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Abstract

Declining internal migration in the United States is driven by increasing home attach-
ment in locations with previously high rates of population turnover. These “fast locations”
were the population growth destinations of the 20th century, where home attachments were
once low but have increased as regional population growth has converged. Using a novel
measure of home attachment, this paper estimates a structural model of migration that
distinguishes moving frictions from home utility. Simulations quantify candidate explana-
tions of the decline. Rising home attachment accounts for most of the mobility decline,
and its effect is consistent with the observed spatial pattern. Population aging explains
most of the remainder but in a more spatially neutral way. The paper then uses a stylized
island economy model featuring endogenous home attachments to show that after a shock,
gross migration returns to steady state much more slowly than net population change.
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1 Introduction

Internal migration rates in the U.S. have steadily trended downward in recent decades. The

decline is pervasive across demographic strata, housing tenures, and household and family types

(Molloy et al. (2011), Kaplan and Schulhofer-Wohl (2017)), suggesting a fundamental shift in

the functioning of regions. This observation is alarming for policymakers because migration

is considered a primary labor market adjustment mechanism. Americans have typically been

regarded as a mobile population (Moretti (2012)), pioneers always in search of better opportu-

nities, and there is rising concern that America has “lost its mojo” (Thompson (2016)). While

the general notion that “people are moving less these days” has entered the Zeitgeist in both the

academic and popular social sciences, the causes of the decline remain poorly understood–which

is problematic, of course, because knowledge of the mechanisms driving the decline is needed to

inform policy and future research.

This paper finds that declining internal migration in the U.S. is primarily due to the increasing

prevalence of home attachment. Migration propensity depends strongly on preference for one’s

place of origin, and the average attachment has increased because regional population growth

has converged.1 Over the 20th century, the U.S. population expanded across the continent, and

Sunbelt locations of the West and South grew explosively. New cities, populated by transplants,

had high rates of gross out-migration because of weak attachments–hence we deem these “fast

locations.” In more recent decades, the population growth rates across regions have converged,

and fast locations are increasingly populated by natives with higher degrees of home attachment

instead of weakly attached transplants. Consequently, migration out of these places has declined.

Because fast locations were the source of the majority of migrants, their decline has driven down

the national average. Thus, the decline is the result of not just household demographics, but

spatial demographics: where people are, and from where they came.

We demonstrate the role of home attachment in the national decline of mobility and that it

uniquely fits the spatial pattern. We proceed to do this in three parts. First, we collect a set of

stylized facts on the mobility decline, its spatial pattern, and the history of population change

across regions. Second, we use a structural model of migration behavior to measure the role of

evolving home attachment in the migration rates over a three decade period. Third, we use a

stylized model to show generically how population convergence would precede a decline in gross

migration rates when people exhibit attachment to original locations.

In the first part of the paper, our stylized facts begin with evidence that home attachment

matters for migration. At all ages and skill levels, Americans living in their birthplaces are

significantly less likely to migrate than transplants from other places. Moreover, the evidence

indicates a preference for home, not selection on unobserved moving costs, drives the reluctance

1Home (or place) attachment is not a new idea to the social sciences (see the literature review below), but
this paper is the first to connect evolving home attachments to the national trend in mobility.
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to leave. Those living away from home are significantly more likely to return there, showing

an inclination for a home location above alternatives. Moreover, the intensity of one’s home

attachment predicts differential migration rates among natives. More deeply “rooted” natives,

measured as those born to locally-born parents, are less likely to leave than unrooted natives.

We then connect the general notion of home attachment to the spatial heterogeneity in mi-

gration decline. The distinguishing feature of fast locations is their relatively recent population

growth; they are predominantly in the West and South regions of the U.S., the centers of popula-

tion growth in the 20th century. The high share of transplants and unrooted natives resulted in

high rates of population turnover in these places. We show how the history of population growth

has affected their degree of regional nativity, directly and over time as successive generations

grow up in these newly populated regions. As population growth rates converged, these places

became increasingly populated by regional natives with increasing levels of rootedness.

We close our descriptive analysis showing the relationship between turnover and other local

labor market attributes, including city size, demographic composition (age and education) and

income opportunities. These features will be important controls in our model but do not drive

the spatially heterogeneous trends in migration rates.

With the stylized facts as a foundation, in the second part of the paper we develop and

estimate a structural model of migration which allows us to jointly account for multiple factors

that affect migration propensity and quantify the importance of home attachment. In the

model, agents differ by location of birth, location of residence, age, education, and place in the

income distribution. Migration is costly, with fixed costs varying by agent type and marginal

costs by distance between locations. Home locations offer their natives utility premia, with

the size of the premium dependent on the intensity of home attachment at time of birth. To

measure the intensity of home attachment (i.e., “roots”) in our empirical model, we use a state-

cohort matching method leveraging geographically harmonized historical census data. Using

an individual’s state and year of birth, we derive the probability that his or her birth state is

the same as his or her parents’. We show the measure is meaningfully predictive of migration

propensity and destination choice probability among natives but–as a placebo check– not among

nonnatives.

A multinomial discrete choice model naturally applies to a location choice problem such as

ours (with interest in the effects of both individual and spatial heterogeneity), but there are

two complications that discourage the use of a standard conditional logit model. First, there

is a marked asymmetry in the elasticities of location attributes in “move out” versus “move

to” decisions, especially with regard to home preference.2 In particular, the marginal effect

of the home premium for choosing a location conditional on moving is substantially larger (in

2See Monras (2018) for a discussion of the asymmetry of in-moving and out-moving elasticities to local labor
market attributes.
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percentage terms) than its marginal effect on the decision whether to move at all. To account

for this, we use a nested formulation whereby agents first choose whether to move and then,

if moving, which location to choose. Second, because relocating comes at a cost, migration

is a dynamic decision (Sjaastad (1962)), but agents of different ages and birthplaces, living in

different locations, face materially different sets of opportunities and continuation values. This

heterogeneity introduces an omitted variable problem if agents’ future option values are not

accounted for–and further complicated in a nested choice problem such as ours. To address this

issue, we leverage the properties of finite dependence in conditional choice probability estimation

(Arcidiacono and Miller (2011)) to derive moment conditions for agents facing a dynamic discrete

choice problem. We derive a tractable linear estimator, which is to our knowledge the first

application of finite dependence in a nested logit model, and the first to use method of moments

estimation so that the estimator can be applied to aggregated data.3

The model delivers estimates of parameters governing utility from residing in one’s birthplace,

moving costs by age and education group and by distance, and a composite of local net income

and amenities. The identifying variation comes from differences in move rates across distance,

by type, and by at-home status; in particular, differences between birthplaces and cohorts in the

depth of roots help identify the intensity of home attachment. We estimate the model on cross-

sectional data from the American Community Survey of 2005-2017, and then simulate the model

using estimated parameters and population group weights derived from the same data. We show

the model fits the data well on the degree to which agents in their birthplace move relative to

those not at home without resorting to assigning additional move costs to home status. The

model can also generate heterogeneity in move rates across local labor markets, mainly through

differences in home attachment.

A key validation of the model, which derived its estimates from recent cross sectional data, is

its prediction of mobility rates over time outside the estimation period. Specifically, we project

migration rates in previous time periods, holding fixed the primitive parameters and varying

the economy’s attributes, such as population sizes by age and education group, at-home status

and birthplace, depth of roots, and income opportunities. This is to test the potential impact of

changing decision environments without forcing changes in primitive preferences (whether move

costs or the dispersion of idiosyncratic preferences). The model simulation projects a migration

decline in line with the actual time series and consistent with its spatial heterogeneity, with fast

locations declining the most and slow locations the least.

Several factors contribute to the aggregate decline, and the model permits a decomposition

of the sources to quantify the contribution of each. Demographic factors–principally, an aging

populace–matter nontrivially for the national decline but cannot produce the observed magnitude

and cannot rationalize the spatial pattern. Rising home attachment, however, can explain the

3Section 1.1 reviews related work on dynamic discrete choice model estimation.
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majority of the decline and better fits the spatial pattern. The rising rates of nativity in fast

locations (and in some of these, increases in the intensity of attachment) cause the model to

predict a steady decline in mobility out of these places. Because these make up an outsized share

of migrants, the rise in home attachment accounts for a majority (roughly two-thirds) of the

national decline. Changes in income opportunities, mostly in fast locations, explain the balance

and also account for some outlier cases. We conclude that the model can accurately depict the

changes in migration rates over the past several decades across the geography of the U.S.

The quantitative model indicates home attachment is empirically important in the migration

decline, but it is limited to the observed spatial distribution of population and birthplace source.

In other words, home attachment is exogenous to the individual in the estimated model, but

in the economy, spatial distributions of population evolve endogenously in a path-dependent

manner. To gain further intuition for the mechanism, we use a stylized version of the model to

illustrate the role of home attachment in the joint dynamics of migration and population change.

The third, and briefest, step of the paper is a simulation exercise of a hypothetical island

economy undergoing spatial population transition. The simulation provides a laboratory en-

vironment that allows us to trace the endogenous time profile (loosely, the impulse response)

of home attachment and its impact on migration propensity under a controlled set of location

shocks. The stylized model features home attachment that varies according to each location’s

history of population (“roots”) in comparison to environments of fixed home attachment or none

at all. Amenity shocks generate population reallocation that eventually arrives at a new steady

state, but the transition is prolonged by home attachment, particularly when the intensity of

attachment is evolving with the path of population. Moreover, endogenous home attachment

generates a persistent impulse to gross migration rates that does not resolve until long after

the population reallocation has settled. We suggest that this profile fits the experience of the

U.S. economy in the 20th century, which was characterized by population redistribution and

elevated migration rates that have since moderated–with gross turnover rates lagging behind

net migration.

This perspective is important for interpretation and evaluation, and we conclude with some

normative implications from our analysis. Concerns about the decline in gross mobility have

presumed that it will limit needed population adjustments. In this paper, we show such a

concern is the “tail wagging the dog,” as it is actually the long run population convergence that

has driven the gross mobility decline. We show that the decline is not even observed in relatively

bad labor markets; to the contrary, it is the growing local labor markets that are declining in

out-migration. Moreover, trends in annual net population reallocation are smaller than–and

predated by–the long run trends in population growth.

Synthesizing the evidence from the descriptives, structural estimation, and illustrative model,

we see a nuanced connection of population change to migration flows. Economists typically
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discuss migration in the spatial equilibrium paradigm–migration as an equilibrating force, with

households leaving bad places for better ones. Migration in the real world, however, like many

other labor market flows (see, e.g., Davis et al. (2012)), has gross flows far exceeding the resulting

net changes (Davis et al. (2013)). Most concerns about declining migration predicate on the

logical leap from the counts of people changing places to the health of regions and allocative

efficiency of the economy.

Our paper connects gross and net flows in order to understand trends in each. The degree of

place attachment largely determines the ratio of gross to net, so that in the long run, migration

flows and population changes are jointly causal in an autocorrelated process. Our analysis makes

explicit that past population changes affect this degree of place attachment, and the gross flows

converge after population changes have resolved. Thus, one message from our paper is that

amount of migration per se (how many are changing places) is not necessarily important, but

regional population trends (where, on net, movers are locating) is indeed quite important for

analyzing the health of regions, just as the canonical spatial equilibrium model would suggest.

Thus, papers on rising barriers to population allocation, such as Gyourko et al. (2013), Ganong

and Shoag (2017), Herkenhoff et al. (2018), and Hsieh and Moretti (2019), are relevant for

understanding mobility generically even if not directly addressing a decline in gross migration.

Much of the concern about mobility decline arose because of its apparent secular nature–

a vague friction affecting everyone at once, the specter of America’s “lost mojo.” Studying its

cause is important so that we understand whether the migration decline represents an increase in

barriers or a decrease in the economic incentives to relocating. Our findings are relevant on both

counts. The cause is not quite “secular” in that it is spatially specific, and the cause is not so

much an increase in cost as a rise in the prominence of a specific form of location preference. By

understanding the mechanisms causing the decline, we will be better able to evaluate its welfare

and macroeconomic implications and, if necessary, address it with more targeted policies.

1.1 Related Literature

There are several existing studies documenting the decline in geographic labor mobility.

Fischer (2002) notes that in the U.S., migration (i.e., moving one’s local labor market) peaked

around the 1970s and 1980s, while residential mobility (moving house within a labor market) had

been steadily trending downwards for much longer. After Fischer, much of the work that emerged

in the wake of the Great Recession (Molloy et al. (2011), Cooke (2011), Cooke (2013), Kaplan

and Schulhofer-Wohl (2017)) emphasized the secular nature of the decline, finding compositional

and cyclical explanations insufficient in magnitude and scope, although somewhat important in

their own rights.4

4To our knowledge, the only study to parse the migration changes across space was Frey (2009), although it
focused on the cyclical dynamics of net migration in the early 2000s instead of the long run secular trend in gross
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The secular trend was provocative and puzzling. How could the “death of distance” coin-

cide with geographic sclerosis? As labor mobility is thought to be one of the primary shock-

adjustment mechanisms for regions (see Blanchard and Katz (1992), Bound and Holzer (2000),

Carrington (1996), Zabel (2012), Hornbeck (2012)) and individuals (see Topel (1986) or Kennan

and Walker (2011)), a natural concern arose that low mobility will result in spatial mismatch

and lower aggregate productivity.5

Several studies have offered explanations but do not address the geography of the decline.

Cooke (2013) associated coincident trends like the rise in dual-earner households and improve-

ments in information technology that rendered migration unnecessary. Kaplan and Schulhofer-

Wohl (2017) argued that advances in travel and information technology have improved the

signal-to-noise ratio in household-location matches, making migration more efficiently targeted

and consequently less frequent. Some studies suggest that structural changes in the labor market

have altered migration incentives. For example, Karahan and Rhee (2014) present a job search

model in which the equilibrium with an aging workforce is for all workers to search locally.

Bayoumi and Barkema (2019) argue that widening dispersion across metro areas in income and

house prices has reduced the ability of workers to move, especially “uphill” to richer locations.

Graham and Pinto (2021) connect low mobility by individuals to their low subjective well being.

Johnson and Kleiner (2020) find occupational licensing is a barrier to interstate mobility, but

its marginal effect is not large enough (nor is its prevalence wide enough) to account for the

trend. None of these explanations contends with the spatial heterogeneity driving the migration

decline, or the historical population movements underlying it, which are the focus of our paper.

There are a few studies of changes in population responsiveness to local shocks (e.g., Partridge

et al. (2012), Hood (2013), Dao et al. (2017)), although this is a subtly distinct question from

ours. We focus on long term trends in gross migration, not (necessarily) population changes

resulting from net migration. Ultimately, though, our findings on gross migration flows being the

result of past population changes mean the two issues are related. One notable hypothesis within

this strand of literature is that locations are becoming more similar over time. For example,

Kaplan and Schulhofer-Wohl (2017) argue (in a second component to their explanation) that

returns to occupations have become more similar across space, causing migration to be less

necessary. Accordingly, we allow for trends in labor market heterogeneity in our analysis. And

again, these papers do not address the spatial pattern of the decline.

One strand of the migration literature explicitly ties geographic mobility to job mobility,

since most long distance moves also involve (and are often motivated by) job changes (Molloy

et al. (2014), Molloy et al. (2017), Ihrke (2014)), associating the trend in migration to the larger

migration we study.
5It is also worth noting that a substantial literature is devoted to understanding why labor mobility is slow or

stagnant and not always in the expected direction (see, e.g., Sjaastad (1962), Lkhagvasuren (2012), Notowidigdo
(2011), Autor et al. (2013), Dao et al. (2017)), and Yagan (2019)).
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literature on declining labor market dynamism, which has found reductions in job mobility, flows

in labor market status, firm growth rates, and entrepreneurship (see, for example, Molloy et al.

(2016), Davis et al. (2012), Davis and Haltiwanger (2014), Decker et al. (2014), Decker et al.

(2016), Hyatt and Spletzer (2013), Hyatt and Spletzer (2017)). Our paper, motivated by the

spatial heterogeneity of the decline, stakes out a distinctly geographic position and makes no

direct connection to other forms of labor market dynamism. However, we hope that our findings,

or at least our technique of leveraging local labor market heterogeneity to study national trends,

is informative for that literature as well.6

In emphasizing geography, our paper takes a broad perspective on the forces influencing mi-

gration decisions. The economics literature on migration has progressed from studying purely

pecuniary incentives (see Greenwood (1975) and Greenwood (1985) for reviews) to incorporating

nontradable amenities (Graves and Linneman (1979)), idiosyncratic preferences, and move costs

(Kennan and Walker (2011), Bayer et al. (2009), Moretti (2011), Coen-Pirani (2010), Lkhag-

vasuren (2012), or Diamond (2016)). This includes recent work relating migration to home at-

tachments (Dahl and Sorenson (2010), Kennan and Walker (2011), Coate (2014), Zabek (2018),

Koşar et al. (2021)) and social capital (Carrington et al. (1996), Glaeser et al. (2002), David

et al. (2010), Kan (2007), Alesina et al. (2015), Falck et al. (2012), Hotchkiss and Rupasingha

(2018), and Büchel et al. (2020)),7 which also have substantial literatures in the population sci-

ences outside economics (Dawkins (2006), Michielin et al. (2008), Mulder and Malmberg (2014),

Belot and Ermisch (2009), and Clark and Lisowski (2019)). Our study is the first to show how

long run population dynamics affect local attachments, with implications for current migration

rates.

Finally, we offer the first quantitative dynamic spatial model studying declining migration.

Models of migration are properly understood as dynamic decision problems (Sjaastad (1962),

Topel (1986), Kennan and Walker (2011)), but in order to explain the spatial pattern, we need

more geographic and demographic detail than a stylized model can offer. To focus on the

estimation of key primitives, our approach utilizes a structural, partial equilibrium model of

location choice, with a nested formulation inspired by Monras (2018). We contribute to the

estimation of dynamic choice models using conditional choice probability (CCP) estimation.8

We derive for our model a linear method of moments estimator that is highly tractable despite

a large type space. This is, to our knowledge, the first implementation of CCP estimation on

6Some of these studies (Molloy et al. (2016), Molloy et al. (2017), and Decker et al. (2014)) describe differences
across states in rates of job mobility and changes thereof with population inflows. The patterns do not align too
closely with our findings, although we focus on outflows and there are asymmetries in flows that may be relevant.

7Using data on cellular phone call records, Büchel et al. (2020) find a strong role for social connections (both
family and friends) in determining the probability of a move and in directing its destination once it occurs.

8For seminal work on methodology, see Hotz and Miller (1993) and Arcidiacono and Miller (2011). For recent
applications, see Bishop (2008), Ma (2019), and Davis et al. (2017).
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aggregated choice data,9 and the first application via a nested logit model.10 We discuss the

model estimation in detail in Section 4 and Appendix C.

2 Migration Decline: Its Geography and History

We first introduce a set of novel empirical facts that help motivate, formulate, and preview

the results of the model.

2.1 Data Overview

This study relies on an assemblage of data from several different publicly available sources.

We briefly describe them here and leave details to appendices.

2.1.1 Data Sources and Uses

Our principal measures of migration come from two sources. The first is the migration

flows tables from the U.S. Treasury’s Internal Revenue Service (IRS) for 1991 to 2016 (IRS

(2018)). The IRS infers migration events from changes in the address on individual tax returns

in two successive years, publishing the total county-to-county flows in each year, as well as the

total stayers in, inflows to, and outflows from individual counties. Because of its consistent

reporting (annual since 1990), geographic detail (counties), and its large sample size (a near

universe of taxpayers), the IRS data is the principal source for describing trends in mobility

across different geographies.11 However, it lacks demographic information that will be essential

to a microfounded model of migration flows.

The second source of migration flow information is the American Community Survey (ACS,

obtained from Ruggles et al. (2019)) for 2005 to 2017. The ACS microdata contains rich demo-

graphic information such as age, education, and importantly for our purposes, place of birth, so

it will be the primary source for quantifying our model. The ACS reports the respondent’s cur-

rent and one-year ago Public Use Microdata Area (PUMA) of residence, from which we can elicit

9Though not explicitly characterized as CCP estimation, Artuc et al. (2010) use algebraic manipulation of
a choice value function to derive an estimating equation, which bears resemblance to our approach, although
their identification method is different. Theirs relies on time series variation, while ours relies on variation across
location-age-education population cells.

10The results of Arcidiacono and Miller (2011) apply to any generalized extreme value distribution, and they
specifically use nested logit as an example, but we are not aware of any applications outside of conditional logit.
We show that with some additional algebra, one can still reap the computational benefits of finite dependence.

11The IRS data underwent a change in method in the 2011-2012 tax year that resulted in noticeable, but as-yet
unexplained, differences in the sample represented and possibly the migration concept, sowing doubt about the
reliability of the data for these later years (DeWaard et al. (2020)). We present the data for the period 2012-2016
but rely only on the consistent sample of 1990-2011.
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migration probability (move or not) and direction (origin-destination pairs). We also measure

local labor market incomes using the ACS.

The 1990 and 2000 censuses also report a retrospective migration question, but at a five-

year instead of one-year lookback. This is problematic for constructing time series, because the

conversion rate of one year to five year change in residence location is complicated by return

and repeat (“onward”) moves, which are fairly frequent (Kennan and Walker (2011), DaVanzo

(1983)); the five year rate is not simply five times one year. We make an effort to correct

for the probability of a one year move event not being observed at a five year window. This

effort, detailed in Appendix A, uses location histories in the longitudinal Panel Study of Income

Dynamics (PSID, Institute for Social Research (2021)) to derive the return and onward migration

rate by age, education, and birthplace status. Attaching this one-to-five year conversion to the

ACS microdata, we present time series of implied five year rates. This provides corroborating

evidence for our stylized facts, but because it is based on assumptions about the underlying

conversion procedure, we do not rely on the five year rates for the model.

Finally, for historical measures of population, we use harmonized decennial census records

from Manson et al. (2018), and for its distribution by age, education, and birthplace, we use

microdata samples from 1880 to 2000 from Ruggles et al. (2019).

2.1.2 Geographic Concept for Defining Migration

A fundamental issue in a study of migration is the definition of location: At what distance

does a move become a “migration?” Many previous studies use interstate migration, presumably

because state is available in most datasets. But states are coarse measures of location and

vary substantially by size, with larger states containing ample within-state variation.12 In this

paper, we use a metropolitan area in order to more closely correspond to a local labor market.13

Locational heterogeneity is central to our analysis, and different cities within states vary in rates

of mobility, population composition, labor market opportunities, and amenities.14 However,

when defining one’s home location, we are confined to using the state definition, as the ACS and

censuses ask for respondent’s state of birth. We account for multi-state metropolitan areas and

examine sensitivity of results to the alternative mappings of state to local labor market in the

assignment of home.

We use a new definition of metropolitan area that we term a local labor market (LLM),

which is a close cousin to a commuting zone (CZ) in that both fully partition the U.S. and

12This is one major reason we do not rely on the CPS, which provides only state of residence. Another is that
the CPS sample is too small to split into subgeographies crucial to our analysis.

13In the appendix, we show that the major patterns we document are robust to using state definitions.
14California, a state that looms large in our analysis, is a prime example. Los Angeles, San Francisco, and

Bakersfield, for instance, have population compositions and incomes substantially different from one another and
have declined in mobility at different rates.
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Figure 1: Local Labor Market Migration Rates, 1991-2017

One Year Rates Five Year Rates

NOTES: The lefthand figure plots the one-year outmigration rate over time as defined by LLM and observed in the IRS and ACS microdata samples;
Compare Figure B1 for the state-to-state definition. The data become dashed series 2012 and following to reflect a break in the method the IRS used
to define move rates. (Source: IRS data.)
The righthand figure plots the five-year outmigration rate over time as defined by LLM and observed in the Census in 1990 and 2000, and the imputed
five-year rate using the ACS microdata sample. The imputation uses the five times the one year rate, discounted by the probability the new location is
maintained within a five year window. The five year adjustment is made using a hazard model of return and onward migration, estimated on
longitudinal PSID data with age, education, and home status as covariates. Compare Figure B1 for the alternative models of the five-year adjustment.
(Source: ACS, Census, and PSID data.)

delineate urban areas. We derived LLMs from CZs and modified when necessary to standardize

geographies over time or to correspond to current definitions of metropolitan areas (such as

a Core-Based Statistical Area, or CBSA). We can map PUMAs and counties into LLMs for

each year of data, 1880 to 2017.15 We focus on the urbanized LLMs. The interested reader

is referred to Appendix F for methodological details on data construction and Appendix G for

LLM definitions and summary statistics; the uninterested reader can approximately think of

CZs or CBSAs without serious threat to interpretation.

With geographic units defined, migration is then defined as exiting one LLM for another,

irrespective of change of state. Moves within counties or PUMAs, or among counties or PUMAs

of the same LLM, are non-migration events.

Figure 1 displays the national average migration rate over time in the IRS and ACS data

samples according to this geographic concept. (For comparison, Appendix Figure B1 displays

migration over time for state-level geographic concepts.) There is a clear downward trend (amid

some cyclical fluctuations) best seen in the longer IRS time series. The drop from 1991 to the

2005-2011 average was 0.5 percentage point, or a 20 percent drop in the rate at which households

change LLMs. The righthand figure plots the five-year outmigration rate using direct summary

of the 1990 and 2000 census and implied five year rate using the ACS microdata sample.16 The

five year rate also shows a clear downward trend.

15The mapping files for each decade are available to other researchers; see our websites for more details.
16See Figure B1 for alternative one-to-five year adjustment methods, all of which make little difference to the

findings.
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The rest of this section is devoted to unpacking the geography of the decline as a pathway

to understanding its causes, starting with a prominent determinant of migration choice.

2.2 The Importance of Home Attachment in the Migration Decision

A critical fact to establish at the outset is that one’s home location occupies a special status

in the choice set; that is, home offers a utility premium not available elsewhere. There is a

substantial literature in the social sciences documenting the importance of “home” (broadly

defined) in determining migration decisions, so while this idea is not new, we show here that the

measures of home available in the ACS and census are predictive of migration propensity in the

expected way.

Table 1 uses ACS data to report annual mobility rates by age and education in total and

disaggregated by birthplace status. Some well-known patterns appear: The young are more

mobile than the old, and college educated are more mobile than noncollege, especially in youth.

But among all categories, there are major differences by birthplace status: Those living away

from their birthplace are an order of magnitude more likely to migrate than those at home. The

foreign born more closely resemble those living at home, although among the college educated,

mobility rates for the foreign born are somewhat closer to the away-from-home rate. Appendix

Table B2 standardizes the comparisons using odds ratio regressions for each age and education

group using the ACS microdata. A person in their birthplace is only about two-fifths as likely

to move as someone away from home–and the probability is remarkably consistent across age

and education groups, even when controlling for local labor market factors.

It is important for interpretation to understand whether the difference in move rates by at-

home status is due to an actual utility-enhancing component–a preference for home–producing

strong attachment to the place, or if the gap between columns 2 and 3 is due to selection on

move costs (perhaps unobserved) among those who have never left their initial places. In terms

of a location decision model, the distinction will clarify whether an evolving spatial distribution

of population affects the observed distribution of move costs or the value of opportunities in the

choice set. There is already a substantial literature showing the importance of place attachment

(see Section 1.1),17 but again, we want to check whether this pattern holds under our particular

definitions.

One testable hypothesis is that if home is deemed especially valuable as a location attribute,

then home will be chosen more frequently as a destination when living away from it. In the

remainder of Table 1 we examine the rate of returning home. Column 5 reports the conditional

choice probability to moving into one’s birth state when living away from it (i.e., those who have

already left their birthplaces) when migrating somewhere. Roughly one-fifth of moves are returns

17Koşar et al. (2021) is especially notable here. That paper finds strong preference for both family proximity
and community connections, across income groups and even among those who self-identify as highly mobile.
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Table 1: Move Rates by Age, Education, and At-Home Status

Move Out Rate (%) Move Home Rate (%)

Education/ Total US-born, US-born, Foreign- (Conditional Choice Probability)
Age In Birthplace Not In Birthplace Born Actual Synthetic

1 2 3 4 5 6

Noncollege
20s 5.79 4.41 12.01 4.12 14.45 0.70
30s 3.52 2.62 6.89 2.66 11.86 0.68
40s 2.35 1.68 4.40 1.77 10.89 0.64
50s 1.91 1.29 3.41 1.53 9.35 0.57

College
20s 10.02 7.33 15.02 9.89 12.47 1.10
30s 5.07 3.09 7.57 5.68 10.06 1.00
40s 2.56 1.52 3.77 2.70 7.79 0.91
50s 2.20 1.41 3.16 2.03 6.96 0.73

NOTES: The table reports mobility rates by birthplace. A respondent is in birthplace if residing in an LLM within his/her reported state of birth.
Move home rates (column 5) are LLM move-in rates, conditional on a migration occurring, weighted by the probability the LLM is the respondent’s
birth LLM. Alternative definitions are provided in Table B1. The synthetic move home probability is a weighted average of conditional choice
probabilities of moving into the home LLM for respondents not born in the LLM; for example, the probability of choosing Los Angeles by people not
born in California. (Source: ACS data.)

home. For comparison, in column 6 we report the average probability in the general population

of migrants of selecting one’s home–the expected probability if home were not special.18 These

are all orders of magnitude smaller; a destination is chosen 9 to 21 times more often when it is

home than when it is not. Appendix Table B3 verifies this pattern, using the ACS microdata to

estimate regressions of the odds ratio on choosing home relative to other possible destinations,

conditional on migrating. Like the move-out rates, there is a remarkably robust pattern of

home status in destination choice. Applying regression models with controls for other location

attributes, a destination being home makes it roughly 6 to 19 times as likely to be chosen than

if it were not home.

Table B1 reports on some robustness checks on the move home results. The move home

probability is sensitive to the definition of home LLM (when the ACS actually reports birth

state), and Table 1 uses a relatively conservative definition that assigns moves home less often

than they could be. The appendix table shows that move home rates are as high as one-third

under a more accommodative definition of home LLM. The appendix table also addresses a

competing hypothesis, that migration is coincidentally towards home because migration networks

are relatively local and any mover does not migrate far from her initial location–i.e., home is

usually nearby. An odds ratio calculation controlling for origin location shows that moves home

are still disproportionately likely when adjusting for move proximity.

These patterns provide initial evidence of the existence of home attachment via a utility

premium, and we will provide additional evidence after developing further concepts of home

attachment. This explanation is important to bear in mind as we review the spatial pattern of

18A random choice probability, one out of 275 LLMs, is about 0.36 percent. In column 6, we are adjusting
the probability for the relative sizes of the LLMs. For example, because of New York’s market size, there are
mechanically more New Yorkers living about the country, and it is a popular destination for migrants from all
birthplaces.
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Figure 2: Local Labor Market In- and Out-Migration Rates (IRS 1991-1993)

NOTES: The figure plots average LLM in- versus out-mobility rates in the early IRS samples. Compare Figure B3 for additional samples. (Source: IRS
data.)

the mobility decline and the evolution of population that preceded it.

2.3 Fast Locations Drive the Migration Decline

The next important fact–and one that is new to this literature–is that the national decline

in migration is heterogeneous across space. In this subsection, we show that previously high

turnover, “fast” locations are responsible for the national decline by converging towards their

“slow” counterparts.

As an initial matter, we first clarify the language of “fast” vis-a-vis “slow” locations. Gross

migration rates are correlated–that is, locations with high degrees of inflow also exhibit high

degrees of outflow–and there is a large variance across places in the degree of turnover. This

fact is not new (see seminal work by Ravenstein (1885), Sjaastad (1962), Miller (1973), to

more recently, Coen-Pirani (2010) and Mangum (2016)), but for completeness, Figure 2 displays

scatterplots of out-mobility to in-mobility rates in the 1991 IRS data. Appendix Figure B3

displays alternative observations of the IRS at various points in time and the ACS data. The

strong positive relationship is evident, with correlation coefficients near 0.9, and there is a large

dispersion in turnover rates, with fast places turning over two to four times the number of

residents per year as slow places. Our use of “fast, medium, and slow” is a categorization

strictly on the basis of population turnover, which we will fix at 1991 rates.19

The fast/slow distinction is important for introducing our primary motivating fact: The

decline in mobility is occurring predominantly among fast LLMs. Figure 3 shows the annual

out-migration rates for LLMs split into terciles by their mobility rate–fast, medium, and slow.

19Despite convergence in rates, the relative rankings by turnover are mostly preserved even in the 2010s, as
Appendix Figure B3 indicates.
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Figure 3: Changes in Out-Migration Rate Over Time by Average Initial Turnover

One Year Rates Five Year Rates

NOTES: The lefthand plot shows the annual out-migration rates in the IRS data by initial mobility tercile. The data become dashed series 2012 and
following to reflect a break in the method the IRS used to define move rates. (Source: IRS data.)
The righthand plot shows the five-year out-migration rates by initial mobility tercile in the census, spliced with the implied five-year migration rates
using ACS migration data adjusted with the repeat migration model from the PSID. The data become dashed series 2005 and following to reflect
switch from actual to implied five-year rates. (Source: ACS, Census, and PSID data.)

The lefthand panel focuses on the one-year rate from the IRS. The most mobile third of cities

show a strong downward trend, dropping from about 5.7 percent to 4.6 percent from 1990 to

2011 (a 21 log point decline). The change for the middle third was much smaller, declining from

about 4.3 to 4.0 percent (a seven log point decline). The least mobile third showed essentially

no decline.20 As an alternative view, Appendix Figure B4 shows scatter plots of early (1991)

LLM migration rates to the change in rates 20 years later. There is a clear negative correlation

across the distribution of initial mobility rates and among LLMs of various size.

The righthand panel shows the five year rates using our preferred one-to-five year conversion

procedure for the ACS-era years (2005-2017) (See Figure B4 for alternative conversion proce-

dures). Like the one year rates, five year rates drop substantially more in the initially faster

locations. Though this relies on a correction procedure based on external data, the fact that

the proportional changes are so similar in census and IRS data provides strong corroborating

evidence that the fast/slow distinction is not an artifact of a particular dataset.

Appendix Figure B5 shows the pattern of changes when parsing the migration flows network

of origins to destinations. The trends out of each origin local labor market are remarkably similar

to all types of destinations: to near and distant locations, to small or large LLMs, to common

destinations and the infrequently visited. Thus, the declines are clearly a general slowing from

the origins.

Understanding the decline in outflows from fast locations is then essential for studying the

national mobility decline. A simple accounting exercise helps fix ideas. The fast tercile of

locations make up one-third of population but by definition a greater share of out-migrants–

20The differences in LLM-category trends are statistically significant by standard measures.
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about 44 percent of them in the early 1990s. We project how many migrants there would be in

2010 if all cities moved at 1990 levels, and we then take the difference from actual as the number

of “lost migrants.” This accounting indicates that, with a larger share of migrants and a larger

decline in rates, the fastest third of LLMs is responsible for 64 percent of the national decline.21

In contrast, slow locations account for only 13 percent of the decline despite comprising 40

percent of population.22

The spatial pattern invites two natural questions: What is different between fast and slow

locations? And then, what is changing?

2.4 Fast Locations: Centers of Continental Population Expansion

Which locations are fast? To begin, we show there is a strong regional component to popu-

lation turnover. Table 2 lists the location of fast, medium, and slow LLMs by region of the U.S.,

where we have collected contiguous regions of LLMs to balance current population mass; each

region comprises (as close as possible) one-fifth of population in 2010.23 The regions roughly

correspond to standard census regions, with one notable difference in the areas of the Rocky

Mountains, Central Plains, and Southwest, which are denoted the “Frontier” to distinguish from

the South Atlantic and Pacific West. See Appendix G for details.

It is clear that western and southern states dominate the fast locations. For instance, 87

percent of the West’s population lives in a fast LLM, but there are none in the Midwest and

only two in the Northeast. (These are Washington DC and Manchester, New Hampshire.)

The regional pattern hints at what is different about fast places: These are LLMs and regions

with a recent history of high population growth. Figure 4 makes this plain by plotting decadal

rates of population growth by region (in the lefthand plot, all places within region, regardless of

metro status) and by LLM category (in the righthand plot, all metro areas, regardless of region).

The 20th century was a time of continental expansion,24 as population growth in the Frontier

and especially the West drastically outpaced the national as a whole. These regions transformed

from sparsely populated desert to urban growth engines. The Midwest and Northeast lagged

throughout. The South emerged as a population destination in the latter half of the century,

and the Frontier region retains a relatively high rate of growth.25

Consequently, fast LLMs grew markedly over the last century. Cities such as Los Angeles,

Phoenix, and Las Vegas burgeoned from small outpost towns with just a few thousand residents

21As a particularly notable example, the cities of California make up 31 percent of the lost migrants, and
Southern California alone - Los Angeles, Riverside/San Bernardino, and San Diego - makes up 18 percent.

22The single largest LLM, New York City straddles the boundary of the bottom third of mobility, with the
associated lumpiness making the bottom tercile actually more than one-third of population.

23The regions are based on LLMs instead of state boundaries.
24See Chinitz (1986) for a discussion of American regional transformation.
25Texas is contained in the Frontier region and is responsible for a large fraction of recent population growth.
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Table 2: Regional Location of Fast, Medium, and Slow LLMs

Northeast Midwest South Frontier West

Panel A: Count of LLMs

Region Total 38 71 69 61 36

Within Region:
Fast 2 0 16 16 27
Medium 8 22 14 15 2
Slow 18 29 10 4 0
Rural/Omitted 10 20 29 26 7

Panel B: Population Share

Region Total 0.24 0.24 0.18 0.16 0.17

Within Region:
Fast 0.09 0.00 0.24 0.31 0.87
Medium 0.22 0.19 0.32 0.32 0.06
Slow 0.63 0.55 0.14 0.04 0.00
Rural/Omitted 0.07 0.26 0.30 0.33 0.06

NOTES: See Figure G1 for regional definitions. The omitted category collects select excluded LLMs (military and college towns, as described in
Appendix F) and rural areas unclassified as LLMs. (Source: IRS and census data.)

at the start of the 20th century to major urban areas at its end. It is particularly notable that

population growth in fast cities peaked in the post-war period–about a generation before the

migration decline began–and declined sharply thereafter (though they still are growing somewhat

faster than medium and slow cities).

Expansion to these new regions was relatively sudden (by historical standards), as new

technologies made developable areas that were once too remote or difficult to inhabit at a large

scale. The reasons for the growth of these areas are varied, but one frequent theme is water

technology. In the arid West, urban and rural areas developed simultaneously (in contrast to the

slower rural-to-urban development of the wetter eastern U.S.), as rivers were harvested for urban

populations, irrigation for agriculture, and hydroelectric power for industry, including defense

industries during World War II (Luckingham (1984), Reisner (1993)). A notable example (with

a colorful history) is the development of Los Angeles following the completion of the aqueduct in

1913 and its increasing use for urban water delivery in the 1920s. On the opposite coast (with an

equally colorful history), the technology of water control aided Florida’s development, as storm

water was captured and swamps were drained (Barnett (2008)).

Moreover, advances in transport technology and climate control made accessible newly de-

sirable parts of the American continent (Ullman (1954), Trippett (1979), Luckingham (1984),

Arsenault (1984), Glaeser and Tobio (2008)). Railroads connected the population centers of the

east to the west and the Florida peninsula (Wiggins (1995)). Later in the 20th century, air

conditioning played an important role. Besides making hot summers tolerable, air conditioning

enabled the construction of high-density residential structures and large-scale industrial produc-
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Figure 4: Population Accumulation Over Time, by Region and by LLM Mobility Rates

Region LLM Category

NOTES: The figure reports decadal population growth rates by LLM speed category (left) and region (right). Definitions are detailed in Appendix G.
(Source: Census county population estimates, harmonized over time by Manson et al. (2018), and IRS data for LLM categorization.)

tion. Overall, the technological trends meant the 20th century was a particular phase of history

characterized by an opening of the American continent to urbanization at a scale not previously

experienced–and one that had converged by century’s end.

2.5 The Evolution of At-Home Status Across Space

The history of population growth had implications for the birthplace source composition of

these cities–in other words, where people living there had come from originally. Figure 5 uses

census microdata on place of birth and place of residence to report the proportion of residents in

each set of locations that are (1) born in a state represented by their current LLM (“At Home”),

(2) born in some other U.S. state, or (3) born outside the U.S. Separately, a line reports the ratio

of at-home population to other U.S.-born (i.e., dropping the foreign born from denominator) to

measure the share of U.S. natives who are in the LLM of their birth.

One obvious pattern in the national total in the upper left (though not the focus of this paper)

is the fluctuation in the share of foreign-born population, which compressed substantially after

immigration restrictions in the early-to-middle 20th century (see Abramitzky et al. (2019)). In

recent decades, an increasingly larger proportion of population growth is due to the arrival of the

foreign born. However, as Table 1 indicates, understanding the “mover class”– the U.S.-born,

away-from-home population–is most relevant for total migration rates. Among this group, the

national fraction masks the important heterogeneity by LLM speed category. In the middle

century, fast locations had a widening share of U.S.-born population sourced from other states,

as the plot of the upper right of Figure 5 shows. That is, the large growth rates in Figure 4

were substantially made up of people moving from other regions and populating the West, the
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Figure 5: Population Share From Birthplace Source, by LLM Mobility Category

NOTES: At Home refers to living in an LLM in one’s state of birth. Other U.S. refers to a birthplace in another U.S. state not covered by one’s LLM.
Outside U.S. are foreign born from any other country (or non-continental U.S. states and territories). The figure panels are summarized by LLM
mobility categorization (fast, medium, and slow). Total includes all LLMs and rural areas/excluded small cities. (Source: Authors’ calculations using
census data; IRS data for LLM categorization.)

Frontier, and Florida. This growth slowed, and the population share of the at-home gradually

increased, from about 60 percent in 1960 to 80 percent by 2010. As one example, in 1960, 20

percent of the U.S.-born Los Angeles residents were from California; by 2010, that share was 71

percent. Medium and slow speed LLMs, in contrast, have at-home shares at higher levels but

flat or downward trends.

Knowing that home attachment matters greatly for migration propensity, this pattern is

the critical clue in understanding the mobility decline and its spatial pattern. The population

growth trends of the 20th century left fast locations with large shares of residents who were not

originally from those locations, and hence they were shallowly attached to these new locations

and more likely to move away again. As the population growth converged, ever-larger proportions

of residents were native to these cities, putting greater shares of their populations into a more

attached status.

One test of this theory is to examine move rates by home status over time, which is un-

fortunately complicated by the change from a five year retrospective question in the census to

a one year retrospective in the ACS. The best-available version of the test is to use the five

year conversion rates mentioned earlier and discussed in detail in Section A. Figure 6 shows the

migration propensity over time by birthplace status under this conversion. The only discernible
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Figure 6: Migration Rate Over Time By Birthplace Status

NOTES: The figure plots implied five year migration rates by home status. The years using the ACS sample (2005 onward) convert to five year rates,
as explained in Section A, using the conversion factors in Table A1, hazard model. The samples have been balanced to have a constant age/education
composition over time. (Source: Census, ACS, and PSID data).

trend is a slight decrease in the move rates among the at-home group. (Figure B6 shows the

pattern by LLM speed, which reveals that the migration rate for the at-home residents of fast

locations has trended down, a feature we explain below.) Otherwise, the within-group consis-

tency suggests the aggregate change results from a shift in population composition from the

mobile, not-at-home category to the at-home category. Table B4 uses an odds ratio regression

to standardize the comparison across the different migration horizons in the census and ACS.

The results confirm the impression from Figure 6.

To formally test the hypothesis of home attachment requires a model of migration propensity,

a measurement of home attachment, and an accounting of coincident factors. We develop the

model in Section 3 after examining the LLM attributes to feed the model.

2.6 Local Labor Market Attributes

With population growth history as background, we now review some of the modern attributes

of LLMs in our data.

2.6.1 The Degree of Local Home Attachment

Figure 5 indicated that fast locations have smaller shares of at-home residents, which, com-

bined with the migration propensities reported in Table 1, suggests one major reason for their

high rates of turnover. But looking within home status across LLMs shows there is even more

to the story. Figure 7 plots the migration propensity by birthplace status for each age and
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Figure 7: LLM Migration Rates by Age, Eduction, Birthplace Status

NOTES: The figure plots migration propensities by age and educational group and at-home status, split by LLM speed category. The national averages
by person type are reported in Table 1. (Source: ACS data; IRS data for LLM categorization.)

education group, as in Table 1, but split by origin LLM mobility tercile. Within the U.S. born,

regional transplant group “Other U.S.,” fast, medium, and slow cities send away their trans-

planted residents at similar rates, and patterns among the foreign born are mixed. However,

among the “At Home” group, a clear slope emerges–natives of fast locations move away at higher

rates than natives of slower locations. Thus, the fast locations not only have more nonnative

residents, but also send away their natives at higher rates. This suggests the intensity of home

attachment varies across space.

Recollection of Figure 5 provides a clue to the source of home attachment intensity. The

lines plotted in that figure show that fast locations have lower (but increasing) rates of the U.S.-

born native to their current LLM. If home is preferable because of social and family networks,

as the literature reviewed in section 1.1 indicates, stronger connections could produce stronger

preferences, and hence shifting spatial populations might impact migration incentives for several

generations. Given post-war U.S. population trends, a Boston native, for example, is far more

likely to be born to parents who were also Massachusetts natives than a Los Angeles native is

to be born to native Californian parents.

This feature motivates our measure of home attachment, which we will call “rootedness.”26

Appendix F.3 contains a detailed discussion of implementation. In brief, to build the measure,

we employ the decennial census microdata with birthplace back to 1880. We define a measure

of rootedness to be the probability of being born to parents native to one’s own location of

26We certainly did not invent the terms “roots” or “rootedness,” as these are used in a variety of contexts
across the population sciences, but we mean to use it here in a particular way.
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birth, applying the measure to current generations by matching birth cohorts for each LLM by

place of residence in the child’s first census. For example, a 30-something in 2010 was born in

the 1970s and was therefore under 10 in the 1980 census. We take children under 10 in 1980

living in, for instance, the Boston LLM, and then, using the family relationship variables in the

census, summarize the proportion of their parents who report a home state of Massachusetts.

This proportion is a proxy of how highly attached to Boston is someone born there 20-30 years

earlier, even when possibly living in other locations by the 2000s.

Rootedness by our definition is feasible to measure, but of course is only a proxy. Birthplace

may be an imperfect measure of one’s sense of “home,” and besides, the measure is a cohort-

matched propensity and not directly observed for any one individual. Thus, it might be an

understandably poor descriptor of home attachment. But in fact, rootedness is highly predictive

of migration propensity–and in a pattern consistent with Figure 7. We run odds ratio regressions

of move rates using rootedness as an explanatory variable, along with other controls for local

labor market attributes. The results are long, so we relegate them to Appendix Table B2. In

summary, we find high rootedness to predict low migration rates among natives of an LLM–and

only natives–in line with Figure 7. Natives leave more rooted places at much lower rates than

less rooted places.27 If rootedness were a place effect, we would expect the same correlation

among nonnatives, but instead nonnatives leave rooted LLMs at similar or higher rates than less

rooted places.

We conclude that rootedness will be a suitable proxy for measuring home attachment and its

variance by geography and cohort. We discuss additional advantages of the rootedness measure

for model estimation in more detail in Section 4.

2.6.2 Demographics and Income

Before proceeding, we check for other local labor market differences between fast and slow

cities to incorporate into a formal model. For brevity, we simply summarize some of the key

patterns via correlation statistics reported in Table 3. The first column is initial mobility (1991)

and the second is change from 1991 to 2010. A negative correlation of a variable X with changes

in migration means a higher value of X is associated with a greater decline in the mobility rate.

The top panel considers obvious population attributes. The first issue to note is that market

size has nothing to do with the decline. Population size is on average negatively correlated

with turnover rates, but there are cities of all sizes at each place in the distribution of changes

(see also Appendix Figure B4). Population growth rate, however, is positively associated with

mobility levels and declines, consistent with the historical analysis above.

27Return rates are more similar across places; that is, while natives are very likely to return home, natives of
more rooted LLMs are no more likely to return than natives of less rooted places. We find this to be a place
effect to some degree–in-migration is lower to more rooted places among all migrants, natives and otherwise.
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Table 3: Correlation of Mobility Rates and Local Labor Market Attributes

Migration Rate

Variable Sample/Statistic Initial (1991) Change (1991-2010)

Population Log Size -0.25 -0.04
Growth 0.50 -0.36

Aged Under 40 Share 0.15 -0.35
Change in Share 0.30 -0.18

College Educated Share 0.03 -0.18
Change in Share -0.36 0.31

Mean Income Noncollege -0.22 0.09
College -0.07 -0.19

Income Growth Noncollege 0.16 -0.09
College 0.12 -0.16

Income Dispersion (SD) Noncollege 0.28 -0.37
College 0.20 -0.16

NOTES: The table reports correlation coefficients of local labor market attributes by row to migration levels and changes, by column. Declines in
migration are negative changes, so a negative correlation indicates a larger value of the variable is associated with a larger magnitude decline. (Source:
IRS migration data; ACS and 1990 census data for attributes except 2010 and 1990 county data for population.)

Next we document population composition characteristics that are predictive of individual

migration propensity, age and education. Faster cities are only slightly younger, on average, and

have seen a slight increase in the population aged under 40 years. But these younger cities have,

if anything, seen larger declines, which suggests aging alone cannot explain the spatial pattern

to the decline. Faster locations have no more college graduates, and higher levels of education

are weakly associated with larger declines on average. Growth in the college educated share

has tilted towards slightly less mobile places, and consequently, places with smaller declines.

Nationally, the U.S. has experienced an aging but more educated workforce, and given the large

differences in average move rates by worker type (Table 1), we will account for these types in

the model. The correlations, however, suggest that composition by age and education will do

little to explain the spatial pattern in the mobility decline.

A model of local labor market migration presupposes the importance of labor opportunities

in determining location choice. Accordingly, the lower panel compares local mobility rates with

local income distributions by education category. The associations with mean incomes are mixed

and relatively weak. LLM mobility rates are negatively correlated with mean income for the

noncollege educated, but the correlation with change in mobility is just above zero. Mean

incomes for the college educated are weakly correlated with declines. Growth in average income

is weakly correlated with mobility rates and decline. Income level of course will be a component

of the model, but given these patterns, we do not expect these to be driving the aggregate trends.

On the other hand, there are stronger associations of mobility to income dispersion, especially

among the noncollege educated. Places with higher income dispersion exhibit higher turnover

and greater decline in migration. We take this point seriously for two reasons. First, if fast

places have more disperse and uncertain income distributions, workers in these places may face
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more frequent or more severe shocks to income, which could in part explain the higher tendency

to out-migrate. We note that migration is more likely among individuals at the higher or lower

points of the income distribution compared with the middle, as shown in Appendix Table B5.

Perhaps more importantly, the association of LLM income dispersion is strongest among lower

income individuals, as shown in Appendix Figure B7.

The second reason is that changing information availability (as in Kaplan and Schulhofer-

Wohl (2017)) may make it easier for workers to avoid or cope with these types of shocks, leading

to a trend in the effect of dispersion on migration rates. Therefore, we include in the model a

role for heterogeneous income distributions across places and the ability for workers at different

points in those distributions to migrate at different rates.

3 Model

The descriptive evidence paints a clear picture that the spatial pattern of the migration

decline is consistent with converging population growth rates coupled with regular home prefer-

ences. However, many things in the economy were changing over this horizon, so we rely on a

model to quantitatively test the contribution of home attachment vis-a-vis other margins.28 We

now write down a model of location choice that incorporates the key aspects described above:

home utility and its intensity, local labor market attributes, and various types of workers. A

dynamic discrete choice model is well suited to the task of explaining costly migration decisions

for heterogeneous workers over a set of alternatives. We write such a model in the tradition of

Kennan and Walker (2011), broadly, with adjustments for our focus on spatial heterogeneities

and bearing in mind that the model will be applied to cross-sectional data.29

3.1 Environment

The economy consists of a closed set of J distinct locations. There are a discrete number of

types of people, “workers,” with individual types denoted by τ , who each live for A > 1 periods.

Each location offers a N -pointed discrete distribution of income. All workers are employed. We

abstract from labor supply and cost-of-living differences between locales, though in the empirical

implementation we adjust for the latter.

28Moreover, data limitations preclude a direct test of home attachment. The best we can do is convert one year
migration rates to five year and compare across censuses. The exercises in which we do this (see Figures 3 and
6), are consistent with the explanation of rising home attachments, but the conversion of move rate frequency
comes with caveats.

29Longitudinal datasets contain personal information and moving histories that would facilitate estimation of
a structural model, but are not large or rich enough to include the spatial heterogeneity that is also important
to our analysis. Specifically, the measure of the home premium relies on variation in move rates by home status
within age, education, and location groups–the latter being especially constraining in smaller datasets such as
the PSID.
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Individual workers are endowed with a home location (which may or may not be their current

location) that provides them with a utility flow available nowhere else. The size of this flow

utility (the “rootedness”) is also endowed at time of birth and remains constant throughout the

workers’ lives. This flow utility is provided at any point in the income distribution and hence

is not affected by the income search process detailed below. We denote utility from home, a

function of rootedness, simply as uj=H(r).30 The rootedness of a location affects the utility

offered to its natives but not any other workers born elsewhere living in the location.

Workers face moving costs to relocating from their origin at the start of the period, whether

home or not. We make a careful distinction between moving costs and horizontal preferences for

particular locations. While the home premium inclines workers to prefer their own birthplace

ceteris paribus, moving costs introduce frictions. These ideas are often conflated in the literature,

either as shorthand or because of data limitations.31 It is important for our model to separate a

relocation cost from an agent’s preference for a particular place. Home attachment is a dimension

of horizontal location quality, not an adjustment cost to relocation. This is especially important

in counterfactual simulations, where we alter the distribution of home preferences but keep

adjustment costs fixed by assumption (we never assume moving costs increase).

Time is discrete. Workers begin a period in an initial location and face the full set of J

alternatives, including their origin. Within a period, two to three substages may occur. First,

workers decide whether to stay in their current location. Second, and contingent on deciding to

migrate, they choose a location. In either case, a last stage in which income shocks are drawn

is also modeled to allow for expected income to have an impact on the location decision.

3.2 Migration: Choice Across Locations

We begin in the middle stage, assuming that a worker has decided to migrate and model

the choice of location j conditional on it being different from the origin o. To account for

heterogeneity between locations in mobility rates in ways not captured by home preference,

income, or other characteristics, we allow moving costs to be symmetrically dependent on the

pair of locations, representing a generic notion of “distance” (so that mcj,o = mco,j).

We denote types and describe the income search process below; for now, it suffices to label

the common flow value of a location as νj. Workers are presented with the common value for a

location, the home utility premium if applicable, and pair-specific moving costs. Let v denote

30Our referring to home attachment as “preference” suggests nonpecuniary benefits, but we do not mean to
limit the scope. There can be economic benefits from trusting relationships, such as child care provided by
grandparents, or aid in job search (see Krolikowski et al. (2020)).

31For example, Moretti (2011) introduces a model with a whole distribution of location-specific preferences to
study their impact on labor mobility in response to local market shocks. Bayer et al. (2009), Diamond (2016),
and Bryan and Morten (2019) put a measure of home in the utility function (as we do), but refer to the effects
as “moving costs.” Morten and Oliveira (2016) make a more precise distinction, using relocation costs in their
model but in empirics checking for robustness to use of both distance costs and specific preferences for birthplace.
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the value of making a locational choice,

vj,o = νj + uj=H(r)−mcj,o + βEV (j). (1)

Equation (1) shows the sources of utility, the moving cost wedge, and because workers live past

today, the continuation value from choosing j, V (j). As is common in discrete choice models, we

allow for a temporal idiosyncratic preference shock term distributed Type I extreme value with

a variance determined by parameter λ. Preference shocks are important for rationalizing the

gross flows at the focus of our analysis. Expectation E is taken over future preference shocks.32

With these shocks, the probability of choosing destination j conditional on moving from current

location o is given by

Pr(j|o,m) = σj|o,m =
exp[v

1
λ

j|o]∑
i exp[v

1
λ

i|o]
. (2)

3.3 Choice of Migrating or Staying

The upper nest is the binary stay (s) or move (m) decision. The value of staying is consuming

flow utility in the current location (origin o) and being faced with the same decision next period,

Vs|o = νo + uo=H(r) + βEV (o). (3)

The value of moving is the expected value of choosing a destination optimally from maxj{vj,o}
(the inclusive value, or ‘Emax’), which using standard results is

Vm|o = λln
(∑
k 6=o

exp[v
1
λ

]

k|o
)
. (4)

The respective probabilities are

Pr(stay) =σs =
exp[Vs|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

(5a)

Pr(move) =σm =
exp[Vm|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

, (5b)

32Under our data constraints, we abstract from evolving state variables like the future path of incomes, although
in principle we could introduce them if data allowed. As we describe in the estimation section, this is not a serious
threat to bias in our results because of the reduced-form way in which we capture continuation values.
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where the elasticity of the upper nest is governed by δ. The expected value of being faced with

a move/stay decision in some origin o gives the continuation value of locating there,

EV (o) = δln
[
exp[Vo]

1
δ + exp[Vm|o]

1
δ

]
. (6)

3.4 Income Search Within Locations

We now specify the income search process. Our emphasis is on the potential effects of

local income distributions on gross mobility flows, not the effects of individual income changes

on idiosyncratic migration decisions. We do not observe the joint dynamics of income and

location in our data, but we include this component in the model to allow for differences in

income distributions between locations or over time to affect gross migration rates. We devise a

formulation that could generate higher mobility in and out of higher dispersion areas (as Table

3 suggests). In particular, this specification allows workers with especially low or high income

draws to migrate at rates higher than those of a mean worker (see Table B5 and Figure B7).

Moreover, the formulation incorporates an “information friction,” a la Kaplan and Schulhofer-

Wohl (2017), which can evolve over time and therefore may affect the trend in migration.

The worker begins the period at some point in the income distribution, yn. Let W (n) denote

the utility afforded by income at some point n (suppressing location notation). Each period in

every location, there is some probability γ that the worker is contacted with a new offer. If the

worker fails to get a contact, occurring with probability 1−γ, she is left to a non-optional lottery

where her new wage is drawn from the probability distribution πn′|n. Note the distribution is

conditional on her current state. The expected value of the non-optional lottery is

w0(n) =
N∑
n′

πn′|nW (yn′). (7)

Were the worker to receive a new contact, she is allowed to choose between her current income

yn and the new income yn′ . We specify this as a discrete choice subject to an idiosyncratic shock.

The new income is not only temporal but a change in her state variable to enter the next period.

Hence, the choice conditional on a new contact is max{W (n),W (n′)}. New offers are drawn from

the same probability distribution, so the expected value conditional on making a new contact is

wc(n) =
N∑
n′

πn′|nE(max{W (yn),W (yn′)}). (8)

A contact is the better outcome for the worker in the sense that she can reject the poorer offer.

Combining these yields the expected utility from beginning the period at income state n
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ωn = γwc(n) + (1− γ)w0(n), (9)

a γ-weighted average of income possibilities. The parameter γ represents the “ease of informa-

tion” in that greater values provide more contacts and more options (though not necessarily

higher incomes in all cases). The combined value ωn is a function of γ, current income, yn the

income available in the location, yn′ , and the distribution of income changes, πn′|n.

We allow for the possibility that local and nonlocal searches are not equivalent (as in Kara-

han and Rhee (2014)). Specifically, we allow the probability of drawing points in the income

distribution to depend on whether the income search is conducted by an incumbent resident or

someone residing in a different location. For example, we think it reasonable that searching in

one’s current location is in some sense “easier” than searching in a faraway location, as even with

increasing availability of information technology, local networks remain important. Notice that

this distinction is based on origin, not birth location. To operationalize this idea, we allow for

two distributions on new income shocks: πlocal and πnonlocal.33 Using data on income dynamics,

we can identify differences in income transitions between those who move to new locations and

those who do not.

The income search component serves several purposes in modeling the heterogeneity in spatial

dynamics of migration. The first is that income distributions have evolved in different ways

across LLMs, which might impact out-mobility. From Table 3, mobility declines are somewhat

associated with increasing means of the income distribution. Moreover, the effects of such

income growth on out-mobility could be amplified in a model with a local market bias in search

opportunities. Second, income distributions are heterogenous across locations, and a common

trend in information availability could affect some more than others. Specifically, it can be

readily shown (see Appendix C) that ωn is increasing in the variance of income because of

the presence of option value in wc, and the value of this optionality is convex in γ. Hence,

more disperse income distributions (which appear in fast LLMs, shown in Table 3) could be

more affected by a change in information frictions. Thus we are allowing for the possibilities

that heterogeneous (or heterogeneously evolving) income distributions could affect the model’s

predictions about migration rates. Ultimately, the quantification of the income channel will

depend on the parameters and variance across locations.

3.5 Worker Types

Up to this point, for ease of notation we have suppressed worker types, but the relative value

of functions (4) and (6) may depend on characteristics of the worker. Birthplace and rootedness

33An alternative would be to use different offer arrival parameter γ, but this parameter is already very abstract
and difficult to discipline with data, whereas income changes can be calibrated with longitudinal data.
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are endowed characteristics. We also treat age and education as immutable characteristics

because we observe one location choice event per individual. Location is the endogenous state

variable–we observe workers in one state, which they can alter by choosing a new location.

Equation 10 writes out the choice specific values from (1) with all state variables: origin o

and the worker’s endowed type τ , which is her birthplace, age/cohort, and education. k changes

endogenously, but τ is fixed over time.

vj,τ (o, n) = µj,τ + ωnj(n, o, τ)︸ ︷︷ ︸
νj,τ

+uj=H|m(rj,τ )−mco,j,τ + βEVτ (j, n
′|n). (10)

Note the introduced amenity parameter µ that can vary by type. Differences in amenities or cost

of living (conditioning on income), and how different ages and education levels might view these,

will drive location net growth (as in Gyourko et al. (2013), Moretti (2013), Diamond (2016)).

While our focus is on gross migration, accounting for net migration patterns in estimation will

help identify the parameters of interest because our data are conditioned on initial states.34

One concern with mixing all these types together in a joint estimation is that they may have

different continuation values of a particular choice. As we describe below, the use of condi-

tional choice probabilities elides the solution of the model but still accounts for heterogeneous

continuation values in a flexible way.

4 Applying the Model to U.S. Data

We now describe how we take the model to data on U.S. LLMs. The estimation strategy

proceeds more like a location demand model (such as Bayer et al. (2009) or Diamond (2016)),

which emerged from the demand estimation literature in the theme of Berry et al. (1995),

than a dynamic migration model because our data report one location choice event. While

our model was written as a dynamic microeconometric model like Kennan and Walker (2011)

or Bishop (2008), the estimation uses aggregate choice probabilities (market shares) instead

of, e.g., maximum likelihood estimation on panel microdata. We account for forward-looking

behavior by exploiting the structure of the logit choice model, which has a closed form solution

for continuation values in a dynamic optimization problem.35 The generic idea of deriving

estimating equations relating gross flows to adjustment costs has an antecedent in Artuc et al.

(2010), although the nested structure of our model requires us to derive these in a new way, and

34In other words, the data may be coming from a period of transition–say, net in-migration to a location
because of relatively positive amenities. Controlling for this nonparametrically will help identify the parameters
of interest, home preference and moving costs, in the usual way–by accounting for omitted variable bias.

35Bayer et al. (2016) and Davis et al. (2017) estimate a location demand model accounting for future values in
a model of neighborhood choice within a single metro area. Though there are significant differences in context
and emphasis, our estimation strategy bears some similarities to these in that we exploit computational savings
from logit demand models.
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the sources of identification in our model is variation by geography and cohort instead of over

time.

We estimate the model on a single cross section of U.S. cities, using the 2005-2017 ACS

data. This allows us to identify the preference parameters for the economy at that time. Then,

taking the primitive parameters as fixed, we simulate the economy in previous periods as location

features evolve, which we will describe in Section 6.

4.1 Estimation Strategy

The main parameter of interest is the size of the home premium and its dependence on

rootedness. The parameters of necessity are the move costs and location amenities, which can

vary by person type, origin, and destination.

4.1.1 Utility Parameterization

The utility function seen in (10) contains the parameter µj,m, which represents mean prefer-

ences for a location j held by workers of type τ . In our preferred specification, we split types

into eight categories, four decadal age groups, 20s to 50s, for each of college and non-college-

educated workers. Attributes of the location, such as amenities or cost of living, will be subsumed

in this parameter. In estimating by type, workers of different ages or education levels can have

heterogeneous preferences for these.

For home preferences, we use a simple utility function in which utility from home is an

indicator variable uj=h(r) = ατI(j = h) or a linear function of roots, uj=h(r) = ατRjI(j = h),

the former being a specification check and the latter our preferred specification.36 In either, we

allow α to vary by education level.

The distinction in the specifications highlights the use of rootedness as a measure of the

intensity of home attachment, for which there are several advantages. First, it offers a source

of variation that a simple at-home indicator cannot. Variation in birthplace and cohort provide

identifying variation in rootedness. Some locations are more rooted than others, and some

generations are more rooted than others. For example, young college educated workers may

prefer to live and work in San Francisco (captured by ν) on average, but natives of San Francisco

also draw a home premium from there that workers born in, say, Boston, do not. The variation

in choice probabilities by birthplace identifies the parameter. Similarly, if the rootedness of

San Francisco varies between the 20 and 30 year old cohorts, for example, heterogeneity in

their propensity to choose San Francisco helps to identify this parameter. Second, it is more

36We experimented with several functional forms, and the results are roughly similar, but this single parameter
specification is the simplest way to ensure a nonnegative value for home in all markets in all time periods. Adding
an intercept, for instance, causes the lowest-rooted city, Las Vegas, to have a negative projected home preference.
Home preference in Las Vegas appears weak but is not inverted.
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plausibly exogenous (in the microeconometric sense that it is predetermined for the agent), as

it is an endowed characteristic at birth and is not subject to the person’s choices the way an

at-home status indicator would be. Thus, rootedness allows us to test for the presence of a

home premium even without longitudinal data. We do, however, acknowledge that this will be

a noisy measure of social attachment, partly because birth state may not actually measure well

what one considers as “home,” and partly because, even if it measures “home” well, we do not

actually observe the actual rootedness of the 2010-era individual and instead match by cohort.

However, reduced form results have showed it to be predictive, and it is readily constructible for

a wide swath of geography. Hence, we employ it as a reasonable proxy for the deeper concept

of “attachment.”

The estimation of home preference could be biased if other frictions are ignored, so we turn to

the estimation of move costs. The move cost function has an intercept shifter for each education

and age category to account for the profile of migration over the life cycle and by worker education

level. Then, to account for the spatial component of migration probability, we enter the distance

in kilometers between LLM centroids. Since migration rates fall off with distance, we expect

this term to be negative (i.e., increasing distance means less moving). We also allow a discrete

shift in distance for “neighboring” LLMs (those with counties sharing a border), for LLMs in

the same state, and for LLMs in the same region.37 We further allow distance cost to vary if the

destination is one’s home location via an interaction of distance terms with the home indicator

function. The move cost function is

mc =
∑
τ

I(τ)mcτ︸ ︷︷ ︸
types

+
D∑
d

mcddo,j︸ ︷︷ ︸
distance

+
D∑
d

mcdhdo,j=h︸ ︷︷ ︸
distanceX home

.

Table 4 below will compare specifications to demonstrate the importance of each component of

the move cost function.

4.1.2 Estimation Method

We next describe the estimation method. The basic idea is to use the model structure to

derive a set of estimating equations. We briefly describe the method here, and details and

derivations are reported in Appendix C.

The model is dynamic discrete choice with multiple types of agents and a large number of

locations (and therefore birthplaces), making for a very large state space. Fortunately, there is

a very tractable way to estimate the model. As a memory-less discrete choice specification, this

37We have experimented with specifications in which LLMs have entry/exit costs, as if there were a polit-
ical border, to further account for heterogeneity in turnover rates in excess of what is captured by distance,
age/education composition, home status. The results are quite similar to what we present here, but are much
harder to interpret because the magnitudes depend on the normalization location.
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model is well suited for estimation via conditional choice probabilities (CCPs). CCPs arise in the

logistic model because of the mapping between the continuation value and choice probabilities

(Hotz and Miller (1993)). The advantage is that the model need not be solved to arrive at

parameter estimates. Instead, one needs to derive the mapping between choice probabilities

conditioned on state variables and the model’s parameters.

Specifically, our model has the property of finite dependence (Arcidiacono and Miller (2011)).38

That is, because the choice problem is memory-less by some point s (i.e., it does not depend

irreversibly on the whole sequence of choice), two disparate choices in some period t can be

returned to some normalized choice by some future period t + s. In our model, s = 1, allowing

expression of the model parameters in terms of current period and next period (i.e., the per-

son’s expected choices after aging one period) choice probabilities. From this, we can yield an

estimating equation in terms of current and expected future choice probabilities.

Besides providing major computational savings, the CCP method is especially convenient

because our cross-sectional data contains a single location choice event per person, making

it difficult to estimate a fully dynamic microeconometric model. Yet, ignoring the forward-

looking component would risk misspecification bias, with the continuation values essentially

being omitted variables. Expressing the future value in the form of expected choice probabilities

performs something like a control function in a standard regression model by accounting for this

omission.

The derivation of the estimating equations is straightforward but tedious, so we relegate

the details to Appendix C. The outcome choice probabilities are twofold: (1) the probability of

moving (“move/stay”), and (2) conditional on moving, the probability of choosing a particular

location. For the move/stay probability, the mappings between (6) and (5) provide the following

expression relating choice probabilities to the utility function:

ln
σso
σmo
− ln σsz

σmz
+
β

δ
ln
σ′m|o
σ′m|z
− (β − 1)λ

δ
ln
σko|m
σkz|m

=
1

δ

[(
u(xo)−u(xz)

)
θu+(β−1)

(
mcj,o−mcj,z

)
θmc
]

(11)

where σso, σmo are, respectively, the probabilities of staying in or moving away from a location

o, and σko|m is the choice probability of moving to location k from o. Here, we have used the

properties of finite dependence to iteratively substitute out the future value functions with con-

ditional choice probabilities. The normalizations of using the odds ratio relative to an arbitrary

place z is necessary because the discrete choice model will not identify the scale of utility, only

the difference in choosing one option versus another. The major advantage of this expression

is that it has data on the left and (functions of) parameters on the right, yielding a fairly

standard-looking estimating equation.

38Finite dependence and CCP estimation is also lucidly described in Bishop (2008) and Ma (2019).
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A similar derivation of the destination choice probability of location j versus k, using (4) and

(2), with normalization to location z and iterative substitution of choice probabilities for future

value functions, yields the following expression:

ln
σj|o
σk|o

+βln
σ′m|j
σ′m|k

+
β

δ

1

λ
ln
σz|j,m
σz|k,m

=
1

λ

[(
u(xj)−u(xk)

)
θu+

(
mcjo−mcko+

β

δ
(mczj−mczk)

)
θmc
]

(12)

which, as before, has choice probabilities on the left and functions of parameters on the right.

These equations can be stacked to form the vector equation[
Y1

Y2

]
︸ ︷︷ ︸
Y

=

[
1
δ

0

0 1
λ

]
︸ ︷︷ ︸

∆

[
u(xj)− u(xz) (β − 1)(mcjo −mcjz)
u(xj,o)− u(xk,o) mcjo −mcko + β

δ
(mczj −mczk)

]
︸ ︷︷ ︸

X

[
θu

θmc

]
︸ ︷︷ ︸

θ

. (13)

Vector Y contains the observed choice probabilities (Y1 the lefthand side of 11 and Y2 the

lefthand side of 12). Matrix ∆ is composed of the scaling parameters between nests. Matrix X

is composed of functions of utilities and moving costs (e.g., an indicator for whether a location is

home, how far two locations are from each other, etc.). Finally, θ is the vector of parameters to

be recovered. In short, Y is data, X is model structure, and ∆ and θ are parameters. There are

J − 2 choice probability observations (the origin o and the normalizing location z are trivially

excluded) for each location and worker type, and these equations can all be stacked together

as a large set of moment conditions. With choice probabilities on the lefthand side, and LLM

attributes and parameters on the righthand side, estimation proceeds much like a standard

regression: The data matrix X is inverted on the choice probabilities to recover the estimand,

θ.39

All parameters are jointly identified, but we can loosely describe what moments of the data

help to target which parameters. Variation in move rates by origin and type (ln σso
σmo

), such as

workers at home migrating out at lower rates, will imply higher utility (u(xo)); if this varies

with rootedness, the differences will load onto the rootedness parameters in u(x). Likewise,

higher propensity to choose home as a destination (
σi=H|o
σj|o

) when away from will imply greater

utility in home i than alternative destination j. A higher destination choice probability (
σi|o
σj|o

),

all else equal, will imply closer proximity and load onto the move cost function. Inclusion of the

additional conditional choice probability terms in Y adjusts for differences in the continuation

value terms that might otherwise bias estimation of the utility terms. For example, if move out

rates from home are lower than when not at home, the ln
σ′
m|o
σ′
m|z

term will be low for o = home, and

the lefthand side is reduced, accounting for the fact that the odds ratio ln σso
σmo

includes expectation

39It is convenient but not strictly necessary that utility is linear in parameters. The separability of the
preference shocks is required, however, to derive the mapping of value functions to CCPs.
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of continued utility premia in the future. Finally, note that an attractive feature of the regression-

like specification is that utility function matrix inversion accounts for the covariances in the

data. For example, if shallow-rooted places happen to be younger or less remote, the covariance

between move costs and home attachment is accounted for in the X matrix.

4.1.3 Scale Parameters and Move Cost Intercepts

Equation (13) identifies the parameters of interest off of differences in choice probabilities and

their relationship to difference between locations. However, scale parameters are not identified

here and must be calibrated elsewhere, as we describe next. The set of scaling parameters

includes β, λ, δ, and type-specific intercepts of the move cost function.

First, we set β to 0.95 a priori to conform to an annual discount rate.

Second, we can calibrate the ratio λ
δ

by using the relative differences in inflow and outflow

rates to a given location for a set of workers of the same type. As noted above, the odds ratios for

home/not-home are substantially different between the move/stay decision and the destination

choice decision. In order to best match this asymmetry, we use a ratio of parameters on a home

indicator in each side of the flow equation. Details are provided in Appendix D.3.2.

Third, a separate estimator for the move cost intercepts can be derived using substitutions

similar to the derivation of (13), as detailed in Appendix C.40 The estimator is:

lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
=

1

δ

(
Vo − Vj −mcj|o − λlnσj|o

)
lnσs − lnσm + λlnσj|o =

1

δ

(
Vo − Vj − mcτ︸︷︷︸

cost intercept

+
D∑
d

mcddo,j +
D∑
d

mcdhdo,j=h
)
.

(14)

This equation is identified by average move rates in levels, not relative move rates across

different origins. The difference between (13) and (14) is that the former removed value functions

to yield an equation in only choice probabilities and parameters, while the latter is forced to

retain value functions we do not wish to solve or estimate. However, we can control generically

for these unobserved origin and destination factors via fixed effects, treating Vo, Vj as ancillary

parameters. Then, entering the distance terms of the move cost function recovered in (13), (14)

40This step in estimation average frictions bears the closest resemblance to Artuc et al. (2010). Monras (2018),
on the other hand, does not use a move cost term, instead calibrating an average difference in elasticities between
nests, i.e. λ versus δ. We could have gone this route, although we prefer using moving costs to compare across
types (who have substantially different move rates, as in young versus old) without imposing assumptions about
between-destination elasticity. A move cost specification is also consistent with our environment in a model with
geography, where some locations are closer in space than others.
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will yield an estimate of the move cost intercept for each age/education type, mcτ in the data

from residual average move rates.41

4.1.4 Auxiliary Model: Continuation Values

In addition to major computational savings, the use of CCPs to approximate the value

function has the advantage of avoiding structure on agent’s expectations, which is especially

important in our context, since we observe only one choice event but not how choices change

as states evolve. Whatever workers might believe about the future is subsumed in the CCP

term. However, when we simulate the model at counterfactual environments, we must allow the

expectations to change accordingly. Instead of putting structure on the expectations that we

could not discipline with data, we flexibly estimate the choice probabilities and use functional

projections in counterfactual CCPs. We run an auxiliary model of choice probabilities using the

ACS microdata and environmental features of rootedness and income.

σm|o,τ = f1(ro,τ , µ
W
j,τ , σ

W
j,τ )

σjo,τ = f2(rj,τ , µ
W
j,τ , σ

W
j,τ )

We flexibly estimate the functions f1, f2 in order to approximate the choice probabilities of

moving or not (σm|j,τ ) and choosing a particular destination conditional on moving from j, (σkj,τ )

as functions of locations’ rootedness and income distributions (Wj,τ ∼ N(µWτ , σ
W
τ ). Note that

each variable is indexed by worker type τ . Details are available in Appendix D.4. We emphasize

that these auxiliary models are not used for identification of utility parameters but as an input

into the simulations, by allowing for a substitution of projected CCPs for the expected value

function in counterfactual situations.

4.1.5 Auxiliary Model: Income Dynamics

We use an 11-point discrete approximation to the income distribution of each location for

each education group. The points are centered at the mean and consist of five one-half stan-

dard deviations above and below. Population sizes for each point are assigned by the observed

distribution of workers of type τ within each bucket.

Workers transition between steps in the income distribution. We assume these follow a

normal distribution and follow Tauchen (1986) in discretizing it. We calibrate the parameters

governing income dynamics for incumbent residents compared with migrants, πlocal and πnonlocal,

using observed income changes for migrating and non-migrating employed workers in the Panel

Study of Income Dynamics (PSID). More details are available in Appendix D.7.

41Similar to (13), the regression can account for covariances in the data, if, for instance, young people tend to
reside more often in places far apart in space or utility gap (Vo − Vj).
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The information cost parameter, γ, is more difficult to pin down. Intuitively, the parameter

represents something simple: higher γ means more opportunity for voluntary income draws and

lower γ means less. However, we have no information on the arrival of voluntary income draws

over time in which to discipline this parameter. In practice, we will set the baseline to γ = 0.5

and move it incrementally over time to get a sense of its marginal effect on migration propensity

(it turns out to be small).

4.2 Forming the Moment Conditions

Lastly, we need to form the choice probabilities that make up the lefthand side of the es-

timating equations. Because we need one-year migration probabilities by worker type, home

location, and origin, we use the ACS microdata. With age group by education by birthplace

(including foreign) and by origin, there are 4 × 2 × (J + 1) × J cells, with J choices for each.

Because spatial heterogeneity is important for our analysis, we would like to include as many

locations as possible, but a larger J leads to two practical problems. First, the sample sizes for

small cities become too small to reliably estimate choice probabilities. Second, because there are

J × J choice probabilities and J birthplaces, the memory requirements of our stacked estimator

increase cubically in J . We choose a cutoff of J = 70, which is the number of LLMs with at least

one million residents in 2010. There are 69 named cities, and a residual location aggregating the

remaining smaller places.42 At J = 70, there are 39,760 types and 2,738,200 choice probabilities

to estimate from the data.

Even with the relatively large cities, however, we still encounter some small cell problems.

While the move-stay decision rate is virtually always well-measured, some destination choices

(i.e., choice probability conditional on a move) are not observed. We use a smoothing procedure,

detailed in Appendix D.6, to impute some of these missing cells. The basic idea is to first

estimate the move probability for each cell, but then combine data from similar cells to estimate

conditional destination choice probabilities. We then impute the destination choices as the

product of the marginal and conditional probabilities: probability of a move (from finer cells)

times the probability of a mover choosing particular destination (from coarser cells).43

42The two smallest included cities are Fort Myers, Florida, and Manchester, New Hampshire. The two largest
excluded are Poughkeepsie, New York, and Baton Rouge, Louisiana.

43We have verified that the results hold up for several different weighting schemes that account for measurement
error in the moments and differences in market shares (i.e., larger cities having more observations and hence
getting larger weights). The differences across specifications were slight, so for simplicity we proceed with the
unweighted version.
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5 Results: Estimates and Model Fit

In this section we discuss the coefficient estimates. Our main purpose here is to evaluate the

preferred model specification versus alternatives.

5.1 Parameter Estimates and Comparison of Specifications

Table 4 reports the structural parameter estimates and model fit for several specifications

of the utility and move cost functions. We report standard errors for the home premium, and

suppress the others for brevity. We begin with a discussion of parameter estimates in Panel

A and then compare specifications using descriptions of fit in Panel B. The table runs through

several specifications of utility and move costs.44 We report move cost intercepts for the US born

types, while those for foreign born are included in the model but suppressed from the table.

Columns 1 and 2 use the most basic model with only cost intercepts by type and a home

premium as an indicator variable (column 1) or as a linear function of rootedness (column 2). In

either form, the home premium is significant statistically and economically. For some context,

an estimate of 3-4 utils is worth about 3.5 to 5 standard deviations of LLM income; that is, the

average worker prefers home as if its income distribution exceeded other locations’ by roughly

4 standard deviations–clearly, a massive premium. This comparison is not literally a statement

about the elasticity of migration to local income (as realized labor market outcomes are always

idiosyncratic); it is a stark signal of the enormity of home preference for the average person.45

The average size of the home premium is the same whether we use the simple indicator

variable or the roots-dependent model.46 The difference between the models is evident in their

ability to fit the spatial features of the data–specifically, predicting the degree of heterogeneity

in move out rates among the at-home population. We evaluate fit in several ways as reported

in Panel B, starting with B1 reporting the correlation in predicted to actual move rates across

LLMs. Comparing columns 1 and 2 at the level of LLM composite average, either specification

can predict reasonably well the heterogeneity between cities, with correlation of predicted and

actual at about 0.61. However, among the at-home population, the prediction of the roots vary-

ing model is much higher, with a predicted-to-actual correlation of 0.41. Similarly, from B2, the

roots-varying model can better generate the variance in move rates across LLMs–and especially

44All specifications include for the residual location an “amenity” and mover-entry indicator, by age/education
type. This is done to account for differences in both the propensity to stay and the propensity to enter that arise
mechanically out of its nebulous geographic definition: Not only is it an order of magnitude larger than even the
biggest city, it is geographically proximate to any LLM.

45Similarly, in a survey design featuring elicited move probabilities, Koşar et al. (2021) found the average
person willing to pay 43 percent of their income to live near family and 36 percent of income to stay in their
home community, and that such preferences were strong even among those who self-identified as highly mobile.

46The roots coefficient may appear bigger, but in the model it is multiplied by the rootedness share–usually
about 0.74 (see Table B4).
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among the at-home population. Without a roots-varying home preference, the indicator model

cannot meaningfully predict the spatial heterogeneity in move rates among the at-home. In sum-

mary, only the roots-varying preference model can generate the qualitative pattern displayed in

Figure 7.

Columns 3 and 4 add a distance function in the specification to allow for bilateral move

costs. The bilateral costs are also interacted with home status to allow the distance sensitivities

into home to differ from a generic move.47 The move cost parameters indicate that farther

migration events, measured in kilometers, are more costly, with additional “discounts” taken for

within-region, within-state, and neighboring LLM moves. Note the mean squared error is lower

when the distance function is included. The distance cost function shifts up the distribution

of move costs (intercepts by type increase, though the ranking is preserved48) by allowing the

more frequent, close-by move to have substantially lower cost than an arbitrary distance pair;

otherwise the mean move cost is driven lower to match the frequency of these more common

moves. Moreover, the home premium estimates are slightly larger when accounting for bilateral

move frictions, although, interestingly, moves to home show far less sensitivity to distance, with

the coefficients reversing sign in the to-home interaction. The same patterns of cross-LLM

correlation and move rate variance obtain between the roots-varying and fixed home preference

between 3 and 4 as in the comparison between 1 and 2.

Columns 5 and 6 add location by age by education utility fixed effects to account for differ-

ences in the average attractiveness of a location to different worker types. This is more flexible

both mathematically (an additional 544 terms in the function) and economically (allowing for

heterogeneity in city quality). However, it does virtually nothing to affect the home utility or

move cost estimates. That is, gross migration flows yield information about home premia and

distance sensitivity, even after controlling for the perceived location quality gaps across the de-

mographic groups which would drive net flows to better locations. Panel B2 indicates the models

with location-type fixed effects are the best at generating the dispersion in move rates across

locations (comparing columns 5 and 6 to 3 and 4 or 1 and 2), especially among the not-at-home,

for whom the differences in distribution of income are the only feature left to generate spatially

heterogeneous move rates. That is, the model of specifications 1 to 4 generates the correlation

across LLMs but not the magnitude of variance. Allowing for unobservable local amenities in 5

and 6 captures the rest, but at some cost in terms of disrupting the fit in overall move out rate

(Panel B1).49 And as before, the roots-varying preference for home fits better.

So far, we have reported on our preferred nested formulation. As a contrast, columns 7 and

47The results are quite similar if the home interaction is omitted.
48The distance function is mean zero by construction, but this result shows that accounting for geographic

distance does not materially change the move rate gaps between groups. If, for instance, older people moved
substantially shorter distances than the young, the differences in intercepts might have been affected.

49This is largely because the destination choice (“move-to”) rates are identifying the fixed effects/location
quality terms more so than differences in move out rates.
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Table 4: Parameter Estimates and Model Statistics

Fixed Effects LLM=0 Age X Edu. X (LLM=0) Age X Edu. X LLM Age X Edu. X LLM
Model Nested Nested Nested Non-nested

1 2 3 4 5 6 7 8

Panel A: Parameter Estimates

A1. Home Preference
Home Noncollege 3.98 4.14 4.14 3.25

(0.007) (0.006) (0.004) (0.006)
College 3.14 3.30 3.30 2.38

(0.007) (0.006) (0.004) (0.006)
Roots Noncollege 5.40 5.44 5.59 4.20

(0.01) (0.009) (0.006) (0.008)
College 4.24 4.28 4.43 3.03

(0.01) (0.009) (0.006) (0.008)
A2. Move Cost
Intercepts (US Born)

Noncollege 20s -14.24 -14.24 -14.43 -14.43 -14.38 -14.38 -8.52 -8.47
30s -16.47 -16.47 -16.66 -16.66 -16.61 -16.61 -9.06 -9.01
40s -18.20 -18.20 -18.40 -18.40 -18.35 -18.35 -9.55 -9.50
50s -18.97 -18.97 -19.16 -19.16 -19.11 -19.11 -9.76 -9.71

College 20s -12.10 -12.10 -12.30 -12.30 -12.25 -12.25 -7.68 -7.63
30s -14.92 -14.92 -15.11 -15.11 -15.06 -15.06 -8.50 -8.45
40s -17.58 -17.58 -17.77 -17.77 -17.72 -17.72 -9.24 -9.19
50s -18.22 -18.22 -18.41 -18.41 -18.36 -18.36 -9.49 -9.44

Distance Function
Main Neighbors 0.56 0.56 0.37 0.37 0.39 0.39

Same State 1.57 1.57 1.37 1.37 1.41 1.41
Same Region 1.11 1.11 0.78 0.77 0.85 0.85
Log (km) -0.21 -0.21 -0.43 -0.44 -0.49 -0.49

Distance Neighbors -0.36 0.38 -0.36 0.25 -0.34 -0.34
X To Home Same State -1.92 -1.63 -1.92 -1.66 -1.85 -1.85

Same Region -0.77 -0.05 -0.77 -0.10 -0.68 -0.68
Log (km) 0.27 0.80 0.27 0.76 0.39 0.39

A3. Specification Details

Calibrated δ
λ

Noncollege 3.80 3.80 3.80 3.80 3.80 3.80 1.00 1.00
College 3.59 3.59 3.59 3.59 3.59 3.59 1.00 1.00

No. Parameters 34 34 38 38 582 582 582 582
MSE 1.01 1.01 0.77 0.77 0.39 0.39 0.61 0.61

Panel B: Model Fit:

B1. Correlation of LLM Move Rates
All 0.61 0.62 0.61 0.62 0.40 0.48 0.25 0.21
At Home 0.09 0.41 0.04 0.44 -0.04 0.42 -0.13 0.18
Not Home (US) 0.19 0.12 0.24 0.20 0.20 0.18 -0.09 -0.10
Foreign Born 0.07 0.06 0.14 -0.13 0.33 0.34 0.23 0.23

B2. S.D. of LLM Move Rates
All Data: 1.16 0.61 0.79 0.63 0.81 0.94 1.01 10.79 10.82
At Home Data: 1.02 0.08 0.61 0.10 0.62 0.64 0.72 0.73 1.11
Not Home Data: 2.36 0.25 0.26 0.36 0.38 2.04 2.06 39.89 40.22
Foreign Born Data: 2.76 0.19 0.19 0.25 0.25 1.48 1.48 40.65 40.72

B3. Choice Probability Projection
Stayers (Ideal=1) 0.99 0.99 1.00 0.99 1.00 1.00 1.64 1.55
Movers (Ideal=1) 0.82 0.78 0.91 0.88 0.75 0.81 0.04 0.04

B4. Odds Ratios, Home/Not Home
Move-Stay Data: 0.42 0.35 0.37 0.33 0.37 0.33 0.36 0.01 0.01
Move Home Data: 10.2 19.83 19.66 18.09 17.75 25.09 23.92 8.74 8.49

NOTES: The table reports coefficient estimates from the structural model estimated according to (13) in Panel A and model fit statistics in Panel B.
Standard errors are suppressed except for the home premium estimates, which report GMM errors. The model includes, but the table does not report,
move cost intercepts for the foreign born and location fixed effects for the residual LLM location. (Source: Authors’ calculations.)
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8 use the standard conditional logit specification, non-nested, with only one elasticity parame-

ter. Being based on the same choice probabilities, this model still finds substantial preference

for home, and move costs increasing in distance and age and falling in education. (That the

magnitude of the coefficients is different is not meaningful, since they are on different scales.)

However, forcing the same elasticity between levels of choice has severe consequences in terms

of fit. Panel B3 reports the projection value of choice probabilities from the model (an ideal fit,

E(σ̂) = σ, is one). The non-nested model overpredicts the value of staying home (B3 “stayers”),

and in particular greatly overstates the value of the home premium so that the odds ratio in

the move-stay decision is far off the mark (B4).50 The non-nested model is also oversensitive

to differences in migration inflows between places, attributing to them great economic signifi-

cance, resulting in a poor fit of the destination choice projection (B3 “movers”), and overstates

the variance in the not-at-home move rates (B2). Consequently, the non-nested model does a

substantially worse job of fitting the spatial heterogeneity in move rates across LLMs, as judged

by either the correlation of predicted to actual (B1) or variance across LLMs (B2).

We conclude that the nested model with roots-varying preferences is the preferred choice for

predicting move rates by type, origin location, and home location. In what follows, we will use

the model without location fixed effects (column 4 instead of 6) because of its better performance

in predicting move/stay rates, our main focus in simulations, at some loss of fit regarding specific

destination choice, although we have found results with respect to time trends to be very similar

either way.

5.2 Model Fit in Baseline Period Simulation

The estimation recovered parameters via the estimating equations and not an explicit target-

ing of simulated values. We next check that the model is able to replicate the main features of

the data. We have already given some sense of the fit of the model in comparing difference spec-

ifications in Table 4, but we will now show how well the preferred model produces the patterns

described in Section 2.

Table 5 reports the average moving rates by age and education category and at-home status

for the data and our baseline simulation. The model is able to match the age profile in moving

rates as well as the differences between college and non-college educated workers. It also matches

quite well the difference between workers at home and not at home, the main qualitative pattern

from Section 2, without assigning different move cost terms. This is accomplished through

presence of a home preference in the current flow utility and its effect on continuation values. The

50The non-nested model by construction cannot simultaneously generate the odds ratio gaps between the at-
home and not-at-home in the move/stay decision and the to-home and not-to-home in the destination choice
decision, as seen in Panel B4. We could reweight the observations to target the move/stay decision explicitly,
although this would then bias the move-home rates, which, by undervaluing the option of returning home,
negatively affects the prediction of choice values for those living away from home.
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Table 5: Actual and Predicted Move Rates by Age, Education, and At-Home Status

Type Move Rate Conditional

Total At Home Not at Home Foreign Born Move Home Rate

Panel A: Data

Noncollege 20s 4.83 3.68 10.94 3.41 18.72
30s 3.07 2.36 6.32 2.28 15.98
40s 2.07 1.50 4.09 1.54 14.44
50s 1.76 1.21 3.27 1.31 13.01

College 20s 8.52 5.97 13.05 8.40 17.26
30s 4.62 2.78 6.86 5.04 14.20
40s 2.30 1.34 3.41 2.35 10.62
50s 2.00 1.30 2.89 1.76 9.69

Panel B: Model

Noncollege 20s 4.32 2.98 9.52 4.10 32.60
30s 2.73 1.75 5.55 2.63 28.72
40s 1.88 1.14 3.64 1.83 27.95
50s 1.63 0.97 2.95 1.64 26.81

College 20s 8.27 4.80 12.79 10.97 23.42
30s 4.51 2.33 6.31 6.06 21.49
40s 2.24 1.16 3.13 2.82 20.79
50s 1.86 1.00 2.63 2.18 20.40

NOTES: The table reports actual and model-predicted choice probabilities for a closed system of 70 locations (69 largest LLMs plus one residual
locale). All figures are in percentages (%). (Source: ACS data and model-generated data.)

model also predicts the inordinate share of moving that is a return to home, actually overstating

its magnitude. This is due to the way we define moves home in the data. In estimation, to avoid

“stacking the deck” in favor of finding move home preference, we use the more conservative

definition of home inflows that likely undercounts the fraction. For comparison, see Table B1,

in which the accommodative definition compares favorably with our prediction.

Figure 8 plots the actual and predicted out-migration rates for each metro area in our analysis.

The model is able to match (albeit with a slight understatement of the variance across LLMs) the

spatial heterogeneity through a combination of differences in demographic composition, income

distributions, shares of the at-home and foreign-born, and degree of rootedness.

6 Simulations

The purpose of the empirical model is to conduct simulations at different scenarios in the

same geographic setting. By simulating migration under alternative scenarios of population

distributions, home attachments, or income offerings, the model allows us to see how each

channel affects mobility trends.

A given simulation of the model predicts choice probabilities for every state (origin, income

step) and agent type (age, education, birthplace) in the economy, amounting to millions of
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Figure 8: Model Fit: Predicted and Actual Out-Migration Rates by LLM

NOTES: The figure plots the model’s baseline predicted out-mobility rates by metropolitan area to actual rates. Each marker represents an LLM in the
estimation/simulation sample. (Source: ACS data and model-generated data.)

predicted values. To summarize the main findings, we report in the tables below the average

mobility rates for the complete set of LLMs and also breakdowns by the initial mobility rates

(fast, medium, and slow) among the 70 LLMs in the estimation. We simulate the model at

the same primitive parameter values but use the environments and type weightings for five

time periods: 1980, 1990, 2000 censuses, the early ACS (2005-2011), and the late ACS (2012-

2017).51 We do not mean to contend that the primitive parameters in utility could not have

possibly changed; merely, we want to see how far the model goes in explaining the decline when

constrained in this way.

The alternative scenarios could affect the composition of the “mover at-risk” population

and/or the migration incentives presented to the populations. Compositional shifts include

changes in the distribution of population by age, education, origin location, step in the income

distribution, and the fraction at home. Incentive changes include the rootedness of home loca-

tions by birth cohort, parameters of the income distributions, and the income search cost. We

first combine all factors to show how the model predicts migration changes over time and then

decompose the factors one by one to elicit the contribution of each.

6.1 Simulating Mobility Over Time

We begin with the aggregate change to migration (the combined simulation with all changes

taking place) in Table 6. Panel A reports the migration rates in the model, and Panel B takes

the differences over time compared to the data. Recall that the model was estimated on cross-

51In Appendix E.2, we simulate the model back to 1950 instead of 1980, maintaining the assumption of fixed
primitives, and altering age/education shares, income, and home attachments. The model is able to replicate the
hump-shaped pattern in postwar migration rates described in Fischer (2002) and Molloy et al. (2017).
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Table 6: Simulated Trends in Migration Rates

Panel A: Simulated Migration Rates
Move Rates (%) Change,

LLM Group 1980 1990 2000 2005-2011 2012-2017 1980 - 2005:17
Combined 3.23 3.17 2.97 2.87 2.91 0.35
Fast 4.21 3.96 3.55 3.35 3.32 0.89
Medium 3.24 3.20 3.02 2.92 2.96 0.30
Slow 2.56 2.49 2.40 2.35 2.42 0.18

Panel B: Log Difference in Migration Rates
Source Model 1 Yr. Model 1 Yr. IRS 1 Yr. Model 1 Yr. Census/ACS 5 Yr.
LLM Group 1980 - 2005:17 1990 - 2005:11 1991:93 - 2005:11 1990 - 2005:17 1990 - 2005:17
Combined 0.113 0.099 0.109 0.095 0.168
Fast 0.238 0.170 0.202 0.178 0.252
Medium 0.097 0.090 0.093 0.082 0.179
Slow 0.074 0.059 0.033 0.048 0.121

NOTES: The table presents the simulated migration rates as indicated. Panel A reports rates in percentage points, and Panel B reports differences in
log points. The model was estimated on pooled ACS data, 2005-2017. The census/ACS 5 year estimate uses the one-to-five year adjustment procedure
described in Sections 2.1 and A. (Source: Model simulations, IRS, ACS, and census data.)

sectional data and without targeting any dynamics in the migration rate. Nevertheless, by

accounting for major factors affecting migration propensity, the model is able to generate the

decline. Simulated migration rates fall by 0.35 percentage point from 1980 to the 2005-2017

average. Importantly, the model successfully matches the heterogeneity in the decline, with

more mobile cities declining more: 0.89 percentage point, about a 27 percent change, for fast

LLMs, compared with 0.18 percentage point, about a seven percent change for slow LLMs from

1980 to 2017.

The simulated change compares favorably with the data. The lowest panel reports the

log difference in rates compared with the 2005-2011 average in the model and the IRS data,

the source from which we have the most reliable long time series. We take logs to compare

proportions, as the IRS rates are at a persistently higher level than the ACS data on which the

model is estimated, and we ignore the post-2012 period in which the IRS data became suspect.

The model’s 9.9 log point drop from 1990 to 2005-2011 compares closely with the IRS drop

of 10.8 log points for LLMs in the estimation sample from the early 1990s to 2005-2011. The

model also reflects the proportionally larger drop in migration from fast cities comparable to

the data–a decline of 18 log points for fast cities, 8 for medium, and 4.7 for slow, compared

with 20, 9, and 3 log point declines, respectively, in the IRS data. The model-simulated decline

also compares favorably to the drop in implied five year rates, although the change in five year

rates is somewhat larger, likely because the one-to-five-year imputation overstates the drop in

migration during the Great Recession (see Figure B1).52

52The conversion of one to five year rates does not account for cyclical changes in the propensity of migration
reversal.
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6.2 Decomposing the Sources of Decline

The simulated decline is an aggregated result that we can then unpack via ceteris paribus

breakdowns of the sources of change. Table 7 reports the changes generated by simulations of

the model when altering one feature at a time. That is, for each simulation, we hold fixed at

their estimation period (2005-2017) values all features except for those denoted by their row.

The simulations pose questions such as, what if the age distribution (for example) evolved since

1980, but everything else remained as in the 2010s?

Because we are using a nonlinear model with interactions among many features, this exercise

is not literally a “decomposition,” so the values need not sum to the total effect (neither within

nor between locations). Yet, these breakdown simulations give an indication of the importance

of the factor when it alone is present in the model. Some simulations combine one or more

changes. To summarize, we show only the difference between 1980 and the estimation period.

For reference, the table reports the combined change in the top row.

We begin in the first panel with the most obvious candidates, shifts in population compo-

sition. These represent changes to relative group weights–the change in migration rates if the

population looked like 1980 but the migration incentives looked like the 2010s. Nationally, the

composition changes would predict one-quarter of the total decline, or 0.087 percentage point

of the 0.35 total change in migration. The simulation does predict slightly larger declines in

fast cities but population changes alone are insufficient to account for the spatial pattern of the

decline, comprising only 23 percent of the fast city decline in comparison to 67 percent of slow

cities. So while population shifts are relevant as part of the aggregate decline, the compositional

changes are too similar across space to explain the much of variance in the decline across cities.

We can further delve into the compositional factors, changing one dimension of the population

at a time. Population aging alone actually could explain a greater share of the decline if it had not

coincided with countervailing trends. Changes in age group composition alone could produce

a 0.43 percentage point decline nationally–actually greater than the predicted total. This is

substantially offset by the increasing share of population with college degrees, which would cut

the decline directly by about one third (a 0.15 percentage point increase) when entering alone

and in half when in combination with age changes (the age and education combined subtotal

is just 0.20 percentage point). The trend in aging is further offset by continued population

growth in faster locations, which would predict a 0.11 percentage point increase in national

average rates. Interestingly, the trend towards faster cities is true even within our pre-designated

fast/medium/slow categories.53

The last compositional change the table reports is the change in the foreign born population.

53The model does indeed generate differences in migration probability across LLMs, even within population
type cells. The migration probability for an agent of a given type is still a function of the incentives (income
opportunities, move costs, and continuation values) offered by his place of residence relative to other locations.
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This feature causes opposite effects in different types of cities, which ultimately nets to nearly

zero in the national average change. As Figure 5 shows, the share of foreign born living in the

U.S. has been rising, and the foreign born tend to have migration probabilities between the at-

home and away-from-home domestic population. In slow cities, the foreign born have increased

in share relative to the at-home population, driving migration rates up on the margin. In fast

cities, the foreign born have been growing relative to the away-from-home, driving migration

rates down. The last line of the panel reports the total for all compositional factors including

the foreign born. The combination tilts the spatial distribution by slightly more but reduces the

aggregate decline.

In summary, we find a moderately important role for population changes in explaining the

aggregate decline, but insufficient magnitude and spatial variance to account for the story of

Section 2.

The second panel reports the changes induced by shifts in home attachment. These make up

the single largest change to migration rates and account for the majority (about 60 percent) of

the national decline. Moreover, home attachment affects fast cities to a far greater degree and

thus explains much of the spatial heterogeneity in the decline. There are two components to home

attachment, the share at home (which operates like a compositional feature) and rootedness of

natives (which operates like a change in migration incentives). Share at home is the first-order

effect of converging population growth rates, and rootedness is the second-order, lagged effect

that occurs when population growth slowed in the previous generation. The share at home

dominates, although the increase in rootedness in fast cities is also a nontrivial contributor. As

before, the effect on fast cities has outsized influence on the national total because these origins

contribute a larger proportion of migrants.

Lastly in the second panel is the combined effect of home attachments and population com-

position. Here, the interactions between factors show themselves. The combined effects of rising

at home share, rising rootedness, and aging generate the magnitude of the national decline and

its spatial heterogeneity across cities. The impact of a single factor depressing migration is

amplified by concomitant depressors. Aging is relatively more important in places with rising

home attachments and vice versa.

Finally, we simulate changes to gross migration resulting from shifts in income opportunities,

as Table 3 suggested a relationship between LLM migration rates and income distributions

(especially variance). The income simulations pertain to changes in migration incentives, except

for one margin, the size of the population in each income bucket.

The distribution of income across cities (“LLM Distributions”) has changed, with mean in-

come growth and increases in dispersion weakly associated with declines in outmigration rates

(see Table 3). Changing LLM income distributions produce modest declines in migration, pri-
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marily out of fast cities.54 The “Population Distributions” simulation addresses the fact that the

distribution of income has also changed within cities, with inequality rising in most places, while

migration is most prevalent at the upper and lower ends of the individual income distribution

(see Table B5). However, widening inequality within cities does little to change total migration

rates, even in combination with the change in LLM Distributions themselves. Lastly, changes in

information availability (increases in γ) alter the incentives to migrate as higher income draws

become relatively more attainable, and the value of higher draws varies across locations (and

is on average higher in fast locations). This effect is directionally consistent with a mobility

decline, but in this model has limited quantitative impact on the migration rates.

Taken together, we find a nontrivial but relatively limited role for changes in income affecting

migration rates, although the changes indeed bias towards fast locations. Though idiosyncratic

income may well be very important for individual households’ migration decisions, at the level

of LLM average, the trends in income can explain just a fraction of the decline in migration.

Instead, it is home attachments in fast cities, in concert with national demographic changes,

that are driving migration rates downward.

To summarize the simulations over time, Figure 9 plots the composite simulation with all

changes to the population and environment, and then three subtotals–population composition,

home attachment, and income changes. The plots show that the effects of aging were most

prominent from 1990 to the early 2000s, as the Baby Boom cohorts aged into the low mobility

stages of life. The effects of income distribution changes, relatively small in the aggregate, are

most present from 1980 to 2000. Home attachment imposes a long and steady downward pressure

on the migration rate throughout the simulation period.55

6.3 Contributions to the Aggregate Migration Rate

With an understanding for the reasons for the decline, we close this section by showing how

trends in at-home status affect the aggregate migration rate. Table 8 reports the move rates over

time by home status: at home, not at home, and foreign born. For brevity we sum over all age and

education groups but fix the demographic composition at 2010 levels to focus on changes in home

status and local labor market incentives, not trends in aging or educational attainment. The

not-at-home group is further split into two choice categories, moves home (returns) and moves

onward to new locations, and hence their sum will equal the total move rate for the category.

We split these to check whether there are any trends in returns home (which would increase,

54Changing income opportunities also account for some notable outlier cases, such as San Francisco, Austin,
and Raleigh-Durham (see Table E2), where migration rates have not moved in the direction or to the extent that
demographics and home attachment would predict.

55Appendix Figure E1 indicates that the hump-shaped migration trajectory since 1950 was the product of mid
century demographic transition and weakening home attachments–effects which are past their peak in the time
period of Figure 9.
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Table 7: Simulations: Counterfactual Changes in Migration Rates, 1980-2017, by Source of
Change

Decline in Migration Rate
(percentage points, x > 0→ decline)

Simulation LLMs: Fast Medium Slow All

Total 0.892 0.300 0.182 0.346

Population Composition
· Combined 0.201 0.186 0.122 0.087
· Age 0.456 0.472 0.365 0.428
· Education -0.147 -0.145 -0.167 -0.154
· Age + Ed 0.247 0.243 0.123 0.202
· Location -0.036 -0.041 -0.036 -0.112

· Foreign Born 0.071 0.014 -0.108 -0.008
Population Composition (incl. foreign) 0.263 0.197 0.009 0.053

Home Attachment
· Combined 0.358 0.071 0.142 0.205
· Share at Home 0.303 0.088 0.127 0.183
· Roots 0.102 -0.009 0.018 0.043

Pop. Composition + Home Attachment 0.837 0.286 0.188 0.329

Income Distributions
· Combined 0.055 0.015 0.007 0.027
· LLM Distributions 0.053 0.013 0.006 0.026
· Population Distributions 0.0004 0.0003 0.0002 0.0003
· LLM+ Pop Distribution 0.053 0.013 0.006 0.026
· Information 0.002 0.002 0.002 0.002

Pop. Composition + Income 0.253 0.202 0.122 0.107
NOTES: The table reports the change in migration rates from 1980 to the estimation period (2005-2017) when conducting simulations in which only a
subset of model factors is changing. The simulated factor(s) is(are) indicated by the row title. All figures are in percentage points (e.g., “0.5”
corresponds to a one-half percentage point change). (Source: Authors’ calculations.)

Figure 9: Simulated Trends in Mobility, Decomposed

NOTES: The figures plot the time path of mobility generated by the model in total and counterfactual subtotal simulations for each category of LLMs.
Note that each panel has its own vertical scale. Subtotals may not add to the combined value because of nonlinearities in the model. The shaded
region denotes the estimation period. (Source: Authors’ calculations.)
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Table 8: Simulations: Migration Rates by Home Status, No Age Effects

1980 1990 2000 2005-2011 2012-2017

Move Rate 3.11 3.05 2.99 2.91 2.87

Rate by Home Status
At Home 1.77 1.77 1.77 1.80 1.79

Not Home 5.07 4.99 4.96 4.91 4.92
Not Home: To Home 1.20 1.18 1.15 1.13 1.14
Not Home: Onward 3.88 3.82 3.81 3.78 3.78

Foreign 3.07 3.06 3.06 3.04 3.04

Contribution by Move Type
At Home 0.78 0.80 0.83 0.88 0.91

Not Home 1.56 1.49 1.39 1.27 1.20
Not Home: To Home 0.37 0.35 0.32 0.29 0.28
Not Home: Onward 1.19 1.14 1.07 0.98 0.92

Foreign 0.77 0.77 0.77 0.76 0.76
NOTES: The table reports model simulated migration rates for a constant demographic sample. All figures are in percentage points (e.g., “0.5”
corresponds to a one-half percentage point change). The destination-based subcategories under “Not Home” add to the total for that home status
group. (Source: Authors’ calculations.)

ceteris paribus, under stronger home attachments) vis-a-vis more general changes among the

“mover class” of away-from-home households. For more details, see Appendix Table E1, which

reports the move rates from LLMs of fast, medium, and slow origins and population shares by

at home category.

The table shows level differences in move rates by at-home status, but within statuses,

migration rates remained remarkably stable since 1980.56 That is, the trend in the aggregate is

mostly the result of a greater share of people represented in the at-home category, not trends in

choice probabilities conditional on category. The small trends in rates that do exist are among

the not-at-home group, showing their greater susceptibility to migration incentives in absence of

home attachments. On net, both returns home and moves elsewhere have declined (proportional

declines of 4.5 and 2.7 percent, respectively). However, the quantitative driver of the aggregate

trend is the drop in the share of people in the loosely-attached status group: fewer onward

opportunities arising and fewer returns home to be made.

To make this point explicit, the second panel of the table shows contribution to total migra-

tion by at home status, which is essentially the population share in the category times the move

rate. The contribution from the at-home group has risen because of rising population share in

that category. This is overwhelmed by the drop in contributions from the not-at-home group.

56The totals obscure some spatial differences: Appendix Table E1 shows that in fast LLM origins, migration
rates declined among all groups, while in medium and slow LLMs, the trends in migration rates by status vary
across groups.
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7 An Illustrative Model of Spatial Demographics

The quantitative model shows that home attachment is an important factor in the mobility

decline observed in the U.S. One disadvantage of the quantitative model, however, is that it is

limited to the change in home attachments observed in the data. We now use a stylized version

of the model to illustrate how home attachment evolves over a long horizon and experiment with

the impact it has on regional responsiveness.

7.1 Home Preference, Regional Shocks, and Transitional Dynamics

The following thought experiment illustrates how a preference for home mediates a shock

to the equilibrium distribution of population in an economy. In the simulation that follows, we

generate an economy, qualitatively like the postwar U.S., that experiences shocks to location

attractiveness and trace the evolution of population, home attachment, and migration.

We use an overlapping generations (OLG) framework over a system of J distinct locations,

or “islands.” Each agent lives for A periods, and the economy is simulated for T >> A periods.

Agents are given an opportunity to move at a cost. For simplicity, we fix move costs (the college

educated 20-somethings point estimate from our quantitative model) and ignore their changing

with age or distance (although these can be incorporated in a straightforward way). We start

with an initially equal distribution of population ( 1
J

) for the very first cohort, t = 0, a = 0,

and simulate their behavior over A periods; they spread out across locations, and when they

“die” at A, the distribution of their population forms the strength of the home preference for

the next generation to be born. Thus, the home preference moves endogenously with population

history under roots-based preferences and an OLG structure. We then compare this model,

“Roots-Varying Preferences,” with others in which either there is no preference for home (“No

Home Preference”), or the preference for home is constant and not endogenously generated by

prior spatial distributions of population (“Fixed Home Preference”).57

We simulate each version of the model until it reaches a steady state, where population sizes

of the locations are constant, all cohorts have the same strength of preference for home, and all

migration is idiosyncratic. Then, we introduce an unanticipated permanent shock to location

attributes in order to cause population reallocation across space. We split the locations into

sets A and B, “good” and “bad” amenities, and the shock reverses the good to bad and bad to

good.58

57To generate similar migration rates in initial steady state, the “No Home Preference” simulation has higher
migration costs than the others. The constant “Home Preference” simulation is set to have a constant flow utility
of being at home that equates migration rates to the steady state value in the “Roots Preference” simulation.
These adjustments are made to start from the same migration rate value for ease of illustration, but they are not
essential to make our point, as it is the dynamics in response to shocks that are the emphasis of this exercise.

58An economy with heterogeneous locations has a different steady state value of migration than one with
homogenous locations, since the out-migration probabilities differ and not all locations are the same size. The
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Plot I of Figure 10 shows the relative population sizes of the two types of locations. As good

and bad locations interchange, their populations transition from a negative difference A−B to

a positive 1− (A−B). The No Home Preference scenario arrives at the new steady state most

quickly, as agents move only on the basis of relative amenities. The Fixed Home Preference

scenario arrives at the steady state somewhat more slowly, as home attachments make home-

inclined agents reluctant to relocate even for better amenities. The Roots-Varying scenario

arrives the most slowly, since the endogenous home preferences are initially very strong. Plot II

shows the net reallocation of population that produces the gaps in plot 1. Note that reallocation

is not immediate in any scenario, since agents face move cost in all scenarios, but that reallocation

is faster in the scenario without home preference, since effectively all agents agree on the quality

of each location.

Plot III shows the share of residents at home, which affects the overall migration rate and

population adjustment. As more people leave the low amenity locations for higher amenity

places, the share living in their birthplace drops. This resolves to its steady state value again more

quickly in the No Home Preference scenario because the populations of A and B stabilized more

quickly without ties of home preference.59 In other words, when agents prefer their birthplaces,

they are more likely to leave the good locations to return to their homes, a reinforcement that

further lengthens the path to population adjustment.

The lower panel plots the migration rates for at-home and not-at-home agents and the total.

The No Home Preference scenario has the largest increase and quickest convergence in move

rates for the at-home agents in plot IV–and for the not-at-home in plot V, since they have

identical incentives in that scenario. Relocation incentives are blunted for the Fixed Home and

Roots-Varying scenarios, so the move rate for the at-home increases by less in plot IV. The

behavior of the not-at-home in plot V under the home preference scenarios shows oscillation

because it depends on whether the not-at-home population is away for idiosyncratic or common

reasons. Move rates initially go up in response to the shock and then fall as more make their

way to the newer, better places and have less incentive to leave (even for home). Then, move

rates slowly rise again back to the steady state, as more of the migration of the not-at-home

becomes idiosyncratic instead of directed by a shock to the common valuations of each place.

The sum of the at-home and not-at-home rates produces the impulse in total migration

rates seen in plot VI. Hit with the same shock, the economies with home preferences experience

elevated migration rates for a longer period of time, with longer, slower returns to steady state.

shock we introduce changes which locations have which attributes, but maintains equally heterogeneous locations.
That is, the cross sectional variance between locations are the same before and after the shock. This particular
implementation is not important for generating the qualitative patterns we describe, as the objective is to see
how shocks to the steady state population distribution are mediated over the transition path.

59There is also a level difference in at home population between scenarios, because of course, in the No Home
Preference scenario, the at home residency is not particularly desirable but only coincidentally obtains because
of move costs.
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Figure 10: Illustrative Model: Migration and the Transition Between Steady States

NOTES: The figure shows the time paths of population reallocation and migration rates after a shock to the steady state distribution of population
under three home preference regimes. “No Home Preference” means no home preference at all, “Fixed Home Preference” means a constant value of
home preference in all time periods, and “Roots-Varying Home Preference” means a preference for home that varies endogenously over time by the
share of the dying cohort of agents living at home. (Source: Model-generated data described in section 7.)

When the strength of home preference varies with the history of population, the shock produces

transition-era cohorts with weak home preferences, and hence population churn is high and

convergence to steady state is especially long and slow. Thus, the thought experiment exhibits

the qualitative pattern in gross mobility consistent with the spatial evolution of population in

the U.S. and the subsequent migration trend, as shown in Section 2.

7.2 Home Preference and Steady State Migration

The previous simulation exercise suggests–consistent with the concerns of many economists,

demographers, and policy makers–that home preference is a threat to desirable population re-

allocation. We next use this stylized model to show that home preference affects the total

migration rate in steady state and its elasticity to shocks–and the subtle ways these differences

come about.

Using a model similar to that of Section 7.2, we compare steady state migration rates under

different degrees of home attachment.60 Agents are endowed with a preference for their birth-

place, constant across the identical locations, and are given an opportunity to move at a cost. All

moves are idiosyncratic but for the home preference, which varies in strength between scenarios:

60Ours is a stylized exercise to illustrate qualitatively the effects of evolving home attachments. Zabek (2018)
considers a quantitative model of local labor market elasticity in the presence of locally-tied workers.
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Table 9: Illustrative Model: Simulated Move Rates Under Various Parameterization Scenarios

Migration Probability Change in Migration Probability
Home Pop. Share at Steady State in Response to Shock

Preference At Home At Home Not Home Total At Home Not Home Total

Low 24.78 5.37 10.69 9.37 0.72 1.35 1.19
High 62.81 3.55 12.06 6.71 0.48 1.49 0.86

NOTES: The table reports shares of agents residing at home and aggregate gross migration rates for an economy with a single cohort of agents with
many successive choice periods under different strengths of preference for home. All values are percentage points.

either low or high. The home preferences are calibrated to be one standard deviation below and

above, respectively, the mean rootedness times the average preference parameter from Table 4,

and move costs are again the point estimate for college educated 20-somethings.

Table 9 reports the economy’s moving rate and the share living at home under higher and

lower preferences for home. The table illustrates the direct and indirect ways home preference

can affect mobility in the economy. Migration rates are always higher for the not-at-home than

the at-home, but the size of the gap depends on the intensity of home preference.61 Less obvious,

perhaps, is that weaker home preferences mean fewer agents living at home in the steady state.

The high preference scenario has the lowest mobility because of lower mobility among the at-

home and a higher share of agents in the lower move propensity, at-home state. In contrast, in

the low home preference scenario, the total weighted average migration rate is closer to that of

the not-at-home group.

The differences have implications for adjustment to regional shocks. To see this, we conduct

some comparative statics at the steady state. In the last three columns of the table, we report

the change in migration after making half the locations more desirable for all agents and half less

desirable.62 In the low preference scenario, in total more people relocate immediately compared

with the high. This total, however, is the net of two effects. First, by construction, the at-home

are individually more sensitive to the shock in the low preference scenario. Second, the steady

state in the low preference scenario has more agents in the more susceptible not-at-home status.

In fact, the not-home group responds by more in the high home preference scenario, as the

shocks enable their desires to return to their home locations.

8 Evaluation: Has America Lost Its Mojo?

In summary, we find total population adjustment is the product of micro incentives–an

individual preference for home–through the macroeconomic history of population movements

and their resultant effects on the distribution of population. Understanding the reasons for the

61The not-at-home move more in the high preference scenario because of a higher rate of returns to home.
62The size of the shock is arbitrary for making this point. The important feature is that all scenarios receive

the same shock.
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mobility decline is critical for evaluating the risk it poses to the efficiency of labor markets and

whether policy intervention is warranted–and if so, which policy. In this section, we offer some

concluding thoughts to frame the academic and policy discussion going forward.

The literature studying the migration decline has looked for a structural mechanism in the

economy, one pervasive across demographic strata, that has caused a downward trend in mo-

bility. This paper has argued that an important underlying structural change is the long-run

settling of the spatial distribution of population, which has generated an increasing degree of

home attachment–a slowly trending factor common to many types of households, but changing

unequally across space. We close by offering an evaluation of the mobility decline in light of

these findings. We see several reasons not to be worried, but with some important qualifications.

Regardless, we hope to refocus the broader discussion on migration to the core issues for welfare

and policy.

8.1 The Migration Trend Is Not Occurring in Distressed Areas

One common misconception is a connection of the mobility decline to the relatively poor

performance of certain local labor markets. We have showed, in contrast, that actually the

growing cities are more often the sources of mobility decline.

We can also look directly at migration rates out of regions and LLMs generally considered to

be underperforming. In Figure 11, we plot the out-migration from lagging regions we organize

by topographic features for convenience: (i) the Lake Erie region, containing the Rust Belt cities

of Detroit, MI, Toledo, Cleveland, and Youngstown, OH, Erie, PA, and Buffalo, NY, (ii) the

Ohio River Valley, including Pittsburgh, Cincinnati, and Louisville, and (iii) the cities and rural

areas of the Appalachian mountains from West Virginia to North Georgia.63 We continue to use

the definition of a move as an exit from an LLM, even if staying within the region we define.

For each of these distressed regions, in contrast to fast LLMs, migration rates are low but not

trending. Hence, for whatever problems these local labor markets may have–and perhaps more

people “should,” in some sense, be exiting these regions–they have been slow for some time and

are not particularly afflicted by the mobility decline. A national trend cannot be blamed for

further diminishing the poor circumstances of workers in the areas where no trend is exhibited.

8.2 Population Convergence Preceded the Migration Decline

A concern beyond particular lagging regions is whether the population in general is less

nimble. Indeed, our illustrative model showed that migration elasticities to local shocks are

63We also examined the “Eastern Heartland” at-risk area of Austin et al. (2018) (also a focus in Graham and
Pinto (2021)), which comprises the noncoastal states east of the Mississippi River, plus Missouri, Arkansas, and
Louisiana. We found the regional trends dominating, in that northern and midwestern parts of the Eastern
Heartland showed flat migration rates, while some southern areas trended down moderately.
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Figure 11: Migration Rates Out of Distressed Areas

NOTES: The figure plots out-migration rates for fast LLMs and the three regions with relatively underperforming labor markets: (i) the Lake Erie
region, containing the Rust Belt cities of Detroit, MI, Toledo, Cleveland, and Youngstown, OH, Erie, PA, and Buffalo, NY, (ii) the Ohio River Valley,
including Pittsburgh, Cincinnati and Louisville, and (iii) the cities and rural areas of the Appalachians mountains from West Virginia to North Georgia.
The IRS and ACS series (solid and dashed lines, respectively) are overlaid and benchmarked to the same value in 2011. (Source: IRS and ACS data.)

lower in the presence of local attachments, so we agree this is in principle a well-founded concern.

However, declines in gross mobility do not necessarily mean declines in net population change, as

gross flows remain orders of magnitude larger than net flows. Population shift can still go in the

“right way,” even if the turnover producing it is lower.64 This is an area worthy of future study.

Our message is simply to be precise about gross versus net flows, which are often conflated in

discussion of migration trends.

In particular, a direct implication from our analysis is that the concern about falling mobility

leading to insufficient reallocation seems to presume the order of events. Part of our contribution

to this debate is to understand the autocovariances between gross and net population flows,

parsing the lead and the lag. The stabilizing of population growth and, by consequence, home

attachment, caused a decline in gross migration rates–not the other way around.

Figure 12 highlights this issue. The figure plots the variance across LLMs in (1) annual pop-

ulation growth from census intercensal estimates, (2) annualized U.S.-born population growth

from decennial census, and (3) net migration rates from the IRS data. These would directly

indicate how much population reallocation is occurring.65 The variance in population growth

has been trending downward for several decades, and the trend has if anything moderated more

recently. The variance in net migration is trending downward only slightly, to an extent less

than a continuation in the preceding trend in population growth. Cyclical variations in mi-

gration variance are still apparent. This does not suggest that a broad migration slowdown

64Using state-level data, Kaplan and Schulhofer-Wohl (2017) find that the trend in net migration is flat. Dao
et al. (2017) find a lower net migration responsiveness to local labor market shocks from the 1990s on compared
with before 1990, but no trend since the break in the early 1990s.

65The variance of population growth may depart from the variance in net migration to the extent there are
differences in birth and death rates and the arrival of foreign migrants.
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Figure 12: Cross Sectional Variance in Population Growth and Net Migration

NOTES: The figure presents the unweighted cross sectional variance in population growth and net migration. The spatial unit is urban LLMs. The
annual population growth series uses intercensal estimates of population growth. The decadal series uses an annualization of the long difference,
1
10
ln(Pt+10 − Pt). The net migration series is the variance across LLMS in inflow minus outflow as a proportion of initial size. Two outliers have been

excluded: New Orleans, Louisiana and Biloxi, Mississippi in 2006, both of which experienced large population loss in the aftermath of Hurricane
Katrina. (Source: Census and IRS data.)

has stopped population growth from happening, but rather the convergence in the long run

population trends has preceded (and, in our view, caused) the gross mobility slowdown, with

year-to-year fluctuations still occurring.

Hence, the trend in migration is a consequence, not a cause, of abating population shifts. So,

our study of migration somewhat ironically ends in an appeal to study changes in population

trends (in the spirit of, for instance, Gyourko et al. (2013) and Hsieh and Moretti (2019)) instead

of migration per se. At issue for economic growth and equality of opportunity is not whether

people are moving around, generally, but whether people can access the best markets - or whether

the worst markets need place based assistance. Either way, we are not talking about migration

for migration’s sake.

8.3 Local Ties and Welfare

Finally, we step back and consider welfare implications of our findings. One of the key conclu-

sions of attributing declining mobility to rising home attachment is the implication that agents

are making optimal, unconstrained choices to stay in place. Alarmist views of the decline in

dynamism fear that some friction is preventing people from making moves they would otherwise

like to make. If instead people simply prefer to be near family and friends and in a familiar

place, the perspective changes considerably. In a sense, we agree with the argument of Kaplan

and Schulhofer-Wohl (2017), though for different reasons, that the mobility decline is not par-

ticularly concerning and could actually be evidence of a well-functioning market with declining

incentives to move. Proximity to home, friends, and family is an idiosyncratic nontraded good,

meaning that heterogeneous households have preferences for some locations over others, and in-
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creasing fractions of households are finding it optimal to stay in place. Moreover, if locations are

offering more similar occupational opportunities, as Kaplan and Schulhofer-Wohl (2017) argue,

then aspects like home attachment may have become more important at the margin.

Yet, rising home attachment is possibly a headwind to the labor market in that it reduces elas-

ticities to local economic shocks. Further research is warranted to understand labor dynamics–

gross flows and the net changes they produce–in a more spatially-tied economy.
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Falck, O., S. Heblich, A. Lameli, and J. Südekum (2012). Dialects, Cultural Identity, and Economic

Exchange. Journal of Urban Economics 72(2-3), 225–239.

Fischer, C. S. (2002). Ever-More Rooted Americans. City & Community 1(2), 177–198.

Flood, S., M. King, R. Rodgers, S. Ruggles, and J. R. Warren. (2018). Integrated Public Use Microdata

Series, Current Population Survey: Version 6.0 [dataset].

59



Frey, W. (2009). The Great American Migration Slowdown. Technical report, Brookings Institution,

Washington, DC.

Ganong, P. and D. Shoag (2017). Why Has Regional Income Convergence in the US Declined? Journal

of Urban Economics 102, 76–90.

Glaeser, E. L., D. Laibson, and B. Sacerdote (2002). An Economic Approach to Social Capital. Eco-

nomic Journal 112(483), F437–F458.

Glaeser, E. L. and K. Tobio (2008). The Rise of the Sunbelt. Southern Economic Journal 74(3),

610–643.

Graham, C. and S. Pinto (2021). The Geography of Desperation in America: Labor Force Participation,

Mobility, Place, and Well-Being. Social Science & Medicine 270, 113612.

Graves, P. E. and P. D. Linneman (1979). Household Migration: Theoretical and Empirical Results.

Journal of Urban Economics 6(3), 383–404.

Greenwood, M. J. (1975). Research on Internal Migration in the United States: A Survey. Journal of

Economic Literature, 397–433.

Greenwood, M. J. (1985). Human Migration: Theory, Models, and Empirical Studies. Journal of

Regional Science 25(4), 521–544.

Gyourko, J., C. Mayer, and T. Sinai (2013). Superstar Cities. American Economic Journal: Applied

Economics 5(4), 167–199.

Herkenhoff, K. F., L. E. Ohanian, and E. C. Prescott (2018). Tarnishing the Golden and Empire States:

Land-Use Restrictions and the US Economic Slowdown. Journal of Monetary Economics 93(1), 89–

109.

Hood, K. (2013). What Can Regional Labor Markets Tell Us About Declining US Migration? unpub-

lished.

Hornbeck, R. (2012). The Enduring Impact of the American Dust Bowl: Short- and Long-Run Adjust-

ments to Environmental Catastrophe. American Economic Review 102(4), 1477–1507.

Hotchkiss, J. L. and A. Rupasingha (2018). Individual Social Capital and Migration. FRB Atlanta

WP 2018-3.

Hotz, V. J. and R. A. Miller (1993). Conditional Choice Probabilities and the Estimation of Dynamic

Models. Review of Economic Studies 60(3), 497–529.

Hsieh, C.-T. and E. Moretti (2019). Housing Constraints and Spatial Misallocation. American Economic

Journal: Macroeconomics 11(2), 1–39.

60



Hyatt, H. R. and J. R. Spletzer (2013). The Recent Decline in Employment Dynamics. IZA Journal

of Labor Economics 2(1), 5.

Hyatt, H. R. and J. R. Spletzer (2017). The Recent Decline of Single Quarter Jobs. Labour Eco-

nomics 46, 166–176.

Ihrke, D. (2014). Reason for moving: 2012 to 2013. Technical report, US Department of Commerce,

Economics and Statistics Administration, US Census Bureau.

Institute for Social Research (2021). Panel Study of Income Dynamics, Public Use Dataset. Technical

report, University of Michigan.

IRS (2018). IRS Migration Data. Technical report, Internal Revenue Service, Statistics of Income.

Johnson, J. E. and M. M. Kleiner (2020). Is Occupational Licensing a Barrier to Interstate Migration?

American Economic Journal: Economic Policy 12(3), 347–73.

Kan, K. (2007). Residential Mobility and Social Capital. Journal of Urban Economics 61(3), 436–457.

Kaplan, G. and S. Schulhofer-Wohl (2012). Interstate Migration Has Fallen Less Than You Think:

Consequences of Hot Deck Imputation in the Current Population Survey. Demography 49(3), 1061–

1074.

Kaplan, G. and S. Schulhofer-Wohl (2017). Understanding the Long-Run Decline in Interstate Migra-

tion. International Economic Review 58(1), 57–94.

Karahan, F. and S. Rhee (2014). Population Aging, Migration Spillovers, and the Decline in Interstate

Migration. FRB of New York Staff Report, no. 699.

Kennan, J. and J. R. Walker (2011). The Effect of Expected Income on Individual Migration Decisions.

Econometrica 79, 211–251.
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Appendices

A Conversion of One Year to Five Year Migration Rate

The census and ACS microdata have the great advantage of containing demographic infor-

mation including home status. Unfortunately, the census changed from a five year retrospective

question in the decadal census to a one year question in the ACS, making it difficult to draw

comparisons of migration rates over time. Fairly often moves are reversed (return to origin)

or repeated (moved again, to a new location); see DaVanzo (1983) and Kennan and Walker

(2011). Hence, in a closed system of discrete locations, it is too simplistic to treat moving rates

as independent arrival rate in which five times the one year arrival would deliver the five year

rate. Some one year moves would not be observed using a five year retrospective asking where

the household lived five years ago.

In an effort to leverage the information on move frequency by demographic and home status,

we use auxiliary data to convert one year rates to implied five year rates. The conversion uses

the following formula

σ5yr = 5 · σ1yr[1− preverse − 0.5 · ponward)].

The arrival rate is therefore reduced by (i) the probability of a reversal (preverse) occurring

within five years, meaning the move would not be observed at all in a survey, and (ii) the

probability of another move event to a new location (ponward) occurring within five years, meaning

only one of the two moves would be observed.66 These adjustments deflate the projection to

something that would match a five year retrospective question.

What remains is to find estimates of the reversal and onward probabilities. For this, we need

longitudinal data detailing the location history of individuals, so we turn to the PSID. This

provides a long record of individuals’ location histories in addition to demographic information.

For each move in the data, we can observe whether the individual moved back to the original or

onward to a third location, and if either occurred, the time elapsed since the first move. This

allows us to estimate a probability of reversal and onward migration within a t-year window,

including estimates by age, education, and home status at the time of move.

However, the PSID is a small sample compared to the census, and since moves are rare, the

sample of movers is smaller yet. Data limitations therefore force us to make a few assumptions.

First, the reversal and onward rates are assumed constant over time.67 Second, the reversal and

66A person could, of course, move more than twice in five years, meaning the ponward could be scaled by
1/n, where n is the number of onward moves. In practice, two moves in a five year window is sufficiently close.
Moreover, in the biennial years of the PSID, two moves in five years is the most we can observe.

67We find reversal rates are higher in the 1980s than in other decades, but we do not detect a general trend in
the rates of return or onward moves conditional on an initial move.
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onward rates are assumed constant across geographies. Third, the reversal and onward rates at

a state level of geography are assumed representative of moves at an LLM level of geography.

Table A1 reports the results using the full 1968-2017 PSID sample, limiting to observations

of the working age population, so that initial moves before age 20 or after age 60 are ignored.

There are three methods reported: one using simple cell probabilities and two using statistical

models. Starting with the cell probabilities, the table shows repeat movers are common: roughly

one quarter of moves are reversed within five years, and another quarter are censored by a move

to a new location within five years. Furthermore, there are noticeable differences by age and

education. Moves initiated later in life, though less frequent, are more likely to stand in five

years. The noncollege educated are more likely to return to the place they initially left, and the

college educated are more likely to move to a new location.

We find further differences by the home status at time of move–whether the move was

leaving home, returning home, or neither. We infer home status as the state in which the

individual spent the most time as a minor (under age 18), although the results are similar

using other definitions. Because the cells get relatively thin at this level of detail, we use the

following statistical models to project the probability. The first is a nested logit specification

that estimates the probability of either reversal or onward moves relative to remaining in the

first move’s location, with the two repeat moves occurring in the same nest. The nesting would

account for correlation in “dissatisfaction” in the first move’s destination, for example; although

we found a simple multinomial logit treating the two repeat move options as independent gave

similar results. The model predicts these outcomes as a function of age, education, and home

status of the initial move. The second model is a survival time model measuring the probability

that the initial move “survives” to the fifth year as a function of age, education, and home

status, with the “failures” being either the reversal or onward move events. We use a hazard

model with exponential distribution, and model the conditional probability of reversals versus

onward moves using the same covariates in a first step logisitic model.

Each of these models, presented in Table A1, reveals differences by home status. Moves away

from home are relatively likely to be undone, especially by a reversal back to home. On the

other side, moves to home are unlikely to be undone by either reversal or onward move. Moves

onward are likely to be repeated by another move onward and also fairly likely to be reversed

back to the (not-home) origin.

Accounting for these factors allows us to better predict for the ACS the rate at which a move

observed one year will persist into the fifth year according to the population characteristics of

the LLMs. This allows us to construct time series of five year rates, as in Figures 1, 3, and

B6, where we use the hazard model prediction. The adjustment factors are very important, as

five times the one year rate would yield an implausibly high five year rate, but as Figures B1

and B4 show, any of the models produces fairly similar results for the time series. While the
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Table A1: Repeat Migration

Count of Moves Model: Group Average Nested Logit Hazard Model

Any By Status Repeat Move Type: Reverse Onward Reverse Onward Reverse Onward

Noncollege
20s 5,010 3,405 At Home 0.352 0.250 0.274 0.237 0.436 0.192

1,001 Not Home: To Home 0.352 0.250 0.178 0.154 0.184 0.199
604 Not Home: Onward 0.352 0.250 0.324 0.280 0.131 0.301

30s 2,906 1,580 At Home 0.244 0.226 0.213 0.184 0.310 0.149
665 Not Home: To Home 0.244 0.226 0.127 0.110 0.135 0.159
661 Not Home: Onward 0.244 0.226 0.263 0.227 0.091 0.231

40s 1,507 820 At Home 0.221 0.147 0.180 0.155 0.287 0.092
341 Not Home: To Home 0.221 0.147 0.103 0.089 0.132 0.104
346 Not Home: Onward 0.221 0.147 0.227 0.196 0.094 0.159

50s 458 261 At Home 0.111 0.079 0.105 0.091 0.127 0.054
97 Not Home: To Home 0.111 0.079 0.055 0.048 0.052 0.054

100 Not Home: Onward 0.111 0.079 0.139 0.120 0.038 0.084

College
20s 1,991 1,407 At Home 0.261 0.347 0.272 0.235 0.320 0.284

275 Not Home: To Home 0.261 0.347 0.176 0.152 0.110 0.237
309 Not Home: Onward 0.261 0.347 0.321 0.277 0.074 0.345

30s 1,476 702 At Home 0.190 0.324 0.215 0.186 0.301 0.217
245 Not Home: To Home 0.190 0.324 0.127 0.110 0.125 0.221
529 Not Home: Onward 0.190 0.324 0.264 0.228 0.074 0.280

40s 589 246 At Home 0.144 0.261 0.176 0.152 0.249 0.174
88 Not Home: To Home 0.144 0.261 0.099 0.086 0.107 0.182

255 Not Home: Onward 0.144 0.261 0.223 0.192 0.060 0.221

50s 164 68 At Home 0.104 0.091 0.095 0.082 0.143 0.052
20 Not Home: To Home 0.104 0.091 0.050 0.043 0.056 0.050
76 Not Home: Onward 0.104 0.091 0.128 0.110 0.044 0.084

NOTES: The table reports estimated repeat migration rates within five years of the initial move, by education, age, and home status at time of initial
move. The repeat migration events can be “reverse,” a return to the origin, or “onward,” a move to a new destination. The Group Average model is a
simple cell probability, pooling over home statuses. The Nested Logit model is a three-option logistic regression, nesting of the two potential repeat
actions in one choice nest. Home status (away from or return to) are entered as controls in the regression, along with intercepts by age-education
group. The Hazard Model is a survival time model using an exponential hazard rate and home status controls in the regression, along with intercepts
by age-education group. The table reports the probability of “failure,” i.e., the repeat move event, within a five year window, with the form of repeat
migration (whether reverse or onward) predicted by a logit model conditioned on a failure occurring and containing the same attributes as controls.
(Source: PSID data.)
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Figure B1: State-to-State Migration Rates

NOTES: The figure reports the time series of migration rates when migration is defined as a change in state of residence. (Source: IRS, ACS, and CPS
data.)

data limitations inherent in this conversion process dissuade us from relying too heavily on the

results of these figures, it is reassuring that the patterns are similar between one and five year

migration rates, even drawing from different data sources.

B Additional Facts on the Migration Decline

B.1 Interstate Migration Rates

State to state migration rates are the focus of many of the seminal papers on the migration

decline, including Molloy et al. (2011), Kaplan and Schulhofer-Wohl (2017), and Karahan and

Rhee (2014). Figure B1 presents the one year state to state migration rate as derived from the

IRS, ACS microdata, and March CPS samples. Each shows a downward trend comparable to

the LLM rates in Figure 1.

The CPS does not allow for assignment to LLMs, which is one reason it is not our preferred

source (though its limited sample size is the main reason). The figure shows the CPS to be

somewhat out of step with the other data series, however. Each show a decline, but the drop

in the CPS is especially large. While the IRS data (derived from consistent taxpayers) may

understandably be a different sample than the CPS, the ACS data should represent a sample

similar to the CPS. Yet, the interstate migration rates are half the magnitude in the CPS

compared with the ACS, which presents a puzzle we have not been able to resolve. (This series

excludes imputed moves (see Kaplan and Schulhofer-Wohl (2012)).) We have checked that it is

not due to age composition in the datasets, which are similar. It seems notable that one-third of

the drop occurs between 1994 and 1996 (there is no 1995 data point) over the course of a survey

redesign.
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Figure B2: Robustness of Five Year Migration Rate, 1990-2017

NOTES: The figure displays five year migration rates. For 1990 and 2000, the five year rates are directly from census data. For 2005-2017, the five year
rates are the implied rate under conversion by each of the three different models of Table A1. Compare with Figure 1, which uses the hazard regression
method. (Source: Census, ACS, and PSID data.)

Table B1: Move Home Rates by Age and Education: Robustness to Geographic Definitions

Move Home Rate (%) Odds Ratio, Move Home/Other In-Movers,

Education/ Lower Bound Upper Bound Geography-Adjusted Average Ratio

Age Actual Synthetic Actual Synthetic Lower Bound Upper Bound
L-5 L-6 U-5 U-6 L-5/6 U-5/6

Noncollege
20s 10.23 0.70 39.45 4.71 7.76 116.48
30s 8.84 0.68 34.30 4.48 6.59 88.44
40s 8.42 0.64 31.12 4.18 6.18 76.81
50s 7.37 0.57 28.50 3.86 5.94 69.76

College
20s 9.78 1.10 31.36 4.84 5.48 63.24
30s 8.16 1.00 27.00 4.45 5.71 59.27
40s 6.58 0.91 22.10 4.08 4.97 46.04
50s 5.90 0.73 21.22 3.73 5.02 44.79

NOTES: The table reports move home rates under alternative definitional scenarios; compare Table 1. The baseline in Table 1 weighted LLMs within
the respondent’s birthstate by the population-based probability the LLM was his/her birth LLM. The lower boundary assumes other LLMs in the
respondent’s birthstate are not his/her home LLM. The upper bound version assumes any LLM in the respondent’s birthstate is affirmatively a home
LLM. The synthetic choice probabilities correspond to their respective definition of home LLM.
Odds ratios are the relative choice probabilities of a destination LLM by LLM natives compared with non natives, conditioning on the origin LLM in
order to account for geographic networks of migration flows. For example, the odds ratio compares the choice probability of New York City by native
New Yorkers living in Tampa to the choice probability of non-New Yorkers living in Tampa. There are J(J − 1) pairs for each age-education group, and
the table reports the average odds ratio among non-missing cells. (Source: ACS data.)

B.2 Five Year Migration Rates

As a robustness check on Figure 1, Figure B2 reports the five year rate with alternative

models used to make the one-to-five year conversion in the ACS-era data; the pattern is very

similar under the various models. See Section A and Table A1 for more information on the

one-to-five year conversion models.

B.3 Robustness of Home Status Definitions

We observe in which state a respondent was born, but not his or her LLM of birth. Table

1 used a relatively conservative definition in which we downweight the probability an LLM is
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home by the distribution of population in the respondent’s birth year. For example, if in 1980,

one-half of population of the state of Georgia lives in Atlanta and the other half lives in the

rest of Georgia, a move of a 30-something Georgia native in the 2010s to Atlanta gets a move

home weight of 1/2 instead of 1. Table B1 presents two alternatives. The first (L-5) is an even

more conservative definition in which the other LLMs are assigned a weight of zero (e.g., the

Georgia native moving to Atlanta is assigned a 0 for his failure to move to the rest of Georgia).

The second (U-5) is a more accommodative definition in which a move to any LLM in the home

state is assigned a value of 1 (in the Georgia native example, both Atlanta and residual Georgia

could qualify as moves home with weight of 1). These two effectively bound the range of move

home rate in our data. If moves to a home LLM are relatively more likely conditioning on a

move to one’s home state, the more liberal assignment of home could be doing a better job of

assigning the move home rate. If moves to LLMs other than home within one’s home state are

more likely (e.g., the native of rural Georgia selects Atlanta more often than someone not from

Georgia), then the accommodative definition may technically overstate the rate of move home

but still be qualitatively correct regarding place attachment in that proximity to home is valued

by migrants.

Columns L-5 and U-5 show the main estimate reported in Table 1 is conservative in that it is

nearer the lower bound, although moves home could be as high as one-third of all moves under

the more accommodative definition. Under either definition, the actual moves home dominate

by far the synthetic versions of move home (L-6 and U-6), indicating that home is chosen by a

far greater probability than would be predicted by chance.

The table also addresses a competing hypothesis, that migration is coincidentally towards

home because migration networks are relatively local and any mover does not migrate far from

her initial location–i.e., home is usually nearby. The table reports the odds ratio, conditioning

on the location of origin, of choosing a destination when it is home versus when it is not. This

measures, for example, the probability that a person native to Michigan will choose Detroit when

living in Cleveland compared to the probability that another Cleveland resident not native to

Michigan would choose Detroit. Columns L-5/6 and U-5/6 report, respectively, the median

odds ratio under the lower and upper bound assumptions about home LLM. In either case, the

statistics show that moves home are disproportionately likely when adjusting for move proximity.

B.4 Measuring the Marginal Effect of Home Status on Migration

Choice

Table B2 presents odds ratio regressions of the probability of moving between at-home and

not-at-home residents. The regression is σmo,it = α0 + α1I(o = H) + Xoβ, where α0 is a

baseline rate and α1 is the effect of home status, and o, i, t index origins, individuals, and

69



Table B2: Out Migration by Home Status: Odds Ratio Regressions

Home Status Method: At-Home Indicator At-Home Indicator + Roots

Education / Controls: None Income LLM FEs None LLM FEs None
Age Model: Logit Logit LP Logit LP Logit

Noncollege
20s At Home 0.339 0.343 0.419 0.371 0.413 0.396

(0.001) (0.001) (0.002) (0.001) (0.002) (0.004)
At Home X Hi Roots 0.354 0.392 0.379

(0.001) (0.003) (0.004)
Not Home X Hi Roots 1.090

(0.016)

30s At Home 0.365 0.364 0.424 0.378 0.412 0.399
(0.001) (0.001) (0.003) (0.001) (0.003) (0.006)

At Home X Roots 0.346 0.366 0.365
(0.001) (0.004) (0.005)

Not Home X Roots 1.072
(0.020)

40s At Home 0.371 0.371 0.404 0.375 0.387 0.410
(0.002) (0.002) (0.003) (0.002) (0.004) (0.006)

At Home X Hi Roots 0.330 0.311 0.361
(0.002) (0.005) (0.006)

Not Home X Hi Roots 1.128
(0.023)

50s At Home 0.368 0.370 0.420 0.368 0.402 0.389
(0.002) (0.002) (0.004) (0.002) (0.004) (0.005)

At Home X Hi Roots 0.310 0.316 0.329
(0.002) (0.005) (0.005)

Not Home X Hi Roots 1.081
(0.020)

College
20s At Home 0.448 0.444 0.500 0.493 0.490 0.629

(0.002) (0.002) (0.004) (0.002) (0.004) (0.013)
At Home X Hi Roots 0.485 0.430 0.619

(0.003) (0.006) (0.013)
Not Home X Hi Roots 1.353

(0.033)

30s At Home 0.390 0.388 0.413 0.408 0.399 0.541
(0.002) (0.002) (0.005) (0.002) (0.005) (0.009)

At Home X Roots 0.374 0.305 0.497
(0.002) (0.007) (0.009)

Not Home X Roots 1.425
(0.030)

40s At Home 0.394 0.395 0.436 0.403 0.427 0.464
(0.003) (0.003) (0.007) (0.003) (0.007) (0.010)

At Home X Hi Roots 0.365 0.343 0.420
(0.004) (0.010) (0.010)

Not Home X Hi Roots 1.203
(0.033)

50s At Home 0.439 0.439 0.483 0.446 0.475 0.510
(0.003) (0.003) (0.006) (0.003) (0.006) (0.010)

At Home X Hi Roots 0.395 0.382 0.452
(0.004) (0.009) (0.010)

Not Home X Hi Roots 1.196
(0.030)

NOTES: The table reports odds ratio regressions of move out rates as a function of home status and the controls as indicated in the column headings.
The odds ratio is taken with respect to the at-home relative to the not-at-home, US-born groups, within each age and education group. The foreign
born are included in the regression sample but excluded from the odds ratio presented. The model in columns 1 to 3 is
σm,iot = α0 + α1I(o = H) +Xoβ and in 4 to 6 is σm,iot = α0 + α1I(o = H) + α2RoI(o = H) +Xoβ, the difference being the inclusion of the
location’s rootedness for the age cohort. The models are either logit or linear probability (LP), as indicated in the column headings. Year of
observation dummies are included in all specifications. (Source: ACS data.)

70



time, respectively. The odds ratio is then
σ̂m,o=H
σ̂m,o 6=H

= α0+α1

α0
. (The foreign born are included and

controlled for in the regression sample but excluded from the odds ratio.) A number below

one indicates that people at home are less likely to move (i.e., α1 < 0). The odds ratio has the

advantage of standardizing the relative sizes between home statuses across different demographic

groups, which are estimated separately in their own regression model, so that results can be

compared across groups with different baseline moving rates. Compared with the descriptive

results in Tables 1 and B1, the regression allows control for individual or location factors besides

home status.

The table presents several specifications of increasing controls. The first column is a simple

logit regression. It shows the at-home are only 34 to 45 percent as likely to move as the not-at-

home. The next column controls for local income opportunities (mean and variance of income)

with very similar results. The third column includes LLM fixed effects to soak up any fixed local

features. Here, the odds ratio rises somewhat, indicating that there are generally more at-home

people in less mobile locations–which is of course consistent with the population growth patterns

presented in Section 2. But the odds ratios are still consistently below one-half across all age

and education groups.

The second set of columns expands the model to include a home status indicator and a roots

coefficient: σm,iot = α0 + α1I(o = H) + α2RoI(o = H) + Xoβ. This will measure whether there

is variation in the move rates among the at-home group that is explained by rootedness, our

measure of the intensity of home attachment. To maintain the odds ratio presentation, we report

the odds ratio at mean roots for the sample and one standard deviation above (“Hi Roots”). If

α2 < 0, then higher rootedness means lower probability of a move among the at-home.

This is indeed what we find: higher rooted places have lower mobility among their LLM

natives, which is consistent with Figure 7. The odds ratio at a standard deviation above the

mean roots is two to six percentage points lower than at the mean. Notably, this finding is not

the result of rooted places being less mobile for other, unobserved reasons. The result remains

even when controlling for origin fixed effects, so higher roots still explain variation in move

rates among the at home when generically accounting for LLM features. The final column then

interacts rootedness with not-at-home (but US-born) status. The odds ratios above one indicate

that nonlocal residents actually leave rooted areas at higher than normal rates.

Table B3 conducts a very similar exercise as Table B2, but focusing on the move-to proba-

bility, conditional on moving. To do so, we need to construct a dataset of all movers with all

possible alternatives, so the regression model is σjo,it = α0 + α1I(j = H) + Xjβ, with J − 1

observations (of j 6= o) for each individual i. The intuition is much the same: we look at choice

probability ratios by home status, controlling for features of the destination or origin-destination

pair.

The table shows in the first column that a destination being one’s home makes it nine to 19
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Table B3: In Migration by Home Status: Odds Ratio Regressions

Home Status Method At-Home Indicator At-Home Indicator + Roots

Education / Controls: None Income Dest. LLM FEs LLM Pair Fes None LLM Pair Fes None
Age Model: Logit Logit LP LP Logit LP Logit

Noncollege
20s To Home 18.921 18.509 11.129 11.109 15.985 11.022 6.735

(0.294) (0.289) (0.145) (0.150) (0.215) (0.149) (0.121)
To Home X Hi Roots 14.781 10.195 6.228

(0.284) (0.205) (0.141)
Not Home X Hi Roots 0.339

(0.005)

30s At Home 15.627 15.328 9.267 9.431 13.630 9.406 5.074
(0.314) (0.309) (0.162) (0.170) (0.241) (0.170) (0.115)

At Home X Roots 13.151 9.160 4.895
(0.323) (0.233) (0.139)

Not Home X Roots 0.284
(0.005)

40s At Home 14.762 14.586 8.989 8.772 13.080 0.185 4.905
(0.338) (0.335) (0.177) (0.183) (0.265) (8.790) (0.125)

At Home X Hi Roots 13.267 9.005 4.975
(0.375) (0.260) (0.160)

Not Home X Hi Roots 0.279
(0.005)

50s At Home 13.240 13.102 8.095 7.936 11.912 7.962 4.216
(0.317) (0.314) (0.167) (0.176) (0.256) (0.177) (0.111)

At Home X Hi Roots 12.231 8.326 4.329
(0.371) (0.253) (0.147)

Not Home X Hi Roots 0.250
(0.005)

College
20s At Home 15.545 15.509 10.316 10.538 13.353 10.537 9.713

(0.315) (0.315) (0.187) (0.190) (0.233) (0.190) (0.229)
At Home X Hi Roots 13.043 10.191 9.488

(0.317) (0.261) (0.275)
Not Home X Hi Roots 0.674

(0.013)

30s At Home 12.571 12.603 8.498 8.679 11.136 8.686 5.702
(0.248) (0.248) (0.154) (0.158) (0.193) (0.158) (0.126)

At Home X Roots 10.806 8.448 5.533
(0.255) (0.211) (0.151)

Not Home X Roots 0.430
(0.007)

40s At Home 9.646 9.651 6.603 6.605 8.826 6.213 3.361
(0.294) (0.294) (0.187) (0.193) (0.244) (0.182) (0.112)

At Home X Hi Roots 8.278 7.467 3.152
(0.306) (0.226) (0.131)

Not Home X Hi Roots 0.287
(0.007)

50s At Home 9.303 9.284 6.138 6.091 8.600 6.092 3.034
(0.303) (0.302) (0.182) (0.192) (0.256) (0.191) (0.109)

At Home X Hi Roots 8.389 6.074 2.960
(0.349) (0.265) (0.137)

Not Home X Hi Roots 0.254
(0.007)

NOTES: The table reports odds ratio regressions of destination choice probabilities, conditional on moving, as a function of home status and the
controls as indicated in the column headings. The odds ratio is taken with respect to the at-home relative to the not-at-home, US-born groups, within
each age and education group. The foreign born are included in the regression sample but excluded from the odds ratio presented. The model in
columns 1 to 4 is σjo,it = α0 + α1I(j = H) +Xjβ, with J − 1 observations (of j 6= o) for each individual i. Columns 5 to 7 include the location’s
rootedness for the age cohort. The models are either logit or linear probability (LP), as indicated in the column headings. Year of observation dummies
are included in all specifications, and standard errors are clustered by i. (Source: ACS data.)

72



Figure B3: In and Out-Migration by Local Labor Market; Alternative Samples

Late IRS (2005-2011) ACS (2005-2017)

NOTES: The figures plot in- versus out-mobility rates for U.S. LLMs in the late IRS and ACS microdata samples. Compare Table 2. (Source: IRS and
ACS data.)

times more likely to be selected than if it were not home, depending on the demographic group.

Controlling for destination income (itself a significant determinant) delivers very similar results.

Controlling for destination and destination pair effects reduces the ratio somewhat, but home

status still remains an especially strong predictor.

The second set of columns introduces the roots coefficient separately from the at home

indicator. Here, the roots coefficient for the at-home is actually negative, which makes the

destination a slightly less likely choice for movers when the LLM’s rootedness is high. The gap

closes slightly when accounting for LLM-pair fixed effects, but the last column is perhaps most

telling. A highly rooted destination is substantially less likely to be chosen among non-natives,

while only slightly less likely to be chosen among natives. This suggests that rootedness itself

is not a deterrent on its own for natives, but rather highly rooted places are less attractive

destinations in general–which is of course consistent with their being the places with the lowest

population growth over the last few decades.

B.5 In and Out-Migration Rates: Robustness of Figure 2

Figure B3 presents sample robustness tests of Figure 2, displaying the late IRS (2009-2011)

period and the LLM averages derived from ACS microdata covering 2005-2017. In all samples,

LLM move rates show a high degree of correlation between inflow and outflow rates.

B.6 Additional Geographic Patterns in the Migration Decline

Figure B4 reports on robustness and alternative viewings of the decline in migration rate by

initial migration speed. The upper panel shows scatter plots of the migration rate in the IRS

data in order to see more of the heterogeneity across LLMs. The lefthand figure shows early
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Figure B4: Changes in Out-Migration Rate Over Time; LLM Level Observations and Five Year
Robustness

Early to Late IRS Rates Change in Rate to Initial Rate, IRS

Robustness to Conversion Method for Five-Year Rates

NOTES: The upper lefthand figure plots out-mobility rates for U.S. LLMs in the early and late IRS data series, as noted on the axes. A 45-degree and
best-fit line are also plotted. The upper righthand figure plots the change in out-mobility rates for U.S. LLMs to the early period average, with bubble
size proportional to population size. (Source: IRS migration data.)
The lower figure plots each LLM speed series under each one-to-five-year conversion model from Table A1. (Source: Census, ACS, and PSID data.)

and late out-migration rates; that the best fit line lies below the diagonal shows that the larger

changes occur in initially more mobile places, although the relative rankings by speed are mostly

preserved. The righthand figure plots the difference, the change in migration rate against the

initial out-migration rate after adjusting for the average scale effect (larger cities being less mobile

on average). The bubble sizes are proportional to city size. This plot also shows a clear pattern

of more mobile locations exhibiting greater declines across the population-size distribution of

cities.

The lower figure plots robustness checks for the five year migration rates, displaying for each

series the implied five year rates under each one-to-five-year conversion model from Table A1.

The result that fast LLMs drive the migration decline is not affected by the conversion method.

Figure B5 plots the change in migration for a partitioning of potential destinations. The
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Figure B5: Change in Out-Migration Rates by Destination

NOTES: The figure plots the log change in migration to a set of destinations to the log total change in out-migration for the origin. The destinations
are grouped by “Neighbors” (adjacent LLMs) to the origin LLM, other LLMs in the same state as the origin LLM, others in the same region, and the
remainder. Note the horizontal axis is the same data on all four plots. The population adjustment on the vertical axis accounts for population growth
by differencing the destination flow and the origin population size, y = (ln(flowlate)− ln(flowearly))− (ln(poplate)− ln(popearly)). (Source: IRS
data).

destinations are grouped by “Neighbors” (adjacent LLMs) to the origin LLM, other LLMs in

the same state as the origin LLM, others in the same region, and the remainder. The scatter

plots show that declines in migration to each kind of destination are associated with declines

in out-migration from the origin, and there is not a substitution of one type of destination for

another. The pattern also holds when splitting by large and small LLM destinations or by

common and uncommon destinations. Thus, the decline appears to be a general drying up of

the origin out-mobility rate.

B.7 Move Rates by Home Status Over Time

Figure B6 shows the migration propensity over time by birthplace status. There are no

discernible trends in the migration rate within the at-home, not-home, or foreign born groups

(with one exception), which suggests that the change is the shift in population composition

from the mobile, not-at-home category to the at-home category. The exception is the migration

rate for the at-home residents of fast locations, which has trended down as their intensity of

attachment has increased, as described in Section 2.6.1. This feature is also consistent with

converging population growth driving the migration trend.

Figure 6 showed the migration propensity over time by birthplace status. Table B4 reports

odds ratio regressions over time for models of move out rate (see also Table B2 for the ACS
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Figure B6: Migration Rate Over Time By Birthplace Status

NOTES: The figure plots implied five year migration rates by home status. The years using the ACS sample (2005 onward) convert to five year rates,
as explained in Section A, using the conversion factors in Table A1. The samples have been balanced to have a constant age/education composition
over time. (Source: Census and ACS Microdata).

Table B4: Out Migration by Home Status Over Time: Odds Ratio Regressions

Education / Sample ACS 2005-17 Census 2000 Census 1990

Age Model Logit LP FE Logit LP FE Logit LP FE

Noncollege
20s Avg. Roots 0.740 0.764 0.778

At Home (at Avg. Roots) 0.371 0.413 0.399 0.415 0.386 0.399
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

30s Avg. Roots 0.753 0.770 0.773
At Home (at Avg. Roots) 0.378 0.412 0.389 0.402 0.371 0.379

(0.001) (0.003) (0.001) (0.001) (0.000) (0.001)

40s Avg. Roots 0.764 0.769 0.798
At Home (at Avg. Roots) 0.375 0.387 0.380 0.390 0.372 0.372

(0.002) (0.004) (0.001) (0.001) (0.001) (0.001)

50s Avg. Roots 0.768 0.795 0.816
At Home (at Avg. Roots) 0.368 0.402 0.399 0.416 0.385 0.403

(0.002) (0.004) (0.001) (0.002) (0.001) (0.002)

College
20s Avg. Roots 0.734 0.757 0.759

At Home (at Avg. Roots) 0.493 0.490 0.600 0.589 0.609 0.597
(0.002) (0.004) (0.002) (0.002) (0.003) (0.003)

30s Avg. Roots 0.736 0.745 0.748
At Home (at Avg. Roots) 0.408 0.399 0.476 0.456 0.485 0.461

(0.002) (0.005) (0.001) (0.001) (0.001) (0.001)

40s Avg. Roots 0.737 0.741 0.761
At Home (at Avg. Roots) 0.403 0.427 0.430 0.404 0.450 0.413

(0.003) (0.007) (0.002) (0.002) (0.002) (0.002)

50s Avg. Roots 0.738 0.758 0.778
At Home (at Avg. Roots) 0.446 0.475 0.469 0.439 0.473 0.438

(0.003) (0.006) (0.002) (0.003) (0.004) (0.004)
NOTES: The table reports odds ratio regressions of move out rates as a function of home status and the controls, for each data sample, as indicated in
the column headings. Note that the ACS uses one year retrospective question to measure migration, but the census uses a five year retrospective. The
odds ratio is taken with respect to the at-home relative to the not-at-home, US-born groups, within each age and education group. The foreign born
are included in the regression sample but excluded from the odds ratio presented. The model in columns 1 to 3 is σm,iot = α0 + α1I(o = H) +Xoβ
and in 4 to 6 is σm,iot = α0 + α1I(o = H) + α2RoI(o = H) +Xoβ, the difference being the inclusion of the location’s rootedness for the age cohort.
The models are either logit or linear probability with origin fixed effects (LP FE), as indicated in the column headings. (Source: ACS microdata.)
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baselines). The odds ratio helps to standardize the comparison across time, despite the ACS

data reporting one year rates and census data reporting five year rates. The table shows that

odds ratios by home status are quite consistent over time; at home residents move out at rates

one-third to two-fifths as often as the not-at-home at each time period of observation. Some

of the college educate groups exhibit a slight increasing attachment to home. While rootedness

increased in the fast LLMs, the average city over time shows a flat or even declining trend. Thus,

it does not appear the sensitivity to home has changed much over time, while the share of people

in the at home category has increased, mostly in fast locations.

B.8 Migration Trends by Geography in the CPS

As noted above, the CPS is not our preferred dataset primarily because it is too small to

splice by subgeography, and the finest subgeography it offers is state (not LLM, our preferred

boundary definition). The CPS also stands out in the magnitude of the migration decline

it indicates. However, subject to these limitations, we can check whether any of the spatial

heterogeneity we find in the main analysis holds up in the CPS. We do find that interstate

rates have declined the most in the Frontier, West, and South regions, and the least in the

Northeast, and correlate very highly with changes in the IRS. The CPS disagrees with the IRS

slightly on the degree of change in the Midwest region–the CPS shows a moderate decline in

interstate migration (comparable to the South), while the IRS shows a much smaller decline

(comparable to the Northeast). Among states that are large enough to be feasibly measured,

the CPS shows larger declines out of Texas, Florida, and California, and smaller declines in New

York, Pennsylvania, and Illinois. These all correlate with findings from the IRS.

B.9 Migration and Income Dispersion

Figure B7 plots the migration rate out of an LLM for each tercile of the income distribution

(plus those without reported income) against the LLM’s average out-mobility rate. Among each

income subgroup, higher out-mobility rates are associated with higher average mobility for the

location, but the slope is strongest among the low income type. This is one reason we are

concerned with controlling for the income distribution of LLMs, and the distribution of income

by age/education/at-home status, within our model.

Table B5 shows migration rates by tercile of the income distribution, after adjusting for

predicted wage based on age, education, and state of residence. The microdata come from the

PSID and the income prediction comes from the CPS. Migration is defined by a change in state

of residence. The “short-run position” uses the classification of residual income in the last two

years and whether the person migrates in the following year. The “long-run position” averages

over the person’s individual average residual, creating an estimate of the individual’s income
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Figure B7: LLM Mobility Rate by Point in the Income Distribution

NOTES: The figure shows scatterplots of within-income category out-mobility rate (adjusted for group size) against the average LLM out-mobility rate.
The “low” income category indicates incomes less than 1/2 SD below the mean for the skill group, “medium” is from -1/2 to 1/2 SD above, and “high”
is more than 1/2 SD above. The vertical axis reported “adjusted” rates because migration rates have been normalized to reflect a consistent
composition by age and education. (Source: ACS data.)

Table B5: Individual Migration Rate by Point in the Income Distribution

Short-Run Moved in Period Long-Run Moved in Sample
Position Stay Move Avg. Posiition Never At Least Once

Total 32,182 914 Total 45,057 9,904
rate 97.24 2.76 rate 81.98 18.02

Low 6,924 201 Low 9,701 1,668
rate 97.18 2.82 rate 85.33 14.67

Average 17,035 427 Average 22,318 4,960
rate 97.55 2.45 rate 81.82 18.18

High 8,223 286 High 13,038 3,276
rate 96.64 3.36 rate 79.92 20.08

NOTES: The table classifies workers in the PSID relative to their predicted income (given education, age, and state of residence) in a given year,
categorizing the residual into his/her income position. The first set of columns uses the classification of the last two years and whether the person
migrates in the following year. The second set averages over the person’s individual average residual and relates their migration history in the sample.
Migration events are defined as moves across states. (Source: PSID data.)

“fixed effect,” and relates their migration history in the sample. The table shows that higher

income types are more likely to have ever moved, but high and low transient shocks to income

are associated with higher mobility.
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C Modeling Details

The following appendix contains derivations used in the model.

C.1 Model Setup: Choice Probabilities and Value Functions

For convenience, we rewrite the choice probability and value functions from section 3.

C.1.1 Lower Nest: Where to, Conditional on Moving

The probability of choosing destination j conditional on current location o is given by

Pr(j|o) = σjo =
exp[vj|o]

1
λ∑

i exp[vi|o]
1
λ

. (C1)

Taking logs yields

lnσjo =
1

λ
vj|o − ln

∑
i

exp[vi|o]
1
λ . (C2)

The expected value of choosing a destination optimally (the ‘Emax’) is the value of moving

out of origin o, Vm|o:

Vm|o = λln
(∑

k

exp[vk|o]
1
λ

)
. (C3)

C.1.2 Upper Nest: Move/Stay Decision

The upper nest is the binary stay or move decision. Letting Vs|o denote the value of remaining

in the origin this period, the respective probabilities are

Pr(stay) =σs =
exp[Vs|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

(C4a)

Pr(move) =σm =
exp[Vm|o]

1
δ

exp[Vs|o]
1
δ + exp[Vm|o]

1
δ

. (C4b)

Similar to (C1), the expected value of being faced with a move/stay decision in some origin

o is

Vo = δln
[
exp[Vo]

1
δ + exp[Vm|o]

1
δ

]
. (C5)

This is the value of being in the location indexed by o.

The closed form logit choice probabilities have the usual convenient features for expressing

log choice probabilities and odds ratios. Taking logs in equation (C1) and differencing two
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destinations yields

lnσj|o =
1

λ

[
vj|o − ln

(∑
i

exp[vi|o]
1
λ

)]
(C6a)

lnσj|o − lnσi|o =
1

λ

(
vj|o − vi|o

)
(C6b)

and from equations (C4b) and (C4a), using C3 in the third line:

lnσs =
1

δ
Vo − ln

(
exp[Vo]

1
δ + exp[Vm|o]

1
δ ) (C7a)

lnσm =
1

δ
Vm|o − ln

(
exp[Vo]

1
δ + exp[Vm|o]

1
δ ) (C7b)

lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
. (C7c)

C.2 Locational Heterogeneity in Income Search

Locations are heterogeneous in the incomes they offer, so that utility afforded by the in-

come point n may vary, i.e., yjn > ykn for some locations j, k. A higher mean shifts the entire

distribution, so that both w0(n) and wc(n) move proportionately at each n.68

The effect of dispersion is perhaps less obvious. Higher dispersion can increase the value

function of the worker, ceteris paribus, because of the presence of the optionality in the successful

search. The availability of high draws is a good when there is opportunity to reject low ones,

as this model allows. The w0 term is not affected by a mean-preserving spread in income, but

the wc term is convex in the variance of the income distribution. Mathematically, given a Type

I EV assumption on the shock in the successful search event, wc(n) =
∑

n′ πn′|nln(exp(wn′) +

exp(wn)) −∆, where ∆ is Euler’s constant (to adjust for the mean of the T1EV distribution),

which is increasing in the spread of the distribution of n′. To see the effect of dispersion on this

value, consider a mean-preserving spread of σ separating two income levels, w1 = w + σ, w2 =

w − σ. The expected value of receiving these two options is

wc = ln(exp(w + σ) + exp(w − σ)).

The log transformation is monotonic, so to show the sign, we focus on the sum of the

exponential terms. Its derivative is

68The wc term is slightly less sensitive to the mean than w0 because a successful search induces some reversion
by providing a mixture of two draws from the distribution.
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∂exp(wc)

∂σ
= σ(exp(w + σ)− exp(w − σ)) > 0.

Since σ is positive and the exponent is an increasing function, the value is increasing in the

spread.

Next, the income search value function is clearly affected by the probability of a successful

search in ways that interact with the income distribution. Writing out the expected value of

income search, (9),

ωn =
∑
n′

πn′|n
[
γln(exp(wn′) + exp(wn))−∆ + (1− γ)wn′

]
,

we see that the derivative of this expected value with respect to the contact probability is

∂ωn
∂γ

=
∑
n′

πn′|n
[
(ln(exp(wn′) + exp(wn))− wn′

]
> 0,

which is the probability-weighted gap between the expected income resulting from the successful

and unsuccessful search. This gap is increasing in the income distribution mean (in general) and

variance (in the support of actual data for U.S. cities) because of the nonlinearity in the successful

search term.

Combining these last two results would show that d2wn
dσγ

> 0. Thus, we allow for the possibility

that higher mean and/or higher dispersion locations have been more affected by increasing

information availability. As information increases, local search will dominate nonlocal search to

a greater extent when the local market has higher mean and/or variance.

D Estimation Details

The following appendix contains details of the model estimation procedure, including deriva-

tions used in the construction of the estimating equations.

D.1 Deriving Estimating Equations

D.1.1 Destination Conditional on Moving

The value of a location depends on (i) its current offer of flow utility, (ii) the size of switching

costs between the origin and the new location, and (iii) the continuation value offered by placing

oneself in a new state. Writing out the components of the difference in values shows that the

odds ratio in (C6b) is
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lnσj|o − lnσi|o =
1

λ

(
uj +mcjo + βln

(
exp[Vs|j]

1
δ + exp[Vm|j]

1
δ

))
−1

λ

(
ui +mcio + βln

(
exp[Vs|i]

1
δ + exp[Vm|i]

1
δ

))
.

(D1)

Intuitively, this expression says the relative probability of choosing two locations is a matter of

(i) the difference in their utilities, (ii) the difference in the move costs in reaching them from the

origin o, and (iii) the difference in the continuation value induced by changing one’s station to j

vis-a-vis i. The latter could matter in a model with geography (including birthplace geography),

as j and i may be more or less remote from other locations, or may differ in the home premium

they offer the individual. The future value components can be substituted using (C5), which

then appears in the denominator of (C4b), allowing for substitution of (C3), yielding

lnσj|o − lnσi|o =
1

λ
(uj +mcjo − ui −mcio)

+
β

δ
ln
(∑

k

exp[v′k|j]
1
λ

)
− β

λ
lnσ′m|j

−β
δ
ln
(∑

i

exp[v′k|i]
1
λ

)
− β

λ
lnσ′m|i,

(D2)

where the prime symbol is used to indicate the value of the variable in the next period. This

equation has substituted out the future value terms for the (relative difference in) future moving

probabilities and the expected value function in the where-to moving decision. Note that we

have elected to take the future value with respect to the moving probability and value rather

than that of staying. This allows us to substitute out the value of moving out from the two

candidate locations, and normalize relative to an arbitrary third location z. The normalization

obtains because the value of ending up in z will be constant for the individual, although the cost

of reaching z may differ between j and i. Therefore the probability of reaching z will depend

on the next-selected destination, but otherwise the history of choices is “forgotten” once z is

reached. In this way, we are leveraging the logic of finite dependence to iteratively substitute

out future value terms, returning to a renewal state. Using (C6b), we derive

lnσj|o − lnσi|o =
1

λ
(uj +mcjo − ui −mcio − β(lnσ′m|j − lnσ′m|i))

+
β

δ

(1

λ
(mczj −mczi − (lnσ′zj − lnσ′zi)

)
.

(D3)

Equation (D3) is now a reduction of (C6b) to parameters (in the utility and move cost functions,

82



and the scale parameters) and moments from the data (the choice probabilities).

D.1.2 The Move/Stay Decision

The log odds ratio of staying (not migrating) is given in (C7c). This can also be converted to

a linear estimating equation when differencing relative to a normalizing origin location z. The

basic idea is to iteratively apply the forward substitution used to account for the continuation

value terms as in (D3). Several more forward substitutions are needed to return the estimating

equation, but the logic is the same as that used in the last subsection.

(lnσso − lnσmo)− (lnσsz − lnσmz) =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
−1

δ

(
Vz − λln

(∑
i

exp[vi|z]
1
λ

))
=

1

δ

(
Vo − Vz

)︸ ︷︷ ︸
staying

− λ
δ

(
ln
(∑

i

exp[vi|o]
1
λ

)
− ln

(∑
i

exp[vi|z]
1
λ

))
.︸ ︷︷ ︸

moving

(D4)

We will treat the “staying” and “moving” blocks separately for convenience. The difference

in the value of staying in o relative to z is written out as

Vo − Vz =uo + βln
[
exp(V ′o)

1
δ + λln

(∑
i

exp[v′i|o]
1
λ

) 1
δ
]

−
(
uz + βln

[
exp(V ′z )

1
δ + λln

(∑
i

exp[v′i|z]
1
λ

) 1
δ
])

=uo + β
λ

δ
ln
(∑

k

exp[v′k|o]
1
λ

)
− lnσ′m|o

−
(
uz + β

λ

δ
ln
(∑

k

exp[v′k|z]
1
λ

)
− lnσ′m|z

)
.

(D5)

We first expanded the expression into flow utilities and continuation values and then substi-

tuted the continuation value using (C7b) and (C3). The relative continuation values of staying

are thus expressed as the expected value of an optimal move less the probability of moving any-

where, conditioning on origin o versus z. (For comparison, this equation looks like (D2) without

the moving cost terms.)

We are now in position to employ a substitution for the expected value of a move using (C6a)
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for the ln
(∑

k exp[v
′
···]

1
λ

)
terms. Equation (D5) becomes

Vo − Vz =uo − uz − (lnσ′m|o − lnσ′m|z)

+β
λ

δ

(1

λ
(vk|o − vk|z)− (lnσko|m − lnσkz|m)

)
.

(D6)

This equation has expressed the expected value of a move (ln
(∑

k exp[v
′
···]

1
λ

)
as the choice-

specific value of some location, vk, minus the probability of moving there, lnσk. The relative

values between starting this choice from o vis-a-vis z is simply the difference in the cost of

reaching the location, as once the agent is in k, there is no impact of the memory of how she got

there. That is, we again leverage the property of finite dependence–in one more step, agents can

be returned to equivalent places in the state space. Thus, in the same substitution that arrived

at (D3), here we have

Vo − Vz =uo − uz − (lnσ′m|o − lnσ′m|z)

+β
λ

δ

(1

λ
(mcko −mckz)− (lnσ′ko|m − lnσ′kz|m)

)
.

(D7)

The moving block uses the same technique, substituting out the expected value of a move

employing finite dependence. (The staying block merely needed one more step to arrive here.)

We thus have

λ

δ

(
ln
(∑

i

exp[vi|o]
1
λ

)
− ln

(∑
i

exp[vi|z]
1
λ

))
=

λ

δ

(1

λ
(mcko −mckz)− (lnσko|m − lnσkz|m)

)
. (D8)

One difference of note between (D7) and (D8) is that the former uses one period ahead

choice probabilities (and is discounted by β) while the latter uses current period choice prob-

abilities. Our estimation focuses on the geography and ignores aggregate shocks or trends, so

that lnσko|m = lnσ′ko|m. In other applications, one may need to forecast the differences between

these as states evolve. Subject to this caveat, our estimating equation combines (D7) and (D8)

to yield
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(lnσso − lnσmo)− (lnσsz − lnσmz) +
β

δ
(lnσ′m|o − lnσ′m|z) =

1

δ
(uo − uz) + (β − 1)

λ

δ

(1

λ
(mcko −mckz)− (lnσko|m − lnσkz|m)

)
, (D9)

which is a function of only choice probabilities and utility parameters.

D.2 The Estimation Procedure

Estimation relies on information both in move versus stay decisions and in the propensity to

choose one location over another, conditional on one’s own attributes (such as birthplace). That

is, we can stack (D3) and (D9) into one simultaneous equation problem evaluated by standard

matrix operations.69

To do so, we need to make some practical decisions over how many moments to target. For

each origin, there are J − 1 potential destinations, so with a normalizing destination, there are

J−2 choice probabilities on the left-hand side of (D3). However, each of them has another J−1

choice probabilities for each destination, meaning there would be J× (J−2)× (J−1) equations

for each type of agent in the data. This becomes a computational problem when J is large and

there are many types (we have A×E× (J + 1) = 568 types). In practice, we will ignore the last

term comprising the second line of (D3), essentially treating it as specification error. Our reason

for doing so is that the computational savings are large (dropping the J−1 factor in the number

of equations) while these extra moments yield little additional information. They represent the

differential move cost and choice probability of reaching the outside option z, which are fairly

similar across places. In other words, the value of a destination is chiefly determined by its

utility, the move cost of reaching it (geography), and the probability of moving out of it again,

but not by how easy or difficult it becomes to reach a rural area from there. Besides, the term is

multiplied by β
δ
, a small decimal in our calibration, that substantially reduces the contribution

of this term to the variance.

There is, naturally, one move/stay decision for each origin-type, but there could be as many as

J−1 equations for (D9), depending on how many k potential destinations we want to include. In

contrast to the dropping of the last term in (D3), there is geographical heterogeneity represented

in the mcko, lnσko|m terms of (D9), so we elected to use all the potential destinations, as they

might help in identifying the move cost terms or correcting for differences in option value.70

69If the utility function were nonlinear in parameters, the objective function could still be evaluated using
standard methods, although not simple matrix inversion, obviously. The main point of our procedure is that
finite dependence has yielded a simple set of targeted moments.

70This also balances the number of equations between the move/stay and moving-to-where contributions,
although such a balance could also be accomplished through appropriate weighting.
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Ex post we found the contribution of these terms to be small, and qualitatively, the results are

similar either way. The stacked system of equations is



ln σso
σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σ1o|m
σ1z|m

· · ·
ln σso

σmo
− ln σsz

σmz
+ β

δ
ln

σ′
m|o
σ′
m|z
− (β−1)λ

δ
ln

σKo|m
σKz|m

ln
σ1|o
σz|o

+ βln
σ′
m|1
σ′
m|z

· · ·
ln

σK|o
σz|o

+ βln
σ′
K|1
σ′
m|z


︸ ︷︷ ︸

Y

=


1
δ
· · · 1

δ
0 · · · 0

1
δ
· · · 1

δ
0 · · · 0

0 · · · 0 1
λ
· · · 1

λ

0 · · · 0 1
λ
· · · 1

λ


︸ ︷︷ ︸

∆



u(x1)− u(xz) (β − 1)(mc(d1o)−mc(d1z))

· · · · · ·
u(xK)− u(xz) (β − 1)(mc(dKo)−mc(dKz))
u(x1)− u(xz) mc1o −mczo

· · · · · ·
u(xK)− u(xz) mc(dKo)−mc(dKz)


︸ ︷︷ ︸

X

[
θu

θmc

]
,︸ ︷︷ ︸

θ

(D10)

where differences have been made to ratios for readability, and we have suppressed themczi−mczj
from (D3) term in the lower right block of X because the move costs to the normalizing location

will be the same by assumption, making the term zero. Y is the choice probabilities from the

data, X is the function of utilities and moving costs (e.g., whether a location is home, how far

two locations are from each other, etc.), ∆ are the scaling parameters (determined elsewhere, as

will be explained), and θ is the vector of parameters to be recovered. A standard regression of

Y on [∆X], with choice of a weight matrix, as appropriate, will yield θ.

D.3 Additional Estimating Equations

Equation (D10) identifies the main parameters of interest off of differences between locations

and a normalizing locale z. Hence, scale parameters are not identified here and must be calibrated

elsewhere. The set of scaling parameters includes λ, δ, β and intercepts of a move cost function

(whereas D10 identifies the distance parameters that vary between locations).

D.3.1 Move Cost Intercepts

An estimator for the move cost intercepts can be derived using substitutions similar to those

employed in Sections D.1.1 and D.1.2. Using (C7c) and substituting (C6a), we have
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lnσs − lnσm =
1

δ

(
Vo − λln

(∑
i

exp[vi|o]
1
λ

))
=

1

δ

(
Vo − vj|o − λlnσj|o

)
=

1

δ

(
Vo − Vj −mcj|o − λlnσj|o

)
=

1

δ

(
Vo − Vj −mcτ +

D∑
d

mcddo,j +
D∑
d

mcdhdo,j=h.

(D11)

Unlike the expressions in Sections D.1.1 and D.1.2, this does not difference out the intercept

of the move cost term in order to recover it in estimation. However, doing so also retains the

value functions of residing in o and j, which are unknown. To isolate the move cost intercept, we

saturate the equation with type-by-location fixed effects (for each pair of origin and destination)

to absorb the value functions. (That is, we effectively can estimate Vo as a composite object,

but not its components). We then recover the move cost intercept (by type) from the average

amount of migration observed in the data, correcting for differences in relative attractiveness of

a location (Vo versus Vj) and its average remoteness (mcj|o). The estimating equation is

lnσs − lnσm −
λ

δ
lnσj|o +

1

δ
mcj|o =

1

δ

(
Vo − Vj)−

1

δ
mcτ , (D12)

where the left-hand side is composed of choice probability data and previously recovered moving

costs with respect to distance.71 From this equation we recover A × E × 2 = 16 move cost

terms–one for each decade/education group (8), for the US and foreign born (x2).

D.3.2 Scale Parameters

Finally, we are ready to derive a calibration for the scale parameters, λ, δ. These are the

most difficult to identify in our environment, because we are using cross-sectional variation.72

Our primary objective here is to obtain values that preserve the main feature in the data–

large move-home flows and small move-out-of-home flows. To that end, we do this in the most

straightforward way: We compare move/stay decisions for home versus not-home locations to

move-to decisions for home versus not-home locations, and set a scale parameter once at the

outset. That is, we look at the ratios of C6b to C7c to elicit λ
δ
. In practice, we estimate dummy

variables for whether the individual is at home in move/stay and whether a move is a move home

71The estimates are largely similar when ignoring the relative move cost term and treating it as specification
error. That is, while distance impacts greatly the set of destinations one reaches, remoteness does not seem to
be driving average mobility rates. Note also that relative move cost is mean zero by construction, although in
principle it could be correlated with the value of the location, so it is technically correct to include it.

72In contrast, Artuc et al. (2010) and Monras (2018) use time variation for identification.
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decision, taking their ratio as 1
δ
, effectively setting λ to one. This procedure will not identify

utility primitives, as it only absorbs value functions without definition of their parameters, but is

sufficient to find the average ratio of outflow to inflow rates. Chronologically, this is the first step,

and we feed the calibrated δ into the estimating equations (D10) and (D12). We set δ for each

education group (although they are coincidentally of similar size), and then use cross-location,

cohort, and age variation in choice probabilities to estimate the remaining parameters.

Writing out C6b and C7c shows the idea:

lnσj,o − lnσk,o =

1

λ

(
uj − uk − β(lnσm,j − lnσm,k) +mcj,o −mck,o +

β

δ
[(mci,j −mci,k)− (lnσi,j − lnσi,k)]

)
(D13a)

lnσs,o
lnσm,o

− lnσs,k
lnσm,k

=

1

δ

(
uj − uk − β(lnσm,o − lnσm,k) + (β − 1)[(mci,o −mci,o)− (lnσi,o − lnσi,o)]

)
, (D13b)

where the first-order terms on the right-hand side are the same. Using indicators/controls for

the right-hand side will capture the composite effect of flow utility and continuation value (and

therefore does not identify parameters), but can approximately get the scale differences between

the move out and move-to decisions. Additional controls help with omitted variables. We use

moving costs (in the upper equation) and ignore the trailing terms, treating them as specification

errors. The trailing terms merely represent the change in option value created by choosing one

location versus another via its change in the accessibility of other locations. The change in option

value from the move out probability is already captured.

We use the ratio on the home indicator control to best match the elasticity of choosing home

from afar versus the reduced likelihood of moving away from home.

D.4 Auxiliary Model: Counterfactual Conditional Choice Probabil-

ities

The continuation value of a location j can be expressed using either from (C7a), FVj =
1
δ
Vj − lnσs|j, or from (C7b), FVj = 1

δ
λln
(∑

i exp[vi|j]
1
λ

))
− lnσm|j, which is in turn λ

δ

(
1
λ
Vk +

1
λ
mckj − lnσk|j,m

)
− lnσm|j.
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Consider defining FVj by (C7b) and FVk by (C7a). Then the difference is

FVj − FVk =
1

δ
(Vk +mckj)−

λ

δ
lnσk|j,m − lnσm|j − (

1

δ
Vk − lnσs|k).

The Vk terms cancel to arrive at the relative future values of

FVj − FVk = lnσs|k − lnσm|j +
1

δ
mckj −

λ

δ
lnσk,j|m. (D14)

This expresses the relative future value of two choices as a function of the move rates, stay rates,

and the probability of moving to one location from the other, correcting for the move cost. When

choosing a normalizing location to have continuation value of zero (i.e., when j = k), we have

relative future values for all other places using the choice probabilities and parameters.

What remains is to estimate the choice probabilities from the data. We want to do this

in a way that projects counterfactual choice probabilities as we alter states within the model

environment, such as income distributions or home attachment. In practice, we flexibly estimate

the move out and move in probabilities as interactions of linear functions of income mean, dis-

persion, and rootedness. When we alter these in simulations, we project new choice probabilities

given the new set of income distributions or rootedness.

We need projections of the probability of moving from any origin, σs|k, and the probability of

choosing an arbitrary location k conditional on living in j, σk,j|m. The latter requires a modeling

decision on what the arbitrary location k will be. In principle, any place will do, but in practice,

it is easier to estimate an auxiliary model on a frequently chosen place. We use the home location

for U.S.-born residents, and the residual location for the foreign born.

Then, using the ACS microdata, we estimate two choice probability functions, f, g, that take

as arguments the income and home preference features of the locations:

σm|j =f(µWo,τ , σ
W
o,τ , n, I(j = h)) (D15)

σjo|m =g(µWj,τ , σ
W
j,τ , n, I(j = h)). (D16)

In practice we use the mean and standard deviation of income, interacted with dummies for

whether the individual is a high-, medium-, and low-income type, the rootedness of the location

interacted with home status, and indicators for whether the location is the residual. For the

destination conditional probability, we use a set of LLM pair dummy variables to capture distance

in a flexible way. The equations are estimated separately for each age/education group, and

within group, separately for the U.S. and foreign born.

The parameters of these equations allow us to project choice probabilities for alternative

values of income distributions or rootedness. This exercise is not used for the purposes of iden-
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tifying anything in the model primitives. Rather, it serves as a projection of choice probabilities

outside the data for use in the CCP substitution of the value function in counterfactual simu-

lations.73 These projections therefore work in concert with the flow utility differences, not in

place of them. The CCP-based approach allows the model to simulate future values without

assuming a path of choices, something we are hesitant to do for a long sequence, since doing so

would involve imposing expectations about aggregate states on the agents in the data. Instead,

this takes an agnostic approach to the expectations of the agents in the data: Whatever they

believe about the future is captured by choice probabilities, and we are simply deriving a flexible

function of that object.

Table D1 reports the coefficients among the US-born population from the models used in the

counterfactual simulations.

D.5 Forming the Cell Sizes

We next describe how we split the data into type cells (τs). To maintain sufficient cell sizes,

we use decade age grouping (20s, 30s, 40s, 50s). Education is split into the college educated and

the non-college educated. The other dimension of type is birthplace, each location plus foreign

born. Thus, we have 4× 2× (J + 1) types. Interacting these with origin (the state variable), we

have 4× 2× J × (J + 1) cells.

We first calculate the population in each cell so that we can weight appropriately to calculate

aggregate statistics in the estimation sample as well as simulations and previous years of data.

One reason migration can change over time in the model is by shifting the weight assigned to

each type. This is more obvious in some dimensions–for instance, in thinking about the aging

of the population–but in our model with heterogeneous locations and preferences for home, the

changing composition by origin, cohort, and birthplace will also matter for aggregation.

As first mentioned in Section 2, one complication with assigning weights by birthplace group is

that the model is designed around LLMs, but birthplace in the census is reported by state. Some

states contain multiple LLMs and some LLMs straddle state political boundaries. Note the entire

US is partitioned by our geographic areas, so that by definition every state has at least one LLM

(the outside option, location z) and most have two or more. For example, Atlanta is entirely in

Georgia, but some Georgia-born residents came from rural areas and smaller unspecified LLMs.

Hence, we need to map between state of birth and LLM of birth when assigning weight to an

observation.

It was simplest in practice to assign someone living in an LLM within her birth state to be

fully at home. An alternative would have been to assign weights based on lifetime migration

probabilities, but this required a lot of assumptions about lifetime mobility that we were not

73If the choice probabilities are observed, we can enter them into a simulation directly.
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Table D1: Auxiliary Model Results

Edu. Noncollege College

Age 20s 30s 40s 50s 20s 30s 40s 50s

Move/Stay Probability Model

Origin Attributes
Roots X Home -0.0853 -0.0472 -0.0293 -0.0238 -0.0877 -0.0498 -0.0239 -0.0183
Home is Residual LLM -0.0370 -0.0196 -0.0108 -0.0084 -0.0663 -0.0304 -0.0131 -0.0086
In Residual LLM -0.0384 -0.0253 -0.0189 -0.0168 -0.0020 -0.0099 -0.0074 -0.0102
Inc. Terc 1 X µW

j -0.0121 -0.0084 -0.0158 -0.0102 0.0012 0.0038 -0.0035 -0.0038
Inc. Terc 2 X µW

j -0.0091 -0.0026 -0.0119 -0.0088 -0.0247 0.0005 -0.0054 -0.0025
Inc. Terc 3 X µW

j -0.0254 -0.0056 -0.0123 -0.0092 -0.0541 -0.0058 -0.0084 -0.0077
Inc. Terc 1 X σW

j 0.0508 0.1097 0.0683 0.0262 -0.3901 -0.0329 -0.0286 -0.0078
Inc. Terc 2 X σW

j -0.0016 0.0227 0.0084 -0.0018 -0.1099 -0.0160 -0.0141 -0.0340
Inc. Terc 3 X σW

j 0.1923 0.0584 0.0131 0.0036 0.2762 0.0678 0.0287 0.0392
No Income -0.0920 -0.0005 -0.1070 -0.0848 -0.3468 -0.0024 -0.0648 -0.0492
Type Constant 0.1899 0.0602 0.1468 0.1176 0.4763 0.0677 0.0982 0.0792

Move-To Probability Model

Destination Attributes
Roots X Home 0.1864 0.1722 0.1518 0.1339 0.1352 0.0978 0.1163 0.0864
Home is Residual LLM 0.0515 0.0360 0.0278 0.0282 0.0222 0.0268 0.0110 0.0169
To Residual LLM 0.4720 0.2626 0.4743 0.2840 0.4979 0.3263 0.5212 0.4098
Inc. Terc 1 X µW

k 0.0087 0.0403 0.0049 0.0347 0.0044 0.0303 0.0041 0.0216
Inc. Terc 2 X µW

k 0.0085 0.0393 0.0047 0.0340 0.0036 0.0294 0.0042 0.0210
Inc. Terc 3 X µW

k 0.0071 0.0403 0.0033 0.0356 0.0026 0.0287 0.0032 0.0209
Inc. Terc 1 X σW

k 0.0238 0.0466 0.0221 0.0350 0.0117 0.0029 0.0149 0.0185
Inc. Terc 2 X σW

k 0.0258 0.0597 0.0253 0.0438 0.0220 0.0137 0.0135 0.0263
Inc. Terc 3 X σW

k 0.0430 0.0455 0.0408 0.0227 0.0330 0.0223 0.0256 0.0272
No Income 0.1092 0.4755 0.0691 0.4050 0.0550 0.3303 0.0548 0.2490
Type Constant -0.1000 -0.4645 -0.0600 -0.3943 -0.0463 -0.3200 -0.0463 -0.2396

LLM Pair FEs y y y y y y y y
NOTES: The table reports the coefficient estimates (standard errors suppressed) from regression models of the move-out probability (upper panel) and
move-to/destination choice probability (lower panel). Each column is a separate specification. These coefficients are inputs to the model simulations
using counterfactual CCPs. See Section D.4 for discussion. (Source: ACS data.)
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actually modeling, including the propensity of repeat migration. At the other extreme, we could

split the observation by population in his year of birth, and assign weight by the population

shares. For example, say we observe someone living in Houston whose state of birth is Texas.

We could also use population (or cohort population) in his year of birth to assign him as (for

example) a one-quarter Dallas native, one-quarter Houston native, one-eighth Austin and San

Antonio native, and one-quarter other. But we found this drastically understates the at-home

share because it effectively assumes full mobility within state. Less than half of the respondents

are in the city of their birth, despite a large majority being in their state of birth.

This issue is potentially more serious on the destination side. If we see a Texas-born, out-of-

Texas resident move to Houston, we again do not know if she was born in Houston or elsewhere

in the state. How we characterize the move has implications for measuring home preference,

as a comparison of columns 5 and 6 of Table 1 suggests. Because these gaps were so large,

and home preference is a major piece of our analysis, we opted for the more conservative route

and down-weighted the probability that such a move was a move home by the proportion of

population in the person’s year of birth (see Table B1 and associated discussion in Section B).

D.6 Forming the Moment Conditions

We then proceed to calculate choice probabilities. Even with a relatively large dataset and

large LLMs, migration is infrequent enough that a fully interacted cell definition resulted in many

empty cells. Once the data are cut to, for example, 40-something college-educated workers living

in Houston but born in Cleveland, there are few individuals populating the cell. We may fail to

observe any of this type moving to, say, Kansas City, but do not believe that the probability of

that event is literally zero. Our smoothing procedure is designed to make aggregated cells that

preserve the kinds of detail in the stylized facts presented above.

We create three tables of move probabilities from the ACS. These are:

1. the probability of migrating (to anywhere), by age, education, origin, and whether home is

the origin, the residual, elsewhere in the U.S., or abroad. This will capture the main differ-

ences in moving costs by type, accounting for different incentives imposed by one’s current

labor market, combining all other birthplaces into one “away” category for precision. Call

this p1(age, edu, birthplace).

2. the probability of returning home (i.e., moving from an away-location back to one’s birth-

place) by age, education and birthplace. This will capture differences in preference for

home by location and cohort of birth, and in addition to stay rates for natives and nonna-

tives in 1, is an important moment for identifying the preference for home as a function of

rootedness. Origins are combined for precision. Call this p2(age, edu, birthplace).

92



3. the probability of choosing a location as a destination that is not one’s birthplace, by age

and education and origin, combining all other birthplaces for precision, except that U.S.

and foreign born are separate categories. This captures the geographic network of migra-

tion as well as differences in preferences for destinations for workers with different skills, and

helps to identify the income component of utility. Call this p3(age, edu, origin, foreign).74

Note that each pn is computed by age and education, although we drop subscripts for ex-

position. The full matrix of cell-specific choice probabilities is then formed from the product of

these for the corresponding cases, which are as follows.

1. For the reflexive entry (i.e., “stayers,” the diagonal in the matrix), the entry is simply the

probability p1.

2. For people living in their birthplace but moving away, the probability is (1− p1)p3.

3. For people living away from their birthplace, moves home are a conditional probability,

(1− p1)p2.

4. For people living away from their birthplace, moves not to home are a conditional proba-

bility, (1− p1)(1− p2)p3.

Altogether, this forms a full J×J matrix (origin to destination) of flow probabilities for each

type of worker, which is placed in the left-hand side of (D10) above. The interesting variation

comes from the conditioning of the cell probability estimates, and the smoothing results from

removing one dimension of conditioning, which is reintroduced when making the moments from

the products of the conditional probabilities.

D.7 Income Distributions and Dynamics

To simulate the model, we need measures of income offer distributions and income dynamics.

These determine the value of utility from income as represented in (9) via (7) and (8). There

are three sets of parameters to calibrate.

First is the available income distribution of each location. To focus on spatial differences

in income opportunities, we construct a measure of the local income distribution having ad-

justed for differences in the local labor force composition. Specifically, after limiting the data

to regularly employed workers, we run a regression of log earnings on controls for sex, race,

English proficiency, and household composition in order to strip out compositional differences

74We experimented with many versions of this estimator, conditioning on different aggregations of origin, and
deriving from ACS microdata, aggregate data, and even the IRS data. We elected not to use the IRS data
because we could not separate by moves to or not to home. The ACS aggregate data provided the fewest empty
cells, since it was not subject to censorship requirements of the public use microdata.
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at national average labor prices.75 We do this separately for non-college and college-educated

workers because each face different labor market opportunities. The resultant income distribu-

tions from the ACS (and decennial census for prior decades) form the distribution of income

opportunities for each local labor market in our sample.76 The residualized income for each lo-

cation has mean µj,τ and variance σ2
j,τ . We use an N -pointed discretized distribution where the

steps between points are one-half standard deviations from the mean, wn = µωj,τ + 0.5nσωj,τ , with

integer n ∈ {−5, · · · , 5}. Notice that the step in the income distribution, n, is a state variable in

the model, and search occurs relative to that point, not a particular dollar value. For instance,

a mean income worker in city A will search around the mean in her location and others, even if

the nominal income of the mean in city B is, say, higher than the mean in city A. This accounts

for average productivity differences between cities that shift the income distribution.

The second set of parameters is the probability of transition between these points, the πn′|n

parameters from (7) and (8). We assume these follow a normal distribution and follow Tauchen

(1986) to discretize it. For example, for someone at the bottom of the distribution, 2.5 standard

deviations below, to move to the top, 2.5 deviations above, would require a shock drawn with

probability of five standard deviations above the mean of a normal. This introduces persistence

to the income process, and indirectly accounts for unobserved types of workers in that, for

example, the high productivity workers in one city are more likely drawing from the higher side

of the distribution in other cities as well, a necessary simplification given that our migration

data allows us to observe only one income draw, not one in each location.

The distinction between local and nonlocal search is to allow the possibility that workers

may face a different distribution of offers from their current location than distant locations. In

particular, it may be “easier” in some sense to search locally. We could approach this two ways:

through the probability of getting a contact, γ, or by the transition distributions, πn′|n. The

latter is more easily disciplined by data since we never actually observe the “successful” and

“unsuccessful” searches. But with data on the joint dynamics of location and income, we can

measure whether movers and non movers experience significantly different income dynamics. For

this we turn to the PSID.77 Using the post-1997 PSID for workers employed for two consecutive

surveys, we measure the change in their income in standard deviations, which becomes the input

75The results are largely similar when we also control for industry and occupational categories. Our preferred
specification is to leave these out of the regression (so their variance contribution remains in the residual),
since these can differ materially across labor markets–the kind of spatial variation we want to retain as a city
characteristic.

76Note that this measures the observed income distribution, though we feed it into the model as if it were
the primitive distribution. In principle, one might be able to estimate the primitive distribution via indirect
inference or method of moments. We did not pursue this because, aside from complicating the analysis, it would
essentially assume the workers know the primitive distribution apart from the observed distribution.

77The geography in the PSID is state and we need local income distributions at annual frequencies, so we first
measure the standard deviation of incomes by education and state using the CPS and then merge this to the
PSID by survey year.
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data to a maximum likelihood estimation. If the step size of discretization is s, the probability

of the change to income is

Pr(∆y) = πstayn′|n = Φ(n+ 0.5s)− Φ(n− 0.5s),

where Φ is the standard normal distribution. For movers, we relax the symmetry assumption,

shifting the step by some value ω,

Pr(∆y) = πmoven′|n = Φ(n+ 0.5s+ ω)− Φ(n− 0.5s− ω),

so that income changes can be better or worse on average for movers. The estimation step is to

place each worker at the closest point in the discretized distribution of income and then calculate

the probability of observing the change in income for a given guess of ω. The value of ω that

maximizes the likelihood of the data is used to calculate the income dynamics probabilities πmover

vis-a-vis the baseline πnonmover. Using our discretization, we obtain the estimate of ω = −.13.

We did not constrain it to be negative, but because income changes for movers are on average

worse than for stayers, which is consistent with our conjecture.

The final parameter is the probability of successful search, λ, which gives the worker the

preferable option value search (8), instead of the vulnerable random search (7). As noted, we

have little sense how to discipline this with the data, so we will treat it parametrically as a proof

of concept exercise. This parameter will change over time to reflect increasing availability of

information in the labor market.

E Additional Simulation Results

The following section contains additional results from the model simulations.

E.1 Contributions to the Aggregate Migration Rate By LLM Speed

Table E1 reports on an expanded version of Table 8, splitting the migration by home status

series by LLM speed categories. This shows again that migration decline is concentrated among

the Fast LLMs. Within each category of LLM, migration rates over time by home status are

fairly steady, indicating that most migration decline comes from a switching of status from the

not-at-home to the at-home population.

There are some exceptions, however. Notably, Fast LLMs show declines among the at-home

(as their rootedness rises over time), and to a lesser extent, among the not-at-home, which

is largely a function of the Fast LLMs being slightly more attractive destinations over time.

Medium LLMs show some decline in onward migration among the not-at-home, counteracted in
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Table E1: Simulations: Migration Rates by Home Status, No Age Effects

1980 1990 2000 2005-2011 2012-2017
Panel A: All LLMs
Move Rate 3.11 3.05 2.99 2.91 2.87

Rate by Home Status
At Home 1.77 1.77 1.77 1.80 1.79

Not Home 5.07 4.99 4.96 4.91 4.92
Not Home: To Home 1.20 1.18 1.15 1.13 1.14
Not Home: Onward 3.88 3.82 3.81 3.78 3.78

Foreign 3.07 3.06 3.06 3.04 3.04

Panel B: Fast LLMs
Move Rate 3.73 3.64 3.50 3.38 3.29
Move Rate by Home Status

At Home 2.42 2.40 2.34 2.37 2.31

Not Home 5.14 5.04 4.97 4.86 4.84
Not Home: To Home 1.24 1.22 1.19 1.15 1.16
Not Home: Onward 3.89 3.83 3.78 3.71 3.69

Foreign 3.03 3.02 3.01 2.98 2.98

Panel C: Medium LLMs
Move Rate 3.03 3.02 3.01 2.95 2.93
Move Rate by Home Status

At Home 1.65 1.65 1.69 1.73 1.77

Not Home 5.10 5.05 4.99 4.91 4.89
Not Home: To Home 1.27 1.25 1.20 1.18 1.17
Not Home: Onward 3.84 3.80 3.78 3.73 3.71

Foreign 2.98 2.98 2.98 2.98 2.97

Panel D: Slow LLMs
Move Rate 2.52 2.45 2.43 2.39 2.38
Move Rate by Home Status

At Home 1.51 1.51 1.50 1.50 1.48

Not Home 4.89 4.81 4.92 5.03 5.12
Not Home: To Home 1.01 0.98 0.99 1.01 1.03
Not Home: Onward 3.89 3.83 3.93 4.02 4.08

Foreign 3.21 3.18 3.20 3.19 3.19
NOTES: All figures are in percentage points (e.g., “0.5” corresponds to a one-half percentage point change). Among the Not Home category, the
returns “To Home” and moves elsewhere (“Onward”) sum to the total rate for the category. The simulation has been balanced to have constant
age-education population weight over time within each LLM. (Source: Authors’ calculations.)
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the aggregate by a rise among the at-home. Slow LLMs show no pattern among the at-home

and slight increases in the rate of onward migration.

E.2 Expanding the Simulation to the Entire Postwar Period

High quality data chronicling migration rates are a relatively new development, but using best

available data prior to 1990, Fischer (2002), Molloy et al. (2017), and Kaplan and Schulhofer-

Wohl (2017) document that migration rates in the U.S. peaked in the 1980s (or possibly late

1970s). Our main simulations start with the 1980 census and proceed to show the decline, but we

are curious whether the mechanisms in our model would generate an inverted U-shaped pattern

if we walked the model farther back into history. As a supplement to our main analysis, we

simulate the model for 1950-1970 as well. We replicate Figure 9 for the longer time horizon

in Appendix Figure E1. This comes with the caveat that we maintain the assumption of fixed

primitives–an assumption that becomes less credible as we drift father back from our estimation

period of 2005-2017. We nonetheless think it interesting to see the model’s dynamics when

constrained to contain only the mechanisms we focus on.

The model simulations indeed show a hump-shaped pattern of migration peaking in 1980.

The decomposition indicates that the sharpness of the hump is the result of an educated and

youthful workforce (the Baby Boom generation) emerging from 1970 to 1990. Increasing home

attachment also follows an inverted U pattern, peaking at different times for LLMs of different

speeds, but as shown in the main analysis, is more dominant in the trend of later decades of the

simulation.

E.3 Model Simulation Results by LLM

Table E2 reports the migrations changes for each separate LLM as well as the breakdown by

categories of decomposition type.
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Table E2: Simulated Migration Rates, With Decomposition of Change, by LLM

Level in 1980 Total Change Demographic Home Attachment Income
1 2 3 4 5

Akron (OH) 2.943 -0.704 -0.205 -0.601 0.059
Albany (NY) 2.277 -0.193 -0.187 -0.056 -0.037
Atlanta (GA) 3.157 0.160 -0.459 0.365 -0.007
Austin (TX) 3.228 -0.004 -0.326 0.316 -0.167
Baltimore (MD) 3.309 -0.315 -0.016 -0.238 -0.051
Birmingham (AL) 2.166 0.145 -0.194 0.217 0.011
Boston (MA) 2.678 0.039 0.030 0.022 -0.110
Buffalo (NY) 2.279 -0.296 -0.127 -0.282 0.021
Charlotte (NC/SC) 2.418 0.826 -0.203 0.773 -0.055
Chicago (IL/IN/WI) 2.873 -0.372 -0.114 -0.319 0.018
Cincinnati (OH/KY/IN) 2.321 -0.115 -0.129 -0.083 0.008
Cleveland (OH) 3.038 -0.676 -0.180 -0.592 0.077
Columbus (OH) 3.023 -0.319 -0.118 -0.245 -0.008
Dallas-Fort Worth (TX) 3.188 -0.296 -0.304 0.008 -0.046
Dayton (OH) 3.138 -0.569 -0.221 -0.477 0.083
Denver (CO) 4.552 -0.886 -0.478 -0.249 -0.052
Detroit (MI) 2.856 -0.740 -0.162 -0.716 0.115
El Paso (TX/NM) 3.262 -0.532 -0.161 -0.436 0.055
Fort Myers (FL) 5.127 -1.147 -0.618 -0.233 -0.046
Fresno (CA) 3.985 -1.402 -0.175 -1.012 0.025
Grand Rapids (MI) 2.333 -0.193 -0.175 -0.178 0.065
Greensboro (NC/VA) 2.253 0.435 -0.238 0.468 0.032
Greenville (SC/NC) 2.255 0.454 -0.226 0.488 0.026
Harrisburg (PA) 2.276 0.253 -0.272 0.361 -0.004
Houston (TX) 3.339 -0.497 -0.338 -0.168 0.041
Indianapolis (IN) 3.160 -0.311 -0.150 -0.245 0.031
Jacksonville (FL/GA) 3.595 -0.261 -0.301 0.024 -0.017
Kansas City (MO/KS) 2.787 -0.157 -0.225 -0.028 0.017
Lancaster (PA) 1.965 0.265 -0.160 0.288 -0.016
Las Vegas (NV) 5.223 -1.027 -0.614 -0.110 0.024
Los Angeles (CA) 4.396 -1.330 -0.150 -0.837 0.023
Louisville (KY/IN) 2.192 0.103 -0.163 0.134 0.008
Manchester (NH) 4.313 -0.595 -0.514 0.136 -0.160
McAllen (TX) 2.476 -0.135 -0.182 -0.106 -0.026
Memphis (TN/MS/AR) 2.354 -0.045 -0.217 0.109 -0.012
Miami (FL) 4.733 -1.286 -0.101 -0.496 -0.014
Milwaukee (WI) 2.627 -0.157 -0.231 -0.071 0.042
Minneapolis (MN/WI) 2.490 -0.117 -0.226 -0.002 -0.026
Monmouth (NJ) 3.529 -0.689 -0.231 -0.338 -0.027
Nashville (TN) 2.737 0.503 -0.220 0.543 -0.036
New Orleans (LA) 2.551 -0.318 -0.240 -0.174 0.022
New York (NY/NJ/CT) 2.633 0.041 0.077 -0.116 -0.066
Norfolk (VA/NC) 3.633 -0.096 -0.378 0.268 -0.040
Oklahoma City (OK) 3.359 -0.300 -0.319 -0.080 0.009
Orlando (FL) 5.088 -0.965 -0.467 -0.343 0.026
Philadelphia (PA/NJ/DE) 2.579 -0.159 -0.014 -0.212 -0.016
Phoenix (AZ) 5.015 -1.146 -0.420 -0.377 -0.052
Pittsburgh (PA) 1.872 0.182 -0.100 0.090 0.060
Portland (OR/WA) 3.985 -0.591 -0.290 -0.211 -0.010
Providence (RI/MA) 2.256 -0.046 -0.164 0.071 -0.078
Raleigh-Durham (NC) 2.913 0.664 -0.455 0.776 -0.138
Residual 3.386 -0.557 -0.196 -0.271 -0.046
Residual Connecticut (CT) 3.727 -0.504 -0.365 -0.034 0.020
Richmond (VA) 3.025 0.028 -0.230 0.137 -0.015
Riverside-San Bernardino (CA) 4.602 -1.780 -0.214 -1.201 0.032
Rochester (NY) 2.501 -0.289 -0.256 -0.188 0.071
Sacramento (CA) 4.090 -1.277 -0.180 -0.798 -0.029
Salem (OR) 4.614 -1.017 -0.500 -0.503 0.108
Salt Lake City (UT) 3.249 -0.335 -0.293 -0.054 0.000
San Antonio (TX) 2.777 -0.149 -0.149 -0.036 -0.031
San Diego (CA) 5.107 -1.611 -0.106 -0.838 -0.104
San Francisco (CA) 4.172 -1.029 -0.002 -0.557 -0.152
San Jose (CA) 4.143 -1.048 0.041 -0.475 -0.173
Seattle (WA) 3.956 -0.655 -0.226 -0.223 -0.095
St. Louis (MO/IL) 2.410 -0.232 -0.136 -0.196 0.025
Syracuse (NY) 2.296 -0.294 -0.224 -0.156 0.000
Tampa (FL) 4.945 -0.998 -0.332 -0.322 -0.107
Tucson (AZ) 4.762 -1.029 -0.251 -0.503 0.058
Tulsa (OK) 3.498 -0.444 -0.345 -0.218 0.042
Washington (DC/VA/MD) 4.147 -0.647 -0.179 -0.248 -0.075

NOTES: The table reports simulation results by LLM. All figures are in percentages (e.g., “0.5” corresponds to a one-half percentage point change).
(Source: Authors’ calculations.)
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Figure E1: Simulated Trends in Mobility, Decomposed

NOTES: The figures plot the time path of mobility generated by the model in total and counterfactual subtotal simulations for each category of LLMs.
Note that each panel has its own vertical scale. Subtotals may not add to the combined value because of nonlinearities in the model. The shaded
region denotes the estimation period. (Source: Authors’ calculation.)

F Details on Data Construction

The following section contains additional details on the processing procedures for datasets

used in this paper.

F.1 Sources

Our migration data come from two sources, the American Community Survey (Ruggles et al.

(2019)) and the migration flows tables from the U.S. Treasury’s Internal Revenue Service (IRS

(2018)). The ACS reports the respondents’ current and one year ago Public Use Microdata Area

(PUMA) of residence, from which we can elicit migration probability (move or not) and direction

(origin-destination pairs). We use the ACS from 2005 to 2017. Migration is elicited using the

puma and migpuma variables. For the destination choice probability used in the imputations

for moment conditions (described in Section D.6), we use aggregated flow tables of ACS flows,

provided by U.S. Census (2018a).

We process the 1990 and 2000 census data in the same way. These datasets are similar to the

ACS, but the retrospective window for the migration inference question (‘Where did you reside

t years ago’?) is five years instead of one.

The IRS infers migration events from changes in the address on individual tax returns in

two successive years, publishing the total county-to-county flows in each year, as well as the
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total stayers in, inflows to, and outflows from individual counties. One limitation is that the

data are censored at flows less than 10 households, meaning many origin-destination pairs are

unobserved. On average, about 70 percent of flows are on observed origin-destination routes,

and the rest are censored. We measure migration using the internal subtotals of total domestic

inflows and outflows, subtracting flows between counties within the same local labor market

(which are almost never censored).

The IRS data underwent a change in method in the 2011-2012 tax year that resulted in

noticeable differences in the sample represented. DeWaard et al. (2020) caution that the “user

beware” in analyzing IRS migration data after 2011. Our understanding is that the data were

computed and published by the Census Bureau from 1990 to 2011, and the IRS took charge in

2012 and following. The IRS had different methods for tracking addresses across multiple returns

(in cases of, for instance, household formation and dissolution), and late filers, which tended to

be households with complicated returns. Thus, the set of individuals represented changed, and

because of the recursive nature of the data, this introduced year-over-year fluctuations that may

take several more years before they can be safely compared across time. We present the data

for the period 2012-2016, but only rely on the consistent sample of 1990-2011.

We also leverage aggregated population data at the county level, which we will use to show

population growth trends. We obtained the county population estimates from Manson et al.

(2018) and relied heavily on that project’s harmonization of geographies across census years.

Census microdata samples, 1880-2000, used in the calculations of roots, home status, and in-

come distributions, were also obtained from Ruggles et al. (2019). Intercensal year population

estimates were obtained from the U.S. Census Bureau webpage (U.S. Census (2018b)).

Information on location and income dynamics were provided by Institute for Social Research

(2021). Estimates of relative income position by state of residence were obtained by merg-

ing reported PSID labor income with state level income distributions by year, education, and

foreign-born status obtained from the Annual Social and Economic Supplement of the Current

Population Survey (March CPS, Flood et al. (2018)). All incomes are deflated by the consumer

price index from the Bureau of Labor Statistics (BLS (2018)).

F.2 Geography: The Local Labor Market

In this paper, we will work with a unit of analysis we term a local labor market (LLM), which

fully partitions the geography of the continental US. The LLM is derived from a Commuting Zone

(CZ) but modified to meet some specific objectives.78 One objective is geographic consistency

78Our starting definition of LLM derived from CZs as in Dorn (2009), Autor and Dorn (2013), and Autor
et al. (2019). The geographic mapping over the census years relied heavily on the documentation provided by
the Ruggles et al. (2019) and Manson et al. (2018) projects. We are additionally grateful to Dave Van Riper and
Jeff Bloom for assistance. Van Riper provided particular assistance by constructing the 1960 file.
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over time and across datasets. We were able to define constant boundary LLMs for both counties

and PUMAs for use in, respectively, Census aggregate population and microdata, dating from

1880 to current releases. A second objective is to fit more intuitive notions of an integrated

labor market area, more like a core-based statistical area (CBSA) or metropolitan statistical

area (MSA). In many cases, these line up well with the commuting zone, but in some, the CZ

covers a large and heterogeneous area. For example, most of southern California is in one CZ,

despite substantial heterogeneity in populations and labor market opportunities between the

inland counties, which we split into a Riverside/San Bernardino LLM, and the coastal counties,

which we further split into Los Angeles and Ventura LLMs, making three local labor market

units instead of one. A full list of LLMs is presented in Table G3, and a dataset of the mapping

of counties and PUMAs over time is available on our webpage.

Table G3 includes definitions as well as indicators for when the LLM is included in the

analysis. In our descriptive analyses in section 2, we report measures of migration flow and

population growth for the 183 LLMs that are characterized as urban areas. We aggregate the

remainder of the continental 48 states into an omitted category,79 comprising rural areas and

some unusual LLMs–smaller cities dominated by universities (“college towns” such as Athens,

Georgia or Bloomington, Indiana) or military bases (such as Jacksonville, North Carolina),

which have nonstandard migration behavior. Our empirical model focused on the 70 largest

LLMs. Throughout, we define a migration event as an exit from an LLM for a different LLM,

so that a move within a county or PUMA, or across counties or PUMAs within the same LLM,

is considered staying in place.

Distances between LLMs were calculated using Great Circle distance from central county

population centroids (U.S. Census (2011)).

F.3 Discussion of the Calculation of Roots

The decennial census data contain detailed geographic information on current residence and

birth state for individuals in a household. We use household structure variables and cohort

matching to estimate rootedness of a particular cohort for each home LLM. We identify a birth

cohort by looking at all individuals who are less than 10 years old in a particular census wave.

For example, a 20-something in 2010 was aged less than 10 in 1990. For the cohort living in each

LLM, we calculate the percentage of their parents who were born in a state in which the LLM

has a county. For example, children in Dallas are rooted if their parents were born in Texas, and

children in Kansas City are considered rooted if their parents were born in Kansas or Missouri.

The child must be living in his/her home LLM to be counted in this sample. We ascribe the

cohort-LLM combination to have the rootedness measured by this fraction.

79Our categorization defines “residual states” as LLMs; for example, the population of Oklahoma not in
Oklahoma City or Tulsa is in “residual Oklahoma.” We combine these here for expositional convenience.
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There are a few possible concerns given that we use metro area (LLM) for location but state

for place of birth. For example, we do not actually know in which city a child’s parents were born.

It is possible that a child was born in Dallas but the parents were born in Houston or Austin, and

certainly the percentage of Dallas children’s parents born in Dallas is smaller than the percentage

born in all of Texas. When comparing across cohorts, if the measurement error is similar, the

change in rootedness is still accurate. But if we are comparing an LLM in a state with several

large cities, such as Texas, to an LLM in a state with only one major city, such as Minnesota, we

will likely measure the rootedness of Dallas as too high compared to the Twin Cities. This may

be grounds for some within-state migration adjustment. In practice we found that adjustments

made trivial impact on our rootedness measures, because out of state birthplaces drove the first

order differences between cities. Unless within-state migration is strongly negatively correlated

with between-state (which other datasets indicate is not the case), our measure of rootedness

will if anything shrink the dispersion of rootedness across LLMs.

We use the location of residence for children under 10 as “home” for the purpose of cohort

matching. There is some mobility of young children that introduces uncertainty into our esti-

mates. One possible adjustment is to probabilistically assign children to potential birth cities,

but in practice the change to measurements is small.

Note that the rootedness proportions include only the U.S. born (the dotted line in Figure 5,

not the shaded areas). The foreign born are treated as a separate birthplace group–not at home,

and not from other U.S.–since, among other concerns, they have no domestic “home” location

to prefer above others, and they cannot be rooted. However, another concern is first-generation

immigrants. In such cases, the child was born in the United States but one or both parents were

born outside the US, leaving ambiguity in defining the child’s roots. By our strict definition,

of course we can say with certainty this child was not born in the same commuting zone as

his parents. However, many immigrants move to cities that have an established population

of immigrants from their native country already. (Perhaps a Cuban immigrant in Miami, for

instance, should be considered “rooted” in a sense.) For our purposes, it was simplest to calculate

rootedness only for children of native-born parents, since only they can be “at home.”

A final note on roots is that our current method calculates roots for a cohort of children, and

later we will match that average rootedness measured at the city level to people born in that

city. However, at that point we will have divided our adult sample into college graduates and

non-college graduates. Since college graduates are more mobile on average, and there is positive

intergenerational transmission of education, we expect that the college graduate subset of any

cohort will be less rooted than the cohort as a whole. Our methodology implicitly assigns the

relationship between rootedness and education to be the same in every city.
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G Data Definitions

The following appendix contains exhibits with data definitions.

Figure G1: Regional Definitions

Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Abilene Texas (6) Frontier No No

Akron Ohio (4) Midwest Yes Yes

Albany Georgia (6) South No Yes

Albany New York (9) Northeast Yes Yes

Albuquerque New Mexico (5) Frontier No Yes

Alexandria Louisiana (3) Frontier No No

Allentown Pennsylvania (3) Northeast No Yes

Amarillo Texas (5) Frontier No Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Aniston Alabama (1) South No Yes

Ann Arbor Michigan (1) Midwest No No

Appleton Wisconsin (7) Midwest No Yes

Asheville North Carolina (5) South No Yes

Athens Georgia (5) South No No

Atlanta Georgia (28) South Yes Yes

Atlantic City-Vineland New Jersey (3) Northeast No Yes

Auburn Alabama (3) South No No

Augusta South Carolina (2), Georgia (7) South No No

Austin Texas (8) Frontier Yes Yes

Bakersfield California (1) West No Yes

Baltimore Maryland (6) Northeast Yes Yes

Baton Rouge Louisiana (10) Frontier No Yes

Beaumont Texas (7) Frontier No Yes

Bellingham Washington (1) West No No

Biloxi Mississippi (7) South No Yes

Binghamton Pennsylvania (1), New York (2) Northeast No Yes

Birmingham Alabama (7) South Yes Yes

Bloomington Illinois (3) Midwest No No

Bloomington Indiana (7) Midwest No No

Boise City Idaho (6) Frontier No Yes

Boston Massachusetts (6) Northeast Yes Yes

Bradenton Florida (4) South No Yes

Buffalo New York (2) Northeast Yes Yes

Burlington Vermont (6) Northeast No No

Cedar Rapids Iowa (4) Midwest No Yes

Champaign-Urbana Illinois (7) Midwest No No

Charleston South Carolina (4) South No Yes

Charleston West Virginia (6) Midwest No Yes

Charlotte South Carolina (3), North Carolina (7) South Yes Yes

Charlottesville Virginia (9) South No No

Chattanooga Tennessee (4), Georgia (3) South No Yes

Chicago Indiana (4), Wisconsin (1), Illinois (8) Midwest Yes Yes

Chico California (5) West No Yes

Cincinnati Indiana (3), Ohio (6), Kentucky (6) Midwest Yes Yes

Clarksville Tennessee (3), Kentucky (3) South No No

Cleveland Ohio (5) Midwest Yes Yes

College Station Texas (4) Frontier No No

Colorado Springs Colorado (4) Frontier No No

Columbia Missouri (7) Midwest No No

Columbia South Carolina (7) South No Yes

Columbus Alabama (1), Georgia (5) South No No

Columbus Ohio (9) Midwest Yes Yes

Corpus Christi Texas (9) Frontier No Yes

Cumberland West Virginia (3), Maryland (2) Northeast No Yes

Dallas-Fort Worth Texas (16) Frontier Yes Yes

Davenport Illinois (4), Iowa (1) Midwest No Yes

Dayton Ohio (9) Midwest Yes Yes

Daytona Beach Florida (3) South No Yes

Denver Colorado (14) Frontier Yes Yes

Des Moines Iowa (8) Midwest No Yes

Detroit Michigan (6) Midwest Yes Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Dothan Alabama (5) South No No

Dover Delaware (2), Maryland (3) Northeast No Yes

Dubuque Iowa (4), Illinois (1) Midwest No Yes

Duluth Minnesota (3), Wisconsin (1) Midwest No Yes

Eau Claire Wisconsin (7), Minnesota (1) Midwest No Yes

El Paso New Mexico (1), Texas (2) Frontier Yes Yes

Erie New York (1), Pennsylvania (6) Northeast No Yes

Evansville Illinois (1), Kentucky (2), Indiana (8) Midwest No Yes

Fargo Minnesota (3), North Dakota (2) Frontier No Yes

Fayetteville Missouri (1), Arkansas (3), Oklahoma (1) Frontier No Yes

Fayetteville North Carolina (7) South No No

Flagstaff Arizona (2), Utah (1) West No Yes

Flint Michigan (1) Midwest No Yes

Florence Tennessee (2), Alabama (3) South No Yes

Fort Myers Florida (2) South Yes Yes

Fort Smith Arkansas (3), Oklahoma (5) Frontier No Yes

Fort Wayne Indiana (8) Midwest No Yes

Fresno California (4) West Yes Yes

Gainesville Florida (6) South No No

Goldsboro North Carolina (3) South No No

Grand Rapids Michigan (8) Midwest Yes Yes

Green Bay Wisconsin (4) Midwest No Yes

Greensboro North Carolina (11), Virginia (2) South Yes Yes

Greenville North Carolina (3) South No No

Greenville South Carolina (11), North Carolina (1) South Yes Yes

Hagerstown West Virginia (3), Maryland (1), Pennsylvania (2) Northeast No Yes

Harrisburg Pennsylvania (7) Northeast Yes Yes

Hattiesburg Mississippi (5) South No No

Hickory North Carolina (5) South No Yes

Houma Louisiana (4) Frontier No Yes

Houston Texas (13) Frontier Yes Yes

Huntington Ohio (1), Kentucky (5), West Virginia (2) Midwest No Yes

Huntsville Alabama (4), Tennessee (1) South No Yes

Indianapolis Indiana (10) Midwest Yes Yes

Iowa City Iowa (5) Midwest No No

Jackson Michigan (3) Midwest No Yes

Jackson Mississippi (7) South No Yes

Jacksonville Florida (5), Georgia (2) South Yes Yes

Jacksonville North Carolina (1) South No No

Johnson City Virginia (4), Tennessee (6) South No Yes

Johnstown Pennsylvania (4) Northeast No Yes

Joplin Missouri (2), Oklahoma (1), Kansas (3) Midwest No Yes

Kalamazoo Michigan (4) Midwest No Yes

Kansas City Missouri (8), Kansas (6) Midwest Yes Yes

Killeen Texas (3) Frontier No No

Knoxville Tennessee (8) South No Yes

LaCrosse Minnesota (1), Wisconsin (4) Midwest No Yes

Lafayette Indiana (7), Illinois (1) Midwest No No

Lafayette Louisiana (7) Frontier No Yes

Lake Charles Louisiana (6) Frontier No No

Lakeland Florida (3) South No Yes

Lancaster Pennsylvania (4) Northeast Yes Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Lansing Michigan (3) Midwest No No

Laredo Texas (3) Frontier No Yes

Las Vegas Nevada (1) West Yes Yes

Lawrence Kansas (1) Frontier No No

Lexington Kentucky (13) Midwest No No

Lincoln Nebraska (5) Frontier No No

Little Rock Arkansas (7) Frontier No Yes

Longview Texas (6) Frontier No Yes

Los Angeles California (2) West Yes Yes

Louisville Indiana (5), Kentucky (7) Midwest Yes Yes

Lubbock Texas (6) Frontier No No

Lynchburg Virginia (5) South No No

Macon Georgia (10) South No Yes

Madison Wisconsin (6) Midwest No No

Manchester New Hampshire (4) Northeast Yes Yes

Mansfield Ohio (5) Midwest No Yes

McAllen Texas (4) Frontier Yes Yes

Medford Oregon (2) West No Yes

Melbourne Florida (2) South No Yes

Memphis Mississippi (4), Tennessee (3), Arkansas (1) South Yes Yes

Miami Florida (3) South Yes Yes

Midland Texas (6) Frontier No Yes

Milwaukee Wisconsin (7) Midwest Yes Yes

Minneapolis Minnesota (14), Wisconsin (2) Midwest Yes Yes

Mobile Alabama (5) South No Yes

Modesto California (4) West No Yes

Monmouth New Jersey (2) Northeast Yes Yes

Monroe Louisiana (6) Frontier No Yes

Montgomery Alabama (5) South No Yes

Muncie Indiana (6) Midwest No Yes

Myrtle Beach South Carolina (7) South No Yes

Nashville Tennessee (12) South Yes Yes

New Orleans Louisiana (9) Frontier Yes Yes

New York New Jersey (12), Connecticut (1), New York (10) Northeast Yes Yes

Norfolk Virginia (18), North Carolina (1) South Yes Yes

Ocala Florida (2) South No Yes

Oklahoma City Oklahoma (11) Frontier Yes Yes

Olympia Washington (1) West No No

Omaha Iowa (3), Nebraska (6) Frontier No Yes

Orlando Florida (5) South Yes Yes

Owensboro Kentucky (6) Midwest No Yes

Panama City Florida (3) South No No

Parkersburg Ohio (1), West Virginia (5) Midwest No Yes

Pensacola Florida (4) South No No

Peoria Illinois (8) Midwest No Yes

Philadelphia Pennsylvania (5), Delaware (1), New Jersey (4) Northeast Yes Yes

Phoenix Arizona (2) West Yes Yes

Pittsburgh Pennsylvania (9) Northeast Yes Yes

Portland Maine (9) Northeast No Yes

Portland Oregon (4), Washington (2) West Yes Yes

Poughkeepsie New York (4) Northeast No Yes

Providence Massachusetts (1), Rhode Island (5) Northeast Yes Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Provo-Orem Utah (3) Frontier No No

Raleigh-Durham North Carolina (7) South Yes Yes

Redding California (2) West No Yes

Reno Nevada (5) West No Yes

Residual Alabama Alabama (30) South No No

Residual Arizona Arizona (6) West No No

Residual Arkansas Arkansas (59) Frontier No No

Residual California California (14) West No No

Residual Colorado Colorado (46) Frontier No No

Residual Connecticut Connecticut (7) Northeast Yes Yes

Residual Florida Florida (10) South No No

Residual Georgia Georgia (90) South No No

Residual Idaho Idaho (34) Frontier No No

Residual Illinois Illinois (55) Midwest No No

Residual Indiana Indiana (23) Midwest No No

Residual Iowa Iowa (65) Midwest No No

Residual Kansas Kansas (84) Frontier No No

Residual Kentucky Kentucky (78) Midwest No No

Residual Louisiana Louisiana (11) Frontier No No

Residual Maine Maine (7) Northeast No No

Residual Maryland Maryland (6) Northeast No No

Residual Massachusetts Massachusetts (4) Northeast No No

Residual Michigan Michigan (47) Midwest No No

Residual Minnesota Minnesota (60) Midwest No No

Residual Mississippi Mississippi (59) South No No

Residual Missouri Missouri (73) Midwest No No

Residual Montana Montana (57) Frontier No No

Residual Nebraska Nebraska (79) Frontier No No

Residual Nevada Nevada (11) West No No

Residual New Hampshire New Hampshire (6) Northeast No No

Residual New Mexico New Mexico (23) Frontier No No

Residual New York New York (18) Northeast No No

Residual North Carolina North Carolina (41) South No No

Residual North Dakota North Dakota (51) Frontier No No

Residual Ohio Ohio (37) Midwest No No

Residual Oklahoma Oklahoma (48) Frontier No No

Residual Oregon Oregon (22) West No No

Residual Pennsylvania Pennsylvania (9) Northeast No No

Residual South Carolina South Carolina (6) South No No

Residual South Dakota South Dakota (60) Frontier No No

Residual Tennessee Tennessee (56) South No No

Residual Texas Texas (127) Frontier No No

Residual Utah Utah (18) Frontier No No

Residual Vermont Vermont (8) Northeast No No

Residual Virginia Virginia (50) South No No

Residual Washington Washington (23) West No No

Residual West Virginia West Virginia (29) Midwest No No

Residual Wisconsin Wisconsin (31) Midwest No No

Residual Wyoming Wyoming (23) Frontier No No

Richland Washington (4), Oregon (2) West No Yes

Richmond Virginia (17) South Yes Yes

Riverside-San Bernardino California (2) West Yes Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Roanoke Virginia (11), West Virginia (1) South No No

Rochester Minnesota (5) Midwest No Yes

Rochester New York (9) Northeast Yes Yes

Rockford Illinois (2) Midwest No Yes

Rocky Mount North Carolina (3) South No Yes

Sacramento California (4) West Yes Yes

Saginaw Michigan (7) Midwest No Yes

Salem Oregon (6) West Yes Yes

Salinas California (3) West No Yes

Salt Lake City Utah (7) Frontier Yes Yes

San Antonio Texas (10) Frontier Yes Yes

San Diego California (1) West Yes Yes

San Francisco California (7) West Yes Yes

San Jose California (1) West Yes Yes

Santa Barbara California (2) West No Yes

Santa Fe New Mexico (4) Frontier No Yes

Santa Rosa California (3) West No Yes

Savannah Georgia (3), South Carolina (2) South No No

Scranton Pennsylvania (7) Northeast No Yes

Seattle Washington (3) West Yes Yes

Sheboygan Wisconsin (2) Midwest No Yes

Shreveport Louisiana (8) Frontier No Yes

Sioux City Iowa (3), South Dakota (1), Nebraska (3) Midwest No Yes

Sioux Falls South Dakota (5) Frontier No Yes

South Bend Michigan (2), Indiana (4) Midwest No Yes

Spokane Washington (3), Idaho (4) West No Yes

Springfield Illinois (4) Midwest No Yes

Springfield Massachusetts (3) Northeast No No

Springfield Missouri (9) Midwest No Yes

St. Joseph Kansas (1), Missouri (6) Midwest No Yes

St. Louis Missouri (9), Illinois (8) Midwest Yes Yes

St. Lucie Florida (2) South No Yes

State College Pennsylvania (4) Northeast No No

Steubenville Ohio (1), West Virginia (2) Midwest No Yes

Stockton California (1) West No Yes

Sumter South Carolina (4) South No No

Syracuse New York (7) Northeast Yes Yes

Tallahassee Florida (9) South No No

Tampa Florida (4) South Yes Yes

Terre Haute Indiana (7) Midwest No Yes

Texarkana Texas (6), Arkansas (2) Frontier No Yes

Toledo Ohio (5), Michigan (1) Midwest No Yes

Topeka Kansas (5) Frontier No Yes

Tucson Arizona (3) West Yes Yes

Tulsa Oklahoma (11) Frontier Yes Yes

Tuscaloosa Alabama (3) South No No

Tyler Texas (6) Frontier No Yes

Ventura California (1) West No Yes

Waco Texas (4) Frontier No No

Washington Maryland (6), District Of Columbia (1), Virginia (17) Northeast Yes Yes

Waterloo Iowa (6) Midwest No Yes

Wheeling Ohio (2), West Virginia (4) Midwest No Yes
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Table G1: Local Labor Markets (LLM) Definitions

Included In:

LLM States (# Counties) Region Model Descriptives

Wichita Kansas (5) Frontier No Yes

Wichita Falls Texas (3) Frontier No No

Williamsport Pennsylvania (4) Northeast No Yes

Wilmington North Carolina (5) South No Yes

Yakima Washington (2) West No Yes

Youngstown Ohio (3), Pennsylvania (2) Midwest No Yes

Yuma California (1), Arizona (2) West No Yes

Table G2: LLM Population Shares At Home, Rootedness, and Population Histories

Share Roots of Population in:

LLM At Home At-Home 2010 1980 1950 1920 1880

Abilene (TX) 0.66 0.82 196,843 172,513 134,144 137,116 17,352

Akron (OH) 0.78 0.73 1,107,622 1,064,749 776,219 515,494 151,735

Albany (GA) 0.71 0.84 180,806 167,405 112,442 108,317 54,668

Albany (NY) 0.75 0.86 1,111,956 981,287 770,338 631,217 535,495

Albuquerque (NM) 0.46 0.62 914,290 523,105 188,604 58,247 28,877

Alexandria (LA) 0.75 0.85 195,995 193,378 142,942 109,147 46,498

Allentown (PA) 0.57 0.86 712,481 551,052 441,008 364,172 168,204

Amarillo (TX) 0.59 0.70 265,123 199,141 100,138 27,657 387

Aniston (AL) 0.68 0.85 118,572 119,761 79,539 47,822 19,591

Ann Arbor (MI) 0.58 0.67 344,791 264,748 134,606 49,520 41,848

Appleton (WI) 0.78 0.89 590,250 460,060 323,219 258,144 183,072

Asheville (NC) 0.47 0.80 457,948 306,253 228,671 135,278 60,611

Athens (GA) 0.57 0.86 261,908 134,955 78,870 89,456 48,776

Atlanta (GA) 0.36 0.72 5,189,409 2,330,869 1,104,602 759,095 392,270

Atlantic City-Vineland (NJ) 0.53 0.65 528,712 409,251 258,127 164,722 66,156

Auburn (AL) 0.52 0.85 172,613 113,708 91,688 81,715 73,699

Augusta (GA/SC) 0.61 0.81 582,723 410,163 254,243 225,879 148,926

Austin (TX) 0.46 0.80 1,768,155 623,416 294,154 224,460 109,889

Bakersfield (CA) 0.54 0.56 839,631 403,089 228,309 54,843 5,601

Baltimore (MD) 0.55 0.68 2,662,691 2,174,023 1,457,181 931,413 519,349

Baton Rouge (LA) 0.77 0.83 923,581 672,081 352,539 210,563 130,198

Beaumont (TX) 0.68 0.72 506,079 460,162 313,552 159,446 31,449

Bellingham (WA) 0.45 0.61 201,140 106,701 66,733 50,600 3,137

Biloxi (MS) 0.51 0.72 481,300 368,852 172,497 100,433 25,925

Binghamton (NY/PA) 0.80 0.90 295,081 301,336 246,834 172,585 122,510

Birmingham (AL) 0.69 0.87 1,128,047 930,281 753,630 482,579 100,098

Bloomington (IL) 0.72 0.80 225,083 178,638 131,280 128,429 115,560

Bloomington (IN) 0.71 0.82 300,670 245,028 178,394 157,972 122,705

Boise City (ID) 0.37 0.48 643,599 301,600 147,746 80,175 7,921

Boston (MA) 0.54 0.82 4,932,588 4,309,184 3,611,745 2,927,214 1,347,714

Bradenton (FL) 0.22 0.36 897,121 428,192 77,059 27,492 2,080

Buffalo (NY) 0.82 0.84 1,135,509 1,242,826 1,089,230 753,393 274,057

Burlington (VT) 0.50 0.72 334,199 259,455 172,605 154,255 145,827

Cedar Rapids (IA) 0.71 0.80 274,295 229,254 162,166 135,291 102,398

Champaign-Urbana (IL) 0.71 0.78 399,848 389,856 289,135 218,358 162,032

Charleston (SC) 0.46 0.74 703,499 462,238 245,950 180,364 139,186

Charleston (WV) 0.78 0.87 341,027 385,661 408,641 224,370 64,647

Charlotte (NC/SC) 0.47 0.86 2,066,843 1,086,694 694,290 414,074 196,764
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Table G2: LLM Population Shares At Home, Rootedness, and Population Histories

Share Roots of Population in:

LLM At Home At-Home 2010 1980 1950 1920 1880

Charlottesville (VA) 0.50 0.78 330,316 194,059 123,881 119,790 120,754

Chattanooga (TN/GA) 0.65 0.78 541,846 440,327 307,726 180,706 67,393

Chicago (IL/IN/WI) 0.59 0.74 9,355,945 7,978,308 5,720,703 3,679,252 864,564

Chico (CA) 0.62 0.60 436,433 279,971 142,688 71,663 48,282

Cincinnati (OH/KY/IN) 0.77 0.86 2,150,213 1,770,391 1,256,813 890,308 658,336

Clarksville (TN/KY) 0.45 0.78 294,835 187,014 123,611 118,926 107,631

Cleveland (OH) 0.75 0.70 2,077,240 2,173,734 1,680,736 1,103,877 284,499

College Station (TX) 0.61 0.87 255,264 134,134 86,433 89,864 63,805

Colorado Springs (CO) 0.23 0.39 696,692 347,662 97,216 70,778 20,764

Columbia (MO) 0.65 0.81 340,194 238,024 157,818 137,755 130,801

Columbia (SC) 0.58 0.81 835,910 572,662 339,798 281,888 158,272

Columbus (GA/AL) 0.64 0.83 314,980 282,425 210,548 130,010 97,353

Columbus (OH) 0.66 0.73 1,892,010 1,314,441 783,609 526,113 307,388

Corpus Christi (TX) 0.71 0.88 527,888 441,121 291,130 67,886 18,269

Cumberland (MD/WV) 0.69 0.84 159,358 154,520 151,936 128,059 71,153

Dallas-Fort Worth (TX) 0.43 0.72 6,512,481 3,103,335 1,318,069 771,883 255,930

Davenport (IA/IL) 0.76 0.80 385,684 410,633 306,843 239,904 146,874

Dayton (OH) 0.73 0.71 1,168,172 1,151,295 785,793 517,156 331,255

Daytona Beach (FL) 0.31 0.42 664,653 320,224 101,211 40,384 10,269

Denver (CO) 0.32 0.44 3,418,663 1,935,528 755,253 445,732 84,405

Des Moines (IA) 0.66 0.79 693,163 500,160 380,482 300,148 161,748

Detroit (MI) 0.73 0.71 4,296,250 4,353,413 3,170,315 1,407,111 338,194

Dothan (AL) 0.61 0.83 245,838 200,541 142,643 140,977 43,899

Dover (DE/MD) 0.55 0.72 536,112 310,840 182,740 149,840 128,115

Dubuque (IA/IL) 0.82 0.87 166,554 172,404 149,403 140,679 137,094

Duluth (MN/WI) 0.79 0.86 290,637 309,629 285,142 283,804 6,495

Eau Claire (WI/MN) 0.79 0.89 326,790 276,277 226,192 198,224 126,892

El Paso (TX/NM) 0.48 0.76 1,013,356 578,967 238,823 119,387 7,152

Erie (PA/NY) 0.84 0.90 648,739 675,901 584,839 472,406 325,001

Evansville (IN/KY/IL) 0.82 0.91 465,647 424,363 365,729 296,786 226,154

Fargo (ND/MN) 0.75 0.89 238,526 174,614 132,581 109,211 23,363

Fayetteville (AR/OK/MO) 0.45 0.74 504,691 228,845 128,667 115,197 63,443

Fayetteville (NC) 0.53 0.79 699,392 519,881 315,853 178,622 88,762

Flagstaff (AZ/UT) 0.35 0.59 352,579 147,177 51,200 36,052 8,098

Flint (MI) 0.83 0.73 425,790 450,449 270,963 125,668 39,220

Florence (AL/TN) 0.73 0.89 237,731 211,471 162,127 130,034 68,027

Fort Myers (FL) 0.17 0.35 940,274 291,237 29,892 7,981 641

Fort Smith (AR/OK) 0.59 0.80 361,460 274,570 216,069 251,094 43,474

Fort Wayne (IN) 0.68 0.74 585,429 492,705 342,174 264,924 181,488

Fresno (CA) 0.54 0.62 1,676,476 897,213 509,511 222,044 20,759

Gainesville (FL) 0.49 0.62 365,553 214,925 95,453 57,830 29,795

Goldsboro (NC) 0.60 0.89 244,559 187,693 155,121 109,865 66,618

Grand Rapids (MI) 0.76 0.83 1,352,296 997,113 637,924 427,110 264,187

Green Bay (WI) 0.72 0.88 334,026 248,795 162,788 124,157 69,466

Greensboro (NC/VA) 0.62 0.87 1,719,480 1,226,539 812,974 476,264 243,766

Greenville (NC) 0.64 0.89 249,005 166,082 127,766 91,336 47,175

Greenville (SC/NC) 0.62 0.87 1,392,816 976,115 686,861 506,266 259,816

Hagerstown (MD/WV/PA) 0.69 0.89 487,101 327,345 221,019 180,226 136,727

Harrisburg (PA) 0.67 0.87 1,157,172 893,927 622,891 459,576 307,747

Hattiesburg (MS) 0.71 0.85 174,897 129,476 98,924 70,718 16,760

Hickory (NC) 0.59 0.88 524,934 352,995 221,521 127,288 69,076
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Table G2: LLM Population Shares At Home, Rootedness, and Population Histories

Share Roots of Population in:

LLM At Home At-Home 2010 1980 1950 1920 1880

Houma (LA) 0.86 0.92 286,249 263,213 138,663 105,984 73,971

Houston (TX) 0.43 0.72 6,058,500 3,249,059 1,168,450 426,029 154,293

Huntington (WV/KY/OH) 0.86 0.93 346,607 362,367 313,034 221,469 116,419

Huntsville (AL/TN) 0.59 0.83 604,783 389,855 214,345 172,898 124,005

Indianapolis (IN) 0.63 0.70 1,735,670 1,198,556 753,130 526,350 286,805

Iowa City (IA) 0.63 0.81 225,217 172,984 125,472 105,664 101,051

Jackson (MI) 0.78 0.77 306,828 283,514 204,470 148,467 123,097

Jackson (MS) 0.75 0.89 591,126 455,328 300,508 186,848 146,127

Jacksonville (FL/GA) 0.45 0.66 1,408,280 758,255 374,617 159,862 42,734

Jacksonville (NC) 0.32 0.55 177,772 112,784 42,047 14,703 9,829

Johnson City (TN/VA) 0.68 0.86 609,299 521,426 396,211 243,667 147,377

Johnstown (PA) 0.85 0.93 398,272 447,911 471,643 446,562 167,590

Joplin (MO/KS/OK) 0.67 0.82 283,276 236,572 224,092 260,542 109,313

Kalamazoo (MI) 0.74 0.73 521,908 466,530 312,887 196,241 128,918

Kansas City (MO/KS) 0.61 0.74 2,048,694 1,515,021 1,021,717 759,148 365,266

Killeen (TX) 0.41 0.70 405,300 226,661 100,037 75,813 35,973

Knoxville (TN) 0.57 0.79 814,914 605,022 450,718 254,088 115,735

LaCrosse (WI/MN) 0.76 0.88 234,775 191,193 160,236 135,495 103,829

Lafayette (IN/IL) 0.76 0.83 367,029 330,285 263,171 231,106 175,999

Lafayette (LA) 0.84 0.93 584,118 476,339 318,239 216,170 91,306

Lake Charles (LA) 0.73 0.85 344,953 313,284 177,752 115,400 20,060

Lakeland (FL) 0.38 0.50 728,612 388,557 147,706 53,252 4,463

Lancaster (PA) 0.73 0.91 1,212,744 944,067 772,717 655,557 430,494

Lansing (MI) 0.75 0.78 464,036 419,750 244,159 134,041 93,001

Laredo (TX) 0.52 0.92 269,622 111,054 65,935 33,995 11,852

Las Vegas (NV) 0.10 0.16 1,951,269 463,087 48,289 4,859 1,286

Lawrence (KS) 0.51 0.67 110,826 67,640 34,086 23,998 21,700

Lexington (KY) 0.62 0.84 594,522 416,639 251,840 208,491 178,010

Lincoln (NE) 0.63 0.75 346,215 256,077 188,618 164,144 74,988

Little Rock (AR) 0.60 0.78 721,030 514,263 306,207 230,519 89,313

Longview (TX) 0.65 0.82 314,342 252,813 201,595 147,134 86,161

Los Angeles (CA) 0.37 0.50 12,828,837 9,410,212 4,367,911 997,830 33,381

Louisville (KY/IN) 0.71 0.86 1,256,868 1,034,761 697,918 465,795 322,989

Lubbock (TX) 0.71 0.83 323,328 262,506 154,276 26,388 152

Lynchburg (VA) 0.66 0.85 252,634 194,178 135,327 116,481 96,244

Macon (GA) 0.65 0.85 433,867 322,858 206,336 174,331 113,893

Madison (WI) 0.61 0.80 663,994 459,186 289,194 204,218 160,737

Manchester (NH) 0.33 0.56 965,532 650,663 341,635 278,326 206,556

Mansfield (OH) 0.83 0.77 322,726 321,912 230,210 173,433 130,409

McAllen (TX) 0.50 0.90 1,264,091 537,717 320,484 86,550 25,296

Medford (OR) 0.35 0.43 285,919 191,311 85,052 28,060 10,639

Melbourne (FL) 0.28 0.30 681,404 332,855 35,525 11,312 938

Memphis (TN/MS/AR) 0.69 0.87 1,316,100 997,844 676,274 404,768 220,185

Miami (FL) 0.21 0.36 5,564,635 3,220,844 693,705 66,542 257

Midland (TX) 0.62 0.77 301,317 225,236 87,702 4,995 505

Milwaukee (WI) 0.68 0.77 1,923,761 1,711,491 1,224,476 787,834 315,406

Minneapolis (MN/WI) 0.64 0.81 3,495,023 2,349,968 1,397,973 957,340 282,794

Mobile (AL) 0.64 0.81 650,341 502,814 337,738 192,615 111,428

Modesto (CA) 0.55 0.60 843,862 445,496 214,740 78,679 26,594

Monmouth (NJ) 0.55 0.66 1,206,947 849,211 281,949 127,080 69,993

Monroe (LA) 0.80 0.85 256,044 252,300 192,233 123,725 63,119
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Montgomery (AL) 0.68 0.87 395,483 307,620 236,046 182,783 133,791

Muncie (IN) 0.77 0.75 407,767 447,760 342,991 252,131 132,542

Myrtle Beach (SC) 0.56 0.88 634,562 420,248 329,155 230,863 127,235

Nashville (TN) 0.46 0.78 1,565,244 897,511 543,999 381,527 281,354

New Orleans (LA) 0.71 0.82 1,237,034 1,348,007 808,561 510,463 287,874

New York (NY/NJ/CT) 0.49 0.83 19,024,827 16,695,493 13,797,957 9,085,160 3,079,306

Norfolk (VA/NC) 0.47 0.69 1,709,794 1,240,802 729,861 443,975 177,752

Ocala (FL) 0.34 0.55 472,534 177,191 44,298 29,188 14,161

Oklahoma City (OK) 0.53 0.70 1,392,545 999,625 618,226 391,923 0

Olympia (WA) 0.41 0.55 252,264 124,264 44,884 22,366 3,270

Omaha (NE/IA) 0.63 0.76 902,041 689,736 471,079 389,349 165,149

Orlando (FL) 0.24 0.36 2,227,831 829,197 200,909 58,666 11,164

Owensboro (KY) 0.74 0.85 182,783 168,848 137,921 135,203 92,534

Panama City (FL) 0.39 0.59 196,264 116,059 55,963 19,389 4,283

Parkersburg (WV/OH) 0.85 0.92 201,716 208,308 150,269 135,434 111,396

Pensacola (FL) 0.34 0.45 684,856 421,002 173,518 84,535 23,002

Peoria (IL) 0.78 0.79 542,766 557,067 443,265 344,136 247,067

Philadelphia (PA/NJ/DE) 0.70 0.84 5,864,235 5,179,609 3,939,435 2,899,082 1,398,427

Phoenix (AZ) 0.25 0.37 4,192,887 1,599,970 374,961 105,706 7,710

Pittsburgh (PA) 0.80 0.89 2,483,851 2,781,748 2,703,797 2,212,645 756,747

Portland (ME) 0.58 0.81 919,237 740,581 573,820 458,405 373,949

Portland (OR/WA) 0.42 0.57 2,126,816 1,286,159 732,584 389,094 49,886

Poughkeepsie (NY) 0.68 0.82 930,341 727,971 422,388 319,733 285,733

Providence (RI/MA) 0.66 0.87 1,600,852 1,421,795 1,173,465 963,402 415,571

Provo-Orem (UT) 0.53 0.67 539,313 232,606 97,280 60,322 25,174

Raleigh-Durham (NC) 0.37 0.80 1,634,847 694,400 419,524 253,721 145,785

Redding (CA) 0.69 0.59 240,686 154,603 55,689 26,243 18,793

Reno (NV) 0.18 0.27 557,548 254,659 64,888 31,276 30,365

Residual Alabama (AL) 0.70 0.89 1,046,171 980,854 940,523 855,457 538,333

Residual Arizona (AZ) 0.41 0.68 478,407 246,950 115,671 85,720 9,715

Residual Arkansas (AR) 0.60 0.79 1,448,307 1,339,224 1,315,041 1,269,705 588,373

Residual California (CA) 0.67 0.58 506,103 348,243 210,175 115,724 104,514

Residual Colorado (CO) 0.41 0.59 913,841 606,774 472,620 423,119 89,158

Residual Connecticut (CT) 0.55 0.66 2,657,268 2,300,433 1,502,938 1,059,695 510,658

Residual Florida (FL) 0.45 0.58 339,655 209,951 113,897 99,516 52,367

Residual Georgia (GA) 0.62 0.86 2,404,365 1,627,718 1,348,199 1,344,691 672,140

Residual Idaho (ID) 0.46 0.63 722,562 530,884 372,112 299,609 23,752

Residual Illinois (IL) 0.74 0.82 1,524,064 1,551,894 1,415,324 1,404,512 1,177,024

Residual Indiana (IN) 0.68 0.75 1,009,889 895,308 652,190 556,035 468,958

Residual Iowa (IA) 0.72 0.84 1,060,510 1,205,667 1,276,864 1,281,160 899,603

Residual Kansas (KS) 0.60 0.75 985,020 1,007,988 1,009,330 1,056,732 623,904

Residual Kentucky (KY) 0.70 0.87 1,845,366 1,664,729 1,547,836 1,337,647 883,164

Residual Louisiana (LA) 0.80 0.86 185,382 201,083 181,374 144,678 101,415

Residual Maine (ME) 0.66 0.85 409,124 384,079 339,954 309,609 274,987

Residual Maryland (MD) 0.54 0.71 272,569 182,003 127,089 119,492 119,911

Residual Massachusetts (MA) 0.63 0.77 373,814 307,064 188,888 146,872 108,956

Residual Michigan (MI) 0.80 0.85 1,288,607 1,121,526 808,749 788,627 365,031

Residual Minnesota (MN) 0.73 0.83 1,291,813 1,216,614 1,151,008 1,034,394 365,636

Residual Mississippi (MS) 0.75 0.89 1,481,914 1,453,985 1,517,605 1,342,133 863,350

Residual Missouri (MO) 0.64 0.77 1,442,368 1,248,716 1,202,139 1,272,572 1,000,483

Residual Montana (MT) 0.49 0.63 989,415 786,690 591,024 548,889 39,159
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Residual Nebraska (NE) 0.64 0.81 664,629 706,759 739,460 815,105 274,698

Residual Nevada (NV) 0.21 0.33 191,734 82,747 46,906 41,272 30,615

Residual New Hampshire (NH) 0.43 0.64 350,938 269,947 191,607 164,757 140,435

Residual New Mexico (NM) 0.51 0.61 700,353 541,752 362,254 234,203 54,537

Residual New York (NY) 0.77 0.87 1,136,649 1,097,247 962,773 847,200 780,104

Residual North Carolina (NC) 0.59 0.87 1,469,843 1,077,126 921,444 696,419 445,460

Residual North Dakota (ND) 0.66 0.83 506,492 545,263 540,894 584,508 24,302

Residual Ohio (OH) 0.81 0.82 1,799,179 1,705,606 1,354,287 1,226,591 1,024,186

Residual Oklahoma (OK) 0.56 0.73 1,070,417 1,016,124 922,894 1,008,840 0

Residual Oregon (OR) 0.42 0.48 723,809 551,242 374,449 213,477 54,861

Residual Pennsylvania (PA) 0.81 0.91 337,363 337,856 329,595 317,557 223,428

Residual South Carolina (SC) 0.70 0.89 145,784 136,640 132,601 144,840 95,302

Residual South Dakota (SD) 0.62 0.77 557,656 527,065 526,350 534,550 65,716

Residual Tennessee (TN) 0.61 0.85 1,778,759 1,347,811 1,098,394 997,498 780,149

Residual Texas (TX) 0.67 0.85 2,077,585 1,757,024 1,603,566 1,387,555 489,413

Residual Utah (UT) 0.56 0.74 522,536 264,514 170,728 149,831 53,916

Residual Vermont (VT) 0.46 0.71 291,542 252,001 205,142 198,173 186,459

Residual Virginia (VA) 0.64 0.82 1,155,178 1,008,230 907,223 753,522 522,942

Residual Washington (WA) 0.46 0.55 1,299,761 854,568 548,973 352,751 27,603

Residual West Virginia (WV) 0.72 0.86 832,259 911,224 1,033,709 784,634 294,385

Residual Wisconsin (WI) 0.69 0.83 1,150,980 997,581 785,650 711,280 277,008

Residual Wyoming (WY) 0.36 0.43 563,626 469,557 290,529 194,402 20,789

Richland (WA/OR) 0.48 0.54 403,261 262,341 156,414 81,975 24,840

Richmond (VA) 0.55 0.75 1,186,501 795,892 497,645 357,779 238,128

Riverside-San Bernardino (CA) 0.50 0.54 4,224,851 1,558,182 451,688 123,698 9,290

Roanoke (VA/WV) 0.66 0.86 500,446 414,297 287,179 198,667 115,790

Rochester (MN) 0.58 0.77 253,060 186,793 134,313 114,614 108,906

Rochester (NY) 0.76 0.82 1,217,156 1,125,717 802,490 628,628 429,912

Rockford (IL) 0.64 0.63 349,431 279,514 169,455 106,251 42,013

Rocky Mount (NC) 0.71 0.92 233,626 186,273 166,059 115,869 59,976

Sacramento (CA) 0.54 0.56 2,149,127 1,099,814 375,636 133,144 71,077

Saginaw (MI) 0.85 0.85 522,007 549,601 368,140 271,464 151,023

Salem (OR) 0.43 0.48 1,043,897 738,159 372,865 156,357 55,385

Salinas (CA) 0.44 0.55 732,708 503,590 211,402 63,244 29,688

Salt Lake City (UT) 0.53 0.71 1,694,911 959,893 418,555 237,189 61,788

San Antonio (TX) 0.58 0.84 2,154,746 1,165,043 614,016 294,212 70,755

San Diego (CA) 0.39 0.42 3,095,313 1,861,846 556,808 112,248 5,829

San Francisco (CA) 0.40 0.54 4,885,219 3,585,032 2,287,370 1,030,145 361,163

San Jose (CA) 0.32 0.52 1,781,642 1,295,071 290,547 100,676 35,039

Santa Barbara (CA) 0.51 0.55 693,532 454,129 149,637 62,990 18,655

Santa Fe (NM) 0.47 0.75 235,303 141,697 90,772 51,352 32,810

Santa Rosa (CA) 0.57 0.60 636,384 402,785 155,740 81,608 45,322

Savannah (GA/SC) 0.47 0.82 534,621 310,596 204,567 148,497 86,346

Scranton (PA) 0.63 0.90 910,959 782,304 790,539 798,300 333,692

Seattle (WA) 0.37 0.51 3,439,809 2,093,112 1,120,448 601,090 11,616

Sheboygan (WI) 0.76 0.89 196,949 183,853 147,790 111,557 71,711

Shreveport (LA) 0.70 0.79 520,016 486,215 371,213 262,379 125,505

Sioux City (IA/NE/SD) 0.73 0.91 187,401 181,825 183,923 173,213 47,633

Sioux Falls (SD) 0.54 0.75 242,125 152,765 115,598 90,898 25,751

South Bend (IN/MI) 0.70 0.73 657,918 632,176 470,503 270,817 151,476

Spokane (WA/ID) 0.49 0.58 696,213 471,470 308,723 214,875 7,311
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Springfield (IL) 0.79 0.84 275,275 256,037 210,610 179,976 119,182

Springfield (MA) 0.60 0.76 692,942 646,148 508,312 419,265 187,375

Springfield (MO) 0.55 0.72 514,409 317,508 211,630 190,002 111,977

St. Joseph (MO/KS) 0.72 0.85 165,929 152,839 159,934 177,842 142,565

St. Louis (MO/IL) 0.75 0.80 2,819,961 2,516,116 1,926,706 1,392,529 730,141

St. Lucie (FL) 0.26 0.40 424,107 151,196 27,987 5,079 399

State College (PA) 0.78 0.91 326,745 286,894 241,898 249,492 143,219

Steubenville (OH/WV) 0.84 0.88 124,454 163,099 157,787 114,082 43,913

Stockton (CA) 0.52 0.63 685,306 347,342 200,750 79,905 24,349

Sumter (SC) 0.65 0.87 223,344 173,651 145,309 134,143 78,419

Syracuse (NY) 0.80 0.86 1,091,336 1,091,865 856,670 694,686 488,966

Tallahassee (FL) 0.51 0.67 484,972 293,750 175,343 128,248 71,700

Tampa (FL) 0.27 0.41 2,783,243 1,613,603 436,365 129,872 8,947

Terre Haute (IN) 0.74 0.84 265,851 257,619 240,214 256,159 173,150

Texarkana (TX/AR) 0.71 0.86 247,936 208,688 174,734 158,659 66,214

Toledo (OH/MI) 0.82 0.80 831,665 819,982 608,294 426,728 196,423

Topeka (KS) 0.63 0.72 233,870 203,953 147,623 129,449 83,772

Tucson (AZ) 0.33 0.45 1,159,029 637,588 182,048 93,834 14,786

Tulsa (OK) 0.52 0.68 1,052,519 819,904 526,196 417,160 0

Tuscaloosa (AL) 0.73 0.89 219,461 164,166 131,406 96,102 73,441

Tyler (TX) 0.66 0.85 492,092 303,603 212,576 205,538 89,547

Ventura (CA) 0.47 0.50 823,318 529,174 114,647 28,724 5,073

Waco (TX) 0.66 0.85 306,073 227,126 200,036 180,502 70,945

Washington (DC/VA/MD) 0.34 0.55 5,679,291 3,452,103 1,732,083 787,285 477,083

Waterloo (IA) 0.75 0.85 224,524 243,203 200,669 154,704 105,730

Wheeling (WV/OH) 0.84 0.90 188,383 236,142 242,356 247,681 157,400

Wichita (KS) 0.58 0.64 602,269 452,979 297,524 191,064 65,997

Wichita Falls (TX) 0.59 0.69 151,306 137,930 115,205 95,029 6,074

Williamsport (PA) 0.80 0.89 224,399 226,655 196,248 179,341 150,378

Wilmington (NC) 0.51 0.81 455,603 242,991 181,257 120,169 73,830

Yakima (WA) 0.47 0.54 284,146 197,385 157,958 81,447 2,272

Youngstown (OH/PA) 0.87 0.87 764,722 880,371 732,538 532,694 225,826

Yuma (AZ/CA) 0.42 0.62 390,768 182,664 90,981 58,357 4,500

Table G3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Abilene (TX) Omitted Omitted 9.23 6.69 6.56

Akron (OH) Slow No Decline 3.52 3.40 3.13

Albany (GA) Fast Small Decline 5.54 5.07 4.75

Albany (NY) Slow No Decline 3.30 3.11 2.78

Albuquerque (NM) Fast Big Decline 5.61 4.03 3.94

Alexandria (LA) Omitted Omitted 6.29 3.79 4.73

Allentown (PA) Slow No Decline 3.30 3.61 3.20

Amarillo (TX) Fast Big Decline 6.62 5.07 5.20

Aniston (AL) Fast Big Decline 6.84 5.13 5.86

Ann Arbor (MI) Omitted Omitted 9.86 8.28 8.63

Appleton (WI) Slow No Decline 3.53 3.45 3.14
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Asheville (NC) Medium No Decline 4.32 4.30 4.44

Athens (GA) Omitted Omitted 7.51 7.55 6.52

Atlanta (GA) Medium Small Decline 4.45 4.12 3.36

Atlantic City-Vineland (NJ) Medium Big Decline 4.23 3.50 3.31

Auburn (AL) Omitted Omitted 8.47 7.77 7.08

Augusta (GA/SC) Omitted Omitted 5.33 4.62 4.16

Austin (TX) Fast Big Decline 6.49 5.14 4.08

Bakersfield (CA) Fast Big Decline 6.12 4.23 3.47

Baltimore (MD) Medium No Decline 3.72 3.71 3.32

Baton Rouge (LA) Slow No Decline 3.94 3.75 2.98

Beaumont (TX) Medium No Decline 4.66 4.66 4.46

Bellingham (WA) Omitted Omitted 6.29 5.88 4.42

Biloxi (MS) Fast Big Decline 6.40 5.51 5.23

Binghamton (NY/PA) Medium Small Decline 4.36 3.95 3.56

Birmingham (AL) Slow No Decline 3.30 3.37 3.37

Bloomington (IL) Omitted Omitted 5.44 5.23 5.07

Bloomington (IN) Omitted Omitted 5.44 5.23 5.45

Boise City (ID) Medium Big Decline 5.23 4.54 3.98

Boston (MA) Medium Big Decline 3.79 3.03 2.70

Bradenton (FL) Fast Big Decline 5.77 4.96 4.38

Buffalo (NY) Slow No Decline 2.60 2.42 2.38

Burlington (VT) Omitted Omitted 4.55 4.15 3.80

Cedar Rapids (IA) Medium Small Decline 4.51 4.17 4.25

Champaign-Urbana (IL) Omitted Omitted 6.17 5.18 5.48

Charleston (SC) Fast Big Decline 7.15 5.23 4.89

Charleston (WV) Slow Small Decline 3.76 3.20 3.34

Charlotte (NC/SC) Medium No Decline 4.12 4.06 3.45

Charlottesville (VA) Omitted Omitted 6.24 5.95 5.66

Chattanooga (TN/GA) Slow Small Decline 3.97 3.68 3.47

Chicago (IL/IN/WI) Slow Small Decline 2.88 2.49 2.44

Chico (CA) Fast Big Decline 6.60 5.29 4.77

Cincinnati (OH/KY/IN) Slow No Decline 2.96 2.87 2.65

Clarksville (TN/KY) Omitted Omitted 11.14 9.28 8.06

Cleveland (OH) Slow No Decline 2.94 2.90 2.72

College Station (TX) Omitted Omitted 9.78 8.66 7.96

Colorado Springs (CO) Omitted Omitted 10.24 7.30 6.80

Columbia (MO) Omitted Omitted 5.59 5.24 5.85

Columbia (SC) Medium Small Decline 4.77 4.47 4.02

Columbus (GA/AL) Omitted Omitted 8.21 7.51 6.77

Columbus (OH) Medium Small Decline 3.73 3.52 3.26

Corpus Christi (TX) Fast Big Decline 6.19 5.34 4.67

Cumberland (MD/WV) Slow No Decline 3.27 3.10 4.00

Dallas-Fort Worth (TX) Fast Big Decline 4.80 3.41 2.82

Davenport (IA/IL) Medium No Decline 4.11 4.02 3.34

Dayton (OH) Medium Small Decline 3.84 3.45 3.31

Daytona Beach (FL) Fast Small Decline 6.36 6.00 5.04

Denver (CO) Fast Big Decline 4.71 3.60 3.64

Des Moines (IA) Medium Big Decline 4.74 3.80 3.46

Detroit (MI) Slow No Decline 3.02 2.83 2.44

Dothan (AL) Omitted Omitted 6.78 5.91 4.77

Dover (DE/MD) Slow No Decline 3.98 3.80 3.22
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Dubuque (IA/IL) Slow Small Decline 4.30 3.94 4.02

Duluth (MN/WI) Slow Small Decline 3.95 3.64 4.01

Eau Claire (WI/MN) Medium Small Decline 4.78 4.36 4.10

El Paso (TX/NM) Fast Big Decline 6.29 4.37 4.44

Erie (PA/NY) Slow Small Decline 3.25 3.00 2.84

Evansville (IN/KY/IL) Slow No Decline 3.10 2.95 3.00

Fargo (ND/MN) Fast Big Decline 5.95 5.09 5.07

Fayetteville (AR/OK/MO) Fast Small Decline 5.68 5.11 4.19

Fayetteville (NC) Omitted Omitted 8.22 7.14 6.30

Flagstaff (AZ/UT) Fast Big Decline 9.57 7.37 6.55

Flint (MI) Medium Small Decline 4.92 4.59 4.82

Florence (AL/TN) Slow No Decline 3.29 3.44 3.41

Fort Myers (FL) Fast Big Decline 6.28 5.61 4.50

Fort Smith (AR/OK) Medium Big Decline 4.90 4.14 4.19

Fort Wayne (IN) Slow Small Decline 3.96 3.37 3.37

Fresno (CA) Medium Big Decline 4.52 3.11 2.51

Gainesville (FL) Omitted Omitted 8.49 8.20 8.17

Goldsboro (NC) Omitted Omitted 5.75 5.11 4.28

Grand Rapids (MI) Slow No Decline 3.25 3.20 2.96

Green Bay (WI) Slow No Decline 3.89 3.74 4.17

Greensboro (NC/VA) Slow No Decline 3.22 3.19 3.00

Greenville (NC) Omitted Omitted 5.41 5.62 6.64

Greenville (SC/NC) Slow No Decline 3.00 2.91 2.83

Hagerstown (MD/WV/PA) Slow No Decline 3.56 3.52 3.92

Harrisburg (PA) Slow No Decline 3.13 3.12 3.00

Hattiesburg (MS) Omitted Omitted 5.98 6.12 5.60

Hickory (NC) Slow No Decline 3.58 4.01 3.44

Houma (LA) Slow Small Decline 3.90 3.69 3.08

Houston (TX) Medium Big Decline 4.14 2.96 2.43

Huntington (WV/KY/OH) Slow Small Decline 3.87 3.47 3.54

Huntsville (AL/TN) Medium Big Decline 4.38 3.68 3.59

Indianapolis (IN) Medium Small Decline 3.78 3.42 3.27

Iowa City (IA) Omitted Omitted 7.19 6.56 6.46

Jackson (MI) Medium Small Decline 4.68 4.21 4.44

Jackson (MS) Medium Big Decline 4.31 3.65 3.85

Jacksonville (FL/GA) Fast Big Decline 6.26 5.16 4.28

Jacksonville (NC) Omitted Omitted 22.45 17.13 13.34

Johnson City (TN/VA) Slow No Decline 2.89 2.86 2.76

Johnstown (PA) Slow Small Decline 2.74 2.53 2.67

Joplin (MO/KS/OK) Medium Small Decline 5.17 4.67 4.86

Kalamazoo (MI) Medium Small Decline 5.04 4.70 4.44

Kansas City (MO/KS) Medium Big Decline 4.17 3.52 3.36

Killeen (TX) Omitted Omitted 15.31 12.10 9.08

Knoxville (TN) Slow No Decline 3.85 3.82 3.51

LaCrosse (WI/MN) Medium Small Decline 4.68 4.22 4.56

Lafayette (IN/IL) Omitted Omitted 5.36 5.19 4.96

Lafayette (LA) Slow Small Decline 3.63 3.03 2.92

Lake Charles (LA) Omitted Omitted 9.13 5.21 4.45

Lakeland (FL) Fast No Decline 6.16 6.34 4.82

Lancaster (PA) Slow No Decline 2.90 2.99 2.74

Lansing (MI) Omitted Omitted 6.07 5.41 5.17

116



Table G3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Laredo (TX) Slow Big Decline 4.12 2.94 2.59

Las Vegas (NV) Fast Big Decline 6.53 5.30 4.21

Lawrence (KS) Omitted Omitted 10.68 9.41 8.25

Lexington (KY) Omitted Omitted 4.77 4.46 4.60

Lincoln (NE) Omitted Omitted 5.05 4.89 4.61

Little Rock (AR) Medium Big Decline 5.03 4.26 4.15

Longview (TX) Fast Big Decline 5.70 4.80 5.05

Los Angeles (CA) Fast Big Decline 4.74 3.17 2.93

Louisville (KY/IN) Slow No Decline 2.91 2.80 2.95

Lubbock (TX) Omitted Omitted 7.70 5.89 6.15

Lynchburg (VA) Omitted Omitted 4.14 3.95 3.16

Macon (GA) Medium No Decline 4.73 4.54 4.33

Madison (WI) Omitted Omitted 4.96 4.63 4.41

Manchester (NH) Fast Big Decline 5.67 4.15 3.26

Mansfield (OH) Slow Small Decline 4.09 3.81 3.67

McAllen (TX) Medium Big Decline 4.73 2.77 2.67

Medford (OR) Fast Big Decline 5.84 4.49 4.85

Melbourne (FL) Fast Big Decline 6.05 5.19 4.78

Memphis (TN/MS/AR) Medium Big Decline 4.17 3.47 3.27

Miami (FL) Medium Big Decline 4.03 3.39 3.19

Midland (TX) Fast Big Decline 7.05 5.19 5.42

Milwaukee (WI) Slow No Decline 3.12 2.94 2.63

Minneapolis (MN/WI) Slow Small Decline 3.06 2.79 2.61

Mobile (AL) Slow Small Decline 3.96 3.73 3.26

Modesto (CA) Fast Big Decline 5.78 4.48 3.74

Monmouth (NJ) Medium Big Decline 4.52 3.45 2.78

Monroe (LA) Medium Small Decline 4.48 4.00 3.74

Montgomery (AL) Medium No Decline 5.17 5.07 4.65

Muncie (IN) Medium Small Decline 4.56 4.19 4.72

Myrtle Beach (SC) Medium Small Decline 4.67 4.24 3.87

Nashville (TN) Medium No Decline 4.19 4.10 3.76

New Orleans (LA) Medium No Decline 3.86 3.81 3.58

New York (NY/NJ/CT) Slow Small Decline 2.86 2.36 2.23

Norfolk (VA/NC) Fast Big Decline 6.92 5.55 4.63

Ocala (FL) Fast Big Decline 6.40 5.67 5.40

Oklahoma City (OK) Medium Big Decline 4.75 3.57 3.56

Olympia (WA) Omitted Omitted 7.70 7.32 5.82

Omaha (NE/IA) Medium Big Decline 4.64 3.53 3.69

Orlando (FL) Fast Big Decline 6.94 5.87 4.75

Owensboro (KY) Slow Small Decline 3.42 3.13 3.67

Panama City (FL) Omitted Omitted 8.04 7.09 7.12

Parkersburg (WV/OH) Slow Big Decline 3.73 3.07 3.32

Pensacola (FL) Omitted Omitted 7.97 6.96 6.50

Peoria (IL) Slow Small Decline 3.78 3.53 3.74

Philadelphia (PA/NJ/DE) Slow Small Decline 2.96 2.67 2.36

Phoenix (AZ) Fast Big Decline 5.52 4.25 3.50

Pittsburgh (PA) Slow No Decline 2.37 2.20 2.30

Portland (ME) Medium Small Decline 3.98 3.42 2.93

Portland (OR/WA) Medium Small Decline 4.14 3.84 3.68

Poughkeepsie (NY) Medium Big Decline 4.79 4.08 3.25

Providence (RI/MA) Slow Small Decline 3.45 3.15 2.86
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Table G3: LLM Categorization and Migration Rates

Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Provo-Orem (UT) Omitted Omitted 7.78 6.96 6.30

Raleigh-Durham (NC) Fast Big Decline 5.40 4.75 4.46

Redding (CA) Fast Big Decline 6.11 4.70 4.67

Reno (NV) Fast Big Decline 7.07 5.15 4.79

Residual Alabama (AL) Omitted Omitted 4.19 4.26 3.84

Residual Arizona (AZ) Omitted Omitted 9.76 7.04 6.12

Residual Arkansas (AR) Omitted Omitted 4.90 4.35 3.38

Residual California (CA) Omitted Omitted 7.48 6.06 6.05

Residual Colorado (CO) Omitted Omitted 7.26 6.43 5.41

Residual Connecticut (CT) Medium Big Decline 3.76 3.00 2.60

Residual Florida (FL) Omitted Omitted 9.00 7.34 4.71

Residual Georgia (GA) Omitted Omitted 4.90 5.02 3.89

Residual Idaho (ID) Omitted Omitted 6.11 5.37 4.63

Residual Illinois (IL) Omitted Omitted 4.23 4.08 3.76

Residual Indiana (IN) Omitted Omitted 4.69 4.14 3.84

Residual Iowa (IA) Omitted Omitted 4.55 4.37 3.52

Residual Kansas (KS) Omitted Omitted 6.62 6.03 4.74

Residual Kentucky (KY) Omitted Omitted 4.11 3.83 3.05

Residual Louisiana (LA) Omitted Omitted 6.05 5.76 4.22

Residual Maine (ME) Omitted Omitted 4.44 3.63 2.97

Residual Maryland (MD) Omitted Omitted 4.50 4.64 3.71

Residual Massachusetts (MA) Omitted Omitted 5.35 4.18 4.27

Residual Michigan (MI) Omitted Omitted 5.40 4.48 3.74

Residual Minnesota (MN) Omitted Omitted 4.69 4.31 3.37

Residual Mississippi (MS) Omitted Omitted 4.14 3.95 3.54

Residual Missouri (MO) Omitted Omitted 5.40 5.04 4.16

Residual Montana (MT) Omitted Omitted 5.06 4.22 3.15

Residual Nebraska (NE) Omitted Omitted 4.97 4.86 3.26

Residual Nevada (NV) Omitted Omitted 10.88 7.75 6.18

Residual New Hampshire (NH) Omitted Omitted 6.33 5.66 4.59

Residual New Mexico (NM) Omitted Omitted 8.17 5.90 5.03

Residual New York (NY) Omitted Omitted 5.17 4.77 4.20

Residual North Carolina (NC) Omitted Omitted 5.24 5.34 4.54

Residual North Dakota (ND) Omitted Omitted 5.58 4.65 4.18

Residual Ohio (OH) Omitted Omitted 3.87 3.64 3.40

Residual Oklahoma (OK) Omitted Omitted 7.32 6.25 4.96

Residual Oregon (OR) Omitted Omitted 6.96 5.71 5.13

Residual Pennsylvania (PA) Omitted Omitted 3.59 3.38 3.10

Residual South Carolina (SC) Omitted Omitted 4.67 4.61 4.21

Residual South Dakota (SD) Omitted Omitted 5.77 5.06 3.33

Residual Tennessee (TN) Omitted Omitted 3.77 4.07 3.34

Residual Texas (TX) Omitted Omitted 7.01 6.12 5.04

Residual Utah (UT) Omitted Omitted 6.95 6.41 5.86

Residual Vermont (VT) Omitted Omitted 5.41 4.67 4.59

Residual Virginia (VA) Omitted Omitted 3.90 3.88 3.40

Residual Washington (WA) Omitted Omitted 6.95 5.76 5.19

Residual West Virginia (WV) Omitted Omitted 3.94 3.35 3.16

Residual Wisconsin (WI) Omitted Omitted 4.42 4.03 3.28

Residual Wyoming (WY) Omitted Omitted 6.60 5.89 5.57

Richland (WA/OR) Fast Big Decline 5.93 4.14 4.45

Richmond (VA) Medium No Decline 3.91 3.86 3.43
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Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Riverside-San Bernardino (CA) Fast Big Decline 7.18 4.96 3.53

Roanoke (VA/WV) Omitted Omitted 4.46 4.14 4.15

Rochester (MN) Medium Small Decline 5.00 4.44 4.74

Rochester (NY) Slow Small Decline 3.08 2.78 2.85

Rockford (IL) Slow No Decline 4.16 4.06 3.77

Rocky Mount (NC) Slow Small Decline 4.24 3.99 4.05

Sacramento (CA) Fast Big Decline 5.69 4.08 3.67

Saginaw (MI) Medium Big Decline 4.14 3.42 3.41

Salem (OR) Fast Big Decline 5.71 4.52 4.18

Salinas (CA) Fast Big Decline 8.56 5.21 4.81

Salt Lake City (UT) Medium Small Decline 4.19 3.89 3.92

San Antonio (TX) Fast Big Decline 5.13 3.95 3.47

San Diego (CA) Fast Big Decline 7.01 5.03 4.66

San Francisco (CA) Fast Big Decline 5.04 3.88 3.64

San Jose (CA) Fast Big Decline 6.74 4.97 4.57

Santa Barbara (CA) Fast Big Decline 7.13 5.14 4.91

Santa Fe (NM) Fast Big Decline 6.28 5.20 4.89

Santa Rosa (CA) Fast Big Decline 5.38 4.07 3.69

Savannah (GA/SC) Omitted Omitted 7.30 6.79 6.70

Scranton (PA) Slow No Decline 2.90 3.31 2.77

Seattle (WA) Fast Big Decline 4.71 3.96 3.48

Sheboygan (WI) Slow No Decline 3.72 3.59 3.14

Shreveport (LA) Medium Big Decline 5.05 3.88 3.99

Sioux City (IA/NE/SD) Medium Big Decline 5.04 4.36 4.70

Sioux Falls (SD) Fast Small Decline 5.64 5.13 4.97

South Bend (IN/MI) Medium Small Decline 4.47 4.13 4.24

Spokane (WA/ID) Fast Big Decline 5.25 4.35 3.97

Springfield (IL) Slow Small Decline 4.21 3.82 4.38

Springfield (MA) Omitted Omitted 4.06 3.32 2.81

Springfield (MO) Medium Small Decline 5.00 4.69 4.70

St. Joseph (MO/KS) Medium No Decline 4.77 4.66 5.25

St. Louis (MO/IL) Slow Small Decline 3.12 2.67 2.70

St. Lucie (FL) Fast Big Decline 6.71 5.98 5.16

State College (PA) Omitted Omitted 4.67 4.42 4.00

Steubenville (OH/WV) Slow No Decline 3.64 3.46 3.39

Stockton (CA) Fast Big Decline 6.51 5.36 4.14

Sumter (SC) Omitted Omitted 6.17 5.42 4.72

Syracuse (NY) Slow Small Decline 3.55 2.98 2.87

Tallahassee (FL) Omitted Omitted 6.17 6.45 5.90

Tampa (FL) Fast Big Decline 5.39 4.69 3.78

Terre Haute (IN) Medium No Decline 4.48 4.30 4.40

Texarkana (TX/AR) Fast Big Decline 5.52 4.61 4.87

Toledo (OH/MI) Slow Small Decline 3.82 3.60 3.35

Topeka (KS) Medium Big Decline 4.75 4.09 4.63

Tucson (AZ) Fast Big Decline 6.25 4.69 4.68

Tulsa (OK) Medium Big Decline 4.89 3.86 3.73

Tuscaloosa (AL) Omitted Omitted 5.30 5.01 4.46

Tyler (TX) Fast Big Decline 6.36 5.23 4.80

Ventura (CA) Fast Big Decline 7.54 4.68 4.11

Waco (TX) Omitted Omitted 6.24 5.43 5.11

Washington (DC/VA/MD) Fast Big Decline 5.19 4.01 3.65

119
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Category of: Migration Rate:

LLM Speed Decline IRS, 1991-1993 IRS, 2008-2011 ACS, 2005-2017

Waterloo (IA) Medium Small Decline 4.52 4.16 4.46

Wheeling (WV/OH) Slow Small Decline 3.41 2.98 3.30

Wichita (KS) Medium Big Decline 4.83 3.87 3.64

Wichita Falls (TX) Omitted Omitted 7.74 7.44 7.28

Williamsport (PA) Slow Small Decline 3.68 3.38 3.34

Wilmington (NC) Medium No Decline 4.89 5.25 4.49

Yakima (WA) Fast Big Decline 5.53 4.39 3.54

Youngstown (OH/PA) Slow No Decline 2.96 2.95 2.94

Yuma (AZ/CA) Fast Big Decline 7.06 4.84 3.93
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