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Abstract

We study how the introduction of a central bank-issued digital currency affects interest

rates, the level of economic activity, and welfare in an environment where both central bank

money and private bank deposits are used in exchange. Banks in our model are financially

constrained, and the liquidity premium on bank deposits affects the level of aggregate invest-

ment. We study the optimal design of a digital currency in this setting, including whether

it should pay interest and how widely it should circulate. We highlight an important policy

tradeoff: while a digital currency tends to promote effi ciency in exchange, it can also crowd

out bank deposits, raise banks’funding costs, and decrease investment. Despite these effects,

introducing a central bank digital currency often raises welfare.
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1. INTRODUCTION

Recent technological advances have introduced the possibility for central banks to issue a

new type of money, often referred to as a digital currency. Traditionally, central banks have

issued physical currency, in the form of paper notes and/or coins, and allowed banks and select

other institutions to hold deposits at the central bank, often called reserves. A digital currency

could combine features of these two existing types of money and, potentially, introduce new

features as well. Like physical currency, a central bank-issued digital currency could be made

widely available to firms and households in the economy. Like reserves, a digital currency

would exist in electronic form, making it easier than physical currency to store and to use in

transactions at a distance, and could potentially earn interest. Academics and policy makers

have begun discussing a range of issues from technical design features to political economy

concerns.1 Central banks themselves have begun evaluating the potential benefits and costs of

issuing digital currency.2 At a fundamental level, however, the macroeconomic implications of

such a currency are not well understood.

We study how the introduction of a central bank digital currency affects interest rates, the

level of economic activity, and welfare in an environment where both central bank money and

private bank deposits are used in exchange. We are particularly interested in identifying the

extent to which a digital currency issued by the central bank would crowd out private bank

deposits and thereby potentially lead to disintermediation in the financial system. We study

three distinct forms of digital currency that differ in the types of exchange they can facilitate.

We show that when a digital currency competes with bank deposits as a medium of exchange,

it tends to raise banks’funding cost and decrease bank-funded investment. At the same time,

however, the availability of this new type of money increases production of those goods that can

be purchased with it and can potentially increase total output. We derive the optimal design of

a digital currency in our setting and provide conditions under which introducing such a currency

raises welfare.
1See, for example, Broadbent (2016), Cecchetti and Schoenholtz (2017), Lagarde (2018), Mersch (2017), and

Wadsworth (2018).
2See the discussions in Bank for International Settlements (2018), Bank of Israel (2018), Norges Bank (2018),

and Sverges Riksbank (2018). Barontini and Holden (2019) describe a survey of 63 central banks in which 70%

reported currently studying central bank digital currency in some form.
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We base our analysis on a model in which some form of money is essential for exchange,

as in Lagos and Wright (2005) and the subsequent New Monetarist literature.3 We introduce

an investment friction into this environment that creates borrowing constraints, as in Kiyotaki

and Moore (1997, 2005), Holmstrom and Tirole (1998), and others. Specifically, bankers in our

model have access to productive projects but face credit constraints due to limited pledgeability

of their returns. Because of these credit constraints, the level of aggregate investment may be

ineffi ciently low. To fund their projects, bankers can issue deposits that serve as a means of

payment in decentralized markets. The ability of these deposits to facilitate exchange gives rise

to a liquidity premium, which in turn affects banks’funding costs and the level of investment.

There is also a central bank that issues physical currency and, potentially, a digital currency.

Two types of meetings occur in decentralized markets. In one type, the seller of goods is only

able to verify cash and, therefore, will not accept bank deposits as payment. We interpret these

meetings as capturing transactions in which concerns about privacy, fees, and/or a lack of access

to the bank-based payment system lead parties to trade using physical currency. In the other

type of meeting, the seller of goods is only able to verify bank deposits and, therefore, will not

accept cash in exchange. We interpret this second type of meeting as capturing transactions

in which the value of trade and/or the distance between the buyer and seller make the use of

physical currency impractical. Having these different types of meetings allows us to study design

choices that affect how widely a central bank digital currency would be accepted.

We first study equilibrium in our model in the absence of a digital currency. Agents who will

be buyers in the decentralized market acquire a balance of either cash or bank deposits in the

previous centralized market. The inflation rate set by the central bank determines the oppor-

tunity cost of holding cash and, therefore, the level of production of goods that are purchased

with cash. The interest rate on bank deposits is determined jointly by the transactions demand

for deposits and the supply of available investment projects. When such projects are relatively

scarce, a liquidity premium arises and the equilibrium interest rate on deposits falls below the

rate of time preference. This lower interest rate helps overcome the financial friction faced by

bankers and raises investment. At the same time, however, it raises the opportunity cost of

holding deposits and, therefore, causes a decrease in the production of goods that are purchased

with deposits.

3For an overview of this literature, see the survey papers by Williamson and Wright (2010a, 2010b) and Lagos,

Rocheteau, and Wright (2017), as well as the many references therein.
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Within this framework, we interpret a central bank digital currency as a new, technologically

distinct type of outside money. In practice, a central bank could design such a currency in a

number of different ways. Would it bear interest, for example? Would its users be required to

hold accounts at the central bank, or could they remain anonymous to the authorities, as is the

case with physical currency? What fees and other costs would users face? Are any restrictions

placed on the size of users’balances or of transactions? We capture different possible designs

within our framework by making different assumptions about how the digital currency can be

used. We first assume the digital currency is cash-like in the sense that it can be used in

transactions that currently involve physical currency, but not those that currently involve bank

deposits. We think of this case as capturing a design that aims to maintain users’anonymity and

minimize usage costs, particularly for smaller transactions. In our second case, the currency is

deposit-like in the sense that it can be used in transactions that currently involve bank deposits,

but not those that currently involve cash. This assumption might be appropriate for a currency

that is based on users holding accounts at the central bank, for example. Our final case is

a universal digital currency that can be easily used in all types of transactions. Our aim in

making these assumptions is not to focus on what is (or is not) technologically feasible, but

rather to identify the distinct macroeconomic effects of different broad categories of possible

digital currency designs.

In making these design choices, the central bank faces a general problem of aggregate liquidity

management. By paying a higher interest rate and/or designing the currency so it can be used

in a wider range of transactions, the central bank can increase the supply of publicly provided

(or outside) liquidity in the economy. A larger supply of public liquidity tends to promote more

effi cient levels of exchange. However, this outside liquidity also crowds out inside liquidity in

the form of bank deposits and thus causes a decrease in bank-financed investment. The optimal

design of a digital currency requires balancing these competing effects.

If the digital currency is cash-like, its introduction can increase the production and exchange of

goods that are purchased with cash but has no effect on other types of exchange or on investment.

If the digital currency is deposit-like, in contrast, its use will tend to crowd out bank deposits,

raise the real interest rate on these deposits, and decrease bank-financed investment. The

magnitude of this disintermediation effect is increasing in the interest rate paid on the digital

currency by the central bank. We derive the optimal interest rate and show that it balances two
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competing effects: a higher interest rate promotes more effi cient levels of exchange but decreases

the level of investment.

When the digital currency is universal, the policy tradeoff is similar but the interest rate

chosen by the central bank can now affect the level of exchange in all decentralized meetings.

We show that the optimal interest rate in the universal case is higher than for a deposit-like

currency. Which approach yields the highest welfare depends on parameter values. We derive

conditions under which some form of digital currency raises welfare, as well as conditions under

which each specific type is desirable. In general terms, a deposit-like system tends to be preferred

when investment frictions are large and it is valuable for the central bank to be able to set a

low interest rate on the digital currency to avoid crowding out too much private investment.

When investment frictions are small, in contrast, such crowding out is less of a concern and the

central bank will tend to set a higher interest rate on either type of digital currency. In such

cases, a universal system is likely to be preferred because it allows a wider range of decentralized

transactions to benefit from this higher interest rate.

The academic literature on digital currencies is small but growing rapidly. Several recent

papers discuss the possibility of a central bank digital currency and the many design choices

that would need to be made in order to issue one. Bech and Garratt (2017) provide a useful

starting point by laying out a taxonomy of types of money and comparing different types of

possible digital currencies with existing payment options.4 Bordo and Levin (2017) argue that

central banks should issue digital currencies and that doing so will raise welfare. They discuss a

range of design issues, arguing, for example, that the currency should be based on accounts at the

central bank in order to avoid the verification costs associated with decentralized, token-based

systems. They also believe the currency should bear interest as a way of promoting effi cient

exchange. While their recommendations draw on a background of monetary theory as well

as on practical experience, they do not present a model nor any formal justification for their

conclusions. In addition, they do not address the question of whether a central bank digital

currency will crowd out bank deposits or affect the aggregate level of investment.

Despite the widespread interest in the topic, only a handful of models have been developed to

4Bank for International Settlements (2018) discusses possible impacts of a central bank digital currency on

payments, monetary policy, and the financial system. Interesting discussions are also provided by Ali et al.

(2014), Engert and Fung (2017), Fung and Halaburda (2016), Kahn, Rivadeneyra, and Wong (2018), Ketterer

and Andrade (2016), and Niepelt (2018).
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formally analyze the impact of a central bank digital currency. The earliest contribution is from

Barrdear and Kumhof (2016), who introduce a central bank digital currency into a quantitative

DSGE model to assess its impact on GDP and to evaluate different monetary policy rules. In

their model, the real interest rate is assumed to be increasing in the stock of government bonds

held by the public. When the central bank issues digital currency by purchasing government

bonds, therefore, this action lowers the real interest rate and tends to thereby raise GDP. In other

words, an important part of the effects of issuing a digital currency in their framework comes

from the asset side of the central bank’s balance sheet rather than from the digital currency

per se. In our model, in contrast, the central bank’s liabilities affect the liquidity premium and

thereby alter equilibrium interest rates and investment.

The model in Davoodalhosseini (2018) is closer to our analysis in that it also studies the role

of a central bank digital currency as a new, potentially interest-bearing payment instrument.

His focus, however, is on how the introduction of a digital currency affects the use of physical

currency and on its implications for monetary policy. While we also study a cash-like digital

currency, our primary focus is on the implications of a digital currency that competes with

bank deposits as a means of payment. Andolfatto (2018) shares the focus on bank deposits

and studies an environment with a monopoly bank that has market power in setting interest

rates. In his setting, introducing a central bank digital currency affects the equilibrium interest

rate on deposits, but not the interest rate on bank lending or the level of investment. In our

model, in contrast, competition in the banking sector transmits a change in bank funding costs

to equilibrium lending rates and investment.

The remainder of the paper is organized as follows. We present the model environment and

derive the equilibrium conditions for a general formulation of the type(s) of currency available

to agents in Section 2. We analyze equilibrium in a benchmark case without a digital currency

in Section 3 and study the effects of introducing different types of digital currency in Section 4.

We discuss optimal currency design and offer concluding remarks in Section 5.

2. THE MODEL

In this section, we describe the physical environment and derive the conditions characterizing

an equilibrium of our model for a general formulation of the type(s) of currency available to

agents. The subsequent sections specialize the analysis to study equilibrium allocations and

6



welfare under different designs for a central bank digital currency.

2.1 The environment

Time is discrete and continues forever. Each period is divided into two subperiods in which

economic activity will differ. There is a frictionless centralized market in the first subperiod,

while trade is decentralized in the second subperiod. A perishable commodity is produced and

consumed in each subperiod. We refer to the commodity produced in the first subperiod as the

centralized market (CM) good and to the commodity produced in the second subperiod as the

decentralized market (DM) good.

Agents. The economy is populated by three types of agents: buyers, sellers, and bankers.

Buyers and sellers are infinitely lived and participate in both markets in each period. They can

produce the CM good in the first subperiod using a linear production technology that requires

labor as input, and they also have linear utility over CM consumption. In the second subperiod,

buyers want to consume but cannot produce, whereas sellers are able to produce but do not

want to consume. A buyer is randomly matched with a seller with probability α ∈ [0, 1] and

vice versa, so trade in the decentralized market is bilateral. Each buyer has the period utility

function

U b
(
xbt , qt

)
= xbt + u (qt) ,

where xbt ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes consumption of the

DM good. The function u : R+ → R+ is strictly increasing, strictly concave, and continuously

differentiable, with u (0) = 0 and u′ (0) =∞. Each seller has the period utility function

U s (xst , qt) = xst − w (qt) ,

where xst ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes production of

the DM good. The function w : R+ → R+ is strictly increasing, convex, and continuously

differentiable, with w (0) = 0. There is a unit mass each of buyers and sellers, all of whom

discount future periods at a common rate β ∈ (0, 1).

Bankers live for two periods, participate only in the centralized market, and consume only in

old age. Each period, a new generation of bankers with unit mass is born. Banker j is endowed

at birth with an indivisible and nontradable project that requires one unit of the CM good as

input and pays off γj ∈ R+ units of the CM good in the following period. Project returns are
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known in advance and are heterogeneous across bankers; let G (γ) denote the distribution of

payoffs across the population of bankers. The support of the distribution is [0, γ̄] with γ̄ > β−1,

which implies that some projects are socially effi cient to operate but others are not. Bankers

have no endowment; they must fund their project by issuing deposits in the centralized market

when they are young. The ability to issue deposits is limited by an investment friction: only a

fraction θ ∈ (0, 1) of the project’s return can be pledged to the bank’s depositors. This friction

will prevent some banks whose project would be profitable at market interest rates from being

able to borrow and invest.5

Assets and exchange. We assume that buyers and sellers are anonymous (i.e., their identities

are unknown and their trading histories are privately observable), which precludes credit in the

decentralized market. Because there is no scope for trading future promises in this market, a

medium of exchange is essential for decentralized trade. The possible media of exchange in our

model are deposits issued by bankers and currency, both physical and digital.

The supply of bank deposits depends on the real interest rate, which determines how many

bankers are able to attract funding and operate. The supply of currency is determined by

the central bank according to a price-level targeting regime in which the gross inflation rate

µ ≥ β−1 is assumed to be constant over time. In particular, the central bank stands ready to

buy/sell CM goods each period at a predetermined price in either physical or digital currency.

By enforcing the same price-level target for physical and digital currency, the central bank is

effectively offering to convert units of physical currency one-for-one into units of digital currency

and vice versa. In this sense, the digital currency in our model is an electronic version of the

physical currency and not a distinct item that might trade at a different price.6 The central

bank uses lump-sum taxes/transfers to balance its budget each period.7

The extent to which each of these assets can be used in DM exchange depends on the ver-

5A banker in our model can be interpreted as the combination of an intermediary that issues a means of

payment and a firm that operates a productive technology. It is straightforward to divide these two roles into

separate institutions (a bank and a firm). The results of this alternative formulation are identical to those we

present below; our approach here merely simplifies the notation.
6Private digital currencies like bitcoin would be different in this regard, of course. See Bank for International

Settlements (2015) for a discussion of the economic implications of private digital currencies and Fernandez-

Villaverde and Sanches (2016) for a model of private digital currency issue.
7 In other words, as is common in dynamic general equilibrium models, the policy maker here represents the

consolidated public sector.
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ification technology available to the seller in a particular meeting. We assume that a fraction

λ1 ∈ (0, 1) of sellers is endowed with the technology to recognize physical currency but not

deposits. We interpret this assumption as capturing a variety of reasons why cash is used in

practice, including concerns about the privacy of the transacting parties and the costs of access-

ing and using the bank-based payment network. The remaining fraction λ2 ≡ 1−λ1 of sellers is

endowed with the technology to recognize bank deposits but not physical currency. The meet-

ings of these sellers correspond to transactions that in practice involve checks, debit cards, or

other methods of directly transferring claims on a commercial bank from the buyer to the seller.

We view these meetings as at least partially consisting of situations in which the use of cash

is impractical, such as large-value purchases, online purchases, etc.8 We refer to a meeting in

which the seller is able to verify physical currency as type 1 and to a meeting in which the seller

can verify bank deposits as type 2. The buyer finds out the type of seller she will potentially

meet in the next DM before making her portfolio decision in the CM, which implies that she

will choose to hold either currency or deposits for transactions purposes, but not both.

When we introduce a digital currency into this environment, a key issue is the type(s) of

meeting in which it can be used. We consider three different assumptions about the digital

technology that correspond to different ways policy makers might choose to design a digital

currency in practice. A type I digital currency can be verified only by type 1 sellers and represents

a design that aims to mimic physical cash as closely as possible. For example, such a design

may use cryptography to maintain anonymity of the transacting parties and may minimize the

fees and other costs associated with its use. A type II digital currency, in contrast, represents a

deposit-like design that can be verified only by type 2 sellers. This assumption would likely be

appropriate for a digital currency that is based on individuals holding accounts at the central

bank and that makes use of the existing payment network. Finally, a type III digital currency

can be verified by all sellers. This assumption corresponds to a design that would make the

digital currency attractive for use in a wide range of transactions. We derive the effects of each

of these types of digital currency and then discuss conditions under which each design can be

optimal.

8 It is straightforward to add a third type of meeting in which both currency and deposits can be verified by

the seller. Doing so complicates the presentation without changing the basic insights of our model, as only one of

the two forms of payment would typically be used in all such meetings. The important assumption is that each

of these assets can be used in some situations where the other cannot.
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Allocations and welfare. For discussions of optimal policy, we measure welfare using an

equal-weighted sum of all agents’utilities. However, as in Williamson (2012), we allow for the

possibility that some of the transactions that take place in type 1 meetings, where only currency

is used, might have lower social value than private value. For example, a policy maker may

want to put less weight on transactions involving illegal activity or foreign use of the domestic

currency. Specifically, we follow Williamson (2012) in assuming that a fraction ν ∈ [0, 1] of type

1 meetings generates no social value. We can then write aggregate welfare as

∞∑
t=0

βt
{
xbt + xst + xt + α [λ1 (1− ν) (u (q1t)− w (q1t)) + λ2 (u (q2t)− w (q2t))]

}
, (1)

where xt ∈ R+ denotes the average CM consumption of old-age bankers. Feasibility of an

allocation requires that the net consumption of all agents in the centralized market is no greater

than the net output of bankers’investment projects. We focus on allocations characterized by a

cutoff value γ̂t above which a banker’s project is operated and below which it is not. Feasibility

in period t then requires

xbt + xst + xt ≤
∫ γ̄

γ̂t−1

γg (γ) dγ − (1−G (γ̂t)) . (2)

The right-hand side of this expression is the output from projects coming to fruition at the

current date minus total investment into new projects that will mature the following period.

Net consumption of CM goods by all agents can be no larger than this difference.

Given the quasi-linear specification of preferences, the welfare properties of an allocation

depend only on the sequences of DM consumption levels {q1t, q2t} and cutoff investment values

{γ̂t} , which determine the total amount of CM consumption available in each period. As

equations (1) and (2) make clear, the distribution of CM consumption across agents has no

impact on welfare. In the analysis that follows, we summarize an allocation by these three

quantities.

2.2 Asset demand

Let φt ∈ R+ denote the goods value of money in the centralized market in period t, so that

the real value of Mt dollars can be written as mt ≡ φtMt. Let ie denote the net nominal interest

rate paid on digital currency by the central bank, which can be either positive or negative.

The gross real rate of return on physical currency is then φt+1/φt and that on digital currency
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is (1 + ie)φt+1/φt. Let 1 + rt denote the gross real interest rate on bank deposits. Finally,

let a ≡ (m, d, e) denote an asset portfolio consisting of m ∈ R+ units of physical real money

balances, d ∈ R+ units of bank deposits, and e ∈ R+ units of digital (or “electronic”) real money

balances, all measured in current CM consumption goods.

We begin the analysis by defining the value function Ji (a, t) for a buyer entering the centralized

market in period t holding portfolio a. The index i ∈ {1, 2} indicates what type of seller she

will potentially meet in the next decentralized market. Let Vi (a, t) denote the value function

of this same buyer when she arrives in the decentralized market. Using these two functions, we

can write the Bellman equation for this buyer as

Ji (a, t) = max
(xb,a′)∈R×R3+

[
xb + Vi

(
a′, t

)]
,

where the maximization is subject to the budget constraint

xb + p · a′ = Rt−1 · a+ τ t.

The variable xb ∈ R is the buyer’s net consumption of the CM good, which can be positive or

negative. The price vector p ≡ (1, 1, 1) measures the cost of acquiring real money balances and

deposits in terms of CM goods, while the vector

Rt−1 =

(
φt
φt−1

, 1 + rt−1, (1 + ie)
φt
φt−1

)
measures real returns on assets carried over from the previous period. Finally, τ t denotes the

real value of any lump-sum transfer received by the agent.

The value Vi (a′, t) satisfies

Vi
(
a′, t

)
= α

[
u
(
qi
(
a′, t

))
+ βJ

(
a′ − hi

(
a′, t

)
, t+ 1

)]
+ (1− α)βJ

(
a′, t+ 1

)
, (3)

where qi (a′, t) ∈ R+ denotes the buyer’s consumption of the DM good and hi (a′, t) ∈ R3
+

denotes the payment she makes for this consumption out of her asset holdings a′. The function

J (a′, t) in this expression represents the expected value of entering the centralized market before

knowing the type of her potential meeting in the following period’s decentralized market, that

is,

J
(
a′, t

)
= λ1J1

(
a′, t

)
+ λ2J2

(
a′, t

)
. (4)

Throughout the analysis, we assume that the terms of decentralized trade are determined by

Nash bargaining. For simplicity, we restrict attention to the case in which the buyer has all the
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bargaining power. The bargaining problem can then be described as

max
(qi,hi)∈R4+

[u (qi)− β ×Rt · hi]

subject to the seller’s participation constraint

−w (qi) + β ×Rt · hi ≥ 0

and the liquidity constraint

hi ≤ fi (a) . (5)

The function fi enforces the fact that the buyer will only pay with assets her trading partner

can verify. If, for example, type 1 sellers can verify only physical currency, then we have f1 (a) =

(m, 0, 0) . If they can verify both physical and digital currency, we have f1 (a) = (m, 0, e) . In

the sections that follow, we impose particular functions fi to capture different potential digital

currency designs. For now, however, we only impose that type 1 sellers can verify physical

currency but not bank deposits and that the reverse holds for type 2 sellers.

The solution to this bargaining problem implies the following schedule for DM output

qi (a, t) =

 w−1 (βRt · fi (a)) if Rt · fi (a) < w(q∗)
β

q∗ otherwise
(6)

and for payments

Rt · hi (a, t) =

 Rt · fi (a) if Rt · fi (a) < w(q∗)
β

w(q∗)
β otherwise,

where q∗ is the effi cient level of DM trade, which satisfies

u′ (q∗) = w′ (q∗) .

In other words, if the value of the buyer’s spendable assets is large enough to induce the seller

to produce q∗, the effi cient level of trade occurs. If not, the buyer spends all that she can and

the seller produces an amount smaller than q∗.

Using this solution to the bargaining problem, a buyer’s portfolio problem in the centralized

market can be written as

max
a′∈R3+

{
−p · a′ + α

[
u
(
qi
(
a′, t

))
− βRt · hi

(
a′, t

)]
+ βRt · a′

}
. (7)
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Recall that the buyer knows the type of seller she will potentially meet in the next DM when

making this portfolio choice in the CM. If i = 1, the buyer knows the seller will accept physical

currency and the slope of the objective function with respect to m′ is

−1 + β
φt+1

φt

[
α
u′
(
w−1 (βRt · f1 (a′))

)
w′ (w−1 (βRt · f1 (a′)))

+ 1− α
]

for Rt · f1
(
a′
)
<
w (q∗)

β

and

−1 + β
φt+1

φt
for Rt · f1

(
a′
)
>
w (q∗)

β
.

If i = 2, the buyer knows the seller will accept bank deposits and the slope of the objective

function with respect to d′ is

−1 + β (1 + rt)

[
α
u′
(
w−1 (βRt · f2 (a′))

)
w′ (w−1 (βRt · f2 (a′)))

+ 1− α
]

for Rt · f2
(
a′
)
<
w (q∗)

β

and

−1 + β (1 + rt) for Rt · f2
(
a′
)
>
w (q∗)

β
.

It is helpful to define the function L : R+ → R+ by

L (A) =

 α
u′(w−1(βA))
w′(w−1(βA))

+ 1− α if βA ≤ w (q∗)

1 otherwise.
(8)

This function measures the expected liquidity benefit of holding one extra unit of spendable

assets. If the buyer’s current spendable assets are insuffi cient to purchase the effi cient quantity

q∗, the increase will allow her to consume more if she is matched in the DM, which occurs with

probability α. If she is not matched, or if she already has enough spendable assets to purchase

q∗, she merely holds the extra unit of assets until the following CM. The first-order condition

for the real physical currency balances of a buyer who will potentially be in a type 1 match can

then be written as

L (Rt · f1 (at)) ≤
φt

βφt+1

(9)

with equality if m′ > 0. The first-order condition for the deposits of a buyer who will potentially

be in a type 2 match is

L (Rt · f2 (at)) ≤
1

β (1 + rt)
(10)

with equality if d′ > 0. In addition, only buyers potentially entering type 1 meetings will hold

physical currency and only buyers potentially entering type 2 meetings will hold bank deposits.9

Equations (9) and (10) thus characterize the demand for each of these assets in the period-t

CM.
9These decisions reflect agents’strict preferences when the real return on an asset is less than β−1. All buyers

13



2.3 Asset supply

To derive the supply of deposits, we start by solving the bankers’problem. Given the market

interest rate rt, a banker γ ∈ [0, γ̄] born in period t is willing to issue a deposit claim if

γ − (1 + rt) ≥ 0.

Because only a fraction θ ∈ (0, 1) of the project’s payoff is pledgeable, the banker is subject to

the pledgeability restriction

1 + rt ≤ θγ.

In other words, the promised repayment cannot exceed the value of the banker’s pledgeable

future income. Note that θ < 1 implies that this constraint is strictly tighter than the previous

one, meaning that some bankers with profitable projects will not be able to raise funds and

invest.

Let γ̂t ∈ R+ denote the banker whose project’s payoff satisfies the pledgeability restriction

with equality in period t, given the market interest rate rt. Then, the marginal type γ̂t who will

be funded satisfies

γ̂t =
1 + rt
θ

. (11)

This condition simply says that the project’s return must exceed the cost of borrowing by a

factor 1/θ for the marginal type. Note that the lower the pledgeable portion of the project’s

payoff, the higher the return required to satisfy the pledgeability restriction.

Given the marginal type γ̂t, the aggregate supply of deposits is

1−G (γ̂t) = 1−G
(

1 + rt
θ

)
. (12)

This expression shows that a reduction in the interest rate leads to an increase in investment by

allowing a larger number of bankers to issue debt claims. In other words, a lower interest rate

mitigates credit rationing in the banking system and increases the supply of deposits.

The supply of both physical and digital currency is set by the central bank following a price-

level target rule. We assume the target grows at a constant gross rate µ ≥ β. Letting φ̄0 ∈ R+

and sellers are indifferent about holding an asset whose real return equals β−1. In this case, we simplify our

notation by assuming, without any loss of generality, that only buyers potentially entering a meeting where an

asset is accepted will hold that asset.
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denote the initial target for the value of money, the target at date t is given by

φ̄t =

(
1

µ

)t
φ̄0,

and we have
φt
φt+1

= µ for all t. (13)

The central bank stands ready to exchange units of either physical or digital currency for CM

goods at the desired price level each period.10 Letting M̄t ∈ R+ denote the supply of physical

currency and Ēt the supply of digital currency per asset holder, the central bank’s budget

constraint is

φt
(
M̄t + Ēt

)
= φt

(
M̄t−1 + (1 + ie) Ēt−1

)
+ τ t,

where the lump-sum tax/transfer τ t is chosen to balance the budget each period.

2.4 Market clearing

Using the fact that physical currency is only used in type 1 meetings, we can write the market

clearing equation as

λ1mt = φtM̄t. (14)

Similarly, the fact that bank deposits are only exchanged in type 2 meetings allows us to write

the market-clearing equation for the deposit market as

λ2dt = 1−G
(

1 + rt
θ

)
. (15)

The demand for digital currency and the form of the market-clearing equation depend on design

features that determine in which type(s) of meetings the currency can be used; we analyze three

distinct cases below. An equilibrium of the model consists of a sequence of prices {rt, φt} ,

portfolio holdings {a1t,a2t} , and allocations {q1t, q2t, γ̂t} satisfying equations (9)-(15) plus the

first-order and market-clearing equations for digital currency presented for each case below.

In the next section, we derive the properties of equilibrium in a benchmark model with no

digital currency. We then introduce various types of digital currency in Section 4 and analyze

the resulting equilibrium allocations and welfare.
10We could instead take the more standard approach of assuming that the total money supply grows at a

constant rate µ. With both physical and digital currency, however, the relative supply of each type of currency is

endogenous and the notation becomes more complex. Given that we focus on stationary allocations, the simpler

approach we take here is without any loss of generality.
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3. EQUILIBRIUM WITH NO DIGITAL CURRENCY

The model with no digital currency provides the benchmark allocation and welfare level against

which different types of digital currency will be compared. When there is no digital currency,

the functions fi in the buyer’s liquidity constraint (5) are given by

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, 0) .

In other words, a buyer can only use her physical currency balances to purchase DM goods in

a type 1 meeting and can only use bank deposits in a type 2 meeting. The Inada condition

on buyers’utility function then implies that the first-order conditions (9) and (10) for buyers’

portfolio choices will hold with equality. Combining these equations with the market-clearing

conditions (14) and (15) yields
µ

β
= L

(
mt

µ

)
(16)

and
1

β (1 + rt)
= L

((
1 + rt
λ2

)[
1−G

(
1 + rt
θ

)])
. (17)

The fact that only period-t variables appear in each of these two equations shows that an

equilibrium in our model is necessarily stationary.11 The equations also demonstrate a dichotomy

between the money and deposit markets in our baseline model. Given the inflation rate µ,

equation (16) pins down real money balances independent of the interest rate on deposits.

Meanwhile, equation (17) determines the equilibrium interest rate on deposits independent of

the inflation rate. We think of our model as capturing long-run phenomena, in which case it

is not unreasonable to think that standard monetary policy has a limited effect on real interest

rates and the level of investment. Notice that inflation is not neutral here, however. A higher

inflation target leads to lower production and consumption in type 1 DM meetings and to lower

welfare, as is standard in models of monetary exchange.

We use the superscript N to identify equilibrium values in the model with no digital currency.

If the mass of bankers with relatively high-return projects is large enough, the interest rate

on deposits will satisfy
(
1 + rN

)
= β−1 and the production of DM goods in type 2 meetings

will equal the effi cient level q∗. Because of the pledgeability constraint, however, the level of

11This result follows from our assumption of a price-level targeting rule, which removes the multiplicity of

equilibria and dynamics that are common in monetary models. Our aim here is to analyze the effects of introducing

a digital currency taking as given the conduct of traditional monetary policy.
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investment will be ineffi ciently low: some projects with positive net present value from a social

point of view will remain unfunded. If, instead, high-return projects are scarce, a liquidity

premium emerges on deposits and
(
1 + rN

)
falls below β−1. Such a change makes DM production

in type 2 meetings less effi cient, but raises the level of CM investment. If the liquidity premium

on deposits is large enough, it is even possible for the level of equilibrium investment to be too

high: projects with negative net present value from a social point of view may be funded because

the deposits created by the banker are so valuable in exchange.

Figure 1 illustrates the relationship between DM exchange and CM investment in our envi-

ronment. The upward-sloping (green) curve in panel (a) represents buyers’demand for deposits

as a function of the gross return 1 + r, which is derived from the first-order condition (10). Note

that the demand for deposits becomes vertical when the return equals 1/β. The two downward-

sloping curves represent the supply of deposits from equation (12) for two different distribution

functions G. The dashed (blue) supply curve corresponds to the dashed (blue) distribution func-

tion in panel (b), which has a relatively large number of high-productivity projects. In this

situation, the equilibrium interest rate equals 1/β and the equilibrium quantity of deposits is

large enough to finance the effi cient level of DM trade q∗ in type 2 meetings. All projects in

the shaded area to the right of γ̂ = 1
θβ are then funded in equilibrium. Note, however, that all

projects to the right of γ = 1
β are socially productive. Because of the pledgeability constraint,

some productive projects remain unfunded in equilibrium when θ < 1.

Fig. 1. Equilibrium with no digital currency

Now consider what happens when the distribution changes to the solid (red) curve in panel

(b). Because there are fewer high-productivity projects, the deposit supply curve in panel (a)

shifts down. As a result, the equilibrium quantities of deposits and interest rate both decrease.
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Because there are fewer deposits, the quantity of DM goods produced and traded in type 2

meetings falls below the effi cient level q∗. At the same time, however, the lower interest rate

decreases the cutoff value γ̂ and thereby raises CM investment. This tradeoff between the

effi ciency of DM exchange and the quantity of CM investment will be central to understanding

the macroeconomic effects of introducing a digital currency in the sections that follow.

4. INTRODUCING A CENTRAL BANK DIGITAL CURRENCY

We now introduce a central bank digital currency into the economy. As described above, we

view digital currency as a technological innovation that allows the central bank to issue money

that can bear either a positive or a negative nominal return and can potentially be used in a

different set of situations than physical currency. The macroeconomic effects of this currency

will depend in large part on the type(s) of transactions in which it is used. We study three cases

in this section: one where digital currency competes only with physical currency, a second where

it competes only with deposits, and a third where it competes with both traditional means of

payment.

4.1 A cash-like digital currency

We first consider a type I digital currency, which can be verified by type 1 sellers but not

by type 2 sellers. We think of this case as representing design features for the digital currency

that aim to mimic the properties of physical currency as closely as possible. For example, the

digital currency may take the form of a token rather than a deposit in an account at the central

bank and thereby grant users some degree of anonymity.12 Alternatively, the central bank may

impose a maximum allowable balance or transaction size. The design may also minimize the

fees and other costs associated with the currency, particularly for small transactions.

Under this design, the functions fi in the buyer’s liquidity constraint in equation (5) are given

by

f1 (a) = (m, 0, e) and f2 (a) = (0, d, 0) .

In other words, buyers in a type 1 meeting can use their balances of physical and/or digital

currency to make purchases while buyers in a type 2 meeting can only use bank deposits. Using

12Some authors use pseudonymity rather than anonymity to refer to a system in which individuals can use

pseudonyms rather than their actual identities to hold and transfer assets.
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the function L defined in (8), we can write the first-order condition for a buyer’s choice of real

digital currency balances et if she will potentially be in a type 1 meeting as

L (Rt · f1 (at)) ≤
φt

β(1 + ie)φt+1

, (18)

with equality if et > 0. The market-clearing condition for digital currency in this case can be

written as

λ1et = φtĒt.

Comparing equation (18) with the first-order condition for physical currency balances in equa-

tion (9) shows that the demand for the digital currency will depend critically on the nominal

interest rate it earns. If ie < 0, the demand for digital currency will be zero since buyers would

strictly prefer to use physical currency.13 In this case, the equilibrium is unchanged from Section

3 and is again characterized by equations (16) and (17). If ie = 0, buyers are indifferent between

using physical and digital currency. In this case, equation (17) is unchanged but equation (16)

becomes
µ

β
= L

(
mt + et

µ

)
.

The paths of {mt} and {et} are then indeterminate; the equilibrium conditions determine only

the sum (mt + et). However, while digital currency may now be used in equilibrium, its intro-

duction still has no effect on equilibrium allocations or on welfare. We summarize these results

in the following proposition.

Proposition 1 If ie ≤ 0, we have
(
qI1 , q

I
2 , γ̂

I
)

=
(
qN1 , q

N
2 , γ̂

N
)
.

If the digital currency earns a positive interest rate, it will completely replace physical currency

and will change the level of trade in type 1 meetings.14 In this case, equation (16) is replaced

with
µ

(1 + ie)β
= L

(
(1 + ie)

µ
et

)
.

Solving this equation for eI and using (6) to determine the quantity of trade in type 1 meetings

yields the following result.

13While some authors have advocated eliminating physical currency to avoid this outcome, we do not consider

such a policy here.
14This result stems from our assumption that there are no meetings in which only physical currency can be

used. It would be straightforward to add such meetings to our model. Physical currency would then remain in

circulation when ie > 0, but the optimal policy results would be qualitatively unchanged.
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Proposition 2 If ie > 0, we have eI > 0, qI1 > qN1 and
(
qI2 , γ̂

I
)

=
(
qN2 , γ̂

N
)
.

This proposition shows that an interest-bearing digital currency that competes only with physical

currency will increase trade in type 1 DM meetings, but will have no effect on investment in the

CM or on trade in type 2 meetings. The introduction of such a currency will always raise welfare.

However, it is fairly straightforward to show that the equilibrium allocation associated with any

choice of ie > 0 can also be achieved without a digital currency by changing the target inflation

rate µ. In this sense, introducing a cash-like digital currency does not bring any meaningful

benefits in our model.15

4.2 A deposit-like digital currency

Next, we consider a type II digital currency, which can only be verified by sellers in type

2 meetings (where bank deposits are currently used). This assumption might represent, for

example, a digital currency that is based on accounts at the central bank and in which payments

are processed over the existing bank-based network. The functions fi in the buyer’s liquidity

constraint in equation (5) for a type II digital currency are

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, e) .

These functions state that buyers in a type 1 meeting can use only their physical currency

balances to make purchases, while buyers in a type 2 meeting can use their bank deposits

and/or digital currency balances. The first-order condition for a buyer’s choice of real digital

currency balances et if she is heading into a type 2 meeting is given by

L (Rt · f2 (at)) ≤
φt

β(1 + ie)φt+1

, (19)

with equality if et > 0. The market-clearing condition for digital currency in this case can be

written as

λ2et = φtĒt.

Comparing equation (19) with the first-order condition for bank deposits in equation (10)

shows that a buyer will choose to hold both bank deposits and digital currency only if they offer

15One could imagine that policy makers might aim to target a particular inflation rate (say, 2%) for reasons

that are outside the scope of our model. In such cases, an interest-bearing, cash-like digital currency may be

useful for promoting effi cient production and exchange while maintaining the desired inflation rate.
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the same real return, that is, if

1 + rt = (1 + ie)
φt+1

φt
. (20)

This condition shows how the central bank’s policy choices —the inflation rate and the nominal

interest rate on digital currency —will impact the interest rate on bank deposits in this policy

regime.

An equilibrium in this case is characterized by equation (16) together with

1

β (1 + rt)
= L

(
(1 + rt)

[
1−G

(
1+rt
θ

)
1− λ1

+ et

])
, (21)

and

1 + rt ≥
(1 + ie)

µ
, (22)

with equality if et > 0. Our first result gives a necessary and suffi cient condition for a type II

digital currency to be held in equilibrium.

Proposition 3 eII > 0 if and only if 1 + ie > µ
(
1 + rN

)
.

A type II digital currency is a perfect substitute for bank deposits in transactions. In equi-

librium, buyers will choose to hold and spend the digital currency only if it offers a return at

least as high as deposits. Of course, the return on deposits is endogenous and depends on the

central bank’s policy choices. Proposition 3 shows that the equilibrium nominal interest rate on

deposits in the baseline economy with no digital currency, µ
(
1 + rN

)
, is an important threshold.

If the central bank sets the nominal interest rate on digital currency, 1+ ie, below this threshold,

there will be no demand for the new currency and the equilibrium allocation will be the same as

without the digital currency. When 1 + ie is above this threshold, in contrast, a positive amount

of digital currency is held and the equilibrium allocation changes. Our next result documents

the direction of these changes.

Proposition 4 If 1 + ie > µ
(
1 + rN

)
, we have

(
qII2 , γ̂II

)
�
(
qN2 , γ̂

N
)
and qII1 = qN1 . In

addition, rII > rN and dII < dN hold.

This result shows that a type II digital currency has multiple effects on the equilibrium

allocation. On one hand, by raising the rate of return on assets that can be used as a means of

payment in type 2 meetings, the digital currency leads —through buyers’portfolio choice and the

outcome of the bargaining process —to higher output being produced in these meetings. On the
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other hand, a type II digital currency tends to crowd out bank deposits, raise the real interest

rate on deposits, and decrease CM investment. In other words, a central bank digital currency

that competes with bank deposits as a medium of exchange leads to disintermediation in the

banking system: buyers shift funds away from private bank deposits into the digital currency.

This shift leads to less bank-financed investment. The effect of this shift on welfare depends on

the productivity of the marginal investment project; we return to this issue below.

The results in Proposition 4 point to a policy tradeoff the central bank faces when setting

the interest rate on a type II digital currency. Raising this interest rate increases DM output

and promotes effi cient exchange, but decreases investment and output in the CM. The optimal

policy choice will balance these competing concerns. Figure 2 illustrates this tradeoff using a

numerical example.16 The upper-left panel of the figure shows how, as the gross interest rate

1 + ie is increased, buyers’holdings of real digital currency balances (in red) increase while their

holdings of bank deposits (in blue) decrease. The upper-right panel shows the net effect of these

changes on the quantity of DM goods produced and consumed in type 2 meetings, qII2 . This

quantity is strictly increasing in the central bank’s choice of 1 + ie. The quantity produced and

consumed in type 1 meetings is independent of 1 + ie, as demonstrated in Proposition 4.

The bottom-left panel of the figure plots the net output of bankers’ investment projects in

the CM. Combining equations (11) and (22) shows that banker j’s project will be funded if and

only if its productivity γj is greater than

γ̂II =
1 + ie

µθ
.

This expression shows that, as the interest rate on digital currency 1 + ie increases, the cutoff

productivity γ̂ also increases, meaning that fewer projects are funded. In the bottom-left panel

of Figure 2, however, net output is initially increasing in 1 + ie. This fact is an indication that,

for low values of 1 + ie, the liquidity premium on deposits is so large that some projects with

negative real returns are being funded. Eventually, as 1 + ie increases further, the continued

reduction in investment causes net CM output to decrease. The bottom-right panel of the figure

plots welfare as measured in equation (1). In the region where net CM production is increasing

in 1 + ie, welfare will necessarily increase as well.17 Once net CM production begins to decline,

16The utility functions for this example are u (c) = A c1−σ

1−σ with σ = 0.5 and A = 0.75, and w (q) = q. The

distribution of productivities G follows a beta distribution on [0, 1.5] with parameters (3, 3) . The other parameter

values are (α, β, λ1, θ, µ, ν) = (1, 0.96, 0.25, 0.85, 1.06, 0) .
17 It is worth pointing out, however, that even in these cases, an increase in 1 + ie does not lead to a Pareto
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Fig. 2. Equilibrium with a type II digital currency

however, there is a tradeoff because further increases in 1 + ie continue to raise the level of DM

production and consumption. For this example, the value of 1 + ie that maximizes net CM

output is 0.94 and the welfare-maximizing value of 1 + ie is 0.97.

4.3 A universal digital currency

We now examine the effects of introducing a type III digital currency, which can be used in

both types of DM meetings. We interpret this type as resulting from design choices that make

the digital currency attractive for use in a wide range of transactions. Under this design, the

buyer’s liquidity constraints in equation (5) become

f1 (a) = (m, 0, e) and f2 (a) = (0, d, e) .

This specification indicates that a buyer in a type 1 meeting can now pay with any combination of

physical and/or digital currency, while a buyer in a type 2 meeting can pay with any combination

of digital currency and/or deposits. The first-order condition for a buyer’s choice of real digital

currency balances e′ if she will potentially be in a type 1 meeting is given by equation (18),

improvement because those bankers whose (low-productivity) projects are not funded are made worse off.
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while the condition for a buyer who will potentially be in a type 2 meeting is equation (19).

We denote these holdings by e1t and e2t, respectively. The market-clearing condition for digital

currency can then be written as

φtĒt = λ1e1t + λ2e2t.

The market-clearing conditions for physical currency and deposits are again given by equations

(14) and (15).

If the net nominal interest rate on digital currency is negative (ie < 0), then it will never

be held by buyers heading into a type 1 meeting; they will strictly prefer to hold only physical

currency. If ie = 0, these buyers will be indifferent between the two types of currency, but the

introduction of digital currency will have no effect on their total real money balances or on their

equilibrium consumption. In both cases, the equilibrium allocation will be the same as with

a type II digital currency that cannot be used in these meetings. We record this result in the

following proposition.

Proposition 5 If ie ≤ 0, we have
(
qIII1 , qIII2 , γ̂III

)
=
(
qII1 , qII2 , γ̂II

)
.

It follows immediately from this result that equilibrium welfare is the same for both types of

digital currency as well. For this reason, we focus our attention in the remainder of this section

on the case where ie > 0.

When the digital currency pays a positive nominal interest rate, it will completely replace

physical currency in equilibrium as in Section 4.1. In this case, the equilibrium conditions can

be written as
µ

β
= L

(
(1 + ie)

µ
e1t

)
, (23)

1

β (1 + rt)
= L

(
(1 + rt)

[
1−G

(
1+rt
θ

)
1− λ + e2t

])
, (24)

and

1 + rt ≥
(1 + ie)

µ
(25)

with equality if e2t > 0. As in the previous sections, a solution to these equations is necessarily

stationary. Our first result gives a suffi cient condition for digital currency to be used in both

types of DM transactions.

Proposition 6 If 1 + ie > µ
(
1 + rN

)
≥ 1, then eIII1 > 0 and eIII2 > 0 hold.
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Our next result shows that a type III digital currency can increase the level of exchange in

all decentralized meetings. Recall that changes in the nominal interest rate affected output only

in one type of meeting in each of the previous cases. Thus, a digital currency designed to serve

as a medium of exchange in a wider range of decentralized transactions gives monetary policy a

bigger effect on trading activity.

Proposition 7 If 1 + ie > µ
(
1 + rN

)
, then qIII1 > qII1 = qN1 and qIII2 = qII2 > qN2 . In addition,(

dIII , rIII , γ̂III
)

=
(
dII , rII , γ̂II

)
.
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Fig. 3. Equilibrium with a type III digital currency

Figure 3 illustrates these results. In the upper left-panel, the behaviors of deposits and real

digital currency balances by buyers headed into type 2 meetings are the same is in Figure

2. When the nominal interest rate on the digital currency is positive, however, eIII1 becomes

positive because the digital currency is now used in type 1 meetings as well. The upper-right

panel shows that production of the DM good in type 2 meetings is the same as before, but now

production in type 1 meetings begins to increase as well when the interest rate on the digital

currency becomes positive. The behavior of net CM output in the lower-left panel is identical

to that in Figure 2.
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The bottom-right panel of Figure 3 shows that the behavior of welfare as 1 + ie varies has two

distinct regions. When the interest rate on the digital currency is negative, welfare is the same as

in Figure 2. As ie becomes positive, however, welfare is higher with a broad currency than with

a deposit-like currency (the latter is indicated by the dashed line in the figure). This pattern

arises because the positive interest rate on digital currency leads to an increase in production

and consumption of the DM good in type 1 meetings. In other words, if the digital currency

pays a positive nominal interest rate, it is better to have a universal design that allows it to be

used in a wider range of transactions. This result is a general property of our model.

Proposition 8 If ie > 0, then W III > W II .

For this example, the welfare function has two local maxima. In one, the digital currency is

only used in type 2 meetings and the interest rate corresponds to the optimal rate with a deposit-

like currency. At the other local maximum, ie is strictly positive and the digital currency is used

in both types of meetings. The optimal type of digital currency to introduce depends on which

of these two local maxima is higher; we address this issue in the next section.

5. OPTIMAL POLICY

Should a central bank issue a digital currency and, if so, how should it be designed? In our

model, introducing a digital currency has both positive and negative effects. By raising the

rate of return on the means of payment in decentralized transactions, it can move output and

consumption in these markets closer to the effi cient level. At the same time, however, it raises

banks’funding costs by reducing the liquidity premium on deposits. This higher funding cost

causes a decrease in bank-financed investment and output. In general, either of these effects can

dominate and introducing a central bank digital currency can either raise or lower welfare.

A digital currency does, however, give the central bank a new policy tool: it can choose the

nominal interest rate (either positive or negative) that the new currency earns. This interest

rate influences both the costs and the benefits described above. If the interest rate is chosen to

maximize welfare, then introducing a digital currency of any type cannot decrease welfare, since

the interest rate can always be set in a way that minimizes the use of the currency and any

associated costs. To make this statement precise, let Ŵ j denote welfare under a digital currency

of type j ∈ {I, II, III} when the interest rate 1 + ie is chosen to maximize welfare as measured

in equation (1). Then we have the following result.
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Proposition 9 We have min
{
Ŵ I , Ŵ II , Ŵ III

}
≥WN .

Figure 4 presents the optimal interest rate and the associated level of welfare for each type

of digital currency as the severity of the financial friction θ varies. Panel (a) shows that the

optimal interest rate for a type I, cash-like digital currency is independent of θ and equal to
µ
β (≈ 1.10 in this example). Note that µ

β corresponds to the gross nominal interest rate on a

one-period illiquid bond. Since this type of currency does not influence the level of investment,

the best policy is to implement a type of Friedman rule for type 1 transactions, regardless of

the severity of the investment friction.

For the other two designs, the figure shows that the optimal interest rate is strictly increasing in

θ. When θ is small, the investment friction is strong and many bankers with socially productive

projects are unable to raise the required funding. Panel (a) shows that, in these cases, the

optimal nominal interest rate ie on a type II or III currency is negative, which implies that these

designs lead to the same outcome. This low interest rate maintains a large liquidity premium on

deposits, which enables many bankers to overcome the credit friction and operate their projects.
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Fig. 4. The optimal interest rate and welfare with each type of digital currency

As θ increases and the investment friction becomes weaker, the gain from setting the interest

rate ie low to maintain a liquidity premium on deposits diminishes. As a result, panel (a) shows

that the optimal interest rate ie increases. When θ is high enough (approximately 0.85 in this

example), the optimal interest rate for a type III currency jumps above zero.18 For this value

18This jump corresponds to a shift in the global maximum between the two local maxima shown in the bottom-

right panel of Figure 3.
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of θ and higher, the universal design is used in both types of meetings and yields higher welfare

than the deposit-like design. When the investment friction is weak, the crowding-out effect of

the digital currency on bank deposits is less costly. In these cases, it is better to pay a higher

interest rate to encourage more effi cient production and exchange in as many DM meetings as

possible.

As θ approaches one and the investment friction disappears, the optimal policy approaches

1 + ie = µ
β . When 1 + ie is set to this level, digital currency and bank deposits will offer the

same return as an illiquid bond in equilibrium, which means there is no liquidity premium.

The crowding-out effect of the digital currency on CM investment is still present. However,

when there is no investment friction, any liquidity premium on deposits leads to ineffi ciently

high investment from a social point of view. In this case, and only in this case, the optimal

policy in our model corresponds to a full implementation of the Friedman rule. Note that fully

implementing the Friedman rule in our setting requires using a universal design so that the

digital currency can be used in both types of DM meetings.

Concluding remarks. The introduction of a central bank digital currency would represent a

potentially historic innovation in monetary policy. If households and firms choose to hold and use

significant quantities of such a currency, it could lead to a substantial shift in aggregate liquidity,

that is, in the types of assets that are used in exchange and that carry a liquidity premium.

While there has been much recent discussion of this issue in policy circles, the macroeconomic

implications of this shift are not well understood.

Our analysis shows how a fairly standard model in the New Monetarist tradition can generate

insight into these issues. In particular, it highlights a potentially important policy tradeoff: while

a digital currency can indeed promote effi cient exchange, it leads agents to shift away from bank

deposits and thereby raises bank funding costs. By appropriately choosing the interest rate

it pays on digital currency, the central bank can balance these competing concerns. When

investment frictions are small, the optimal policy is to pay a relatively high interest rate on

the digital currency and to design it in a way that allows it to be used as widely as possible.

This approach can be seen as an implementation of the well-known Friedman rule. If, however,

frictions prevent a significant number of socially productive projects from being funded, the

optimal policy changes. In these cases, the central bank should choose to pay a lower interest

rate on the currency, possibly even a negative rate. Doing so allows bank deposits to carry
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a liquidity premium and thus helps banks partially overcome the investment friction. Taken

together, our results show how a digital currency could potentially be an important and useful

tool for central banks to use in managing aggregate liquidity.

REFERENCES

[1] R. Ali, J. Barrdear, R. Clews, and J. Southgate (2014) “Innovations in payment technologies and

the emergence of digital currencies,”Bank of England Quarterly Bulletin, Q3, pp. 262-275.

[2] D. Andolfatto (2018) “Assessing the impact of central bank digital currency on private banks,”

Federal Reserve Bank of St. Louis Working Paper 2018-026C.

[3] Bank for International Settlements (2015) “Digital currencies,” Report of the Committee on

Payments and Market Infrastructures, November.

[4] Bank for International Settlements (2018) “Central bank digital currencies,”Report of the Com-

mittee on Payments and Market Infrastructures, March.

[5] Bank of Israel (2018) “Report of the team to examine the issue of central bank digital currencies,”

November.

[6] C. Barontini and H. Holden (2019) “Proceeding with caution: A survey on central bank digital

currency,”Bank for International Settlements Paper 101, January.

[7] J. Barrdear and M. Kumhof (2016) “The macroeconomics of central bank issued digital curren-

cies,”Bank of England Working Paper 605, July.

[8] M. Bech and R. Garratt (2017) “Central bank cryptocurrencies,”Bank for International Settle-

ments Quarterly Review, September, pp. 55-70.

[9] M. Bordo and A. Levin (2017) “Central bank digital currency and the future of monetary

policy,” in The Structural Foundations of Monetary Policy, M.D. Bordo, J.H. Cochrane,

and A. Seru, eds, Hoover Institution Press Publication 687.

[10] B. Broadbent (2016) “Central banks and digital currencies,”speech given on March 2. Available

at https://www.bis.org/review/r160303e.pdf

29



[11] S. Cecchetti and K. Schoenholtz (2017) “Fintech, central banking and digital currency,”Money

and Banking blog, June 12.

[12] M. Davoodalhosseini (2018) “Central Bank Digital Currency and Monetary Policy,” Bank of

Canada Staff Working Paper 2018-36, July.

[13] W. Engert and B. Fung (2017) “Central bank digital currency: Motivations and implications,”

Bank of Canada Staff Discussion Paper 2017-16, November.

[14] J. Fernandez-Villaverde and D. Sanches (2016) “Can currency competition work?”NBER Work-

ing Paper 22157, revised December 2018.

[15] B. Fung and H. Halaburda (2016) “Central bank digital currencies: A framework for assessing

why and how,”Bank of Canada Staff Discussion Paper 2016-22, November.

[16] B. Holmstrom and J. Tirole (1998) “Private and public supply of liquidity,”Journal of Political

Economy 106, pp. 1-40.

[17] C.M. Kahn, F. Rivadeneyra, and T.-N. Wong (2018) “Should the central bank issue e-money?”

October.

[18] J.A. Ketterer and G. Andrade (2016) “Digital central bank money and the unbundling of the

banking function,”Inter-American Development Bank discussion paper 449, April.

[19] N. Kiyotaki and J. Moore (1997) “Credit cycles,”Journal of Political Economy 105, pp. 211-248.

[20] N. Kiyotaki and J. Moore (2005) “Liquidity and asset prices,” International Economic Review

46, pp. 317-349.

[21] C. Lagarde (2018) “Winds of change: The case for new digital currency,” speech given on

November 14. Available at https://www.imf.org/en/News/Articles/2018/11/13/sp111418-

winds-of-change-the-case-for-new-digital-currency

[22] R. Lagos, G. Rocheteau, and R. Wright (2017) “Liquidity: A New Monetarist perspective,”

Journal of Economic Literature 55, pp. 371-440.

[23] R. Lagos and R. Wright (2005)“A unified framework for monetary theory and policy analy-

sis,”Journal of Political Economy 113, pp. 463-84.

30



[24] Y. Mersch (2017) “Digital base money: An assessment from the

ECB’s perspective,” speech given on January 16. Available at

https://www.ecb.europa.eu/press/key/date/2017/html/sp170116.en.html

[25] D. Niepelt (2018) “Reserves for all? Central bank digital currency, deposits, and their (non)-

equivalence,”CEPR Discussion Paper DP13065, July.

[26] Norges Bank (2018) “Central bank digital currencies,”Norges Bank Papers No. 1.

[27] Sverges Riksbank (2018) “The Riksbank’s e-krona project: Report 2,”October.

[28] A. Wadsworth (2018) “The pros and cons of issuing a central bank digital currency,”Reserve

Bank of New Zealand Bulletin 81, No. 7, pp. 3-21.

[29] S. Williamson (2012) “Liquidity, monetary policy, and the financial crisis: A New Monetarist

approach,”American Economic Review 102, pp. 2570-2605.

[30] S. Williamson and R. Wright (2010a) “New Monetarist Economics: Methods,”Federal Reserve

Bank of St. Louis Review 92, pp. 265-302.

[31] S. Williamson and R. Wright (2010b) “New Monetarist Economics: Models,” in Handbook of

Monetary Economics, Vol. 3, B.M. Friedman and M. Woodford, eds, North Holland, pp.

25-96.

31


	wp19-26_cover-v1.0.pdf
	Keister_Sanches_CBDC_working_paper.pdf

