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Abstract

Motivated by the increasing use of external instruments to identify structural vector autoregressions
(SVARs), we develop an algorithm for exact finite sample inference in this class of time series models,
commonly known as Proxy-SVARs. Our algorithm makes independent draws from any posterior distribution
over the structural parameterization of a Proxy-SVAR. Our approach allows researchers to simultaneously
use proxies and traditional zero and sign restrictions to identify structural shocks. We illustrate our methods
with two applications. In particular, we show how to generalize the counterfactual analysis in Mertens and
Montiel-Olea (2018) to identified structural shocks.
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1 Introduction

The method of identification of structural vector autoregressions (SVARs) with external instruments, commonly

known as Proxy-SVARs, has grown to become influential in empirical macroeconomics.1 This paper describes

how to conduct Bayesian inference in this class of structural time series models.

We contribute to this line of research by developing an efficient algorithm to independently draw from any

posterior distribution over the structural parameterization of a Proxy-SVAR conditional on the exogeneity

restrictions and the γ-relevance condition. The former requires that the correlation between the proxies and

some subset of the structural shocks be zero, while the latter requires that the correlation between the proxies

and the remaining shocks be bounded away from zero. The fact that we can draw independently opens the

door to using the Bayesian paradigm in larger models. We will write our algorithm as independently drawing

from the family of restricted normal-generalized-normal (NGN) posterior distributions over the structural

parameterization of a Proxy-SVAR conditional on the exogeneity restrictions and the γ-relevance condition.

However, our techniques are not limited to the NGN family and can be applied to any prior over the structural

parameterization of a Proxy-SVAR. The rationale for writing our algorithm in terms of the NGN distribution

over the structural parameterization is that it is a conjugate family of distributions—commonly used in SVAR

analysis—that has the appealing property of giving the same prior and posterior weight to observationally

equivalent Proxy-SVAR structural parameters.

Our algorithm combines the sampler developed by Waggoner and Zha (2003) with a variant of the

importance sampler developed by Arias, Rubio-Ramı́rez, and Waggoner (2018). The fundamental insight into

the latter was to produce independent draws from a normal-inverse-Wishart distribution over the reduced-form

parameters and generalize the QR decomposition to produce independent draws from a distribution over

the orthogonal reduced-form parameterization of the SVAR conditional on zero and sign restrictions. These

draws were then mapped into the structural parameterization of the SVAR. By taking appropriate care of

the volume elements, the draws were weighted so that they came from any posterior distribution over the

structural parameterization of the SVAR conditional on the identification restrictions. Since a Proxy-SVAR

identified with exogeneity restrictions can be represented by an SVAR identified with zero restrictions, one

may be tempted to use Arias, Rubio-Ramı́rez and Waggoner’s (2018) algorithm.2 However, the techniques of

that paper cannot be directly applied in this environment because of the large number of zero restrictions

embedded in a Proxy-SVAR. To handle this issue, we introduce a new parameterization called the orthogonal

1For example, see Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015), and
Montiel-Olea, Stock, and Watson (2016).

2See Plagborg-Møller and Wolf (2020) for a similar argument.

1



triangular-block parameterization—composed of triangular-block parameters and orthogonal matrices.

We achieve our goal by first independently drawing triangular-block parameters using Waggoner and Zha’s

(2003) sampler. Then, we show that the exogeneity restrictions are linear restrictions on the columns of an

orthogonal matrix. This will allow us to use the ideas in Arias, Rubio-Ramı́rez, and Waggoner (2018) to draw

orthogonal matrices, conditional on each draw of the triangular-block parameters, such that the exogeneity

restrictions and the γ-relevance condition hold. Then, we map the orthogonal triangular-block parameters into

Proxy-SVAR structural parameters conditional on the exogeneity restrictions and the γ-relevance condition. By

taking appropriate care of the volume elements, we will be able to numerically compute the density associated

with the implied distribution over the Proxy-SVAR structural parameterization. Hence, we can use those draws

as an intermediate step in an importance sampler to draw from any desired posterior distribution over the

structural parameterization of a Proxy-SVAR conditional on the exogeneity restrictions and the γ-relevance

condition.

We also show that the exogeneity restrictions may not be enough to identify the Proxy-SVAR equations

associated with structural shocks that are correlated with the proxies. In particular, additional zero and sign

restrictions are needed for identification when more than one proxy is used to identify the same number of

Proxy-SVAR equations. Our algorithm can handle these additional restrictions, which could be used to identify

not only the Proxy-SVAR equations associated with the structural shocks correlated with the proxies but also

the Proxy-SVAR equations associated with those structural shocks that are uncorrelated with the proxies.

We present two applications to illustrate our algorithm. The first application is aimed at providing applied

readers with a succinct and comprehensive description of how to use our techniques. To this end, we begin

by studying the dynamic effects of consumption and investment total factor productivity (TFP) shocks in

a Proxy-SVAR where the equations associated with the structural shocks of interest are identified using

Fernald’s (2014) TFP series as external instruments as in Lunsford (2016). An important difference between

our approach and Lunsford’s (2016) is that, while he identifies one structural equation at a time by using a

single instrument, we jointly identify two structural equations using two instruments.3 Hence, the application

allows us to emphasize how to use additional zero and sign restrictions to simultaneously identify more than

one equation. In particular, we identify the structural equations by assuming that they are the only equations

whose structural shocks are correlated with the two external instruments and by adding some additional sign

restrictions to parse out consumption TFP shocks from investment TFP shocks. Like Lunsford (2016), we find

that a positive consumption TFP shock causes an increase in real GDP and consumption in non-durables and

3Lunsford’s (2016) approach is a common approach in the literature (see Stock and Watson, 2012).
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services as well as in durables and equipment while the price level gradually decreases. Accordingly, such a

shock resembles a standard TFP shock. In contrast, a positive investment TFP shock leads to a decrease in

real GDP, employment, consumption, and the price level. These results are inconsistent with the conventional

wisdom of standard TFP shocks but in line with the findings in Liu, Fernald, and Basu (2012).

The second application is aimed at highlighting that the distinctive feature of our approach illustrated in

the previous application—i.e., using more than one instrument to simultaneously set-identify more than one

structural equation—can provide critical insights for a few but highly influential studies using two instruments

such as Mertens and Ravn (2013) and Mertens and Montiel-Olea (2018). As we will discuss later, the

fundamental issue with their approach is that it is limited to counterfactual experiments. We will make this

clear by revisiting Mertens and Montiel-Olea (2018). That paper relies on two proxies to study the effects of

counterfactual changes in marginal and average personal income tax rates. One of its main conclusions is that

substitution effects are more important than income effects in the transmission of tax rate changes. We will

argue that the counterfactual experiments are narrow because they focus on a particular linear combination of

structural shocks rather than on the individual structural shocks. As a result, we propose to separately identify

the structural shocks based on a set of sign restrictions. Once this is done, we find that both substitution and

income effects play a relevant role in the transmission of tax rate shocks.

1.1 Relationship with the Bayesian Literature on Proxy-SVARs

To the best of our knowledge, only a handful of papers consider Proxy-SVARs under the Bayesian paradigm.4

Bahaj (2014), Drautzburg (2016), and Braun and Brüggemann (2017) use Gibbs samplers; therefore the draws

are not independent. More importantly, they ignore the volume element when transforming the draws into

the structural Proxy-SVAR parameterization. As will be shown in Section 3.6, when the volume element is

ignored, the order of the instruments affects the results; hence, these methods are not appropriate for inference.

Giacomini, Kitagawa, and Read (2020) expand the robust Bayesian inference methods in Giacomini and

Kitagawa (2018) to Proxy-SVARs.

Finally, let’s relate our paper to Caldara and Herbst (2016). As in our approach, Caldara and Herbst

(2016) draw directly from the structural parameterization of the Proxy-SVAR. Nevertheless, the posterior

draws are not independent and their Metropolis-Hastings sampler could become computationally inefficient

compared with ours in large models. An advantage of Caldara and Herbst’s (2016) approach relative to ours is

4Jarociński and Karadi (2018) use sign restrictions to identify structural shocks in a related framework. Nevertheless, while
they assume that the structural shocks are linear combinations of the proxies, a Proxy-SVAR only assumes that the structural
shocks are correlated with linear combinations of the proxies.
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that they can use more than one proxy to identify a single shock.

The remainder of the paper is organized as follows. Section 2 introduces the methodology. Section 3

describes the algorithm. Sections 4 and 5 present two applications. Section 6 concludes. Technical details are

deferred to the Appendix.

2 The Framework

This section discusses our general framework. In Section 2.1, we describe the structural parameterization of

the Proxy-SVAR. In Sections 2.2 and 2.3, we present the identification problem, the exogeneity restrictions,

the γ-relevance condition, and the need for additional zero or sign restrictions. In Section 2.4, we provide

an outline of our methodology. In Section 2.5, we explicitly specify the restricted NGN family of prior and

posterior distributions over the structural parameterization of a Proxy-SVAR that we will use to illustrate our

algorithm. We use this distribution to describe our algorithm because it has appealing properties. Chief among

them is that it is a conjugate family of prior distributions and thus assigns equal prior and posterior weight to

observationally equivalent Proxy-SVAR structural parameters. Even so, as mentioned in the introduction, it is

important to keep in mind that our methods can be used to independently draw from any posterior distribution.

In Section 2.6, we introduce the orthogonal triangular-block parameterization. As will become clear later,

this is a useful parameterization of a Proxy-SVAR and our algorithm will rely on it. This section will also

show how to map the orthogonal triangular-block parameterization into the structural parameterization of the

Proxy-SVAR.

2.1 A Proxy-SVAR

Let yt be an n× 1 vector of endogenous variables, mt be a k × 1 vector of instruments (also called proxies),

ỹ′t = [y′t m
′
t], and ñ = n+ k. If these are governed by an SVAR, then

ỹ′tÃ0 =

p∑
`=1

ỹ′t−`Ã` + c̃+ ε̃′t for 1 ≤ t ≤ T, (1)

where Ãi is an ñ× ñ matrix for 0 ≤ i ≤ p with Ã0 invertible, c̃ is a 1× ñ row vector, and ε̃t is conditionally

standard normal.5 If x̃′t = [ỹ′t−1 · · · ỹ′t−p 1] and Ã′+ = [Ã′1 · · · Ã′p c̃′], Equation (1) can be more compactly

5We can always include a vector of exogenous variables, z̃t of dimension ẽ× 1. In that case the model will be written as

ỹ′tÃ0 =

p∑
`=1

ỹ′t−`Ã` + c̃+ z̃′td̃+ ε̃′t for 1 ≤ t ≤ T,
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written as

ỹ′tÃ0 = x̃′tÃ+ + ε̃′t for 1 ≤ t ≤ T. (2)

Let ε̃′t = [ε′t υ
′
t], where εt is n× 1 and υt is k× 1. Since ε̃t is conditionally standard normal, υt is uncorrelated

with εt. A Proxy-SVAR imposes the condition that yt evolves according to

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T, (3)

where x′t = [y′t−1 · · · y′t−p 1] and A′+ = [A′1 · · ·A′p c′], with Ai an n× n matrix for 0 ≤ i ≤ p, A0 invertible,

and c a 1× n row vector.

The εt are the structural shocks and the υt are other shocks that affect the proxies. Equation (3) implies

that

Ãi =

 Ai Γi,1

0k×n Γi,2

 ,
where Γi,1 is n× k and Γi,2 is k × k for 0 ≤ i ≤ p and 0k×n is a k × n matrix of zeros.6 We call these zero

restrictions on Ã0 and Ã+ the block restrictions. We call Equation (2), together with the block restrictions,

the structural parameterization of the Proxy-SVAR and (Ã0, Ã+), such that the block restrictions hold,

the Proxy-SVAR structural parameters. We call (A0,A+), which are unrestricted, the SVAR structural

parameters.

Notice that while the specification of our Proxy-SVAR is similar to the one in Mertens and Ravn (2013)

and Stock and Watson (2018), there are two main differences. First, we use a parametric model, whereas

the aforementioned papers use a semi-parametric model. Second, we restrict the structural innovations to be

conditionally homoscedastic and Gaussian. The latter is a common assumption in set-identified SVAR analysis,

but some SVAR studies have relaxed it following Gonçalves and Kilian (2004).

2.2 The Identification Problem in a Proxy-SVAR

Following Rothenberg (1971) the Proxy-SVAR structural parameters (Ā0, Ā+) and (Â0, Â+) are observa-

tionally equivalent if and only if they imply the same joint distribution of ỹ1, · · · , ỹT . Proposition 1 gives

necessary and sufficient conditions for Proxy-SVAR structural parameters to be observationally equivalent.

Let diag(X1, · · · ,Xm) denote a block diagonal matrix with the matrices X1, · · · ,Xm along the diagonal and

where d̃ is a ẽ× ñ row vector.
6Alternatively, we could have set Γ0,2 to be equal to a k × k identity matrix and allowed the υt to be correlated among

themselves.

5



let O(m) denote the set of m×m orthogonal matrices.

Proposition 1. The Proxy-SVAR structural parameters (Ā0, Ā+) and (Â0, Â+) are observationally equivalent

if and only if Ā0 = Â0Q and Ā+ = Â+Q, for some matrix Q ∈ Q ⊂ O(ñ), where Q is defined by

Q = {Q ∈ O(ñ)|Q = diag(Q1,Q2),Q1 ∈ O(n), and Q2 ∈ O(k)} . (4)

Proof. It is well known that (Ā0, Ā+) and (Â0, Â+) are observationally equivalent if and only if Ā0 = Â0Q

and Ā+ = Â+Q, for some matrix Q ∈ O(ñ). If Q is of the form given by Equation (4) and (Â0, Â+) satisfy

the block restrictions, then a direct calculation shows that (Â0Q, Â+Q) also satisfy the block restrictions.

Because Â0 is non-singular and Q is orthogonal, if Ā0 = Â0Q satisfies the block restrictions, then Q must be

of the form given by Equation (4).

It follows from this proposition that without further restrictions a Proxy-SVAR is not identified. The

identification problem in Proxy-SVARs is commonly a partial identification problem because researchers focus

on identifying a subset of the Proxy-SVAR equations.7 For ease of exposition, we adopt Leeper, Sims, and Zha’s

(1996) view and use the term identifying structural shocks as equivalent to identifying structural equations.8

The identification problem in Proxy-SVARs is typically addressed by assuming that the k proxies are

correlated with k structural shocks in εt and uncorrelated with the remaining structural shocks. Without

loss of generality let the structural shocks correlated with the proxies be the last k elements of εt and the

structural shocks uncorrelated with the proxies be the first n− k elements of εt. We now show that the latter

restrictions—which are known in the literature as exogeneity restrictions—are zero restrictions on a non-linear

function of the Proxy-SVAR structural parameters. To see this, first note that by multiplying Equation (2) by

Ã−10 and focusing on the last k equations we obtain

m′t = ỹ′tJ
′ = x̃′tÃ+Ã

−1
0 J

′ + ε̃′tÃ
−1
0 J

′, for 1 ≤ t ≤ T,

where J = [0k×n Ik]. It follows that

E[mtε
′
t] = E[mtε̃

′
tL
′] = J(Ã−10 )′L′,

7A Proxy-SVAR equation is identified if, for any two sets of observationally equivalent Proxy-SVAR parameters, the parameters
in that equation are identical.

8The theory and the algorithm of this paper can be replicated for a Proxy-SVAR in which the structural parameters are
written in terms of impulse response functions (IRFs)—i.e., the IRF parameterization (see Appendix B in Arias, Rubio-Ramı́rez,
and Waggoner, 2018). In such a case, identifying structural shocks is equivalent to identifying structural IRFs.
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where L = [In 0n×k]. Thus, the exogeneity restrictions imply that the first n−k columns of matrix J(Ã−10 )′L′

must be zero, which makes clear that Proxy-SVARs are identified by zero restrictions on a non-linear function

of the Proxy-SVAR structural parameters. That is, the exogeneity restrictions are zero restrictions on (Ã−10 )′.

In addition to the exogeneity restrictions, we also need the covariance matrix of the last k structural shocks

and the k proxies, i.e., the last k columns of J(Ã−10 )′L′, to be non-singular. As in the literature, we refer to

this as the relevance condition. Given the insights in Caldara and Herbst (2016), one may want to control how

strong the relevance condition is. In Section 2.5, we show how to use the priors to do so.

2.3 The Need for Additional Restrictions

The exogeneity restrictions and the relevance condition only allow us to categorize the structural shocks into

two groups: the ones that are correlated with the proxies and the ones that are not correlated with the proxies.

If we only use the exogeneity restrictions and the relevance condition, we have an identification problem among

the structural shocks that are correlated with the proxies unless k = 1.9 This is formalized in the following

proposition.

Proposition 2. Let (Ā0, Ā+) and (Â0, Â+) be Proxy-SVAR structural parameters that also satisfy the

exogeneity restrictions and the relevance condition. Then (Ā0, Ā+) and (Â0, Â+) are observationally equivalent

if and only if there exists a matrix Q ∈ X ⊂ Q ⊂ O(ñ) such that Ā0 = Â0Q and Ā+ = Â+Q, where X is

defined by

X = {Q ∈ Q|Q = diag(Q3,Q4,Q5),Q3 ∈ O(n− k),Q4 ∈ O(k), and Q5 ∈ O(k)} . (5)

Proof. By Proposition 1, (Ā0, Ā+) and (Â0, Â+) are observationally equivalent if and only if there exists a

Q = diag(Q1,Q2) ∈ Q such that Ā0 = Â0Q and Ā+ = Â+Q. If Q is of the form given by Equation (5)

and Â0 satisfies the exogeneity restrictions and the relevance condition, then a direct calculation shows that

Â0Q also satisfies the exogeneity restrictions and the relevance condition. Because Â0 is non-singular and

Q is orthogonal, if Ā0 = Â0Q satisfies the exogeneity restrictions, then Q must be of the form given by

Equation (5).

Note that Q3 rotates the columns of the Proxy-SVAR structural parameters associated with the structural

shocks that are not correlated with the proxies while Q4 rotates the columns of the Proxy-SVAR structural

parameters associated with the structural shocks that are correlated with the proxies. Often, one is interested

9Jentsch and Lunsford (2019a) describe the same problem. In Appendix A of their paper, they give two examples of zero
restrictions that can be used. We can consider all of their zero restrictions.
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only in the partial identification of the k structural shocks that are correlated with the k proxies. If that is the

case and k = 1, the exogeneity restrictions and the relevance condition exactly identify the structural shock

correlated with the proxy. The following corollary of Proposition 2 formalizes this result.

Corollary 1. Let k = 1 and let (Ã0, Ã+) be Proxy-SVAR structural parameters that also satisfy the exogeneity

restrictions and the relevance condition. Then, the last column of (A0,A+) is identified up to a sign.

Proof. If k = 1, then we have Q4 = ±1 and the nth column of Q is equal to (0 . . . 0 ±1 0)′.

Although most of the studies relying on Proxy-SVAR analysis use one instrument to identify one structural

shock, a growing literature considers the case in which several instruments are used to identify several

structural shocks or to conduct counterfactual experiments based on linear combinations of the latter. Braun

and Brüggemann (2017), Piffer and Podstawski (2017), Jarociński and Karadi (2018), Lakdawala (2019), Känzig

(2019), Giacomini, Kitagawa, and Read (2020), Jentsch and Lunsford (2019a) and Jentsch and Lunsford (2019b)

are examples of papers that explicitly aim to identify multiple structural shocks with multiple instruments.

Braun and Brüggemann (2017) identify oil market and monetary policy shocks by combining sign restrictions

with information obtained from external instruments. Piffer and Podstawski (2017) identify uncertainty and

news shocks by combining exogeneity restrictions arising from external instruments with sign restrictions.

Jarociński and Karadi (2018) try to simultaneously identify monetary policy shocks and news shocks using

external information. Lakdawala (2019) identifies fed funds rate and forward guidance shocks. Känzig (2019)

identifies two types of oil shocks: supply news shocks and unanticipated oil supply shocks by combining

exogeneity restrictions arising from external instruments with a zero restriction on a contemporaneous impulse

response function. Giacomini, Kitagawa, and Read (2020) expand their robust analysis to Proxy-SVAR models

with more than one instrument to identify the same number of structural shocks. Jentsch and Lunsford (2019a)

and Jentsch and Lunsford (2019b) expand the techniques in Mertens and Ravn (2013) to larger systems.

Proposition 2 tells us that if k > 1 we need additional identification restrictions to identify the structural

shocks within the set of structural shocks that are correlated with the proxies. The additional restrictions can

be either sign or zero restrictions, or both. We will further discuss these restrictions in Section 3.2.10

2.4 The Road Map

In this paper, we develop an efficient algorithm to independently draw from any posterior distribution over the

Proxy-SVAR structural parameterization conditional on the exogeneity restrictions, the relevance condition,

10It is important to note that while Caldara and Herbst’s (2016) paper is the one closest to ours, we suspect that there would
be non-trivial challenges in implementing additional zero restrictions using their approach.
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and any additional zero and sign restrictions. However, we will write our algorithm as independently drawing

from the family of restricted NGN posterior distributions over the structural parameterization of a Proxy-SVAR.

The NGN distribution is a conjugate family of distributions commonly used in the literature. For instance, the

Sims-Zha prior (see Sims and Zha, 1998) is conjugate and in the NGN family. Conjugate priors and posteriors

have the appealing property of giving the same weight to observationally equivalent Proxy-SVAR structural

parameters.

Although a Proxy-SVAR identified with exogeneity restrictions can be represented by an SVAR identified

with zero restrictions, one cannot use Arias, Rubio-Ramı́rez and Waggoner’s (2018) algorithms because

of the large number of zero restrictions embedded in a Proxy-SVAR. For this reason, we introduce a new

parameterization called the orthogonal triangular-block parameterization, which plays a role parallel to the

one played by the orthogonal reduced-form parameterization in Arias, Rubio-Ramı́rez and Waggoner (2018).11

This parameterization is useful because it allows us to produce independent draws from a distribution over the

orthogonal triangular-block parameterization conditional on the exogeneity restrictions, the relevance condition,

and any additional zero and sign restrictions. These independent draws are mapped into the Proxy-SVAR

structural parameterization and weighted by the appropriate volume elements, so that they come from the

desired posterior distribution over the Proxy-SVAR structural parameterization conditional on the exogeneity

restrictions, the relevance condition, and any additional zero and sign restrictions.

2.5 Priors and Posteriors

We will use a restricted NGN distribution over the Proxy-SVAR structural parameterization as our prior

distribution to describe our algorithm.12 Hence, the Proxy-SVAR structural parameters (Ã0, Ã+) have a prior

density proportional to NGN(ν,Φ,Ψ,Ω)(Ã0, Ã+), where

NGN(ν,Φ,Ψ,Ω)(Ã0, Ã+) ∝ |det(Ã0)|ν−ne−
1
2
vec(Ã0)′Φ vec(Ã0)e−

1
2
(vec(Ã+)−Ψ vec(Ã0))′Ω−1(vec(Ã+)−Ψ vec(Ã0)). (6)

The density is characterized by four parameters: a scalar ν ≥ ñ, an ñ2 × ñ2 block diagonal matrix Φ with ñ

symmetric and positive definite ñ× ñ blocks, an m̃ñ× ñ2 block diagonal matrix Ψ with ñ blocks of size m̃× ñ,

11The orthogonal reduced-form parameterization consists of an ñ× ñ symmetric and positive definite matrix, Σ, an m̃× ñ
matrix, B, and an ñ× ñ orthogonal matrix, Q, that allow us to represent Equation (2) as

ỹ′t = x̃′tB + ε̃′tQ
′h(Σ) for 1 ≤ t ≤ T,

where the ñ× ñ matrix h(Σ) is any decomposition of the covariance matrix Σ satisfying h(Σ)′h(Σ) = Σ and where m̃ = pñ+ 1.
12By a restricted NGN distribution over the structural parameterization of the Proxy-SVAR, we mean an NGN distribution

over Rñ2+m̃ñ conditional on the block restrictions. If there are exogenous variables, m̃ = pñ+ 1 + ẽ.
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and an m̃ñ× m̃ñ block diagonal matrix Ω with ñ symmetric and positive definite m̃× m̃ blocks.13 In general,

the marginal prior distribution of vec(Ã0) is a generalized-normal distribution, but when ν = ñ it is a normal

distribution with mean zero and variance Φ−1. The parameter ν controls how close the generalized-normal

distribution is to a normal distribution. The prior distribution of vec(Ã+), conditional on Ã0, is a normal

with mean Ψvec(A0) and variance Ω.

If the exogeneity restrictions hold, then we can write E[mtε
′
t] = J(Ã−10 )′L′ = [0k×(n−k) V ], where the

k×k matrix V is the covariance matrix of the k proxy variables and the last k structural shocks. The relevance

condition implies that V is non-singular. Following Caldara and Herbst (2016), one may want to introduce

prior beliefs about how much of the variance of the instruments must be related to the underlying structural

shocks of interest. We will introduce these prior beliefs by truncating the density described in Equation (6)

so that the minimum eigenvalue of the reliability matrix, which is
(
Γ−1′0,2 Γ−10,2 + V V ′

)−1
V V ′, is greater than

γ, where 0 ≤ γ < 1. This implies that at least γ percent of the variance of any linear combination of the

instruments must be related to the underlying structural shocks of interest; see Gleser (1992). As we will see

in our applications, the truncation may improve the efficiency of our algorithm. We say that the parameters

that survive the truncation satisfy the γ-relevance condition.

Our algorithm will independently draw from the restricted NGN posterior distribution over the structural

parameterization of a Proxy-SVAR conditional on the exogeneity restrictions, the γ-relevance condition, and any

additional zero and sign restrictions implied by the above described prior. More specifically, given a prior density

proportional to NGN(ν,Φ,Ψ,Ω)(Ã0, Ã+), the posterior density is proportional to NGN(ν̃, Φ̃, Ψ̃, Ω̃), where

ν̃ = T+ν, Ω̃ = (Iñ⊗X̃ ′X̃+Ω−1)−1, Ψ̃ = Ω̃(Iñ⊗X̃ ′Ỹ +Ω−1Ψ), and Φ̃ = Iñ⊗Ỹ ′Ỹ +Φ+Ψ′Ω−1Ψ−Ψ̃′Ω̃−1Ψ̃,

Ỹ = [ỹ1 · · · ỹT ]′, and X̃ = [x̃1 · · · x̃T ]′.

2.6 The Orthogonal Triangular-Block Parameterization

Arias, Rubio-Ramı́rez, and Waggoner (2018) showed how to independently draw from any posterior distribution

over the structural parameterization of an SVAR conditional on zero and sign restrictions.14 Since a Proxy-

SVAR identified with exogeneity restrictions can be represented by the SVAR in Equation (2) (before any

restriction is considered) identified with the zero restrictions on Ã0, Ã+, and (Ã−10 )′ associated with the block

and the exogeneity restrictions, one would like to use Arias, Rubio-Ramı́rez and Waggoner’s (2018) algorithm.

However, the techniques of that paper cannot be directly applied in this context because the number of zero

13Arias, Rubio-Ramı́rez, and Waggoner (2018) assumed a Kronecker structure for Φ, Ψ, and Ω, while here only a block diagonal
structure is assumed.

14As is the case here, Arias, Rubio-Ramı́rez and Waggoner (2018) use the NGN distribution to illustrate their methods, but
their algorithm can be used to draw from any posterior distribution over the structural parameterization of an SVAR.
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restrictions implied by the block restrictions alone is too large. There are (p+ 1)k block restrictions on each

of the first n columns of (Ã0, Ã+), whereas the maximum number of restrictions that the aforementioned

algorithm can handle on the jth column of the structural parameters is ñ− j. So unless p = 0, an uninteresting

case, the maximum will be exceeded for the nth column, if not before. In this paper we show that the techniques

in Arias, Rubio-Ramı́rez, and Waggoner (2018) can be adapted to accomplish our objective.

The idea in Arias, Rubio-Ramı́rez, and Waggoner (2018) was to map independent draws from the orthogonal

reduced-form parameterization conditional on the zero restrictions into the structural parameterization of the

SVAR to create a proposal for the desired posterior distribution over the structural parameterization of the

SVAR conditional on the zero restrictions. The key to their approach is to properly account for the volume

element associated with that mapping in order to characterize the proposal. This proposal was then embedded

in an importance sampling algorithm.

The fact that the number of zeros is too large in a Proxy-SVAR identified with exogeneity restrictions

precludes us from using Arias, Rubio-Ramı́rez and Waggoner’s (2018) algorithm. Instead, we will map

what we call the orthogonal triangular-block parameterization conditional on the exogeneity restrictions, the

γ-relevance condition, and any additional zero and sign restrictions into the structural parameterization of the

Proxy-SVAR to create a proposal for the desired posterior distribution over the structural parameterization of

the Proxy-SVAR conditional on the exogeneity restrictions, the γ-relevance condition, and any additional zero

and sign restrictions. As in Arias, Rubio-Ramı́rez, and Waggoner (2018), the key will be to properly account

for the volume element in order to characterize the proposal.

Let Λ̃0 be an ñ× ñ matrix, Λ̃+ be an m̃× ñ matrix, Q1 be an n×n orthogonal matrix, and Q2 be a k× k

orthogonal matrix. The matrix Λ̃0 is restricted to be upper-triangular with positive diagonal. The matrix

Λ̃′+ = [Λ̃′1 · · · Λ̃′p d′], where Λ̃i is ñ×ñ for 1 ≤ i ≤ p and d is 1×ñ, is restricted so that the lower left-hand k×n

block of Λ̃i is zero for 1 ≤ i ≤ p. We label the zero restrictions on Λ̃0 and Λ̃+ the triangular-block restrictions,

and we call (Λ̃0, Λ̃+) such that the triangular-block restrictions hold the triangular-block parameters. We call

(Λ̃0, Λ̃+,Q1,Q2) the orthogonal triangular-block parameters.

Given any values of the triangular-block parameters (Λ̃0, Λ̃+) and the orthogonal matrices (Q1,Q2), we

can map orthogonal triangular-block parameters (Λ̃0, Λ̃+,Q1,Q2) into Proxy-SVAR structural parameters

(Ã0, Ã+) by

(Λ̃0, Λ̃+,Q1,Q2)
f−→ (Λ̃0 diag(Q1,Q2)︸ ︷︷ ︸

Ã0

, Λ̃+ diag(Q1,Q2)︸ ︷︷ ︸
Ã+

).

It is easy to verify that (Ã0, Ã+) will satisfy the block restrictions, so they are Proxy-SVAR structural
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parameters.15

The mapping of f has an inverse. Let Ã−10 = PR be the QR-decomposition of Ã−10 normalized so that

the diagonal of R is positive. Because the lower left-hand k× n block of Ã−10 is zero, P = diag(P1,P2), where

P1 ∈ O(n) and P2 ∈ O(k). The inverse of f is

(Ã0, Ã+)
f−1

−→ (Ã0P︸ ︷︷ ︸
Λ̃0

, Ã+P︸ ︷︷ ︸
Λ̃+

, P ′1︸︷︷︸
Q1

, P ′2︸︷︷︸
Q2

).

The matrix Λ̃0 will be upper triangular with positive diagonal because Ã0P = R−1. Furthermore, since P is

block diagonal and the lower left-hand k × n block of Ãi is zero, the lower left-hand k × n block of each Λ̃i

will be zero.

The orthogonal triangular-block parameters (Λ̃0, Λ̃+,Q1,Q2) define another parameterization of the

Proxy-SVAR. We call this alternative parameterization the orthogonal triangular-block parameterization of a

Proxy-SVAR and we write the latter as follows

ỹ′tΛ̃0 = x̃′tΛ̃+ + ũ′t for 1 ≤ t ≤ T,

where ũ′t = ε̃′tQ
′ with Q = diag(Q1,Q2). Like ε̃t, the innovations ũt are conditionally standard normal.

Importantly, we can produce independent draws of the triangular-block parameters. Furthermore, as we

show in Section 3.2, the exogeneity and any additional zero restrictions are linear restrictions on the columns

of the orthogonal matrix Q1 and hence one can also efficiently and independently draw orthogonal matrices

Q1 and Q2. The resulting draws can be mapped to Proxy-SVAR structural parameterization using f defined

above. As will become clear in Section 3, these properties play a central role in the algorithm for inference

proposed in this paper.

3 The Algorithm

In this section, we present Algorithm 1 to make independent draws from the restricted NGN posterior

distribution over the structural parameterization of a Proxy-SVAR conditional on the exogeneity restrictions,

15We normalize the variance matrix of the structural shocks to one. One could implement any other normalization—such as the
unit effect normalization adopted in Proxy-SVAR studies working under the frequentist paradigm—by appropriately modifying the
function f . Our choice keeps the notation as close as possible to the notation in Arias, Rubio-Ramı́rez, and Waggoner (2018),
and hence, it simplifies the implementation and interpretation of additional sign restrictions that we will introduce later. In
addition, the normalization we adopt is in line with the normalization adopted by Proxy-SVAR studies working under the Bayesian
paradigm; see, e.g., Bahaj (2014), Drautzburg (2016), Caldara and Herbst (2016), and Giacomini, Kitagawa, and Read (2020). For
completeness, in Appendix A.1 we show the map associated with the unit effect normalization.
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the relevance condition, and any additional zero and sign restrictions. Algorithm 1 starts by independently

drawing triangular-block parameters, (Λ̃0, Λ̃+), from a restricted NGN posterior using Waggoner and Zha’s

(2003) Gibbs sampler.16 This will be further discussed in Section 3.1 and Appendix A.2. The exogeneity and

any additional zero restrictions are linear restrictions on the columns of the orthogonal matrix Q1, as will be

discussed in Section 3.2. This will allow the use of the ideas in Arias, Rubio-Ramı́rez, and Waggoner (2018) to

draw the orthogonal matrices (Q1,Q2), conditional on each draw of the triangular-block parameters, such that

the exogeneity and any additional zero restrictions hold when (Λ̃0, Λ̃+,Q1,Q2) is mapped to (Ã0, Ã+), using

the function f defined in Section 2.6. Draws that do not satisfy the γ-relevance condition or any additional sign

restrictions are discarded. This is feasible because the set of Proxy-SVAR structural parameters that satisfy

the γ-relevance condition and any additional sign restrictions is a subset of positive measure in the set of all

Proxy-SVAR structural parameters that satisfy the exogeneity and any additional zero restrictions. These

draws of (Ã0, Ã+) are not from the restricted NGN posterior distribution over the structural parameterization

of a Proxy-SVAR conditional on the exogeneity restrictions, the relevance condition, and any additional zero

and sign restrictions, but in Section 3.4 we show how to numerically compute the density of each of these draws.

Thus we can importance weight these draws and re-sample to obtain independent draws from the desired

distribution.17 Section 3.5 highlights some practicalities when implementing Algorithm 1 and emphasizes some

easy extensions of the algorithm. Finally, Section 3.6 discusses the importance of the volume element.

3.1 Independent Draws of the Triangular-Block Parameters

We use the Gibbs sampler of Waggoner and Zha (2003) to independently draw from a restricted NGN posterior

distribution over the triangular-block parameters characterized by NGN(ν̂, Φ̂, Ψ̂, Ω̂). This Gibbs sampler can

be used to draw from an NGN distribution subject to linear restrictions, as long as the restrictions do not

involve cross-equation restrictions and the matrices Φ̂, Ψ̂, and Ω̂ are block diagonal.18 Since the triangular

and block restrictions on (Λ̃0, Λ̃+) do not involve cross-equation restrictions, and Φ̂, Ψ̂, and Ω̂ can be chosen

to be block diagonal, the conditions for using the Gibbs sampler are satisfied. Furthermore, because Λ̃0 is

restricted to be upper-triangular, it follows from Theorem 2 of Waggoner and Zha (2003) that the Gibbs

sampler draws will be independent. In Appendix A.2, we describe how to adapt their paper to our purposes.

16A restricted NGN distribution over the triangular-block parameters is an NGN distribution over Rñ2+m̃ñ conditional on the
triangular-block restrictions.

17Re-sampling is not always necessary or desirable. Even without re-sampling, our draws are independent. This makes certain
computations, such as computing moments, very efficient using all the weighted draws.

18The Gibbs sampler of Waggoner and Zha (2003) was developed to draw from the posterior distribution of a structural VAR
with linear non-cross-equation restrictions using a certain class of normal priors. The class of posterior distributions that can be
obtained with this class of priors is the set of NGN distributions, conditional on the linear non-cross-equation restrictions, that
were described in Section 2.5.
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Often, it suffices to choose (ν̂, Φ̂, Ψ̂, Ω̂) to be equal to (ν̃, Φ̃, Ψ̃, Ω̃), the parameters associated with

the desired restricted NGN posterior distribution over the structural parameterization of the Proxy-SVAR

conditional on the exogeneity restrictions, the relevance condition, and any additional zero and sign restrictions.

However, sometimes this can lead to small effective sample sizes in our importance sampler. In Appendix A.3,

we describe a more tailored choice of (ν̂, Φ̂, Ψ̂, Ω̂) that can avoid this loss of efficiency.

3.2 Restrictions on the Orthogonal Triangular-Block Parameters

As noted in Section 2.3, the exogeneity restrictions and γ-relevance condition do not fully identify the Proxy-

SVAR parameters so that one may need to impose additional zero and sign restrictions. In this section we

define the allowable additional zero and sign restrictions.

Because of the arguments made in Section 2.2, if (Ã0, Ã+) are Proxy-SVAR structural parameters, the

exogeneity restrictions are of the form J(Ã−10 )′L′en,j = 0k×1, for 1 ≤ j ≤ n− k, where en,j is the jth column

of an identity matrix of dimension n. The index j stops at n− k because there are no exogeneity restrictions

for n− k < j ≤ n. In terms of the orthogonal triangular-block parameterization, this is equivalent to

J(Ã−10 )′L′en,j = J((Λ̃0 diag(Q1,Q2))
−1)′L′en,j = J(Λ̃−10 )′L′Q1en,j = 0k×1 for 1 ≤ j ≤ n− k. (7)

Thus, conditional on a draw of triangular-block parameters (Λ̃0, Λ̃+), the exogeneity restrictions are linear

restrictions on the columns of Q1. As in Arias, Rubio-Ramı́rez, and Waggoner (2018), this will be used to

draw the orthogonal matrix Q1 conditional on (Λ̃0, Λ̃+).

The exogeneity restrictions are linear restrictions on the function of the Proxy-SVAR parameters given by

J(Ã−10 )′L′ and the key condition that this function needed to satisfy was that J((Ã0 diag(Q1,Q2))
−1)′L =

J(Ã−10 )′L′Q1. Let Fz(Ã0, Ã+) be a function from the set of Proxy-SVAR structural parameters to the set of

r × n matrices that satisfies

Fz(Ã0 diag(Q1,Q2), Ã+ diag(Q1,Q2)) = Fz(Ã0, Ã+)Q1 for every Q1 ∈ O(n) and Q2 ∈ O(k). (8)

We call functions that satisfy Equation (8) orthogonally commutative. Let F̃z(Ã0, Ã+) = [LÃ−10 J
′ Fz(Ã0, Ã+)′]′.

Note that F̃z(Ã0, Ã+) is also orthogonally commutative.19 Allowable additional zero restrictions are linear

restrictions on F̃z(Ã0, Ã+).

Let Z̃j be a z̃j× (k+r) matrix of full row rank, where k ≤ z̃j ≤ n− j, for 1 ≤ j ≤ n−k, and 0 ≤ z̃j ≤ n− j,
19In addition to being orthogonally commutative, a regularity condition is needed to ensure that there is sufficient variation in

F̃z(Ã0, Ã+). The exact condition is discussed in Appendix A.4.
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for n− k < j ≤ n. Then, the exogeneity restrictions and allowable additional zero restrictions are of the form

Z̃jF̃z(Ã0, Ã+)en,j = 0z̃j×1, for 1 ≤ j ≤ n. (9)

Because the zero restrictions represented in Equation (9) encode both the exogeneity and any additional zero

restrictions, the first k rows of Z̃j are equal to [Ik 0k×r], for 1 ≤ j ≤ n − k, and z̃j is the total number of

restrictions, including both the exogeneity and any additional zero restrictions. Note that we are identifying

only εt.
20 In principle, one could also use additional zero restrictions to identify υt, but that will rarely be

of interest. Many restrictions used in the literature are of this form. For instance, we can impose linear

restrictions on the last k columns of J(Ã−10 )′L′, which means that we can impose linear restrictions on the

covariance matrix of the proxies and the shocks correlated with the proxies, as long as the bounds on the

number of restrictions are respected. Furthermore, we can impose linear restrictions on the impulse response

of endogenous variables to structural shocks or on the SVAR structural parameters themselves.

From Equation (8) and the definition of f , the zero restrictions in the orthogonal triangular-block

parameterization are

Z̃jF̃z(f(Λ̃0, Λ̃+,Q1,Q2))en,j = Z̃jF̃z(f(Λ̃0, Λ̃+, In, Ik))︸ ︷︷ ︸
G̃j(Λ̃0,Λ̃+)

Q1en,j = 0z̃j×1, for 1 ≤ j ≤ n. (10)

The function G̃j(Λ̃0, Λ̃+) is used to impose both the exogeneity and any additional zero restrictions, which we

see from Equation (10) are equivalent to linear restrictions on the columns of Q1 conditional on (Λ̃0, Λ̃+). To

have a unified and compact notation, let mi denote the size of the orthogonal matrix Qi, which is n when

i = 1 and k when i = 2, let z̃i,j denote the number of restrictions on the jth column of Qi, which is z̃j for i = 1

and zero for i = 2, let G̃i,j(Λ̃0, Λ̃+) be G̃j(Λ̃0, Λ̃+) if i = 1 and the empty 0× k matrix if i = 2, and, finally,

let ni,j = z̃i,j + j − 1.

We also allow for additional sign restrictions. The allowable sign restrictions are of the form F̃s(Ã0, Ã+) >

0s̃×1, where F̃s is any continuous function from Rñ2+ñm̃ to Rs̃. As with the exogeneity restrictions, we will

express the γ-relevance condition as a sign restriction. We assume that the first row of F̃s(Ã0, Ã+) is the

minimum eigenvalue of the reliability matrix less γ, which is a continuous function. Because F̃s is continuous,

the set of all Proxy-SVAR structural parameters satisfying the zero and sign restrictions is an open subset

of the Proxy-SVAR structural parameters satisfying just the zero restrictions. Thus, if the restrictions are

20The number of restrictions could be zero for n − k < j ≤ n. In this case, Z̃j would be the empty 0 × (k + r) matrix and
Z̃jF̃z(Ã0, Ã+)en,j would be the empty 0 × 1 matrix.

15



non-degenerate, so that there is at least one value of the Proxy-SVAR structural parameters satisfying the

zero and sign restrictions, then the set of all Proxy-SVAR structural parameters satisfying the zero and sign

restrictions will be an open set of positive measure in the set of all Proxy-SVAR structural parameters satisfying

just the zero restrictions. Because of this, it is feasible to make draws of Proxy-SVAR structural parameters

satisfying just the zero restrictions, and then retain only the ones that also satisfy the sign restrictions.

As we have seen, the exogeneity restrictions are allowable zero restrictions and the γ-relevance condition is

an allowable sign restriction. Henceforth, when we refer to the zero restrictions, this will include both the

exogeneity and any allowable additional zero restrictions, and when we refer to the sign restrictions, this will

include both the γ-relevance condition and any allowable additional sign restrictions.

3.3 The Algorithm

We now have the notation and concepts to state our simulation algorithm.

Algorithm 1. The following algorithm makes independent draws from the restricted NGN posterior distribution

over the structural parameterization of a Proxy-SVAR conditional on the zero and sign restrictions.

1. Draw triangular-block parameters (Λ̃0, Λ̃+) independently from the restricted NGN(ν̂, Φ̂, Ψ̂, Ω̂) distribution

using Waggoner and Zha’s (2003) Gibbs sampler.

2. For i = 1, 2 and 1 ≤ j ≤ mi, draw αi,j ∈ Rmi−ni,j independently from a standard normal distribution and

set wi,j = αi,j/ ‖ αi,j ‖.

3. For i = 1, 2 recursively define Qi = [qi,1 · · · qi,mi ] by qi,j = Ki,jwi,j for any mi × (mi − ni,j) matrix Ki,j

whose columns form an orthonormal basis for the null space of the ni,j ×mi matrix

Mi,j =

[
G̃i,j(Λ̃0, Λ̃+)′ qi,1 · · · qi,j−1

]′
.

4. Define (Ã0, Ã+) = f(Λ̃0, Λ̃+,Q1,Q2).

5. If the sign restrictions are satisfied, retain the draw; otherwise, discard the draw and return to Step 1.

6. For each retained draw, set its importance weight to

wi =
NGN(ν̃,Φ̃,Ψ̃,Ω̃)(Ã0, Ã+)

p(Ã0, Ã+)
,

where p(Ã0, Ã+) denotes the density of the draws obtained in Steps 1 thorough 4.

7. Return to Step 1 until the required number of draws has been obtained.

8. Optionally, re-sample with replacement using the importance weights.
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The density p used in Step 6 will be explicitly computed in Section 3.4. In order for this algorithm to work,

it must be the case that Mi,j is of full row rank; otherwise, the dimension of the null space of Mi,j would be

strictly greater than mi − ni,j and the matrix Ki,j would not exist. In Appendix A.4, we will show that Mi,j

is almost surely of full row rank.

When there are no additional zero restrictions, Mi,j , being of full row rank, has a nice interpretation in terms

of the relevance condition. If the exogeneity restrictions hold, then E[mtε
′
t] = J(Ã−10 )′L′ = [0k×(n−k) V ],

where the k×k matrix V is the covariance matrix of the k proxy variables and the last k structural shocks. So,

the relevance condition, which requires V to be non-singular, holds if and only if J(Ã−10 )′L′ is of full row rank.

When there are no additional zero restrictions, the matrix Mi,j will clearly be of full row rank when i = 1 and

n− k < j ≤ n or when i = 2 and 1 ≤ j ≤ k. When i = 1 and 1 ≤ j ≤ n− k, the matrix Mi,j will be of full

row rank if and only if J(Λ̃−10 )′L′ is of full row rank. This is because, by construction, the q1,1, · · · , q1,j−1

are perpendicular to each other and the rows of J(Λ̃−10 )′L′. Because J(Ã−10 )′L′ = J(Λ̃−10 )′L′Q1, the matrix

J(Ã−10 )′L′ is of full row rank if and only if the matrix J(Λ̃−10 )′L′ is of full row rank. So, when there are no

additional zero restrictions, the relevance condition is equivalent to Mi,j being of full row rank for all i and j.

Of course, in practice, we not only want the covariance matrix to be non-singular, but we also would like it to

be well conditioned so that it is far from being singular. We accomplish this by using the stronger γ-relevance

condition, as explained in Section 2.5.

Even if Mi,j is of full row rank, the matrix Ki,j is not unique. If the columns of Ki,j form an orthonormal

basis for the null space of Mi,j , then any matrix whose columns form an orthonormal basis for the null space

of Mi,j will be of the form Ki,jQ for some Q ∈ O(mi − ni,j). Since αi,j is drawn from the standard normal

distribution, wi,j is drawn from the uniform distribution over the unit sphere in Rmi−ni,j , so the distribution

of Ki,jwi,j is identical to the distribution of Ki,jQwi,j . So, when making draws, the choice of Ki,j does not

matter. In terms of efficiency, we recommend taking Ki,j to be the last mi − ni,j columns of the orthogonal

component of the full QR-decomposition of M ′
i,j .

21

Finally, we must show that Algorithm 1 does, in fact, independently draw from the posterior distribution

over the Proxy-SVAR structural parameterization conditional on zero and sign restrictions. Steps 1 and 2

produce independent draws, so the algorithm also produces independent draws. Step 5 ensures that the sign

restrictions are satisfied for the retained draws. Because the columns of Ki,j form a basis for the null space

of Mi,j , we have that Mi,jqi,j = Mi,jKi,jwi,j = 0ni,j . This implies G̃i,j(Λ̃0, Λ̃+)qi,j = 0z̃i,j , so that the zero

21If the full QR-decomposition of M ′
i,j is M ′

i,j = [Q̂ Q̃][R′ 0ni,j×(mi−ni,j)]
′ = Q̂R, where Q̂ is mi×ni,j , Q̃ is mi× (mi−ni,j),

and R is ni,j × ni,j , then Mi,jQ̃ = R′Q̂′Q̃ = 0. So, if Mi,j is of full row rank, then the columns of Q̃ form an orthonormal basis
for the null space of Mi,j .
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restrictions are satisfied. It also implies that q′i,`qi,j = 0, for 1 ≤ ` < j, so qi,` and qi,j are perpendicular.

Because the columns of Ki,j are orthonormal, ‖qi,j‖ = ‖wi,j‖ = 1. So, Step 3 of Algorithm 1 ensures both that

the zero restrictions are satisfied and that the matrices Q1 and Q2 are orthogonal. Finally, Step 6 ensures that

the weighted draws are from the desired posterior, provided that almost all Proxy-SVAR structural parameters

satisfying the zero restrictions are in the image of the mapping defined by Steps 3 and 4. This will be shown

in Section 3.4.

3.4 The Density Implied by Steps 1–4 of Algorithm 1

Step 1 of Algorithm 1 independently draws the triangular-block parameters (Λ̃0, Λ̃+) from the restricted

NGN(ν̂, Φ̂, Ψ̂, Ω̂) distribution. Step 2 independently draws wi,j from the uniform distribution on the

unit sphere in Rmi−ni,j . Hence, the density over (Λ̃0, Λ̃+,w), where w = (w1,1, · · · ,w1,n,w2,1, · · · ,w2,k),

is proportional to NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+). Step 3 defines a mapping from (Λ̃0, Λ̃+,w) to the orthogonal

triangular-block parameters (Λ̃0, Λ̃+,Q1,Q2). This mapping depends on the choice of Ki,j and we denote

any choice of this mapping by g. Step 4 maps (Λ̃0, Λ̃+,Q1,Q2) to the Proxy-SVAR structural parameters

(Ã0, Ã+) using the function f . The density of the draws produced by Steps 1–4 will be the density coming

from Steps 1 and 2, which is proportional to NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+), times the volume element associated with

the inverse of the mapping f ◦ g defined in Steps 3 and 4. The function f ◦ g is invertible because both f and

g are one-to-one. A volume element can be thought of as a generalization of the Jacobian that appears in the

usual change of variable theorem. We will use the change of variable theorem outlined in Arias, Rubio-Ramı́rez,

and Waggoner (2018). Because we need to transform densities defined over smooth manifolds, we will use

Theorem 3 of that paper, which is reproduced here as Theorem 1.

Theorem 1. Let U ⊂ Rb be an open set, let V ⊂ Ra be a d-dimensional smooth manifold, and let the functions

ζ : U → Ra and β : U → Rb−d be continuously differentiable with Dβ(u) of rank b − d whenever β(u) = 0.

Define U = β−1({0}) and suppose that ζ(U) ⊂ V and ζ is one-to-one on U . If A ⊂ ζ(U) and λ : A→ R is an

integrable function, then

∫
A
λ(v)dVv =

∫
ζ−1(A)∩U

λ(ζ(u))
∣∣det(N ′u ·Dζ(u)′ ·Dζ(u) ·Nu)

∣∣ 12︸ ︷︷ ︸
volume element

dUu,

where Nu is any b× d matrix whose columns form an orthonormal basis for the null space of Dβ(u).

To apply Theorem 1, several choices must be made. These choices will not affect the value of the volume

element, but will affect the implementation. The vector u ∈ Rb will be a vectorized version of the Proxy-
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SVAR structural parameter (Ã0, Ã+), which contains blocks of zeros. So, one could take b = ñ2 + ñm̃ and

have β encode both the block and zero restrictions or take b = ñ2 + ñm̃ − (p + 1)nk and have β encode

only the zero restrictions. We choose the latter, which implies that b − d =
∑n

j=1 z̃1,j and β is given by

(Z̃1F̃z(Ã0, Ã+)en,1, · · · , Z̃nF̃z(Ã0, Ã+)en,n). In Appendix A.4 it is shown that the derivative of β is of rank

b− d over all of Rb.

The vector v ∈ Ra will be a vectorized version of (Λ̃0, Λ̃+,α), where α = (α1,1, · · · ,α1,n,α2,1, · · · ,α2,k).

As with u, we choose to squeeze the zeros out of the block-triangular parameters (Λ̃0, Λ̃+), which implies

that a = d + n + k. This expression comes from summing the dimensions of the αi,j and imposing the

block-triangular restrictions. The d-dimensional smooth manifold V is the set of all (Λ̃0, Λ̃+,α) such that

the norm of each αi,j is one. The function λ is given by λ(Λ̃0, Λ̃+,α) = NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+), which is

proportional to the density implied by Steps 1 and 2 of Algorithm 1 when λ is restricted to V.

All that remains is to define the open set U ⊂ Rb and the function ζ. We want ζ = (f ◦ g)−1 and we want

ζ to be continuously differentiable. The function g can be defined only if the matrices Mi,j are of full row

rank for all i and j. Since M2,j is always of full row rank, this suggests that we take U ⊂ Rb to be the set of

all (Ã0, Ã+) such that M1,j(f
−1(Ã0, Ã+)) is of full row rank for all 1 ≤ j ≤ n.22 The following proposition

implies that for this choice of U , the function g can be defined so that it is continuously differentiable, at least

locally.

Proposition 3. The set U is open and the complement of U ∩ β−1({0}) is of measure zero in β−1({0}). For

every (Ã0, Ã+) ∈ U , the function Ki,j(Λ̃0, Λ̃+,Q1,Q2), for i = 1, 2 and 1 ≤ j ≤ mi, can be defined in a

neighborhood of f−1(Ã0, Ã+) so that it is continuously differentiable and depends only on (Λ̃0, Λ̃+) and the

first j − 1 columns of Qi.

Proof. See Appendix A.4.

Proposition 3 ensures that the functions Ki,j can be defined so that they are continuously differentiable,

at least locally. Thus, the function g, and hence ζ, can be defined locally so that they are continuously

differentiable, which is enough to apply Theorem 1. A natural question to ask is can Ki,j be defined so that

it is continuously differentiable, or even just continuous, over all of f−1(U)? There are deep theorems from

algebraic topology that imply that the answer is no, in general, but this does not matter for our purposes. As

was noted in the discussion after Algorithm 1, we need the complement of U ∩ β−1({0}) to be of measure

zero in β−1({0}) in order for the weighted draws obtained from Algorithm 1 to be from the desired posterior.

22The matrices Mi,j and Ki,j depend only on (Λ̃0, Λ̃+) and the first j − 1 columns of Qi, but we can consider them to be
functions of (Λ̃0, Λ̃+,Q1,Q2) = f−1(Ã0, Ã+).
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While the proof that the complement of U ∩ β−1({0}) is of measure zero in β−1({0}) is involved and left to

Appendix A.4, the local construction of the function Ki,j is straightforward.

If (Â0, Â+) ∈ U , then Mi,j(f
−1(Â0, Â+)) is of full row rank. So, there exists a (mi−ni,j)×mi matrix Ri,j

such that [Mi,j(f
−1(Â0, Â+))′ R′i,j ] is non-singular. Let Ki,j(Λ̃0, Λ̃+,Q1,Q2) be the last mi−ni,j columns of

the orthogonal component of the QR-decomposition of M̂i,j(Λ̃0, Λ̃+,Q1,Q2) = [Mi,j(Λ̃0, Λ̃+,Q1,Q2)
′ R′i,j ],

normalized so that the diagonal of the triangular component is positive. By a similar argument to the

one in Section 3.3, the columns of Ki,j(Λ̃0, Λ̃+,Q1,Q2) will form an orthonormal basis for the null space

of Mi,j(Λ̃0, Λ̃+,Q1,Q2). Because M̂i,j(f
−1(Â0, Â+)) is non-singular, M̂i,j(Λ̃0, Λ̃+,Q1,Q2) will be non-

singular in some open set Û about f−1(Â0, Â+). The matrix Ki,j(Λ̃0, Λ̃+,Q1,Q2) can be obtained using

the Gram-Schmidt orthogonalization process, and thus is continuously differentiable over Û .23 Finally, the

function Ki,j(Λ̃0, Λ̃+,Q1,Q2) will depend only on (Λ̃0, Λ̃+) and the first j − 1 columns of Qi, because

M̂i,j(Λ̃0, Λ̃+,Q1,Q2) depends only on (Λ̃0, Λ̃+) and the first j − 1 columns of Qi.

The matrices Ri,j are called local reference matrices and are a coordination device that allows one to

define the Ki,j so that they are continuously differentiable. One might ask if it is really necessary to go to

the expense of forming the local reference matrices and just use the much simpler technique described in

Section 3.3. No technique can produce Ki,j that are continuously differentiable globally, but it is the case that

most techniques will produce Ki,j that are continuously differentiable almost everywhere.24 While it is true

that our numeric computations of the derivatives appearing in the volume element can go awry if they are

being evaluated sufficiently close to a point where one of the Ki,j is not continuously differentiable, experience

leads us to recommend the simpler algorithm to obtain the Ki,j .

Proposition 3 implies that Theorem 1 can be applied and the density of the draws given by Steps 1–4 of

Algorithm 1 is

p(Ã0, Ã+) ∝ NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+)
∣∣∣det(N ′

(Ã0,Ã+)
·Dζ(Ã0, Ã+)′ ·Dζ(Ã0, Ã+) ·N(Ã0,Ã+))

∣∣∣ 12︸ ︷︷ ︸
volume element

, (11)

where f−1(Ã0, Ã+) = (Λ̃0, Λ̃+,Q1,Q2). The derivatives of ζ and β can be computed numerically as in Arias,

Rubio-Ramı́rez, and Waggoner (2018). Equation (11) does not depend on which orthonormal basis for the

23The Gram-Schmidt orthogonalization process applied to a non-singular matrix can be explicitly expressed using the operators
+, −, ×, and ÷ and division by zero will not occur, so it is continuously differentiable. Because the QR-decomposition of a
non-singular matrix, normalized so that the diagonal of the triangular component is positive, is unique, any algorithm producing
the QR-decomposition can be used, so long as the diagonal of the triangular component is normalized to be positive.

24Whether or not this holds for the technique described in Section 3.3 depends on the algorithm used to produce the full
QR-decomposition. However, most linear algebra programs will produce the QR-decomposition using either Householder reflections
or Given rotations, both of which will produce a continuously differentiable QR-decomposition almost everywhere.
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null space of the derivative of β is chosen. So, up to a multiplicative constant, the density p can be explicitly

computed, at least numerically. Note that the zero restrictions affect the density because the volume element

depends on the derivative of β, which is not constant, but the sign restrictions only affect the density up to

a multiplicative constant because it restricts the parameters to an open subset of positive measure of the

parameter space.

3.5 Practical Considerations, Extensions, and Limitations of Algorithm 1

In this section, we highlight some practicalities when implementing Algorithm 1. We also emphasize some easy

extensions of the algorithm.

3.5.1 Effective Sample Size

Importance samplers generate weighted draws. If all of the weights were equal, then we would actually have

unweighted draws and the effective sample size would be the actual sample size. However, the weights from

Algorithm 1 are not equal, so it is critical that one computes the effective sample size. The effective sample

size is (∑N
i=1wi

)2
∑N

i=1w
2
i

,

where wi is the importance weight associated with the ith draw and N is the total number of retained draws.

It is also useful to keep track of the percentage of the total number of draws that were retained in Step 5 to

get a sense of how restrictive the sign restrictions are, but the effective sample size is the key statistic for this

sampler. If one chooses to re-sample in order to have unweighted draws, the number of re-sampled draws

should never exceed the effective size, and some would argue that the number re-sampled should be much

smaller than the effective size.

3.5.2 Efficiency and Approximating the Derivatives

It is also important to note that computing the volume element, |det(N ′u ·Dζ(u)′ ·Dζ(u) ·Nu)|
1
2 , in Step 6 is

the most expensive part in implementing Algorithm 1. The rest of Algorithm 1 is quite fast. The reason that

that step is expensive is computing the derivative Dζ(u). Both the domain and the range of ζ are of fairly

high dimension in practice, and so Dζ(u) is a fairly large matrix and to numerically compute it requires many

evaluations of the function ζ. The jth column of Dζ(u) can be approximated as either (ζ(u+ εeb,j)− ζ(u))/ε

or (ζ(u+ εeb,j)− ζ(u− εeb,j))/(2ε), which are the one-sided and two-sided approximations. The two-sided

21



approximation is usually more accurate, but requires almost twice as many function evaluations. For this

reason, we generally prefer the one-sided approximation, but also recommend that a test run be employed to

see if there is a difference between the two approximations. If so, then we would recommend the two-sided

approximation. Also, we recommend choosing ε to be 10−6. Because ζ is a complicated function, we do not

recommend choosing ε to be smaller than 10−7, though values as large as 10−4 can give good approximations

in some applications. Similar advice is given for approximating Dβ(u).

3.5.3 Normalization

The reader should note that Algorithm 1 should be used with a normalization to determine the sign of each

equation. This is because if we change the sign of the jth column of Ã0 and Ã+, the zero restrictions and

γ-relevance condition will still hold. Furthermore, the resulting two sets of parameters are observationally

equivalent and will have the same posterior value. A normalization will eliminate one of these two sets of

parameters. Typically, SVARs are normalized by restricting the sign of the contemporaneous response of a

given variable to a shock of interest. Proxy-SVARs can be normalized analogously. Since this is well understood

and one simply has to discard the draw when the normalization is not satisfied, we do not explicitly state this

in the algorithm.25

3.5.4 Drawing from Other Parameterizations or Posterior Distributions

Algorithm 1 is stated in terms of the Proxy-SVAR structural parameterization, but it will work for any

parameterization as long as one can explicitly compute the transformation between that parameterization

and the orthogonal triangular-block parameterization. Similarly, Algorithm 1 independently draws from

the restricted NGN(ν̃, Φ̃, Ψ̃, Ω̃) posterior distribution over the Proxy-SVAR structural parameterization

conditional on the zero and sign restrictions. As mentioned several times already, the algorithm can be modified

to independently draw from any desired restricted posterior distribution. When that is the case, one will need

to modify Step 6 in Algorithm 1 to include the density associated with desired restricted posterior distribution

instead of NGN(ν̃,Φ̃,Ψ̃,Ω̃)(Ã0, Ã+). The rest of the steps will not change. In either of these cases, there is no

natural choice for the hyper-parameters (ν̂, Φ̂, Ψ̂, Ω̂) needed in Step 1 of Algorithm 1 and one will have to use

the techniques outlined in Appendix A.3 to choose values that will not lead to unreasonably small effective

sample sizes.

25If there is only one sign restriction of this type for the jth shock, then instead of discarding the draw, one could change the
sign of the jth column of Ã0 and Ã+. As ñ becomes large, this can result in significant efficiency gains.
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3.5.5 Identifying More Shocks Than Proxies

Our algorithm can handle cases in which a researcher wants to consider k instruments that are correlated with

k̃ shocks, with k̃ ≥ k. In such cases, Equation (7) will only hold for 1 < j < n− k̃. This could be of interest,

for example, when a researcher assumes that a proxy is not correlated with a particular structural shock while

leaving the correlation with the remaining structural shocks unrestricted. As with the case that k = k̃, the

proxies only divide the shocks into two groups: those that are correlated with the proxies and those that are

uncorrelated with the proxies. To identify the shocks within each of these groups, additional zero and sign

restrictions would be required.

The intuition of why our approach works for k instruments that are correlated with k̃ structural shocks,

with k̃ > k, is as follows. As more structural shocks than instruments are considered, fewer zero restrictions

need to be imposed, since the instruments are correlated with more structural shocks. It is the case that in

this scenario, the set of Proxy-SVAR structural parameters that satisfy the exogeneity restrictions and the

γ-relevance condition is larger.

To conclude this section, let’s clarify that our methodology cannot be used to impose the restriction that

every proxy is only correlated with one structural shock, at least when k > 1. This requires imposing a diagonal

structure in the k × k matrix V using additional zero restrictions, which is outside the scope of our algorithm

given the constraints embedded in the size of z̃1,j for n− k + 1 ≤ j ≤ n.

3.6 The Importance of the Volume Element

Given that the main expense of our algorithm is computing the importance weights, one might be tempted to

dispense with Step 6 of Algorithm 1 and simply use the unweighted draws. Of course, the unweighted draws

are not from the desired posterior distribution, but if the weights do not vary too much, then the draws would

be approximately from the desired posterior distribution. The reader should be aware of at least one dangerous

feature of the distribution over the structural parameterization implied by this strategy. The distribution is

not invariant to a reordering of the instruments, and hence it is invalid for inference.

To illustrate that Algorithm 1 without weighting is not invariant to a reordering of the instruments let us

consider a Proxy-SVAR with three variables, no lags, no constant and two external instruments, so n = 3,

k = 2, and Ã0 is the only Proxy-SVAR structural parameter. We impose only the exogeneity restrictions. The
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following matrices will be of use in expressing different ordering of the instruments,

Pm =

0 1

1 0

 and P̃ =

 In 0n×k

0k×n Pm

 .
There are two ways to order the external instruments, ỹ′1,t = [y′t,m

′
t] and ỹ′2,t = ỹ′1,tP̃ . If Ã0 satisfies the

exogeneity restrictions under the first ordering, then P̃ ′Ã0 satisfies the exogeneity restrictions under the second

ordering. Because Ã+ does not appear, there are only two hyper-parameters controlling the prior and posterior

distributions. If the hyper-parameters for prior and posterior densities under the first ordering were (ν̄, Φ̄)

and (ν̃, Φ̃), then the equivalent prior and posterior hyper-parameters under the second ordering would be

(ν̄, (Iñ ⊗ P̃ ′)Φ̄(Iñ ⊗ P̃ )) and (ν̃, (Iñ ⊗ P̃ ′)Φ̃(Iñ ⊗ P̃ )). With these priors and posteriors, it is easy to see that

the prior and posterior density of Ã0 under the first ordering and P̃ ′Ã0 under the second ordering are equal.

One might speculate that if the hyper-parameters controlling the draws in Step 1 of Algorithm 1 were (ν̂, Φ̂)

under the first ordering and were (ν̂, (Iñ ⊗ P̃ ′)Φ̂(Iñ ⊗ P̃ )) under the second ordering, then the unweighted

density of Ã0 under the first ordering and P̃ ′Ã0 under the second ordering might be equal. However, this is

not true. To see this, we make 10 draws of Ã0 from the first ordering and compute the density kernel. Then we

compute the density kernel under the second ordering of P̃ ′Ã0. If our speculation is correct, the ratio of these

two density kernels would be constant. The results are reported in Table 1. If the order of the instruments did

not matter, then all the entries of the table would be equal, which is clearly not the case. For simplicity, we

set the hyper-parameters for the first ordering to be (ν̃, In2). This is a disturbing result because it means that

Table 1: Ratio of densities

Draw 1 2 3 4 5 6 7 8 9 10

0.64 0.10 0.07 0.71 1.93 0.04 0.34 0.27 0.01 4.57

Ratio of densities for ten draws of the structural parameters using a different ordering
for the instruments.

inference based on Algorithm 1 without Step 1 hinges on an arbitrary decision regarding the order in which

one sets the instruments in mt. A similar argument can be made regarding the order of the variables within

yt. These results point out that without the importance sampling step, one cannot control the distribution

implied by Algorithm 1.
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4 Application I: The Dynamic Effects of TFP Shocks

In this section we illustrate our methodology by studying the dynamic effects of two types of TFP shocks, a

consumption TFP shock and an investment TFP shock, in a quarterly frequency Proxy-SVAR featuring five

endogenous variables and two proxies for the structural shocks of interest. More specifically, we adopt the

specification of the SVAR and the proxies from Lunsford (2016). Accordingly, the endogenous variables are

real GDP growth, employment growth, inflation, real consumption growth, and real investment in equipment

growth. The remaining details on the data are provided in Appendix A.5. The proxies are a consumption

TFP proxy and an investment TFP proxy based on Fernald’s (2014) consumption and investment TFP series,

respectively. In particular, we use Lunsford’s (2016) proxies, which are obtained by regressing each of the TFP

series just mentioned on four lags of the endogenous variables and by labeling the residuals associated with

each of these regressions as consumption and investment TFP proxies, respectively.26

The Proxy-SVAR features four lags and a constant, and the sample runs from 1947Q2 until 2015Q4.

Consequently, in this application T = 275, n = 5, k = 2, p = 4, and m̃ = pñ + 1. We set ν = ñ = 7,

Φ−1 = 0ñ,ñ, and Ψ = 0m̃ñ,ñ2 to characterize our prior over the Proxy-SVAR structural parameters, and we

set ν̂ = ν̃, Φ̂ = Φ̃, Φ̂ = Φ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over the orthogonal triangular-block

parameterization. We also set γ = 0.2.27

Let εTFPt be a vector containing the consumption and investment TFP shocks, i.e., εTFPt = [εC,t εI,t]
′,

and let εOt be a vector containing all other structural shocks. The exogeneity restrictions and the relevance

condition are

E
[
mtε

O′
t

]
= 02×3 and E

[
mtε

TFP ′
t

]
= V 6= 02×2,

where m′t = [mC,t mI,t] are the proxies for the consumption and investment TFP shocks. As mentioned in

Section 2.3, without additional restrictions, these conditions are not enough to distinguish a consumption

TFP shock from an investment TFP shock. As a consequence we also impose the additional sign restrictions

E [mC,tεC,t] > 0, E [mI,tεI,t] > 0, E [mC,tεC,t] > E [mC,tεI,t] and E [mI,tεI,t] > E [mI,tεC,t] on the entries of

V .28 If we order the two structural shocks of interest last, this implies setting s = 4,

S4 =

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 , S5 =

0 0 0 0 0 0 1

0 0 0 0 0 1 0

 ,
26We downloaded the proxies from Kurt Lunsford’s website at https://sites.google.com/site/kurtglunsford/research.
27Clearly, we could consider γ as a hyper-parameter and define a prior over it. Our approach, which is equivalent to having a

dogmatic prior over γ, was chosen for simplicity, but can be easily extended to a more general prior.
28These sign restrictions make sense, since the structural shocks are standardized to have unit variance.
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Figure 1: IRFs to positive one standard deviation consumption and investment TFP shocks. The blue solid-dotted curves
represent the point-wise posterior medians and the gray shaded areas represent the 68 percent equal-tailed point-wise probability
bands to a consumption TFP shock. The red solid curves represent the point-wise posterior medians and the red shaded areas
represent the 68 percent equal-tailed point-wise probability bands to an investment TFP shock. The figure is based on 10,000
independent effective draws.

and

F̃s(Ã0, Ã+) =



e′2,1S4(Ã
−1
0 )′eñ,4

e′2,1S4(Ã
−1
0 )′eñ,4 − e′2,2S5(Ã

−1
0 )′eñ,5

e′2,1S5(Ã
−1
0 )′eñ,5

e′2,1S5(Ã
−1
0 )′eñ,5 − e′2,2S4(Ã

−1
0 )′eñ,4


,

where, for ease of exposition, we have abstracted from explicitly stating the γ-relevance condition.

We obtain an effective sample size of 10,000 draws of the Proxy-SVAR structural parameters conditional

on the zero and sign restrictions. Figure 1 shows the IRFs to positive one standard deviation consumption and

investment TFP shocks.29 The blue solid-dotted curves represent the point-wise posterior medians and the

gray shaded areas represent the 68 percent equal-tailed point-wise probability bands to a consumption TFP

shock. The red solid curves represent the point-wise posterior medians and the red shaded areas represent the

68 percent equal-tailed point-wise probability bands to an investment TFP shock. These IRFs are qualitatively

29While Lunsford (2016) reports the IRFs of the endogenous variables in the SVAR, we report the cumulative IRFs for ease of
exposition.
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consistent with the results reported by Lunsford (2016).

In particular, a consumption TFP shock causes an increase in real GDP, consumption in non-durables and

services, consumption in durables and equipment, and employment while the price level gradually decreases.

Although the probability bands associated with the latter variable contain zero, the findings are in line with

those reported by Lunsford (2016). Accordingly, a consumption TFP shock implies opposite movements in

quantities and prices, supporting the conventional wisdom about the effects of standard TFP shocks. In

contrast, a positive investment TFP shock leads with high probability to a decrease in real GDP, employment,

consumption, and the price level. As highlighted by Lunsford (2016), these results are inconsistent with the

conventional wisdom of standard TFP shocks but in line with the findings in Liu, Fernald, and Basu (2012).

Finally, the reliable use of the importance sampler requires the importance weights to possess finite variance.

We use the tests proposed by Koopman, Shephard, and Creal (2009) as described in Appendix A.6. In

Appendix A.7 we show that these tests imply that the finite variance requirement holds for the application

analyzed in this section.

5 Application II: The Dynamic Effects of Personal Income Tax Shocks

In this section we use our methodology to revisit a recent study by Mertens and Montiel-Olea (2018) presenting

new time series evidence—based on Proxy-SVARs—on the effects of personal income tax rate cuts on reported

pre-tax income and other indicators of real activity such as GDP and the unemployment rate. Their three

main reported findings can be summarized as follows. First, negative average marginal tax rate (AMTR)

shocks lead not only to increases in real GDP and declines in the unemployment rate but also to increases in

reported income. Second, they find that substitution effects rather than income effects are important for the

transmission of personal income tax policy changes in the U.S. economy post-World War II. Third, the dynamic

effects of tax reforms depend on how different income groups are affected by the reforms. One important point

of Mertens and Montiel-Olea’s (2018) analysis is that they use counterfactual experiments. A counterfactual

experiment is a linear combination of structural shocks that imposes a particular dynamic relation between

some endogenous variables.

Our approach will basically replicate Mertens and Montiel-Olea’s (2018) first finding. When analyzing their

second finding, we will show that their conclusions depend on the particular counterfactual tax experiments

that they conduct to assess the effectiveness of changes in marginal relative to average tax rates. While

counterfactual experiments could be potentially useful and have been used by other SVAR-based studies of

fiscal policy (e.g. Mountford and Uhlig, 2009; Ramey, 2013; Mertens and Ravn, 2013), they frequently hinge
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on imposing certain relations between endogenous variables that some researchers could find questionable. To

address this issue, we separately identify structural shocks using additional sign restrictions as described in

Section 2.3.

Our analysis shows that, although an average marginal tax rate shock causes larger effects on economic

activity than an average tax rate shock, the latter does have positive effects. Thus, it is too early to rule out

the income effects of unanticipated average tax rate changes. In contrast, our analysis shows that Mertens and

Montiel-Olea’s (2018) third finding is quite robust to using structural shocks instead of counterfactual tax

experiments. The fact that we corroborate their third finding but question their second one illustrates that our

approach is not only potentially useful for researchers skeptical of counterfactuals, but also for those embracing

them. The former can use our method to parse out the margins through which fiscal policy operates relying

on fundamental shocks as defined in Ramey (2016). The latter can use it to explore the robustness of their

results to fundamental structural shocks.

In this application we use the dataset built by Mertens and Montiel-Olea (2018), which we downloaded

from Karel Mertens’s website.30 A detailed description of the dataset can be found in Appendix A of Mertens

and Montiel-Olea (2018).

5.1 Macroeconomic Responses to Marginal Tax Rates

Let’s begin by revisiting the first finding. In their benchmark specification, Mertens and Montiel-Olea (2018)

use yearly data from 1946 through 2012 to estimate a Proxy-SVAR including nine endogenous variables, two

exogenous variables, and one proxy for AMTR shocks. The endogenous variables are the negative of log

net-of-tax rate, log reported income, log real GDP per tax unit, the unemployment rate, the log real stock

market index, inflation, the federal funds rate, log real government spending per tax unit, and the change in

log real federal government debt per tax unit.31 The exogenous variables are dummy variables for the years

1949 and 2008. The proxy (which we call the AMTR proxy) is a collection of instances of variation in marginal

tax rates that the authors reasonably consider to be contemporaneously exogenous changes in the AMTR.32

Accordingly, the identification of the AMTR shock is achieved by assuming that the proxy is only correlated

with the AMTR.33 Following Mertens and Montiel-Olea (2018), the SVAR features two lags and a constant

term. Altogether, in this application T = 65, n = 9, k = 1, p = 2, ẽ = 2, and m̃ = pñ+ 1 + ẽ.

30Link to the dataset: https://karelmertenscom.files.wordpress.com/2018/01/data_mmo.xlsx.
31Net-of-tax rate is defined as 1 minus the AMTR.
32The net-of-tax rate is based on Barro and Redlick (2011); for additional details on the construction of the endogenous variables

and the proxy, we refer the reader to Mertens and Montiel-Olea’s (2018) paper.
33The sign of the AMTR shock is pinned-down by assuming that the IRF of AMTR is negative in response to a negative AMTR

shock.
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Figure 2: IRFs to positive AMTR shock (rate cut). The solid curves represent the point-wise posterior medians, and the shaded
areas represent the 68 percent equal-tailed point-wise probability bands. The figure is based on 10,000 independent effective draws.

We set ν = ñ, Φ = 0ñ,ñ, Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior over the Proxy-SVAR

structural parameters, and we set ν̂ = ν̃, Φ̂ = Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over

the orthogonal triangular-block parameterization. We also set γ = 0.2. We obtain an effective sample size of

10,000 draws.

Figure 2 shows the point-wise median and the 68 percent equal-tailed point-wise probability bands for

the IRFs of the key variables of interest to positive one standard deviation AMTR shock. The shock lowers

the tax rate for at least four years. Clearly, the positive and sizable IRFs of real GDP—about 0.7 percent

after one year—and the negative and sizable IRFs of the unemployment rate—about negative 0.35 percentage

point after one year—coincide with a positive and sizable response of income, peaking at nearly 1.5 percent

two years after the shock. Therefore, our results clearly align with those reported in Figure 5 of Mertens and

Montiel-Olea (2018). In Appendix A.8 we show that Koopman, Shephard and Creal’s (2009) tests validate the

finite variance requirement for the reliable use of our algorithm.

The results reported above imply that AMTR shocks have sizable effects on economic activity. Even so, as

highlighted by Mertens and Montiel-Olea (2018), these results leave important questions unanswered. Chief
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among them are whether the stimulated effects reported above operate through substitution effects rather

than income effects and whether changes in tax policy targeting top incomes have larger effects than changes

in fiscal policy targeting lower incomes. We turn to this in the next two sections.

5.2 Average versus Marginal Tax Rates

To assess whether tax policy mainly operates through direct effects on individual incentives, Mertens and

Montiel-Olea (2018) expand the SVAR used in Section 5.1 by adding the log ATR as an endogenous variable

and they jointly identify two personal income tax rate shocks using two proxies.34 Analogously to the case of

the AMTR proxy, the new proxy (which we call the ATR proxy) is a collection of instances of variation in

ATRs that the authors reasonably consider to be contemporaneously exogenous changes in the ATR. The

identification of the AMTR and ATR shocks is achieved in two steps. First, Mertens and Montiel-Olea (2018)

assume that the proxies are only correlated with the tax rate shocks. As shown in Proposition 2, this would

separate the tax rate shocks from the rest of the structural shocks but would not allow the researcher to identify

the two tax rate shocks individually. Thus, they rely on two counterfactual tax experiments to establish causal

effects. In their first counterfactual, they consider an unanticipated change in the marginal tax rate that does

not have a direct effect on the average tax rate. Mertens and Montiel-Olea (2018) argue that the Tax Reform

Act of 1986 is the closest historical equivalent for this counterfactual. We will refer to this counterfactual

as the AMTR counterfactual. In their second counterfactual, they consider an unanticipated change in the

average tax rate that does not have a direct effect on the marginal tax rate. Mertens and Montiel-Olea (2018)

argue that many of the postwar tax policy reforms are of this type. We will refer to this counterfactual as the

ATR counterfactual. When analyzing Mertens and Montiel-Olea’s (2018) results we will consider the AMTR

counterfactual to analyze the effects of marginal tax rate cuts and we will consider the ATR counterfactual to

analyze the effects of average tax rate cuts.

We now turn to the specification of the Proxy-SVAR. In this application T = 65, n = 10, k = 2, p = 2,

ẽ = 2, and m̃ = pñ+ 1 + ẽ. We set ν = ñ, Φ = 0ñ,ñ, Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior

over the Proxy-SVAR structural parameters, and we set ν̂ = ν̃, Φ̂ = Φ̂0 6= Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to

characterize our proposal over the orthogonal triangular-block parameterization. We choose Φ̂0 to maximize

the efficiency of the importance sampler.35 We also set γ = 0.2. We use Algorithm 1 to obtain an effective

sample size of 10,000 draws.

34ATR is defined as total revenue and contributions as a ratio of the Piketty and Saez (2003) measure of aggregate market
income.

35If we set Φ̂ = Φ̃ the algorithm becomes very inefficient. The basic description of the approach used for the selection of Φ̂0 is
described in Appendix A.3.
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Figure 3a shows the point-wise median and the 68 percent equal-tailed point-wise probability bands for the

IRFs of the key variables of interest to the AMTR and ATR counterfactuals. Essentially, Figure 3a shows that

Mertens and Montiel-Olea’s (2018) findings regarding the effects of their counterfactuals can be supported by

our approach. As the reader can see, the panel closely resembles the IRFs reported in Panels (B) and (C)

of Figure 10 of Mertens and Montiel-Olea (2018) and it is very easy to conclude that income, GDP, and the

unemployment rate only react to AMTR cuts. Overall, this figure justifies the following claims: “On the other

hand, there is no evidence for any effect on incomes when average tax rates decline but marginal rates do not”

(Mertens and Montiel-Olea, 2018, page 1805) and “The main finding is that, in sharp contrast to the results

for marginal tax rate changes after controlling for average tax rates, there is no evidence that income responds

strongly to average tax rate changes once marginal rate changes are controlled for. The point estimates are in

fact slightly negative, although they are not statistically significant at any horizon” (Mertens and Montiel-Olea,

2018, page 1860). In other words, Figure 3a justifies the conclusion that substitution effects rather than income

effects are important for the transmission of unanticipated personal income tax policy changes in the U.S.

economy post-World War II.

Researchers familiar with SVAR analysis may instead want to report the causal effects of each of the two

structural shocks, which could naturally be labeled marginal tax rate shock and average tax rate shock. For

this reason, we now complement Mertens and Montiel-Olea’s (2018) results by identifying a marginal tax

rate shock and an average tax rate shock using a set of sign restrictions. The results obtained using such an

approach suggest caution while reading Mertens and Montiel-Olea’s (2018) findings. But, before discussing

them in more detail, let us describe our sign restrictions.

Sign Restrictions for Identifying AMTR vs ATR Shocks. (i) The proxy for the AMTR shock is

positively correlated with the AMTR shocks; (ii) the proxy for the ATR shock is positively correlated with the

ATR shocks; (iii) the covariance between the AMTR shock and the AMTR proxy is bigger than the covariance

between the ATR shock and the AMTR proxy; and (iv) the covariance between the ATR shock and the ATR

proxy is bigger than the covariance between the AMTR shock and the ATR proxy.

The implementation of our sign restrictions needs a function F̃s and matrices Sj very similar to the ones

described in Section 4. In Figure 3b the 68 percent equal-tailed point-wise probability bands for the IRF of

income are significantly above zero for both AMTR and ATR shocks. The 68 percent equal-tailed point-wise

probability bands for the IRF of real GDP to both structural shocks are also positive and similar. Turning to

the unemployment rate, the IRFs to both structural shocks are broadly similar and mostly negative. The

differences between the results reported in Figures 3a and 3b are confirmed when analyzing Table 2.

31



(a) Mertens and Montiel-Olea (2018)

(b) Sign Restrictions

Figure 3: Panel (a): IRFs to counterfactuals. The solid curves (blue for the AMTR policy counterfactual and red for the ATR
policy counterfactual) represent the point-wise posterior medians, and the shaded areas (gray for the AMTR policy counterfactual
and red for the ATR policy counterfactual) represent the 68 percent equal-tailed point-wise probability bands. The IRFs are with
respect to a one standard deviation counterfactual. Panel (b): IRFs to structural shocks. The solid curves (blue for the AMTR
shock and red for the ATR shock) represent the point-wise posterior medians, and the shaded areas (gray for the AMTR shock
and red for the ATR shock) represent the 68 percent equal-tailed point-wise probability bands. The IRFs are with respect to a one
standard deviation shock. The figure is based on 10,000 independent effective draws.

32



Table 2: Short-run elasticities of income (Inc) and real GDP to tax rates

Mertens and Montiel-Olea (2018)

Ratio of IRFs Inct+1/AMTRt Inct+1/ATRt GDPt+1/AMTRt GDPt+1/ATRt

Median 1.51 0.12 0.82 0.20

68% Prob. Interval [1.00; 2.15] [-0.47; 1.05] [0.47; 1.25] [-0.19; 0.81]

Sign Restrictions

Ratio of IRFs Inct+1/AMTRt Inct+1/ATRt GDPt+1/AMTRt GDPt+1/ATRt

Median 1.54 0.51 0.79 0.38

68% Prob. Interval [0.94; 2.35] [0.15; 1.09] [0.39; 1.32] [ 0.13; 0.80]

Note: Panel (a) The entries in the table denote the posterior moments of the ratio between the IRF of income
(Inc) and real GDP one period after the start of the AMTR (ATR) counterfactual and the IRF of the AMTR (ATR)
on impact following the AMTR (ATR) counterfactual. Panel (b): The entries in the table denote the posterior
moments of the ratio between the IRF of income (Inc) and real GDP one period after the shock and the IRF of the
AMTR and ATR on impact following an AMTR and ATR shock, respectively. See the main text for details. The
table is based on the same 10,000 independent effective draws used in Figure 3.

This table shows the short-run elasticities of income and real GDP to AMTR and ATR. In the case of

Mertens and Montiel-Olea (2018), the short-run elasticities are measured by the ratio between the IRF of

income (real GDP) one period after the tax cut counterfactual and the impact IRF of the AMTR (ATR) to an

AMTR (ATR) tax cut counterfactual. In the case of our approach, the short-run elasticities are measured by

the ratio between the IRF of income (real GDP) one period after the corresponding shock—that is the AMTR

(ATR) shock when computing the elasticity with respect to the AMTR (ATR)—and the impact IRF of the

AMTR (ATR) to an AMTR (ATR) shock. Accordingly, these elasticities can be interpreted as the percent

change in income and real GDP with respect to a 1 percentage point change in the pertinent tax rate induced

by a counterfactual or shock. The reader can see that, when using the counterfactuals, the 68 percent posterior

probability intervals for the short-run elasticities of income and real GDP to ATR include negative numbers

and that the posterior median is quite low when compared to the AMTR case. That is not the case when we

use the set of sign restrictions instead. Although about three times lower than the ones associated with the

AMTR, the short-run elasticities of income and real GDP to ATR are positive.

Comparing Figures 3a and 3b and reading the results in Table 2, it becomes clear that definitive claims

such as “There is, on the other hand, no evidence for any effect on incomes when ATRs decline but marginal

rates do not” (Mertens and Montiel-Olea, 2018, page 1805) or “there is no evidence that income responds

strongly to ATR changes once marginal rate changes are controlled for” (Mertens and Montiel-Olea, 2018,

page 1860) are not robust to individually identifying the structural shocks underlying the counterfactuals. It
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is true that there may be other restrictions consistent with the results in Mertens and Montiel-Olea (2018).

Nevertheless, our results show that there is no categorical evidence to rule out the income effects of exogenous

changes in average tax cut rates. In Appendix A.9 we show that Koopman, Shephard and Creal’s (2009) tests

validate the finite variance requirement for the reliable use of Algorithm 1.

5.3 Marginal Rate Cuts for the Top and Bottom of the Income Distribution

To assess whether the effects of tax reforms depend on how different income groups are affected by the reforms,

Mertens and Montiel-Olea (2018) modify the SVAR used in Section 5.1 to include disaggregated measures of

AMTRs and reported income, and they jointly identify two marginal personal income tax rate shocks using

two proxies. More specifically, they replace the negative of the aggregate log net-of-tax rate with the negative

of the log net-of-tax rate for the top 1 percent and bottom 99 percent of the income distribution, and the

aggregate log income level with the log income levels for the top 1 percent and bottom 99 percent of the

income distribution.36 The proxies are two newly built disaggregated measures of exogenous variation in the

AMTR for taxpayers at the top 1 percent of the income distribution and in the AMTR for taxpayers at the

bottom 99 percent of the income distribution.

As was the case in Section 5.2, Mertens and Montiel-Olea (2018) do not aim to separately identify the two

underlying tax rate shocks and instead they rely on two counterfactual tax experiments to establish causal

effects. In the first counterfactual, they consider an unanticipated change in the marginal tax rate for taxpayers

at the top 1 percent that does not have a direct effect on the marginal tax rate for taxpayers at the bottom 99

percent. We will refer to this counterfactual as the top 1 percent counterfactual. In their second counterfactual,

they consider an unanticipated change in the marginal tax rate for taxpayers at the bottom 99 percent that

does not have a direct effect on the marginal tax rate for taxpayers at the top 1 percent. We will refer to

this counterfactual as the bottom 99 percent counterfactual. When analyzing Mertens and Montiel-Olea’s

(2018) results we will consider the top 1 percent counterfactual to analyze the effects of marginal tax rate

cuts for taxpayers at the top 1 percent of the income distribution and we will consider the bottom 99 percent

counterfactual to analyze the effects of marginal tax rate cuts for taxpayers at the bottom 99 percent of the

income distribution.

Before moving to the results, we note that in this application T = 65, n = 11, k = 2, p = 2, ẽ = 4, and

m̃ = pñ+ 1 + ẽ. We set ν = ñ, Φ = 0ñ,ñ, Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior over the

Proxy-SVAR structural parameters, and we set ν̂ = ν̃, Φ̂ = Φ̂0 6= Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to characterize

36In addition, they modify the reduced-form specification by including a linear and a quadratic trend to capture longer trends
in income inequality following Saez (2004) and Saez, Slemrod, and Giertz (2012).
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our proposal over the orthogonal triangular-block parameterization. We choose Φ̂0 to maximize the efficiency

of the importance sampler.37 We also set γ = 0.2. We use Algorithm 1 to obtain an effective sample size of

10,000.

Figure 4 shows the point-wise median and the 68 percent equal-tailed point-wise probability bands for the

IRFs of the key variables of interest to the top 1 percent and bottom 99 percent counterfactuals. Essentially,

this figure replicates Mertens and Montiel-Olea’s (2018) exercise. As the reader can see, the IRFs associated

with the top 1 percent counterfactual resemble the IRFs reported in Figure XI of Mertens and Montiel-Olea

(2018) and it is very easy to conclude that there are strong positive short-run effects on income, GDP, and the

unemployment rate. Furthermore, these positive effects disappear after five years. Overall, this figure supports

Mertens and Montiel-Olea’s (2018) conclusions regarding the effects of exogenous tax rate cuts for the top

1 percent. In contrast, the IRFs associated with the bottom 99 percent counterfactual contain much more

uncertainty than the IRFs reported in Figure XII of Mertens and Montiel-Olea (2018) and it becomes evident

that our approach gives less support for claims such as “Bottom 99% incomes show approximately no response

in the short run but increase only from the second year after the cut onwards” and “The timing of GDP and

unemployment responses is similar to the reaction of bottom 99% incomes and shows a substantial delay relative

to the more immediate effects estimated for the top 1% cut in the Figure XII ” (Mertens and Montiel-Olea, 2018,

page 1865). Nevertheless, next we will show that the wide uncertainty surrounding the effects of exogenous tax

cuts to the bottom 99 percent vanishes once we focus on the identification of fundamental structural shocks as

done in Section 5.1.

In particular, we use a set of sign restrictions to identify the top 1 percent and bottom 99 percent AMTR

shocks analogous to the one used to study AMTR and ATR shocks. When using such our approach instead of

the counterfactuals we are able to confirm Mertens and Montiel-Olea’s (2018) findings. But, before discussing

the results, let us describe our sign restrictions.

Sign Restrictions for Identifying AMTR Shocks to the Top 1 and Bottom 99 percent. (i) The

proxy for the AMTR shock to the top 1 percent is positively correlated with the AMTR shock to the top 1

percent; (ii) the proxy for the AMTR shock to the bottom 99 percent is positively correlated with the AMTR

shock to the bottom 99 percent; (iii) the covariance between the AMTR shock to the top 1 percent and the proxy

for the AMTR shock to the top 1 percent is bigger than the covariance between the AMTR shock to the bottom

99 percent and the proxy for the AMTR shock to the top 1 percent; and (iv) the covariance between the AMTR

shock to the bottom 99 percent and the proxy for the AMTR shock to the bottom 99 percent is bigger than the

37If we set Φ̂ = Φ̃ the algorithm becomes very inefficient. The basic description of the approach used for the selection of Φ̂0 is
described in Appendix A.3.
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Figure 4: IRFs to counterfactuals. The solid curves (blue for the tax cut for the top 1 percent policy counterfactual and
red for the tax cut for the bottom 99 percent policy counterfactual) represent the point-wise posterior medians, and the shaded
areas (gray for the tax cut for the top 1 percent policy counterfactual and red for the tax cut for the bottom 99 percent policy
counterfactual) represent the 68 percent equal-tailed point-wise probability bands. The IRFs are with respect to a one standard
deviation counterfactual. The figure is based on 10,000 independent draws.

covariance between the AMTR shock to the top 1 percent and the proxy for the AMTR shock to the bottom 99

percent.
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Figure 5: IRFs to structural shocks. The solid curves (blue for the 1 percent AMTR shock and red for the 99 percent AMTR
shock) represent the point-wise posterior medians, and the shaded areas (gray for the 1 percent AMTR shock and red for the 99
percent AMTR shock) represent the 68 percent equal-tailed point-wise probability bands. The IRFs are with respect to a one
standard deviation shock. The figure is based on 10,000 independent draws.

As in Section 5.2, the implementation of our sign restrictions needs a function F̃s and matrices Sj very

similar to the ones described in Section 4. In the interest of space, we do not describe them. Figure 5 shows

the IRFs to a 1 percent and a bottom 99 percent AMTR shock, respectively. Comparing Figures 4 and 5 it is
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clear that the uncertainty associated with the bottom 99 percent AMTR cut is not present when the set of

sign restrictions is used. Hence, the figure shows that Mertens and Montiel-Olea’s (2018) conclusions regarding

the effects of tax rate cuts at the top and bottom of the income distribution will be quite robust to any linear

combination of shocks. In Appendix A.10 we show that Koopman, Shephard and Creal’s (2009) tests validate

the finite variance requirement for the reliable use of Algorithm 1.

6 Conclusion

This paper develops an efficient algorithm to independently draw from any posterior distributions over

the structural parameterization of a Bayesian Proxy-SVAR. In addition, our approach expands the type of

identification schemes currently considered (e.g. Montiel-Olea, Stock and Watson, 2016). More specifically,

influential papers rely on counterfactuals when more than one instrument is used to identify more than one

structural shock. In contrast, our approach allows researchers to individually identify structural shocks.
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A Appendix Not for Publication

A.1 The Mapping for the Unit Effect Normalization

Consider a Proxy-SVAR written as

ỹ′tÂ0 = x̃′tÂ+ + ε̃′tD̂
−1/2 for 1 ≤ t ≤ T,

where ε̃t ∼ N(0, Iñ), Â0 is non-singular with e′ñ,j

(
Â−10

)′
eñ,j = 1 for 1 ≤ j ≤ ñ, Â+ =

[
Â′1 · · · Â′p ĉ′

]′
,

where ĉ is a 1× ñ row vector, D̂ is a positive diagonal matrix, and the lower left-hand k×n block of Â` is zero

for 0 ≤ ` ≤ p. We call (Â0, Â+, D̂) the Proxy-SVAR structural parameters with unit effect normalization. The

mapping from the orthogonal triangular-block parameters, (Λ̃0, Λ̃+,Q1,Q2), to the Proxy-SVAR structural

parameters with unit effect normalization, (Â0, Â+, D̂), is given by

f̂(Λ̃0, Λ̃+,Q1,Q2) = (Λ̃0 diag(Q1,Q2)D̂
−1/2︸ ︷︷ ︸

Â0

, Λ̃+ diag(Q1,Q2)D̂
−1/2︸ ︷︷ ︸

Â+

, diag(d̂)2︸ ︷︷ ︸
D̂

),

where d̂ = (e′ñ,1(Λ̃
−1
0 )′ diag(Q1,Q2)ẽñ,1, . . . , ê

′
ñ,ñ(Λ̃−10 )′ diag(Q1,Q2)eñ,ñ). Direct calculations show that

e′ñ,j

(
Â−10

)′
eñ,j = 1 for 1 ≤ j ≤ ñ and the lower left-hand k× n block of Â` is zero for 0 ≤ ` ≤ p. The inverse

of f̂ is

f̂−1(Â0, Â+, D̂) = (Â0D̂
1/2P̂︸ ︷︷ ︸

Λ̂0

, Â+D̂
1/2P̂︸ ︷︷ ︸

Λ̂+

, P̂ ′1︸︷︷︸
Q̂1

, P̂ ′2︸︷︷︸
Q̂2

).

where D̂−1/2Â−10 = P̂ R̂ is the QR-decomposition of D̂−1/2Â−10 , normalized so that the diagonal of R̂ is

positive. Because the lower left-hand k × n block of D̂1/2Â−10 is zero, P̂ = diag(P̂1, P̂2), where P̂1 ∈ O(n)

and P̂2 ∈ O(k). The matrix Λ̃0 will be upper triangular with positive diagonal because Λ̃0 = R̂−1. Since P̂ is

block diagonal and the lower left-hand k× n block of each Â` is zero, lower left-hand k× n block of each Λ̃` is

zero.

Algorithm 1 can now be used, but with the function f in Step 4 replaced by the function f̂ . Clearly, when

using the unit effect normalization one also has to set a prior over (Â0, Â+, D̂).

A.2 Gibbs Sampler

In Waggoner and Zha (2003), a Gibbs sampler is described for sampling from a posterior distribution of a

structural VAR over a certain class of normal priors and subject to a certain class of linear non-cross equation

restrictions. In that paper, the restrictions are described in terms of free parameters: In particular, if λ̃0,j and
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λ̃+,j denote the jth columns of Λ̃0 and Λ̃+, respectively, then it is assumed that the λ̃0,j and λ̃+,j that satisfy

the restrictions are of the form

λ̃0,j = Ujγ0,j and λ̃+,j = Vjγ+,j ,

where both Uj and Vj have orthonormal columns for 1 ≤ j ≤ ñ. Because Λ̃0 must be upper triangular, Uj

can be taken to be the first j columns of Iñ. Because Λ̃+ satisfies the block restrictions, Vj can be taken to be

Im̃ for n+ 1 ≤ j ≤ ñ. When 1 ≤ j ≤ n, Vj will be block diagonal with the first p blocks equal to the first n

columns of Iñ and the last block the scalar one.

The Gibbs sampler is described in terms of a non-negative scalar T and matrices Hj , Pj and Sj , for

1 ≤ j ≤ ñ. In Waggoner and Zha’s (2003), the goal was to sample from a posterior and so T , Hj , Pj and Sj

were given in terms of restrictions, prior, and data. In this paper our goal is to sample from an NGN distribution

conditional on the above restrictions, so we will describe T , Hj , Pj and Sj in terms ν̂, Φ̂, Ψ̂, and Ω̂ and the

above restrictions. The Φ̂, Ψ̂, and Ω̂ must be block diagonal, so we assume that Φ̂ = diag(Φ̂1, . . . , Φ̂j , . . . , Φ̂ñ),

Ψ̂ = diag(Ψ̂1, . . . , Ψ̂j , . . . , Ψ̂ñ), and Ω̂ = diag(Ω̂1, . . . , Ω̂j , . . . , Ω̂ñ). More specifically, we draw γ0,j from

a generalized-normal distribution with parameters ν and S−1j and we draw γ+,j given γ0,j from a normal

distribution with mean Pjγ0,j and variance Hj , where

ν = T + ñ

Hj = (V ′j Ω̂
−1
j Vj)

−1

Pj = HjV
′
j Ω̂
−1
j Ψ̂jUj

Sj = (U ′jΦ̂jUj +U ′jΨ̂
′
jΩ̂
−1
j Ψ̂jUj − P ′jH−1j Pj)

−1.

A.3 Proposal Normal-Generalized-Normal Parameters

As mentioned in Section 3, while it often suffices to choose (ν̂, Φ̂, Ψ̂, Ω̂) to be equal to (ν̃, Φ̃, Ψ̃, Ω̃), there are

instances in which this can lead to small effective sample sizes in our importance sampler. In such cases we

find it useful to tailor the choice of (ν̂, Φ̂, Ψ̂, Ω̂) by choosing the value of Φ̂ that minimizes the square of the

difference between the target and the proposal density evaluated at a given number of draws of the posterior

distribution over the structural parameterization obtained when (ν̂, Φ̂, Ψ̂, Ω̂) is set equal to (ν̃, Φ̃, Ψ̃, Ω̃).
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A.4 The Functions β and ζ

To show that the derivative of β has full row rank and to prove Proposition 3, both of which are needed

to apply Theorem 1, there will need to be regularity conditions to ensure there is enough variation in the

functions used to define the zero restrictions. Let Ã(u) = (Ã0(u), Ã+(u)) denote any one-to-one linear

mapping from Rb onto the set of all Proxy-SBVAR structural parameters. The regularity conditions require

that D(F̃z ◦ Ã)(u) = DF̃z(Ã(u))DÃ(u) be of full row rank for all u ∈ Rb.38 Because of the block restrictions,

DÃ(u) is not of full row rank. So, it is not sufficient for DF̃z(Ã(u)) to be of full row rank, though it is

necessary. At the end of this appendix, we will return to the regularity conditions and explore some of the

types of restrictions that can easily be imposed in this framework.

Proposition 4. The derivative of the function β(u), which defines the zero restrictions, has full row rank for

every u ∈ Rb.

Proof. The function β : Rb → Rb−d and its derivative are given by

β(u) =


Z̃1F̃z(Ã(u))en,1

...

Z̃nF̃z(Ã(u))en,n

 and Dβ(u) =


e′n,1 ⊗ Z̃1

...

e′n,n ⊗ Z̃n

DF̃z(Ã(u))DÃ(u).

The first term in the expression for Dβ(u) is of full row rank because Z̃j is of full row rank for 1 ≤ j ≤ n. By

the regularity conditions, DF̃z(Ã(u))DÃ(u) has full row rank for every u ∈ Rb. So, Dβ(u) has full row rank

for every u ∈ Rb.

If B and C are sets, let B\C denote the complement of C in B. Note that we do not require C ⊂ B.

Proof of Proposition 3. Section 3.4 showed how to construct the functions Ki,j . All that remains to be shown

is that U is open and that β−1({0})\U is of measure zero in β−1({0}). The vector u ∈ U if and only if

the matrix M1,j(f
−1(Ã(u))) is of full row rank for 1 ≤ j ≤ n, and M1,j(f

−1(Ã(u))) is of full row rank for

1 ≤ j ≤ n if and only if det(M1,j(f
−1(Ã(u)))M1,j(f

−1(Ã(u)))′) 6= 0 for 1 ≤ j ≤ n. Since the determinant is

continuous, this implies that U is open.

38If T (x) is a matrix value function of the vector x, then DT (x) denotes the total derivative of (vec ◦T )(x), where vec is the
operator that stacks the columns of a matrix into a vector. If x = (x1,x2), then Dx1T (x1, x2) denotes the partial derivative with
respect to x1 of (vec ◦T )(x). Most of the properties of matrix derivatives follow from the properties of the vec operator. For
instance, the product rule, which is repeatedly used in this appendix, follows from the fact that vec(ABC) = (C′ ⊗A) vec(B), for
all conformable matrices A, B, and C.
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Proposition 4 states that Dβ(u) is of full row rank for every u ∈ Rb. This implies that β−1({0}) is a

(b−
∑n

j=1 z̃1,j)-dimensional smooth manifold in Rb.39 Thus, there is a natural measure on β−1({0}) called the

volume measure.40 We show that β−1({0})\U is of measure zero with respect to the volume measure over

β−1({0}).

The implicit function theorem implies that for every ũ ∈ β−1({0}) ⊂ Rb, there are open sets Aũ ⊂ Rb

about ũ and Bũ = B1
ũ × B2

ũ ⊂ Rb−(k+r)n × R(k+r)n and a diffeomorphism hũ : Bũ → Aũ such that

F̃z(Ã(hũ(u1,u2))) = u2, for every (u1,u2) ∈ B1
ũ × B2

ũ, where u2 is interpreted as a (k + r) × n matrix.41

Because smooth manifolds are second countable, there exist ũi ∈ β−1({0}), for i ∈ {1, 2, · · · }, such that

β−1({0}) ⊂
⋃∞
i=1Aũi .

42 So, β−1({0})\U =
⋃∞
i=1((Aũi ∩ β−1({0}))\U), and it thus suffices to show that for

every ũ ∈ β−1({0}) the set (Aũ ∩ β−1({0}))\U is of measure zero with respect to the volume measure over

β−1({0}).

Let Uũ = h−1ũ (Aũ ∩ β−1({0})). Since β(hũ(u1,u2)) = (Z̃1u
2en,1, · · · , Z̃nu2en,n) is a linear function, Uũ is

the intersection of a linear subspace of Rb and B1
ũ ×B2

ũ. Thus, the volume measure is defined over Uũ.

For 0 ≤ d ≤ c, let Lc,d = [Id 0d×c−d] and let Jc,d = [0d×c−d Id]. For (u1,u2) ∈ B1
ũ ×B2

ũ, define

M̃1,j(u1,u2) =

Z̃jF̃z(Ã(hũ(u1,u2)))

Ln,j−1

 =

 Z̃ju2

Ln,j−1

 =

Z̃ju2L
′
n,j−1 Z̃ju2J

′
n,n−j+1

Ij−1 0(j−1)×(n−j+1)

 . (12)

Let f−1(Ã(hũ(u1,u2))) = (Λ̃0, Λ̃+,Q1,Q2). Because F̃z is orthogonally commutative, M̃1,j(u
1,u2) =

M1,j(Λ̃0, Λ̃+,Q1,Q2)Q1. Thus, M1,j(Λ̃0, Λ̃+,Q1,Q2) is of full row rank if and only if M̃1,j(u
1,u2) is of full

row rank. From the last expression in Equation (12), M̃1,j(u
1,u2) is of full row rank if and only Z̃ju

2J ′n,n−j+1

is of column rank at least z̃1,j . Let Uũ be the set of all (u1,u2) ∈ B1
u ×B2

u such that Z̃ju
2J ′n,z̃1,j is of column

rank at least z̃1,j for 1 ≤ j ≤ n.

Since h−1ũ (Aũ ∩ β−1({0}))\U) = Uũ\Uũ, it suffices to show that Uũ\Uũ is of measure zero with respect to

the volume measure over Uũ, which will follow from showing that for almost all (u1,u2) ∈ Uu, the columns

of Z̃ju
2J ′n,z̃1,j are linearly independent. For 1 ≤ ` ≤ z̃1,j , the `th column of Z̃ju

2J ′n,z̃1,j is Z̃ju
2en,ĵ , where

ĵ = n − (z̃i,j − `). Because the dimension of the span of the set of all u2en,ĵ ∈ Rk+r with (u1,u2) ∈ Uũ is

r+ k− z̃1,ĵ and the dimension of the row space of Z̃j in Rk+r is z̃1,j , the intersection of these two linear spaces

is of dimension at least z̃1,j − z̃1,ĵ ≥ `. Thus, for 0 ≤ ` ≤ z̃1,j , the dimension of the span of the set of all

39See Theorem 5-1 of Spivak (1965).
40See Arias, Rubio-Ramı́rez, and Waggoner (2018) for a discussion of the volume measure over smooth manifolds.
41See Theorem 2-13 of Spivak (1965).
42A topological space is second countable if and only if the space has a countable basis.
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Z̃ju
2en,ĵ ∈ Rz̃1,j with (u1,u2) ∈ Uũ is at least `. By a simple dimension argument, this implies that for almost

all (u1,u2) ∈ Uũ the `th column of Z̃ju
2J ′n,z̃1,j is not in the span of the first ` − 1 columns of Z̃ju

2J ′n,z̃1,j .

Thus, for almost all (u1,u2) ∈ Uũ the columns of Z̃ju
2J ′n,z̃1,j are linearly independent.

We now return to the regularity conditions and discuss the kinds of restrictions that can be easily imposed

within this framework. Write F̃z(Ã(u)) as [Fe(Ã0(u))′ Fz(Ã(u))′]′, where Fe(Ã0(u)) = J(Ã−10 )′L′ =

(A−10 Γ0,1Γ
−1
0,2)
′. We can assume without loss of generality that the first nk elements of u correspond to the

elements of Γ0,1 and the next (p+ 1)n2 + n elements of u correspond to the SBVAR structural parameters

(A0,A+). So we can write u as (u1,u2,u3) ∈ Rnk × R(p+1)n2+n × Ra−nk−(p+1)n2−n. Note that

D(F̃z ◦ Ã)(u) =

Du1(Fe ◦ Ã0)(u) Du2(Fe ◦ Ã0)(u) Du3(Fe ◦ Ã0)(u)

Du1(Fz ◦ Ã)(u) Du2(Fz ◦ Ã)(u) Du3(Fz ◦ Ã)(u)

 .
Since Du1(Fe ◦ Ã0)(u) = (A−10 ⊗ (Γ−10,2)

′)P , for some permutation matrix P , Du1(Fe ◦ Ã0)(u) is of full row

rank. Thus, if Du1(Fz ◦ Ã)(u) is zero and Du2(Fz ◦ Ã)(u) were of full row rank, then D(F̃z ◦ Ã)(u) would

be of full row rank. If each row of Fz(Ã(u)) were equal to a row of A0, or a row of A+, or the impulse

responses of one endogenous variable to all the structural shocks at one horizon, then Fz(Ã(u)) would be

orthogonally commutative and Du1(Fz ◦ Ã)(u) would be zero since Fz(Ã(u)) would depend only on (A0,A+).

As long as not too many such rows are included, D(Fz ◦ Ã)(u) will also be of full row rank. For instance,

if Fz(Ã(u)) = (A−10 )′, which is the contemporaneous impulse response of all the endogenous variables to

all the structural shocks, then D(F̃z ◦ Ã)(u) would be of full row rank. Similarly, if Fz(Ã(u)) = A0, then

D(F̃z ◦ Ã)(u) would be of full row rank. However, if Fz(Ã(u)) = [A′0 A
−1
0 ]′, then D(F̃z ◦ Ã)(u) would not

be of full row rank. Since the number of zero restrictions is small, Fz(Ã(u)) can usually be defined so that the

desired restrictions can be imposed and D(F̃z ◦ Ã)(u) is of full row rank.

So, in this framework, we could have zero restrictions on the elements of A0 or A+ or on impulse responses

of endogenous variables to structural shocks. These correspond to restrictions on Fz(Ã(u)). We also could

have additional zero restrictions on Fe(Ã0(u)), which is the covariance matrix of the proxies and the structural

shocks. The exogeneity restrictions already require the first n− k columns of Fe(Ã0(u)) to be zero, but one

could impose additional zero restrictions on the last k columns. The last k columns of Fe(Ã0(u)) are the

covariance matrix of the proxies and the structural shocks correlated with the proxies.
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A.5 Data Appendix for Section 4

Here we describe the data used in Section 4 in more detail. The time series used to construct the endogenous

variables used in the Proxy-SVAR are:

1. Real Gross Domestic Product, BEA, NIPA table 1.1.6, line 1, billions of chained (2009) dollars, seasonally

adjusted at annual rates. Downloaded from https://www.bea.gov.

2. Total Private Employment, BLS, Current Employment Statistics survey (National), series Id CES0500000001,

thousands, seasonally adjusted. Downloaded from https://www.bls.gov.

3. Price Index for Gross Domestic Product, BEA, NIPA table 1.1.4, line 1, index 2009=100, seasonally adjusted.

Downloaded from https://www.bea.gov.

4. Personal Consumption Expenditures on Non-durable Goods, BEA NIPA table 1.1.5, line 5, billions of

dollars, seasonally adjusted at annual rate. Downloaded from https://www.bea.gov.

5. Personal Consumption Expenditures on Services, BEA NIPA table 1.1.5, line 6, billions of dollars, seasonally

adjusted at annual rate. Downloaded from https://www.bea.gov.

6. Personal Consumption Expenditures on Durable Goods, BEA NIPA table 1.1.5, line 4, billions of dollars,

seasonally adjusted at annual rate. Downloaded from https://www.bea.gov.

7. Fixed Investment in Equipment, BEA NIPA table 1.1.5, line 8, billions of dollars, seasonally adjusted at

annual rate. Downloaded from https://www.bea.gov.

8. Real Consumption = (4)+(5) / (3)

9. Real Investment in Equipment = (6)+(7) / (3)

The endogenous variables in the SVAR are series (1), (2), (3), (8), and (9) transformed to percent log

differences.

A.6 Finite Variance Tests of Importance Sampling Weights

We numerically test for the variance of the importance sampler weights to be finite in each of the applications

of the paper. In particular we use the Wald, score, and likelihood ratio (LR) tests as described in Koopman,

Shephard, and Creal (2009). These tests assume that the importance sampler weights are independent draws

from a Pareto distribution characterized by the shape parameter ξ. The null of each one of these tests is

H0 : ξ =
1

2
and H1 : ξ >

1

2

because for ξ > 1
2 the Pareto distribution variance does not exist.
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We conduct the tests for several thresholds of the importance sampler weights ranging from the largest 50

percent to the largest 1 percent of the importance sampler weights. These thresholds determine the number of

importance sampler weights used to implement the tests. The 95 percent critical values for the Wald, score,

and LR tests are 1.64, 1.64, and 2.69 respectively.

A.7 Tests for the Analysis in Section 4

Table A.1 shows the value of the tests described above for several thresholds—as shown in the first row of

the table—applied to the analysis performed in Section 4. The second row of the table shows the Wald test

statistics, the third row shows the score test statistics, and the fourth row shows the LR test statistics. None

of the values displayed in Table A.1 exceed the critical values reported above. Hence, these tests indicate that

the importance sampler weights have finite variance.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -7.50 -6.94 -6.18 -3.77 -1.28
Score -11.52 -9.84 -8.13 -4.41 -1.14
LM 0 0 0 0 0

Table A.1: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 4.

A.8 Tests for the Analysis in Section 5.1

Table A.2 shows Koopman, Shephard and Creal’s (2009) tests indicate that the importance weights used in

Section 5.1 have finite variance.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -4525.94 -3949.29 -3417.48 -1515.45 -279.51
Score -5.44 -5.22 -5.19 -3.31 -1.34
LM 0 0 0 0 0

Table A.2: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.1.

A.9 Tests for the Analysis in Section 5.2

Tables A.3 and A.4 present Koopman, Shephard and Creal’s (2009) tests for the case in which the average and

marginal tax rates are identified using the counterfactuals in Mertens and Montiel-Olea (2018) described in

Section 5.2. Table A.5 shows that Koopman, Shephard and Creal’s (2009) tests for the Proxy-SVAR identified
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with the proxy and sign restrictions described in Section 5.2.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -21.15 -17.97 -14.76 -7.19 -1.21
Score -11.12 -10.09 -9.05 -6.32 -1.77
LM 0 0 0 0 0

Table A.3: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.2 for the AMTR Counter-
factual.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -16.91 -14.56 -12.20 -5.75 -1.29
Score -10.59 -9.86 -9.25 -6.21 -2.54
LM 0 0 0 0 0

Table A.4: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.2 for the ATR Counterfactual.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -13.36 -11.40 -9.65 -4.88 -0.73
Score -8.75 -7.99 -7.58 -5.79 -1.44
LR 0 0 0 0 0

Table A.5: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.2 for the Proxy-SVAR
Identified with Proxy and Sign Restrictions.

The tables indicate that the importance weights have finite variance.

A.10 Tests for the Analysis in Section 5.3

Tables A.6 and A.7 present Koopman, Shephard and Creal’s (2009) tests for the case in which the bottom and

top tax rates cut shocks are identified using the counterfactuals in Mertens and Montiel-Olea (2018) described

in Section 5.3. Table A.8 presents Koopman, Shephard and Creal’s (2009) tests for the case in which the

bottom and top tax rates cut shocks are identified using the less restrictive scheme described in Section 5.3.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -60.73 -51.60 -41.26 -17.82 -3.83
Score -21.99 -18.55 -14.76 -7.36 -2.99
LM 0 0 0 0 0

Table A.6: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.3 for the Top 1 percent
Counterfactual.
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Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -39.66 -33.38 -26.16 -9.81 -1.31
Score -14.48 -12.42 -9.75 -4.21 -1.17
LM 0 0 0 0 0

Table A.7: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.3 for the Bottom 99 percent
Counterfactual.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -27.69 -23.75 -18.92 -7.84 -1.33
Score -10.10 -8.88 -6.87 -3.28 -0.85
LM 0 0 0 0 0

Table A.8: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.3 for the Proxy-SVAR
Identified using the Less Restrictive Identification Scheme.

The tables indicate that the importance weights have finite variance.
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