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Abstract 

Buzard et al. (2017) show that American R&D labs are highly spatially concentrated even within 

a given metropolitan area. We argue that the geography of their clusters is better suited for 

studying knowledge spillovers than are states, metropolitan areas, or other political or 

administrative boundaries that have predominantly been used in previous studies. In this paper, 

we assign patents and citations to these newly defined clusters of R&D labs. Our tests show that 

the localization of knowledge spillovers, as measured via patent citations, is strongest at small 

spatial scales and diminishes with distance. On average, patents within a cluster are about two to 

four times more likely to cite an inventor in the same cluster than one in a control group. Of 

import, we find that the degree of localization of knowledge spillovers will be understated in 

samples based on metropolitan area definitions compared to samples based on the R&D clusters. 

At the same time, the strength of knowledge spillovers varies widely between clusters. The 

results are robust to the specification of patent technological categories, the method of citation 

matching, and alternate cluster definitions. 

Keywords: spatial clustering, geographic concentration, R&D labs, localized knowledge spillovers, 
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1. INTRODUCTION 

Since the seminal work of Jaffe, Trajtenberg, and Henderson (1993), hereafter JTH, patent 

citations are a commonly used indicator of knowledge spillovers among inventors. The primary 

activity at R&D establishments is knowledge based, making concentrations of R&D labs 

indicative of places in which localized knowledge spillovers would occur. A recent study by 

Buzard et al. (2017), hereafter BCHCS, shows that R&D labs are, indeed, highly spatially 

concentrated even within a given metropolitan area. BCHCS introduce the multiscale core 

cluster procedure in which the boundaries of the core clusters are determined by 

interrelationships among the sample of R&D labs in two major U.S. R&D regions: the 

northeastern corridor and California. These clusters should therefore reflect the boundaries in 

which knowledge spillovers are most likely to be at work more accurately than administrative 

boundaries. In that sense, the geography of their clusters is better suited for studying knowledge 

spillovers than are states, metropolitan areas, or other political or administrative boundaries that 

have been predominantly used in previous studies. In this paper, we extend BCHCS by assigning 

patents and citations to the R&D clusters they identify and test for evidence of localized 

knowledge spillovers in patent citations.1 

We provide evidence that the clustering of R&D labs is related to knowledge spillovers by 

studying the relative geographic concentration of citations to patents originating in the BCHCS 

clusters.2 To do this, we construct treatment versus control tests for the localization of patent 

citations in the spirit of those found in JTH. For labs in the northeastern corridor, our baseline 

results indicate that citations are on average about two to four times more likely to come from 

the same cluster as earlier patents than one would predict using a (control) sample of otherwise 

similar patents. For California, the baseline results suggest that citations are on average twice as 

                                                 
1
 Rather than using fixed geographic units, such as counties or metropolitan areas, BCHCS use continuous measures 

to identify the spatial structure of the concentrations of R&D labs. Specifically, they use point pattern methods to 

analyze locational patterns over a range of selected spatial scales (within 5 miles, 10 miles, 20 miles, etc.). This 

approach allows them to consider the spatial extent of the agglomeration of R&D labs and to measure any 

attenuation of clustering with distance more accurately. 

2
 Earlier research — e.g., Jaffe, Trajtenberg, and Henderson (1993), Thompson and Fox-Kean (2005), Kerr and 

Kominers (2015), and Murata et al. (2014) — documents patterns of spatial concentration (often described as 

localization) in patent citations. Murata et al. (2014) also question whether administrative units are appropriate 

geographical boundaries for testing for knowledge spillovers. 



3 

likely to come from the same cluster as earlier patents than one would predict using the control 

sample. 

It is important to compare the matching rate for BCHCS core clusters with a matching rate closer 

to that used by JTH, given our view that the BCHCS clusters more accurately reflect the 

boundaries in which knowledge spillovers are most likely at work than administrative 

boundaries. To facilitate such a comparison, we apply the data on patents and citations in our 

sample using the broader metropolitan area definitions instead of the core cluster definitions. In 

every case, the locational differentials are smaller when the metro area definitions are used 

compared to the corresponding core clusters. These findings suggest that the degree of 

localization of knowledge will be understated in samples based on metropolitan area definitions 

compared to samples based on the R&D clusters. 

We can also speak to the question of whether the transmission of knowledge attenuates with 

distance. We add to the mounting evidence from studies using alternative data that knowledge 

spillovers begin to attenuate at distances ranging from just a few blocks to a few miles:3 The 

localization of knowledge spillovers in our data appears strongest at small spatial scales (5 miles 

or less) and diminishes with distance. This attenuation reinforces our view that the magnitude of 

the localized knowledge spillovers documented by studies that use state and metropolitan area 

data may be understated, and the exact geography that is driving the spillovers may not be well 

identified.  

We also perform a number of robustness tests. In obtaining the baseline results, we use all 

citations to a given patent. One concern is that this approach fails to distinguish between 

inventor-added citations and citations added by examiners. Inventor citations represent an 

acknowledgement of knowledge spillovers, while examiner-added citations likely reflect a 

patent’s value. Using the total citations a patent receives may understate the degree of 

localization of knowledge spillovers. In our sample, examiner-added citations account for on 

average around 9 percent of all citations, suggesting that any downward bias is likely to be small. 

                                                 
3 See, for example, Kerr and Kominers (2015), Elvery and Sveikauskas (2010), Arzaghi and Henderson (2008), 

Agrawal et al. (2008), Keller (2002), Rosenthal and Strange (2001), Adams and Jaffe (1996), and Audretsch and 

Feldman (1996). 
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In fact, we find essentially no downward bias when we redo our matching rate tests using only 

inventor-added citations. 

We also perform a robustness check using alternative boundaries. Our test for knowledge 

spillovers is whether the citation matching frequency is significantly greater than the control 

matching frequency. Put differently, our test is whether citations are more localized relative to 

what would be expected given the existing distribution of technologically related activity. We 

perform a robustness check using the alternative cluster definitions developed by BCHCS in 

which the backcloth is based on STEM workers, in case R&D labs follow knowledge workers 

instead of manufacturing workers, and find that the baseline results are qualitatively unchanged.  

As an additional robustness check, we follow Thompson and Fox-Kean (2005) — hereafter TFK 

— and add the requirement that the controls must share at least one technology subclass with 

both the patent of interest and its citing patent in addition to matching on the three-digit patent 

class we use to identify controls in our main analysis. The results are found to be highly robust 

with respect to such controls, suggesting that they are not solely a consequence of technical 

aggregation. Finally, we show that our results persist when we use coarsened exact matching as 

an alternative method to select the controls.  

We conclude that there is robust evidence of localization of patent citations, and thus knowledge 

spillovers, within the BCHCS clusters based on R&D labs. Our methodology allows us to bring 

to light interesting variation across clusters with a high degree of statistical precision, and we 

show that the BCHCS clusters compare favorably with the analogous CMSAs in JTH. 

2. THEORY 

Much of the theoretical literature on urban agglomeration economies has focused on externalities 

in the production of goods and services rather than on inventive output itself. Nevertheless, the 

three formal mechanisms primarily explored in the literature — sharing, matching, and, 

especially, knowledge spillovers — are also relevant for innovative activity.4 A recent paper by 

Davis and Dingel (2019) provides a useful way for us to think about how the spatial 

concentration of economic activity facilitates the exchange of ideas among workers and firms. In 

                                                 
4 See Duranton and Puga (2003) for a more thorough discussion of the micro-foundations of urban agglomeration 

economies. 
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their model, individuals with heterogeneous skills divide their time between production and 

exchanging ideas with each other in order to raise their productivity. Workers in a city allocate 

their time in accordance with the expected gains from exchanging knowledge with others in their 

city. Cities with more numerous high-ability workers are better environments for fostering the 

exchange of ideas. Thus, the gains from the exchange of ideas are greater in larger clusters 

offering better opportunities for knowledge transfers because their workers are more skilled, are 

more abundant, and devote more time to exchanging knowledge.  

One issue empirically with using administrative boundaries, such as cities, is that there is 

mounting evidence from studies using alternative data that the transmission of knowledge begins 

to attenuate at distances ranging from a few blocks to just a few miles.5 For example, Arzaghi 

and Henderson (2008) show that for an ad agency in Manhattan, knowledge spillovers and the 

benefits of networking with other nearby agencies are large but the benefits dissipate very 

quickly with distance from other ad agencies and are gone after roughly one-half mile.  

R&D, more than most industries, depends on new knowledge. Often, the latest knowledge about 

technological developments is valuable to firms but only for a short time, and the reciprocal 

exchange of information among co-located firms engaged in innovation can reduce uncertainty 

(Feldman, 1993). Thus, it behooves innovative firms to locate near sources of information and 

each other. As already noted, BCHCS shows that R&D labs are highly spatially concentrated 

even within a given metropolitan area. Given the rapid distance decay in knowledge spillovers 

identified in these studies, researchers using labor market boundaries (such as MSAs) or 

administrative boundaries (such as cities) run the risk of underestimating the importance of 

knowledge spillovers in the location of innovative activity. Murata et al. (2014) and BCHCS use 

distance-based approaches and find substantial evidence supporting the localization of patents 

and patent citations. As indicated, we use the clusters identified by BCHCS, as they reflect 

appropriate boundaries in which knowledge spillovers are most likely to be at work more 

accurately than administrative boundaries.  

 

                                                 
5 See for example, Arzaghi and Henderson, 2008; Agrawal et al., 2008; Conley et al., 2003; Moretti, 2004a and 

2004b; Audretsch and Feldman, 1996; and Adams and Jaffe, 1996.  
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3. SPATIAL CLUSTERS 

We use R&D cluster definitions from BCHCS, which cover California and a 10-state area in the 

northeastern corridor.6 BCHCS use continuous methods (based on Ripley’s (1976) K-function) to 

assess the concentration of R&D labs relative to a baseline of manufacturing employment.7 In 

their analysis, BCHCS start with the following null hypothesis: 

Hypothesis H0: R&D labs locations are no more concentrated than manufacturing at the zip 

code level and then no more concentrated than total employment within each zip code.  

BCHCS use local K-function analysis to identify clustering in the neighborhood of specific 

R&D labs. This local K-function for a given point i  is just the count of all additional labs within 

distance d of i, denoted, ( ).iC d   

More precisely, the local K-function, ˆ
iK , at point i for each distance, d, is:  

ˆ ( ) ( )i iK d C d  

The corresponding simulated values, ˆ ( ), 1 ,SK d s N , under the null hypothesis are derived by 

generating point patterns ( ( ) for 1, 1), 1, ,S S

i jX x x j n S N     , representing all n – 1 

points other than point i. The p-values for a one-sided test of H0 with respect to point i is given 

by: 

0( )
( ) , 1, .

1

i
i

N d
P d i n

N
 


, 

where 0( )iN d  denotes the number of the N + 1 draws that generate values at least as large 

as 0ˆ ( )iK d .  

                                                 
6 The 10 states are Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, New York, 

Pennsylvania, Rhode Island, and Virginia, plus the District of Columbia; they contain 1,035 R&D labs. There are 

645 R&D labs in California.  

7 BCHCS develop an alternative benchmark or backcloth for analyzing R&D clustering with respect to STEM 

workers to address the concern that R&D labs may follow knowledge workers. We will provide patent citation 

results using this alternative backcloth as well as for the manufacturing employment backcloth.  
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A lab is considered to be locally agglomerated at a scale of d miles if it has more neighboring 

labs within distance d than would be expected (statistically) based only on the distribution of 

manufacturing employment.  

Of special interest are what BCHCS refer to as core points. The core point at scale d is defined 

as those labs exhibiting maximally significant local agglomeration at this scale and having at 

least four neighboring labs within that distance.8 An important property of these local tests is that 

the p-values for each point i  can be mapped as shown in Figures 1a and 1b. Notice that Figures 

1a and 1b show very low p-values indicating regions of significant clustering. 

More formally, BCHCS use local cluster analyses to group these points into local clusters of 

labs. That is, this approach allows them to show on a map the locations where the clustering of 

labs is occurring. This is accomplished by performing simulations using 999N   test patterns of 

size 1n  for each of the n (=1,035 in the northeastern corridor and 645 in California) R&D 

locations in the observed pattern, 0X . BCHCS find substantial variation in significance at 

different spatial scales. They argue that the clearest patterns of distinct clustering are captured by 

the three representative distances, {1,5,10}D  . Of these three, they argue that the single best 

distance for revealing the overall clustering pattern in the entire data set appears to be 5 miles, as 

illustrated for the northeastern corridor and California in Figures 1a and 1b, respectively. As seen 

in the legend, those lab locations, i , exhibiting maximally significant clustering [ (5) 0.001iP  ] 

are shown in black, and those with p-values not exceeding 0.005 are shown as dark gray. 

BCHCS argue that essentially all of the most significant locations occur in four distinct clusters 

in the northeastern corridor, which can be roughly described (from north to south) as the 

“Boston,” “New York City,” “Philadelphia,” and “Washington, D.C.,” agglomerations.9 In 

California, their approach identifies three distinct groups, roughly described (from north to 

south) as “San Francisco Bay Area,” “Los Angeles area (mainly Irvine),” and “San Diego.”  

                                                 
8Using K-function permutation tests based on 1,000 permutations, BCHCS define maximal significance to be the 

smallest p-value obtainable under that test, namely p = 0.001. Focusing on labs with very high statistical 

significance mitigates the incidence of false positives due to the multiple testing problem. The condition requiring 

core points to have at least four other labs at a given distance excludes isolated labs that happen to be in areas with 

little or no manufacturing employment. 

9 Two exceptions are the small but significant agglomerations identified in the analysis — one in Pittsburgh and one 

in Buffalo, NY. 
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While the local cluster analysis provides information about where clustering is most significant 

at each spatial scale, it cannot identify specific “clusters” of labs. To identify distinct clusters at 

scale d, BCHCS create buffers of radius d around each core point in ArcMap and designate the 

set of labs in each connected component of these buffer zones as a core cluster of points. Each 

distinct cluster thus contains a given set of “connected” core points along with all other points 

that contributed to their maximal statistical significance. BCHCS refer to this procedure as the 

multiscale core-cluster approach.  

An overall depiction of core clusters for the northeastern corridor and for California is shown in 

Figures 2a and 2b, respectively. Figure 2a shows the four major clusters identified for the 

northeastern corridor (one each in Boston, New York City/northern New Jersey, 

Philadelphia/Wilmington, and Washington, D.C.), while Figure 2b shows the three major 

clusters in California (one each in the Bay Area, Los Angeles, and San Diego). To see how the 

BCHCS multiscale core clustering approach works, consider the Bay Area in California shown 

in Figure 3a. The approach identifies one 10-mile cluster covering most of the Bay Area. There 

is a dominant 5-mile core cluster that is completely nested in the 10-mile cluster, commonly 

referred to as Silicon Valley. Finally, as the figure shows, there are numerous 1-mile clusters 

running from the Stanford Research Park area to San Jose at the center of Silicon Valley.10  

BCHCS similarly identify other clusters of R&D labs such as the ones centered on Cambridge, 

MA, and the Route 128 corridor that correspond to the most well-known concentration of R&D 

labs (Figure 3b). Notice that the entire Boston area is itself a single 10-mile cluster. Within this 

area, there is again a dominant 5-mile core cluster containing the five major 1-mile clusters in the 

Boston area. The largest of these is concentrated around Cambridge, while the others are 

centered at points along Route 128 surrounding Boston.  

These examples illustrate the attractive features of the multiscale core-cluster approach. First and 

foremost, this approach adds a scale dimension not present in other clustering methods. In 

essence, it extends the multiscale feature of local K-functions from individual points to clusters 

                                                 
10 Note that while the clusters in Figure 3a tend to be nested by scale, this is not always the case. For example, the 

5-mile “Livermore Lab” cluster in Figure 3a is seen to be mostly outside the major 10-mile cluster. Here, there is a 

concentration of six R&D labs within 2 miles of each other, although Livermore is relatively far from the Bay Area. 

So, while this concentration is picked up at the 5-mile scale, it is too small by itself to be picked up at the 10-mile 

scale. 
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of points. The clusters identified by BCHCS are well suited for studying knowledge spillovers. 

In the next section, we extend BCHCS by assigning patents and citations to the R&D clusters 

they identify and test for evidence of localized knowledge spillovers in patent citations. The 

ultimate value of the clusters identified by BCHCS can be determined only by testing their 

economic significance — to which we now turn.  

4. CLUSTERING OF R&D LABS AND CLUSTERING OF PATENT CITATIONS 

In this section, we test for evidence of localized knowledge spillovers by assigning patents and 

citations to the core clusters identified by BCHCS. More specifically, we study the relative 

geographic concentration of citations to patents originating in the clusters. These citations are a 

concrete indication of the transmission of information from one inventor to another. 

We follow the general approach developed in JTH but modify it to reflect the geographic 

clustering of R&D labs we identify in this paper. JTH test for the “localization” of knowledge 

spillovers by constructing measures of geographic concentration of citations contained in two 

groups of patents — a treatment group and a control group. The treatment group represents a set 

of patents that cite a specific earlier patent obtained by an inventor living in a particular 

geographic area (in the JTH study either a state or a metropolitan area). For each treatment 

patent, JTH use a process to select a potential control patent that is similar to the treatment patent 

but does not cite the earlier patent. For patents in the treatment and control groups, JTH calculate 

the proportion of those patents obtained by an inventor living in the same geographic area as the 

inventor of the earlier patent. The difference of these two proportions is a test statistic for the 

localization of knowledge spillovers. In their study, JTH found that, relative to the pattern 

reflected in the sample of control patents, patent citations were two times more likely to come 

from the same state and about two to six times more likely to come from the same metropolitan 

area. 

We construct a comparable test statistic, with several refinements, and we substitute the R&D 

clusters identified in BCHCS for the state and metropolitan area geography used by JTH. This 

provides us with an alternative way to test for possible localized knowledge spillovers at much 

smaller spatial scales than are found in much of the preceding literature. Recall that the 

boundaries of the core clusters are determined by interrelationships among the R&D labs in our 
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sample and, therefore, should more accurately reflect the appropriate boundaries in which 

knowledge spillovers are most likely to be at work. In that sense, the geography of our clusters 

should be better suited for studying localized knowledge spillovers than states, metropolitan 

areas, or other political or administrative boundaries.  

4.1 Construction of the Citations Data Set 

For this analysis, we use data obtained from the NBER Patent Data Project.11 The data span the 

years 1996–2006. We identify the inventors on a patent using data on inventor codes found in the 

Patent Network Dataverse (Lai, D’Amour, and Fleming, 2009). Patents are assigned to locations 

based on the zip code associated with the residential address of the first inventor on the patent.12 

We do not use the address of the assignee (typically the company that first owned the patent) 

because this may not reflect the location where the research was conducted (e.g., it may be the 

address of the corporate headquarters and not the R&D facility). While it’s possible that an 

inventor’s home lies outside a cluster while his professional work takes place inside a cluster, 

this type of measurement error would bias our results against finding significant location 

differentials. As a robustness check, we repeated our main analysis using the zip code of the 

second inventor on the patent. While the sample size is smaller because not all patents list two or 

more inventors, the results were virtually the same as we report below.13  

For our tests, we rely primarily on the boundaries identified by the 5-mile and 10-mile core 

clusters located in the northeastern corridor and in California. For each core cluster at a given 

scale, we assemble four sets of patents. The first set, which we call originating patents, 

represents those patents granted in the years 1996–1997 by an inventor living in the cluster.14 We 

call the second set of patents citing patents. These consist of all subsequent patents — including 

patents for which the residential address of the first inventor is located outside the U.S. — that 

cite one or more of the originating patents, after excluding patents with the same inventor or that 

                                                 
11 See https://sites.google.com/site/patentdataproject/. We use the files pat76_06_assg.dta and cite_7606.dta. 

12 We used the location information contained in the file inventors5s_9608.tab downloaded from 

http://dvn.iq.harvard.edu/dvn/dv/patent. Note that this approach implies that our inventors are located at the centroid 

of the zip code where they live. We have zip code information for almost 99 percent of the patents with a first 

inventor residing in the United States. 

13 Results are available from the authors upon request. 

14 The range of 1996–1997 is chosen because the lab data on which the clusters are based are from 1998. 

https://sites.google.com/site/patentdataproject/
http://dvn.iq.harvard.edu/dvn/dv/patent
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were initially assigned to the same company as the originating patent. We exclude these self-

citations because these are unlikely to represent the knowledge spillovers we seek to identify.15  

For every citing patent, we attempt to match it to an appropriate control patent. When we are 

successful, we include the citing patent in a set we call treatment patents and the matched patent 

in a set we call control patents. We select control patents using the following approach. For a 

given citing patent, the set of potential control patents must have an application date after the 

grant date of the originating patent that is cited. Potential control patents also cannot cite the 

originating patent. The application date of potential control patents must be within one year (six 

months on either side) of the application date of the treatment patent. Finally, as was done by 

JTH, potential control patents must have the same three-digit primary patent class as the 

treatment patent.16 In this way, potential controls are drawn from patents in the same 

technological field. 

The set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may 

affect our tests, we randomized the selection of a specific control patent when there was more 

than one potential control patent from which to choose.17 The results reported below allow for 

the selection of control patents with replacement. In other words, a given control patent may be 

matched to more than one citing patent.  

4.2 The Test Statistics 

For any given cluster scale, d ( 5,  10 ) , let o denote the number of originating patents indexed 

0{ : 1, , }io i   that were granted to inventors living in one of the core clusters at scale d in the 

years 1996–1997.18 Let i denote the number of subsequent citations { : 1, , }ij ic j   to 
io  

                                                 
15 We do this using the pdpass variable in the data set pat76_06_assg and the Invnum in the Consolidated Inventor 

Dataset. For details, see Lai, D’Amour, and Fleming (2009). 

16 We match on the variable class in the data set pat76_06_assg. This is the original primary classification of the 

patent. We feel it is important to use a “real time” classification because these are what other researchers might rely 

upon around the time a patent was issued. 

17 We find all the patents that are potential controls for a given patent and then randomly choose among them. In 

JTH, when multiple potential control patents exist, they select the one with a grant date that is nearest to the grant 

date of the treatment patent as the control the patent. 

18 The following formulation of the proportions used for testing purposes is based largely on Murata et al. (2014). 
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(after removing self-citations) over the years 1996–2006. For each of these citing patents, 
ijc , 

designated as treatment patents, we attempted to identify a unique control patent,
ijc , with the 

same three-digit patent class and with an application date within one year of the treatment patent 

(see previous description). We are not always successful in doing so. Let ( )i i  denote the 

number of treatment patents,
ijc , for which a control,

ijc , was found.  

Among these i  treatment patents, we count the number of patents, im , for which the residential 

address of the first inventor on the citing patent is located in the same core cluster as the 

originating patent it cites. The fraction of all such patents at scale d, i.e., the treatment 

proportion, is given by19  

 1

1

1

1

o

o

o

ii
ii

ii

m
p m





 








 





.  (1) 

Similarly, let im  denote the number of matched control patents,
ijc , in which the residential 

address of the first inventor is located in the same cluster as the originating patent cited by the 

treatment patent. The control proportion is then given by 

 1

1
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nii
ii

ii

m
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

 








 





.  (2) 

The resulting test statistic is simply the difference between these proportions, i.e., p p . Under 

the null hypothesis of “no localization of knowledge spillovers,” this difference of independent 

proportions is well known to be asymptotically normal with mean zero and thus provides a well-

defined test statistic. 

We run the test 999 times and present a p-value as a measure of significance. The p-value is the 

number of samples in which the control proportion is at least as large as the treatment proportion, 

where the treatment proportion is taken as an additional sample under the null hypothesis, 

divided by 1,000. Thus a p-value of 0.001 indicates that none of the samples had a control 

                                                 
19 The dependency of fraction, p (and all other quantities in (1)) is taken to be implicit.  
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proportion as large as the treatment proportion. Note that earlier studies in the literature typically 

draw one set of controls — in contrast to the 999 sets of controls drawn here — and thus present 

a t-statistic as a measure of significance. 

In the tables that follow (except for Tables 14 and 15, which rely on a different methodology for 

finding control patents), Column E (Matched Citing Patents), Column F (Matched Citing Patents 

for the same cluster), Column H (Control Patents), and Column I (Control Patents from the same 

cluster) all represent averages of the 999 samples. 

4.3 Main Results 

Table 1a presents the results of our localization or matching rate tests for the nine 5-mile clusters 

identified by BCHCS for the northeastern corridor, while Table 1b shows the results for the four 

10-mile clusters they identify. As the last row of Table 1a shows, inventors living in the 5-mile 

clusters obtained 8,526 patents in 1996–1997 (Column A). Those patents subsequently received 

76,669 citations from other patents during the sample period (Column B). Our matching 

algorithm, with replacement, was able to match essentially all of the citing patents with an 

appropriate control patent (Column H). Among the treatment patents, 3.68 percent (Column G) 

had a first inventor living in the same cluster as the patent cited; this is the treatment proportion. 

Among the control patents, only 0.93 percent (Column J) had a first inventor living in the same 

cluster as the patent cited by the treatment patent; this is the control proportion. As shown in the 

next to the last column of the table, on average, a given patent citing an earlier patent in a 5-mile 

cluster is 3.9 times as likely to have a first inventor living in that cluster than would be expected 

by chance alone. This value is on the higher side of the range reported by JTH for their test of 

localization at the metropolitan-area level.20 As the last row of the Table 1a shows, the difference 

between the treatment and control proportions is highly statistically significant (Column L). In 

addition, the location differential — defined as the ratio of treatment and control proportions — 

is at least 2.8 for every 5-mile cluster.  

Table 1b presents the results of our localization tests among 10-mile clusters in the northeastern 

corridor. At a somewhat larger spatial scale, we find there are more originating patents, more 

                                                 
20 JTH find a significant “home bias” in patent citations. Excluding self-citations, citations are two to three times 

(for the corporate samples) to six times (for the university sample) more likely than control patents to come from the 

same metropolitan area.  
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citing patents, and, thus, more treatment and control patents. Both the treatment and control 

proportions (Columns G and J) are higher than was found among the 5-mile clusters. At the same 

time, the location differential is somewhat smaller. On average, a given patent citing an earlier 

patent in a 10-mile cluster is 2.6 times as likely to have a first inventor living in that cluster than 

would be expected by chance alone. This value is on the lower side of the range reported by JTH 

for their test of localization at the metropolitan-area level. There are a number of specific clusters 

where this differential is substantially higher. For example, the location differential is almost 

twice the four-cluster average in the Washington, D.C., and Philadelphia clusters, and 15 percent 

higher in the Boston cluster.  

Tables 2a and 2b present the results of our localization tests among 5- and 10-mile clusters, 

respectively, in California identified by BCHCS. Compared with the northeastern corridor, we 

find many more originating patents, citing patents, and, therefore, treatment and control patents. 

The treatment proportions (Column G) among the California clusters are much higher than those 

found in the northeastern corridor. However, this is driven almost entirely by the Palo Alto–San 

Jose cluster associated with Silicon Valley. The control proportions (Column J) are also larger 

than those found in the northeastern corridor. The p-values for the difference in treatment and 

control proportions (Column L) are highly significant for all the 5-mile and 10-mile clusters. On 

average, a given patent citing an earlier patent in a 5- or 10-mile cluster in California is twice as 

likely to have a first inventor living in that cluster than would be expected by chance alone.  

It is worth noting that there is significant cross-cluster variation. For 5-mile clusters in the 

northeastern corridor, the location differentials for the Conshohocken–King of Prussia–West 

Chester, PA cluster is more than twice the average, and that for the Silver Spring–Bethesda, 

MD–McLean, VA cluster is three-quarters greater than the average. Excluding the Dublin–

Pleasonton, CA cluster, the largest location differential among our baseline results is 8.7 for the 

5-mile Los Angeles cluster; this is more than four times the average for 5-mile clusters in 

California. 

To summarize, the clusters of R&D labs identified by the multicore approach appear to coincide 

with the geographic clustering of patent citations, an often-cited indicator of knowledge 

spillovers. The following section develops these results further and discusses a number of 

robustness checks. 
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5 Additional Results and Robustness Checks 

5.1 The Relationship Between Citation Location Differentials and Spatial Scale 

The statistics in the preceding tables suggest that there may be a systematic relationship between 

the size of the clusters we study and the magnitude of the location differentials we find. To 

explore this further, we extended our analysis to consider clusters at spatial scales of 20 miles. 

We summarize the results in Table 3a and Table 3b.  

A number of patterns are evident from the table. First, the rate of increase in the number of 

originating patents associated with larger core clusters falls off because a number of clusters that 

are significant at smaller spatial scales are not significant at the larger spatial scales. The 

treatment and control proportions tend to increase as we consider larger core clusters. At the 

same time, the location differential falls as the geographic size of the clusters increases, 

especially in the northeastern corridor. These results suggest that the core clusters are picking up 

knowledge spillovers over a variety of spatial scales. Nevertheless, the localization effects appear 

to be largest at spatial scales of 5 miles and perhaps less. The attenuation in the localization 

differential as cluster size increases is a typical finding in studies examining localized knowledge 

spillovers.21 

5.2 Alternative Approaches to Measuring Citations 

5.2.1 Do Examiner-Added Citations Bias the Results?  

In obtaining the baseline results, we use all citations to a given patent. One concern with the use 

of all citations is that the approach fails to distinguish between inventor-added citations and 

citations added by examiners. Inventor-added citations represent an acknowledgement of 

knowledge spillovers, while examiner-added citations likely reflect a patent’s value. We can 

address the identification issue by distinguishing inventor-added citations from citations added 

by patent examiner and use each as a different measure. Specifically, because Hegde and Sampat 

(2009) demonstrate that a patent cited by examiners has a much stronger relationship with the 

payment of renewal fees than a patent cited by an inventor, we use examiner-added citations as a 

                                                 
21 See Carlino and Kerr (2015) for a review of studies documenting attenuation in knowledge spillovers as cluster 

size increases. 
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proxy for patent value. We take advantage of the data available from the U.S. Patent and 

Trademark Office from 2001 onward that distinguishes between those citations that are added by 

patent examiners versus inventors.  

Examiner-added citations account for only 8.6 percent of total citation in the northeastern 

corridor and for just 9 percent in California. The inclusion of examiner-added citations is 

unlikely to bias our findings, given the small share of examiner-added citations in our sample. 

Still, in the interest of completeness, we conduct the matching rate tests when the sample 

includes only examiner-added citations and when the sample consists only of inventor-added 

citations. The matching rate tests for examiner-added citations for the 5- and 10-mile clusters in 

the northeastern corridor are reported in Tables 4a and 4b, and those for California are shown in 

Tables 5a and 5b. Compared with the baseline findings, the magnitudes of the location 

differentials for examiner-added citations are somewhat reduced but are still greater than 1.0 for 

all clusters except Dublin–Pleasonton. As the last row of Column K in Table 4a shows, 

examiner-added citations are 2.4 times as likely to have a first named inventor living in a typical 

5-mile cluster than would be expected by chance alone. This is much lower than the baseline 

matching rate test of 3.9 for the northeastern corridor. For the average 5-mile cluster in 

California, the matching rate test for examiner-added citations falls to 1.4 from 2.1 in the 

baseline case. Similar declines in the matching rate tests for examiner-added citations are found 

for the 10-mile clusters in both the northeastern corridor and California. Although the 

magnitudes are smaller for the examiner-added citations, all except that for Dublin–Pleasonton 

are significantly different from 1.0, an indication that the patents in these clusters are of higher 

value than suitably defined control patents. 

The matching rate tests for inventor-added citations for the 5- and 10-mile clusters in the 

northeastern corridor are reported in Tables 6a and 6b, and those for California are shown in 

Tables 7a and 7b. As the last row of Column K in Table 6a shows, inventor-added citations are 

4.0 times as likely to have a first named inventor living in a typical 5-mile cluster in the 

northeastern corridor than would be expected by chance alone. This is similar to the results of the 

matching rate tests for the baseline rate of 3.9. For the average 5-mile cluster in California, the 

matching rate test for inventor-added citations at 2.1 is identical to the baseline case. Similarly, 

the matching rate tests for inventor-added citations for the 10-mile clusters both in the 
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northeastern corridor and in California are virtually identical to those found for the baseline 

cases. These findings suggest that there is essentially no downward bias associated with using all 

citations (as in the baseline results) compared with using only inventor-added citations. Given 

the lack of bias, we use total citations for the analysis undertaken in the remainder of the paper.  

5.2.2 Are Patents Obtained in the Core Clusters More Influential?  

We now investigate whether patents obtained by inventors living within a core cluster are 

somehow more important, or at least better known, than patents obtained outside of these 

clusters. We rely on a common metric of patent quality: the number of citations received. We 

develop a “counterfactual” region for each of the 10-mile core clusters identified in Section 3. 

For example, the New York City cluster is compared with the region outside of that cluster 

contained in New York State, Connecticut, and northern New Jersey. The Boston cluster is 

compared with the region outside the cluster in the states of Massachusetts, New Hampshire, and 

Rhode Island.  

In Table 8, we report a simple difference in means test for the number of citations per patents 

received by patents located inside or outside our clusters. For all our clusters, the average 

number of citations received by patents is greater inside the cluster compared with the average 

citations received outside the respective cluster; this difference in citations is statistically 

significant in all clusters except one (Philadelphia).22 

5.3 Alternative Approaches to Identifying Cluster Boundaries 

5.3.1 STEM Workers 

It is possible that R&D labs follow knowledge workers instead of manufacturing workers, 

making knowledge workers in an area a better backcloth than manufacturing employment in that 

location. As we have shown, one important concentration of R&D labs is found around 

Cambridge, MA, and another important clustering is found in Silicon Valley. These labs are 

close to large pools of STEM graduates and workers, the very workers that R&D activity 

                                                 
22 An anonymous referee pointed out that if more “valuable” patents originate inside core clusters than outside them, 

then patents inside the core clusters would tend to receive more examiner-added citations than those outside, thereby 

upwardly biasing the difference in means tests. As the previous subsection shows, if anything, examiner-added 

citations would tend to have a slight downward bias on these tests. 
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requires. Manufacturing activity tends to employ a more general workforce than does innovative 

activity and may therefore be more geographically dispersed compared with innovative activity.  

To address the concern that knowledge workers may be a better reference group than 

manufacturing employment, we use an alternative set of clusters developed by BCHCS based on 

a measure of STEM workers by location.23 For the backcloth of these clusters, they replace the 

number of manufacturing employees in each zip code area with an estimate of the number of 

STEM workers. This is constructed using the proportion of STEM jobs in each four-digit NAICs 

industry multiplied by the number of jobs in each industry reported in the Zip Code Business 

Patterns. We report the results of this alternative test for 5- and 10-mile clusters in the 

northeastern corridor (Tables 9a and 9b) and in California (Tables 10a and 10b). Note that the 

cluster definitions change when the backcloth changes, so the list of clusters in these tables 

differs from those in Tables 1a, 1b, 2a and 2b. With the exception of the 5-mile clusters in the 

northeastern corridor, the average location differentials using the STEM worker backcloth are 

virtually the same as for the baseline findings. The location differential falls to 3.0 for the 5-mile 

clusters in the northeastern corridor when considering the clusters based on STEM workers from 

3.9 for the baseline results. For the most part, the findings reported for the location differentials 

in the baseline (and subsequent analysis) suggest little, if any, concern with using manufacturing 

employment as the backcloth. 

5.3.2 MSAs 

Our study differs from that of JTH along a number of important dimensions. The geographical 

scope, sample, and time periods of the analysis differ between the current study and that of JTH. 

JTH use patents originating in 1975 and 1980 together with citations made to these patents in 

1989. Recall that the current study uses more recent samples: patents originating in 1996 and 

1997 with citations to these patents made by 2006. As far as the metropolitan areas are 

concerned, JTH use the 1981 definitions of metropolitan statistical areas (MSAs) and 17 

consolidated metropolitan statistical areas (CMSA) plus one constructed “CMSA” consisting of 

the location of inventors not already included in one of the MSAs or CMSAs, while the current 

                                                 
23 They use the taxonomy of STEM occupations found at http://www.bls.gov/oes/stem_list.xlsx. This taxonomy is 

mapped to the 2010 vintage of the Standard Occupational Classifications (SOCs). We map back to the 2000 vintage 

of the SOCs so we can use the 2002 job counts from the Occupational Employment Statistics to calculate STEM 

employment “intensity” by industry. 

http://www.bls.gov/oes/stem_list.xlsx
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study’s focus is on innovative clusters within two regions. A comparison of the findings based on 

the core clusters with those of the JTH approach might be more informative if we compared the 

matching rate for our core clusters with a matching rate closer to that of JTH by applying our 

current data on patents and citations but using the MSA definitions.24 After all, the underlying 

socioeconomic environment should greatly differ for the different sample periods used in these 

studies.  

 

There are seven metropolitan areas in our study that roughly correspond to the 10-mile clusters 

identified by BCHCS. Using the official 1990 definitions, we find that all but the San Diego 

metropolitan area had a CMSA definition. For San Diego we use the official 1990 MSA 

definition. For ease of exposition, we will refer to all seven metro areas as CMSAs. We 

reproduced our matching rate tests for these CMSAs using patents originating in 1996 and 1997 

with citations to these patents made by 2006. Table 11 presents the location differentials for the 

seven CMSAs in our sample, based on 1990 definitions. Column K of the table gives the 

matching rate tests for the seven CMSAs using our data. For ease of comparison, Column M of 

Table 11 shows the location differentials for the 10-mile clusters from our baseline results. A 

comparison of Column K to Column M reveals that the location differentials for each of the 

seven CMSAs are smaller in magnitude than those found for the corresponding 10-mile buffer 

clusters reported in Table 1b and Table 2b and reproduced in Column M. In several cases (Los 

Angeles, Philadelphia, and Washington, D.C.), the locational differential found using the CMSA 

definitions are substantially smaller than the differentials found for the corresponding 10-mile 

buffer clusters. Furthermore, in no instance are the locational differentials larger when the 

CMSA definitions are used compared to the corresponding 10-mile buffer clusters. These 

findings suggest that the degree of localization of knowledge will be understated in samples 

based on MSA/CMSA definitions compared to samples based on the R&D clusters. 

 

 

 

  

                                                 
24 We thank an anonymous referee for suggesting that we replicate the JTH experiment using our data. 
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5.4 Alternative Approaches to Identifying Control Patents 

5.4.1 Disaggregated Subclasses 

As previously discussed, there has been some debate in the literature as to the best way of 

implementing a technological similarity requirement based on patent classifications. As already 

noted, JTH find evidence supporting localized knowledge spillovers for states and for CMSAs. 

JTH identify potential control patents, as we have in this study, within the same three-digit 

primary patent class as the treatment patent. TFK are critical of the JTH approach, suggesting 

that their method for selecting the control group using three-digit technology classifications may 

not adequately control for the existing geographic distribution of industrial activity and may 

introduce spurious evidence of localized knowledge spillovers. Instead, TFK use a finer six-digit 

technology subclass and stipulate that the originating, citing, and control patents should all share 

at least one technology subclass. They find that tests using this alternative approach reduce the 

size and significance of the localization ratios, especially at smaller geographies. Murata, et al. 

(2014) add to the debate, as we do, by questioning whether CMSAs are a relevant geography for 

testing for evidence of localized knowledge spillovers. Rather than using aggregated 

administrative boundaries, such as states and CMSAs, they develop a distance-based test of 

localized knowledge spillovers that embeds the concept of control patents and find evidence 

supporting localized knowledge spillovers even when using six-digit controls.  

The results presented thus far use the BCHCS clusters based on continuous measures to identify 

the spatial structure of the concentration of R&D labs. We have followed the JTH approach of 

limiting potential control patents to ones that share the same three-digit primary class as the 

citing patent. As a robustness check, we implement one version of the matching requirements 

tested in TFK. We restrict potential control patents to ones that share the same primary class, and 

for which there is at least one subclass in common between the originating-citing-control triads.25 

Our methodology is otherwise the same as we describe in Section 4.2.  

                                                 
25 This is similar to the test reported in Table 3, Column (7) in TFK. The following are differences between our 

methodology and theirs: TFK use only patents with “corporate assignees” for computational ease, while we do not 

make this restriction. We randomize between all controls within a +/- six-month window, whereas they first check 

within a +/- one-month window, then +/- three-month window, and finally a +/- six-month window. We use first 

inventor location only, while they randomly choose an inventor to assign location. Finally, our clusters only partially 

overlap the 17 CMSAs they use, many of which are low-innovation areas. 
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We report the results of this alternative test for 5- and 10-mile clusters in the northeastern 

corridor (Tables 12a and 12b) and in California (Tables 13a and 13b). With the exception of the 

Stanford–Milford, CT 5-mile cluster, where there are insufficient data to construct a matching 

rate test, the difference between the treatment and control proportions is highly statistically 

significant (Column L). In addition, the location differential — defined as the ratio of treatment 

and control proportions — is at least around 1.7 for every 5-mile cluster and 10-mile cluster. 

Comparing these results with our baseline results (Tables 1a and 1b) and (2a and 2b), the 

location differentials are somewhat larger for the northeastern corridor and slightly smaller for 

California. We conclude that not only are our results robust to the choice of technology controls, 

we also find evidence, similar to Murata, et al. (2014), supporting localized knowledge spillovers 

even when using six-digit controls.  

 5.4.2 Coarsened Exact Matching 

More recently, methods for constructing a matched sample of treatment and control groups have 

evolved. Specifically, coarsened exact matching (CEM) (Iacus, King, and Porro, 2011) can be 

used to improve the balance between the treated group (citing patents) and the control group. In 

addition to matching on the application year of the patent and the patent’s three-digit technology 

classification, we also matched discrete bins on two additional variables: 1) the year the patent 

was granted, and 2) the number of citations a patent received (all cites). We relied upon the CEM 

algorithm in STATA to coarsen the matched bins based on the optimization of an objective 

function rather than arbitrarily assigning cut points to the bins.  

We use the CEM matched controls in several ways. First, we follow the JTH location differential 

approach used in producing Tables 1a, 1b, 2a and 2b, our baseline findings, but use the CEM 

controls. For this approach, we exclude patents with the same inventor or that were initially 

assigned to the same company as the originating patent.26 The results are reported in Table 14 

(for the northeastern corridor) and Table 15 (for California). On average, the location 

differentials are somewhat larger than we previously reported for the broad cluster in the 

                                                 
26 For this approach, the set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may affect our tests, we 

randomized the order in which treatment patents were matched to control patents, and we randomized the selection 

of a specific control patent when there was more than one potential control patent from which to choose. The results 

reported below allow for the selection of control patents with replacement. 
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northeastern corridor and in California. On average, a given patent citing an earlier patent in a 5-

mile cluster in the northeastern corridor is 4.5 times as likely to have a first inventor living in that 

cluster than would be expected by chance alone, compared with a differential of 3.9 reported in 

our baseline results. The location differential in California’s 5-mile cluster increases to 2.4 when 

using the CEM matched controls from 2.1 reported for the baseline. The location differential in 

the northeastern corridor 10-mile cluster increases slightly to 2.8 when using the CEM-matched 

controls from 2.6 reported for the baseline. In the California 10-mile cluster, the location 

differential rises to 2.5 from 2.0 reported for the baseline.  

In our second approach, we estimate a logistic model of the likelihood that a patent in cluster h  

cites an originating patent in that cluster. More formally, if for any given patent, we let hT  denote 

the indicator variable that this patent cites at least one originating patent in cluster h, and 

similarly, let hD  indicate whether this patent itself originates in cluster h, then the conditional 

likelihood, Pr( 1| )h hT D , of citing patents in cluster h given hD  is postulated to be of the logit 

form:  
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In this setting, it should be clear that citations of patents in cluster h are more likely for 

(treatment) patents in cluster h than for (control) patents not in cluster h, i.e., 

Pr( 1| 1) Pr( 1| 0)h h h hT D T D     , if and only if 0h  . The estimated coefficients, ˆ( )h , 

are reported in Table 16 (along with robust standard errors for these estimates).27 As seen from 

the table, the estimated coefficients for all clusters are significantly positive (at the 1% level), 

and thus provide strong support for the findings in Tables 14 and 15.  

Finally, to facilitate comparison, the main results found for location differentials are summarized 

in Table 17. The table shows the results when R&D clustering is analyzed with respect to (i) 

                                                 
27 For this approach, we do not exclude patents with the same inventor or that were initially assigned to the same 

company as the originating patent. The observations are weighted based on the number of CEM-matched controls 

found for each treated observation. 
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manufacturing employment (baseline), (ii) citations added by examiners only, (iii) citations 

added by inventors only, (iv) STEM workers, (v) using CMSA definitions, (vi) when the controls 

are alternatively selected to have at least one subclass in common with both the citing patent and 

the originating patent, or (vii) when the controls are selected using coarsened exact matching. 

Regardless of the specification chosen to construct the location differentials, we find that 

citations are at least about twice as likely to come from the same cluster as earlier patents than 

one would predict using a control sample of otherwise similar patents. 

6. CONCLUDING REMARKS  

In this paper, we use the local clusters identified in BCHCS to measure the degree to which 

patent citations are localized in these clusters — tangible evidence that knowledge spillovers are 

geographically mediated. For labs both in the northeastern corridor and in California, we find, on 

average that citations are about two to four times more likely to come from the same cluster as 

earlier patents than one would predict using a (control) sample of otherwise similar patents.  

We believe that the BCHCS clusters more accurately reflect the boundaries in which knowledge 

spillovers are most likely at work than administrative boundaries, such as MSAs/CMSAs and 

states. It is, therefore, important to compare the matching rate for BCHCS clusters with a 

matching rate closer to that of the CMSAs used by JTH. To facilitate such a comparison we 

apply the data on patents and citations in our sample using the broader metropolitan area 

definitions instead of the core cluster definitions. In every case, the locational differentials are 

smaller when the metro area definitions are used compared to the corresponding core clusters. 

These findings suggest that the degree of localization of knowledge spillovers will be 

understated in samples based on metropolitan area definitions compared to samples based on the 

R&D clusters.  

We can also speak to the question of whether the transmission of knowledge attenuates with 

distance. The localization of knowledge spillovers in our data appears strongest at small spatial 

scales (5 miles or less) and diminishes with distance. This attenuation reinforces our view that 

the magnitude of the localized knowledge spillovers documented by studies that use state and 
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metropolitan area data may be understated, and the exact geography that is driving the spillovers 

may not be well identified. 

Our results are robust to whether we use total citations or only inventor-added citations, the 

specification of patent technological categories, the method of citation matching, and alternate 

cluster definitions. 
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Source: BCHCS Figure 4a and Figure 4b 
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Source: BCHCS Figure 7a and Figure 7b 

 

 

 

 

 

Figure 2a: Northeastern Corridor Core Clusters, 

d = 5, 10 

Figure 2b: California Core Clusters 
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Figure 3b: Multiscale Core Clusters in Boston 

Source: BCHCS Figure 6a 

Figure 3a: Multiscale Core Clusters in the San Francisco Bay Area  

            Source: BCHCS Figure 5 
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Table 1a: 5-Mile Clusters in the Northeastern Corridor, Baseline Results 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Framingham–Marlborough–Westborough, MA 323 3493 104 2.98 %  3490 104 2.98 %  3490 10 0.29 %  10.4 0.001 
Boston–Cambridge–Waltham–Woburn, MA 2634 27642 1715 6.20 %  27634 1715 6.21 %  27634 469 1.70 %  3.7 0.001 
Silver Spring–Bethesda, MD–McLean, VA 367 3423 89 2.60 %  3414 89 2.61 %  3414 13 0.38 %  6.8 0.001 

Trenton–Princeton, NJ 889 9018 260 2.88 %  9018 260 2.88 %  9018 41 0.45 %  6.3 0.001 
Parsippany–Morristown–Union, NJ 1710 14555 358 2.46 %  14551 358 2.46 %  14551 106 0.73 %  3.4 0.001 

Greenwich–Stamford, CT–Scarsdale, NY 1205 11209 141 1.26 %  11206 141 1.26 %  11206 51 0.46 %  2.8 0.001 
Stratford–Milford, CT 235 1482 12 0.81 %  1481 12 0.81 %  1481 1 0.07 %  12.0 0.001 

Conshohocken–King of Prussia–West Chester, PA 539 2348 67 2.85 %  2348 67 2.85 %  2348 8 0.34 %  8.4 0.001 
Wilmington–New Castle, DE 624 3499 72 2.06 %  3497 72 2.06 %  3497 15 0.43 %  4.8 0.001 

Total 8526 76669 2818 3.68 %  76639 2818 3.68 %  76639 714 0.93 %  3.9 0.001 
 

Table 1b: 10-Mile Clusters in the Northeastern Corridor, Baseline Results 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
-value 

Boston, MA 4719 48275 4257 8.82 %  48259 4257 8.82 %  48259 1436 2.98 %  3.0 0.001 

Washington, D.C. 926 9727 327 3.36 %  9715 327 3.37 %  9715 72 0.74 %  4.5 0.001 

New York, NY 7768 67923 4735 6.97 %  67908 4734 6.97 %  67908 2200 3.24 %  2.2 0.001 

Philadelphia, PA 1594 9022 409 4.53 %  9020 409 4.53 %  9020 91 1.01 %  4.5 0.001 

Total 15007 134947 9728 7.21 %  134902 9727 7.21 %  134902 3799 2.82 %  2.6 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 2a: 5-Mile Clusters in California, Baseline Results 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 444 3430 77 2.24 %  3429 77 2.25 %  3429 13 0.38 %  5.9 0.001 

Los Angeles 454 3640 104 2.86 %  3638 104 2.86 %  3638 12 0.33 %  8.7 0.001 
Palo Alto–San Jose 11318 145359 26667 18.35 %  145281 26651 18.34 %  145281 13037 8.97 %  2.0 0.001 

Dublin–Pleasonton 283 3894 127 3.26 %  3880 127 3.27 %  3880 9 0.23 %  14.1 0.001 

Total 12499 156323 26975 17.26 %  156228 26959 17.26 %  156228 13071 8.37 %  2.1 0.001 

 
Table 2b: 10-Mile Clusters in California, Baseline Results 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 2099 20062 970 4.84 %  20059 970 4.84 %  20059 325 1.62 %  3.0 0.001 
Los Angeles 1266 10668 609 5.71 %  10662 609 5.71 %  10662 113 1.06 %  5.4 0.001 

San Francisco 14963 188784 44169 23.40 %  188673 44144 23.40 %  188673 22329 11.83 %  2.0 0.001 

Total 18328 219514 45748 20.84 %  219394 45723 20.84 %  219394 22767 10.38 %  2.0 0.001 
Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 3a: Citation Location Differentials and Spatial Scale (Northeastern Corridor) 

Cluster Size # of Clusters Originating 

Patents Citing Patents   
Treatment 

Proportion 
Control 

Proportion   
Location 

Differential 

5-Mile 9 8526 76669  3.68 % 0.93 %  3.9 

10-Mile 4 15007 134947  7.21 % 2.82 %  2.6 

20-Mile 3 191502 18795  9.82 % 4.86 %  2.0 

Sources: NBER Patent Data Project and authors' calculations 
 

Table 3b: Citation Location Differentials and Spatial Scale (California) 

Cluster Size # of Clusters Originating 

Patents Citing Patents   
Treatment 

Proportion 
Control 

Proportion   
Location 

Differential 

5-Mile 4 12499 156323  17.26 % 8.37 %  2.1 

10-Mile 3 18328 219514  20.84 % 10.38 %  2.0 

20-Mile 2 223089 50241  22.52 % 11.34 %  2.0 

Sources: NBER Patent Data Project and authors' calculations 
Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date.  

These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is 

assigned. 
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Table 4a: 5-Mile Clusters in the Northeastern Corridor, Examiner-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Framingham–Marlborough–Westborough, MA 323 328 4 1.22 %  327 4 1.22 %  327 1 0.31 %  4.0 0.013 
Boston–Cambridge–Waltham–Woburn, MA 2634 2353 84 3.57 %  2353 84 3.57 %  2353 37 1.57 %  2.3 0.001 
Silver Spring–Bethesda, MD–McLean, VA 367 336 7 2.08 %  335 7 2.09 %  335 1 0.30 %  7.0 0.001 

Trenton–Princeton, NJ 889 793 7 0.88 %  793 7 0.88 %  793 3 0.38 %  2.3 0.061 
Parsippany–Morristown–Union, NJ 1710 1288 16 1.24 %  1288 16 1.24 %  1288 8 0.62 %  2.0 0.009 

Greenwich–Stamford, CT–Scarsdale, NY 1205 922 8 0.87 %  921 8 0.87 %  921 4 0.43 %  2.0 0.025 
Stratford–Milford, CT 235 100 0 0.00 %  100 0 0.00 %  100 0 0.00 %  N/A 0.056 

Conshohocken–King of Prussia–West Chester, PA 539 123 2 1.63 %  123 2 1.63 %  123 0 0.00 %  N/A 0.037 
Wilmington–New Castle, DE 624 189 2 1.06 %  189 2 1.06 %  189 1 0.53 %  2.0 0.096 

Total 8526 6432 130 2.02 %  6429 130 2.02 %  6429 55 0.86 %  2.4 0.001 

 
Table 4b: 10-Mile Clusters in the Northeastern Corridor, Examiner-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Boston, MA 4719 4145 216 5.21 %  4144 216 5.21 %  4144 110 2.65 %  2.0 0.001 
Washington, D.C. 926 811 23 2.84 %  810 23 2.84 %  810 6 0.74 %  3.8 0.001 

New York, NY 7768 5511 284 5.15 %  5508 284 5.16 %  5508 152 2.76 %  1.9 0.001 
Philadelphia, PA 1594 504 14 2.78 %  504 14 2.78 %  504 3 0.60 %  4.7 0.001 

Total 15007 10971 537 4.89 %  10966 537 4.90 %  10966 271 2.47 %  2.0 0.001 
Sources: NBER Patent Data Project and authors' calculations. 
*The subset of citing patents for which we obtained a similar control patent among citations made by patent examiners (2001 onwards). See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 5a: 5-Mile Clusters in California, Examiner-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 444 273 3 1.10 %  273 3 1.10 %  273 1 0.37 %  3.0 0.024 

Los Angeles 454 258 3 1.16 %  258 3 1.16 %  258 1 0.39 %  3.0 0.032 
Palo Alto–San Jose 11318 12306 1603 13.03 %  12304 1603 13.03 %  12304 1160 9.43 %  1.4 0.001 

Dublin–Pleasonton 283 277 1 0.36 %  277 1 0.36 %  277 1 0.36 %  1.0 0.440 
Total 12499 13114 1610 12.28 %  13112 1610 12.28 %  13112 1163 8.87 %  1.4 0.000 

 
Table 5b: 10-Mile Clusters in California, Examiner-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 2099 1791 72 4.02 %  1791 72 4.02 %  1791 30 1.68 %  2.4 0.001 
Los Angeles 1266 732 15 2.05 %  732 15 2.05 %  732 7 0.96 %  2.1 0.005 

San Francisco 14963 15738 2631 16.72 %  15736 2631 16.72 %  15736 1943 12.35 %  1.4 0.001 
Total 18328 18261 2718 14.88 %  18259 2718 14.89 %  18259 1980 10.84 %  1.4 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent among citations made by patent examiners (2001 onwards). See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 6a: 5-Mile Clusters in the Northeastern Corridor, Inventor-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Framingham–Marlborough–Westborough, MA 323 2910 93 3.20 %  2908 93 3.20 %  2908 9 0.31 %  10.3 0.001 

Boston–Cambridge–Waltham–Woburn, MA 2634 23522 1528 6.50 %  23519 1528 6.50 %  23519 406 1.73 %  3.8 0.001 

Silver Spring–Bethesda, MD–McLean, VA 367 2843 69 2.43 %  2839 69 2.43 %  2839 11 0.39 %  6.3 0.001 
Trenton–Princeton, NJ 889 7676 225 2.93 %  7676 225 2.93 %  7676 33 0.43 %  6.8 0.001 

Parsippany–Morristown–Union, NJ 1710 12151 312 2.57 %  12150 312 2.57 %  12150 89 0.73 %  3.5 0.001 
Greenwich–Stamford, CT–Scarsdale, NY 1205 9602 118 1.23 %  9601 118 1.23 %  9601 45 0.47 %  2.6 0.001 

Stratford–Milford, CT 235 1243 12 0.97 %  1243 12 0.97 %  1243 1 0.08 %  12.0 0.001 
Conshohocken–King of Prussia–West Chester, PA 539 2006 61 3.04 %  2006 61 3.04 %  2006 6 0.30 %  10.2 0.001 

Wilmington–New Castle, DE 624 3106 65 2.09 %  3105 65 2.09 %  3105 14 0.45 %  4.6 0.001 

Total 8526 65059 2483 3.82 %  65047 2483 3.82 %  65047 614 0.94 %  4.0 0.001 

 
Table 6b: 10-Mile Clusters in the Northeastern Corridor, Inventor-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Boston, MA 4719 40714 3824 9.39 %  40705 3824 9.39 %  40705 1229 3.02 %  3.1 0.001 

Washington, D.C. 926 8164 271 3.32 %  8157 271 3.32 %  8157 59 0.72 %  4.6 0.001 

New York, NY 7768 57604 4019 6.98 %  57601 4019 6.98 %  57601 1856 3.22 %  2.2 0.001 

Philadelphia, PA 1594 7936 373 4.70 %  7935 373 4.70 %  7935 81 1.02 %  4.6 0.001 
Total 15007 114418 8487 7.42 %  114398 8487 7.42 %  114398 3225 2.82 %  2.6 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent among citations made by inventors (2001 onwards). See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned.
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Table 7a: 5-Mile Clusters in California, Inventor-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 444 2909 71 2.44 %  2909 71 2.44 %  2909 12 0.41 %  5.9 0.001 

Los Angeles 454 3054 84 2.75 %  3054 84 2.75 %  3054 10 0.33 %  8.4 0.001 
Palo Alto–San Jose 11318 121058 22804 18.84 %  121016 22798 18.84 %  121016 10820 8.94 %  2.1 0.001 

Dublin–Pleasonton 283 3294 100 3.04 %  3293 100 3.04 %  3293 7 0.21 %  14.3 0.001 

Total 12499 130315 23059 17.69 %  130272 23053 17.70 %  130272 10849 8.33 %  2.1 0.001 

 
Table 7b: 10-Mile Clusters in California, Inventor-Added Citations 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 2099 16741 838 5.01 %  16741 838 5.01 %  16741 276 1.65 %  3.0 0.001 
Los Angeles 1266 8989 488 5.43 %  8988 488 5.43 %  8988 99 1.10 %  4.9 0.001 

San Francisco 14963 157711 38009 24.10 %  157656 37997 24.10 %  157656 18534 11.76 %  2.1 0.001 

Total 18328 183441 39335 21.44 %  183385 39323 21.44 %  183385 18909 10.31 %  2.1 0.001 
Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent among citations made by inventors (2001 onwards). See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Area Mean Std. Dev. n Mean Std. Dev. n t- statistic 

Boston 12.888 18.148 4,704 9.949 14.895 2,644 7.491 

New York City 11.065 16.338 8,279 9.491 14.410 10,600 6.912 

Philadelphia 8.030 9.657 1,598 7.654 10.515 3,655 1.262 

Washington, D.C. 11.707 17.457 1,273 7.825 10.371 1,741 7.073 

Southern California 11.464 15.734 3,668 9.087 12.074 6,716 7.956 

Northern California 15.532 19.845 15,106 10.811 15.110 2,680 14.155 

Sources: NBER Patent Data Project and authors’ calculations 

†: Citations per patent granted, 1996–1997 

1: Inside Cluster refers to all patents in one or more 10-mile clusters in the region. 

2: Outside Cluster refers to all patents outside of the 10-mile clusters in the regions defined as follows: 

Boston (Massachusetts/New Hampshire/Rhode Island), New York City (New York/Connecticut/northern New Jersey), 

Philadelphia (Delaware/eastern Pennsylvania/southern New Jersey), Washington, D.C. (Maryland/D.C./Virginia), 

southern California (10 southern counties), and northern California (remaining counties). 

Table 8: Citation Differentia Between Labs Inside Clusters vs. Labs Outside Clusters (Difference in Means Test) † 

Inside Cluster 
1 

Outside Cluster 
2 
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Table 9a: 5-Mile Clusters in the Northeastern Corridor, STEM Worker Clusters 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Bethesda–Rockville, MD–Vienna, VA 414 4289 100 2.33 %  4280 100 2.34 %  4280 18 0.42 %  5.6 0.001 
Columbia–Laurel, MD 53 494 3 0.61 %  494 3 0.61 %  494 0 0.00 %  N/A 0.001 

Phoenix–Cockeysville, MD 72 419 0 0.00 %  419 0 0.00 %  419 0 0.00 %  N/A 0.118 
Wilmington, DE 539 2348 67 2.85 %  2348 67 2.85 %  2348 8 0.34 %  8.4 0.001 

King of Prussia, PA 974 5532 242 4.37 %  5531 242 4.38 %  5531 36 0.65 %  6.7 0.001 
Philadephia, PA 81 617 6 0.97 %  617 6 0.97 %  617 0 0.00 %  N/A 0.001 

Princeton, NJ–New York, NY 5124 45968 2322 5.05 %  45957 2322 5.05 %  45957 1049 2.28 %  2.2 0.001 
Long Island, NY 270 1913 18 0.94 %  1913 18 0.94 %  1913 4 0.21 %  4.5 0.001 

Danbury, CT 347 4405 162 3.68 %  4405 162 3.68 %  4405 11 0.25 %  14.7 0.001 
Stratford, CT 240 1499 12 0.80 %  1498 12 0.80 %  1498 2 0.13 %  6.0 0.001 

North Haven, CT 105 456 13 2.85 %  456 13 2.85 %  456 1 0.22 %  13.0 0.001 
Hartford, CT 87 503 8 1.59 %  503 8 1.59 %  503 0 0.00 %  N/A 0.001 

Hudson–Westborough, MA 255 2839 84 2.96 %  2837 84 2.96 %  2837 7 0.25 %  12.0 0.001 
Boston–Cambridge, MA 2958 30895 2057 6.66 %  30885 2057 6.66 %  30885 590 1.91 %  3.5 0.001 

Nashua, NH 295 2964 53 1.79 %  2963 53 1.79 %  2963 5 0.17 %  10.6 0.001 
Binghamton, NY 23 332 0 0.00 %  332 0 0.00 %  332 0 0.00 %  N/A 0.048 

Syracuse, NY 40 238 15 6.30 %  238 15 6.30 %  238 0 0.00 %  N/A 0.001 
Buffalo, NY 91 410 1 0.24 %  410 1 0.24 %  410 0 0.00 %  N/A 0.193 

Pittsburgh, PA 42 165 2 1.21 %  165 2 1.21 %  165 0 0.00 %  N/A 0.004 
Pittsburgh–Verona, PA 70 426 4 0.94 %  426 4 0.94 %  426 0 0.00 %  N/A 0.001 

Total 12080 106712 5169 4.84 %  106677 5169 4.85 %  106677 1731 1.62 %  3.0 0.001 
Sources: NBER Patent Data Project and authors’ calculations  

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen 

with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 

The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers as used in Table 1.  
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Table 9b: 10-Mile Clusters in the Northeastern Corridor, STEM Worker Clusters 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Richmond, VA 154 666 71 10.66 %  666 71 10.66 %  666 5 0.75 %  14.2 0.001 

Washington, D.C.–Baltimore, MD 1376 12709 537 4.23 %  12696 537 4.23 %  12696 127 1.00 %  4.2 0.001 
Hagerstown, MD 17 40 1 2.50 %  40 1 2.50 %  40 0 0.00 %  N/A 0.091 

Lancaster, PA 104 565 8 1.42 %  565 8 1.42 %  565 1 0.18 %  8.0 0.001 

Philadelphia, PA–Wilmington, DE–Cherry Hill, NJ 2601 14152 990 7.00 %  14150 990 7.00 %  14150 214 1.51 %  4.6 0.001 
Pittsburgh, PA 921 5803 400 6.89 %  5799 400 6.90 %  5799 25 0.43 %  16.0 0.001 

Binghamton, NY 329 3124 31 0.99 %  3122 31 0.99 %  3122 2 0.06 %  15.5 0.001 
Syracuse, NY 130 678 44 6.49 %  678 44 6.49 %  678 1 0.15 %  44.0 0.001 

Rochester, NY 1571 7979 391 4.90 %  7975 391 4.90 %  7975 75 0.94 %  5.2 0.001 
Buffalo, NY 122 632 3 0.47 %  632 3 0.47 %  632 0 0.00 %  N/A 0.015 

Boston, MA 4682 47925 3898 8.13 %  47908 3898 8.14 %  47908 1386 2.89 %  2.8 0.001 

New York, NY–Northern NJ–CT 9514 80890 6238 7.71 %  80871 6238 7.71 %  80871 3336 4.13 %  1.9 0.001 
Total 21521 175163 12612 7.20 %  175102 12612 7.20 %  175102 5172 2.95 %  2.4 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers as 

used in Table 1. 
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Table 10a: 5-Mile Clusters in California, STEM Worker Clusters 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego–La Jolla 563 4129 119 2.88 %  4128 119 2.88 %  4128 21 0.51 %  5.7 0.001 

Carlsbad 261 1628 43 2.64 %  1628 43 2.64 %  1628 9 0.55 %  4.8 0.001 

Irvine 946 7456 375 5.03 %  7454 375 5.03 %  7454 52 0.70 %  7.2 0.001 

Camarillo 199 1942 39 2.01 %  1942 39 2.01 %  1942 3 0.15 %  13.0 0.001 

Santa Barbara 82 1401 55 3.93 %  1401 55 3.93 %  1401 1 0.07 %  55.0 0.001 

San Jose–Santa Clara 14220 182287 42532 23.33 %  182191 42514 23.33 %  182191 21282 11.68 %  2.0 0.001 

Pleasonton 283 3895 127 3.26 %  3881 127 3.27 %  3881 9 0.23 %  14.1 0.001 

Santa Rosa 127 1013 29 2.86 %  1012 29 2.87 %  1012 1 0.10 %  29.0 0.001 

Total 16681 203751 43319 21.26 %  203637 43301 21.26 %  203637 21378 10.50 %  2.0 0.001 

 
Table 10b: 10-Mile Clusters in California, STEM Worker Clusters 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 2146 20486 1056 5.15 %  20483 1056 5.16 %  20483 347 1.69 %  3.0 0.001 

Anaheim–Irving 1911 15333 1063 6.93 %  15324 1063 6.94 %  15324 203 1.32 %  5.2 0.001 

Oxnard–Camarillo 76 475 15 3.16 %  475 15 3.16 %  475 0 0.00 %  N/A 0.001 

Santa Barbara 288 3296 129 3.91 %  3296 129 3.91 %  3296 6 0.18 %  21.5 0.001 

San Francisco–Palo Alto–San Jose 14564 185477 44083 23.77 %  185379 44064 23.77 %  185379 21975 11.85 %  2.0 0.001 

Santa Rosa 144 1197 54 4.51 %  1195 53 4.44 %  1195 2 0.17 %  26.5 0.001 

Total 19129 226264 46400 20.51 %  226152 46380 20.51 %  226152 22533 9.96 %  2.1 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers as 

used in Table2. 
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Table 11: MSAs, Baseline Results 

   Treatment Group  Control Group      

Column A B C D  E F G  H I J  K L M 

Cluster Originating Patents Citing Patents From Same 

Cluster Percent (C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Location 

Differential 

Baseline 10-

mile clusters 

Boston 5732 57407 5511 9.60 %  57389 5511 9.60 %  57389 2008 3.50 %  2.7 0.001 3.0 

Los Angeles 6192 47083 5155 10.95 %  47069 5155 10.95 %  47069 1709 3.63 %  3.0 0.001 5.4 

New York 10663 95177 7798 8.19 %  95150 7797 8.19 %  95150 4655 4.89 %  1.7 0.001 2.2 

Philadelphia 4406 26955 2024 7.51 %  26952 2023 7.51 %  26952 592 2.20 %  3.4 0.001 4.5 

San Diego 2717 24387 1494 6.13 %  24382 1494 6.13 %  24382 524 2.15 %  2.9 0.001 3.0 

San Francisco 18530 230392 63356 27.50 %  230264 63329 27.50 %  230264 32819 14.25 %  1.9 0.001 2.0 

Washington, D.C. 2653 23907 1513 6.33 %  23891 1510 6.32 %  23891 440 1.84 %  3.4 0.001 4.5 

Total 50893 505308 86851 17.19 %  505097 86819 17.19 %  505097 42747 8.46 %  2.0 0.001 2.1 

Based on a 1990 CMSA definitions, with the exception of San Diego, which is based on a 1990 MSA definition  

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent's application date. These control 

patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 12a: 5-Mile Clusters in the Northeastern Corridor, Originating-Citing-Control Triad Subclass Restriction 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Framingham–Marlborough–Westborough, MA 323 3493 104 2.98 %  966 25 2.59 %  966 2 0.21 %  12.5 0.001 
Boston–Cambridge–Waltham–Woburn, MA 2634 27642 1715 6.20 %  7178 564 7.86 %  7178 73 1.02 %  7.7 0.001 
Silver Spring–Bethesda, MD–McLean, VA 367 3423 89 2.60 %  959 26 2.71 %  959 1 0.10 %  26.0 0.001 

Trenton–Princeton, NJ 889 9018 260 2.88 %  2321 97 4.18 %  2321 7 0.30 %  13.9 0.001 
Parsippany–Morristown–Union, NJ 1710 14555 358 2.46 %  3949 113 2.86 %  3949 20 0.51 %  5.6 0.001 

Greenwich–Stamford, CT–Scarsdale, NY 1205 11209 141 1.26 %  3147 54 1.72 %  3147 12 0.38 %  4.5 0.001 
Stratford–Milford, CT 235 1482 12 0.81 %  456 4 0.88 %  456 0 0.00 %  N/A 0.001 

Conshohocken–King of Prussia–West Chester, PA 539 2348 67 2.85 %  607 17 2.80 %  607 1 0.16 %  17.0 0.001 
Wilmington–New Castle, DE 624 3499 72 2.06 %  964 32 3.32 %  964 1 0.10 %  32.0 0.001 

Total 8526 76669 2818 3.68 %  20547 932 4.54 %  20547 117 0.57 %  8.0 0.001 

 
Table 12b: 10-Mile Clusters in the Northeastern Corridor, Disaggregated Subclasses 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

Boston, MA 4719 48275 4257 8.82 %  12548 1214 9.67 %  12548 216 1.72 %  5.6 0.001 
Washington, D.C. 926 9727 327 3.36 %  2565 123 4.80 %  2565 11 0.43 %  11.2 0.001 

New York, NY 7768 67923 4735 6.97 %  18774 1475 7.86 %  18774 472 2.51 %  3.1 0.001 
Philadelphia, PA 1594 9022 409 4.53 %  2238 127 5.67 %  2238 15 0.67 %  8.5 0.001 

Total 15007 134947 9728 7.21 %  36125 2939 8.14 %  36125 714 1.98 %  4.1 0.001 
Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same primary technology classification as the citing patent and such that they have at least one subclass in common with both the originating and the citing patent. Their 

application date must also be within a one-year window of the citing patent's application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be 

drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 13a: 5-Mile Clusters in California, Disaggregated Subclasses 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 444 3430 77 2.24 %  1038 29 2.79 %  1038 5 0.48 %  5.8 0.001 

Los Angeles 454 3640 104 2.86 %  860 23 2.67 %  860 4 0.47 %  5.8 0.001 
Palo Alto–San Jose 11318 145359 26667 18.35 %  40729 7820 19.20 %  40729 4619 11.34 %  1.7 0.001 

Dublin–Pleasonton 283 3894 127 3.26 %  1070 66 6.17 %  1070 2 0.19 %  33.0 0.001 
Total 12499 156323 26975 17.26 %  43697 7938 18.17 %  43697 4630 10.60 %  1.7 0.001 

 
Table 13b: 10-Mile Clusters in California, Disaggregated Subclasses 

   Treatment Group  Control Group     

Column A B C D  E F G  H I J  K L 

Cluster Originating 

Patents 
Citing 

Patents 
From Same 

Cluster 
Percent 

(C/B)  
Matched 

Citing 

Patents* 
From Same 

Cluster* 
Percent 

(F/E)  Control 

Patents** 
From Same 

Cluster** 
Percent 

(I/H)  
Location 

Differential 

(G/J) 
P-value 

San Diego 2099 20062 970 4.84 %  6262 318 5.08 %  6262 139 2.22 %  2.3 0.001 
Los Angeles 1266 10668 609 5.71 %  2738 153 5.59 %  2738 53 1.94 %  2.9 0.001 

San Francisco 14963 188784 44169 23.40 %  52987 13043 24.62 %  52987 7720 14.57 %  1.7 0.001 
Total 18328 219514 45748 20.84 %  61987 13514 21.80 %  61987 7912 12.76 %  1.7 0.001 

Sources: NBER Patent Data Project and authors' calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
**Control Patents are chosen to have the same primary technology classification as the citing patent and such that they have at least one subclass in common with both the originating and the citing patent. Their 

application date must also be within a one-year window of the citing patent's application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be 

drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 14a: 5-Mile Clusters in the Northeastern Corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t-Statistic 

Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97%  2,845 80 2.81%  2,845 9 0.32%  8.9 7.6 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21%  22,937 1,400 6.10%  22,937 284 1.24%  4.9 27.9 

Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60%  2,779 69 2.48%  2,779 15 0.54%  4.6 6.0 

Trenton–Princeton, NJ 889 9,022 260 2.88%  7,453 207 2.78%  7,453 25 0.34%  8.3 12.1 

Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46%  11,912 282 2.37%  11,912 91 0.76%  3.1 10.0 

Greenwich–Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26%  9,277 109 1.17%  9,277 49 0.53%  2.2 4.8 

Stratford–Milford, CT 235 1,484 12 0.81%  1,228 11 0.90%  1,228 2 0.16%  5.5 2.5 

Conshohocken–King of Prussia–West Chester, PA 539 2,352 68 2.89%  1,964 53 2.70%  1,964 13 0.66%  4.1 5.0 

Wilmington–New Castle, DE 624 3,501 72 2.06%  2,940 53 1.80%  2,940 11 0.37%  4.8 5.3 

                

All 5-Mile Clusters 8,526 76,730 2,821 3.68%  63,335 2,264 3.57%  63,335 499 0.79%  4.5 34.1 

        

 

                      

                

                                

Table 14b: 10-Mile Clusters in the Northeastern Corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t-Statistic 

Boston, MA 4,719 48,315 4,263 8.82%  39,760 3,493 8.79%  39,760 896 2.25%  3.9 40.7 

Washington, D.C. 926 9,741 327 3.36%  7,851 250 3.18%  7,851 58 0.74%  4.3 11.1 

New York, NY 7,768 67,982 4,738 6.97%  55,989 3,706 6.62%  55,989 1,710 3.05%  2.2 27.9 

Philadelphia, PA 1,594 9,028 409 4.53%  7,603 327 4.30%  7,603 68 0.89%  4.8 13.3 

                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%  111,203 7,776 6.99%  111,203 2,732 2.46%  2.8 50.7 

Sources: NBER Patent Data Project and authors’ calculations 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure. Control patents must have the same three-digit technology classification as the citing patent, and their application date must be 

within a one-year window of the citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents 
assigned to the same firm to which the originating patent is assigned. Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having 

the same grant year and the number of citations that the treatment patent receives. 
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Table 15a: 5-Mile Clusters in California, Coarsened Exact Matching 
 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t-Statistic 

San Diego 444 3,434 77 2.24%  2,811 58 2.06%  2,811 14 0.50%  4.1 5.2 

Los Angeles 454 3,646 104 2.85%  3,019 79 2.62%  3,019 5 0.17%  15.8 8.2 

Palo Alto–San Jose 11,318 145,471 26,684 18.34%  118,537 21,223 17.90%  118,537 8,962 7.56%  2.4 76.5 

Dublin–Pleasonton 283 3,899 127 3.26%  3,199 87 2.72%  3,199 9 0.28%  9.7 8.1 

                

All 5-Mile Clusters 12,499 156,450 26,992 17.25%  127,566 21,447 16.81%  127,566 8,990 7.05%  2.4 77.0 

        

 

                      

                

                                

Table 15b: 10-Mile Clusters in California, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t-Statistic 

San Diego 2,099 20,079 970 4.83%  16,392 801 4.89%  16,392 335 2.04%  2.4 14.1 

Los Angeles 1,266 10,685 609 5.70%  8,915 457 5.13%  8,915 90 1.01%  5.1 16.1 

San Francisco 14,963 188,943 44,215 23.40%  154,195 35,457 22.99%  154,195 14,455 9.37%  2.5 104.5 

                

All 10-Mile Clusters 18,328 219,707 45,794 20.84%  179,502 36,715 20.45%  179,502 14,880 8.29%  2.5 105.5 

Source: NBER Patent Data Project and authors’ calculations 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure. Control patents must have the same three-digit technology classification as the citing patent, and their application date must be 
within a one-year window of the citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents 

assigned to the same firm to which the originating patent is assigned. Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having 

the same grant year and the number of citations that the treatment patent receives. 
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Table 16† 

Northeastern Corridor 

Cluster Name 
Coefficient on 

Originating Patent ˆ( )h   

Standard 

Errors 

Framingham–Marlborough–Westborough, 

MA 
2.82 0.1062* 

Boston–Cambridge–Waltham–Woburn, MA 1.5 0.0300* 

Silver Spring–Bethesda, MD–McLean, VA   

Trenton–Princeton, NJ 2.17 0.0737* 

Parsippany–Morristown–Union, NJ 1.26 0.0603* 

Greenwich–Stamford, CT–Scarsdale, NY 0.8 0.0967* 

Stratford–Milford, CT 2.26 0.3235* 

Conshohocken-King of Prussia-West 

Chester, PA 
3.13 

0.1321* 

Wilmington–New Castle, DE 2.28 0.1335* 

Boston, MA (10 mile) 1.37 0.0199* 

Washington, D.C. (10 mile) 1.65 0.0652* 

New York, NY (10 mile) 0.79 0.0192* 

Philadelphia, PA (10 mile) 2.13 0.0574* 

Broad Regions 

Northeastern corridor, 5-mile Total 0.77 0.0167* 

Northeastern corridor, 10-mile Total 0.68 0.0113* 

 
California 

Cluster Name 

Coefficient on 

Originating Patent 

 ˆ( )h   

Standard 

Errors 

San Diego 2.34 0.1251* 

Los Angeles 2.52 0.1137* 

Palo Alto–San Jose 1.06 0.0107* 

Dublin–Pleasonton 2.81 0.1098* 

San Diego (10 mile) 1.56 0.0381* 

Los Angeles (10 mile) 2.06 0.0493* 

San Francisco (10 mile) 1.09 0.0093* 

Broad Regions 

California, 5-mile Total 1.01 0.0103* 

California, 10-mile Total 0.99 0.0086* 
 †The California regressions included 1,390,727 observations 

The northeastern corridor regressions included 1,444,272 observations. 

Robust standard errors are reported. 

 *Indicates significance at the 1 percent level. 
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Table 17: Summary of Location Differentials 

 Northeastern Corridor  California 

 
5-Mile 

Cluster 

10-Mile 

Cluster 
 

5-Mile 

Cluster 

10-Mile 

Cluster 

      

Baseline 3.9 2.6  2.1 2.0 

      

Examiner-Added 2.4 2.0  1.4 1.4 

      

Inventor-Added 4.0 2.6  2.1 2.1 

      

STEM 3.0 2.4  2.0 2.1 

      

CMSA  2.1 

      

Subclass Restriction 8.0 4.1  1.7 1.7 

      

CEM 4.5 2.8  2.4 2.5 
†Baseline results from Column K in Tables 1 and 2; Examiner-Added results from Column K in Tables 4 

and 5; Inventor-Added results from Column K in Tables 6 and 7; STEM results from Column K in Tables 

9 and 10; CMSA results from Column K in Table 11; Subclass Restriction results from Column K in 

Tables 12 and 13; and CEM results from Column K in Tables 14 and 15. 
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