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Abstract

We study a canonical model of decentralized exchange for a durable good or asset, where
agents are assumed to have time-varying, heterogeneous utility types. Whereas the existing
literature has focused on the special case of two types, we allow agents’ utility to be drawn
from an arbitrary distribution. Our main contribution is methodological: we provide a solution
technique that delivers a complete characterization of the equilibrium, in closed form, both in
and out of the steady state. This characterization offers a richer framework for confronting
data from real-world markets, and reveals a number of new economic insights. In particular,
we show that heterogeneity magnifies the impact of frictions on equilibrium outcomes, and
that this impact is more pronounced on price levels than on price dispersion and welfare.
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1 Introduction

We consider a canonical model of decentralized exchange for an indivisible durable good or asset,

such as a house, a bond, a credit-default swap, a commercial aircraft, a painting, or even an idea

for a company. A fixed measure of agents are periodically and randomly matched in pairs, and

bargain over the price if there are gains from trade. Agents can hold either zero or one unit of

the asset, and have time-varying utility types that generate heterogeneous valuations. Importantly,

whereas the existing literature (e.g., Duffie et al., 2005, 2007) has focused on the special case of

two utility types, we allow agents’ utility types to be drawn from an arbitrary distribution. Our

main contribution is methodological: we provide a solution technique that delivers a complete

characterization of the equilibrium, in closed form, both in and out of the steady state.

This characterization is valuable for several reasons. First, by establishing that the model

with arbitrary heterogeneity is much richer than the special case with only two types, yet equally

tractable, our characterization can be used to confront a broader set of empirical observations in

real-world markets. For example, unlike the special case with only two types, our model is capable

of generating dispersion in both the terms of trade and the time it takes different investors to buy or

sell—both important features of markets for durable goods and assets, especially assets traded in

over-the-counter markets. Indeed, in a companion paper (Hugonnier, Lester, and Weill, 2020), we

apply some of the techniques developed here to assess the role of search and bargaining frictions

in dealer-intermediated over-the-counter markets and show that our framework captures some of

the key features of the municipal bond market.

Second, solving the model without imposing arbitrary restrictions on the distribution of utility

types reveals a common, underlying structure that unifies a broad class of search-theoretic models

and provides an important bridge to the literature on asset pricing in frictionless environments.

In particular, we show that, as in standard asset pricing models, an agent’s private valuation for

the asset in our setting can be represented as the present value of future dividend flows to a

hypothetical investor whose stochastic discount factor reflects the relevant search and bargaining

frictions. Lastly, studying the relationship between search and bargaining frictions and hetero-

geneity in valuations reveals new economic insights. We highlight two. First, in an environment

with decentralized trade and heterogeneous valuations, we show that trade is mostly concentrated

among agents with utility types near the marginal type, as defined in a frictionless benchmark.

Hence, even absent heterogeneity in trading speed or inventory capacity, our results suggest an

underlying gravitational pull toward a market structure in which a small “core” of agents emerges

as natural intermediaries. Second, we show that heterogeneity magnifies the impact of frictions
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on equilibrium outcomes, and that this impact is more pronounced on price levels than on price

dispersion and welfare. As a result, using observed price dispersion to quantify the effect of search

frictions on price discounts or premia can be misleading, as price dispersion can essentially vanish

while price levels are still far from their frictionless counterpart. A practical implication of this

finding is that frictions can have relatively large effects on yield spreads in OTC credit markets

even when markets appears highly liquid according to traditional measures like volume or price

dispersion.

The paper proceeds as follows. After briefly reviewing the literature, we lay out the environ-

ment in Section 2. In Section 3, we develop the methodology that allows us to characterize the

equilibrium in closed form, both in and out of the steady state, for an arbitrary initial distribution

of utility types. Importantly, in our analysis of the individual optimization problems we establish

several key properties of reservation values that hold irrespective of the cross-sectional distribu-

tions that agents take as given. This allows us to eschew the usual guess-and-verify approach and

ensure the uniqueness of our equilibrium. Finally, in Section 4, we exploit our characterization

to study the relationship between heterogeneity in valuations, asset prices, trading volume, and

welfare as trading frictions vanish.

1.1 Related literature

This paper belongs to the literature that applies search-and-matching theory to study decentralized

markets for durable goods or assets. For an extensive review of this literature, we refer the reader

to Hugonnier, Lester, and Weill (2020), and provide here a more narrow discussion of papers that

study unintermediated or “pure” decentralized asset markets.

The present paper merges and replaces two working papers, Hugonnier (2012) and Lester and

Weill (2013), in which we independently developed the methods to characterize equilibria with

arbitrary heterogeneity in valuations.1 Among other early attempts to study pure decentralized

trade with more than two types, Gavazza (2011) and Afonso and Lagos (2015) are most closely

related to our work.2 In particular, in an online appendix, Gavazza (2011) proposes a model of

pure decentralized trade with a continuum of types, but focuses on the case in which investors

trade only once between preference shocks. In contrast, many of the insights that arise in our

1In contrast to the current paper and Lester and Weill (2013), where heterogeneous valuations are “hard-wired”
into investors’ preferences, Hugonnier (2012) considers an environment where investors’ valuations differ because
of heterogeneity in beliefs about the growth rate of the dividend process and studies conditions under which the
speculative behavior highlighted by Harrison and Kreps (1978) in frictionless markets also arises in a decentralized
market setting.

2See also Cujean and Praz (2013) and Neklyudov (2019).
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environment derive from the many trading opportunities that arise between preference shocks. In

Afonso and Lagos (2015), the heterogeneity in valuations derives from allowing investors to take

on arbitrary (discrete) asset positions. Though several insights from Afonso and Lagos (2015) also

arise in our environment, the two papers differ in both methodology and focus: while they establish

many results via numerical methods in an attempt to confront trading patterns in the federal funds

market, we derive a variety of analytical results that allow us to study implications for volume and

prices across a broad range of OTC markets.

A number of subsequent papers have explored applications of our results, as well as alternative

dimensions of heterogeneity that are relevant in OTC markets, including Shen, Wei, and Yan

(2020), Üslü (2019), Sagi (2015), Farboodi, Jarosch, and Shimer (2021), Farboodi, Jarosch, Men-

zio, and Wiriadinata (2019), Bethune, Sultanum, and Trachter (2018), Zhang (2017), Liu (2018),

Tse and Xu (2020), and Yang and Zeng (2019). However, the most closely related is our companion

paper, Hugonnier, Lester, and Weill (2020). In that paper, we study a market with two distinct

types of agents, customers and dealers, where the dealers themselves trade in a decentralized

market. To study characteristics of the intermediation process that have been documented using

new, transaction-level data sets—including so-called “intermediation chains” that are common in

dealer-intermediated OTC markets—we assume that dealers have heterogeneous and continuously

distributed private flow valuations for the asset (or inventory costs). Then, exploiting the techniques

developed here to characterize the steady state equilibrium of the decentralized inter-dealer market,

we derive a number of testable implications; calibrate the structural parameters to key moments

from the municipal bond market; and explore the model’s quantitative predictions regarding the

relationship between the frictions that we estimate in the market, observable outcomes like bid-ask

spreads, and unobservable outcomes like welfare.

In contrast with Hugonnier, Lester, and Weill (2020), the current paper has a sharper method-

ological focus, to provide a technical toolkit for analyzing decentralized markets for assets or

durable goods. For one, the model we study here is different, with no ex ante distinction between

customers and dealers, which allows us to characterize all equilibrium objects in closed form and

to establish uniqueness of equilibrium. Second, with no ex ante heterogeneity across agents, our

solution techniques apply equally well to continuous distributions and those with mass points, so

that our framework nests earlier, discrete-type models as special cases (including, e.g., Duffie

et al., 2005, 2007). As we will argue below, this level of generality ultimately reveals deeper

properties of a broad class of search-and-matching models of pure decentralized asset markets.

Third, in the current environment, we are able to characterize the dynamics of equilibria outside of

the steady state, starting from any initial distribution of utility types, making it straightforward to
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analyze the market’s response to a variety of aggregate shocks, including a change in the quantity

of the asset available (e.g., an issuance shock) or a change in the distribution of valuations (e.g.,

an aggregate liquidity shock). Finally, leveraging our explicit solutions, we are able to study the

properties of equilibria as trading frictions vanish, which reveals that heterogeneity magnifies the

impact of search frictions on allocations, prices, and welfare.

2 The model

2.1 Environment

We consider a continuous-time, infinite-horizon model with time indexed by t ≥ 0. The economy

is populated by a unit measure of infinitely-lived, risk-neutral investors who discount the future at

rate r > 0. There is one indivisible, durable asset in fixed supply, s ∈ (0, 1), and one perishable

good that we treat as the numéraire. Investors can hold either zero or one unit of the asset.

Preferences. The instantaneous utility function of an investor at time t is ct + qtδt, where ct
denotes the investor’s net consumption of the numéraire good (ct < 0 if the investor produces

more than he consumes), qt ∈ {0, 1} denotes the investor’s asset holdings, and δt denotes the

utility flow the investor receives from holding a unit of the asset. We assume that δt differs across

investors and, for each investor, changes over time. In particular, let F0(δ) denote the cumulative

distribution of utility types at t = 0. Moreover, suppose that each investor receives i.i.d. preference

shocks that arrive according to a Poisson process with intensity γ, whereupon the investor draws a

new utility flow δ′ from a (potentially different) cumulative distribution function F (δ′).3

Given these assumptions, the cumulative distribution of utility types across the population

evolves according to

Ḟt(δ) = γ(F (δ)− Ft(δ)),

where Ḟt denotes the time derivative. One can easily derive the explicit solution to this ordinary

3All of our results apply mutatis mutandis to the case where types are persistent, in the sense that the distribution
of an agent’s new type δ′ conditional on his old type δ, F (δ′|δ), is first order stochastically increasing in δ. The only
caveat is that the equilibrium is then unique in the class of equilibria for which the reservation value function (defined
below) is bounded, rather than globally unique as it is in our benchmark model.
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differential equation,

Ft(δ) = F (δ) + e−γt (F0(δ)− F (δ)) ,

and see that it converges to the long-run distribution F (δ) as t → ∞. Note that, at this point, we

place very few restrictions on the exogenous distributions F0(δ) and F (δ): our solution method

applies equally well to discrete distributions such as the two-point distribution of DGP, continuous

distributions, and a mixture of the two; and does not require that F0(δ) be absolutely continuous

with respect to F (δ). As a result, our framework allows transient initial conditions that can be used

to model the recovery of the market following a liquidity shock. We only require that supp(F0) ∪
supp(F ) is included in a compact interval and make it sufficiently large so that there are no mass

points at the boundaries. For simplicity, we normalize this interval to [0, 1].

Matching and Trade. Investors trade in a purely decentralized market in which each investor

initiates contact with another randomly selected investor according to a Poisson process with

intensity λ/2. If two investors are matched and there are gains from trade, they bargain over the

price of the asset. The outcome is taken to be the Nash bargaining solution, in which the investor

with asset holdings q ∈ {0, 1} has bargaining power θq ∈ (0, 1), with θ0 + θ1 = 1.

The State Variable. An important object of interest throughout our analysis will be the joint

distribution of utility types and asset holdings. The standard approach in the literature, following

DGP, is to characterize this distribution by analyzing the density or measure of investors across

types (q, δ) ∈ {0, 1} × [0, 1]. Our analysis below reveals that the model becomes much more

tractable when we study instead the cumulative measure; this allows for a closed-form solution for

an arbitrary underlying distribution of types, both in and out of the steady state.

Let Φq,t(δ) denote the measure of investors at time t ≥ 0 with asset holdings q ∈ {0, 1} and

utility type less than or equal to δ ∈ [0, 1]. These joint distributions must satisfy the following

accounting identities for all t ≥ 0:

Φ0,t(δ) + Φ1,t(δ) = Ft(δ) (1)

Φ1,t(1) = s. (2)

Equation (1) requires that the cross-sectional distribution of utility types in the population is equal

to Ft(δ) for all t ≥ 0. Equation (2) is a market-clearing condition that equates the total measure of

investors who own the asset and the total supply of assets in the economy.
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2.2 The Frictionless Benchmark: Centralized Exchange

Before analyzing the environment with search frictions, it’s helpful to first characterize the equilib-

rium in a frictionless benchmark; this allows us to identify certain key parameters and, later, study

the limiting properties of equilibria as search frictions vanish. To that end, consider an environment

with a competitive, centralized market where investors can buy or sell the asset instantly at some

price pt for all t ≥ 0. Since there is no aggregate uncertainty, the price path is necessarily a

function of time in a deterministic equilibrium. We assume that this function is uniformly bounded

and absolutely continuous with a uniformly bounded (almost everywhere) derivative ṗt.

Given the price path, the objective of an investor is to choose a finite variation asset-holding

process qt ∈ {0, 1} that is progressively measurable with respect to the filtration generated by his

utility-type process, and which maximizes

Eδ
[∫ ∞

0

e−rtδtqtdt−
∫ ∞

0

e−rtptdqt

]
= p0q0 + Eδ

[∫ ∞
0

e−rtqt (δt − rpt + ṗt) dt

]
,

where the equality follows from integration by parts. Maximizing pointwise on the right-hand side

shows that an investor’s optimal asset holdings satisfy

q?t =


0 if δt < rpt − ṗt
∈ {0, 1} if δt = rpt − ṗt
1 if δt > rpt − ṗt.

Since the supply of the asset is s, in equilibrium the marginal type must belong to the set

∆?
t ≡

{
δ ∈ [0, 1] : lim

y↑δ
Ft(y) ≤ 1− s ≤ Ft(δ)

}
at all times. The equilibrium distribution of utility types among investors who own one unit of the

asset is accordingly given by

Φ?
1,t(δ) = max {0, Ft(δ)− (1− s)}

and, from (1), the equilibrium distribution of utility types among investors who do not own the

asset must be Φ?
0,t(δ) = min{Ft(δ), 1− s}.

Finally, since the correspondence ∆?
t is compact-valued and upper hemi-continuous, it follows

from the Measurable Selection Theorem (Stokey and Lucas, 1989, Theorem 7.6) that there exists a
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measurable path of marginal types, and it is easily seen that given any such path of marginal types

the induced price path

p?t =

∫ ∞
t

e−r(u−t)δ?udu,

implements the equilibrium asset allocation. In words, the frictionless price is the present value of

the utility flows enjoyed by a hypothetical investor who holds the asset forever and whose utility

type is marginal at all times. To guarantee that the frictionless price is uniquely defined in the

steady-state, from now on we will ignore the non-generic case where the steady state distribution

of utility types F (δ) is flat at the level 1− s.

3 Equilibrium with search frictions

We now characterize the equilibrium with search frictions in three steps. First, in Section 3.1, we

derive investors’ reservation value functions, which allows us to characterize the (unique) optimal

trading rules and equilibrium asset prices given any path for the joint distribution of utility types

and asset holdings, Φ0,t and Φ1,t. Then, in Section 3.2, we show that the optimal trading rules imply

a unique path for the joint distributions Φ0,t and Φ1,t, which we derive explicitly. Finally, in Section

3.3, we combine these results to construct the unique equilibrium and show that it converges to a

steady state from any initial allocation.

3.1 Reservation values

Let Vq,t(δ) denote the maximum attainable utility of an investor with q ∈ {0, 1} units of the asset

and utility type δ ∈ [0, 1] at time t ≥ 0, and denote this investor’s reservation value by4

∆Vt(δ) ≡ V1,t(δ)− V0,t(δ).

In addition to considering an arbitrary distribution of utility types, our analysis of reservation values

improves on the existing literature in several dimensions. First, in Section 3.1.1, we depart from

the usual guess-and-verify approach by establishing elementary properties of reservation values

directly, without making any a priori assumption on the direction of gains from trade. This allows

us, down the road in Theorem 1, to claim a general uniqueness result for equilibrium. Second,

4Note that the reservation value function is well defined for all δ ∈ [0, 1], and not only for those utility types in the
support of the underlying distribution, Ft(·).
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in Section 3.1.2, we study a differential representation of reservation values which generalizes an

earlier closed-form solution for the trading surplus in DGP’s two-type model. Third, in Section

3.1.3, we study a sequential representation of reservation values which generalizes the concept of

a marginal investor to an asset market with search-and-matching frictions.

3.1.1 Necessary properties

Denote by

Pτ (δ, δ
′) ≡ θ0∆Vτ (δ) + θ1∆Vτ (δ

′) (3)

the Nash solution to the bargaining problem at time τ ≥ 0 between an asset owner of utility type δ

and a non-owner of utility type δ′. An application of Bellman’s principle of optimality shows that

V1,t(δ) = Et

[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(
1{τ=τ1}V1,τ (δ) + 1{τ=τγ}

∫ 1

0

V1,τ (δ
′)dF (δ′) (4)

+ 1{τ=τ0}

∫ 1

0

max{V1,τ (δ), V0,τ (δ) + Pτ (δ, δ
′)}dΦ0,τ (δ

′)

1− s

)]
,

where τγ is an exponential random variable with parameter γ that represents the arrival of a

preference shock, τq is an exponential random variable with parameter λs if q = 1 and λ(1− s) if

q = 0 that represents the occurrence of a meeting with a randomly selected investor who owns q

units of the asset, and the expectation is conditional on τ ≡ min{τ0, τ1, τγ} > t.

Substituting the price (3) into (4) and simplifying shows that the maximum attainable utility of

an asset owner satisfies

V1,t(δ) = Et

[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(
V1,τ (δ)

+ 1{τ=τγ}

∫ 1

0

(V1,τ (δ
′)− V1,τ (δ))dF (δ′)

+ 1{τ=τ0}

∫ 1

0

θ1 (∆Vτ (δ
′)−∆Vτ (δ))

+ dΦ0,τ (δ
′)

1− s

)]
. (5)

The first term on the right-hand side of (5) accounts for the fact that an asset owner enjoys a

constant flow of utility at rate δ until time τ . The remaining terms capture the three possible events

for an asset owner at time τ : a preference shock (τ = τγ), in which case a new utility type is
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drawn from the distribution F (δ′); meeting another asset owner (τ = τ1), in which case there are

no gains from trade and the continuation payoff is V1,τ (δ); or meeting a non-owner (τ = τ0), who

is of type δ′ with probability dΦ0,τ (δ
′)/(1− s), in which case the owner sells the asset if the payoff

from doing so exceeds the payoff from keeping the asset and continuing to search.

Proceeding in a similar way for q = 0 shows that the maximum attainable utility of an investor

who does not own an asset satisfies

V0,t(δ) = Et

[
e−r(τ−t)

(
V0,τ (δ) + 1{τ=τγ}

∫ 1

0

(V0,τ (δ
′)− V0,τ (δ))dF (δ′)

+ 1{τ=τ1}

∫ 1

0

θ0 (∆Vτ (δ)−∆Vτ (δ
′))

+ dΦ1,τ (δ
′)

s

)]
, (6)

and subtracting (6) from (5) shows that the reservation value function satisfies the autonomous

dynamic programming equation

∆Vt(δ) = Et

[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(

∆Vτ (δ)

+ 1{τ=τγ}

∫ 1

0

(∆Vτ (δ
′)−∆Vτ (δ))dF (δ′)

+ 1{τ=τ0}

∫ 1

0

θ1 (∆Vτ (δ
′)−∆Vτ (δ))

+ dΦ0,τ (δ
′)

1− s

− 1{τ=τ1}

∫ 1

0

θ0 (∆Vτ (δ)−∆Vτ (δ
′))

+ dΦ1,τ (δ
′)

s

)]
. (7)

This equation reveals that an investor’s reservation value is influenced by two distinct option values,

which have opposing effects. On the one hand, an investor who owns an asset has the option to

search and find a non-owner who will pay even more for the asset; as shown on the third line, this

option increases her reservation value. On the other hand, an investor who does not own an asset

has the option to search and find an owner who will sell at an even lower price; as shown on the

fourth line, this option decreases her willingness to pay and, hence, her reservation value.

To guarantee the global optimality of the trading decisions induced by (5) and (6), we further

require that the maximum attainable utilities of owners and non-owners, and hence the reservation

values, satisfy the transversality conditions

lim
t→∞

e−rtVq,t(δ) = lim
t→∞

e−rt∆Vt(δ) = 0, (q, δ) ∈ {0, 1} × [0, 1]. (8)
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The next proposition establishes the existence, uniqueness, and some necessary properties of

solutions to (5), (6), and (7) that satisfy (8).

Proposition 1 There exists a unique function ∆V : R+ × [0, 1] → R that satisfies (7) subject to

(8). This function is uniformly bounded, absolutely continuous in (t, δ) ∈ R+ × [0, 1], and strictly

increasing in δ ∈ [0, 1] with a uniformly bounded derivative with respect to utility type. Given

∆Vt(δ), there are unique functions V0,t(δ) and V1,t(δ) that satisfy (5), (6), and (8).

The fact that reservation values are strictly increasing in δ implies that, when an asset owner

of type δ meets a non-owner of type δ′ > δ, they will always agree to trade. Indeed, these two

investors face the same distributions of future trading opportunities and preference shocks. Thus,

the only relevant distinction between them is the difference in utility flow enjoyed from the asset,

which implies that the reservation value of an investor of type δ′ is strictly larger than that of an

investor of type δ < δ′. The monotonicity property holds regardless of the distributions Φq,t(δ),

which investors take as given when calculating their optimal trading strategy. Moreover, as we

establish below, this property greatly simplifies the derivation of closed-form solutions for both

reservation values and the equilibrium distribution of asset holdings and utility types.

3.1.2 Differential representation

Integrating both sides of (7) with respect to the conditional distribution of τ , and using the fact

that reservation values are strictly increasing in utility type, we obtain that the reservation value

function satisfies the integral equation

∆Vt(δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)
(
δ + λ∆Vu(δ) + γ

∫ 1

0

∆Vu(δ
′)dF (δ′) (9)

+ λ

∫ 1

δ

θ1 (∆Vu(δ
′)−∆Vu(δ)) dΦ0,u(δ

′)

− λ
∫ δ

0

θ0 (∆Vu(δ)−∆Vu(δ
′)) dΦ1,u(δ

′)

)
du.

In addition, since Proposition 1 establishes that ∆Vt(δ) is absolutely continuous in (t, δ) ∈ R+ ×
[0, 1] with a bounded derivative with respect to utility type, we know that

∆Vt(δ) = ∆Vt(0) +

∫ δ

0

σt(δ
′)dδ′ (10)
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for some nonnegative and uniformly bounded function σt(δ) that is itself absolutely continuous

in time for almost every δ ∈ [0, 1]. We naturally interpret this function as a measure of the local

surplus in the decentralized market, since the gains from trade between a seller of type δ and a

buyer of type δ + dδ are approximately given by σt(δ)dδ.

Substituting (10) into (9), changing the order of integration, and differentiating both sides of

the resulting equation with respect to t and δ reveals that the local surplus satisfies

(r + γ + λθ1(1− s− Φ0,t(δ)) + λθ0Φ1,t(δ))σt(δ) = 1 + σ̇t(δ) (11)

at almost every point of R+ × [0, 1]. The local surplus characterized in (11) is the natural gener-

alization of the trading surplus in DGP to non-stationary environments with arbitrary distributions

of utility types. To see this precisely, recall that DGP characterized an equilibrium in a special

case of our model: in a steady state with two utility types, δ` ≤ δh. In that setting, the measures

1 − s − Φ0(δ) and Φ1(δ) are constant over [δ`, δh) and correspond to the masses of buyers and

sellers, respectively, denoted by µhn and µ`o in DGP . Using this property, integrating both sides

of (11), and restricting attention to the steady state gives:

(r + γ + λθ1µhn + λθ0µ`o) (∆V (δh)−∆V (δ`)) = δh − δ`,

which is the surplus formula of DGP.

Given (11) we can now derive a closed-form solution for reservation values. A calculation

provided in Appendix A.1 shows that, together with the requirements of boundedness and absolute

continuity in time, equation (11) uniquely pins down the local surplus as

σt(δ) =

∫ ∞
t

e−
∫ u
t (r+γ+λθ1(1−s−Φ0,ξ(δ))+λθ0Φ1,ξ(δ))dξdu. (12)

Combining this explicit solution for the local surplus with (9) and (10) allows us to derive the

reservation value function in closed-form.

Proposition 2 For any distribution Φ0,t(δ) and Φ1,t(δ) satisfying (1) and (2), the unique solution

to (7) and (8) is explicitly given by

∆Vt(δ) =

∫ ∞
t

e−r(u−t)
(
δ −

∫ δ

0

σu(δ
′) (γF (δ′) + λθ0Φ1,u(δ

′)) dδ′ (13)

+

∫ 1

δ

σu(δ
′) (γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ

′))) dδ′
)
du,

11



where the local surplus σt(δ) is defined by (12).

We close this sub-section with several intuitive comparative static results for reservation values.

Corollary 1 For any (t, δ) ∈ R+× [0, 1], the reservation value ∆Vt(δ) increases if an investor can

bargain higher selling prices (larger θ1), if he expects to have higher future valuations (a first-order

stochastic dominant shift in F (δ′)), or if he expects to trade with higher-valuation counterparts (a

first-order stochastic dominance shift in the path of either Φ0,t′(δ
′) or Φ1,t′(δ

′)).

To complement these results, note that an increase in the search intensity, λ, can either increase or

decrease reservation values. This is because of the two option values discussed above: an increase

in λ increases an owner’s option value of searching for a buyer who will pay a higher price, which

drives the reservation value up, but it also increases a non-owner’s option value of searching for a

seller who will offer a lower price, which has the opposite effect. As we will see below in Section

4, the net effect is ambiguous and depends on all parameters of the model.

3.1.3 Sequential representation

Differentiating both sides of (9) with respect to time shows that the reservation value function can

be characterized as the unique bounded and absolutely continuous solution to the HJB equation

r∆Vt(δ) = δ + ∆V̇t(δ) + γ

∫ 1

0

(∆Vt(δ
′)−∆Vt(δ)) dF (δ′) (14)

+ λ

∫ 1

δ

θ1 (∆Vt(δ
′)−∆Vt(δ)) dΦ0,t(δ

′) + λ

∫ δ

0

θ0 (∆Vt(δ
′)−∆Vt(δ)) dΦ1,t(δ

′).

The following proposition shows that the solution to this equation can be represented as the present

value of utility flows from the asset to a hypothetical investor whose utility type process is adjusted

to reflect the frictions present in the market.

Proposition 3 The reservation value function can be represented as

∆Vt(δ) = Et,δ

[∫ ∞
t

e−r(s−t)δ̂sds

]
, (15)

where the market-valuation process, δ̂t, is a pure jump Markov process on [0, 1] with infinitesimal

generator defined by

At[v](δ) ≡
∫ 1

0

(v(δ′)− v(δ))
(
γdF (δ′) + 1{δ′>δ}λθ1dΦ0,t(δ

′) + 1{δ′≤δ}λθ0dΦ1,t(δ
′)
)

12



for any uniformly bounded function v : [0, 1]→ R.

Representations such as (15) are standard in frictionless asset pricing, where private values are

obtained as the present value of cash flows under a probability constructed from marginal rates of

substitution. The emergence of such a representation in a decentralized market is, to the best of

our knowledge, new to this paper and can be viewed as generalizing the concept of the marginal

investor. Namely, in the frictionless benchmark, the market valuation is equal to the utility flow of

the marginal investor, δ?t , since investors can trade instantly at price p?t . In a decentralized market,

the market valuation differs from δ?t for two reasons. First, since meetings are not instantaneous, an

owner receives his private utility flow until finding a trading partner. Second, since investors do not

always trade with the marginal type, the terms of trade are random and depend on the distribution

of types among trading partners. Importantly, this second channel is only active if there are more

than two utility types, because otherwise a single price gets realized in bilateral meetings.

3.2 The joint distribution of asset holdings and types

In this section, we provide a closed-form characterization of the joint equilibrium distribution of

asset holdings and utility types, in and out of the steady state. To the best of our knowledge, this

characterization is new to the literature. In particular, even in their special two-type case, DGP

did not derive an explicit characterization of the out-of-steady-state dynamics. We then establish

that this distribution converges to the steady state from any initial conditions satisfying (1) and

(2). Finally, we discuss several properties of the steady state distribution and explain how its shape

depends on the arrival rates of preference shocks and trading opportunities.

Since reservation values are increasing in utility type, trade occurs between two investors if and

only if one is an owner with utility type δ′ and the other is a non-owner with utility type δ′′ ≥ δ′.

Investors with the same utility type are indifferent between trading or not, but whether they trade

is irrelevant since they effectively exchange ownership type. As a result, the rate of change in the

measure of owners with utility type less than or equal to a given δ ∈ [0, 1] satisfies

Φ̇1,t(δ) = γ (s− Φ1,t(δ))F (δ)− γΦ1,t(δ) (1− F (δ))− λΦ1,t(δ) (1− s− Φ0,t(δ)) . (16)

The first term in equation (16) is the inflow due to type-switching: at each instant, a measure

γ (s− Φ1,t(δ)) of owners with utility type greater than δ draws a new utility type, which is less

than or equal to δ with probability F (δ). A similar logic can be used to understand the second

term, which is the outflow due to type-switching. The third term is the outflow due to trade. In

13



particular, a measure (λ/2)Φ1,t(δ) of investors who own the asset and have utility type less than

δ initiates contact with another investor, and with probability 1 − s − Φ0,t(δ) that investor is a

non-owner with utility type greater than δ, so that trade ensues. The same measure of trades occurs

when non-owners with utility type greater than δ initiate trade with owners with utility type less

than δ, so that the sum equals the third term in (16).5

Using (1), we can rewrite (16) as a first-order ordinary differential equation for the measure of

asset owners with utility type less than or equal to each δ:

Φ̇1,t(δ) = −λΦ1,t(δ)
2 − Φ1,t(δ) (γ + λ(1− s− Ft(δ))) + γsF (δ). (17)

Importantly, this Riccati equation for Φ1,t (δ) is independent from Φ1,t (δ′) for all δ′ 6= δ, and holds

without imposing any regularity conditions on the distribution of utility types Ft(δ)—it works

equally well for continuous distributions, discrete distributions, or mixture of the two; with or

without transient states.6 Proposition 4 below establishes that there exists a unique solution to this

equation and shows that it converges to a unique steady state.

Proposition 4 Given (δ,Φ1,0(δ)) ∈ [0, 1]2 × [0, s] there exists a unique solution Φ1,t(δ) to (17).

This solution is defined for all t ≥ 0 and converges to the steady state measure

Φ1(δ) = F (δ)− Φ0(δ) ≡ −1

2
(1− s+ γ/λ− F (δ)) +

1

2
Λ(δ), (18)

where

Λ(δ) ≡
√

(1− s+ γ/λ− F (δ))2 + 4s(γ/λ)F (δ).

In the proof of Proposition 4, in the Appendix, we derive the explicit solution for Φ1,t(δ) outside of

the steady state. To illustrate the convergence of the equilibrium distributions to the steady state,

we introduce a simple numerical example, which we will continue to use throughout the text. In

this example, the discount rate is r = 0.05; the asset supply is s = 0.5; the meeting rate is λ = 12,

so that a given investor meets others on average once a month; the arrival rate of preference shocks

is γ = 1, so that investors change type on average once a year; the initial distribution of utility
5Note that trading generates positive gross inflow into the set of owners with utility type less than δ, but zero net

inflow. Indeed, a gross inflow arises when a non-owner with utility type δ′ ≤ δ meets an owner with an even lower
type δ′′ < δ′. By trading, the previous owner of utility type δ′′ leaves the set, but the new owner of utility type δ′

enters the same set, resulting in zero net inflow.
6In contrast, differentiating with respect to δ reveals that the dynamic system for measures (instead of cumulative

measures) does exhibit inter-dependence across values of δ, i.e., the equation characterizing the density (or point mass)
at δ depends on the density at δ′ 6= δ, making closed-form solutions more difficult to attain in all but the simplest cases.
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FIGURE 1: Equilibrium distributions
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Notes. The left panel plots the cumulative distribution of types among non-owners (upper curves) and owners (lower
curves) at different points in time. The right panel plots these distributions in the steady state, for different levels of
search frictions, indexed by the average inter-contact time, 1/λ.

types among asset owners is Φ1,0(δ) = sF (δ);7 and the underlying distribution of utility types is

F0(δ) = F (δ) = δα with α = 1.5, so that Ft(δ) = F (δ) at all times and the (constant) marginal

type from the frictionless benchmark is given by δ? = 0.6299.

Using this parameterization, the left panel of Figure 1 plots the equilibrium distributions among

owners and non-owners at t = 0, after one month, after six months, and in the limiting steady

state. As time passes, one can see that the assets are gradually allocated toward investors with

higher valuations: the distribution of utility types among owners improves in the sense of first-

order stochastic dominance (FOSD). Similarly, the distribution of utility types among non-owners

deteriorates, in the FOSD sense, indicating that investors with low valuations are less and less

likely to hold the asset over time.

Focusing on the steady state distributions, (18) offers several natural comparative statics that

we summarize in the following corollary.

7Note that, since s = 0.5, the initial distributions of utility types among asset owners and non-owners are the same,
i.e., Φ1,0(δ) = sF (δ) = (1− s)F (δ) = Φ0,0(δ).
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Corollary 2 For any δ ∈ [0, 1], the steady state measure Φ1(δ) of asset owners with utility type

less than or equal to δ is increasing in γ and decreasing in λ.

Intuitively, as preference shocks become less frequent (i.e., γ decreases) or trading opportunities

become more frequent (i.e., λ increases), the asset is allocated to investors with higher valuations

more efficiently, implying a FOSD shift in the distribution of types among owners. In the limit,

where types are permanent (γ → 0) or trading opportunities are constantly available (λ → ∞),

the steady state distributions converge to their frictionless counterparts, as illustrated by the right

panel of Figure 1, and the allocation is efficient. We return to this frictionless limit in Section 4.

3.3 Equilibrium

Definition 1 An equilibrium is a reservation value function ∆Vt(δ) and a pair of distributions

Φ0,t(δ) and Φ1,t(δ) such that the distributions satisfy (1), (2) and (17), and the reservation value

function satisfies (7) subject to (8) given the distributions.

Given the analysis above, a full characterization of the unique equilibrium is immediate. Note

that uniqueness follows from the fact that we proved reservation values were strictly increasing

directly, given arbitrary time paths for the distributions Φ0,t(δ) and Φ1,t(δ), rather than guessing

and verifying that such an equilibrium exists.8

Theorem 1 There exists a unique equilibrium. Moreover, given any initial conditions satisfying

(1) and (2), this equilibrium converges to the steady state where reservation values are given by

r∆V (δ) = δ −
∫ δ

0

σ(δ′)(γF (δ′) + λθ0Φ1(δ′))dδ′ (19)

+

∫ 1

δ

σ(δ′)(γ(1− F (δ′)) + λθ1(1− s− Φ0(δ′)))dδ′

with the time-invariant local surplus

σ(δ) =
1

r + γ + λθ1 (1− s− Φ0(δ)) + λθ0Φ1(δ)
,

and the cumulative distributions of utility types among asset owners and non-owners are given by

(1) and (18).
8Also note that uniqueness does not depend on the assumption of Nash bargaining, but rather extends to any method

of price determination that achieves bilateral efficiency and preserves the monotonicity of reservation value functions.
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4 The Frictionless Limit

We now study the equilibrium as trading frictions vanish, i.e., as λ → ∞.9 This is an important

exercise for two reasons. First, this is the empirically relevant case in many financial markets,

where trading speeds are becoming faster and faster (e.g. Pagnotta and Philippon, 2018). Second,

this exercise reveals several new economic insights regarding the effects of heterogeneity in mar-

kets with search frictions. We highlight two specific results. First, we show that heterogeneity

creates a large volume of trade, relative to the frictionless benchmark, that becomes increasingly

concentrated among a small set of agents as the trading speed increases. Second, we show that

heterogeneity magnifies the impact of frictions on equilibrium outcomes, and that this impact is

more pronounced on price levels than on price dispersion and welfare. As a result, using observed

price dispersion to quantify the effect of search frictions on price discounts or premia can be

misleading, as price dispersion can essentially vanish while price levels are still far from their

frictionless counterpart.

4.1 Misallocation and Trading Volume

We focus on the asymptotic properties of the steady state equilibrium, in which the distribution of

utility types is F (δ), and drop all time subscripts accordingly. To start, we explore the equilibrium

asset allocation—and the process of reallocation—as trading frictions vanish. As a first step, we

establish that the allocation converges to its frictionless counterpart, Φ?
q(δ), q ∈ {0, 1}, as λ→∞.

Lemma 1 As search frictions vanish, limλ→∞Φq(δ) = Φ?
q(δ) for q ∈ {0, 1}.

Misallocation. While Lemma 1 is standard in models of this ilk, the nature of misallocation near

the frictionless limit reveals new insights when there is rich heterogeneity in the distribution of

valuations. To formalize the concept of misallocation, let

M(δ) =

∫ δ

0

1{δ′<δ?}dΦ1(δ′) +

∫ δ

0

1{δ′≥δ?}dΦ0(δ′),

where the utility type δ? defined by the equality F (δ?) = 1 − s is the marginal type of the

frictionless steady state equilibrium. This measure is the sum of two types of misallocation:

9As will become clear, convergence is governed by a composite parameter, λ/γ, which may be interpreted as the
ratio between the supply and the demand of transaction services. However, in many contexts, it is economically more
meaningful to vary the supply holding the demand fixed, or vice versa. Correspondingly, we choose to present our
results as the limiting case of λ→∞, holding γ fixed.
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the measure of investors with utility type less than δ who would own the asset in a frictionless

environment but do not own it in the presence of search frictions; and the measure of investors

with utility type less than δ who would not own the asset in a frictionless environment but own it

in the presence of search frictions.

To measure the extent of misallocation at a specific utility type, we study the ratio M(δ)
M(1)

, i.e.,

the CDF of misallocation across utility types. The following result establishes that misallocation

becomes concentrated around the marginal type as trading frictions vanish.

Lemma 2 For any ε > 0, limλ→∞
M(δ?+ε)−M(δ?−ε)

M(1)
= 1.

Intuitively, misallocation becomes highly concentrated around the marginal type because there is

an equilibrium feedback loop between the intensity with which agents with utility type δ trade

and the distribution of utility types among owners and non-owners. For example, since the selling

intensity λ(1 − s − Φ0(δ)) is decreasing in δ, an owner with a utility type δ′ ≈ 0 sells relatively

quickly. As a result, there is little misallocation among low utility types—i.e., most agents with

δ′ ≈ 0 are non-owners—which makes it easy to sell when an owner draws a low utility type. By

contrast, an owner with utility type δ′′ just below δ? sells much more slowly, since most agents with

δ > δ′′ already own the asset, thus reinforcing the fact that misallocation clusters in a neighborhood

around the marginal type δ?.

We emphasize that this property of misallocation arises in our decentralized market because

trading intensities differ across utility types. Indeed, when all investors trade with equal intensity—

as in frictionless models with centralized markets or in frictional models where all trades are

executed by a set of dealers who have access to centralized markets —the measure of misallocation

described above would be constant across utility types.

Trading Volume. Next, we show that the concentration of misallocation translates into a con-

centration of trading volume near the marginal type. To see this, let us first define trading volume

as the flow rate of trades per unit time:

ϑ = λ

∫
[0,1]2

1{δ0>δ1}dΦ0(δ0)dΦ1(δ1). (20)
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When the underlying distribution of utility types is continuous, we can use integration by parts to

re-write equation (20) as

ϑ = λΦ1(δ?)(1− s− Φ0(δ?)) (21)

+ λ

∫ δ?

0

dM(δ) (Φ0(δ?)− Φ0(δ)) + λ

∫ 1

δ?
dM(δ) (Φ1(δ)− Φ1(δ?)) .

The first term in (21) represents the volume generated by trades between owners with utility types

in [0, δ?] and non-owners with utility types in [δ?, 1]; these would be the only trades taking place

in the equilibrium of a model with frictionless exchange. With search frictions, however, there

are additional infra-marginal trades, captured by the second and third terms. In particular, the

second term accounts for infra-marginal trades between owners with utility types δ < δ? and non-

owners with utility types in [δ, δ?], while the third term accounts for infra-marginal trades between

non-owners with utility types δ > δ? and owners with utility types in [δ?, δ].

The formula highlights the role of misallocation in generating trading volume in excess of that

in the frictionless benchmark.10 It also suggests that near-marginal investors, who are character-

ized by greater misallocation, are likely to have a larger contribution to trading volume. This is

confirmed in the next proposition.

Proposition 5 Assume that the distribution of utility types is continuous. Then the steady state

trading volume is explicitly given by

ϑ ≡ γs(1− s)
[(

1 +
γ

λ

)
log

(
1 +

λ

γ

)
− 1

]
. (22)

In particular, the steady-state trading volume ϑ is strictly increasing in the meeting rate λ, with

limλ→∞ ϑ =∞ and

lim
λ→∞

λ

ϑ

(∫ δ?

δ?−ε
Φ1(δ)dΦ0(δ) +

∫ δ?+ε

δ?
(1− s− Φ0(δ))dΦ1(δ)

)
= 1

for any ε > 0.

Proposition 5 establishes two key results. First, when the underlying distribution of utility types is

continuous, the equilibrium trading volume is unbounded as λ→∞. By contrast, the equilibrium

10Note, however, that these additional trades are not an indication of inefficiency; the equilibrium with search
frictions is constrained efficient.
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trading volume is finite in the frictionless benchmark.11 One can also show that volume remains

bounded if the distribution of utility types is discrete, under the natural assumption that investors

who are indifferent do not trade. Therefore, as long as search frictions are sufficiently small, our

fully decentralized market can generate arbitrarily large excess volume relative to the frictionless

benchmark, and relative to a model in which heterogeneity is generated by a discrete distribution

of utility types.12

Second, trading volume is, for the most part, generated by investors near the marginal type

when the meeting rate is sufficiently large. To illustrate this phenomenon, Figure 2 plots the

contribution of each owner—non-owner pair to the equilibrium trading volume, defined as

κ(δ0, δ1) = 1{δ0>δ1}
dΦ0

dF
(δ0)

dΦ1

dF
(δ1).

The figure shows that investors with extreme utility types account for a small fraction of total trades

and, therefore, lie at the periphery of the trading network. For example, owners with low utility

types may trade quickly, but there are very few such owners in equilibrium. Hence, these owners

account for little trading volume. Likewise, there are many asset owners with high utility types,

but these investors trade very slowly, so they do not account for many trades in equilibrium. Only

in the cluster of investors with near-marginal utility types do we find a sufficiently large fraction of

individuals who are both holding the “wrong” portfolio and able to meet suitable trading partners

at a reasonably high rate—these are the investors that make up the core of the trading network.

4.2 Prices

We start with the intuitive, but important result that the reservation value of all investors converges

to the frictionless equilibrium price.

Proposition 6 As search frictions vanish, limλ→∞∆V (δ) = δ?/r ≡ p? for every δ ∈ [0, 1].

To understand this result, consider the market-valuation process of Proposition 3. Since the

equilibrium asset allocation becomes approximately efficient as λ→∞, it becomes very easy for

an investor with utility type δ < δ? (δ > δ? ) to sell (buy) an asset, but a lot more difficult to buy

11In a frictionless equilibrium, a measure s of agents holds the asset, each with type δ > δ?. They sell as soon as
they switch to a type δ < δ?, which occurs with intensity γ(1− F (δ?)) = γ(1− s) by the market-clearing condition.
Hence, the trading volume is equal to γs(1− s).

12Equation (47) also delivers several additional comparative statics. For example, it shows that trading volume peaks
when the asset supply equates the number of potential buyers and sellers—which is well-known from the monetary
search literature (Kiyotaki and Wright, 1993)—and that it increases when investors change type more frequently.
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FIGURE 2: Contribution to trading volume
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Notes. This figure plots the volume density as a function of the owner’s and non-owner’s type when meetings occur,
on average, once a week. The parameters we use in this figure are otherwise the same as in Figure 1.

(sell) one. In particular, we show in Appendix A.2 that the trading intensities of non-owners and

owners, respectively, satisfy

lim
λ→∞

λΦ1(δ) =
γsF (δ)

(F (δ?)− F (δ))+

 <∞ if δ < δ?

=∞ if δ ≥ δ?

and

lim
λ→∞

λ(1− s− Φ0(δ)) =
γ(1− s)(1− F (δ))

(F (δ)− F (δ?))+

 =∞ if δ ≤ δ?

<∞ if δ > δ?
.

Thus, it follows from Proposition 3 that, starting from below (above) the marginal type, the market-

valuation process moves up (down) very quickly as the meeting frequency increases. Taken

together, these observations imply that the market-valuation process δ̂t defined in Proposition 3

converges to the marginal type δ? as λ→∞, and it now follows from the sequential representation

(15) that all reservation values converge to the frictionless equilibrium price.
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Price level near the frictionless limit. To analyze the behavior of reservation values and prices

near the frictionless limit, we study the behavior of the market-valuation process near the marginal

type, which yields the following result.

Proposition 7 Assume that the distribution of utility types is twice continuously differentiable on

supp(F ) with a derivative that is bounded away from zero. Then,

∆V (δ) = p? +
π/r

F ′(δ?)

(
1

2
− θ0

)(
γs(1− s)
θ0θ1

) 1
2 1√

λ
+ o

(
1√
λ

)
, (23)

for all utility types δ ∈ [0, 1].

The first term in the expansion follows directly from Proposition 6, since all reservation values

converge to the frictionless price p? = δ?/r. The main result of the proposition is the second term

in the expansion, which determines the deviation of reservation values from the frictionless price.

To calculate this term, we center the market-valuation process around its frictionless limit and scale

it by its convergence rate,
√
λ. This delivers an auxiliary process x̂t =

√
λ(δ̂t − δ?) whose limit

distribution can be characterized explicitly, and the second term of the expansion is then obtained

by calculating the limit of

√
λ (∆V (δ)− p?) = E√λ(δ−δ?)

[∫ ∞
0

e−rtx̂tdt

]
.

We see from the proposition that the deviation from the frictionless price depends on three key

features of our decentralized market model. The first key feature is the time it takes near-marginal

investors on both sides of the market to find outside trading opportunities.13 Specifically, since

the asset is almost perfectly allocated in the limit, it takes a long search time—of the order 1/
√
λ,

instead of 1/λ—for near-marginal investors to find a counterparty that is willing to trade.14

The second key feature is the relative bargaining powers of buyers and sellers, which determine

whether the asset is traded at a discount or at a premium: if θ0 > 1/2, the asset is traded at a

discount relative to the frictionless equilibrium price in all bilateral meetings, and vice versa if

θ0 < 1/2. When buyers and sellers have equal bargaining powers, the correction term vanishes

13Interestingly, the slow convergence that we characterize in Proposition 7 is not present in the special case of two
types studied in DGP. The reason is that, with a continuous distribution of types, near-marginal investors on both sides
of the market experience long search times as λ → ∞. In contrast, in the two-type case studied in DGP, the search
times are asymmetric—bounded away from zero for buyers and of order 1/λ for sellers. Since the price deviation is
determined by the side of the market with shortest search time, convergence occurs in order 1/λ.

14We thank a referee for noting that these long search times are also responsible for the concentration of misalloca-
tion near the marginal type, δ?, and the large trading volume as λ→∞.
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and all reservation values are well approximated by the frictionless price, irrespective of the other

features of the market. The intuition is that, in this case, the bargaining positions of near-marginal

buyers and sellers cancel out since they have equal bargaining power and they find counterparties

willing to trade with approximately equal intensity
√
λ×

√
γs(1− s).

The third feature of the market that matters for reservation values is the heterogeneity among

investors near the marginal type, as measured by F ′(δ?). Formally, consider the following ordering

of distributions in terms of hetereogeneity: we say that a distribution G is more heterogeneous

than F if G is obtained from F by way of a single-crossing spread, i.e., if there is a δ0 such that

G(δ) ≥ F (δ) for δ < δ0, and G(δ) ≤ F (δ) for δ ≥ δ0. As Chateauneuf, Cohen, and Meilijson

(2004) argue, the distribution G is more heterogeneous than F in a very intuitive sense, since it is

obtained by shifting probability mass to the left in the interval [0, δ0], and to the right in the interval

[δ0, 1].15 If, in addition, F and G satisfy the conditions of Proposition 7, and G has the same

marginal investor as F , so that F (δ?) = G(δ?), then F ′(δ?) ≥ G′(δ?). Therefore, according to

this definition, an increase in heterogeneity that preserves the marginal type reduces the derivative

of the distribution at the marginal type, increases the leading term of the expansion (23), and thus

induces larger deviations from the frictionless equilibrium price.16

To further emphasize the role of heterogeneity, consider what happens when the continuous

distribution of utility types approximates a discrete distribution. In such a case, the cumulative

distribution function will approach a step function that is vertical at the marginal type, where

demand is perfectly elastic. As a result, the derivative F ′(δ?) will approach infinity, and it follows

from (23) that the corresponding deviation from the frictionless equilibrium price will be very

small. This informal argument can be made precise by working out the convergence rate of

reservation values with a discrete distribution of utility types (see Appendix A.2 for the explicit

expression of the correction term).

Proposition 8 When the distribution of utility types is discrete, the convergence rate of reservation

values to the frictionless equilibrium price is generically equal to 1/λ.

To understand the different convergence rates in Propositions 7 and 8, consider a sequence of

15If this operation is also mean-preserving, it makes the distribution more heterogeneous in the sense of second-
order stochastic dominance. Conversely, Chateauneuf et al. (2004) note that any increase in heterogeneity in the
second-order stochastic dominance sense can be obtained by successive mean-preserving single crossings.

16Interestingly, a direct calculation shows that the derivative is proportional to the elasticity of the Walrasian demand
at the frictionless price, p?

F (rp?)−1
d(1−F (rp))

dp

∣∣∣
p=p?

= δ?

s F
′(δ?), keeping in mind that 1− F (δ?) = s. Hence, holding

the marginal investor and the supply the same, if the Walrasian demand is less elastic, price effects in the decentralized
market will be larger. It is intuitive that a less elastic demand magnifies the bilateral monopoly effects at play in our
search-and-matching market.
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FIGURE 3: Continuous vs. discrete distribution
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Notes. This figure plots the price deviation relative to the frictionless equilibrium (left panel) and the price dispersion
(right panel) as functions of the meeting rate for the base case model of Figure 1 with bargaining power θ0 = 0.75,
and a model with a two-point distribution of types constructed to have the same mean and to induce the same marginal
investor as the continuous distribution of the base case model.

discrete distributions converging weakly to some continuous distribution. A simple argument

shows that the corresponding allocations and prices converge to their continuous counterparts,

but the asymptotic expansions of reservation values do not. Specifically, the proof of Proposition 8

reveals that, in the expansion with a discrete distribution, the coefficient multiplying 1/λ diverges

as the discrete distribution approaches its continuous limit. This means that convergence is slower

and slower. Proposition 7 makes this observation mathematically precise by showing that, in the

continuous limit, the convergence rate switches from 1/λ to 1/
√
λ.

To see that the difference in convergence rates is economically significant, let us compare the

price deviation p? −∆V (δ?) implied by the continuous distribution of our baseline example with

that implied by a two-point distribution, constructed to keep the marginal and average investors the

same. The left panel of Figure 3 shows that, when investors meet counterparties twice a day on

average (i.e., λ = 500), the deviation is 60 percent for the continuous distribution and only about

2 percent for the corresponding discrete distribution. When meetings occur 20 times per day on
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average (i.e., λ = 10, 000), the deviation is 15 percent for the continuous distribution, but it is now

indistinguishable from zero for the discrete distribution. Why is there such a quantitatively large

difference in price impact? According to our analysis, the difference is driven by a fundamental

economic difference between the two classes of distributions: the elasticity of asset demand is

infinite with a discrete distribution and finite with a continuous one.

Price dispersion near the frictionless limit. An important implication of Proposition 7 is that,

to a first-order approximation, there is no price dispersion. This can be seen by noting that the

correction term in (23) does not depend on the investor’s utility type. Hence, to obtain information

about the impact of frictions on price dispersion, it is necessary to work out higher order terms.

This is the content of our next result.

Proposition 9 Assume that the distribution of utility types is twice continuously differentiable with

a derivative that is bounded away from zero. Then

∆V (1)−∆V (0) =
1

2θ0θ1F ′(δ?)

log(λ)

λ
+O

(
1

λ

)
.

By contrast, with a discrete distribution of utility types, the convergence rate of the price dispersion

is generically equal to 1/λ.

Comparing the results of Propositions 7 and 9 shows that, with a continuous distribution of

utility types, the price dispersion induced by search frictions vanishes at rate log(λ)/λ, which is

much faster than the rate 1/
√
λ at which reservation values converge to the frictionless equilibrium

price. This finding has important consequences for empirical analysis of decentralized markets,

as it implies that inferring the impact of search frictions based on the observable level of price

dispersion can be misleading. In particular, search frictions can have a very small impact on price

dispersion and, yet, have a large impact on the equilibrium price level.

This finding is illustrated in Figure 3. Comparing the left and right panels, one sees that price

dispersion induced by search frictions converges to zero much faster than the price deviation. For

instance, when investors meet counterparties twice a day on average, the price discount implied by

our baseline model is about 60 percent, but the corresponding price dispersion is about 20 times

smaller. One can also see from the figure that, in accordance with the result of Proposition 9, price

dispersion is larger with a continuous distribution of utility types than with a discrete distribution.
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4.3 Welfare

In the analysis above, we established that the asymptotic behavior of two liquidity measures—the

deviation of price from its frictionless limit and the dispersion of prices—provides quantitatively

different signals about market liquidity. We now ask how these two measures are related to the

welfare cost of frictions, defined as

w(λ) ≡
∫ 1

δ?
δdΦ0(δ)−

∫ δ?

0

δdΦ1(δ).

In words, this cost is the difference between the collective flow utility of investors in the market

with and without frictions: the first term accounts for the forgone utility of those investors who

do not hold an asset in the frictional market when they should (according to the frictionless

benchmark), while the second term accounts for the extra utility attributed to those investors who

hold an asset in the frictional market when they should not.

Proposition 10 Assume that the distribution of utility types is twice continuously differentiable

with a derivative that is bounded away from zero. Then

w(λ) =
γs(1− s)
F ′(δ?)

log(λ)

λ
+O

(
1

λ

)
.

By contrast, with a discrete distribution of utility types, the convergence rate of the welfare cost to

zero is generically equal to 1/λ.

Proposition 10 establishes that search frictions have a larger welfare impact when the distribu-

tion of utility types is continuous than they do when the distribution is discrete—as was the case

for price levels and price dispersion. The proposition also reveals that, as trading gets faster, the

welfare cost of frictions is accurately measured by the observed amount of price dispersion, since

the two quantities converge to their frictionless counterparts at the same speed. At an intuitive

level, both price dispersion and welfare depend on the allocation of the asset among investors

with valuations away from the marginal type, which approaches the frictionless limit relatively

quickly. Trading volume and price levels, however, depend on the allocation of the asset among

infra-marginal investors, which approaches the frictionless limit more slowly.
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5 Conclusion

We analyze a search and bargaining model of an asset market in which investors’ valuations are

periodically drawn from an arbitrary distribution. The main contribution is methodological: we

develop a solution technique that allows for a full characterization of the equilibrium, in closed

form, both in and out of the steady state. The result is a framework that is much richer than the

popular workhorse model with only two valuations, yet equally tractable. As such, the model offers

a variety of novel implications and can be used to confront newer, transaction-level data emerging

from a variety of OTC markets.
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A Appendix

A.1 Proofs omitted in Section 3

We start by showing that (8) is equivalent to the seemingly stronger requirement of boundedness

and that any such solution to (7) must be strictly increasing in utility types.

Lemma A.1 Any solution to (7) that satisfies (8) is uniformly bounded on S ≡ R+ × [0, 1] and

strictly increasing in δ ∈ [0, 1] for any fixed t ≥ 0.

Proof. Integrating with respect to the conditional distribution of the stopping time τ shows that

the set of solutions to (7) is the set of fixed points of the operator defined by

Tt[f ](δ) =

∫ ∞
t

e−ρ(u−t)(δ + (γ + λ)fu(δ) +Ou[f ](δ))du. (24)

with

Ot[f ](δ) =

∫ 1

0

(ft(δ
′)− ft(δ))

(
γdF (δ′) +

1∑
q=0

1{(2q−1)(ft(δ′)−ft(δ))≥0}λθqdΦ1−q,t(δ
′)

)
.

Assume that ∆Vt(δ) = Tt[∆V ](δ) is a fixed point that satisfies (8). Since the right-hand side of

(24) is absolutely continuous in time, we have that the solution inherits this property, and it thus

follows from Lebesgue’s differentiation theorem that we have ∆̇Vt(δ) = r∆Vt(δ)−δ−Ot[∆V ](δ)

for every δ ∈ [0, 1] and almost every t ≥ 0. Integrating by parts then shows that

∆Vt(δ) = e−r(H−t)∆VH(δ) +

∫ H

t

e−r(u−t)(δ +Ou[∆V ](δ))du (25)

= lim
H→∞

∫ H

t

e−r(u−t)(δ +Ou[∆V ](δ))du (26)

for all (δ, t) ∈ S and any constant t ≤ H < ∞ where the second equality follows from (8). Now

assume toward a contradiction that the given solution fails to be non-decreasing in space so that

∆Vt(δ) > ∆Vt(δ
′) for some (t, δ) ∈ S and 1 ≥ δ′ > δ. Because the right-hand side of (24) is

absolutely continuous in time, this assumption implies that

H? ≡ inf {u ≥ t : ∆Vu(δ) ≤ ∆Vu(δ
′)} > t.
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By definition we have that

∆Vu(δ) ≥ ∆Vu(δ
′), t ≤ u ≤ H? (27)

and, because the continuous functions x 7→ (y− x)+ and x 7→ −(x− y)+ are both non-increasing

for every fixed y ∈ R, it follows that

Ou[∆V ](δ) ≤ Ou[∆V ](δ′), t ≤ u ≤ H?. (28)

To proceed further, we distinguish two cases depending on whether the constant H? is finite or not.

Assume first that it is finite. In this case it follows from (25) that we have

∆Vt(δ) =

∫ H?

t

e−r(u−t)(δ +Ou[∆V ](δ))du+ e−r(H
?−t)∆VH?(δ),

and combining this identity with (28) then gives

∆Vt(δ) =

∫ H?

t

e−r(u−t)(δ +Ou[∆V ](δ′))du+ e−r(H
?−t)∆VH?(δ′) < ∆Vt(δ

′), (29)

where the equality follows by continuity, and the second inequality follows from δ < δ′. Now

assume that H? =∞ so that (27) and (28) hold for all u ≥ t. In this case, (26) implies that

∆Vt(δ) ≤ lim
H→∞

∫ H

t

e−r(u−t)(δ +Ou[∆V ](δ′))du < ∆Vt(δ
′),

and combining this inequality with (29) delivers the required contradiction. To see that the solution

is strictly increasing, rewrite (24) as

Tt[f ](δ) =

∫ ∞
t

e−ρ(u−t) (δ +Mu[f ](δ)) du (30)

with the operator

Mu[f ](δ) = ληfu(δ) + γ

∫ 1

0

fu(δ
′)dF (δ′) + λθ0

∫ 1

0

min {fu(δ′), fu(δ)} dΦ1,u(δ
′)

+ λθ1

∫ 1

0

max {fu(δ′), fu(δ)} dΦ0,u(δ
′),

and the constants ρ ≡ r + γ + λ and η ≡ 1− sθ0 − (1− s)θ1. BecauseMu[f ](δ) is increasing in
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fu(δ) and the given solution is non-decreasing in δ we have that

∆Vt(δ
′)−∆Vt(δ) =

∫ ∞
t

e−ρ(u−t)(δ′ − δ +Mu[∆V ](δ′)−Mu[∆V ](δ)
)
du ≥ δ′ − δ

ρ

for any 0 ≤ δ ≤ δ′ ≤ 1 and strict monotonicity follows. To conclude the proof, it remains to

establish boundedness. Because the given solution is increasing we have

sup
t≥0
Ot[∆V ](1) ≤ 0 ≤ inf

t≥0
Ot[∆V ](0)

and it now follows from (26) that 0 ≤ ∆Vt(0) ≤ ∆Vt(δ) ≤ ∆Vt(1) ≤ 1/r on S. �

Proof of Proposition 1. By Lemma A.1, we have that the existence, uniqueness, and strict (pos-

itive) monotonicity of a solution to (7) such that (8) holds is equivalent to the existence and

uniqueness of a fixed point of the operator T in the space X of uniformly bounded, measurable

functions from S to R equipped with the sup norm. As is easily seen from (30) we have that T

maps X into itself. Moreover, using the definition of Mu[f ](δ), one easily sees that T satisfies

Blackwell’s sufficient conditions for a contraction (see Theorem 3.3 in Stokey and Lucas, 1989)

with modulus γ+λ
r+γ+λ

. The existence of a unique fixed point in X now follows from the contraction

mapping theorem because r > 0 by assumption.

To establish the second part, let Xk denote the subset of functions f ∈ X that are nonnegative

and non-decreasing in space with

0 ≤ ft(δ
′)− ft(δ) ≤

δ′ − δ
r + γ

≡ k(δ′ − δ) (31)

for all 0 ≤ δ ≤ δ′ ≤ 1 and t ≥ 0. Let further X ?
k denote the set of functions f ∈ Xk that are

strictly increasing in space and absolutely continuous with respect to time and space, and observe

that, because Xk is closed in X , it suffices to prove that T maps Xk into X ?
k .

Fix an arbitrary f ∈ Xk. Since f ≥ 0 it follows from (30) that Tt[f ](δ) ≥ 0. On the other

hand, using (31), the definition of η, the increase of ft(δ), and the fact that the non-decreasing

functions x 7→ min{a;x} and x 7→ max{a;x} are 1−Lipschitz continuous, we deduce that 0 ≤
Mt[f ](δ′′)−Mt[f ](δ) ≤ λk(δ′′ − δ) for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0. Combining this with (30)

and the definition of k then shows that

δ′′ − δ
ρ
≤ Tt[f ](δ′′)− Tt[f ](δ) ≤ (1 + λk)(δ′′ − δ)

ρ
= k(δ′′ − δ)
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for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0. These bounds imply that Tt[f ](δ) is strictly increasing in space

and lies in Xk so it now only remains to establish absolute continuity. By definition of Xk we have

that ft(δ) = ft(δ
′)+
∫ δ
δ′
φt(x)dx for all t ≥ 0, almost every δ, δ′ ∈ [0, 1]2, and some 0 ≤ φt(x) ≤ k.

Substituting this identity into (24) and changing the order of integration shows that

Tt[f ](δ) =

∫ ∞
t

e−ρ(u−t)
(
δ + (λ+ γ)fu(δ)−

∫ δ

0

φu(δ
′)(γF (δ′) + λθ0Φ1,u(δ

′))dδ′

+

∫ 1

δ

φu(δ
′)(γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ

′)))dδ′
)
du (32)

and absolute continuity now follows from Sremr (2010, Theorem 3.1). �

Lemma A.2 Given the reservation value function there exists a unique pair of functions V1,t(δ)

and V0,t(δ) that satisfy (4) and (6) subject to (8).

Proof. Assume that V1,t(δ) and V0,t(δ) satisfy (4) and (6) subject to (8). Integrating on both sides

of (4) and (6) with respect to the conditional distribution of τ shows that

Vq,t(δ) =

∫ ∞
t

e−ρ(u−t)
(
λVq,u(δ) + Cq,u(δ) + γ

∫ 1

0

Vq,u(δ
′)dF (δ′)

)
du (33)

with the uniformly bounded functions

Cq,t(δ) = qδ +

∫ 1

0

λθq ((2q − 1)(∆Vt(δ
′)−∆Vt(δ)))

+
dΦ1−q,t(δ

′). (34)

Because the right-hand side of (33) is absolutely continuous in time, we have that Vq,t(δ) inherits

this property, and it thus follows from Lebesgue’s differentiation theorem that

V̇q,t(δ) = rVq,t(δ)− Cq,t(δ)− γ
∫ 1

0

(Vq,t(δ
′)− Vq,t(δ))dF (δ′) (35)

for all δ ∈ [0, 1] and almost every t ≥ 0. Combining this differential equation with the assumed

transversality condition then implies that

Vq,t(δ) = e−r(H−t)Vq,H(δ) +

∫ H

t

e−r(u−t)(Cq,u(δ) + γ

∫ 1

0

(Vq,u(δ
′)− Vq,u(δ))dF (δ′))du

= lim
H→∞

∫ H

t

e−r(u−t)(Cq,u(δ) + γ

∫ 1

0

(Vq,u(δ
′)− Vq,u(δ))dF (δ′))du
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and, because Cq,t(δ) is increasing in space by Lemma A.4 below, the same arguments as in the

proof of Lemma A.1 show that Vq,t(δ) is increasing in space and uniformly bounded. Combining

these properties with (35) then shows that e−rtVq,t(δt)+
∫ t

0
e−ruCq,u(δu)du is a bounded martingale

in the filtration of the investor’s utility type process, and it follows that

Vq,t(δ) = Et,δ
[∫ ∞

t

e−r(u−t)Cq,u(δu)du
]
. (36)

This establishes uniqueness of the solutions and it now only remains to show that these solutions

are consistent with the reservation value function. Applying the law of iterated expectations in (36)

shows that V1,t(δ)− V0,t(δ) is a bounded fixed point of

Ut[f ](δ) =

∫ ∞
t

e−ρ(u−t)
(
λfu(δ) + C1,u(δ)− C0,u(δ) + γ

∫ 1

0

fu(δ
′)dF (δ′)

)
du.

A direct calculation shows that U is a contraction on X and, therefore, admits a unique fixed point

in X . Because the reservation value function is increasing we have

C1,t(δ)− C0,t(δ) + γ

∫ 1

0

∆Vt(δ
′)dF (δ′) = δ + γ∆Vt(δ) +Ot[∆V ](δ)

and it follows that this fixed point coincides with the reservation value function. �

Lemma A.3 For any fixed δ ∈ [0, 1], the unique solution to (11) that is both absolutely continuous

in time and uniformly bounded is explicitly given by

σt(δ) =

∫ ∞
t

e−
∫ u
t Rξ(δ)dξdu, (37)

with the effective discount rate Rt(δ) = r + γ + λθ1(1− s− Φ0,t(δ)) + λθ0Φ1,t(δ).

Proof. Fix an arbitrary δ ∈ [0, 1] and assume that σt(δ) is a uniformly bounded solution to (11)

that is absolutely continuous in time. Using integration by parts, we easily obtain that

σt(δ) = e−
∫ T
t Rξ(δ)dξσT (δ) +

∫ T

t

e−
∫ u
t Rξ(δ)dξdu, 0 ≤ t ≤ T <∞.

Since σ ∈ X and Rt(δ) > 0, we have that limT→∞ e
−

∫ T
t Rξ(δ)dξσT (δ) = 0 and, therefore,

σt(δ) = lim
T→∞

(
e−

∫ T
t Rξ(δ)dξσT (δ) +

∫ T

t

e−
∫ u
t Rξ(δ)dξdu

)
=

∫ ∞
t

e−
∫ s
t Ru(δ)duds
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by monotone convergence. �

Lemma A.4 The functions Cq,t(δ) are increasing in δ ∈ [0, 1].

Proof. For q = 0 the result follows from (34) and the fact that the reservation value function is

increasing in δ. Assume now that q = 1. Using the fact that the reservation value function is

increasing, and integrating by parts on the right of (34), gives

C1,t(δ) = δ +

∫ 1

δ

λθ1σt(δ
′)(1− s− Φ1,t(δ

′))dδ′,

and differentiating this expression shows that

C ′1,t(δ) = 1− λσt(δ)θ1(1− s− Φ1,t(δ)) ≥ 1− λθ1(1− s)
r + γ + λ(θ0s+ θ1(1− s))

> 0,

where the inequalities follow from (37), the definition of Rt(δ) and the fact that r > 0. �

Proof of Proposition 2. Let σt(δ) be as above and consider the absolutely continuous function

ft(δ) =

∫ ∞
t

e−r(u−t)
(
δ −

∫ δ

0

σu(δ
′) (γF (δ′) + λθ0Φ1,u(δ

′)) dδ′

+

∫ 1

δ

σu(δ
′) (γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ

′))) dδ′
)
du.

Using the boundedness of σt(δ), F (δ), and Φq,t(δ), we deduce that f ∈ X . On the other hand,

Lebesgue’s differentiation theorem implies that ft(θ) is almost everywhere differentiable in both

time and space with

ḟt(δ) = rft(δ)− δ +

∫ δ

0

σt(δ
′)(γF (δ′) + λθ0Φ1,t(δ

′))dδ′ (38)

−
∫ 1

δ

σt(δ
′)(γ(1− F (δ′)) + λθ1(1− s− Φ0,t(δ

′)))dδ′

for all δ ∈ [0, 1] and almost every t ≥ 0, and

f ′t(δ) =

∫ ∞
t

e−r(u−t) (1− σu(δ)(γ + λθ1(1− s− Φ0,u(δ)) + λθ0Φ1,u(δ))) du

=

∫ ∞
t

e−r(u−t) (rσu(δ)− σ̇u(δ)) du = σt(δ)
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for all t ≥ 0 and almost every δ ∈ [0, 1], where the second equality follows from (11) and the third

follows from integration by parts and the boundedness of σt(δ). Therefore,

ft(δ
′)− ft(δ) =

∫ δ′

δ

σt(δ
′′)dδ′′, (δ, δ′) ∈ [0, 1]2, (39)

and it follows that ft(δ) is strictly increasing in space. Using this monotonicity in conjunction with

(39) and integrating by parts on the right-hand side of (38) shows that ḟt(δ) = rft(δ)−δ−Ot[f ](δ)

for all δ ∈ [0, 1] and almost every t ≥ 0. Solving that equation shows

ft(δ) = e−ρ(H−t)fH(δ) +

∫ H

t

e−ρ(u−t) (δ + (γ + λ)fu(δ) +Ou[f ](δ)) du

for any t ≤ H <∞, and it now follows from the dominated convergence theorem and the uniform

boundedness of the function ft(δ) that

ft(δ) =

∫ ∞
t

e−ρ(u−t) (δ + (γ + λ)fu(δ) +Ou[f ](δ)) du.

Comparing this expression with (24), we conclude that ft(δ) = Tt[f ](δ) ∈ X , and the desired

result now follows from the uniqueness established in the proof of Proposition 1. �

Proof of Corollary 1. As shown in the proof of Proposition 1, we have that ∆Vt(δ) is the unique

fixed point of T : Xk → Xk defined by (30) and, by inspection, this mapping is increasing in ft(δ)

and decreasing in r. Furthermore, it follows from (32) that T is increasing in θ1 and decreasing in

θ0, F (δ) and Φq,t(δ), and the desired monotonicity now follows from Lemma A.5 below. �

Lemma A.5 Let C ⊆ X be closed and assume that A[·;α] : C → C is a contraction that is

increasing in f and increasing in α. Then its fixed point is increasing in α.

Proof. Denote by ft(δ;α) ∈ C the fixed point of A[·;α]. Combining the assumed monotonicity

with the fixed-point property shows that we have ft(δ;α) ≤ At[f(·;α); β](δ) for all (t, δ) ∈ S and

β ≥ α. Iterating this relation shows that ft(δ;α) ≤ Ant [f ; β](δ) for all n ≥ 1 and the result now

follows by letting n→∞ and using the fact that the mapping A[·; β] is a contraction. �

Proof of Proposition 3. Using (14) together with the notation of the statement shows that the

reservation value function is the unique bounded and absolutely continuous solution to

r∆Vt(δ) = ∆̇Vt(δ) + δ +At[∆V ](δ).

36



Therefore, it follows from Itô’s lemma that e−rt∆Vt(δ̂t) +
∫ t

0
e−ruδ̂udu is a local martingale and

this implies that we have

∆Vt(δ) = Et,δ
[
e−r(τn−t)∆Vτn(δ̂τn)

]
+ Et,δ

[∫ τn

0

e−r(u−t)δ̂udu

]
for a non-decreasing sequence of stopping times that converges to infinity. Since the reservation

value function is uniformly bounded, the first term on the right-hand side converges to zero as

n→∞, and the desired result now follows by monotone convergence. �

Proof of Proposition 4. Given an initial condition satisfying Φ0,0(δ) + Φ1,0(δ) = F0(δ) it follows

from textbook results (see e.g. Reid, 1972) that the Riccati equation (17) admits a unique solution

that can be expressed in terms of the confluent hypergeometric function of the first kindM1(a, b;x)

(see Abramowitz and Stegun (1964)) as

λΦ1,t(δ) = λ(Ft(m)− Φ0,t(δ)) =
Ẏ+,t(δ)− A(δ)Ẏ−,t(δ)

Y+,t(δ)− A(δ)Y−,t(δ)
(40)

with

Y±,t(δ) = e−λZ±(δ)tW±,t(δ)

Z±(δ) =
1

2
(1− s+ γ/λ− F (δ))± 1

2
Λ(δ) (41)

W±,t(δ) = M1

(
λ

γ
Z±(δ), 1± λ

γ
Λ(m); e−γt

λ

γ
(F (δ)− F0(δ))

)
and

A(δ) =
Ẏ+,0(δ)− λΦ1,0(δ)Y+,0(δ)

Ẏ−,0(δ)− λΦ1,0(δ)Y−,0(δ)
.

Straightforward algebra shows that (40) can be rewritten as

λΦ1,t(δ) =
λZ+(δ)W+,t(δ)− Ẇ−,t(δ) + eλΛ(δ)tA(δ)(Ẇ+,t(δ)− λZ−(δ)W−,t(δ))

eλΛ(δ)tA(δ)W−,t(δ)−W+,t(δ)
.

Well-known properties of M1(a, b;x) imply that limt→∞ Ẇ±,t(δ) = 1− limt→∞W±,t(δ) = 0 and

combining these limits with the above expression of the equilibrium distribution finally shows that

we have limt→∞Φ1,t(δ) = −Z−(δ) = Φ1(δ) where the last equality follows from (41). �
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Lemma A.6 The steady state cumulative distribution of types among owners Φ1(δ) is increasing

in the asset supply, and increasing and concave in φ = γ/λ with

lim
φ→0

Φ1(δ) = sF (δ) and lim
φ→∞

Φ1(δ) = (F (δ)− 1 + s)+.

In particular, the steady state cumulative distribution functions converge to their frictionless coun-

terparts as the meeting rate λ→∞.

Proof. Monotonicity in s follows by noting that ∂Φ1(δ)
∂s

= (Φ1(δ) + φF (δ))/Λ(δ). On the other

hand, using the definition of the steady-state distribution, it can be shown that

∂Φ1(δ)

∂φ
=
sF (δ)− Φ1(δ)

Λ(δ)
=

s(1− s)F (δ)(1− F (δ))

(φ+ Φ1(δ) + (1− s)(1− F (δ)))Λ(δ)
(42)

and the desired monotonicity follows by observing that all the terms on the right-hand side are

nonnegative. Knowing that Φ1(δ) is increasing in φ, we deduce that Λ(δ) = 2Φ1(δ) + 1− s+ φ−
F (δ) is also increasing in φ and it now follows from the first equality in (42) that

∂2Φ1(δ)

∂φ2
= − 1

Λ(δ)

∂Φ1(δ)

∂φ

(
1 +

∂Λ(δ)

∂φ

)
≤ 0.

The limiting values follow by sending φ to zero and∞ in the definition of Φ1(δ). �

Proof of Corollary 2. The result follows directly from Lemma A.6. �

Proof of Theorem 1. The result follows directly from the definition of an equilibrium, Proposition

1, and Proposition 4. We omit the details. �

A.2 Proofs omitted in Section 4

Proof of Lemma 1. The proof is contained in the proof of Lemma A.6. �

To simplify the notation, let φ ≡ γ/λ. The following lemma follows immediately from the

equation defining the steady state distribution of utility types among asset owners.

Lemma A.7 The steady state distributions of types satisfy Φ1(δ) = F (δ) − Φ0(δ) = `(F (δ))

where the bounded function

`(x) ≡ −1

2
(1− s+ φ− x) +

1

2

√
(1− s+ φ− x)2 + 4sφx
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is the unique positive solution to `2 + (1− s+ φ− x)`− sφx = 0. Moreover, the function `(x) is

strictly increasing and convex, and strictly so if s ∈ (0, 1).

Proof. It is obvious that `(x) is the unique positive solution of the second-order polynomial shown

above and the implicit function theorem implies that `(x) is strictly increasing. In particular we

have that `(x) > 0 for x > 0 so that the second-order polynomial must be strictly increasing in `

and strictly decreasing in x. Convexity follows by direct calculation of `′′(x). �

Convergence rates of the distributions. To derive the rates at which the equilibrium distributions

converge to their frictionless counterparts, recall the inflow-outflow equation that characterizes the

steady state equilibrium distributions:

γF (δ) (s− Φ1(δ)) = γΦ1(δ) (1− F (δ)) + λΦ1(δ) (1− s− Φ0(δ)) . (43)

By Proposition 6 we have that Φ1(δ) → 0 and Φ0(δ) → F (δ) < 1 − s for all δ < δ? as λ → ∞,

and it thus follows from (43) that for δ < δ? the distribution of utility types among asset owners

admits the approximation

Φ1(δ) =
γF (δ)s

1− s− F (δ)

(
1

λ

)
+ o

(
1

λ

)
. (44)

Similarly, by Proposition 6 we have that Φ1(δ) → F (δ) − 1 + s > 0 and Φ0(δ) → 1 − s for all

utility types δ > δ? as the meeting frequency becomes infinite, and it thus follows from (43) that

for δ > δ? the distribution of utility types among non-owners admits the approximation

1− s− Φ0(δ) =
γ(1− s)(1− F (δ))

F (δ)− (1− s)

(
1

λ

)
+ o

(
1

λ

)
. (45)

To derive the convergence rate at the point δ = δ? assume first that the distribution of utility types

crosses the level 1− s continuously and observe that in this case we have

1− s− Φ0(δ?) = 1− s− F (δ?) + Φ1(δ?) = Φ1(δ?).

Substituting these identities into (43) evaluated at the marginal type and letting λ → ∞ on both

sides shows that we have

Φ1(δ?) = 1− s− Φ0(δ?) =
√
γs(1− s)

(
1√
λ

)
+ o

(
1√
λ

)
. (46)

39



If the distribution of utility types crosses 1 − s by a jump, we have F (δ?) > 1 − s, and it follows

that the approximation (45) also holds at the marginal type. �

Proof of Lemma 2. The total measure of misallocated assets is

M(1) = Φ1(δ?) + Φ0(1)− Φ0(δ?) = Φ1(δ?) + (1− s)− F (δ?) + Φ1(δ?) = 2Φ1(δ?).

Therefore, for any ε > 0 sufficiently small,

M(δ? + ε)−M(δ? − ε)
M(1)

=
Φ1(δ?) + Φ0(δ? + ε)− Φ0(δ?)− Φ(δ? − ε)

2Φ1(δ?)

= 1− 1− s− Φ?
0(δ? + ε) + Φ1(δ? − ε)

2Φ1(δ?)
,

where we used that Φ0(δ) + Φ1(δ) = F (δ) and F (δ?) = 1− s for all δ. It then follows from (44),

(45), and (46) that the second term goes to zero as λ→∞. �

Trading volume. If a meeting between a buyer and a seller with the same type results in trade

with some probability π ∈ [0, 1] then we can express the steady state trading volume as

ϑ(π) = λ

∫
[0,1]2

1{δ0>δ1}dΦ0(δ0)dΦ1(δ1) + πλ
∑
δ∈[0,1]

∆Φ0(δ)∆Φ1(δ),

where ∆Φq(δ) = Φq(δ) − limy↑δ Φq(y) ≥ 0 denotes the discrete mass of investors who hold

q ∈ {0, 1} units of the asset and have a utility type exactly equal to δ.

Lemma A.8 If the distribution of utility types is continuous then

ϑ(π) = ϑc ≡ γs(1− s)
[
(1 + γ/λ) log

(
1 +

λ

γ

)
− 1

]
(47)

for all π ∈ [0, 1] and is strictly increasing in both the meeting rate λ and the arrival rate of

preference shocks γ. Otherwise, if the distribution of utility types has atoms, then the steady state

trading volume is strictly increasing in π ∈ [0, 1] with ϑ(0) < ϑc < ϑ(1).

Proof. Consider the continuous functions G1(x) = `(x)/s and G0(x) = (x − `(x))/(1 − s).

Rearranging the equation for `(x) in Lemma A.7 shows that

G1(x) =
φG0(x)

1 + φ−G0(x)
. (48)

40



Since the functions Gq(x) are continuous, strictly increasing, and map [0, 1] onto itself, they admit

continuous and strictly increasing inverses G−1
q (y) and it follows from (48) that

G1(G−1
0 (y)) =

φy

1 + φ− y
. (49)

Consider the class of tie-breaking rules whereby a fraction π ∈ [0, 1] of the meetings between

an owner and a non-owner of the same type lead to a trade. By definition, the trading volume

associated with such a tie-breaking rule can be computed as

ϑ(π) = λs(1− s) (P[δ0 > δ1] + πP[δ0 = δ1]) ,

where the random variables (δ0, δ1) ∈ [0, 1]2 are distributed according to Φ0(δ)/(1−s) = G0(F (δ))

and Φ1(δ)/s = G1(F (δ)) independently of each other. A direct calculation shows that the quantile

functions of these random variables are given by

inf{x ∈ [0, 1] : Gq(F (x)) ≥ u} = inf{x ∈ [0, 1] : F (x) ≥ G−1
q (u)} = ∆(G−1

q (u))

where ∆(y) denotes the quantile function of the underlying distribution of types, and it thus follows

from Embrechts and Hofert (2013, Proposition 2) below that

ϑ(π)

λs(1− s)
= P

[
∆(G−1

0 (u0)) > ∆(G−1
1 (u1))

]
+ πP

[
∆(G−1

0 (u0)) = ∆(G−1
1 (u1))

]
,

where u0 and u1 denote a pair of i.i.d. uniform random variables. If the distribution is continuous,

then its quantile function is strictly increasing, and the above identity simplifies to

ϑ(π)

λs(1− s)
= P

[
G−1

0 (u0) > G−1
1 (u1)

]
= P

[
u1 < G1(G−1

0 (u0))
]

= E
[
G1(G−1

0 (u0))
]

=

∫ 1

0

G1(G−1
0 (x))dx =

∫ 1

0

φx

1 + φ− x
dx =

ϑ?

λs(1− s)
,

where we used formula (49) for G1(G−1
0 (y)). If the distribution fails to be continuous, then its

quantile function will have flat spots that correspond to the levels across which the distribution

jumps, but it will remain weakly increasing. Therefore,

{
∆(G−1

0 (u0)) > ∆(G−1
1 (u1))

}
⊂
{
G−1

0 (u0) > G−1
1 (u1)

}
⊂
{

∆(G−1
0 (u0)) ≥ ∆(G−1

1 (u1))
}
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and it follows that

ϑ(0)

λs(1− s)
= P

[
∆(G−1

0 (u0)) > ∆(G−1
1 (u1))

]
≤ ϑ?

λs(1− s)

= P
[
G−1

0 (u0) ≥ G−1
1 (u1)

]
< P

[
∆(G−1

0 (u0)) ≥ ∆(G−1
1 (u1))

]
=

ϑ(1)

λs(1− s)
.

Since the function ϑ(π) is continuous and strictly increasing in π, this further implies that there

exists a unique tie-breaking probability π? such that ϑ? = ϑ(π?). �

Proof of Proposition 5. The first part follows directly from Lemma A.8. To establish the second

part let ε be as in the statement and assume that the distribution of utility types is continuous. In

this case the equilibrium trading volume can be decomposed as

ϑc = λΦ1(δ?)(1− s− Φ0(δ?)) + λ

∫ δ?−ε

0

Φ1(δ)dΦ0(δ) + λ

∫ 1

δ?+ε

(1− s− Φ0(δ))dΦ1(δ)

+ λ

∫ δ?

δ?−ε
Φ1(δ)dΦ0(δ) + λ

∫ δ?+ε

δ?
(1− s− Φ0(δ)) dΦ1(δ). (50)

We show that all the terms on the first line remain bounded as λ→∞. Since F (δ?) = 1− s when

the distribution of type is continuous we have that the first term is equal to

λΦ1(δ?) (1− s− F (δ?) + Φ1(δ?)) = λΦ1(δ?)2

and we know from Lemma A.7 that the measure Φ1(δ?) of owners below the marginal type solves

λΦ1(δ?)2 + γΦ1(δ?) − γs(1 − s) = 0. This immediately implies that λΦ1(δ?)2 ≤ γs(1 − s) and

it follows that the first term on the first line of (50) remains bounded as λ → ∞. Turning to the

second term, we note that

λ

∫ δ?−ε

0

Φ1(δ)dΦ0(δ) ≤ λΦ1(δ? − ε)F (δ? − ε), (51)

where the inequality follows (1) and the increases of Φ1(δ). From Lemma A.7, we have that the

steady state measure of owners with valuations below δ? − ε solves

λΦ1(δ? − ε)2 +
(

1− s− F (δ? − ε) +
γ

λ

)
λΦ1(δ? − ε)− γsF (δ? − ε) = 0.
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This immediately implies that

λΦ1(δ? − ε) ≤ γsF (δ? − ε)
1− s− F (δ? − ε)

and combining this inequality with (51) shows that the second term on the first line of (50) remains

bounded as λ→∞. Proceeding similarly, one can show that the third term also remains bounded

as frictions vanish, and the result now follows by observing that limλ→∞ ϑc =∞. �

Proof of Proposition 6. By Theorem 1, we have that

r∆V (δ) = δ −
∫ δ

0

k0(δ′)dδ′ +

∫ 1

δ

k1(δ′)dδ′

with the uniformly bounded functions defined by

k0(δ′) =
γF (δ′) + λθ0Φ1(δ′)

r + γ + λθ1(1− s− Φ0(δ′)) + λθ0Φ1(δ′)

k1(δ′) =
γ(1− F (δ′)) + λθ1(1− s− Φ0(δ′))

r + γ + λθ1(1− s− Φ0(δ′)) + λθ0Φ1(δ′)
.

Using Lemma 1 and the assumption that θq > 0, we obtain

lim
λ→∞

kq(δ
′) =

θqΦ
?
1−q(δ

′)

θ0Φ?
1(δ′) + θ1Φ?

0(δ′)
= 1{q=0}1{δ≥δ?} + 1{q=1}1{δ<δ?},

and the required result now follows from an application of the dominated convergence theorem

because the functions kq(δ′) take values in [0, 1]. �

Proof of Proposition 7. Assume without loss of generality that supp(F ) = [0, 1]. Evaluating (19)

at δ? and making the change of variable x =
√
λ(δ′ − δ?) in the two integrals shows that

r
√
λ (∆V (δ?)− p?) = P (λ)−D(λ), (52)

where the functions on the right-hand side are defined by

D(λ) ≡
∫ 0

−∞
1{x≥−δ?

√
λ}

γF (δ? + x/
√
λ) + θ0

√
λg1(x)

r + γ + θ0

√
λg1(x) + θ1

√
λg0(x)

dx

P (λ) ≡
∫ ∞

0

1{x≤(1−δ?)
√
λ}
γ(1− F (δ? + x/

√
λ)) + θ1

√
λg0(x)

r + γ + θ0

√
λg1(x) + θ1

√
λg0(x)

dx
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with the functions

gq(x) ≡
√
λ(1− q)(1− s− F (δ? + x/

√
λ)) +

√
λΦ1(δ? + x/

√
λ).

Letting the meeting rate λ → ∞ on both sides of equation (52) and using the convergence result

established by Lemma A.11 below we obtain that

lim
λ→∞

r
√
λ(∆V (δ?)− p?) =

∫ ∞
0

θ1g(−x)dx

θ0g(x) + θ1g(−x)
−
∫ 0

−∞

θ0g(z)dz

θ0g(z) + θ1g(−z)

=

∫ ∞
0

(1− 2θ0)g(x)g(−x)dx

(θ0g(x) + θ1g(−x))(θ0g(−x) + θ1g(x))
dx

=

∫ ∞
0

γs(1− s)(1− 2θ0)dx

γs(1− s) + θ0θ1(xF ′(δ?))2
=

π

F ′(δ?)

(
1

2
− θ0

)(
γs(1− s)
θ0θ1

) 1
2

,

where the function

g(x) =
1

2
xF ′(δ?) +

1

2

√
(xF ′(δ?))2 + 4γs(1− s)

is the unique positive solution to (53), the second equality follows by making the change of variable

−z = x in the second integral, the third equality follows from the definition g(x), and the last

equality follows from the fact that∫ ∞
0

dx

a+ x2
=

arctan (x/
√
a)√

a

∣∣∣∣∞
0

=
π

2
√
a
, a > 0.

This shows that the asymptotic expansion holds at the marginal type and the desired result now

follows from the fact that ∆V (δ) = ∆V (δ?) + o(1/
√
λ) by Proposition 9. �

Lemma A.9 Assume that the conditions of Proposition 7 hold and denote by g(x) the positive

solution to the quadratic equation

g2 − gF ′(δ?)x− γs(1− s) = 0. (53)

Then we have that g1(x)→ g(x) and g0(x)→ g(−x) for all x ∈ R as λ→∞.

Proof. Evaluating (17) at the steady state shows that the function g1(x) is the unique positive
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solution to the quadratic equation given by

g2 +

[
γ√
λ

+
√
λ

(
F (δ?)− F

(
δ? +

x√
λ

))]
g − γsF

(
δ? +

x√
λ

)
= 0. (54)

Because the left-hand side of this quadratic equation is negative at the origin and positive at g = 1

we have that g1(x) is the unique positive root of the polynomial. Notice that the coefficients have

well-defined limits as λ→∞:

lim
λ→∞

√
λ

(
F (δ?)− F (δ? +

x√
λ

)

)
= −F ′(δ?)x

lim
λ→∞
−γsF

(
δ +

x√
λ

)
= −γs(1− s).

Since the positive root of the quadratic equation (54) can be written as a continuous function of

the coefficient, it follows that g1(x) has a well-defined limit as λ → ∞, and that the limit is the

positive root of (53). Next, we note that

g0(x) = g1(x) +
√
λ
(
F (δ?)− F (δ? + x/

√
λ)
)
.

Substituting this expression into (54) then shows that the function g0(x) is the unique positive

solution to the quadratic equation given by

g2 +

[
γ√
λ
−
√
λ
(
F (δ?)− F (δ? + x/

√
λ)
)]

g − γ(1− s)
(

1− F (δ? + x/
√
λ)
)
,

and the desired result follows from the same arguments as above. �

Lemma A.10 Assume that the conditions of Proposition 7 hold. Then

(a) There exists a finite K ≥ 0 such that

g1(x) ≤ K/|x|, x ∈ Iλ− ≡ [−δ?
√
λ, 0], (55)

g0(x) ≤ K/|x|, x ∈ Iλ+ ≡ [0, (1− δ?)
√
λ].

(b) For any given x̄ ∈ Iλ+ ∩ (−Iλ−), there exists a strictly positive k such that

g1(x) ≥ k|x|, x ∈ Iλ+ ∩ [x̄,∞), (56)

g0(x) ≥ k|x|, x ∈ Iλ− ∩ (−∞,−x̄]
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for all sufficiently large λ.

Proof of a). Because g1(x) is the positive root of (54) we have that (55) holds if and only if

min
x∈Iλ−

{
K2

x2
+
K

|x|

(
γ√
λ

+
√
λ

[
F (δ?)− F

(
δ? +

x√
λ

)])
− γsF

(
δ? +

x√
λ

)}
≥ 0,

and a sufficient condition for this to be the case is that

min
x∈Iλ−

{
K

|x|
√
λ

[
F (δ?)− F

(
δ? +

x√
λ

)]
− γs(1− s)

}
≥ 0. (57)

By the mean value theorem, we have that for any x ∈ Iλ− ∪ Iλ+ there exists δ̂(x) ∈ [0, 1] such that

F (δ?)− F
(
δ? +

x√
λ

)
= −xF

′(δ̂(x))√
λ

, (58)

and substituting this expression into (57) shows that a sufficient condition for the validity of equa-

tion (55) is that we have K ≥ K? ≡ maxδ∈[0,1]
γs(1−s)
F ′(δ)

. Because the derivative of the distribution

of utility types is assumed to be bounded away from zero on the whole interval [0, 1], we have that

K? is finite and equation (55) follows. One obtains the same constant when applying the same

calculations to the function g0(x) over the interval Iλ+. �

Proof of b). Fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ−). Because g1(x) is the positive root of (54) we have

that (56) holds if and only if

max
x∈Iλ+∩[x̄,∞)

{
k2x2 + kx

(
γ√
λ

+
√
λ

[
F (δ?)− F

(
δ? +

x√
λ

)])
− γsF

(
δ? +

x√
λ

)}
≤ 0.

Combining this inequality with (58) then shows that a sufficient condition for (56) is that k ≤ k? ≡
infδ∈[0,1]

(
F ′(δ)− γ

x̄
√
λ

)
and the desired result now follows by noting that, because the derivative

of the distribution of types is strictly positive on [0, 1], we can pick the meeting rate λ large enough

for the constant k? to be strictly positive. One obtains the same constant when applying the same

calculations to the function g0(x) over the interval Iλ− ∩ (−∞,−x̄]. �

Lemma A.11 Assume that the conditions of Proposition 7 hold. Then

lim
λ→∞

D(λ) =

∫ 0

−∞

θ0g(x) dx

θ0g(x) + θ1g(−x)
and lim

λ→∞
P (λ) =

∫ ∞
0

θ1g(−x) dx

θ0g(x) + θ1g(−x)
,

where the function g(x) is defined as in Lemma A.9.
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Proof. By Lemma A.9 we have that the integrand H(x;λ) in the definition of D(λ) satisfies

lim
λ→∞

H(x;λ) =
θ0g(x)

θ0g(x) + θ1g(−x)
. (59)

Now fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ−) and let the meeting rate λ be large enough. On the interval

[−x̄, 0], we can bound the integrand above by 1 and below by zero, while on the interval Iλ−\[−x̄, 0]

we can use the bounds provided by Lemma A.10 to show that

0 ≤ H(x;λ) ≤ γ|x|+ θ0

√
λK√

λ(θ0K + θ1k|x|2)
≤ γδ? + θ0K

θ0K + θ1k|x|2
,

where the inequality follows from the definition of Iλ−. Combining these bounds shows that the

integrand is bounded by a function that is integrable on R− and does not depend on λ. This allows

us to apply the dominated convergence theorem, and the result for D(λ) now follows from (59).

The result for the other integral follows from identical calculations. We omit the details. �

Proof of Proposition 8. Assume that there are I ≥ 2 utility types δ1 < δ2 < . . . < δI , identify

the marginal type with index m ∈ {1, . . . , I} so that 1 − F (δm) ≤ s < 1 − F (δm−1), and set

δ0 ≡ 0 and δI+1 ≡ 1. Assume further that 1 − F (δm) < s, which occurs generically when the

distribution of utility types is restricted to be discrete. Under these assumptions, the same algebraic

manipulations that we used to establish (44) and (45) show that we have

Φ1(δ) = Φ1(δi) =

 1
λ

γsF (δi)
1−s−F (δi)

+ o
(

1
λ

)
if i < m

F (δi)− (1− s) + 1
λ
γ(1−F (δi))(1−s)
F (δi)−(1−s) + o

(
1
λ

)
if i ≥ m,

(60)

for all δ ∈ [δi, δi+1) and i ∈ {1, . . . , I}. Likewise, we have that the local surplus satisfies

σ(δ) = σ(δi) =

 1
λθ1(1−s−F (δi))

+ o
(

1
λ

)
if i < m

1
λθ0(F (δi)−(1−s)) + o

(
1
λ

)
if i ≥ m

for all δ ∈ [δi, δi+1) and i ∈ {1, . . . , I}, and it follows that

∆V (δm)−∆V (δi) =
m−1∑
j=i

(δj+1 − δj)σ(δj) =
1

λ

m−1∑
j=i

δj+1 − δj
θ1 (1− s− F (δj))

+ o

(
1

λ

)
, i > m

∆V (δi)−∆V (δm) =
i−1∑
j=m

(δj+1 − δj)σ(δj) =
1

λ

i−1∑
j=m

δj+1 − δj
θ0 (F (δj)− (1− s))

+ o

(
1

λ

)
, i < m
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This calculation shows that, with a discrete distribution of utility types, price dispersion converges

to zero in order 1/λ. To complete the proof we calculate the steady state reservation value ∆V (δm)

of the marginal investor using formula (13). This gives

r∆V (δm) = δm +
I∑

i=m

(δi+1 − δi)
γ (1− F (δi)) + λθ1 (1− s− Φ0(δi))

r + γ + λθ0Φ1(δi) + λθ1 (1− s− Φ0(δi))

−
m−1∑
i=0

(δi+1 − δi)
γF (δi) + λθ0Φ1(δi)

r + γ + λθ0Φ1(δi) + λθ1 (1− s− Φ0(δi))

= δm +
1

λ

I∑
i=m

(δi+1 − δi)
γ (1− F (δi)) (F (δi)− (1− s)(1− θ1))

(F (δi)− (1− s))2

− 1

λ

m−1∑
i=0

(δi+1 − δi)
γF (δi) (1− F (δi)− s(1− θ0))

(F (δi)− (1− s))2 + o

(
1

λ

)

where the second equality follows from (1) and (60). �

Proof of Proposition 9. The result follows from Lemmas A.12 and A.13 below. To simplify the

presentation we assume without loss of generality that supp(F ) = [0, 1] in the statement and proofs

of these three lemmas. �

Lemma A.12 Under the conditions of Proposition 9 we have that

A(λ) ≡ λ

∫ δ?

0

σ(δ) dδ −
∫ δ?

0

dδ
r+γ
λ

+ θ1F ′(δ?)(δ? − δ) + Φ1(δ)
= O(1) (61)

B(λ) ≡ λ

∫ 1

δ?
σ(δ) dδ −

∫ 1

δ?

dδ
r+γ
λ

+ θ0F ′(δ?)(δ? − δ) + 1− s− Φ0(δ)
= O(1) (62)

as the meeting rate λ→∞.

Proof. To establish (61) we start by noting that

λσ(δ) =
1

r+γ
λ

+ θ1 (F (δ?)− F (δ)) + Φ1(δ)
, (63)

where we used the facts that Φ0(δ) = F (δ) − Φ1(δ), and F (δ?) = 1 − s due to the assumed

continuity of the distribution. Substituting this identity into (61), we obtain:

|A(λ)| ≤
∫ δ?

0

|F ′(δ?)(δ? − δ)− (F (δ?)− F (δ))|
θ1F ′(δ?) (δ? − δ) (F (δ?)− F (δ))

dδ.

48



Under our assumption that the distribution of utility types is twice continuously differentiable, we

can use Taylor’s theorem to extend the integrand by continuity at δ?, with value

lim
δ→δ?

|F ′(δ?)(δ? − δ)− (F (δ?)− F (δ))|
θ1F ′(δ?) (δ? − δ) (F (δ?)− F (δ))

=
|F ′′(δ?)|

2θ1(F ′(δ?))2
.

Since the derivative is bounded away from zero this shows that the integrand is bounded and (61)

follows. Turning to (62) we start by observing that due to (1) and the continuity of the distribution

we have Φ1(δ) = F (δ)− F (δ?) + 1− s− Φ0(δ). Substituting into (63) shows that

λσ(δ) =
1

r+γ
λ

+ θ0 (F (δ)− F (δ?)) + 1− s− Φ0(δ)
,

and the desired result now follows from the same argument as above. �

Lemma A.13 Under the conditions of Proposition 9 we have that

A0(λ) ≡
∫ δ?

0

dδ
r+γ
λ

+ θ1F ′(δ?)(δ? − δ) + Φ1(δ)
=

log(λ)

2θ1F ′(δ?)
+O(1) (64)

B0(λ) ≡
∫ 1

δ?

dδ
r+γ
λ

+ θ0F ′(δ?)(δ − δ?) + 1− s− Φ0(δ)
=

log(λ)

2θ0F ′(δ?)
+O(1)

as the meeting rate λ→∞.

Proof. To establish a lower bound we start by noting that Φ1(δ) ≤ Φ1(δ?) for all δ ≤ δ?.

Substituting this into (64) and integrating we find that

A0(λ) ≥
∫ δ?

0

dδ
r+γ
λ

+ θ1F ′(δ?)(δ? − δ) + Φ1(δ?)

=
−1

θ1F ′(δ?)
log

(
r + γ

λ
+ θ1F

′(δ?) (δ? − δ) + Φ1(δ?)

)∣∣∣∣δ?
0

=
−1

θ1F ′(δ?)
log

(√
(γ/λ)s(1− s) + o

(
1√
λ

))
+O(1) =

log(λ)

2θ1F ′(δ?)
+O(1),

where the second equality follows from the asymptotic expansion of Φ1(δ?) given in equation (46)

above. To establish the reverse inequality let us break down the integral into an integral over the

interval [0, δ?−1/
√
λ], and an integral over the interval [δ?−1/

√
λ, δ?]. A direct calculation shows
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that the first integral can be bounded above by:

∫ δ?−1/
√
λ

0

dδ

θ1F ′(δ?)(δ? − δ)
=

1

θ1F ′(δ?)
log
(
δ?
√
λ
)

=
log(λ)

2θ1F ′(δ?)
+O(1).

On the other hand, noting that infδ∈[δ?−1/
√
λ,δ?] Φ1(δ) ≥ g1(−1)√

λ
and integrating we find that the

second integral can be bounded from above by∫ δ?

δ?−1/
√
λ

dδ

θ1F ′(δ?)(δ? − δ) + g1(−1)/
√
λ

=
1

θ1F ′(δ?)
log

(
1 +

θ1F
′(δ?)

g1(−1)

)
= O(1),

where the last equality follows Lemma A.9. The proof of the asymptotic expansion for the second

integral is similar. We omit the details. �

Proof of Proposition 10. Integrating by parts shows that

w(λ) =

∫ δ?

0

Φ1(δ)dδ +

∫ 1

δ?
(1− s− Φ0(δ))dδ.

The quadratic equation for the equilibrium distribution and the assumed continuity of the distri-

bution of utility types jointly imply that λΦ1(δ) = γsF (δ)/(γ/λ + Φ1(δ) + F (δ?) − F (δ)) and

combining this identity with arguments similar to those of the proof of Lemma A.12 shows that

the first integral in the definition of the welfare cost satisfies∣∣∣∣∫ δ?

0

(
λΦ1(δ)− γsF (δ?)

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)

)
dδ

∣∣∣∣ = O(1). (65)

On the other hand, the same arguments as in the proof of Lemma A.13 imply that∫ δ?

δ?−1/
√
λ

γsF (δ?)dδ

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)
≤ γsF (δ?)

F ′(δ?)
log

(
1 +

F ′(δ?)

g1(−1)

)
= O(1)

and combining this inequality with (65) gives

∫ δ?

0

λΦ1(δ)dδ =

∫ δ?−1/
√
λ

0

γsF (δ?)

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)
dδ +O(1).

To obtain a lower bound for the integral, we can bound Φ1(δ) above by Φ1(δ? − 1/
√
λ), and to

obtain an upper bound, we can bound Φ1(δ) below by zero. In both cases, we can compute the
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resulting integral explicitly and we find that the bounds can both be written as

γsF (δ?)

2F ′(δ?)
log(λ) +O(1) =

γs(1− s)
2F ′(δ?)

log(λ) +O(1).

Going through the same steps shows that the second integral satisfies∫ 1

δ?
λ (1− s− Φ0(δ)) dδ =

γs(1− s)
2F ′(δ?)

log(λ) +O(1)

and the desired result now follows by adding the two asymptotic expansions. To complete the

proof assume that the distribution of utility types is discrete. Using the same notation as in the

proof of Proposition 8 we find that

w(λ) =
m−1∑
i=0

(δi+1 − δi)Φ1(δi) +
I∑

i=m

(δi+1 − δi)(1− s− F (δi) + Φ1(δi))

and the conclusion follows from the expansion of Φ1(δi) in (60). �
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