time. Then,

taking the primitive parameters as fixed, we simulate the economy in previous periods as location

features evolve, which we will describe in section 5.

4.1 Estimation Strategy

The main parameter of interest is the size of the home premium and its dependence on

rootedness. The parameters of necessity are the move costs and location amenities, which can

vary by person type, origin, and destination.

4.1.1 Utility Parameterization

The utility function seen in (10) contains the parameter µj,m, which represents mean prefer-

ences for a location j held by workers of type m. In our preferred specification, we split types into

eight categories, four decadal age groups, 20s to 50s, for each of college and non-college-educated

workers. Attributes of the location, such as amenities or cost of living, will be subsumed in this

parameter, but in estimating by type, workers of different ages or education levels can have

heterogeneous preferences for these.

For home preferences, we use a simple utility function in which utility from home is an

indicator variable uj=h(r) = αmI(j = h) or a linear function of roots, uj=h(r) = αmRjI(j = h),

the former being a specification check and the latter our preferred specification.43 In either, we

allow α to vary by education level.

The distinction in the specifications highlights the use of rootedness as a measure of the

intensity of home attachment, for which we see a couple advantages. First, it offers a source of

42Bayer et al. (2016) and Davis et al. (2017) estimate a location demand model accounting for future values in
a model of neighborhood choice within a single metro area. Though there are significant differences in context
and emphasis, our estimation strategy bears some similarities to these in that we exploit computational savings
from logit demand models.

43We experimented with several functional forms, and the results are roughly similar, but this single parameter
specification is the simplest way to ensure a nonnegative value for home in all markets in all time periods. Adding
an intercept, for instance, causes the lowest-rooted city, Las Vegas, to have a negative projected home preference.
While home preference in Las Vegas appears weak, a projected inversion in move rates by at-home status is in
conflict with the data.
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variation that a simple at-home indicator cannot. Variation in birthplace and cohort provide

identifying variation in rootedness. Some locations are more rooted than others, and some

generations are more rooted than others. For example, young college educated workers may

prefer to live and work in San Francisco (captured by ν) on average, but natives of San Francisco

also draw a home premium from there that workers born in, say, Boston, do not. The variation

in choice probabilities by birthplace identifies the parameter. Similarly, if the rootedness of

San Francisco varies between the 20 and 30 year old cohorts, for example, heterogeneity in

their propensity to choose San Francisco helps to identify this parameter. Second, it is more

plausibly exogenous (in the microeconometric sense that it is predetermined for the agent), as

it is an endowed characteristic at birth and is not subject to the person’s choices the way an

at-home status indicator would be. Thus, rootedness allows us to test for the presence of a

home premium even without longitudinal data. We do, however, acknowledge that this will be

a noisy measure of social attachment, partly because birth state may not actually measure well

what one considers as “home,” and partly because, even if it measures “home” well, we do not

actually observe the actual rootedness of the 2010-era individual and instead match by cohort.

But it is readily constructible for a wide swath of geography, and we suggest it as a reasonable

proxy for the deeper concept of “attachment.” If it is a meaningless proxy or just very noisily

measured, then we will not detect an impact.

The estimation of home preference could be biased if other frictions are ignored, so we

turn to the estimation of move costs. The move cost function has an intercept shifter for each

education and age category to account for the profile of migration over the life cycle and by

worker education level. Then, to account for the spatial component of migration probability,

we enter the distance in miles between the MSA centroids. Since migration rates fall off with

distance, we expect this term to be negative (i.e., increasing distance means less moving). We

also allow a discrete shift in distance for “neighboring” LLMs (those with counties sharing a

border), for LLMs in the same state, and for LLMs in the same region. We allow distance cost

to vary if the destination is one’s home location via an interaction of distance terms with the

home indicator function.

Because there is heterogeneity in move rates by LLM even after conditioning on distance and

age/education composition, in some specifications we allow for a vector J of move cost shifters

for each location. We call these “toll costs” because they are paid whether entering or leaving

a city. For example, a move from New York to Boston requires an “exit toll” for leaving New

York, and an “entry toll” for arriving in Boston. We use a toll cost because it captures both

heterogeneity between cities and the correlation of inflows and outflows.44 Note that these will

be measured conditional on heterogeneity in move rates induced by any differences in income

distribution, type composition, and spatial orientation to other markets. (This specification

44It is further important that these are symmetric so as not to be conflated with location quality.

26



provides a useful robustness test of the home premium estimates, although it turns out not be

our preferred model.) All together, the move cost function is

mc =
∑
m̂

I(m̂)mcm︸ ︷︷ ︸
types

+
D∑
d

mcddo,j︸ ︷︷ ︸
distance

+
D∑
d

mcdhdo,j=h︸ ︷︷ ︸
distanceX home

+
J∑
j

I(orig = i)mci︸ ︷︷ ︸
exit toll

+
J∑
j

I(dest = j)mcj︸ ︷︷ ︸
entry toll

.

Table 4 below will compare specifications to demonstrate the importance of each component

of the move cost function.

4.1.2 Estimation Method

We next describe the estimation method. The basic idea is to use the model structure to

derive a set of estimating equations. Each equation applies to one choice event, and we stack

equations across types and locations to estimate the parameters. Details and derivations are

relegated to Appendix C.

The data leverage choice probabilities to recover the utility parameters. We estimate the

model on a single cross section of data. All parameters are jointly identified, but we can loosely

describe what moments of the data help to target which parameters. Variation in move rates

by type, distance, origin, and destination identify the move cost parameters. Variation in net

migration (in minus out) by age/education identifies the location preference parameters µ. The

home premium is identified by the variation in out-mobility by natives and non-natives, and the

in-migration rate for those returning home versus those entering new locations, and how each of

these vary with home rootedness.

The model is dynamic discrete choice with multiple types of agents and a large number of

locations (and birthplaces). Fortunately, there is a very tractable way to estimate the model. As

a memory-less discrete choice specification, this model is well suited for estimation via conditional

choice probabilities (CCPs). CCPs arise in the logistic model because of the mapping between

the continuation value and choice probabilities (Hotz and Miller (1993)). The advantage is that

the model need not be solved to arrive at parameter estimates. Instead, one needs to derive the

mapping between choice probabilities conditioned on state variables, which are observed in the

data, and the model’s parameters. From this, we can yield an estimating equation.

Specifically, this model has a simple derivation exploiting finite dependence (Arcidiacono and

Miller (2011)).45 That is, because the choice problem is memory-less by some point s (i.e., it

does not depend irreversibly on the whole sequence of choice), two disparate choices in some

period t can be returned to some normalized choice by some future period t+ s. In our model,

45Finite dependence and CCP estimation is also lucidly described in Bishop (2008) and Ma (2019).
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s = 1, allowing expression of the model parameters in terms of current period and next period

(i.e., the person’s expected choices after aging one period) choice probabilities.

The derivation of the estimating equations is straightforward but tedious, so we relegate

the details to Appendix C. The overview is that we use the mappings between (6) and (5) and

between (4) and (2), subject to a normalizing location choice, in order to derive an equation

relating utility parameters to choice probabilities, accounting for continuation values via iterative

substitution of expected future choice probabilities.

The stacked matrix equation is



Y1


ln σso

σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σ1o|m
σ1z|m

· · ·
ln σso

σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σJ−2,o|m
σJ−2,z|m

Y2


ln

σ1|o
σz|o

+ βln
σ′
m|1
σ′
m|z

· · ·
ln

σJ−2|o
σz|o

+ βln
σ′
J−2,|1
σ′
m|z


︸ ︷︷ ︸

Y

=


∆1

{
1
δ

· · · 1
δ

0 · · · 0
(β−1)λ

δ
· · · (β−1)λ

δ
0 · · · 0

∆2

{
0 · · · 0 1

λ
· · · 1

λ

0 · · · 0 1
λ
· · · 1

λ


︸ ︷︷ ︸

∆



X1


u(x1)− u(xz) mc(d1o)−mc(d1z)

· · · · · ·
u(xJ−2)− u(xz) mc(dJ−2,o)−mc(dJ−2,z)

X2


u(x1)− u(xz) mc(d1o)−mc(d1z)

· · · · · ·
u(xJ−2)− u(xz) mc(dJ−2,o)−mc(dJ−2,z)


︸ ︷︷ ︸

X

[
θu

θmc

]
,︸ ︷︷ ︸

θ

(11)

where z is a normalizing reference location that in practice we take to be the residual location.

Vector Y contains the observed choice probabilities, matrix X is composed of functions of utilities

and moving costs (e.g., an indicator for whether a location is home, how far two locations are

from each other, etc.), matrix ∆ consists scaling parameters, and θ is the vector of parameters

to be recovered. In short, Y is data, X is model structure, and ∆ and θ are parameters. The

“1” blocks come from the move/stay probability equation, and the “2” blocks come from the

move-to destination probability, conditional on moving. There are J−2 equations in each block,

with the origin o and the normalizing location z excluded.

With choice probabilities on the lefthand side, LLM attributes and parameters on the right-

hand side, estimation proceeds much like a standard regression: The data matrix is inverted
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on the choice probabilities to recover the estimand. An attractive feature is that the inversion

accounts for the covariances in the data. For example, if shallow-rooted places happen to be

younger or less remote, the covariance between move costs and home attachment is accounted

for in the X matrix.

4.1.3 Scale Parameters and Move Cost Intercepts

Equation (11) identifies the main parameters of interest off of differences between locations

and a normalizing locale z. Hence, scale parameters are not identified here and must be calibrated

elsewhere. The set of scaling parameters include β, λ, δ, and type-specific intercepts of the move

cost function. That is, equation (11) is specified in relative choice probabilities and thus identifies

the move cost parameters that vary with distance between locations, but the intercepts that pin

down average move rates by type must be estimated elsewhere.

First, we set β to 0.95 a priori to match an annual discount rate.

Second, we can calibrate the ratio λ
δ

by using the relative differences in inflow and outflow

rates to a given location for a set of workers of the same type. In order to best match the

asymmetry in move-home, move-from-home probabilities, we use a ratio of parameters on a

home indicator in each side of the flow equation. Details are provided in Appendix D.4.

Third, a separate estimator for the move cost intercepts46 can be derived using substitutions

similar to the derivation of (11), as detailed in Appendix C.47 It is

lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
=

1

δ

(
Vo − Vj −mcj|o − λlnσj|o

)
.

(12)

This equation is identified by average move rates, not relative choice probabilities. The

difference between (11) and (12) is that the former removed value functions to yield an equation

in only choice probabilities and parameters, while the latter is forced to retain value functions

we do not wish to solve or estimate. Controlling for a suite of origin and destination fixed

effects–treating Vo, Vj as ancillary parameters–and entering the distance terms of the move cost

function will yield an estimate of the move cost intercept for each age/education type in the

data. Similarly to (11), the regression can account for covariances in the data, if, for instance,

young people tend to reside more often in places far apart in space or utility gap (Vo − Vj).
46Monras (2018) does not use a move cost term, instead calibrating an average difference in elasticities between

nests, i.e. λ versus δ. We could have gone this route, although we prefer using moving costs to compare across
types (who have substantially different move rates, as in young versus old) without imposing assumptions about
between-destination elasticity. A move cost specification is also consistent with our environment in a model with
geography, where some locations are closer in space than others.

47This step in particular bears the closest resemblance to Artuc et al. (2010).
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4.1.4 Auxiliary Model: Income Dynamics

We calibrate the parameters governing income dynamics, πlocal and πnonlocal, using observed

income changes for migrating and non-migrating employed workers in the Panel Study of Income

Dynamics (PSID). More details are available in Appendix D.8.

4.1.5 Auxiliary Model: Continuation Values

In addition to major computational savings, the use of CCPs to approximate the value

function has the advantage of avoiding structure on agent’s expectations, which is especially

important in our context, since we observe only one choice event but not how choices change

as states evolve. Whatever workers might believe about the future is subsumed in the CCP

term. However, when we simulate the model at counterfactual environments, we must allow the

expectations to change accordingly. Instead of putting structure on the expectations, we flexibly

estimate the choice probabilities and use functional projections in counterfactual CCPs. We run

an auxiliary model of choice probabilities using the ACS microdata and environmental features

of rootedness and income. Details are available in Appendix D.5. Note that these auxiliary

models are not used for identification of utility parameters but as an input into the simulations

by allowing for a substitution of projected CCPs for the expected value function.

4.1.6 Forming the Moment Conditions

With age group by education by birthplace by origin, there are 4 × 2 × J × J cells, with J

choices for each. Because spatial heterogeneity is important for our analysis, we would like to

include as many locations as possible, but a larger J leads to two practical problems. First, the

sample sizes for small cities become too small to reliably estimate choice probabilities. Second,

because there are J × J choice probabilities and J birthplaces, the memory requirements of our

stacked estimator increase cubically in J . We choose a cutoff of J = 70, which is the number

of LLMs with at least one million residents in 2010. There are 69 named cities, and a residual

location aggregating the remaining smaller places.48

At J = 70, there are 39,760 types and 2,738,200 choice probabilities to estimate from the

data. In principle, one could form all the moment conditions necessary from ACS, but in

practice, the many cells become small, even among these relatively large places. Hence, a

smoothing procedure is in order, which we detail in Appendix D.7.49 In brief, we take di-

48The two smallest included cities are Fort Myers, Florida and Manchester, New Hampshire. The two largest
excluded are Poughkeepsie, New York, and Baton Rouge, Louisiana.

49We have verified that the results hold up for several different weighting schemes that account for measurement
error in the moments and differences in market shares (i.e., larger cities having more observations and hence
getting larger weights). The differences across specifications were slight, so for simplicity we proceed with the
unweighted version.
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rectly from the data the conditional probabilities after combining small cells and then im-

pute joint probabilities as the product of (smoothed) conditional and marginal probabilities.

The starting point is to estimate move probabilities by origin, age, education, and at-home

status as a coarse categorical variable, combining away-from-home locations,50 to arrive at

Pr(movem,k). We then combine origins and estimate return-home and move-elsewhere probabil-

ities, Pr(choose jm|move = 1).51 The full matrix is then derived from the conditional probabili-

ties of these two estimates: Pr(movem,k) ·Pr(choose jm|move = 1, home = h). The probabilities

are then differenced to form the estimating equation (11).

4.2 Estimates

Table 4 reports the structural parameter estimates for several specifications of the utility and

move cost functions. We report standard errors for the home premium, and suppress the others

for brevity. The lower panel reports details on the specification and model simulation fit (to be

discussed more below).

The table runs through several specification checks. Columns 1 and 2 use the most basic

model with only a home premium, move cost intercepts by type, and an entry toll for the residual

location.52 The home premium is large and significant, whether measured as an indicator variable

(column 1) or a linear function of rootedness (column 2). (We compare these below.) For some

context, an estimate of 3-4 utils is worth about 3.5 to 5 standard deviations of LLM income;

that is, the average worker prefers home as if it offered incomes roughly 4 standard deviations

above other markets. Move costs by type reflect the differences in average mobility rates across

age and education; this is not altogether surprising, although the estimation demonstrates the

pattern holds even when accounting for differing rates between age and education categories of

living away from one’s birthplace.

Columns 3 and 4 repeat 1 and 2, adding a distance function for move costs and a dummy

variable for non-residual locations for each age/education type. The home premium estimates

are very similar, though slightly larger. As Table 1 suggested, preference for home is not a

coincidence of geography. The move cost parameters indicate farther migration events, measured

in kilometers, are more costly, with discounts taken for within region, state, and neighboring LLM

50The main cell to smooth over is birthplace, in the case it is not the current or destination location. We
pool the not-at-home types instead of interacting the full 68 possible types (J except for home, residual, or
foreign-born). The cells get particularly sparse for small LLM birthplaces.

51We have tried several different specifications and source datasets for the destination probabilities, including
the ACS microdata, ACS aggregate flows data from Census, and the IRS data. Our preferred specification uses
the ACS aggregate flows tables, which allow us to cut the data by birth state. Results are qualitatively similar
using other datasets.

52This is an entry toll, but there is no exit toll. Some form of entry toll is appropriate for the residual location,
because it is geographically nothing like an actual metro area. Not only is it an order of magnitude larger than
even the biggest city, it is geographically proximate to any LLM.
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moves. Interestingly, moves to home show far less sensitivity to distance, with the coefficients

reversing sign in the to-home interaction. Move cost intercepts are scarcely affected.

Columns 5 and 6 add toll costs, or LLM-by-education specific intercepts for the move cost

function. This changes the interpretation of the move cost intercepts, but otherwise changes

very little. Thus, estimates of home attachment are robust to a flexible local move cost function,

even though lower mobility places have higher home attachments on average. Similarly, adding

location by age by education utility fixed effects (560 additional parameters in all) does virtually

nothing to affect the home utility or move cost estimates. That is, gross migration flows yield

similar information about home premia and distance sensitivity, even after controlling for the

average attractiveness of a location to different worker types.

Looking across the specifications of Table 4, it is apparent that the home premium coefficients

are robust to many formulations of the problem, indicating the proclivities to remain at home, or

chose home when away from it, are strong and nearly independent patterns in the data. Adding

more parameters allows the model to better fit the data (mechanically, but also in terms of

adjusted R2) but does not alter these key parameters.

4.3 Model Fit in Baseline Simulation

We next check that the model is able to replicate the main features of the data. Note that

the parameters are obtained via the estimating equations in (11), not an explicit targeting of

the actual values. That is, the simulation will fit only as well as the model structure represents

the data generating process.

Table 5 reports the average moving rates by age and education category and at-home status

for the data and our baseline simulation of the model using specification 4.53 The model is able

to match the age profile in moving rates as well as the differences between college and non-college

educated workers. It also matches quite well the difference between workers at home and not at

home, the main qualitative pattern in the data important for our tests of demographic shifts,

without assigning them different move cost terms. This is accomplished through presence of a

home preference in the current flow utility and its effect on continuation values.

The spatial heterogeneity in migration rates is obviously important for our analysis. Figure 6

plots the actual and predicted out-migration rates for each metro area in our analysis. The model

is able to match the spatial heterogeneity through a combination of differences in demographic

composition, income distributions, shares of transients, and degree of rootedness.

Returning to Table 4, the lower panel reports some statistics on model fit when using the

various specifications as the data generating process. The last four rows show the correlation

in predicted out-migration rates to actual for LLMs in total and for the birthplace subgroups

53The simulation results between specifications 4 and 8 are similar, but 4 uses many fewer parameters.
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Table 4: Parameter Estimates

Fixed Effects None Residual Moving Toll Destination X Age X Edu.

1 2 3 4 5 6 7 8

Home Preference
Home Noncollege 3.98 4.14 4.14 4.14

(0.007) (0.006) (0.004) (0.004)
College 3.14 3.29 3.29 3.29

(0.007) (0.006) (0.004) (0.004)
Roots Noncollege 5.40 5.51 5.64 5.65

(0.01) (0.009) (0.006) (0.006)
College 4.24 4.34 4.48 4.48

(0.01) (0.009) (0.006) (0.006)
Move Cost
US born

Noncollege 20s 14.24 14.24 14.39 14.39 8.28 8.28 14.36 14.36
30s 16.47 16.47 16.62 16.62 10.51 10.51 16.59 16.59
40s 18.20 18.20 18.36 18.36 12.25 12.25 18.32 18.32
50s 18.97 18.97 19.12 19.12 13.01 13.01 19.08 19.08

College 20s 12.10 12.10 12.26 12.26 4.96 4.96 12.22 12.22
30s 14.92 14.92 15.08 15.08 7.78 7.78 15.04 15.04
40s 17.58 17.58 17.73 17.73 10.44 10.44 17.70 17.70
50s 18.22 18.22 18.37 18.37 11.08 11.08 18.34 18.34

Foreign born: US Born +
Noncollege 20s 3.28 3.28 3.29 3.28 3.29 3.28 3.29 3.28

30s 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82
40s 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47
50s 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12

College 20s 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
30s 0.23 0.23 0.24 0.23 0.24 0.23 0.24 0.23
40s 0.44 0.44 0.45 0.45 0.45 0.45 0.45 0.45
50s 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

Distance Function
Main Neighbors 0.65 0.65 0.44 0.44 0.44 0.43

Same State 1.40 1.40 1.25 1.25 1.26 1.26
Same Region 1.06 1.06 0.72 0.72 0.71 0.70
Log (km) -0.26 -0.26 -0.47 -0.47 -0.47 -0.48

To Residual Noncollege 3.21 3.21 3.21 3.21 3.21 3.21
College 3.83 3.83 3.84 3.84 3.84 3.84

Distance Neighbors -0.61 0.07 -0.61 -0.02 -0.61 -0.03
X To Home Same State -1.69 -1.51 -1.69 -1.53 -1.69 -1.53

Same Region -0.74 -0.06 -0.74 -0.10 -0.74 -0.10
Log (km) 0.27 0.71 0.27 0.69 0.27 0.69

Specification Details and Fit:

Calibrated δ
λ

Noncollege, 3.80 College, 3.59

No. Parameters No. Parameters 34 34 38 38 174 174 582 582
Fit: MSE 1.01 1.01 0.77 0.77 0.38 0.38 0.39 0.39
Adj. R2 Adj. R2 0.83 0.83 0.87 0.87 0.94 0.94 0.93 0.93
Correlation in LLM Move Rate, Model and Data

All 0.36 0.38 0.40 0.41 0.07 0.11 0.42 0.48
At Home -0.02 0.16 0.01 0.21 -0.10 0.00 0.14 0.33
Not Home (US) 0.28 0.23 0.26 0.23 -0.14 -0.15 0.33 0.31
Foreign Born 0.03 0.03 0.10 0.10 -0.48 -0.48 0.42 0.42

NOTES: The table reports structural parameter estimates under five versions of the model; standard errors in parentheses, but suppressed for most
coefficients. Point estimates for metro-area specific move costs (columns 5 and 6) and average location quality (columns 7 and 8) are available upon
request. “Neighboring MSA” refers to metro area pairs in the same U.S. state and/or less than 100 miles apart. Regions are defined as in Figure F1.
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Table 5: Actual and Predicted Move Rates by Age, Education, and At-Home Status

Data Total At-Home Not-at-Home (US) Foreign-Born Move To Home
Noncollege 20s 4.83 3.68 10.94 3.41 18.72

30s 3.07 2.36 6.32 2.28 15.98
40s 2.07 1.50 4.09 1.54 14.44
50s 1.76 1.21 3.27 1.31 13.01

College 20s 8.52 5.97 13.05 8.40 17.26
30s 4.62 2.78 6.86 5.04 14.20
40s 2.30 1.34 3.41 2.35 10.62
50s 2.00 1.30 2.89 1.76 9.69

Model Total At-Home Not-at-Home (US) Foreign-Born Move To Home
Noncollege 20s 4.32 2.97 9.59 4.12 33.05

30s 2.73 1.74 5.59 2.64 29.23
40s 1.89 1.14 3.67 1.84 28.57
50s 1.64 0.96 2.98 1.65 27.42

College 20s 8.31 4.78 12.90 11.04 23.63
30s 4.53 2.32 6.37 6.10 21.70
40s 2.25 1.16 3.16 2.84 21.07
50s 1.87 1.00 2.66 2.20 20.70

NOTES: All figures are in percentages (%).

Figure 6: Model Fit: Predicted and Actual Out-Migration Rates by LLM

NOTES: The figure plots the model’s baseline predicted out-mobility rates by metropolitan area to actual rates. Each marker represents a LLM in the
estimation/simulation sample. (Source: ACS data and model-generated data.)
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(home, not home, and foreign born). One key pattern is worth highlighting. Most of the

specifications can generate a fairly good match of predicted to actual LLM out-migration in

the aggregate by accounting for birthplace shares and moving cost, but only the specifications

with home premium as a function of roots can fit a correlation within birthplace groups. The

pattern of slower places having lower out-migration of natives (in Figure 5) requires a form of

between-LLM heterogeneity that applies to the at-home differently from the not-at-home, and

rootedness serves this purpose.

5 Simulations

The purpose of the empirical model is to conduct simulations at different scenarios in the

same geographic setting. By simulating alternative population distributions, home attachments,

or income offerings, the model allows us to see how each channel affects mobility trends.

A simulation of the model predicts choice probabilities for every state (origin, income draw)

and agent type (age, education, birthplace) in the economy, amounting to millions of predicted

values. To summarize the main findings, we report in the tables below the average mobility rates

for the complete set of LLMs and also breakdowns by the initial mobility rates (fast, medium,

and slow) among the 70 LLMs in the estimation. We simulate the model at the same primitive

parameter values but use the environments and type weightings for five time periods: 1980,

1990, 2000 censuses, the early ACS (2005-2011), and the late ACS (2012-2017).54 We do not

necessarily contend that the primitive parameters in utility could not have changed; merely, we

want to see how far the model goes in explaining the decline when constrained in this way.

The environmental factors are the local income distributions, search cost, and the rootedness

of the birth cohorts. These factors can actually change the model’s predicted mobility rates

for the agents. In contrast, shifts in composition (e.g., age/education, population share in each

location, at-home share) maintain the baseline probabilities but change the weights that make

up the aggregate. We first combine all factors to show how the model predicts migration changes

changing over time and then decompose the factors one by one to elicit the contribution of each

factor. Recall that a maintained assumption is that utility primitives do not change. One slight

exception is the search cost parameter γ, which by assumption is larger now than in previous

decades. We have little sense as to how to calibrate this over time, so we guess that it is most

recently at 0.5 and declines by 0.1 per year. As we will show, this parameter ends up being of

little consequence at our parameter values.

54In Appendix B.2, we simulate the model back to 1950 instead of 1980, maintaining the assumption of fixed
primitives, and altering age/education shares, income, and home attachments. The model is able to replicate the
hump-shaped pattern in postwar migration rates described in Fischer (2002) and Molloy et al. (2017).
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Table 6: Simulated Trends in Migration Rates

Level Difference

1 2 3 4 5 6 7 8
Year(s) 1980 1990 2000 2005-11 2012-17 1980-2017 1990-2011 1990-2011

(%) (%) (%) (%) (%) (∆ %) (∆ln(%)) (∆ln(%))
LLM Type Model Model Model Model-Est Model-Est Model Model IRS Data

All Named 3.23 3.17 2.97 2.87 2.91 -0.32 -0.10 -0.10

By Speed: Fast 4.21 3.96 3.55 3.35 3.32 -0.89 -0.17 -0.19
Medium 3.24 3.20 3.02 2.92 2.96 -0.29 -0.09 -0.06
Slow 2.56 2.49 2.40 2.35 2.42 -0.13 -0.06 -0.03

NOTES: Units are indicated in the third row; most are percentage points. The difference of natural log of the migration rates is taken to compare the
the changes in the IRS data to those in the model (which was estimated on ACS baseline data). The row for “All Named” LLMs excludes the residual
location.

5.1 Simulating Mobility Over Time

We begin with the aggregate change to migration–the combined simulation with all changes

taking place–in Table 6. The census years and ACS analogs are listed in columns 1 to 5. A

long difference from 1980 to 2017 is taken in 6, and in 7, the difference of 1990 to 2011 so as

to compare with available IRS data for that period in column 8. The model generates a 0.32

percentage point decline in mobility from 1980 to 2017. For the IRS data comparison period,

this matches well at a 10 log point drop in predicted migration.55 Importantly, the model

successfully matches the heterogeneity in the decline, with more mobile cities declining more:

0.89 percentage point, about a 27 percent change, for fast LLMs, compared with 0.13 percentage

point, about a 6 percent change for slow LLMs from 1980 to 2017.

5.2 Decomposing the Sources of Decline

The simulated decline is a net result that we can then unpack via ceteris paribus breakdowns

of the sources of change. Table 7 reports in columns 2 to 9 the changes generated in the model

from the first to last simulation period when altering one feature at a time, and the combined

change is reported for reference in column 1. For each simulation, we hold all factors except

one fixed at their estimation period (2005-2017) values.56 Table 7 lists two panels, one for all

population (including foreign born) and one for U.S.-born only, summarizing across LLMs as in

Table 6, while Table B1 in the appendix reports a subset of results for each LLM separately.

We begin with the demographic changes. First, in column 2, we simulate as if the population

aged as we observe in the data. The model estimates that had there been no other changes to

the economy since 1980, this feature alone was large enough to have generated the full decline

55We take logs to compare proportions, as the IRS rates are at a persistently higher level than the ACS data
on which the model is estimated.

56Because we are using a nonlinear model with interactions among many features, this exercise is not literally
a decomposition, but it meaningfully demonstrates the magnitude of the sources.
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nationally, although the change would have been too similar across types of cities to correspond

with the data. Furthermore, the effect of aging was substantially mitigated by an increase in

college attainment, which shown in column 3 has generated a 0.18 percentage point increase in

mobility rates, canceling out almost half of the effect of aging. The effect of college attainment

is also present at comparable magnitudes across all types of cities.

Cities continue to grow in size at different rates, so in column 4, we also change the share of

the population residing in each LLM, holding all else fixed, including subgroup size. This would

generate an 0.11 percentage point increase in migration rates, indicating that population growth

has still trended toward more mobile locations, a factor that has also mitigated the decline.

Interestingly, this is even present within LLM categories. The effects are slightly larger among

the U.S. born.57

Columns 5, 6, and 7 of Table 7 show the change in predicted mobility when altering just

variables related to home attachment. Column 5 shows that an increasing share of at-home

population accounts for 0.21 a percentage point in the national decline but is by definition larger

among the U.S. born. The effect is concentrated in fast cities but is also present in medium and

slow as well. Column 6 shows that an increase in the foreign-born population share has resulted

in small migration declines out of fast cities as they replace (by proportion) the not-at-home,

U.S.-born population, but an increase out of slow cities as they replace the at-home. The net

effect nationally is nearly zero. Column 7 shows the effect of changing rootedness of the at-home

(holding fixed the share at home), which is a change in the strength of their home attachment.

This produced a 0.10 percentage point drop in migration in fast cities (especially in California).

Rootedness has changed little in slow and medium speed cities.

Finally, the last two columns of Table 7 evaluate the change in migration as if income

distributions changed as they did in the data but population composition and home attachment

held steady. This would generate a small amount of decline in mobility, centered in fast cities. A

decrease in the information parameter γ would add to the decline, in a rank ordering in agreement

with the data, but its marginal contribution is quite small. That is, while qualitatively the

information feature of the model performed as expected, the quantitative power of this channel is

limited, given the distribution of income opportunities across cities and income draw parameters

π. However, as Kennan and Walker (2011) have shown, while the effect of expected income

on migration is significant, it is highly idiosyncratic in that it depends on individual match

components more than local labor market averages. It is possible that there is more impact

of information availability than is picked up by LLM aggregate data on income distributions.

However, it does not seem to be driving the dominant spatial patterns we document.

Figure 7 summarizes the results by plotting simulated migration rates when subtotaling the

57Population growth among the foreign born centers on two types of destinations: large gateway cities (e.g.
New York and Chicago), which tend to be slow or medium, and strongly growing locations (e.g., Las Vegas and
Phoenix), which tend to be fast.
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Table 7: Simulations: Counterfactual Changes in Migration Rates, 1980-2017, by Source of
Change

LLM Type Total Age Education Location At Home Foreign Born Roots Income Information
1 2 3 4 5 6 7 8 9

All Population
All Named -0.319 -0.409 0.180 0.113 -0.206 0.017 -0.043 -0.019 -0.0021

By Speed: Fast -0.889 -0.439 0.178 0.051 -0.343 -0.059 -0.102 -0.044 -0.0024
Medium -0.287 -0.457 0.168 0.057 -0.108 -0.005 0.009 -0.011 -0.0022
Slow -0.135 -0.341 0.192 0.014 -0.133 0.115 -0.017 0.000 -0.0018

U.S.-Born Population
All Named -0.365 -0.413 0.141 0.144 -0.274 -0.057 -0.017 -0.0023

By Speed: Fast -0.868 -0.458 0.129 0.074 -0.496 -0.148 -0.043 -0.0028
Medium -0.299 -0.465 0.142 0.064 -0.139 0.011 -0.013 -0.0023
Slow -0.280 -0.330 0.149 0.040 -0.167 -0.022 0.003 -0.0018

NOTES: All figures are in percentage points (e.g., “0.5” corresponds to a one-half percentage point change).

changes into categories of changes. The “demographic” simulation combines the effects of aging,

education, and the spatial distribution of population (columns 2, 3, and 4 from Table 7), “home

attachment” combines 5, 6, and 7, and “income” combines 8 and 9. The figure contains a plot

for all LLMs and one each for fast, medium, and slow LLMs. Note that each subfigure is on its

own vertical scale.

For each set of LLMs, demographic explanations generate a declining trend, with most of

the downward movement occurring between 1990 and 2010, as Baby Boomers aged into the slow

mobility groups of 40 and 50. The share of decline varies across the fast, medium, and slow

subsets. The demographic changes generate 14 percent of the total decline (1980-2017) but 55

to 61 percent of the relatively smaller declines in medium and slow cities, respectively.

The collective effect of changing home attachment accounts for about 0.40 percentage point

of the decline in fast LLMs, and consequently a large fraction of the national decline–0.23 of the

simulated 0.32 percentage point, about 70 percent.58 Figure 7 shows how the decline caused by

rising home attachment is a steady, gradual trend, and was the largest component of the trend

in fast cities and national average but a more modest contribution to slower places.

Changing income opportunities produce a gradual downward trend in migration rates, more

so in fast LLMs, but from Figure 7, it is apparent the other effects are quantitatively larger.

However, we note that changes in income distributions do help explain migration declines out

of some individual cities that are otherwise not as well accounted for, such as Seattle, Tampa,

Phoenix, and San Francisco (see Table B1).59

In summary, we find that an aging population accounts for some of the aggregate migration

decline, but it is rising home attachment that accounts for the larger share and produces the

58It is here that the nonlinearities become obvious. For fast cities in particular, the subtotal effects fall short
of the actual total. Coincidentally, in the national series, the components sum nearly to the total, so using the
fraction is not misleading in that case.

59Likewise, income growth mitigates the predicted increase in migration out of growing LLMs such as Austin,
Charlotte, and Raleigh-Durham.
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Figure 7: Simulated Trends in Mobility, Decomposed

NOTES: The figures plot the time path of mobility generated by the model in total and counterfactual subtotal simulations for each category of LLMs.
Note that each panel has its own vertical scale. Subtotals may not add to the combined value because of nonlinearities in the model. The shaded
region denotes the estimation period.

spatial heterogeneity described in section 2.

6 An Illustrative Model

Our quantitative model was limited to the change in home attachments observed in the

data. Having shown that the change in home attachment is an important factor explaining the

mobility decline, we now use a stylized version of the model to illustrate how home attachment

can evolve over a long horizon, and the impact it has on regional responsiveness.

6.1 Home Preference and Steady State Migration

We will first consider migration rates under different scenarios of home attachment.60 This

begins with a very simple version of the illustrative model, an economy of J identical locations

and one agent type. At time t = 0 a measure 1 of agents is born across the locations, distributed

equally at 1
J

. Agents are endowed with a preference for their birthplace, constant across the

identical locations, and are given an opportunity to move at a cost. All moves are idiosyncratic

60Ours is a highly stylized exercise to illustrate the effects of evolving home attachments. Zabek (2018) considers
a quantitative model of local labor market elasticity in the presence of locally-tied workers.
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Table 8: Illustrative Model: Simulated Move Rates Under Various Parameterization Scenarios

Migration Probability Change in Migration Probability
Home Pop. Share at Steady State in Response to Shock

Preference At Home At Home Not Home Total At Home Not Home Total

Low 24.78 5.37 10.69 9.37 0.72 1.35 1.19
High 62.81 3.55 12.06 6.71 0.48 1.49 0.86

NOTES: The table reports shares of agents residing at home and aggregate gross migration rates for an economy with a single cohort of agents with
many successive choice periods under different strengths of preference for home. All values are percents (%).

but for the home preference. We ignore aging, cohort, and distance effects to emphasize the evo-

lution of the state variables over successive choice opportunities. After sufficient opportunities,

the share at home or away from home reaches a steady state (in practice, we simulate the model

for 200 periods). Table 8 reports the economy’s moving rate and the share living at home under

higher and lower preferences for home, which we calibrate to be one standard deviation below

and above, respectively, the mean rootedness times the average preference parameter from Table

4. Move costs are the point estimate for college educated 20-somethings.

The table illustrates the direct and indirect ways home preference can affect mobility in the

economy. Migration rates are always higher for the not-at-home than the at-home, but the size

of the gap depends on the intensity of home preference.61 Less obvious, perhaps, is that weaker

home preferences mean fewer agents living at home in the steady state. The high preference

scenario has the lowest mobility because of lower mobility among the at-home and a higher share

of agents in the lower move propensity, at-home state. In contrast, in the low home preference

scenario, the total weighted average migration rate is closer to that of the not-at-home group.

This has implications for adjustment to regional shocks. To see this, we conduct some

comparative statics at the steady state. In the last three columns of the table, we report the

change in migration after making half the locations more desirable for all agents and half less

desirable.62 In the low preference scenario, more people relocate immediately compared with

the high, both because they are individually more sensitive and because more agents are in the

more susceptible not-at-home status.

6.2 Home Preference and Regional Shocks

The previous exercise clarifies the mechanism of the model but does not directly illustrate

its dynamics. A more illuminating exercise is to show how the preference for home mediates a

shock to the equilibrium distribution of population in an economy. The next exercise lets us

simulate an economy (qualitatively like the postwar U.S.) that experiences shocks to location

attractiveness, tracing the evolution of home status and preference.

61The not-at-home move more in the high preference scenario because of a higher rate of returns to home.
62The size of the shock is arbitrary for making this point. The important feature is that all scenarios receive

the same shock.
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In the simulation that follows, we use an overlapping generations (OLG) framework. Each

agent lives for A periods, and the economy is simulated for T >> A periods. We start with an

initial distribution of population for the very first cohort, t = 0, a = 0, and simulate their behav-

ior over A periods; they spread out across locations, and when they “die” at A, the distribution

of their population forms the strength of the home preference for the next generation to be born.

Thus, the home preference moves endogenously with population history under roots-based pref-

erences and an OLG structure. We then compare this model, “Roots-Varying Preferences,” with

others in which there is either no preference for home (“No Home Preference”), or the preference

for home is constant and not endogenously generated by prior spatial distributions of population

(“Fixed Home Preference”).63

We simulate each version of the model until it reaches a steady state, where all cohorts have

the same strength of preference for home, population sizes of the locations are constant, and all

migration is idiosyncratic. Then, we introduce an unanticipated permanent shock to location

attributes in order to cause population reallocation across space. We split the locations into

sets A and B, “good” and “bad” amenities, and the shock reverses the good to bad and bad to

good.64 This particular implementation is not important for generating the qualitative patterns

we describe. The objective is to see how shocks to the steady state population distribution are

mediated over the transition path.

Plot 1 of Figure 8 shows the population sizes of the two types of locations. As good and

bad locations interchange, their populations transition from a negative difference A − B to a

positive 1 − (A − B). Note that the No Home Preference scenario arrives at the new steady

state more quickly, as agents move only on the basis on amenities. The Fixed Home Preference

scenario arrives at the steady state somewhat more slowly, and the Roots-Varying arrives the

most slowly, since the endogenous home preferences are initially very strong. Plot 2 shows the

net reallocation of population that produces the gaps in plot 1. As in the exercise from Table 8,

these show that home preference can result in slower population adjustment.

Plot 3 shows the share of residents at home, which, as Table 8 showed, affects the overall

migration rate and population adjustment. As more people leave the once-high amenity locations

for the new high-amenity places, the share living in their birthplace drops. This resolves to

its steady state value again more quickly in the No Home Preference scenario because the

populations of A and B stabilized more quickly without ties of home preference (and because it

63To generate similar migration rates in initial steady state, the “No Home Preference” simulation has higher
migration costs than the others. The constant “Home Preference” simulation is set to have a constant flow utility
of being at home that equates migration rates to the steady state value in the “Roots Preference” simulation.
These adjustments are made to start from the same migration rate value for ease of illustration, but they are not
essential to make our point, as it is the dynamics in response to shocks that are the emphasis of this exercise.

64An economy with heterogeneous locations has a different steady state value of migration than one with
homogenous locations, since the out-migration probabilities differ and not all locations are the same size. The
shock we introduce changes which locations have which attributes, but maintains equally heterogeneous locations.
That is, the cross sectional variance between locations are the same before and after the shock.
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does not have to rise as high to reach steady state). That is, when agents prefer their birthplaces,

they are more likely to leave the good locations to return to their homes, a reinforcement that

further lengthens the path to population adjustment.

The lower panel plots the migration rates for at-home and not-at-home agents and the

total. The No Home Preference scenario has the largest increase and quickest convergence in

move rates for the at-home agents (and not-at-home, since they have identical incentives here),

but incentives are blunted for the Fixed Home and Roots-Varying scenarios. Under the home

preference scenarios, the behavior of the not-at-home shows oscillation because it depends on

whether the not-at-home population is away for idiosyncratic or common reasons. Move rates

initially go up in response to the shock and then fall as more of them make their way to the

newer, better places and have less incentive to leave (even for home). Then, move rates slowly rise

again back to the steady state, as more of the migration of the not-at-home becomes idiosyncratic

instead of directed by a shock to the common valuations of each place.

The sum of the at-home and not-at-home rates produces the impulse in total migration rates

seen in plot 6. Hit with the same shock, the economies with home preferences experience elevated

migration rates for a longer period of time, with longer, slower returns to steady state. When the

strength of home preference varies with the history of population, the shock produces transition-

era cohorts with weak home preferences, and hence population churn is high and convergence to

steady state is especially long and slow. Thus, our model formulation generates the qualitative

pattern in gross mobility consistent with the spatial evolution of population in the U.S. and the

subsequent migration trend, as shown in Section 2.

7 Evaluation: Has America Lost Its Mojo?

Understanding the reasons for the mobility decline is critical for evaluating the risk it poses

to the efficiency of labor markets and whether policy intervention is warranted–and if so, which

policy. The literature studying the migration decline has looked for a structural mechanism in

the economy that has caused a downward trend in mobility, pervasive across demographic strata.

This paper has argued that an important underlying structural change is the long-run settling

of the spatial distribution of population, which has generated an increasing degree of home

attachment–a slowly trending pull factor common to many types of households, but changing

unequally across space. We close by offering an evaluation of the mobility decline in light of

these findings. We see several reasons not to be worried, but with some important qualifications.

We begin with the major qualification: There is, hypothetically, good cause for concern. The

reasoning comes from the illustrative model in section 6. An individual at home is less likely

to respond to other incentives to relocate. In the aggregate, an economy with home preference–

especially the evolving kind that we develop in this paper–will adjust to shocks more slowly and
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Figure 8: Illustrative Model: Migration and the Transition Between Steady States

NOTES: The figure shows the time paths of population reallocation and migration rates after a shock to the steady state distribution of population
under three home preference regimes. “No Home Preference” means no home preference at all, “Fixed Home Preference” means a constant value of
home preference in all time periods, and “Roots-Varying Home Preference” means a preference for home that varies endogenously over time by the
share of the dying cohort of agents living at home. (Source: Model-generated data described in section 6.)

return to steady state at a longer lag.

Conceptually, these are risks, resulting in a broad concern that falling mobility means the

economy will be unable to make population adjustments when they are warranted. But before

crafting a policy around this hypothetical, we need to ask: Is population adjustment in the U.S.

impeded today? Our views on the immediate risks are more sanguine.

One possible misconception is a connection of the mobility decline to the relatively poor

performance of certain local labor markets. We showed, in contrast, that actually the growing

cities are more often the sources of mobility decline. We can also look directly at migration

rates out of regions and LLMs generally considered to be underperforming. In Figure 9, we plot

the out-migration from lagging regions we organize by topographic features for convenience: (i)

the Lake Erie region, containing the Rust Belt cities of Detroit, MI, Toledo, Cleveland, and

Youngstown, OH, Erie, PA, and Buffalo, NY, (ii) the Ohio River Valley, including Pittsburgh,

Cincinnati, and Louisville, and (iii) the cities and rural areas of the Appalachian mountains from

West Virginia to North Georgia.65 (Here, we use the same definition of a move being an exit

from a LLM, even if it means staying within the region we define.)

65We also examined the “Eastern Heartland” at-risk area of Austin et al. (2018), which comprises the noncoastal
states east of the Mississippi River, plus Missouri, Arkansas, and Louisiana. We found the regional trends
dominating, in that northern and midwestern parts of the Eastern Heartland showed flat migration rates, while
some southern areas trended down moderately.
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Figure 9: Migration Rates Out of Distressed Areas

NOTES: The figure plots out-migration rates for fast LLMs and the three regions with relatively underperforming labor markets: (i) the Lake Erie
region, containing the Rust Belt cities of Detroit, MI, Toledo, Cleveland, and Youngstown, OH, Erie, PA, and Buffalo, NY, (ii) the Ohio River Valley,
including Pittsburgh, Cincinnati and Louisville, and (iii) the cities and rural areas of the Appalachians mountains from West Virginia to North Georgia.
The IRS and ACS series (solid and dashed lines, respectively) are overlaid and benchmarked to the same value in 2011. (Source: IRS and ACS data.)

While fast LLMs show declining out-migration, in each of the three regions, the rates of

mobility are quite flat. Hence, for whatever problems these local labor markets may have–and

perhaps more people “should,” in some sense, be exiting these regions–they have been slow for

some time and are not particularly afflicted by the mobility decline. Hence, the national trend

cannot be blamed for further diminishing the poor circumstances of workers in these areas.

Beyond particular lagging regions, is the population less nimble? Declines in gross mobility

do not necessarily mean declines in net population change, as gross flows remain orders of

magnitude larger than net flows. More directly, the concern about falling mobility leading to

insufficient reallocation seems to presume the order of events. Part of our contribution to this

debate is to understand the autocovariances between gross and net population flows, parsing

the lead and the lag. Our analysis indicates that the stabilizing of population growth and, by

consequence, home attachment, caused a decline in gross migration rates. Concern over gross

mobility seems directed at the wrong object.

Figure 10 highlights this issue. The figure plots the variance across LLMs in (1) in an-

nual population growth from census intercensal estimates, (2) annualized U.S.-born population

growth from decennial census, and (3) net migration rates from the IRS data. These would

directly indicate how much population reallocation is occurring.66 The variance in population

growth has been trending downward for several decades, and the trend has if anything moder-

ated more recently. The variance in net migration is trending downward only slightly,67 to an

66The variance of population growth may depart from the variance in net migration to the extent there are
differences in birth and death rates and the arrival of foreign migrants.

67Using state-level data, Kaplan and Schulhofer-Wohl (2017) find that net migration is flat.
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Figure 10: Cross Sectional Variance in Population Growth and Net Migration

NOTES: The figure presents the unweighted cross sectional variance in population growth and net migration. The spatial unit is urban LLMs. The
annual population growth series uses intercensal estimates of population growth. The decadal series uses an annualization of the long difference,
1
10
ln(Pt+10 − Pt). The net migration series is the variance across LLMS in inflow minus outflow as a proportion of initial size. Two outliers have been

excluded: New Orleans, Louisiana and Biloxi, Mississippi in 2006, both of which experienced large population loss in the aftermath of Hurricane
Katrina. (Source: Census and IRS data.)

extent less than a continuation in the preceding trend in population growth. Cyclical variations

in migration variance are still apparent. This does not suggest some great migration slowdown

has stopped population growth from happening, but rather the convergence in the long run

population trends have preceded (and, in our view, caused) the gross mobility slowdown, with

year-to-year fluctuations still occurring.

Finally, we step back and consider welfare implications of our findings. One of the key conclu-

sions of attributing declining mobility to rising home attachment is the implication that agents

are making optimal, unconstrained choices to stay in place. Alarmist views of the decline in

dynamism fear that some friction is preventing people from making moves they would otherwise

like to make. If instead people simply prefer to be near family and friends and in a familiar place,

the perspective changes considerably. In a sense, we agree with the argument of Kaplan and

Schulhofer-Wohl (2017), though for different reasons, that the mobility decline is not particularly

concerning and could actually be evidence of a well-functioning market with declining incentives

to move. Moreover, if locations are offering more similar occupational opportunities, as Kaplan

and Schulhofer-Wohl (2017) argue, then aspects like home attachment may have become more

important at the margin.
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Appendices

A Supporting Exhibits

Figure A1 plots the change in migration for a partitioning of potential destinations. The

destinations are grouped by “Neighbors” (adjacent LLMs) to the origin LLM, other LLMs in

the same state as the origin LLM, others in the same region, and the remainder. The scatter

plots show that declines in migration to each kind of destination are associated with declines

in out-migration from the origin, and there is not a substitution of one type of destination for

another. The pattern also holds when splitting by large and small LLM destinations or by

common and uncommon destinations. Thus, the decline appears to be a general drying up of

the origin out-mobility rate.

Figure A2 shows the interstate migration rates as measured in the Current Population Survey

Annual Social and Economic Supplement (CPS-ASEC, or commonly, the March CPS). The CPS

contains the respondents’ state of origin, which we can then classify into regions. The CPS is not

our preferred dataset because (1) its sample is too small to study small areas over time, which

is our focus here, (2) its geography is limited, so we cannot map it into a fully partitioned set

of local labor markets, and (3) it is compromised by changes in sample and notably imputation

procedures that affect estimates of migration rate (see Kaplan and Schulhofer-Wohl (2012)).

However, it is a commonly used source in the literature.

According to the figure, the West and Frontier regions show the greatest extent of the mobility

decline. While the populations or definitions of location and migration event do not exactly align

between the IRS and CPS, we see this as validation that the migration decline is a spatially

concentrated phenomenon in certain regions of the country.

Figure A3 plots out mobility rates against average rootedness for the natives and U.S. born

transplants in each of the 183 LLMs in our data. Higher rootedness is associated with lower

out-mobility for natives, but shows no association with mobility for non-natives.

Figure A4 plots the migration rate out of a LLM for each tercile of the income distribution

(plus those without reported income) against the LLM’s average out-mobility rate. Among each

income subgroup, higher out-mobility rates are associated with higher average mobility for the

location, but the slope is strongest among the low income type. This is one reason we are

concerned with controlling for the income distribution of LLMs, and the distribution of income

by age/education/at-home status, within our model.

Table A1 shows migration rates by tercile of the income distribution, after adjusting for

predicted wage based on age, education, and state of residence. The microdata come from the

PSID and the income prediction comes from the CPS. Migration is defined by a change in state

of residence. The “short-run position” uses the classification of residual income in the last two
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Figure A1: Change in Out-Migration Rates by Destination

NOTES: The figure plots the log change in migration to a set of destinations to the log total change in out-migration for the origin. The destinations
are grouped by “Neighbors” (adjacent LLMs) to the origin LLM, other LLMs in the same state as the origin LLM, others in the same region, and the
remainder. Note the horizontal axis is the same data on all four plots. The population adjustment on the vertical axis accounts for population growth
by differencing the destination flow and the origin population size, y = (ln(flowlate)− ln(flowearly))− (ln(poplate)− ln(popearly)). (Source:
Author’s calculations using IRS data).

Figure A2: Changes in CPS State-to-State Migration Rate Over Time, by Region

NOTES: The figure shows state-level migration rates nationally and by the five regions shown in Figure F1. An individual changing states within the
same region is counted as a migration event. Vertical lines denote changes in imputation methodology in the CPS; see Kaplan and Schulhofer-Wohl
(2012) for further detail. (Source: Author’s calculations using CPS-ASEC data).
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Figure A3: Migration Rates and Local Rootedness, by At-Home Status

NOTES: The figures plot average out-migration rates by LLM for residents flagged as being at-home or not-at-home; that is, in a LLM of their state of
birth. (Source: ACS 2005-2017 data.)

Figure A4: LLM Mobility Rate by Point in the Income Distribution

NOTES: The “low” category indicates incomes less than 1/2 SD below the mean for the skill group, “medium” is from -1/2 to 1/2 SD above, and
“high” is more than 1/2 SD above. The vertical axis reported “‘adjusted” rates because migration rates have been normalized to reflect a consistent
composition by age and education. (Source: ACS data.)
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Table A1: Individual Migration Rate by Point in the Income Distribution

Short-Run Moved in Period Long-Run Moved in Sample
Position Stay Move Average Position Never At Least Once
Low 10,641 267 Low 18,315 6,963

0.976 0.024 0.725 0.275
Average 25,845 518 Average 32,533 12,493

0.980 0.020 0.723 0.277
High 13,931 360 High 21,327 8,589

0.975 0.025 0.713 0.287
NOTES: The table classifies workers in the PSID relative to their predicted income (given education, age, and state of residence) in a given year,
categorizing the residual into his/her income position. The first set of columns uses the classification of the last two years and whether the person
migrates in the following year. The second set averages over the person’s individual average residual and relates their migration history in the sample.
Migration events are defined as moves across states. (Source: PSID data.)

years and whether the person migrates in the following year. The “long-run position” averages

over the person’s individual average residual, creating an estimate of the individual’s income

“fixed effect,” and relates their migration history in the sample. The table shows that higher

income types are more likely to have ever moved, but high and low transient shocks to income

are associated with higher mobility.

B Additional Simulation Results

B.1 Model Simulation Results by LLM

Table B1 reports the migrations changes for each separate LLM as well as the breakdown by

categories of decomposition type.

B.2 Expanding the Simulation to the Entire Postwar Period

High quality data chronicling migration rates are a relatively new development, but using best

available data prior to 1990, Fischer (2002), Molloy et al. (2017), and Kaplan and Schulhofer-

Wohl (2017) document that migration rates in the U.S. peaked in the 1980s (or possibly late

1970s). Our main simulations start with the 1980 census and proceed to show the decline, but we

are curious whether the mechanisms in our model would generate an inverted U-shaped pattern

if we walked the model farther back into history. As a supplement to our main analysis, we

simulate the model for 1950-1970 as well. We replicate Figure 7 for the longer time horizon

in Appendix Figure B1. This comes with the caveat that we maintain the assumption of fixed

primitives–an assumption that becomes less credible as we drift father back from our estimation

period of 2005-2017. We nonetheless think it interesting to see the model’s dynamics when

constrained to contain only the mechanisms we focus on.

The model simulations indeed show a hump-shaped pattern of migration peaking in 1980.

The decomposition indicates that the sharpness of the hump is the result of an educated and
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Table B1: Simulated Migration Rates, With Decomposition of Change, by LLM

Level in 1980 Total Change Demographic Home Attachment Income
1 2 3 4 5

Akron (OH) 2.943 -0.704 -0.205 -0.601 0.059
Albany (NY) 2.277 -0.193 -0.187 -0.056 -0.037
Atlanta (GA) 3.157 0.160 -0.459 0.365 -0.007
Austin (TX) 3.228 -0.004 -0.326 0.316 -0.167
Baltimore (MD) 3.309 -0.315 -0.016 -0.238 -0.051
Birmingham (AL) 2.166 0.145 -0.194 0.217 0.011
Boston (MA) 2.678 0.039 0.030 0.022 -0.110
Buffalo (NY) 2.279 -0.296 -0.127 -0.282 0.021
Charlotte (NC/SC) 2.418 0.826 -0.203 0.773 -0.055
Chicago (IL/IN/WI) 2.873 -0.372 -0.114 -0.319 0.018
Cincinnati (OH/KY/IN) 2.321 -0.115 -0.129 -0.083 0.008
Cleveland (OH) 3.038 -0.676 -0.180 -0.592 0.077
Columbus (OH) 3.023 -0.319 -0.118 -0.245 -0.008
Dallas-Fort Worth (TX) 3.188 -0.296 -0.304 0.008 -0.046
Dayton (OH) 3.138 -0.569 -0.221 -0.477 0.083
Denver (CO) 4.552 -0.886 -0.478 -0.249 -0.052
Detroit (MI) 2.856 -0.740 -0.162 -0.716 0.115
El Paso (TX/NM) 3.262 -0.532 -0.161 -0.436 0.055
Fort Myers (FL) 5.127 -1.147 -0.618 -0.233 -0.046
Fresno (CA) 3.985 -1.402 -0.175 -1.012 0.025
Grand Rapids (MI) 2.333 -0.193 -0.175 -0.178 0.065
Greensboro (NC/VA) 2.253 0.435 -0.238 0.468 0.032
Greenville (SC/NC) 2.255 0.454 -0.226 0.488 0.026
Harrisburg (PA) 2.276 0.253 -0.272 0.361 -0.004
Houston (TX) 3.339 -0.497 -0.338 -0.168 0.041
Indianapolis (IN) 3.160 -0.311 -0.150 -0.245 0.031
Jacksonville (FL/GA) 3.595 -0.261 -0.301 0.024 -0.017
Kansas City (MO/KS) 2.787 -0.157 -0.225 -0.028 0.017
Lancaster (PA) 1.965 0.265 -0.160 0.288 -0.016
Las Vegas (NV) 5.223 -1.027 -0.614 -0.110 0.024
Los Angeles (CA) 4.396 -1.330 -0.150 -0.837 0.023
Louisville (KY/IN) 2.192 0.103 -0.163 0.134 0.008
Manchester (NH) 4.313 -0.595 -0.514 0.136 -0.160
McAllen (TX) 2.476 -0.135 -0.182 -0.106 -0.026
Memphis (TN/MS/AR) 2.354 -0.045 -0.217 0.109 -0.012
Miami (FL) 4.733 -1.286 -0.101 -0.496 -0.014
Milwaukee (WI) 2.627 -0.157 -0.231 -0.071 0.042
Minneapolis (MN/WI) 2.490 -0.117 -0.226 -0.002 -0.026
Monmouth (NJ) 3.529 -0.689 -0.231 -0.338 -0.027
Nashville (TN) 2.737 0.503 -0.220 0.543 -0.036
New Orleans (LA) 2.551 -0.318 -0.240 -0.174 0.022
New York (NY/NJ/CT) 2.633 0.041 0.077 -0.116 -0.066
Norfolk (VA/NC) 3.633 -0.096 -0.378 0.268 -0.040
Oklahoma City (OK) 3.359 -0.300 -0.319 -0.080 0.009
Orlando (FL) 5.088 -0.965 -0.467 -0.343 0.026
Philadelphia (PA/NJ/DE) 2.579 -0.159 -0.014 -0.212 -0.016
Phoenix (AZ) 5.015 -1.146 -0.420 -0.377 -0.052
Pittsburgh (PA) 1.872 0.182 -0.100 0.090 0.060
Portland (OR/WA) 3.985 -0.591 -0.290 -0.211 -0.010
Providence (RI/MA) 2.256 -0.046 -0.164 0.071 -0.078
Raleigh-Durham (NC) 2.913 0.664 -0.455 0.776 -0.138
Residual 3.386 -0.557 -0.196 -0.271 -0.046
Residual Connecticut (CT) 3.727 -0.504 -0.365 -0.034 0.020
Richmond (VA) 3.025 0.028 -0.230 0.137 -0.015
Riverside-San Bernardino (CA) 4.602 -1.780 -0.214 -1.201 0.032
Rochester (NY) 2.501 -0.289 -0.256 -0.188 0.071
Sacramento (CA) 4.090 -1.277 -0.180 -0.798 -0.029
Salem (OR) 4.614 -1.017 -0.500 -0.503 0.108
Salt Lake City (UT) 3.249 -0.335 -0.293 -0.054 0.000
San Antonio (TX) 2.777 -0.149 -0.149 -0.036 -0.031
San Diego (CA) 5.107 -1.611 -0.106 -0.838 -0.104
San Francisco (CA) 4.172 -1.029 -0.002 -0.557 -0.152
San Jose (CA) 4.143 -1.048 0.041 -0.475 -0.173
Seattle (WA) 3.956 -0.655 -0.226 -0.223 -0.095
St. Louis (MO/IL) 2.410 -0.232 -0.136 -0.196 0.025
Syracuse (NY) 2.296 -0.294 -0.224 -0.156 0.000
Tampa (FL) 4.945 -0.998 -0.332 -0.322 -0.107
Tucson (AZ) 4.762 -1.029 -0.251 -0.503 0.058
Tulsa (OK) 3.498 -0.444 -0.345 -0.218 0.042
Washington (DC/VA/MD) 4.147 -0.647 -0.179 -0.248 -0.075

NOTES: All figures are in percentages (e.g., “0.5” corresponds to a one-half percentage point change).
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Figure B1: Simulated Trends in Mobility, Decomposed

NOTES: The figures plot the time path of mobility generated by the model in total and counterfactual subtotal simulations for each category of LLMs.
Note that each panel has its own vertical scale. Subtotals may not add to the combined value because of nonlinearities in the model. The shaded
region denotes the estimation period.

youthful workforce (the Baby Boom generation) emerging from 1970 to 1990. Increasing home

attachment also follows an inverted U pattern, peaking at different times for LLMs of different

speeds, but as shown in the main analysis, is more dominant in the trend of later decades of the

simulation.

C Modeling Details

C.1 Model Setup: Choice Probabilities and Value Functions

For convenience, here we rewrite the choice probability and value functions from section 3.

C.1.1 Lower Nest: Where to, Conditional on Moving

The probability of choosing destination j conditional on current location o is given by

Pr(j|o) = σjo =
exp[vj|o]

1
λ∑

i exp[vi|o]
1
λ

. (C1)

Taking logs yields
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lnσjo =
1

λ
vj|o − ln

∑
i

exp[vi|o]
1
λ . (C2)

The expected value of choosing a destination optimally (the ‘Emax’) is the value of moving

out of origin o, Vm|o:

Vm|o = λln
(∑

k

exp[vk|o]
1
λ

)
. (C3)

C.1.2 Upper Nest: Move/Stay Decision

The upper nest is the binary stay or move decision. Letting Vs|o denote the value of remaining

in the origin this period, the respective probabilities are

Pr(stay) =σs =
exp[Vs|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

(C4a)

Pr(move) =σm =
exp[Vm|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

. (C4b)

Similar to (C1), the expected value of being faced with a move/stay decision in some origin

o is

Vo = δln
[
exp[Vo]

1
δ + exp[Vm|o]

1
δ

]
. (C5)

This is the value of being in the location indexed by o.

The closed form logit choice probabilities have the usual convenient features for expressing

log choice probabilities and odds ratios. Taking logs in equation (C1) and differencing two

destinations yields

lnσj|o =
1

λ

[
vj|o − ln

(∑
i

exp[vi|o]
1
λ

)]
(C6a)

lnσj|o − lnσi|o =
1

λ

(
vj|o − vi|o

)
(C6b)
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and from equations (C4b) and (C4a), using C3 in the third line:

lnσs =
1

δ
Vo − ln

(
exp[Vo]

1
δ + exp[Vm|o]

1
δ ) (C7a)

lnσm =
1

δ
Vm|o − ln

(
exp[Vo]

1
δ + exp[Vm|o]

1
δ ) (C7b)

lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
. (C7c)

C.2 Locational Heterogeneity in Income Search

Locations are heterogeneous in the incomes they offer, so that utility afforded by the in-

come point n may vary, i.e., yjn > ykn for some locations j, k. A higher mean shifts the entire

distribution, so that both w0(n) and wc(n) move proportionately at each n.68

The effect of dispersion is perhaps less obvious. Higher dispersion can increase the value

function of the worker, ceteris paribus, because of the presence of the optionality in the successful

search. The availability of high draws is a good when there is opportunity to reject low ones,

as this model allows. The w0 term is not affected by a mean-preserving spread in income, but

the wc term is convex in the variance of the income distribution. Mathematically, given a Type

I EV assumption on the shock in the successful search event, wc(n) =
∑

n′ πn′|nln(exp(wn′) +

exp(wn)) −∆, where ∆ is Euler’s constant (to adjust for the mean of the T1EV distribution),

which is increasing in the spread of the distribution of n′. To see the effect of dispersion on this

value, consider a mean-preserving spread of σ separating two income levels, w1 = w + σ, w2 =

w − σ. The expected value of receiving these two options is

wc = ln(exp(w + σ) + exp(w − σ)).

The log transformation is monotonic, so to show the sign, we focus on the sum of the

exponential terms. Its derivative is

∂exp(wc)

∂σ
= σ(exp(w + σ)− exp(w − σ)) > 0.

Since σ is positive and the exponent is an increasing function, the value is increasing in the

spread.

Next, the income search value function is clearly affected by the probability of a successful

search in ways that interact with the income distribution. Writing out the expected value of

income search, (9),

68The wc term is slightly less sensitive to the mean than w0 because a successful search induces some reversion
by providing a mixture of two draws from the distribution.
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ωn =
∑
n′

πn′|n
[
γln(exp(wn′) + exp(wn))−∆ + (1− γ)wn′

]
,

we see that the derivative of this expected value with respect to the contact probability is

∂ωn
∂γ

=
∑
n′

πn′|n
[
(ln(exp(wn′) + exp(wn))−∆− wn′

]
> 0,

which is the probability-weighted gap between the expected income resulting from the successful

and unsuccessful search. This gap is increasing in the income distribution mean (in general) and

variance (in the support of actual data for U.S. cities) because of the nonlinearity in the successful

search term.

Combining these last two results would show that d2wn
dσγ

> 0. Thus, we allow for the possibility

that higher mean and/or higher dispersion locations have been more affected by increasing

information availability. As information increases, local search will dominate nonlocal search to

a greater extent when the local market has higher mean and/or variance.

D Estimation Details

D.1 Deriving Estimating Equations

D.1.1 Destination Conditional on Moving

The value of a location depends on (i) its current offer of flow utility, (ii) the size of switching

costs between the origin and the new location, and (iii) the continuation value offered by placing

oneself in a new state. Writing out the components of the difference in values shows that the

odds ratio in (C6b) is

lnσj|o − lnσi|o =
1

λ

(
uj +mcjo + βln

(
exp[Vs|j]

1
δ + exp[Vm|j]

1
δ

))
−1

λ

(
ui +mcio + βln

(
exp[Vs|i]

1
δ + exp[Vm|i]

1
δ

))
.

(D1)

Intuitively, this expression says the relative probability of choosing two locations is a matter of

(i) the difference in their utilities, (ii) the difference in the move costs in reaching them from the

origin o, and (iii) the difference in the continuation value induced by changing one’s station to j

vis-a-vis i. The latter could matter in a model with geography (including birthplace geography),

as j and i may be more or less remote from other locations, or may differ in the home premium

they offer the individual. The future value components can be substituted using (C5), which

then appears in the denominator of (C4b), allowing for substitution of (C3), yielding
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lnσj|o − lnσi|o =
1

λ
(uj +mcjo − ui −mcio)

+
β

δ
ln
(∑

k

exp[v′k|j]
1
λ

)
− β

λ
lnσ′m|j

−β
δ
ln
(∑

i

exp[v′k|i]
1
λ

)
− β

λ
lnσ′m|i,

(D2)

where the prime symbol is used to indicate the value of the variable in the next period. This

equation has substituted out the future value terms for the (relative difference in) future moving

probabilities and the expected value function in the where-to moving decision. Note that we

have elected to take the future value with respect to the moving probability and value rather

than that of staying. This allows us to substitute out the value of moving out from the two

candidate locations, and normalize relative to an arbitrary third location z. The normalization

obtains because the value of ending up in z will be constant for the individual, although the cost

of reaching z may differ between j and i. Therefore the probability of reaching z will depend

on the next-selected destination, but otherwise the history of choices is “forgotten” once z is

reached. In this way, we are leveraging the logic of finite dependence to iteratively substitute

out future value terms, returning to a renewal state. Using (C6b), we derive

lnσj|o − lnσi|o =
1

λ
(uj +mcjo − ui −mcio − β(lnσ′m|j − lnσ′m|i))

+
β

δ

(1

λ
(mczj −mczi − (lnσ′zj − lnσ′zi)

)
.

(D3)

Equation (D3) is now a reduction of (C6b) to parameters–in the utility and move cost functions,

and the scale parameters–and moments from the data, the choice probabilities.

D.1.2 The Move/Stay Decision

The log odds ratio of staying (not migrating) is given in (C7c). This can also be converted to

a linear estimating equation when differencing relative to a normalizing origin location z. The

basic idea is to iteratively apply the forward substitution used to account for the continuation

value terms as in (D3). Several more forward substitutions are needed to return the estimating

equation, but the logic is the same as that used in the last subsection.

61



(lnσso − lnσmo)− (lnσsz − lnσmz) =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
−1

δ

(
Vz − λln

(∑
i

exp[vi|z]
1
λ

))
=

1

δ

(
Vo − Vz

)︸ ︷︷ ︸
staying

− λ
δ

(
ln
(∑

i

exp[vi|o]
1
λ

)
− ln

(∑
i

exp[vi|z]
1
λ

))
.︸ ︷︷ ︸

moving

(D4)

We will treat the “staying” and “moving” blocks separately for convenience. The difference

in the value of staying in o relative to z is written out as

Vo − Vz =uo + βln
[
exp(V ′o)

1
δ + λln

(∑
i

exp[v′i|o]
1
λ

) 1
δ
]

−
(
uz + βln

[
exp(V ′z )

1
δ + λln

(∑
i

exp[v′i|z]
1
λ

) 1
δ
])

=uo + β
λ

δ
ln
(∑

k

exp[v′k|o]
1
λ

)
− lnσ′m|o

−
(
uz + β

λ

δ
ln
(∑

k

exp[v′k|z]
1
λ

)
− lnσ′m|z

)
.

(D5)

We first expanded the expression into flow utilities and continuation values and then substi-

tuted the continuation value using (C7b) and (C3). The relative continuation values of staying

are thus expressed as the expected value of an optimal move less the probability of moving any-

where, conditioning on origin o versus z. (For comparison, this equation looks like (D2) without

the moving cost terms.)

We are now in position to employ a substitution for the expected value of a move using (C6a)

for the ln
(∑

k exp[v
′
···]

1
λ

)
terms.

Vo − Vz =uo − uz − (lnσ′m|o − lnσ′m|z)

+β
λ

δ

(1

λ
(vk|o − vk|z)− (lnσko|m − lnσkz|m)

)
.

(D6)

We have now expressed the expected value of the move as the choice-specific value of some

location k minus the probability of moving there. The relative values between starting this
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choice from o vis-a-vis z is simply the difference in the cost of reaching the location, as once the

agent is in k, there is no impact of the memory of how she got there. That is, we again leverage

the property of finite dependence–in one more step, agents can be returned to equivalent places

in the state space. Thus, in the same substitution that arrived at (D3), here we have

Vo − Vz =uo − uz − (lnσ′m|o − lnσ′m|z)

+β
λ

δ

(1

λ
(mcko −mckz)− (lnσ′ko|m − lnσ′kz|m)

)
.

(D7)

The moving block uses the same technique, substituting out the expected value of a move

employing finite dependence. (The staying block merely needed one more step to arrive here.)

We thus have

λ

δ

(
ln
(∑

i

exp[vi|o]
1
λ

)
− ln

(∑
i

exp[vi|z]
1
λ

))
=

λ

δ

(1

λ
(mcko −mckz)− (lnσko|m − lnσkz|m)

)
. (D8)

One difference of note between (D7) and (D8) is that the former uses one period ahead

choice probabilities (and is discounted by β) while the latter uses current period choice prob-

abilities. Our estimation focuses on the geography and ignores aggregate shocks or trends, so

that lnσko|m = lnσ′ko|m. In other applications, one may need to forecast the differences between

these as states evolve. Subject to this caveat, our estimating equation combines (D7) and (D8)

to yield

(lnσso − lnσmo)− (lnσsz − lnσmz) +
β

δ
(lnσ′m|o − lnσ′m|z) =

1

δ
(uo − uz) + (β − 1)

λ

δ

(1

λ
(mcko −mckz)− (lnσko|m − lnσkz|m)

)
. (D9)

which is a function of only choice probabilities and utility parameters.

D.2 The Estimation Procedure

Estimation relies on information in both move versus stay decisions and in the propensity to

choose one location over another, conditional one one’s own attributes (such as birthplace). That

is, we can stack (D3) and (D9) into one simultaneous equation problem evaluated by standard
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matrix operations.69

To do so, we need to make some practical decisions over how many moments to target. For

each origin, there are J − 1 potential destinations, so with a normalizing destination, there are

J−2 choice probabilities on the left-hand side of (D3). However, each of them has another J−1

choice probabilities for each destination, meaning there would be J× (J−2)× (J−1) equations

for each type of agent in the data. This becomes a computational problem when J is large and

there are many types (we have A×E× (J + 1) = 568 types). In practice, we will ignore the last

term comprising the second line of (D3), essentially treating it as specification error. Our reason

for doing so is that the computational savings are large (dropping the J−1 factor in the number

of equations) while these extra moments yield little additional information. They represent the

differential move cost and choice probability of reaching the outside option z, which are fairly

similar across places. In other words, the value of a destination is chiefly determined by its

utility, the move cost of reaching it (geography), and the probability of moving out of it again,

but not by how easy or difficult it becomes to reach a rural area from there. Besides, the term is

multiplied by β
δ
, a small decimal in our calibration, that substantially reduces the contribution

of this term to the variance.

There is, naturally, one move/stay decision for each origin-type, but there could be as many as

J−1 equations for (D9), depending on how many k potential destinations we want to include. In

contrast to the dropping of the last term in (D3), there is geographical heterogeneity represented

in the mcko, lnσko|m terms of (D9), so we elected to use all the potential destinations, as they

might help in identifying the move cost terms or correcting for differences in option value.70

Ex post we found the contribution of these terms to be small, and qualitatively, the results are

similar either way. The stacked system of equations is

69If the utility function were nonlinear in parameters, the objective function could still be evaluated using
standard methods, although not simple matrix inversion, obviously. The main point of our procedure is that
finite dependence has yielded a simple set of targeted moments.

70This also balances the number of equations between the move/stay and moving-to-where contributions,
although such a balance could also be accomplished through appropriate weighting.
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

ln σso
σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σ1o|m
σ1z|m

· · ·
ln σso

σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σKo|m
σKz|m

ln
σ1|o
σz|o

+ βln
σ′
m|1
σ′
m|z

· · ·
ln

σK|o
σz|o

+ βln
σ′
K|1
σ′
m|z


︸ ︷︷ ︸

Y

=


1
δ

· · · 1
δ

0 · · · 0
(β−1)λ

δ
· · · (β−1)λ

δ
0 · · · 0

0 · · · 0 1
λ
· · · 1

λ

0 · · · 0 1
λ
· · · 1

λ


︸ ︷︷ ︸

∆



u(x1)− u(xz) mc(d1o)−mc(d1z)

· · · · · ·
u(xK)− u(xz) mc(dKo)−mc(dKz)
u(x1)− u(xz) mc(d1o)−mc(d1z)

· · · · · ·
u(xK)− u(xz) mc(dKo)−mc(dKz)


︸ ︷︷ ︸

X

[
θu

θmc

]
,︸ ︷︷ ︸

θ

(D10)

where differences have been made to ratios for readability. Y is the choice probabilities from the

data, X is the function of utilities and moving costs (e.g., whether a location is home, how far

two locations are from each other, etc.), ∆ are the scaling parameters (determined elsewhere,

as will be explained), and finally θ is the vector of parameters to be recovered. A standard

regression of Y on [∆X], with choice of a weight matrix, as appropriate, will yield θ.

D.3 Additional Estimating Equations

Equation (D10) identifies the main parameters of interest off of differences between locations

and a normalizing locale z. Hence, scale parameters are not identified here and must be calibrated

elsewhere. The set of scaling parameters includes λ, δ, β and intercepts of a move cost function

(whereas D10 identifies the distance parameters that vary between locations).

Move Cost Intercepts

An estimator for the move cost intercepts can be derived using substitutions similar to those

employed in sections D.1.1 and D.1.2.71 Using (C7c) and substituting (C6a), we have

71Monras (2018) does not use a move cost term, instead calibrating an average difference in elasticities between
nests, i.e., λ relative δ. We could have gone this route, although we prefer using moving costs to compare across
types (who have substantially different move rates, as in young versus old) without imposing assumptions about
between-destination elasticity. A move cost specification is also consistent with our environment in a model with
geography, where some locations are closer in space than others.
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lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
=

1

δ

(
Vo − vj|o − λlnσj|o

)
=

1

δ

(
Vo − Vj −mcj|o − λlnσj|o

)
.

(D11)

Unlike the expressions in D.1.1 and D.1.2, this does not difference out the intercept of the

move cost term, but it also retains the value functions of residing in o and j, which are unknown.

To isolate the move cost intercept, we saturate the equation with type-by-location fixed effects

(for each pair of origin and destination) to absorb the value functions. (That is, we effectively

can estimate Vo as a composite object, but not its components). We then recover the move

cost intercept (by type) from the average amount of migration observed in the data, correcting

for differences in relative attractiveness of a location (Vo versus Vj) and its average remoteness

(mcj|o). The estimating equation is

lnσs − lnσm −
λ

δ
lnσj|o +

1

δ
mcj|o =

1

δ

(
Vo − Vj)−

1

δ
mc0, (D12)

where the left-hand side is composed of choice probability data and previously recovered moving

costs with respect to distance.72 From this equation we recover A × E × 2 = 16 move cost

terms–one for each decade/education group (8), for the US and foreign born (x2).

D.4 Scale Parameters

The discount rate is set to β = 0.95.

Finally, we are ready to derive a calibration for the scale parameters, λ, δ. These are the

most difficult to identify in our environment, because we are using cross-sectional variation.73

Our primary objective here is to obtain values that preserve the main feature in the data–

large move-home flows and small move-out-of-home flows. To that end, we do this in the most

straightforward way: We compare move/stay decisions for home versus not-home locations to

move-to decisions for home versus not-home locations, and set a scale parameter once at the

outset. That is, we look at the ratios of C6b to C7c to elicit λ
δ
. In practice, we estimate dummy

variables for whether the individual is at home in move/stay, and the frequency of move-home

decisions, and take their ratio as 1
δ
, effectively setting λ to one. This procedure will not identify

72The estimates are largely similar when ignoring the relative move cost term and treating it as specification
error. That is, while distance impacts greatly the set of destinations one reaches, remoteness does not seem to
be driving average mobility rates. Note also that relative move cost is mean zero by construction, although in
principle it could be correlated with the value of the location, so it is technically correct to include it.

73In contrast, Artuc et al. (2010) and Monras (2018) use time variation for identification.
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utility primitives, as it only absorbs value functions without definition of their parameters, but is

sufficient to find the average ratio of outflow to inflow rates. Chronologically, this is the first step,

and we feed the calibrated δ into the estimating equations (D10) and (D12). We set δ for each

education group (although they are coincidentally of similar size), and then use cross-location,

cohort, and age variation in choice probabilities to estimate the remaining parameters.

Writing out C6b and C7c shows the idea:

lnσj,o − lnσk,o =

1

λ

(
uj − uk − β(lnσm,j − lnσm,k) +mcj,o −mck,o +

β

δ
[(mci,j −mci,k)− (lnσi,j − lnσi,k)]

)
(D13a)

lnσs,o
lnσm,o

− lnσs,k
lnσm,k

=

1

δ

(
uj − uk − β(lnσm,o − lnσm,k) + (β − 1)[(mci,o −mci,o)− (lnσi,o − lnσi,o)]

)
, (D13b)

where the first-order terms on the right-hand side are the same. Using indicators/controls for

the right-hand side will capture the composite effect of flow utility and continuation value (and

therefore does not identify parameters), but can approximately get the scale differences between

the move out and move-to decisions. Additional controls help with omitted variables. We use

moving costs (in the upper equation) and ignore the trailing terms, treating them as specification

errors. The trailing terms merely represent the change in option value created by choosing one

location versus another via its change in the accessibility of other locations. The change in option

value from the move out probability is already captured.

We use the ratio on the home indicator control to best match the elasticity of choosing home

from afar versus the reduced likelihood of moving away from home.

D.5 Auxiliary Model: Counterfactual Conditional Choice Probabil-

ities

The continuation value of a location j can be expressed using either from (C7a), FVj =
1
δ
Vj − lnσs|j, or from (C7b), FVj = 1

δ
λln
(∑

i exp[vi|j]
1
λ

))
− lnσm|j, which is in turn λ

δ

(
1
λ
Vk +

1
λ
mckj − lnσk|j,m

)
− lnσm|j.

Consider defining FVj by (C7b) and FVk by (C7a). Then the difference is

FVj − FVk =
1

δ
(Vk +mckj)−

λ

δ
lnσk|j,m − lnσm|j − (

1

δ
Vk − lnσs|k).
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The Vk terms cancel to arrive at the relative future values of

FVj − FVk = lnσs|k − lnσm|j +
1

δ
mckj −

λ

δ
lnσk,j|m. (D14)

This expresses the relative future value of two choices as a function of the move rates, stay rates,

and the probability of moving to one location from the other, correcting for the move cost. When

choosing a normalizing location to have continuation value of zero (i.e., when j = k), we have

relative future values for all other places using the choice probabilities and parameters.

What remains is to estimate the choice probabilities from the data. We want to do this

in a way that projects counterfactual choice probabilities as we alter states within the model

environment, such as income distributions or home attachment. In practice, we flexibly estimate

the move out and move in probabilities as interactions of linear functions of income mean, dis-

persion, and rootedness. When we alter these in simulations, we project new choice probabilities

given the new set of income distributions or rootedness.

We need projections of the probability of moving from any origin, σs|k, and the probability of

choosing an arbitrary location k conditional on living in j, σk,j|m. The latter requires a modeling

decision on what the arbitrary location k will be. In principle, any place will do, but in practice,

it is easier to estimate an auxiliary model on a frequently chosen place. We use the home location

for U.S.-born residents, and the residual location for the foreign born.

Then, using the ACS microdata, we estimate two choice probability functions, f, g that take

as arguments the income and home preference features of the locations:

σm|j =f(yjµ, y
j
σ, n, I(j = h)) (D15)

σk,j|m =g(yjµ, y
j
σ, n, I(j = h)). (D16)

In practice we use the mean and standard deviation of income, interacted with dummies for

whether the individual is a high-, medium-, and low-income type, the rootedness of the location

interacted with home status, and indicators for whether the location is the residual. For the

destination conditional probability, we use a set of LLM pair dummy variables to capture distance

in a flexible way. The equations are estimated separately for each age/education group, and

within group, separately for the U.S. and foreign born.

The parameters of these equations allow us to project choice probabilities for alternative

values of income distributions or rootedness. This exercise is not used for the purposes of iden-

tifying anything in the model primitives. Rather, it serves as a projection of choice probabilities

outside the data for use in the CCP substitution of the value function in counterfactual simula-

tions. These projections therefore work in concert with the flow utility differences, not in place

of them. (If the choice probabilities are observed, we can enter them into a simulation directly.)

68



This allows the model to simulate future values without assuming a path of choices, something

we are hesitant to do for a long sequence, since doing so would involve imposing expectations

about aggregate states on the agents in the data. This rather takes an agnostic approach to the

expectations of the agents in the data: Whatever they believe about the future is captured by

choice probabilities, and we are simply deriving a flexible function of that object.

D.6 Forming the Cell Sizes

First, we split the data into type cells. To maintain sufficient cell sizes, we use decade age

grouping (20s, 30s, 40s, 50s). Education is split into the college educated and the non-college

educated. The other dimension of type is birthplace. Thus, we have 4×2×J types. Interacting

these with origin (the state variable), we have 4× 2× J2 cells.

We first calculate the population in each cell so that we can weight appropriately to calculate

aggregate statistics in the estimation sample as well as simulations and previous years of data.

Note that one reason migration can change over time in the model is by shifting the weight as-

signed to each type. This is more obvious in some dimensions–for instance, in thinking about the

aging of the population–but in our model with heterogeneous locations and preferences for home,

the changing composition by origin, cohort, and birthplace will also matter for aggregation.

One complication with assigning weights by birthplace group is that the model is designed

around LLMs, but birthplace in the census is reported by state. Some states contain multiple

LLMs and some LLMs straddle state political boundaries. Note the entire US is partitioned by

our geographic areas, so that by definition every state has at least one LLM (the outside option,

location z) and most have two or more. For example, Atlanta is entirely in Georgia, but some

Georgia-born residents came from rural areas and smaller unspecified LLMs. Hence, we need to

map between state of birth and LLM of birth when assigning weight to an observation.

It was simplest in practice to assign someone living in an LLM within her birth state to be

fully at home. An alternative would have been to assign weights based on lifetime migration

probabilities, but this required a lot of assumptions about lifetime mobility that we were not

actually modeling, including the propensity of repeat migration. At the other extreme, we could

split the observation by population in his year of birth, and assign weight by the population

shares. For example, say we observe someone living in Houston whose state of birth is Texas.

We could also use population (or cohort population) in his year of birth to assign him as (for

example) a one-quarter Dallas native, one-quarter Houston native, one-eighth Austin and San

Antonio native, and one-quarter other. But we found this drastically understates the at-home

share because it effectively assumes full mobility within state. Less than half of the respondents

are in the city of their birth, despite a large majority being in their state of birth.

This issue is potentially more serious on the destination side. If we see a Texas-born, out-of-

Texas resident move to Houston, we again do not know if she was born in Houston or elsewhere
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in the state. How we characterize the move has implications for measuring home preference,

as a comparison of columns 5 and 6 of Table 1 suggests. Because these gaps were so large,

and home preferences is a major piece of our analysis, we opted for the more conservative route

and down-weighted the probability that such a move was a move home by the proportion of

population in the person’s year of birth (i.e., used column 6 instead of 5 from Table 1).

D.7 Forming the Moment Conditions

We then proceed to calculate choice probabilities. Even with a relatively large dataset and

large LLMs, migration is infrequent enough that a fully interacted cell definition resulted in many

empty cells. Once the data are cut to, for example, 40-something college-educated workers living

in Houston but born in Cleveland, there are few individuals populating the cell. We may fail to

observe any of this type moving to, say, Kansas City, but do not believe that the probability of

that event is literally zero. Our smoothing procedure is designed to make aggregated cells that

preserve the kinds of detail in the stylized facts presented above.

We create three tables of move probabilities from the ACS. These are:

1. the probability of migrating (to anywhere), by age, education, origin, and whether home is

the origin, the residual, elsewhere in the U.S., or abroad. This will capture the main differ-

ences in moving costs by type, accounting for different incentives imposed by one’s current

labor market, combining all other birthplaces into one “away” category for precision. Call

this p1(age, edu, birthplace).

2. the probability of returning home (i.e., moving from an away-location back to one’s birth-

place) by age, education and birthplace. This will capture differences in preference for

home by location and cohort of birth, and in addition to stay rates for natives and nonna-

tives in 1, is an important moment for identifying the preference for home as a function of

rootedness. Origins are combined for precision. Call this p2(age, edu, birthplace).

3. the probability of choosing a location as a destination that is not one’s birthplace, by age

and education and origin, combining all other birthplaces for precision, except that U.S.

and foreign born are separate categories. This captures the geographic network of migra-

tion as well as differences in preferences for destinations for workers with different skills, and

helps to identify the income component of utility. Call this p3(age, edu, origin, foreign).74

74We experimented with many versions of this estimator, conditioning on different aggregations of origin, and
deriving from ACS microdata, aggregate data, and even the IRS data. We elected not to use the IRS data
because we could not separate by moves to or not to home. The ACS aggregate data provided the fewest empty
cells, since it was not subject to censorship requirements of the public use microdata.
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Note that each pn is computed by age and education, although we drop subscripts for ex-

position. The full matrix of cell-specific choice probabilities is then formed from the product of

these for the corresponding cases, which are as follows.

1. For the reflexive entry (i.e., “stayers,” the diagonal in the matrix), the entry is simply the

probability p1.

2. For people living in their birthplace but moving away, the probability is (1− p1)p3.

3. For people living away from their birthplace, moves home are a conditional probability,

(1− p1)p2.

4. For people living away from their birthplace, moves not to home are a conditional proba-

bility, (1− p1)(1− p2)p3.

Altogether, this forms a full J×J matrix (origin to destination) of flow probabilities for each

type of worker, which is placed in the left-hand side of (D10) above. The interesting variation

comes from the conditioning of the cell probability estimates, and the smoothing results from

removing one dimension of conditioning, which is reintroduced when making the moments from

the products of the conditional probabilities.

D.8 Income Distributions and Dynamics

To simulate the model, we need measures of income offer distributions and income dynamics.

These determine the value of of utility from income as represented in (9) via (7) and (8). There

are three sets of parameters to calibrate.

First is the available income distribution of each location. To focus on spatial differences

in income opportunities, we construct a measure of the local income distribution having ad-

justed for differences in the local labor force composition. Specifically, after limiting the data

to regularly employed workers, we run a regression of log earnings on controls for sex, race,

English proficiency, and household composition in order to strip out compositional differences

at national average labor prices.75 We do this separately for non-college and college-educated

workers because each face different labor market opportunities. The resultant income distribu-

tions from the ACS (and decennial census for prior decades) form the distribution of income

opportunities for each local labor market in our sample.76 The residualized income for each lo-

cation has mean µj,τ and variance σ2
j,τ . We use an N -pointed discretized distribution where the

75The results are largely similar when we also control for industry and occupational categories. Our preferred
specification is to leave these out of the regression (so their variance contribution remains in the residual),
since these can differ materially across labor markets–the kind of spatial variation we want to retain as a city
characteristic.

76Note that this measures the observed income distribution, though we feed it into the model as if it were
the primitive distribution. In principle, one might be able to estimate the primitive distribution by choosing
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steps between points are one-half standard deviations from the mean, wn = µωj,τ + 0.5nσωj,τ , with

integer n ∈ {−5, · · · , 5}. Notice that the step in the income distribution, n, is a state variable in

the model, and search occurs relative to that point, not a particular dollar value. For instance,

a mean income worker in city A will search around the mean in her location and others, even if

the nominal income of the mean in city B is, say, higher than the mean in city A. This accounts

for average productivity differences between cities that shift the income distribution.

The second set of parameters is the probability of transition between these points, the πn′|n

parameters from (7) and (8). We assume these follow a normal distribution and follow Tauchen

(1986) to discretize it. For example, for someone at the bottom of the distribution, 2.5 standard

deviations below, to move to the top, 2.5 deviations above, would require a shock drawn with

probability of five standard deviations above the mean of a normal. This introduces persistence

to the income process, and indirectly accounts for unobserved types of workers in that, for

example, the high productivity workers in one city are more likely drawing from the higher side

of the distribution in other cities as well, a necessary simplification given that our migration

data allows us to observe only one income draw, not one in each location.

The distinction between local and nonlocal search, equations (7) and (8), is to allow the

possibility that workers may face a different distribution of offers from their current location

than distant locations. In particular, it may be “easier” in some sense to search locally. We

could approach this two ways: through the probability of getting a contact, γ, or by the transition

distributions, πn′|n. The latter is more easily disciplined by data since we never actually observe

the “successful” and “unsuccessful” searches. But with data on the joint dynamics of location

and income, we can measure whether movers and non movers experience significantly different

income dynamics. For this we turn to the Panel Study of Income Dynamics (PSID, PSID

(2014)).77 Using the post-1997 PSID for workers employed for two consecutive surveys, we

measure the change in their income in standard deviations, which becomes the input data to

a maximum likelihood estimation. If the step size of discretization is s, the probability of the

change to income is

Pr(∆y) = πstayn′|n = Φ(n+ 0.5s)− Φ(n− 0.5s),

a statistical distribution (e.g., normal), guessing parameters, simulating the model, and matching the observed
distribution by some metric. We abstract from this because: (i) it would greatly complicate our estimation
routine, which is otherwise computationally easy, (ii) with available data, we observe income only in the current
location and not in past locations, but the model would try to predict the income distribution based on changes
over migration events, and (iii) conceptually, we believe that, in a partial equilibrium model such as ours, it is
reasonable to assume that individuals use observed income distributions to make migration decisions–otherwise
they would have to have some superior knowledge of the true primitive distribution from which incomes are
drawn.

77The geography in the PSID is state and we need local income distributions at annual frequencies, so we first
measure the standard deviation of incomes by education and state using the March CPS (Flood et al. (2015))
and then merge this to the PSID by survey year.

72



where Φ is the standard normal distribution. For movers, we relax the symmetry assumption,

shifting the step by some value ω,

Pr(∆y) = πmoven′|n = Φ(n+ 0.5s+ ω)− Φ(n− 0.5s− ω),

so that income changes can be better or worse on average for movers. The estimation step is to

place each worker at the closest point in the discretized distribution of income and then calculate

the probability of observing the change in income for a given guess of ω. The value of ω that

maximizes the likelihood of the data is used to calculate the income dynamics probabilities πmover

vis-a-vis the baseline πnonmover. Using our discretization, we obtain the estimate of ω = −.13.

We did not constrain it to be negative, but because income changes for movers are on average

worse than for stayers, which is consistent with our conjecture.

The final parameter is the probability of successful search, λ, which gives the worker the

preferable option value search (8), instead of the vulnerable random search (7). As noted, we

have little sense how to discipline this with the data, so we will treat it parametrically as a proof

of concept exercise. This parameter will change over time to reflect increasing availability of

information in the labor market.
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E Details on Data Construction

E.1 Sources

Our migration data come from two sources, the American Community Survey (ACS) and the

migration flows tables from the U.S. Treasury’s Internal Revenue Service (IRS). The ACS reports

the respondent’s current and one year ago Public Use Microdata Area (PUMA) of residence,

from which we can elicit migration probability (move or not) and direction (origin-destination

pairs). We use the ACS from 2005 to 2017. Migration is elicited using the puma and migpuma

variables.

The IRS infers migration events from changes in the address on individual tax returns in

two successive years, publishing the total county-to-county flows in each year, as well as the

total stayers in, inflows to, and outflows from individual counties. One limitation is that the

data are censored at flows less than 10 households, meaning many origin-destination pairs are

unobserved. On average, about 70 percent of flows are on observed origin-destination routes,

and the rest are censored. We measure migration using the internal subtotals of total domestic

inflows and outflows, subtracting flows between counties within the same local labor market

(which are almost never censored).

The IRS data underwent a change in method in the 2011-2012 tax year that resulted in

noticeable differences in the sample represented. Our understanding is that the data were com-

puted and published by the Census Bureau from 1990 to 2011, and the IRS took charge in 2012

and following. The IRS had different methods for tracking addresses across multiple returns

(in cases of, for instance, household formation and dissolution), and late filers, which tended to

be households with complicated returns. Thus, the set of individuals represented changed, and

because of the recursive nature of the data, this introduced year-over-year fluctuations that may

take several more years before they can be safely compared across time. We present the data

for the period 2012-2016, but only rely on the consistent sample of 1990-2011.

We also leverage aggregated population data at the county level, which we will use to show

population growth trends. We obtained the county population estimates from Manson et al.

(2018) and relied heavily on that project’s harmonization of geographies across census years.

Census microdata samples, 1880-2000, were obtained from Ruggles et al. (2019).

E.2 Geography: The Local Labor Market

In this paper, we will work with a unit of analysis we term a local labor market (LLM), which

fully partitions the geography of the continental US. The LLM is derived from a Commuting Zone
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(CZ) but modified to meet some specific objectives.78 One objective is geographic consistency

over time and across datasets. We were able to define constant boundary LLMs for both counties

and PUMAs for use in, respectively, Census aggregate population and microdata, dating from

1880 to current releases. A second objective is to fit more intuitive notions of an integrated

labor market area, more like a core-based statistical area (CBSA) or metropolitan statistical

area (MSA). In many cases, these line up well with the commuting zone, but in some, the

LLM covers a large and heterogeneous area. For example, most of southern California is in one

CZ, despite substantial heterogeneity in populations and labor market opportunities between,

say, the inland counties, which we split into a Riverside/San Bernardino LLM and the coastal

counties, which we further split into Los Angeles and Ventura LLMs, making three local labor

market units instead of one. A full list of LLMs is presented in Table F3, and a dataset of the

mapping of counties and PUMAs over time is available on our webpage.

Table F3 includes definitions as well as indicators for when the LLM is included in the

analysis. In our descriptive analyses in section 2, we report measures of migration flow and

population growth for the 183 LLMs that are characterized as urban areas. We aggregate the

remainder of the continental 48 states into an omitted category,79 comprising rural areas and

some unusual LLMs–smaller cities dominated by universities (“college towns” such as Athens,

Georgia or Bloomington, Indiana) or military bases (such as Jacksonville, North Carolina),

which have nonstandard migration behavior. Our empirical model focused on the 70 largest

LLMs. Throughout, we define a migration event as an exit from a LLM for a different LLM, so

that a move within a county or PUMA, or across counties or PUMAs within the same LLM, is

considered staying in place.

E.3 Discussion of the Calculation of Roots

The decennial census data contain detailed geographic information on current residence and

birth state for individuals in a household. We use household structure variables and cohort

matching to estimate rootedness of a particular cohort for each home LLM. We identify a birth

cohort by looking at all individuals who are less than 10 years old in a particular census wave.

For example, a twenty-something in 2010 was aged less than 10 in 1990. For the cohort living

in each LLM, we calculate the percentage of their parents who were born in a state in which

the LLM has a county. For example, children in Dallas are rooted if their parents were born in

Texas, and children in Kansas City are considered rooted if their parents were born in Kansas

78Our starting definition of LLM derived from CZs as in Dorn (2009), Autor and Dorn (2013), and Autor
et al. (2019). The geographic mapping over the census years relied heavily on the documentation provided by
the Ruggles et al. (2019) and Manson et al. (2018) projects. We are additionally grateful to Dave Van Riper and
Jeff Bloom for assistance.

79Our categorization defines “residual states” as LLMs; for example, the population of Oklahoma not in
Oklahoma City or Tulsa is in “residual Oklahoma.” We combine these here for expositional convenience.
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or Missouri. The child must be living in his/her home LLM to be counted in this sample. We

ascribe the cohort-LLM combination to have the rootedness measured by this fraction.

There are a few possible concerns given that we use metro area (LLM) for location but state

for place of birth. For example, we do not actually know in which city a child’s parents were born.

It is possible that a child was born in Dallas but the parents were born in Houston or Austin, and

certainly the percentage of Dallas children’s parents born in Dallas is smaller than the percentage

born in all of Texas. When comparing across cohorts, if the measurement error is similar, the

change in rootedness is still accurate. But if we are comparing a LLM in a state with several

large cities, such as Texas, to a LLM in a state with only one major city, such as Minnesota, we

will likely measure the rootedness of Dallas as too high compared to the Twin Cities. This may

be grounds for some within-state migration adjustment. In practice we found that adjustments

made trivial impact on our rootedness measures, because out of state birthplaces drove the first

order differences between cities. Unless within-state migration is strongly negatively correlated

with between-state (which other datasets indicate is not the case), our measure of rootedness

will if anything shrink the dispersion of rootedness across LLMs.

We use the location of residence for children under 10 as “home” for the purpose of cohort

matching. There is some mobility of young children that introduces uncertainty into our esti-

mates. One possible adjustment is to probabilistically assign children to potential birth cities,

but in practice the change to measurements is small.

Note that the rootedness proportions only include the U.S. born (the dotted line in Figure 4,

not the shaded areas). The foreign born are treated as a separate birthplace group–not at home,

and not from other U.S.–since, among other concerns, they have no domestic “home” location

to prefer above others, and they cannot be rooted. However, another concern is first-generation

immigrants. In such cases, the child was born in the United States but one or both parents were

born outside the US, leaving ambiguity in defining the child’s roots. By our strict definition,

of course we can say with certainty this child was not born in the same commuting zone as

his parents. However, many immigrants move to cities that have an established population

of immigrants from their native country already. (Perhaps a Cuban immigrant in Miami, for

instance, should be considered “rooted” in a sense.) For our purposes, it was simplest to calculate

rootedness only for children of native-born parents, since only they can be “at home.”

A final note on roots is that our current method calculates roots for a cohort of children, and

later we will match that average rootedness measured at the city level to people born in that

city. However, at that point we will have divided our adult sample into college graduates and

non-college graduates. Since college graduates are more mobile on average, and there is positive

intergenerational transmission of education, we expect that the college graduate subset of any

cohort will be less rooted than the cohort as a whole. Our methodology implicitly assigns the

relationship between rootedness and education to be the same in every city.
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F Data Definitions

Figure F1: Regional Definitions

Table F1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Abilene Texas (6) Frontier No No

Akron Ohio (4) Midwest Yes Yes

Albany Georgia (6) South No Yes

Albany New York (9) Northeast Yes Yes

Albuquerque New Mexico (5) Frontier No Yes

Alexandria Louisiana (3) Frontier No No

Allentown Pennsylvania (3) Northeast No Yes

Amarillo Texas (5) Frontier No Yes

Aniston Alabama (1) South No Yes
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Table F1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Ann Arbor Michigan (1) Midwest No No

Appleton Wisconsin (7) Midwest No Yes

Asheville North Carolina (5) South No Yes

Athens Georgia (5) South No No

Atlanta Georgia (28) South Yes Yes

Atlantic City-Vineland New Jersey (3) Northeast No Yes

Auburn Alabama (3) South No No

Augusta South Carolina (2), Georgia (7) South No No

Austin Texas (8) Frontier Yes Yes

Bakersfield California (1) West No Yes

Baltimore Maryland (6) Northeast Yes Yes

Baton Rouge Louisiana (10) Frontier No Yes

Beaumont Texas (7) Frontier No Yes

Bellingham Washington (1) West No No

Biloxi Mississippi (7) South No Yes

Binghamton Pennsylvania (1), New York (2) Northeast No Yes

Birmingham Alabama (7) South Yes Yes

Bloomington Illinois (3) Midwest No No

Bloomington Indiana (7) Midwest No No

Boise City Idaho (6) Frontier No Yes

Boston Massachusetts (6) Northeast Yes Yes

Bradenton Florida (4) South No Yes

Buffalo New York (2) Northeast Yes Yes

Burlington Vermont (6) Northeast No No

Cedar Rapids Iowa (4) Midwest No Yes

Champaign-Urbana Illinois (7) Midwest No No

Charleston South Carolina (4) South No Yes

Charleston West Virginia (6) Midwest No Yes

Charlotte South Carolina (3), North Carolina (7) South Yes Yes

Charlottesville Virginia (9) South No No

Chattanooga Tennessee (4), Georgia (3) South No Yes

Chicago Indiana (4), Wisconsin (1), Illinois (8) Midwest Yes Yes

Chico California (5) West No Yes

Cincinnati Indiana (3), Ohio (6), Kentucky (6) Midwest Yes Yes

Clarksville Tennessee (3), Kentucky (3) South No No

Cleveland Ohio (5) Midwest Yes Yes

College Station Texas (4) Frontier No No

Colorado Springs Colorado (4) Frontier No No

Columbia Missouri (7) Midwest No No

Columbia South Carolina (7) South No Yes

Columbus Alabama (1), Georgia (5) South No No

Columbus Ohio (9) Midwest Yes Yes

Corpus Christi Texas (9) Frontier No Yes

Cumberland West Virginia (3), Maryland (2) Northeast No Yes

Dallas-Fort Worth Texas (16) Frontier Yes Yes

Davenport Illinois (4), Iowa (1) Midwest No Yes

Dayton Ohio (9) Midwest Yes Yes

Daytona Beach Florida (3) South No Yes

Denver Colorado (14) Frontier Yes Yes

Des Moines Iowa (8) Midwest No Yes

Detroit Michigan (6) Midwest Yes Yes

Dothan Alabama (5) South No No
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Table F1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Dover Delaware (2), Maryland (3) Northeast No Yes

Dubuque Iowa (4), Illinois (1) Midwest No Yes

Duluth Minnesota (3), Wisconsin (1) Midwest No Yes

Eau Claire Wisconsin (7), Minnesota (1) Midwest No Yes

El Paso New Mexico (1), Texas (2) Frontier Yes Yes

Erie New York (1), Pennsylvania (6) Northeast No Yes

Evansville Illinois (1), Kentucky (2), Indiana (8) Midwest No Yes

Fargo Minnesota (3), North Dakota (2) Frontier No Yes

Fayetteville Missouri (1), Arkansas (3), Oklahoma (1) Frontier No Yes

Fayetteville North Carolina (7) South No No

Flagstaff Arizona (2), Utah (1) West No Yes

Flint Michigan (1) Midwest No Yes

Florence Tennessee (2), Alabama (3) South No Yes

Fort Myers Florida (2) South Yes Yes

Fort Smith Arkansas (3), Oklahoma (5) Frontier No Yes

Fort Wayne Indiana (8) Midwest No Yes

Fresno California (4) West Yes Yes

Gainesville Florida (6) South No No

Goldsboro North Carolina (3) South No No

Grand Rapids Michigan (8) Midwest Yes Yes

Green Bay Wisconsin (4) Midwest No Yes

Greensboro North Carolina (11), Virginia (2) South Yes Yes

Greenville North Carolina (3) South No No

Greenville South Carolina (11), North Carolina (1) South Yes Yes

Hagerstown West Virginia (3), Maryland (1), Pennsylvania (2) Northeast No Yes

Harrisburg Pennsylvania (7) Northeast Yes Yes

Hattiesburg Mississippi (5) South No No

Hickory North Carolina (5) South No Yes

Houma Louisiana (4) Frontier No Yes

Houston Texas (13) Frontier Yes Yes

Huntington Ohio (1), Kentucky (5), West Virginia (2) Midwest No Yes

Huntsville Alabama (4), Tennessee (1) South No Yes

Indianapolis Indiana (10) Midwest Yes Yes

Iowa City Iowa (5) Midwest No No

Jackson Michigan (3) Midwest No Yes

Jackson Mississippi (7) South No Yes

Jacksonville Florida (5), Georgia (2) South Yes Yes

Jacksonville North Carolina (1) South No No

Johnson City Virginia (4), Tennessee (6) South No Yes

Johnstown Pennsylvania (4) Northeast No Yes

Joplin Missouri (2), Oklahoma (1), Kansas (3) Midwest No Yes

Kalamazoo Michigan (4) Midwest No Yes

Kansas City Missouri (8), Kansas (6) Midwest Yes Yes

Killeen Texas (3) Frontier No No

Knoxville Tennessee (8) South No Yes

LaCrosse Minnesota (1), Wisconsin (4) Midwest No Yes

Lafayette Indiana (7), Illinois (1) Midwest No No

Lafayette Louisiana (7) Frontier No Yes

Lake Charles Louisiana (6) Frontier No No

Lakeland Florida (3) South No Yes

Lancaster Pennsylvania (4) Northeast Yes Yes

Lansing Michigan (3) Midwest No No
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Table F1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Laredo Texas (3) Frontier No Yes

Las Vegas Nevada (1) West Yes Yes

Lawrence Kansas (1) Frontier No No

Lexington Kentucky (13) Midwest No No

Lincoln Nebraska (5) Frontier No No

Little Rock Arkansas (7) Frontier No Yes

Longview Texas (6) Frontier No Yes

Los Angeles California (2) West Yes Yes

Louisville Indiana (5), Kentucky (7) Midwest Yes Yes

Lubbock Texas (6) Frontier No No

Lynchburg Virginia (5) South No No

Macon Georgia (10) South No Yes

Madison Wisconsin (6) Midwest No No

Manchester New Hampshire (4) Northeast Yes Yes

Mansfield Ohio (5) Midwest No Yes

McAllen Texas (4) Frontier Yes Yes

Medford Oregon (2) West No Yes

Melbourne Florida (2) South No Yes

Memphis Mississippi (4), Tennessee (3), Arkansas (1) South Yes Yes

Miami Florida (3) South Yes Yes

Midland Texas (6) Frontier No Yes

Milwaukee Wisconsin (7) Midwest Yes Yes

Minneapolis Minnesota (14), Wisconsin (2) Midwest Yes Yes

Mobile Alabama (5) South No Yes

Modesto California (4) West No Yes

Monmouth New Jersey (2) Northeast Yes Yes

Monroe Louisiana (6) Frontier No Yes

Montgomery Alabama (5) South No Yes

Muncie Indiana (6) Midwest No Yes

Myrtle Beach South Carolina (7) South No Yes

Nashville Tennessee (12) South Yes Yes

New Orleans Louisiana (9) Frontier Yes Yes

New York New Jersey (12), Connecticut (1), New York (10) Northeast Yes Yes

Norfolk Virginia (18), North Carolina (1) South Yes Yes

Ocala Florida (2) South No Yes

Oklahoma City Oklahoma (11) Frontier Yes Yes

Olympia Washington (1) West No No

Omaha Iowa (3), Nebraska (6) Frontier No Yes

Orlando Florida (5) South Yes Yes

Owensboro Kentucky (6) Midwest No Yes

Panama City Florida (3) South No No

Parkersburg Ohio (1), West Virginia (5) Midwest No Yes

Pensacola Florida (4) South No No

Peoria Illinois (8) Midwest No Yes

Philadelphia Pennsylvania (5), Delaware (1), New Jersey (4) Northeast Yes Yes

Phoenix Arizona (2) West Yes Yes

Pittsburgh Pennsylvania (9) Northeast Yes Yes

Portland Maine (9) Northeast No Yes

Portland Oregon (4), Washington (2) West Yes Yes

Poughkeepsie New York (4) Northeast No Yes

Providence Massachusetts (1), Rhode Island (5) Northeast Yes Yes

Provo-Orem Utah (3) Frontier No No
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Table F1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Raleigh-Durham North Carolina (7) South Yes Yes

Redding California (2) West No Yes

Reno Nevada (5) West No Yes

Residual Alabama Alabama (30) South No No

Residual Arizona Arizona (6) West No No

Residual Arkansas Arkansas (59) Frontier No No

Residual California California (14) West No No

Residual Colorado Colorado (46) Frontier No No

Residual Connecticut Connecticut (7) Northeast Yes Yes

Residual Florida Florida (10) South No No

Residual Georgia Georgia (90) South No No

Residual Idaho Idaho (34) Frontier No No

Residual Illinois Illinois (55) Midwest No No

Residual Indiana Indiana (23) Midwest No No

Residual Iowa Iowa (65) Midwest No No

Residual Kansas Kansas (84) Frontier No No

Residual Kentucky Kentucky (78) Midwest No No

Residual Louisiana Louisiana (11) Frontier No No

Residual Maine Maine (7) Northeast No No

Residual Maryland Maryland (6) Northeast No No

Residual Massachusetts Massachusetts (4) Northeast No No

Residual Michigan Michigan (47) Midwest No No

Residual Minnesota Minnesota (60) Midwest No No

Residual Mississippi Mississippi (59) South No No

Residual Missouri Missouri (73) Midwest No No

Residual Montana Montana (57) Frontier No No

Residual Nebraska Nebraska (79) Frontier No No

Residual Nevada Nevada (11) West No No

Residual New Hampshire New Hampshire (6) Northeast No No

Residual New Mexico New Mexico (23) Frontier No No

Residual New York New York (18) Northeast No No

Residual North Carolina North Carolina (41) South No No

Residual North Dakota North Dakota (51) Frontier No No

Residual Ohio Ohio (37) Midwest No No

Residual Oklahoma Oklahoma (48) Frontier No No

Residual Oregon Oregon (22) West No No

Residual Pennsylvania Pennsylvania (9) Northeast No No

Residual South Carolina South Carolina (6) South No No

Residual South Dakota South Dakota (60) Frontier No No

Residual Tennessee Tennessee (56) South No No

Residual Texas Texas (127) Frontier No No

Residual Utah Utah (18) Frontier No No

Residual Vermont Vermont (8) Northeast No No

Residual Virginia Virginia (50) South No No

Residual Washington Washington (23) West No No

Residual West Virginia West Virginia (29) Midwest No No

Residual Wisconsin Wisconsin (31) Midwest No No

Residual Wyoming Wyoming (23) Frontier No No

Richland Washington (4), Oregon (2) West No Yes

Richmond Virginia (17) South Yes Yes

Riverside-San Bernardino California (2) West Yes Yes

Roanoke Virginia (11), West Virginia (1) South No No
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Table F1: Local Labor Markets (LLM) Definitions

Included In:
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Rochester Minnesota (5) Midwest No Yes

Rochester New York (9) Northeast Yes Yes

Rockford Illinois (2) Midwest No Yes

Rocky Mount North Carolina (3) South No Yes

Sacramento California (4) West Yes Yes

Saginaw Michigan (7) Midwest No Yes

Salem Oregon (6) West Yes Yes

Salinas California (3) West No Yes

Salt Lake City Utah (7) Frontier Yes Yes

San Antonio Texas (10) Frontier Yes Yes

San Diego California (1) West Yes Yes

San Francisco California (7) West Yes Yes

San Jose California (1) West Yes Yes

Santa Barbara California (2) West No Yes

Santa Fe New Mexico (4) Frontier No Yes

Santa Rosa California (3) West No Yes

Savannah Georgia (3), South Carolina (2) South No No

Scranton Pennsylvania (7) Northeast No Yes

Seattle Washington (3) West Yes Yes

Sheboygan Wisconsin (2) Midwest No Yes

Shreveport Louisiana (8) Frontier No Yes

Sioux City Iowa (3), South Dakota (1), Nebraska (3) Midwest No Yes

Sioux Falls South Dakota (5) Frontier No Yes

South Bend Michigan (2), Indiana (4) Midwest No Yes

Spokane Washington (3), Idaho (4) West No Yes

Springfield Illinois (4) Midwest No Yes

Springfield Massachusetts (3) Northeast No No

Springfield Missouri (9) Midwest No Yes

St. Joseph Kansas (1), Missouri (6) Midwest No Yes

St. Louis Missouri (9), Illinois (8) Midwest Yes Yes

St. Lucie Florida (2) South No Yes

State College Pennsylvania (4) Northeast No No

Steubenville Ohio (1), West Virginia (2) Midwest No Yes

Stockton California (1) West No Yes

Sumter South Carolina (4) South No No

Syracuse New York (7) Northeast Yes Yes

Tallahassee Florida (9) South No No

Tampa Florida (4) South Yes Yes

Terre Haute Indiana (7) Midwest No Yes

Texarkana Texas (6), Arkansas (2) Frontier No Yes

Toledo Ohio (5), Michigan (1) Midwest No Yes

Topeka Kansas (5) Frontier No Yes

Tucson Arizona (3) West Yes Yes

Tulsa Oklahoma (11) Frontier Yes Yes

Tuscaloosa Alabama (3) South No No

Tyler Texas (6) Frontier No Yes

Ventura California (1) West No Yes

Waco Texas (4) Frontier No No

Washington Maryland (6), District Of Columbia (1), Virginia (17) Northeast Yes Yes

Waterloo Iowa (6) Midwest No Yes

Wheeling Ohio (2), West Virginia (4) Midwest No Yes

Wichita Kansas (5) Frontier No Yes
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Wichita Falls Texas (3) Frontier No No

Williamsport Pennsylvania (4) Northeast No Yes

Wilmington North Carolina (5) South No Yes

Yakima Washington (2) West No Yes

Youngstown Ohio (3), Pennsylvania (2) Midwest No Yes

Yuma California (1), Arizona (2) West No Yes

Table F2: LLM Population Shares At Home, Rootedness, and Population Histories

Share Roots of Population in:

LLM At Home At-Home 2010 1980 1950 1920 1880

Abilene (TX) 0.66 0.82 196,843 172,513 134,144 137,116 17,352

Akron (OH) 0.78 0.73 1,107,622 1,064,749 776,219 515,494 151,735

Albany (GA) 0.71 0.84 180,806 167,405 112,442 108,317 54,668

Albany (NY) 0.75 0.86 1,111,956 981,287 770,338 631,217 535,495

Albuquerque (NM) 0.46 0.62 914,290 523,105 188,604 58,247 28,877

Alexandria (LA) 0.75 0.85 195,995 193,378 142,942 109,147 46,498

Allentown (PA) 0.57 0.86 712,481 551,052 441,008 364,172 168,204

Amarillo (TX) 0.59 0.70 265,123 199,141 100,138 27,657 387

Aniston (AL) 0.68 0.85 118,572 119,761 79,539 47,822 19,591

Ann Arbor (MI) 0.58 0.67 344,791 264,748 134,606 49,520 41,848

Appleton (WI) 0.78 0.89 590,250 460,060 323,219 258,144 183,072

Asheville (NC) 0.47 0.80 457,948 306,253 228,671 135,278 60,611

Athens (GA) 0.57 0.86 261,908 134,955 78,870 89,456 48,776

Atlanta (GA) 0.36 0.72 5,189,409 2,330,869 1,104,602 759,095 392,270

Atlantic City-Vineland (NJ) 0.53 0.65 528,712 409,251 258,127 164,722 66,156

Auburn (AL) 0.52 0.85 172,613 113,708 91,688 81,715 73,699

Augusta (GA/SC) 0.61 0.81 582,723 410,163 254,243 225,879 148,926

Austin (TX) 0.46 0.80 1,768,155 623,416 294,154 224,460 109,889

Bakersfield (CA) 0.54 0.56 839,631 403,089 228,309 54,843 5,601

Baltimore (MD) 0.55 0.68 2,662,691 2,174,023 1,457,181 931,413 519,349

Baton Rouge (LA) 0.77 0.83 923,581 672,081 352,539 210,563 130,198

Beaumont (TX) 0.68 0.72 506,079 460,162 313,552 159,446 31,449

Bellingham (WA) 0.45 0.61 201,140 106,701 66,733 50,600 3,137

Biloxi (MS) 0.51 0.72 481,300 368,852 172,497 100,433 25,925

Binghamton (NY/PA) 0.80 0.90 295,081 301,336 246,834 172,585 122,510

Birmingham (AL) 0.69 0.87 1,128,047 930,281 753,630 482,579 100,098

Bloomington (IL) 0.72 0.80 225,083 178,638 131,280 128,429 115,560

Bloomington (IN) 0.71 0.82 300,670 245,028 178,394 157,972 122,705

Boise City (ID) 0.37 0.48 643,599 301,600 147,746 80,175 7,921

Boston (MA) 0.54 0.82 4,932,588 4,309,184 3,611,745 2,927,214 1,347,714

Bradenton (FL) 0.22 0.36 897,121 428,192 77,059 27,492 2,080

Buffalo (NY) 0.82 0.84 1,135,509 1,242,826 1,089,230 753,393 274,057

Burlington (VT) 0.50 0.72 334,199 259,455 172,605 154,255 145,827

Cedar Rapids (IA) 0.71 0.80 274,295 229,254 162,166 135,291 102,398

Champaign-Urbana (IL) 0.71 0.78 399,848 389,856 289,135 218,358 162,032

Charleston (SC) 0.46 0.74 703,499 462,238 245,950 180,364 139,186

Charleston (WV) 0.78 0.87 341,027 385,661 408,641 224,370 64,647

Charlotte (NC/SC) 0.47 0.86 2,066,843 1,086,694 694,290 414,074 196,764

Charlottesville (VA) 0.50 0.78 330,316 194,059 123,881 119,790 120,754
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Chattanooga (TN/GA) 0.65 0.78 541,846 440,327 307,726 180,706 67,393

Chicago (IL/IN/WI) 0.59 0.74 9,355,945 7,978,308 5,720,703 3,679,252 864,564

Chico (CA) 0.62 0.60 436,433 279,971 142,688 71,663 48,282

Cincinnati (OH/KY/IN) 0.77 0.86 2,150,213 1,770,391 1,256,813 890,308 658,336

Clarksville (TN/KY) 0.45 0.78 294,835 187,014 123,611 118,926 107,631

Cleveland (OH) 0.75 0.70 2,077,240 2,173,734 1,680,736 1,103,877 284,499

College Station (TX) 0.61 0.87 255,264 134,134 86,433 89,864 63,805

Colorado Springs (CO) 0.23 0.39 696,692 347,662 97,216 70,778 20,764

Columbia (MO) 0.65 0.81 340,194 238,024 157,818 137,755 130,801

Columbia (SC) 0.58 0.81 835,910 572,662 339,798 281,888 158,272

Columbus (GA/AL) 0.64 0.83 314,980 282,425 210,548 130,010 97,353

Columbus (OH) 0.66 0.73 1,892,010 1,314,441 783,609 526,113 307,388

Corpus Christi (TX) 0.71 0.88 527,888 441,121 291,130 67,886 18,269

Cumberland (MD/WV) 0.69 0.84 159,358 154,520 151,936 128,059 71,153

Dallas-Fort Worth (TX) 0.43 0.72 6,512,481 3,103,335 1,318,069 771,883 255,930

Davenport (IA/IL) 0.76 0.80 385,684 410,633 306,843 239,904 146,874

Dayton (OH) 0.73 0.71 1,168,172 1,151,295 785,793 517,156 331,255

Daytona Beach (FL) 0.31 0.42 664,653 320,224 101,211 40,384 10,269

Denver (CO) 0.32 0.44 3,418,663 1,935,528 755,253 445,732 84,405

Des Moines (IA) 0.66 0.79 693,163 500,160 380,482 300,148 161,748

Detroit (MI) 0.73 0.71 4,296,250 4,353,413 3,170,315 1,407,111 338,194

Dothan (AL) 0.61 0.83 245,838 200,541 142,643 140,977 43,899

Dover (DE/MD) 0.55 0.72 536,112 310,840 182,740 149,840 128,115

Dubuque (IA/IL) 0.82 0.87 166,554 172,404 149,403 140,679 137,094

Duluth (MN/WI) 0.79 0.86 290,637 309,629 285,142 283,804 6,495

Eau Claire (WI/MN) 0.79 0.89 326,790 276,277 226,192 198,224 126,892

El Paso (TX/NM) 0.48 0.76 1,013,356 578,967 238,823 119,387 7,152

Erie (PA/NY) 0.84 0.90 648,739 675,901 584,839 472,406 325,001

Evansville (IN/KY/IL) 0.82 0.91 465,647 424,363 365,729 296,786 226,154

Fargo (ND/MN) 0.75 0.89 238,526 174,614 132,581 109,211 23,363

Fayetteville (AR/OK/MO) 0.45 0.74 504,691 228,845 128,667 115,197 63,443

Fayetteville (NC) 0.53 0.79 699,392 519,881 315,853 178,622 88,762

Flagstaff (AZ/UT) 0.35 0.59 352,579 147,177 51,200 36,052 8,098

Flint (MI) 0.83 0.73 425,790 450,449 270,963 125,668 39,220

Florence (AL/TN) 0.73 0.89 237,731 211,471 162,127 130,034 68,027

Fort Myers (FL) 0.17 0.35 940,274 291,237 29,892 7,981 641

Fort Smith (AR/OK) 0.59 0.80 361,460 274,570 216,069 251,094 43,474

Fort Wayne (IN) 0.68 0.74 585,429 492,705 342,174 264,924 181,488

Fresno (CA) 0.54 0.62 1,676,476 897,213 509,511 222,044 20,759

Gainesville (FL) 0.49 0.62 365,553 214,925 95,453 57,830 29,795

Goldsboro (NC) 0.60 0.89 244,559 187,693 155,121 109,865 66,618

Grand Rapids (MI) 0.76 0.83 1,352,296 997,113 637,924 427,110 264,187

Green Bay (WI) 0.72 0.88 334,026 248,795 162,788 124,157 69,466

Greensboro (NC/VA) 0.62 0.87 1,719,480 1,226,539 812,974 476,264 243,766

Greenville (NC) 0.64 0.89 249,005 166,082 127,766 91,336 47,175

Greenville (SC/NC) 0.62 0.87 1,392,816 976,115 686,861 506,266 259,816

Hagerstown (MD/WV/PA) 0.69 0.89 487,101 327,345 221,019 180,226 136,727

Harrisburg (PA) 0.67 0.87 1,157,172 893,927 622,891 459,576 307,747

Hattiesburg (MS) 0.71 0.85 174,897 129,476 98,924 70,718 16,760

Hickory (NC) 0.59 0.88 524,934 352,995 221,521 127,288 69,076

Houma (LA) 0.86 0.92 286,249 263,213 138,663 105,984 73,971
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Houston (TX) 0.43 0.72 6,058,500 3,249,059 1,168,450 426,029 154,293

Huntington (WV/KY/OH) 0.86 0.93 346,607 362,367 313,034 221,469 116,419

Huntsville (AL/TN) 0.59 0.83 604,783 389,855 214,345 172,898 124,005

Indianapolis (IN) 0.63 0.70 1,735,670 1,198,556 753,130 526,350 286,805

Iowa City (IA) 0.63 0.81 225,217 172,984 125,472 105,664 101,051

Jackson (MI) 0.78 0.77 306,828 283,514 204,470 148,467 123,097

Jackson (MS) 0.75 0.89 591,126 455,328 300,508 186,848 146,127

Jacksonville (FL/GA) 0.45 0.66 1,408,280 758,255 374,617 159,862 42,734

Jacksonville (NC) 0.32 0.55 177,772 112,784 42,047 14,703 9,829

Johnson City (TN/VA) 0.68 0.86 609,299 521,426 396,211 243,667 147,377

Johnstown (PA) 0.85 0.93 398,272 447,911 471,643 446,562 167,590

Joplin (MO/KS/OK) 0.67 0.82 283,276 236,572 224,092 260,542 109,313

Kalamazoo (MI) 0.74 0.73 521,908 466,530 312,887 196,241 128,918

Kansas City (MO/KS) 0.61 0.74 2,048,694 1,515,021 1,021,717 759,148 365,266

Killeen (TX) 0.41 0.70 405,300 226,661 100,037 75,813 35,973

Knoxville (TN) 0.57 0.79 814,914 605,022 450,718 254,088 115,735

LaCrosse (WI/MN) 0.76 0.88 234,775 191,193 160,236 135,495 103,829

Lafayette (IN/IL) 0.76 0.83 367,029 330,285 263,171 231,106 175,999

Lafayette (LA) 0.84 0.93 584,118 476,339 318,239 216,170 91,306

Lake Charles (LA) 0.73 0.85 344,953 313,284 177,752 115,400 20,060

Lakeland (FL) 0.38 0.50 728,612 388,557 147,706 53,252 4,463

Lancaster (PA) 0.73 0.91 1,212,744 944,067 772,717 655,557 430,494

Lansing (MI) 0.75 0.78 464,036 419,750 244,159 134,041 93,001

Laredo (TX) 0.52 0.92 269,622 111,054 65,935 33,995 11,852

Las Vegas (NV) 0.10 0.16 1,951,269 463,087 48,289 4,859 1,286

Lawrence (KS) 0.51 0.67 110,826 67,640 34,086 23,998 21,700

Lexington (KY) 0.62 0.84 594,522 416,639 251,840 208,491 178,010

Lincoln (NE) 0.63 0.75 346,215 256,077 188,618 164,144 74,988

Little Rock (AR) 0.60 0.78 721,030 514,263 306,207 230,519 89,313

Longview (TX) 0.65 0.82 314,342 252,813 201,595 147,134 86,161

Los Angeles (CA) 0.37 0.50 12,828,837 9,410,212 4,367,911 997,830 33,381

Louisville (KY/IN) 0.71 0.86 1,256,868 1,034,761 697,918 465,795 322,989

Lubbock (TX) 0.71 0.83 323,328 262,506 154,276 26,388 152

Lynchburg (VA) 0.66 0.85 252,634 194,178 135,327 116,481 96,244

Macon (GA) 0.65 0.85 433,867 322,858 206,336 174,331 113,893

Madison (WI) 0.61 0.80 663,994 459,186 289,194 204,218 160,737

Manchester (NH) 0.33 0.56 965,532 650,663 341,635 278,326 206,556

Mansfield (OH) 0.83 0.77 322,726 321,912 230,210 173,433 130,409

McAllen (TX) 0.50 0.90 1,264,091 537,717 320,484 86,550 25,296

Medford (OR) 0.35 0.43 285,919 191,311 85,052 28,060 10,639

Melbourne (FL) 0.28 0.30 681,404 332,855 35,525 11,312 938

Memphis (TN/MS/AR) 0.69 0.87 1,316,100 997,844 676,274 404,768 220,185

Miami (FL) 0.21 0.36 5,564,635 3,220,844 693,705 66,542 257

Midland (TX) 0.62 0.77 301,317 225,236 87,702 4,995 505

Milwaukee (WI) 0.68 0.77 1,923,761 1,711,491 1,224,476 787,834 315,406

Minneapolis (MN/WI) 0.64 0.81 3,495,023 2,349,968 1,397,973 957,340 282,794

Mobile (AL) 0.64 0.81 650,341 502,814 337,738 192,615 111,428

Modesto (CA) 0.55 0.60 843,862 445,496 214,740 78,679 26,594

Monmouth (NJ) 0.55 0.66 1,206,947 849,211 281,949 127,080 69,993

Monroe (LA) 0.80 0.85 256,044 252,300 192,233 123,725 63,119

Montgomery (AL) 0.68 0.87 395,483 307,620 236,046 182,783 133,791
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Muncie (IN) 0.77 0.75 407,767 447,760 342,991 252,131 132,542

Myrtle Beach (SC) 0.56 0.88 634,562 420,248 329,155 230,863 127,235

Nashville (TN) 0.46 0.78 1,565,244 897,511 543,999 381,527 281,354

New Orleans (LA) 0.71 0.82 1,237,034 1,348,007 808,561 510,463 287,874

New York (NY/NJ/CT) 0.49 0.83 19,024,827 16,695,493 13,797,957 9,085,160 3,079,306

Norfolk (VA/NC) 0.47 0.69 1,709,794 1,240,802 729,861 443,975 177,752

Ocala (FL) 0.34 0.55 472,534 177,191 44,298 29,188 14,161

Oklahoma City (OK) 0.53 0.70 1,392,545 999,625 618,226 391,923 0

Olympia (WA) 0.41 0.55 252,264 124,264 44,884 22,366 3,270

Omaha (NE/IA) 0.63 0.76 902,041 689,736 471,079 389,349 165,149

Orlando (FL) 0.24 0.36 2,227,831 829,197 200,909 58,666 11,164

Owensboro (KY) 0.74 0.85 182,783 168,848 137,921 135,203 92,534

Panama City (FL) 0.39 0.59 196,264 116,059 55,963 19,389 4,283

Parkersburg (WV/OH) 0.85 0.92 201,716 208,308 150,269 135,434 111,396

Pensacola (FL) 0.34 0.45 684,856 421,002 173,518 84,535 23,002

Peoria (IL) 0.78 0.79 542,766 557,067 443,265 344,136 247,067

Philadelphia (PA/NJ/DE) 0.70 0.84 5,864,235 5,179,609 3,939,435 2,899,082 1,398,427

Phoenix (AZ) 0.25 0.37 4,192,887 1,599,970 374,961 105,706 7,710

Pittsburgh (PA) 0.80 0.89 2,483,851 2,781,748 2,703,797 2,212,645 756,747

Portland (ME) 0.58 0.81 919,237 740,581 573,820 458,405 373,949

Portland (OR/WA) 0.42 0.57 2,126,816 1,286,159 732,584 389,094 49,886

Poughkeepsie (NY) 0.68 0.82 930,341 727,971 422,388 319,733 285,733

Providence (RI/MA) 0.66 0.87 1,600,852 1,421,795 1,173,465 963,402 415,571

Provo-Orem (UT) 0.53 0.67 539,313 232,606 97,280 60,322 25,174

Raleigh-Durham (NC) 0.37 0.80 1,634,847 694,400 419,524 253,721 145,785

Redding (CA) 0.69 0.59 240,686 154,603 55,689 26,243 18,793

Reno (NV) 0.18 0.27 557,548 254,659 64,888 31,276 30,365

Residual Alabama (AL) 0.70 0.89 1,046,171 980,854 940,523 855,457 538,333

Residual Arizona (AZ) 0.41 0.68 478,407 246,950 115,671 85,720 9,715

Residual Arkansas (AR) 0.60 0.79 1,448,307 1,339,224 1,315,041 1,269,705 588,373

Residual California (CA) 0.67 0.58 506,103 348,243 210,175 115,724 104,514

Residual Colorado (CO) 0.41 0.59 913,841 606,774 472,620 423,119 89,158

Residual Connecticut (CT) 0.55 0.66 2,657,268 2,300,433 1,502,938 1,059,695 510,658

Residual Florida (FL) 0.45 0.58 339,655 209,951 113,897 99,516 52,367

Residual Georgia (GA) 0.62 0.86 2,404,365 1,627,718 1,348,199 1,344,691 672,140

Residual Idaho (ID) 0.46 0.63 722,562 530,884 372,112 299,609 23,752

Residual Illinois (IL) 0.74 0.82 1,524,064 1,551,894 1,415,324 1,404,512 1,177,024

Residual Indiana (IN) 0.68 0.75 1,009,889 895,308 652,190 556,035 468,958

Residual Iowa (IA) 0.72 0.84 1,060,510 1,205,667 1,276,864 1,281,160 899,603

Residual Kansas (KS) 0.60 0.75 985,020 1,007,988 1,009,330 1,056,732 623,904

Residual Kentucky (KY) 0.70 0.87 1,845,366 1,664,729 1,547,836 1,337,647 883,164

Residual Louisiana (LA) 0.80 0.86 185,382 201,083 181,374 144,678 101,415

Residual Maine (ME) 0.66 0.85 409,124 384,079 339,954 309,609 274,987

Residual Maryland (MD) 0.54 0.71 272,569 182,003 127,089 119,492 119,911

Residual Massachusetts (MA) 0.63 0.77 373,814 307,064 188,888 146,872 108,956

Residual Michigan (MI) 0.80 0.85 1,288,607 1,121,526 808,749 788,627 365,031

Residual Minnesota (MN) 0.73 0.83 1,291,813 1,216,614 1,151,008 1,034,394 365,636

Residual Mississippi (MS) 0.75 0.89 1,481,914 1,453,985 1,517,605 1,342,133 863,350

Residual Missouri (MO) 0.64 0.77 1,442,368 1,248,716 1,202,139 1,272,572 1,000,483

Residual Montana (MT) 0.49 0.63 989,415 786,690 591,024 548,889 39,159

Residual Nebraska (NE) 0.64 0.81 664,629 706,759 739,460 815,105 274,698
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Residual Nevada (NV) 0.21 0.33 191,734 82,747 46,906 41,272 30,615

Residual New Hampshire (NH) 0.43 0.64 350,938 269,947 191,607 164,757 140,435

Residual New Mexico (NM) 0.51 0.61 700,353 541,752 362,254 234,203 54,537

Residual New York (NY) 0.77 0.87 1,136,649 1,097,247 962,773 847,200 780,104

Residual North Carolina (NC) 0.59 0.87 1,469,843 1,077,126 921,444 696,419 445,460

Residual North Dakota (ND) 0.66 0.83 506,492 545,263 540,894 584,508 24,302

Residual Ohio (OH) 0.81 0.82 1,799,179 1,705,606 1,354,287 1,226,591 1,024,186

Residual Oklahoma (OK) 0.56 0.73 1,070,417 1,016,124 922,894 1,008,840 0

Residual Oregon (OR) 0.42 0.48 723,809 551,242 374,449 213,477 54,861

Residual Pennsylvania (PA) 0.81 0.91 337,363 337,856 329,595 317,557 223,428

Residual South Carolina (SC) 0.70 0.89 145,784 136,640 132,601 144,840 95,302

Residual South Dakota (SD) 0.62 0.77 557,656 527,065 526,350 534,550 65,716

Residual Tennessee (TN) 0.61 0.85 1,778,759 1,347,811 1,098,394 997,498 780,149

Residual Texas (TX) 0.67 0.85 2,077,585 1,757,024 1,603,566 1,387,555 489,413

Residual Utah (UT) 0.56 0.74 522,536 264,514 170,728 149,831 53,916

Residual Vermont (VT) 0.46 0.71 291,542 252,001 205,142 198,173 186,459

Residual Virginia (VA) 0.64 0.82 1,155,178 1,008,230 907,223 753,522 522,942

Residual Washington (WA) 0.46 0.55 1,299,761 854,568 548,973 352,751 27,603

Residual West Virginia (WV) 0.72 0.86 832,259 911,224 1,033,709 784,634 294,385

Residual Wisconsin (WI) 0.69 0.83 1,150,980 997,581 785,650 711,280 277,008

Residual Wyoming (WY) 0.36 0.43 563,626 469,557 290,529 194,402 20,789

Richland (WA/OR) 0.48 0.54 403,261 262,341 156,414 81,975 24,840

Richmond (VA) 0.55 0.75 1,186,501 795,892 497,645 357,779 238,128

Riverside-San Bernardino (CA) 0.50 0.54 4,224,851 1,558,182 451,688 123,698 9,290

Roanoke (VA/WV) 0.66 0.86 500,446 414,297 287,179 198,667 115,790

Rochester (MN) 0.58 0.77 253,060 186,793 134,313 114,614 108,906

Rochester (NY) 0.76 0.82 1,217,156 1,125,717 802,490 628,628 429,912

Rockford (IL) 0.64 0.63 349,431 279,514 169,455 106,251 42,013

Rocky Mount (NC) 0.71 0.92 233,626 186,273 166,059 115,869 59,976

Sacramento (CA) 0.54 0.56 2,149,127 1,099,814 375,636 133,144 71,077

Saginaw (MI) 0.85 0.85 522,007 549,601 368,140 271,464 151,023

Salem (OR) 0.43 0.48 1,043,897 738,159 372,865 156,357 55,385

Salinas (CA) 0.44 0.55 732,708 503,590 211,402 63,244 29,688

Salt Lake City (UT) 0.53 0.71 1,694,911 959,893 418,555 237,189 61,788

San Antonio (TX) 0.58 0.84 2,154,746 1,165,043 614,016 294,212 70,755

San Diego (CA) 0.39 0.42 3,095,313 1,861,846 556,808 112,248 5,829

San Francisco (CA) 0.40 0.54 4,885,219 3,585,032 2,287,370 1,030,145 361,163

San Jose (CA) 0.32 0.52 1,781,642 1,295,071 290,547 100,676 35,039

Santa Barbara (CA) 0.51 0.55 693,532 454,129 149,637 62,990 18,655

Santa Fe (NM) 0.47 0.75 235,303 141,697 90,772 51,352 32,810

Santa Rosa (CA) 0.57 0.60 636,384 402,785 155,740 81,608 45,322

Savannah (GA/SC) 0.47 0.82 534,621 310,596 204,567 148,497 86,346

Scranton (PA) 0.63 0.90 910,959 782,304 790,539 798,300 333,692

Seattle (WA) 0.37 0.51 3,439,809 2,093,112 1,120,448 601,090 11,616

Sheboygan (WI) 0.76 0.89 196,949 183,853 147,790 111,557 71,711

Shreveport (LA) 0.70 0.79 520,016 486,215 371,213 262,379 125,505

Sioux City (IA/NE/SD) 0.73 0.91 187,401 181,825 183,923 173,213 47,633

Sioux Falls (SD) 0.54 0.75 242,125 152,765 115,598 90,898 25,751

South Bend (IN/MI) 0.70 0.73 657,918 632,176 470,503 270,817 151,476

Spokane (WA/ID) 0.49 0.58 696,213 471,470 308,723 214,875 7,311

Springfield (IL) 0.79 0.84 275,275 256,037 210,610 179,976 119,182
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Table F2: LLM Population Shares At Home, Rootedness, and Population Histories

Share Roots of Population in:

LLM At Home At-Home 2010 1980 1950 1920 1880

Springfield (MA) 0.60 0.76 692,942 646,148 508,312 419,265 187,375

Springfield (MO) 0.55 0.72 514,409 317,508 211,630 190,002 111,977

St. Joseph (MO/KS) 0.72 0.85 165,929 152,839 159,934 177,842 142,565

St. Louis (MO/IL) 0.75 0.80 2,819,961 2,516,116 1,926,706 1,392,529 730,141

St. Lucie (FL) 0.26 0.40 424,107 151,196 27,987 5,079 399

State College (PA) 0.78 0.91 326,745 286,894 241,898 249,492 143,219

Steubenville (OH/WV) 0.84 0.88 124,454 163,099 157,787 114,082 43,913

Stockton (CA) 0.52 0.63 685,306 347,342 200,750 79,905 24,349

Sumter (SC) 0.65 0.87 223,344 173,651 145,309 134,143 78,419

Syracuse (NY) 0.80 0.86 1,091,336 1,091,865 856,670 694,686 488,966

Tallahassee (FL) 0.51 0.67 484,972 293,750 175,343 128,248 71,700

Tampa (FL) 0.27 0.41 2,783,243 1,613,603 436,365 129,872 8,947

Terre Haute (IN) 0.74 0.84 265,851 257,619 240,214 256,159 173,150

Texarkana (TX/AR) 0.71 0.86 247,936 208,688 174,734 158,659 66,214

Toledo (OH/MI) 0.82 0.80 831,665 819,982 608,294 426,728 196,423

Topeka (KS) 0.63 0.72 233,870 203,953 147,623 129,449 83,772

Tucson (AZ) 0.33 0.45 1,159,029 637,588 182,048 93,834 14,786

Tulsa (OK) 0.52 0.68 1,052,519 819,904 526,196 417,160 0

Tuscaloosa (AL) 0.73 0.89 219,461 164,166 131,406 96,102 73,441

Tyler (TX) 0.66 0.85 492,092 303,603 212,576 205,538 89,547

Ventura (CA) 0.47 0.50 823,318 529,174 114,647 28,724 5,073

Waco (TX) 0.66 0.85 306,073 227,126 200,036 180,502 70,945

Washington (DC/VA/MD) 0.34 0.55 5,679,291 3,452,103 1,732,083 787,285 477,083

Waterloo (IA) 0.75 0.85 224,524 243,203 200,669 154,704 105,730

Wheeling (WV/OH) 0.84 0.90 188,383 236,142 242,356 247,681 157,400

Wichita (KS) 0.58 0.64 602,269 452,979 297,524 191,064 65,997

Wichita Falls (TX) 0.59 0.69 151,306 137,930 115,205 95,029 6,074

Williamsport (PA) 0.80 0.89 224,399 226,655 196,248 179,341 150,378

Wilmington (NC) 0.51 0.81 455,603 242,991 181,257 120,169 73,830

Yakima (WA) 0.47 0.54 284,146 197,385 157,958 81,447 2,272

Youngstown (OH/PA) 0.87 0.87 764,722 880,371 732,538 532,694 225,826

Yuma (AZ/CA) 0.42 0.62 390,768 182,664 90,981 58,357 4,500

Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Abilene (TX) Omitted Omitted 9.23 6.69 6.56

Akron (OH) Slow No Decline 3.52 3.40 3.13

Albany (GA) Fast Small Decline 5.54 5.07 4.75

Albany (NY) Slow No Decline 3.30 3.11 2.78

Albuquerque (NM) Fast Big Decline 5.61 4.03 3.94

Alexandria (LA) Omitted Omitted 6.29 3.79 4.73

Allentown (PA) Slow No Decline 3.30 3.61 3.20

Amarillo (TX) Fast Big Decline 6.62 5.07 5.20

Aniston (AL) Fast Big Decline 6.84 5.13 5.86

Ann Arbor (MI) Omitted Omitted 9.86 8.28 8.63

Appleton (WI) Slow No Decline 3.53 3.45 3.14

Asheville (NC) Medium No Decline 4.32 4.30 4.44
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Athens (GA) Omitted Omitted 7.51 7.55 6.52

Atlanta (GA) Medium Small Decline 4.45 4.12 3.36

Atlantic City-Vineland (NJ) Medium Big Decline 4.23 3.50 3.31

Auburn (AL) Omitted Omitted 8.47 7.77 7.08

Augusta (GA/SC) Omitted Omitted 5.33 4.62 4.16

Austin (TX) Fast Big Decline 6.49 5.14 4.08

Bakersfield (CA) Fast Big Decline 6.12 4.23 3.47

Baltimore (MD) Medium No Decline 3.72 3.71 3.32

Baton Rouge (LA) Slow No Decline 3.94 3.75 2.98

Beaumont (TX) Medium No Decline 4.66 4.66 4.46

Bellingham (WA) Omitted Omitted 6.29 5.88 4.42

Biloxi (MS) Fast Big Decline 6.40 5.51 5.23

Binghamton (NY/PA) Medium Small Decline 4.36 3.95 3.56

Birmingham (AL) Slow No Decline 3.30 3.37 3.37

Bloomington (IL) Omitted Omitted 5.44 5.23 5.07

Bloomington (IN) Omitted Omitted 5.44 5.23 5.45

Boise City (ID) Medium Big Decline 5.23 4.54 3.98

Boston (MA) Medium Big Decline 3.79 3.03 2.70

Bradenton (FL) Fast Big Decline 5.77 4.96 4.38

Buffalo (NY) Slow No Decline 2.60 2.42 2.38

Burlington (VT) Omitted Omitted 4.55 4.15 3.80

Cedar Rapids (IA) Medium Small Decline 4.51 4.17 4.25

Champaign-Urbana (IL) Omitted Omitted 6.17 5.18 5.48

Charleston (SC) Fast Big Decline 7.15 5.23 4.89

Charleston (WV) Slow Small Decline 3.76 3.20 3.34

Charlotte (NC/SC) Medium No Decline 4.12 4.06 3.45

Charlottesville (VA) Omitted Omitted 6.24 5.95 5.66

Chattanooga (TN/GA) Slow Small Decline 3.97 3.68 3.47

Chicago (IL/IN/WI) Slow Small Decline 2.88 2.49 2.44

Chico (CA) Fast Big Decline 6.60 5.29 4.77

Cincinnati (OH/KY/IN) Slow No Decline 2.96 2.87 2.65

Clarksville (TN/KY) Omitted Omitted 11.14 9.28 8.06

Cleveland (OH) Slow No Decline 2.94 2.90 2.72

College Station (TX) Omitted Omitted 9.78 8.66 7.96

Colorado Springs (CO) Omitted Omitted 10.24 7.30 6.80

Columbia (MO) Omitted Omitted 5.59 5.24 5.85

Columbia (SC) Medium Small Decline 4.77 4.47 4.02

Columbus (GA/AL) Omitted Omitted 8.21 7.51 6.77

Columbus (OH) Medium Small Decline 3.73 3.52 3.26

Corpus Christi (TX) Fast Big Decline 6.19 5.34 4.67

Cumberland (MD/WV) Slow No Decline 3.27 3.10 4.00

Dallas-Fort Worth (TX) Fast Big Decline 4.80 3.41 2.82

Davenport (IA/IL) Medium No Decline 4.11 4.02 3.34

Dayton (OH) Medium Small Decline 3.84 3.45 3.31

Daytona Beach (FL) Fast Small Decline 6.36 6.00 5.04

Denver (CO) Fast Big Decline 4.71 3.60 3.64

Des Moines (IA) Medium Big Decline 4.74 3.80 3.46

Detroit (MI) Slow No Decline 3.02 2.83 2.44

Dothan (AL) Omitted Omitted 6.78 5.91 4.77

Dover (DE/MD) Slow No Decline 3.98 3.80 3.22

Dubuque (IA/IL) Slow Small Decline 4.30 3.94 4.02
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Duluth (MN/WI) Slow Small Decline 3.95 3.64 4.01

Eau Claire (WI/MN) Medium Small Decline 4.78 4.36 4.10

El Paso (TX/NM) Fast Big Decline 6.29 4.37 4.44

Erie (PA/NY) Slow Small Decline 3.25 3.00 2.84

Evansville (IN/KY/IL) Slow No Decline 3.10 2.95 3.00

Fargo (ND/MN) Fast Big Decline 5.95 5.09 5.07

Fayetteville (AR/OK/MO) Fast Small Decline 5.68 5.11 4.19

Fayetteville (NC) Omitted Omitted 8.22 7.14 6.30

Flagstaff (AZ/UT) Fast Big Decline 9.57 7.37 6.55

Flint (MI) Medium Small Decline 4.92 4.59 4.82

Florence (AL/TN) Slow No Decline 3.29 3.44 3.41

Fort Myers (FL) Fast Big Decline 6.28 5.61 4.50

Fort Smith (AR/OK) Medium Big Decline 4.90 4.14 4.19

Fort Wayne (IN) Slow Small Decline 3.96 3.37 3.37

Fresno (CA) Medium Big Decline 4.52 3.11 2.51

Gainesville (FL) Omitted Omitted 8.49 8.20 8.17

Goldsboro (NC) Omitted Omitted 5.75 5.11 4.28

Grand Rapids (MI) Slow No Decline 3.25 3.20 2.96

Green Bay (WI) Slow No Decline 3.89 3.74 4.17

Greensboro (NC/VA) Slow No Decline 3.22 3.19 3.00

Greenville (NC) Omitted Omitted 5.41 5.62 6.64

Greenville (SC/NC) Slow No Decline 3.00 2.91 2.83

Hagerstown (MD/WV/PA) Slow No Decline 3.56 3.52 3.92

Harrisburg (PA) Slow No Decline 3.13 3.12 3.00

Hattiesburg (MS) Omitted Omitted 5.98 6.12 5.60

Hickory (NC) Slow No Decline 3.58 4.01 3.44

Houma (LA) Slow Small Decline 3.90 3.69 3.08

Houston (TX) Medium Big Decline 4.14 2.96 2.43

Huntington (WV/KY/OH) Slow Small Decline 3.87 3.47 3.54

Huntsville (AL/TN) Medium Big Decline 4.38 3.68 3.59

Indianapolis (IN) Medium Small Decline 3.78 3.42 3.27

Iowa City (IA) Omitted Omitted 7.19 6.56 6.46

Jackson (MI) Medium Small Decline 4.68 4.21 4.44

Jackson (MS) Medium Big Decline 4.31 3.65 3.85

Jacksonville (FL/GA) Fast Big Decline 6.26 5.16 4.28

Jacksonville (NC) Omitted Omitted 22.45 17.13 13.34

Johnson City (TN/VA) Slow No Decline 2.89 2.86 2.76

Johnstown (PA) Slow Small Decline 2.74 2.53 2.67

Joplin (MO/KS/OK) Medium Small Decline 5.17 4.67 4.86

Kalamazoo (MI) Medium Small Decline 5.04 4.70 4.44

Kansas City (MO/KS) Medium Big Decline 4.17 3.52 3.36

Killeen (TX) Omitted Omitted 15.31 12.10 9.08

Knoxville (TN) Slow No Decline 3.85 3.82 3.51

LaCrosse (WI/MN) Medium Small Decline 4.68 4.22 4.56

Lafayette (IN/IL) Omitted Omitted 5.36 5.19 4.96

Lafayette (LA) Slow Small Decline 3.63 3.03 2.92

Lake Charles (LA) Omitted Omitted 9.13 5.21 4.45

Lakeland (FL) Fast No Decline 6.16 6.34 4.82

Lancaster (PA) Slow No Decline 2.90 2.99 2.74

Lansing (MI) Omitted Omitted 6.07 5.41 5.17

Laredo (TX) Slow Big Decline 4.12 2.94 2.59
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Las Vegas (NV) Fast Big Decline 6.53 5.30 4.21

Lawrence (KS) Omitted Omitted 10.68 9.41 8.25

Lexington (KY) Omitted Omitted 4.77 4.46 4.60

Lincoln (NE) Omitted Omitted 5.05 4.89 4.61

Little Rock (AR) Medium Big Decline 5.03 4.26 4.15

Longview (TX) Fast Big Decline 5.70 4.80 5.05

Los Angeles (CA) Fast Big Decline 4.74 3.17 2.93

Louisville (KY/IN) Slow No Decline 2.91 2.80 2.95

Lubbock (TX) Omitted Omitted 7.70 5.89 6.15

Lynchburg (VA) Omitted Omitted 4.14 3.95 3.16

Macon (GA) Medium No Decline 4.73 4.54 4.33

Madison (WI) Omitted Omitted 4.96 4.63 4.41

Manchester (NH) Fast Big Decline 5.67 4.15 3.26

Mansfield (OH) Slow Small Decline 4.09 3.81 3.67

McAllen (TX) Medium Big Decline 4.73 2.77 2.67

Medford (OR) Fast Big Decline 5.84 4.49 4.85

Melbourne (FL) Fast Big Decline 6.05 5.19 4.78

Memphis (TN/MS/AR) Medium Big Decline 4.17 3.47 3.27

Miami (FL) Medium Big Decline 4.03 3.39 3.19

Midland (TX) Fast Big Decline 7.05 5.19 5.42

Milwaukee (WI) Slow No Decline 3.12 2.94 2.63

Minneapolis (MN/WI) Slow Small Decline 3.06 2.79 2.61

Mobile (AL) Slow Small Decline 3.96 3.73 3.26

Modesto (CA) Fast Big Decline 5.78 4.48 3.74

Monmouth (NJ) Medium Big Decline 4.52 3.45 2.78

Monroe (LA) Medium Small Decline 4.48 4.00 3.74

Montgomery (AL) Medium No Decline 5.17 5.07 4.65

Muncie (IN) Medium Small Decline 4.56 4.19 4.72

Myrtle Beach (SC) Medium Small Decline 4.67 4.24 3.87

Nashville (TN) Medium No Decline 4.19 4.10 3.76

New Orleans (LA) Medium No Decline 3.86 3.81 3.58

New York (NY/NJ/CT) Slow Small Decline 2.86 2.36 2.23

Norfolk (VA/NC) Fast Big Decline 6.92 5.55 4.63

Ocala (FL) Fast Big Decline 6.40 5.67 5.40

Oklahoma City (OK) Medium Big Decline 4.75 3.57 3.56

Olympia (WA) Omitted Omitted 7.70 7.32 5.82

Omaha (NE/IA) Medium Big Decline 4.64 3.53 3.69

Orlando (FL) Fast Big Decline 6.94 5.87 4.75

Owensboro (KY) Slow Small Decline 3.42 3.13 3.67

Panama City (FL) Omitted Omitted 8.04 7.09 7.12

Parkersburg (WV/OH) Slow Big Decline 3.73 3.07 3.32

Pensacola (FL) Omitted Omitted 7.97 6.96 6.50

Peoria (IL) Slow Small Decline 3.78 3.53 3.74

Philadelphia (PA/NJ/DE) Slow Small Decline 2.96 2.67 2.36

Phoenix (AZ) Fast Big Decline 5.52 4.25 3.50

Pittsburgh (PA) Slow No Decline 2.37 2.20 2.30

Portland (ME) Medium Small Decline 3.98 3.42 2.93

Portland (OR/WA) Medium Small Decline 4.14 3.84 3.68

Poughkeepsie (NY) Medium Big Decline 4.79 4.08 3.25

Providence (RI/MA) Slow Small Decline 3.45 3.15 2.86

Provo-Orem (UT) Omitted Omitted 7.78 6.96 6.30
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Raleigh-Durham (NC) Fast Big Decline 5.40 4.75 4.46

Redding (CA) Fast Big Decline 6.11 4.70 4.67

Reno (NV) Fast Big Decline 7.07 5.15 4.79

Residual Alabama (AL) Omitted Omitted 4.19 4.26 3.84

Residual Arizona (AZ) Omitted Omitted 9.76 7.04 6.12

Residual Arkansas (AR) Omitted Omitted 4.90 4.35 3.38

Residual California (CA) Omitted Omitted 7.48 6.06 6.05

Residual Colorado (CO) Omitted Omitted 7.26 6.43 5.41

Residual Connecticut (CT) Medium Big Decline 3.76 3.00 2.60

Residual Florida (FL) Omitted Omitted 9.00 7.34 4.71

Residual Georgia (GA) Omitted Omitted 4.90 5.02 3.89

Residual Idaho (ID) Omitted Omitted 6.11 5.37 4.63

Residual Illinois (IL) Omitted Omitted 4.23 4.08 3.76

Residual Indiana (IN) Omitted Omitted 4.69 4.14 3.84

Residual Iowa (IA) Omitted Omitted 4.55 4.37 3.52

Residual Kansas (KS) Omitted Omitted 6.62 6.03 4.74

Residual Kentucky (KY) Omitted Omitted 4.11 3.83 3.05

Residual Louisiana (LA) Omitted Omitted 6.05 5.76 4.22

Residual Maine (ME) Omitted Omitted 4.44 3.63 2.97

Residual Maryland (MD) Omitted Omitted 4.50 4.64 3.71

Residual Massachusetts (MA) Omitted Omitted 5.35 4.18 4.27

Residual Michigan (MI) Omitted Omitted 5.40 4.48 3.74

Residual Minnesota (MN) Omitted Omitted 4.69 4.31 3.37

Residual Mississippi (MS) Omitted Omitted 4.14 3.95 3.54

Residual Missouri (MO) Omitted Omitted 5.40 5.04 4.16

Residual Montana (MT) Omitted Omitted 5.06 4.22 3.15

Residual Nebraska (NE) Omitted Omitted 4.97 4.86 3.26

Residual Nevada (NV) Omitted Omitted 10.88 7.75 6.18

Residual New Hampshire (NH) Omitted Omitted 6.33 5.66 4.59

Residual New Mexico (NM) Omitted Omitted 8.17 5.90 5.03

Residual New York (NY) Omitted Omitted 5.17 4.77 4.20

Residual North Carolina (NC) Omitted Omitted 5.24 5.34 4.54

Residual North Dakota (ND) Omitted Omitted 5.58 4.65 4.18

Residual Ohio (OH) Omitted Omitted 3.87 3.64 3.40

Residual Oklahoma (OK) Omitted Omitted 7.32 6.25 4.96

Residual Oregon (OR) Omitted Omitted 6.96 5.71 5.13

Residual Pennsylvania (PA) Omitted Omitted 3.59 3.38 3.10

Residual South Carolina (SC) Omitted Omitted 4.67 4.61 4.21

Residual South Dakota (SD) Omitted Omitted 5.77 5.06 3.33

Residual Tennessee (TN) Omitted Omitted 3.77 4.07 3.34

Residual Texas (TX) Omitted Omitted 7.01 6.12 5.04

Residual Utah (UT) Omitted Omitted 6.95 6.41 5.86

Residual Vermont (VT) Omitted Omitted 5.41 4.67 4.59

Residual Virginia (VA) Omitted Omitted 3.90 3.88 3.40

Residual Washington (WA) Omitted Omitted 6.95 5.76 5.19

Residual West Virginia (WV) Omitted Omitted 3.94 3.35 3.16

Residual Wisconsin (WI) Omitted Omitted 4.42 4.03 3.28

Residual Wyoming (WY) Omitted Omitted 6.60 5.89 5.57

Richland (WA/OR) Fast Big Decline 5.93 4.14 4.45

Richmond (VA) Medium No Decline 3.91 3.86 3.43

Riverside-San Bernardino (CA) Fast Big Decline 7.18 4.96 3.53
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Roanoke (VA/WV) Omitted Omitted 4.46 4.14 4.15

Rochester (MN) Medium Small Decline 5.00 4.44 4.74

Rochester (NY) Slow Small Decline 3.08 2.78 2.85

Rockford (IL) Slow No Decline 4.16 4.06 3.77

Rocky Mount (NC) Slow Small Decline 4.24 3.99 4.05

Sacramento (CA) Fast Big Decline 5.69 4.08 3.67

Saginaw (MI) Medium Big Decline 4.14 3.42 3.41

Salem (OR) Fast Big Decline 5.71 4.52 4.18

Salinas (CA) Fast Big Decline 8.56 5.21 4.81

Salt Lake City (UT) Medium Small Decline 4.19 3.89 3.92

San Antonio (TX) Fast Big Decline 5.13 3.95 3.47

San Diego (CA) Fast Big Decline 7.01 5.03 4.66

San Francisco (CA) Fast Big Decline 5.04 3.88 3.64

San Jose (CA) Fast Big Decline 6.74 4.97 4.57

Santa Barbara (CA) Fast Big Decline 7.13 5.14 4.91

Santa Fe (NM) Fast Big Decline 6.28 5.20 4.89

Santa Rosa (CA) Fast Big Decline 5.38 4.07 3.69

Savannah (GA/SC) Omitted Omitted 7.30 6.79 6.70

Scranton (PA) Slow No Decline 2.90 3.31 2.77

Seattle (WA) Fast Big Decline 4.71 3.96 3.48

Sheboygan (WI) Slow No Decline 3.72 3.59 3.14

Shreveport (LA) Medium Big Decline 5.05 3.88 3.99

Sioux City (IA/NE/SD) Medium Big Decline 5.04 4.36 4.70

Sioux Falls (SD) Fast Small Decline 5.64 5.13 4.97

South Bend (IN/MI) Medium Small Decline 4.47 4.13 4.24

Spokane (WA/ID) Fast Big Decline 5.25 4.35 3.97

Springfield (IL) Slow Small Decline 4.21 3.82 4.38

Springfield (MA) Omitted Omitted 4.06 3.32 2.81

Springfield (MO) Medium Small Decline 5.00 4.69 4.70

St. Joseph (MO/KS) Medium No Decline 4.77 4.66 5.25

St. Louis (MO/IL) Slow Small Decline 3.12 2.67 2.70

St. Lucie (FL) Fast Big Decline 6.71 5.98 5.16

State College (PA) Omitted Omitted 4.67 4.42 4.00

Steubenville (OH/WV) Slow No Decline 3.64 3.46 3.39

Stockton (CA) Fast Big Decline 6.51 5.36 4.14

Sumter (SC) Omitted Omitted 6.17 5.42 4.72

Syracuse (NY) Slow Small Decline 3.55 2.98 2.87

Tallahassee (FL) Omitted Omitted 6.17 6.45 5.90

Tampa (FL) Fast Big Decline 5.39 4.69 3.78

Terre Haute (IN) Medium No Decline 4.48 4.30 4.40

Texarkana (TX/AR) Fast Big Decline 5.52 4.61 4.87

Toledo (OH/MI) Slow Small Decline 3.82 3.60 3.35

Topeka (KS) Medium Big Decline 4.75 4.09 4.63

Tucson (AZ) Fast Big Decline 6.25 4.69 4.68

Tulsa (OK) Medium Big Decline 4.89 3.86 3.73

Tuscaloosa (AL) Omitted Omitted 5.30 5.01 4.46

Tyler (TX) Fast Big Decline 6.36 5.23 4.80

Ventura (CA) Fast Big Decline 7.54 4.68 4.11

Waco (TX) Omitted Omitted 6.24 5.43 5.11

Washington (DC/VA/MD) Fast Big Decline 5.19 4.01 3.65

Waterloo (IA) Medium Small Decline 4.52 4.16 4.46
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Table F3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Wheeling (WV/OH) Slow Small Decline 3.41 2.98 3.30

Wichita (KS) Medium Big Decline 4.83 3.87 3.64

Wichita Falls (TX) Omitted Omitted 7.74 7.44 7.28

Williamsport (PA) Slow Small Decline 3.68 3.38 3.34

Wilmington (NC) Medium No Decline 4.89 5.25 4.49

Yakima (WA) Fast Big Decline 5.53 4.39 3.54

Youngstown (OH/PA) Slow No Decline 2.96 2.95 2.94

Yuma (AZ/CA) Fast Big Decline 7.06 4.84 3.93
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