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Abstract

In the last fifteen years there has been an explosion of empirical work examining

price setting behavior at the micro level. The work has in turn challenged existing

macro models that attempt to explain monetary nonneutrality, because these models

are generally at odds with much of the micro price data. A second generation of models,

with fixed costs of price adjustment and idiosyncratic shocks, is more consistent with

this micro data. Nonetheless, ambiguity remains about the extent of nonneutrality

that can be attributed to costly price adjustment. Using a model that matches many

features of the micro data, our paper takes a step toward eliminating that ambiguity,

at the same time highlighting the challenges that remain.
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1 Introduction

In the last fifteen years there has been an explosion of empirical work examining price

setting behavior at the micro level. In order to match the common features that have been

uncovered, economists have developed a second generation of sticky-price models that include

both fixed costs of price adjustment and idiosyncratic shocks. Those models have then served

as laboratories for studying monetary nonneutrality. In this paper, which belongs to the same

genre,we trace the degree of nonneutrality to subtle aspects of the idiosyncratic productivity

process, the distribution of fixed costs, and the extent to which price stickiness varies across

firms. Thus, our paper is most closely linked to recent work by Midrigan (2011), Alvarez,

Le Bihan, and Lippi (2013), and Karadi and Reiff (2014). What distinguishes our work is

that we find two model specifications, distinguished by the fraction of flexible-price firms,

that are capable of matching the following seven established features of the micro price data:

(1) there are both large positive and negative price changes that are intermixed with many

small price changes; (2) average price changes are an order of magnitude larger than needed

to keep up with inflation; (3) many prices are set infrequently, with changes occurring less

frequently than once a year, while some prices appear to be completely flexible; (4) the

frequency of positive price changes is positively correlated with inflation and the frequency

of negative price changes is negatively correlated with inflation, leading to little correlation

of the overall frequency of price adjustment changes with inflation; (5) aggregate hazards are

relatively flat; (6) the idiosyncratic part of price changes is more volatile and less persistent

than that due to aggregate factors; and (7) the size of a price change is not related to the

time since the last price change. These are among the facts that lead Klenow and Malin

(2011) to conclude that idiosyncratic forces are dominant in accounting for actual pricing

behavior and are largely consistent with a state-dependent approach to price setting.

Many papers have matched subsets of these seven facts, but we are not aware of any

other paper with a model that has been able to simultaneously match all of them. Midrigan

(2011), Alvarez, Le Bihan, and Lippi (2014), Nakamura and Steinsson (2008), and Karadi

and Reiff (2014) all have theoretical environments consistent with attributes (1) and (2),

and Midrigan like us also matches the actual histogram of price changes. Nakamura and

Steinsson (2010) have multiple sectors with varying degrees of price flexibility and so have

a model that is consistent with fact (3) as well, and their 2008 paper generates results

consistent with item (4). We are unaware of any papers that explore model consistency with

the empirics described in (5) and (7). The two models in our paper are consistent with a

wide range of pricing behavior at the micro level and generate significant but very different

degrees of monetary nonneutrality.
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The degree of nonneutrality is intimately linked to the nature of firm-level heterogeneity,

something explored in great theoretical detail by Alvarez et al. (2014) and Karadi and Reiff

(2014). A key property of that heterogeneity is its ability to produce both peakedness in the

distribution of price changes and fat tails — i.e., both small and large price changes. Midrigan

(2011) is the first to emphasize this property, which he describes as the need to generate

excess kurtosis in the distribution of price changes. He shows that the failure to account

for small price changes is the primary reason the Golosov and Lucas (2007) model obtains a

Caplin and Spulber-type result of significant rigidities at the micro level along with almost

complete flexibility at the macro level. However, as Alvarez et al. (2014) indicate, although

kurtosis is a sufficient statistic for nonneutrality in models using a continuous distribution

of cost shocks, kurtosis is less meaningful when cost shocks are not continuous but occur

infrequently and are large, as they are in our model. Karadi and Reiff are able to explore the

inexact relationship between kurtosis and nonneutrality using a stochastic process that nests

those of Golosov and Lucas (2007) and the Poisson arrival process of Midrigan (2011). They

find, as we do, that specifications with similar kurtosis in the price change distributions can

display very different degrees of nonneutrality. They indicate that an important element in

generating nonneutrality is to have idiosyncratic shock processes that are not too far away

from the discontinuous Poisson process adopted in Midrigan. Finally, Costain and Nakov

(2011a,b), using a somewhat complementary methodology, also investigate the consequences

that matching a large number of the features of micro pricing has on monetary nonneutrality.

They apply their approach to scanner-level data rather than broad consumer price data.

Capturing the rich distribution of prices requires us to embed significant heterogeneity

across firms. As is standard in the literature, we assume that firms face idiosyncratic shocks

to their productivity or marginal cost. However, unlike much of the cited work, here pro-

ductivity follows a finite-state Markov process. This approach, while less parsimonious than

some others, has a high payoff in terms of allowing the model to match the many facts listed

above. We also incorporate a fraction of firms that set prices flexibly, which helps the model

account for the many small price changes in the data.1 As in our earlier (1999) paper, firms

face idiosyncratic variation in menu costs. We calibrate the model to match the distribu-

tion of price changes as well as the median duration of prices documented in Klenow and

Kryvtsov (2008). It matches these facts with firms incurring relatively small menu costs. An

outgrowth of this calibration is that the model is consistent with the other pricing facts listed

above. We are also able to identify features of the productivity process that are essential to

1At an earlier stage we also investigated a complementary setup in which a fraction of firms drew zero

fixed costs of changing price each period, but where all firms were ex-ante identical. Most of the results in

this paper are invarient to using this alterative modeling strategy.
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finding flat aggregate hazard functions and to producing monetary nonneutrality. Notably,

we find that the micro pricing features are consistent with both flat hazards and a significant

amount of nonneutrality, although the degree of nonneutrality is somewhat less than that

found in many empirical studies or in Calvo-type settings.

An interesting aspect of our work is the finding that more than one specification of our

model can match the steady-state distribution of price changes and the duration of prices

as estimated by Klenow and Kryvtsov(2008). The two parameterizations illustrate that in

matching the steady-state distribution, there is a trade-off between the fraction of sticky-

price firms and the menu costs incurred by those firms. While the two parameterizations

generate similar steady-state behavior, their implications for the nonneutrality of money are

quite different: there is no simple relationship between the degree of overall steady-state

stickiness and the extent of nonneutrality. This theoretical point is familiar from Caplin and

Spulber (1987) and Caballero and Engel (2007), but our work and that of Karadi and Reiff

(2014) shows that it can also be important in a quantitative model.

Our approach is also of methodological interest, in that we solve for the exact steady-state

distribution of prices within and across productivity levels, while allowing for straightforward

linearization in order to study dynamics. Although it is not currently feasible to estimate

the model in a DSGE setting, advances in computational techniques should make this a

possibility in the not too distant future.

We begin in Section 2 with a description of the model, paying particular attention to

the details of the individual firm’s pricing decisions. In Section 3, we present our steady-

state results, which match the data on price changes documented by Klenow and Kryvtsov

(2008). The distribution of price changes as well as the median duration of price changes

can be matched with either small or large fractions of flexible-price firms. Section 4 contains

an analysis of the role that idiosyncratic productivity shocks play in producing the model’s

aggregate dynamics. We do this by following up on work by Klenow and Kryvtsov (2008),

Caballero and Engel (2007) and Costain and Nakov (2011a), who present various decom-

positions of the dynamics of the price level in response to a monetary shock. Here we find

that the state-dependent elements of pricing are indeed important for the model’s behavior.

In Section 5, we investigate the mechanisms of our model in more detail with the idea of

isolating the key features necessary for producing nonneutralities. In Section 6, we examine

the model’s ability to generate flat or downward-sloping aggregate hazards even though the

state-specific hazards are upward sloping. Section 7 concludes.
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2 The Model

The basic elements of the model are drawn from the state-dependent pricing framework

of Dotsey, King and Wolman (1999), or DKW for short, with the addition of stochastic

variation in productivity at the firm level. We refer to the different productivity levels as

microstates. Firms are heterogeneous with respect to productivity realizations but share a

common stochastic process.2 As in the DKW framework, some firms are heterogeneous with

respect to the realization of fixed costs, but we also allow for a simple form of heterogeneity

in the distribution of fixed costs: a fraction of firms are flexible-price firms, facing zero

adjustment costs. After analyzing the stochastic adjustment framework, we describe the

standard features of the rest of the model.

2.1 A stochastic adjustment framework

To study the effect of serially correlated firm-level shocks along with heterogeneity in ad-

justment costs, we extend the DKW framework while retaining much of its tractability.

Heterogeneous productivity: The relative productivity level,  of a firm is its microstate.

We assume that there are  different levels of the microstate that may occur, ,  =

1 2 , so that a firm of type  at date t has total factor productivity

 =  (1)

where  is a common productivity shock. We assume that the relative productivity levels

are ordered so that 1  2   .

Transitions between microstates are governed by a state transition matrix, , where

 = (+1 =  | = ) (2)

We also use the notation (0|) to denote the conditional probability of state 0 occurring
next period if the current microstate is . We assume that these transitions are independent

across firms and that there is a continuum of firms, so that the law of large numbers applies.

The stationary distribution of firms across microstates is then given by a vector Φ such that

Φ =  ∗ Φ
2The framework can easily incorporate firm-specific demand disturbances. However, we focus on produc-

tivity shocks because they are the main focus of the related literature and because studies such as Boivin,

Giannoni, and Mihov (2009) indicate that much of the idiosyncratic variation can be attributed to supply-

type shocks.
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That is, the  element of Φ (denoted ) gives the fraction of firms in the 
 microstate

(these firms have productivity level ).
3

Heterogeneous adjustment costs: A fraction  of firms face zero adjustment costs and

thus have perfectly flexible prices. In each period, the remaining fraction 1 −  of firms

draw from a nondegenerate distribution  () of fixed costs. Because the fraction and the

identity of flexible-price firms are fixed over time, the only interaction between the two types

arises from general equilibrium considerations. We focus on the details of optimal pricing

and adjustment for the firms that do face adjustment costs and then briefly discuss the

flexible-price firms.

2.1.1 Optimal pricing and adjustment

Consider a firm that faces demand ( )() for its output if it is charging relative price 

in aggregate state . Following DKW, we assume that this firm faces a fixed labor cost of

adjustment , which is i.i.d and is drawn from a continuous distribution with support [0B].
It is convenient to describe the optimal adjustment using three value functions:  the

value of the firm if it does not adjust;  its value if it has a current adjustment cost

realization of 0; and  its maximized value given its actual adjustment cost .

In terms of these value functions, the market value of a firm is governed by

(   ) = max {(  ) [( )− ()()]} (3)

if it has a relative price of , is in microstate  aggregate state  and draws a stochastic

adjustment cost of  In (3),  () is the marginal value of state contingent cash flow and  ()

is the real wage in state .4 The market value,  is then the maximum of two components,

one being the value conditional on adjustment ([( )−()()]) and the other the value
of nonadjustment ((  )).

Defining the real flow of profits as (  ) the nonadjustment value  — the value of

continuing with the current relative price  for at least one more period — obeys the Bellman

equation,

(  ) = [()(  ) + (0 0 0 0)|(  )] (4)

with 0 = (0) and (0) denoting the gross inflation rate in the next period. Therefore,

the value  depends on the current relative price  marginal utility () the flow of real

3The stationary probability vector can be calculated as the eigenvector associated with the unit eigenvector

of the transpose of . See, for example, Kemeny and Snell (1976).
4The aggregate state,  will be determined as part of the general equilibrium but can be left unspecified

at present. Note that the values are in marginal utility units, which can be converted into commodity units

by dividing through by marginal utility.
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profits (  ) and the discounted expected future value (0 0 0 0)5

The “costly adjustment value” is given by the value of the firm if it is free to adjust,

( ), less the cost of adjustment, which depends on the macro state through ()()

and also on the realization of the random adjustment cost . In turn, the “free adjustment

value”  obeys

( ) = max
∗
{()(∗  ) + (0 0 0 0)|∗  )} (5)

with 0 = ∗(0).

As in other generalized partial adjustment models, the firm adjusts if

[( )− ()()]  (  ).

Accordingly, there is a threshold value of the adjustment cost, such that

(  ) =
( )− (  )

()()
(6)

Firms facing a lower adjustment cost adjust. Those with a higher cost charge the same

nominal price as they did last period, implying that their relative price moves in the opposite

direction of the price level.

The fraction of (non flexible-price) firms that adjusts, then, is

(  ) = ((  )) (7)

where is the cumulative distribution of adjustment costs. The adjustment decision depends

on the state of the economy, but it also depends on the distribution of adjustment costs in

two ways. First as highlighted by (7), the adjustment cost distribution governs the fraction

of adjusting firms given the threshold. Second, stochastic adjustment costs provide the

firm with an incentive to wait for a low adjustment cost realization: the adjustment cost

distribution affects this incentive and thus the adjustment threshold.

We study an environment with positive trend inflation. Because adjustment costs are

bounded above and inflation continually erodes a firm’s relative price if it does not adjust,

there will exist a maximum number of periods over which a firm may choose not to adjust

its price. Because historical prices depend on the state  that a firm was in when it last

adjusted, as well as the current state , this maximal number,  will depend on both 

and  in steady state. Thus, the stationary distribution of firms in a steady state equilibrium

5In forming conditional expectations it is not necessary to condition on  because it is iid.
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takes on a finite but potentially large number of elements.

2.1.2 Flexible-price firms

For the fraction  of firms with zero adjustment costs, things are much simpler. These

flexible-price firms face the same productivity process as other firms and simply charge the

price in state  that maximizes profits in state  Thus, they set a price, 

  that is a constant

markup over their marginal cost, which depends on both their microstate and the aggregate

state of the economy.

2.1.3 Dynamics and accounting

Because we want to study the effects of this joint distribution on macroeconomic activity,

our framework requires that we track the distribution of firms over the set of historical

prices and the evolving levels of micro-productivity. The core mechanics are as follows. We

start with a joint distribution of relative prices and productivity that prevailed last period.

This distribution is then influenced by the effects of microproductivity transitions (), the

adjustment decisions of firms ((  )); and the effects of inflation on relative prices. The

net effect is to produce a new distribution of relative prices prevailing in the economy. Table

1 summarizes some of the key notation and equations.

Table 1: Conceptual and accounting elements in microstate model

Concept Symbol Comment

past relative price −1−1  = historical state when price set (at − )

past fraction −1−1  = microstate at t-1

current fraction   =
X


−1−1

adjustment rate  depends on   

current relative price   = −1−1

current fraction   = (1− )

fraction flex-price firms   is time-invariant

Initial conditions and sticky prices. Let −1−1 be the previous period’s relative price

of a firm that last changed its price at date −1−(−1) = − when it was in microstate .
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Let −1−1 be the fraction of (sticky-price) firms in this situation, that charged this price

and also had productivity level . Ranging over all the admissible    this information

gives the joint distribution of productivity and prices at date t-1.

If such a firm chooses not to adjust, its relative price evolves according to

 = −1−1 (8)

where  is the current inflation rate ( is shorthand for () from above). That is, one

effect on the date  distribution of relative prices comes from inflation.

Endogenous fractions: Two micro-disturbances hit a firm in our model, so that its ulti-

mate decisions are conditioned on its productivity () and its adjustment cost (). For the

purpose of accounting and ease of presentation, it is convenient to specify that the productiv-

ity shock occurs first and the adjustment cost shock second, but doing so has no substantive

implications.

As above, let −1−1 be the fraction of (sticky-price) firms that charged the price

−1−1 when they were in microstate  last period. Let  denote the probability of tran-

sitioning from microstate  to microstate  As a result of stochastic productivity transitions

there will be a fraction

 =
X


−1−1

of sticky-price firms that start period  with a -period old nominal price set in microstate

 and have a microstate  in the current period.

However, not all of these firms will continue to charge the nominal price that they set

in the past. To be concrete, consider firms with a - period old price set in microstate 

that are now in state . Of these firms, the adjustment rate is  Then, the fraction of

sticky-price firms choosing to continue charging the nominal price set  periods ago will be

 = (1− ) (9)

Taking all of these features into account, we can see that transitions are governed by two

mechanisms: the exogenous stochastic transitions of the microstates () and the endoge-

nous adjustment decisions of firms (). As discussed, the adjustment decision depends

on the firm’s relative price, its microstate and the macroeconomic states.
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Given that firms currently in microstate  adjust from a variety of historical states, it

follows that the fraction of adjusting firms is given by



 + 0 =  +

X


X


 (10)

We use the redundant notation 0 to denote the fraction of sticky-price firms that adjust

in microstate  so that this is compatible with (9), and we use the notation 

 to denote

the fraction of firms that have flexible prices and are in state . Since the distribution of

microstates is assumed to be stationary, there is a constraint on the fractions,

 =  +

Ã
0 +

X


X




!¡
1− 

¢


Equivalently, a fraction  of both flexible- and sticky-price firms are in state k at the end

of the period.

2.1.4 State variables suggested by the accounting

As suggested by the discussion above, there are two groups of natural endogenous state

variables in the model. One is the vector of past relative prices −1−1 for  = 1 2 

and  = 1 2 . The other is the fraction of sticky-price firms that enter the period with

a particular past microstate () and a relative price that was set  periods ago in microstate

,

−1−1 (11)

Thus, the addition of microstates raises the dimension of the minimum state space from

roughly 2 ∗  to roughly  ∗  +  ∗ 2, where  is the maximum number of periods of

nonadjustment and  is the number of microstates. However, this is only an approximation

because the maximum number of periods can differ across microstates:  is the endpoint

suitable for firms currently in microstate  that last adjusted in historical microstate .

2.1.5 The adjustment process

Recall, that for each price lag ( − 1), microstate last period () and historical state (), a
fraction −1−1 of firms enters the period. Then, the microstate transition process leads

to a fraction of sticky-price firms  =
X


−1−1 having a price lag , a current

microstate ; and a historical state (). Of these firms, a fraction  chooses to adjust

while a fraction  = 1 −  chooses not to adjust, leaving  = 
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charging relative price  and experiencing microstate . One thing that is important to

stress at this stage is that we allow for zero adjustment or for complete adjustment in various

situations (particular    entries).

2.2 The DSGE model

We now embed this generalized partial adjustment apparatus into a particular DSGE model,

which is designed to be simple on all dimensions other than pricing.

2.2.1 The Household

As is conventional, there are two parts of the specification of household behavior, aggregates

and individual goods. We assume that there are many identical households that maximize

max


0{
X


[
1

1− 
1− − 

1 + 

1+
 ]}

subject to:  ≤  +
¡
1− 

¢X


X


X


 + 
X






where  and  are consumption and labor effort, respectively,  is the profits remitted

to the household by a type (  ) firm, and 

 is the profits of a flexible price firm in state

. The consumption aggregate,  is given by the standard Dixit-Stiglitz demand aggregator.

Thus,  =
³R 1

0
(())

−1
 

´ 
−1

 There is an economy-wide factor market for the sole input,

labor, which earns a wage, . The first-order condition determining labor supply is

 = 

  (12)

and, hence, −1 is the Frisch labor supply elasticity. The first order condition determining

consumption is

− =  (13)

where  is the multiplier on the household’s budget constraint, which serves also to value

the firms.

2.2.2 Firms

Two aspects of the firms’ specification warrant discussion. First, we adopt a simple produc-

tion structure, but we think of it as standing in for some of the elements in the “flexible supply

side” model of Dotsey and King (2006). Thus, production is linear in labor, () = ()()
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where () is the output of an individual firm, () is the level of its technology, and () is

hours worked at a particular firm. Hence, real marginal cost,  is given by  = ()

for a firm that is in microstate  at date t.

Second, for sticky-price firms, the optimal pricing condition given the structure of de-

mand, productivity, and adjustment costs satisfies the first-order condition

0 = ()(
∗  ) + [(

0 0 0)] (14)

with 0 = ∗(0) and the nonadjustment probability being (  ) = 1− (0 0 0).

The marginal value for a nonadjusting firm is

(  ) = ()(  ) + [(0 0 0)
1

(0)
(

0 0 0)] (15)

with 0 = (0).6

For the fraction,   of firms with flexible prices, the profit maximization problem yields

the static first-order condition:

 (
∗   ) = 0

2.2.3 Money and equilibrium

To close the model, it is necessary to specify money supply and demand and to detail

the conditions of macroeconomic equilibrium. We impose the money demand relationship

 =  Ultimately, the level of nominal aggregate demand is governed by this relation-

ship along with the central bank’s supply of money. The model is closed by assuming that

6Maximizing the "free adjustment value" (5) implies a first-order condition,

0 = ()(
∗  ) + [

1

( 0)
)(

∗

( 0)
 0  0 0)

The value function  takes the form

(   ) =

⎧⎨⎩ (  ) if  ≥ (  )

[( )− ()()] if  ≤ (  )

⎫⎬⎭
so that

(   ) =

⎧⎨⎩ (  ) if  ≥ (  )

0 if  ≤ (  )

⎫⎬⎭ 

Since  does not depend on , we can express the FOC as in the text. A similar line of reasoning leads to

condition (15). We use this first-order approach as an element of producing candidate steady-state equilibria.

We then confirm that the candidate is indeed an equilibrium, by checking that adjusting firms’ behavior

satisfies (5). John and Wolman (2008) discuss the possibility that solutions to the first order conditions may

not satisfy (5).
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nominal money supply growth follows an autoregressive process,

∆ log() = ∆ log(−1) + 

where  is a mean zero random variable.

There are three conditions for equilibrium. First, labor supply is equal to labor demand,

which is a linear aggregate across all the production input requirements of firms plus labor

for price adjustment:

 =
¡
1− 

¢X


X


X


 + 
X




 +

¡
1− 

¢X


X


X




In this expression,  is the labor used in production in period  by a sticky-price firm

in state  that last adjusted its price in period −  when it was in state ; 

 is the labor

used in production in period  by a flexible-price firm in state ; and  is expected

price adjustment costs for a firm in period  in state  that last adjusted its price in period

−  when it was in state :

 = 
¡
|  −1 ()

¢
The second equilibrium condition is that consumption must equal output, and the third is

that money demand must equal money supply.

2.3 Calibration of macroeconomic parameters

Typically, we will be calibrating at a monthly frequency. Our benchmark settings for the

macroeconomic parameters are as follows:  = 971 where  is the number of periods in a

year. The steady-state annualized inflation is 2.5%. The coefficient of relative risk aversion,

 = 25 labor supply elasticity −1 is 20, and the demand elasticity  is 5. The potential for

any type of endogenous propagation in this type of model is closely related to the elasticity

of marginal cost with respect to output. Thus, low labor supply elasticities or coefficients

of relative risk aversion greater than one severely compromise persistence in this simple and

stark setting.7 Dotsey and King (2005, 2006) explore many features of more sophisticated

models that are capable of generating low marginal cost responses to output. We view our

7Combining the household’s first-order conditions and approximating the wage by marginal cost and labor

and consumption by output yields

 ln ln  =  + 

which indicates that values of   1 preclude low elasticities of marginal cost with respect to output.
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parameter settings as stand-ins for the more realistic persistence-generating mechanisms that

are present in larger models. For robustness, we will also look at how setting  = 1 or 2

affects some of our results.

3 Benchmark Parameterizations and Properties of our

Steady-State Price Distribution

We choose the parameters for our benchmark cases so that the steady-state distribution of

price changes from the model is consistent with the facts reported by Klenow and Kryvtsov

(2008). The critical parameters are those governing the distributions of fixed costs and

firm-level productivity.

3.1 Choosing parameters

Klenow and Kryvtsov (2008), referred to as KK below, report on the distribution of price

changes from individual price data underlying the U.S. CPI from 1988 to 2004. Figure 1,

reproduced from KK, displays a histogram of regular, nonzero price changes, where the set

of regular price changes is meant to exclude sales.8 As Midrigan (2011) and Guimaraes

and Sheedy (2011) argue, the existence of sales has little relevance for the nonneutrality of

money, implying that for our purposes the emphasis in terms of matching the micro-price date

should be placed on matching regular price changes. Other relevant price change statistics

reported by Klenow and Kryvtsov (2008) are listed in the first column of Table 2. In choosing

parameters, we target the histogram in Figure 1 and the median adjustment probability of

0.139 from Table 2. Note that while the histogram represents a direct measurement of price

changes, in calculating adjustment probabilities KK impose a Calvo pricing structure on the

data. For each category of goods and services they assume that there is a fixed adjustment

probability. They then use the price data to compute maximum likelihood estimates of

the adjustment probabilities for each category. The median adjustment probability across

categories is 0.139.

We should note that our labor supply elasticity, while large, is less than the infinite elasticity that is

commonly used for example in Midrigan (2011), Costain and Nakov (2011a), or Karadi and Reiff (2014).
8All prices and changes in prices are expressed in logs and log deviations.
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Figure 1. Price Change Distribution from Klenow and Kryvstov

To choose parameters, we minimize a weighted sum of the squared deviations of the sam-

ple statistics (histogram elements and median duration) from the corresponding properties of

our model’s steady-state distribution. The parameters we allow to vary are (1) the elements

of the productivity transition matrix  (2) the productivity realizations  (3) the fraction

of firms that are flexible-price firms  , and (4) the upper bound of the fixed-cost distrib-

ution  ()  We fix the number of productivity realizations at seven, restricting the interior

elements of that distribution so that they are equally spaced, but allowing the minimum and

maximum productivities to be chosen freely.9

Regarding the cost of adjusting prices, as in DKWwe employ a flexible distribution based

on the tangent function. The distribution is governed by three parameters: the upper bound

on the fixed cost (), and the curvature parameters ( and ) :

 () =
1



½
tan

µ
 − 2

1

¶
+  · 

¾
 (16)

9To find parameters such that the model’s steady-state distribution matches the data, we use a simulated

annealing algorithm developed by William Goffe (1994,1992).
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with

1 =


[arctan (−  · ) + arctan ( · )] (17)

2 = arctan ( · ) · 1 (18)

This function can produce a wide range of distributions depending on the values of  and 

For example, it can approximate a single fixed cost of adjustment, adjustment probabilities

that are relatively flat over a wide range, or the nearly quadratic adjustment such as has

been used by Caballero and Engel. Apart from the sensitivity analysis in Section 4.7.1 , we

fix the form of the distribution of fixed costs to be approximately quadratic ( = 4 and

 = 0 in (16)), but allow  the upper bound of the support, to be a free parameter. As

indicated above, we also allow for a fraction,   of firms to adjust their prices flexibly. The

presence of these firms is important for generating small price changes in the distribution.10

3.2 Effect of parameters on pricing statistics

Each parameter — or set of parameters — plays an important role in determining the steady-

state distribution of price changes. Here we will provide a basic discussion of each parameter’s

role, proceeding as though all other parameters were fixed. In matching moments from the

data we will implicitly be varying all parameters simultaneously, but this discussion should

provide some intuition.

The upper bound on fixed costs has an obvious effect on the length of time firms hold

their prices fixed: higher  means a greater duration of prices and therefore larger average

price changes for the sticky-price firms. Increasing the fraction of flexible price firms  leads

to a larger number of small price changes and a higher overall frequency of price adjustment.

Greater dispersion of idiosyncratic productivity shocks tends to raise the dispersion of relative

prices and thus to spread out the distribution of price changes. This reasoning is exact for

flexible price firms, but also occurs for a given persistence of prices in the sticky-price sector,

because optimal prices will vary more across states.

The productivity transition matrix also affects price behavior. For a given median ad-

justment probability, greater persistence in the productivity process tends to increase the

dispersion of prices. If productivity is entirely transitory (i.i.d.) then expected future pro-

10Midrigan (2011) and Costain and Nakov (2011b) emphasize the importance of small price changes for

the model’s ability to generate nonneutralities. Midrigan explores two methods, both different from ours,

for generating small price changes: complementarity in price adjustment and the probability of drawing a

zero menu cost. He finds that the degree of nonneutrality is not significantly affected by the way in which

small price changes are introduced.
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ductivity is invariant to current productivity. In this case, with prices adjusting infrequently

an adjusting firm’s optimal price will not vary much with its current state. In contrast, a

highly persistent productivity process makes expected future productivity vary closely with

current productivity, and for a given degree of price stickiness optimal prices will also be

sensitive to current productivity. This reasoning does not apply exactly, because the degree

of price stickiness varies with the productivity process. Greater persistence in the produc-

tivity process will tend to increase the degree of price stickiness; greater persistence means

a lower probability of a productivity change and thus a lower probability of change in the

firm’s optimal price. Note that some of the reasoning in this paragraph abstracts from the

fact that nonzero steady-state inflation interacts with the productivity process in affecting

the incentives for price adjustment.

3.3 Benchmark parameter values

We have found two sets of parameters that enable the model’s steady state to closely match

the chosen moments.11 The next subsection will provide more details on the closeness of

that match and will discuss in detail the properties of the steady-state equilibrium for both

cases. Here we simply provide information on the parameter values.

One case will be called the low-flexibility benchmark because it has a relatively low

proportion of flexible-price firms. The other will be called the high-flexibility benchmark

because it has a higher fraction of flexible price firms. The low-flexibility benchmark has the

smallest fraction of flexible-price firms that allowed us to match the desired moments. The

high-flexibility benchmark has roughly four times as many flexible-price firms and matched

the data moments equally well. In each case, the estimated idiosyncratic shock process

required a large dispersion of productivity for the extreme states in order to match the fat

tails of the empirical price change distribution. However, the two cases required very different

upper bounds on the cost distribution as well as very different transition matrices.

For the low-flexibility benchmark, the fraction of firms with flexible prices is  = 0027

The maximal fixed cost of changing prices is  = 0012, which corresponds to 6.0 percent of

labor hours. The productivity levels are given by  ∈ {083 092 096 10 104 108 122}.
The dispersion in productivity appears at first glance to be rather large. Note, however,

that while there is no direct mapping between the products in our model and plants, our

productivity process displays considerably less dispersion than has been found in the liter-

ature on the productivity of plants. For example, Foster, Haltiwanger, and Krizan (2006)

11While we cannot prove that there is not another comparable steady state, we did search extensively over

various fractions of flexible-price firms and found only two steady states that matched the histogram with

great precision.
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find interquartile differences in productivity of .57 for the U.S. retail trade sector.12

For the high-flexibility benchmark, the fraction of firms with flexible prices is naturally

higher:  = 0102 and the productivity levels are given by

 ∈ {087 095 097 10 103 105 120} Given that both cases match the distribution of
price changes and the median price duration, sticky-price firms need to face higher costs of

price adjustment: the upper bound on the cost distribution is very large,  = 021 This

does not imply that high costs of price adjustment are actually incurred, as we will see below.

While the productivity levels are quite similar to the low-flexibility case, the productivity

transition matrix differs greatly. Figure 2 plots the paths of expected productivity, one-period

ahead, conditional on each productivity state. In the low-flexibility benchmark, productivity

is relatively persistent, whereas in the high-flexibility benchmark productivity is relatively

transitory.
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Figure 2. Expected productivity state by state

3.4 Steady-state properties

In both of the benchmark cases, the hypothetical Calvo adjustment probability calculated

from the model’s steady-state equilibrium matches KK’s estimate exactly. KK calculate

price duration () as the inverse of the Calvo parameter, so our benchmark cases imply

12See also Syverson (2004) and Foster, Haltiwanger, and Syverson (2008).
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identical price durations to KK’s median sector.13 Panel A of Figures 3 and 4 shows that the

histograms of price adjustment match the data quite closely. Across these two important

dimensions of observable data then, the high- and low-flexibility benchmarks are nearly

identical. Of course, we know that in other ways the two parameterizations are not identical.

In this subsection, we examine the implications of the two benchmark cases for other aspects

of price adjustment behavior. In the next section we turn to the implications for monetary

nonneutrality.

In addition to the Calvo parameter and implied median duration, Table 2 lists several

other statistics reported by KK describing the behavior of prices. For each of those statistics,

the low-flex and high-flex benchmarks are quite close to each other. Compared to the data,

the models produce an average price duration that is somewhat low (7.7 months vs. 8.6

months in the data), and it produces a fraction of unchanged prices that is somewhat high

(0.87 vs. 0.73 in the data). Overall however, for both benchmark cases the steady-state price

adjustment behavior implied by the model is quite close to that measured in the data.

In terms of matching the data on price changes in the CPI, our model does so in much

more detail than most of the existing literature. Golosov and Lucas (2007) match three

moments: the fraction of prices that don’t change, the mean of positive price changes, and

the standard deviation of positive price changes. In restricting their attention to these

three moments, their estimated model drastically underestimates the fraction of small price

changes and as a result generates no nonneutralities. Nakamura and Steinsson (2010) match

the mean frequency and absolute size of price changes across sectors and investigate the role

of sectoral heterogeneity in the dynamic responses of their economy to monetary shocks.

Like us, Midrigan (2011), using both grocery store data and the CPI, matches a histogram

of price changes. Costain and Nakov (2011a,b), using scanner data and using a flexible

adjustment cost structure somewhat different from ours, are able to reasonably match the

behavior of price changes with their model. Unlike in our model, the shape of the state-

contingent hazards is insensitive to value function losses associated with not changing prices.

Thus, their approach yields a more Calvoesque model, with the distribution of price changes

being approximately invariant to inflation. Karadi and Reiff (2014) match the frequency

and average size of absolute price changes in the Hungarian processed food sector, but their

match of the histogram of these price changes is less than accurate. We view our work as

complementary with this line of research.

13

 = − ln
Ã¡
1− 

¢ ·Ã1−X


0

!!
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Table 2

data
low-flex

benchmark

high-flex

benchmark

approximately

fixed costs

fraction flexible 0.027 0.102 0.05

hypothetical

Calvo parameter

0.139 0.139 0.139 0.136

median duration 7.2 7.2 7.2 7.2

average duration 8.6 7.71 7.70 7.85

Pr(same) 0.73 0.87 0.87 0.87

Pr(small)∗ 0.43 0.40 0.38 0.47

mean abs(dlnp) 0.11 0.098 0.091 0.12

∗Pr(small) is the fraction of price changes that are less than 5%.
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Having established that both the benchmark model and the model with more flexible-

price firms are broadly consistent with the microeconomic data on price adjustment, we

now describe additional features of the model’s stationary distribution of prices and price

adjustment. This discussion will refer to Figures 3 and 4. We have already discussed the

close correspondence between the histogram of nonzero price changes in Panel A of Figure

3 and the corresponding histogram in Klenow and Kryvtsov (2008). Panel B of Figures 3

and 4 plots the distribution of prices by age. In the low-flex benchmark, 13.0% of prices

are newly set in any period; 49% of prices are less than six months old; and 76% of prices

are no more than twelve months old. The mean and median ages of prices are 8.0 and 6.0,

respectively. In contrast, there is a much larger fraction of long-lived prices in the high-flex

case; the fraction of newly set prices differs little, at 12.9%, but 26% of prices are less than

six months old; and only 44% of prices are no more than twelve months old. The mean

and median ages are 18.5 and 15.0. The data described in Nakamura and Steinsson (2008)

indicates that around 5.1% of prices can reasonably be classified as flexible and we have

been unable to find any mention of the price age distribution in the literature. Based on

the fraction of flexible prices in the data, one might argue that the low-flex benchmark is

the more empirically relevant. However, it is of theoretical interest that there is more than

one set of parameters that allow for an accurate depiction of many of the statistics that

characterize the price change data. This result is related to the work of Karadi and Reiff

(2014), who find that both their mixed process and their Poisson process generate similar

theoretical price change distributions.

Panel C of both figures displays the aggregate hazard function with respect to time, by

which we mean the probability of price adjustment conditional on the time since the last

adjustment. These figures share two notable features. The first is the relative flatness over

the 40 months plotted in the figure. The second is the sharp decline in the hazard from

one to two months. In Section 6 we discuss in detail how the properties of the idiosyncratic

productivity process determine the shape of the aggregate hazard function. At this juncture

we will just make two relatively simple points. First, the sharp decline is due to all the

flex-price firms changing prices and leaving only sticky-price firms over the remainder of the

hazard distribution. This is the reason that there is a greater initial drop for the model with

a relatively high fraction of flexible-price firms. Second, the relatively flat hazard results

from an interaction between positive average inflation and the nature of the productivity

process. To see this, refer to Panel D of Figure 3, which plots adjustment probabilities (haz-

ards) as a function of relative price (price charged divided by price level) for each level of

productivity. If a nominal price is not adjusted, the corresponding relative price decreases

because of positive inflation. If productivity is unchanged, such a move to the left in Panel
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D corresponds to a higher adjustment probability — a rising hazard with respect to time.

However, the productivity process often involves changes in productivity, and Panel D shows

that increases in productivity can correspond to very large decreases in adjustment proba-

bility. This property is at the root of the flat aggregate hazard displayed in Panel C, which

will be discussed in more detail in Section 6. Of further interest is that Campbell and Eden

(2010) display empirical hazards with a bowl shape similar to that displayed in panel D.
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Figure 3. Steady state of low-flex benchmark.
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Figure 4. Steady state of high-flex benchmark.

While we have been stressing the commonalities across the two benchmark cases, there

are important differences across the two cases in the parameters governing both fixed costs

and productivity transitions. The low-flexibility benchmark has low fixed costs for the sticky-

price firms and few firms (2.7%) with flexible prices, whereas the high-flexibility benchmark

has high fixed costs for the sticky-price firms and many firms (10.7%) with flexible prices. In

addition, the productivity process is more persistent in the low-flexibility benchmark. While

those differences offset each other in some dimensions — for example, in determining the

distribution of nonzero price changes — they are not entirely offsetting. Comparing Figures 3

and 4, the most striking differences between the low-flex and the high-flex benchmarks are in

the mean age of a price (reported in panel B) and the hazard functions at each productivity

level (panel D). The fact that the high-flexibility benchmark has such high fixed costs makes

the sticky-price firms keep their price fixed for quite a long time: the median age of a price

is 15 months in the high-flexibility benchmark, compared to six months in the low-flexibility

benchmark (Panel B). Although firms face the potential for much higher fixed costs in the

high-flexibility benchmark, in the steady-state equilibrium the main effect of these high

fixed costs is to sharply reduce the frequency of price adjustment— resources used for price

adjustment increase only modestly: 0.30% of labor is used in final goods production in the
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low-flexibility benchmark and 0.36% in the high-flexibility benchmark.

In Panel D, we observe that in the high-flexibility benchmark the hazard functions are

flat over a wider range. This follows from the high fixed costs of price adjustment: firms are

willing to tolerate larger deviations from their optimal price, given the prospect of paying

relatively large fixed costs. Another feature of Panel D in the two figures is that the vector of

steady-state relative prices is more concentrated in the high-flexibility benchmark: {1.144,

1.027, 1.027,. 1.026, 1.025, 1.024, 1.018} as opposed to {1.21, 1.06,.1.04, 1.01, .98, .95, .83}

in the low-flexibility benchmark. With a relatively transitory productivity process in the

high-flexibility benchmark, optimal prices for the sticky-price firms do not vary much across

productivity states. Therefore, high costs of adjustment lead firms to adjust infrequently. In

contrast, sticky-price firms in the low-flexibility case see infrequent changes in their optimal

prices, but the changes that do occur are large, and in combination with low costs of price

adjustment this leads to an equilibrium in which the sticky-price firms adjust their prices

frequently.

Figure 5 provides a different perspective on each model’s stationary distribution. Each

of the panels has price relative to reset price on the horizontal axis. Firms are grouped into

13 bins representing different intervals of price relative to reset price before the adjustment

decision is made. The top and bottom panels represent the low- and high-flex benchmarks,

respectively. The left-hand panels display the distribution of relative prices prior to the

adjustment decision, indicating how big an adjustment will be made if it occurs. These

panels also provide some information about the distribution of the value of adjustment —

firms whose price is close to their optimal price have a relatively small value of adjusting.

The right-hand panels display the probability of adjustment.14 Viewing the four panels

of Figure 5 together, we see that the distribution of relative prices before adjustment is

concentrated in a region where the hazard function is fairly flat. Following Caballero and

Engel (2007), these pictures suggest that the response to an aggregate shock will likely not

differ very much from what would occur in a model with fixed adjustment probabilities.

Related to Midrigan (2011), there is a relatively small mass of firms that will want to change

their price in the presence of a monetary shock, and we should, therefore, expect the economy

to exhibit a small change in the aggregate price level in response to such a shock. That is,

monetary shocks will be nonneutral.

14It is computed by taking a weighted average of the individual hazard functions from Figures 3.D and

4.D, where the weights come from the distributions in the top panels. Also, before averaging, the individual

hazards are normalized by their respective relative reset prices.
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Figure 5. Relative prices and adjustment probabilities.

Another attribute of price adjustment displayed by our two benchmark steady states is

the relationship between the size of price changes and the length of time since a price was

last adjusted. One might expect this relationship to be positive: the longer a firm waits to

adjust its price, the further its price has drifted from optimal. However, in the data there is

basically no relationship between these two elements. In our model as well as in the data, the

simplistic reasoning does not hold because variation in price duration results from variation

in productivity realizations as well as from variation in fixed costs. Figure 6 displays our

model’s implications for the relationship between size and duration of price changes. The

low-flex benchmark is graphed in panel A and the high-flex benchmark is graphed in panel

B. The time since the last price change is on the horizontal axis and the average size of

price changes made by firms that last changed their price is on the vertical axis. Figure 6

shows that the size of price changes is nearly invariant to the time elapsed since the last

price change.
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Figure 6. Duration of price and size of price change.

3.5 A nearly standard (S,s) example

Here we present the steady state for a parameterization in which the distribution of price

adjustment costs is nearly degenerate — common fixed costs across firms. This is important

both as a general robustness check and because a number of papers in the literature, most

notably Golosov and Lucas (2007) and Midrigan (2011) adopt such a specification. The

basic features of that steady state are displayed in Figures 7 and 8.

This specification also fits the price change distribution reasonably well, as shown in

Figure 7.A. The maximum fixed cost is .007 and 0.26% of labor is used in price setting.

Because there are no small costs of adjustment, there need to be more flexible-price firms

than in the low-flex benchmark (0.05 as opposed to 0.027) to match the number of small

price changes. The 0.05 fraction of flexible-price firms places this example between our

two benchmarks, though closer to the low-flex case. The productivity levels are given by

 ∈ {085 094 097 10 103 106 122}which are similar to the low-flexibility benchmark.
The vector of relative prices {118, 1030 1022 1020 1014 1017 0835}, however, shares
features of both benchmarks. The prices associated with the extreme productivity levels are

approximately the inverse of productivity as in the low-flex benchmark, but the prices asso-

ciated with the other productivity levels are closely bunched as in the high-flex benchmark.

The hazard function is also approximately flat for the first two years and the mean age of

a price change is 10.28 years, fairly close to that of the low-flex benchmark. As shown in
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Figure 7.D, the state-contingent hazards are no longer bowl shaped but have the U shape

associated with a standard (S,s) model. Finally, there is little relationship between the time

since last price change and the size of that price change as depicted in Figure 8. Thus, we

can also match the micro-price data with little dispersion in fixed costs.
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Figure 7. Steady state with common fixed costs.
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Figure 8. Duration of price and size of price change, common fixed costs.

4 Dynamics

Next we examine and compare the local linear dynamics generated by our two benchmark

specifications. First, we examine each model’s response to a random walk shock. Because the

shock has no dynamics, this case is interesting for studying the model’s internal dynamics.

Subsequently we analyze the case where the monetary shock is persistent. One aspect of

state-dependent pricing models that has received much attention is the decomposition of

price changes into components associated with fixed and varying adjustment probabilities.

Because such a decomposition will appear in our discussion of the model’s dynamics, that

decomposition needs to be made clear before proceeding to the dynamics.

4.1 Decomposing price changes

In order to better understand the role that state dependence has on the model’s dynamics,

we decompose price-level changes along the lines of Klenow and Kryvtsov (2008), Caballero
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and Engel (2007) and Costain and Nakov (2011a). Starting from the price index equation:

 1−
 =

X
=1

X
=1


1−
0+

−1X
=1

X
=1

X
=1


1−
0+

−1X
=1

X
=1

X
=1

(1−)
1−
0−

we decompose the log-linearized detrended price index (̂) into four components: (i) a time-
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where ̄ can be thought of as representing the average desired price change (though note

that ̄ is negative if the desired price change is positive):

̄ ≡
X
=1

X
=1

X
=1


¡
1−0 − 1−

¢


and ̄ is the mean deviation from steady state of adjustment probabilities:

̄ ≡
−1X
=1

X
=1

X
=1

 · ;

(iii) a selection-effect component S, which reflects the fact that adjustment decisions may
be related to the magnitude of desired price changes:

S =
µ

1

1− 

¶Ã−1X
=1

X
=1

X
=1


¡
1−0 − 1−

¢ ·  − ̄ · ̄

!
;

15In these expressions, b means percent deviation from steady state of  and  means level deviation

from steady state of .
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and finally, (iv) a shifting distribution effect D, which quantifies the contribution to the

price level of changes in the distribution of firms, holding fixed the prices they charge and

their adjustment behavior:16

D =

µ
1

1− 

¶ −1X
=1

X
=1

X
=1

¡
1−0  + 1− (1− )

¢ ·  + (19)

µ
1

1− 

¶ X
=1

X
=1

1−0 · 

In the long run, because adjustment probabilities and the distribution of firms return

to steady state, the change in the price level must be entirely accounted for by the time-

dependent component. Initially, however, there can be substantial divergence between those

paths. Caballero and Engel (2007) refer to the extensive margin effect, which corresponds

to our selection effect, as a critical barometer for determining the importance of state de-

pendence.

4.2 Low-flexibility benchmark: Random walk money shock

The shock is a permanent 1% increase in  in period zero. Money is the solid line in Panel

A of Figure 9. In response to the shock, the price level rises on impact by only about 0.10%

(Panel A). The half life of output (and the price level) is about eight months (Panel B),

which is slightly larger than the median price duration in the steady state. However, output

only gradually returns to steady state and it takes roughly 30 months for the effects of the

shock to fully dissipate. While the overall response is less than half as big as that found

in the empirical literature, it is much larger than the effect found by Golosov and Lucas

(2007) and similar to that in Costain and Nakov (2011b). The frequency of price adjustment

responds very little to the monetary shock (Panel D), which is suggestive of the findings in

Boivin, Giannoni and Mihov (2009) and Mackowiak, Moench and Wiederholt (2009) that

idiosyncratic or sectoral shocks are more important than aggregate shocks in determining

firms’ price adjustment behavior.

Panel C presents the price level decomposition described above. The state-dependent

part of price changing is indeed important: in the impact period, approximately half of the

16Costain and Nakov (2011a) decompose the behavior of inflation in their model into intensive margin

(I), extensive margin and selection components. Our time-dependent, T component is closely related to
their intensive margin, but not identical. Our T is simply the effect on the price level of changes in reset

prices, holding fixed all distributions and adjustment probabilities. In contrast, their I “leaves out” some
of that effect if changes in reset prices are correlated with (steady-state) adjustment probabilities, putting

it instead into the selection effect.
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response of the price level is accounted for by the selection effect, meaning that firms whose

adjustment decision changes in response to the shock have a different distribution of desired

price changes than the unconditional distribution. The selection effect dies out smoothly

over time, but from approximately periods five to fifteen, shifts in the distribution of firms

contribute nonnegligibly to the behavior of the price level. The extensive margin contributes

almost nothing to the behavior of the price level. As discussed in the derivation of our

decomposition, in the long run all price changes are due to the time-dependent component.
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Figure 9. IRF to random walk money shock, low-flex benchmark.

4.3 High-flexibility benchmark: Random walk money shock

Figure 10 displays the same set of impulse response functions for the high-flexibility bench-

mark. There is a larger impact effect on output, and over time, there is significantly more

nonneutrality in this case. The half life of output roughly doubles, to 16 months. Inflation

is hump-shaped, reaching its peak deviation from steady state after almost one and a half

years. There is also mild overshooting. The greater nonneutrality arises because although
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the overall degree of stickiness is the same in both model economies, the sticky price sector in

this specification is a good deal stickier. The average and median duration of the sticky-price

sector is around 38 months in the more flexible benchmark as compared with 9.5 and 7.0

months, respectively, for the less flexible benchmark model. The results are suggestive of

Carvalho (2006) and Nakamura and Steinsson (2010)’s findings that the relative stickiness

among sectors is important for generating nonneutrality. Another interesting feature that

distinguishes the two models is the length of time over which the change in distribution sig-

nificantly contributes to price level changes. After 40 months, the distribution in the more

flexible case has still not returned to steady state. This is due to the extreme stickiness in

the sticky price sector.
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Figure 10. IRF to random walk money shock, high-flex benchmark.

4.4 Low-flexibility Benchmark: persistent money growth shock

In response to a persistent money growth shock (autocorrelation of .50 at a quarterly fre-

quency), there are substantially greater effects on output (Figure 11). As in the random
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walk case, the price level does not respond much on impact and the response of output and

inflation is now hump-shaped with the peak response in inflation slightly leading that of

output. It takes almost 3 years for both variables to return to steady state. The fraction

of firms adjusting is somewhat larger than in the random walk case due to the persistent

nature of the shock, which results in the price level rising by nearly 5 times as much as it

does in the random walk case. This magnified effect on the price level induces more firms to

adjust prices in response to the shock, as their current price is now further away from where

it will optimally be reset. As in the previous case, the price level decomposition indicates

that state-dependent aspects are important for price setting. The hump shape nature of the

response is also obtained by Karadi and Reiff (2014), but their preferred specification gener-

ates a much smaller degree of nonneutrality than we find here. Note also that our responses

differ markedly from those obtained by Costain and Nakov (2011a), where the shapes of the

responses are quite similar across persistent and temporary money growth shocks. We con-

jecture that this difference is rooted in the features of their model that make the distribution

of price changes approximately invariant to inflation.
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Figure 11. IRF to persistent money shock, low-flex benchmark.
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4.5 High-flexibility benchmark: Persistent money growth shock

As in the random walk case, the more flexible specification displays an even greater degree

of nonneutrality (Figure 12). The output response is almost twice as large and again there is

oscillatory behavior. Also, there is more movement in the price distribution in this specifica-

tion. Comparing these two alternative specifications shows that different ways of matching

the economy’s distribution of price changes have distinct implications for aggregate dynam-

ics. There is no direct link between nonneutrality in the dynamics and the detailed statistics

that inform us about stickiness in the steady state — as originally shown in stark terms by

Caplin and Spulber (1987). Although Klenow and Kryvstov’s histogram and the overall

median duration of prices are derived from a large amount of data, they are insufficient to

pin down the parameters of our model. This result argues for taking a sectoral approach

when investigating the implications of steady-state price rigidities for economic behavior.

A. Money and Prices

%
 D

ev
ia

tio
n

0 10 20 30 40

0

1

2

3

4

5

6

Money
Price Lev el
Reset Price

B. Output and Inflation

%
 D

ev
ia

tio
n,

 %
 P

er
 Y

ea
r

0 10 20 30 40

-1

0

1

2

3 Output
Inf lation

C. Decomposition of Price Level Change

%
 D

ev
ia

tio
n

0 10 20 30 40

-1

0

1

2

3

4

5

6 Price Lev el
Selection
Extensiv e Margin
Distribution Shif t
Time Dependence

D. Fraction of Firms Adjusting

D
ev

ia
tio

n

0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

2.0

Figure 12. IRF to persistent money shock, high-flex benchmark.
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4.6 Decomposing the Changes in the Fraction of Firms Adjusting

Nakamura and Steinsson (2008) emphasize that simply looking at what happens to the total

fraction of firms adjusting, without separately analyzing the difference between firms that

adjust their prices upward as opposed to downward, could lead one to mistakenly downplay

the role of extensive margin adjustments. The average size of a price change () can be

decomposed into price increases and decreases:

 = ++ − −−

where + and − are the fraction of price increases and decreases, respectively, and + and

− are the average size of the price increases and decreases. Nakamura and Steinsson

(2008) find that in the data the fraction of price increases is an important component of the

average size of price changes, and as can be seen from Figure 13 this is true in both of our

benchmark models as well. Following a persistent money supply shock, many more firms

adjust their price upward than downward, and more firms adjust upward and less downward

than in steady state. Equally importantly the size of price increases is much larger than

the size of price decreases. This latter feature of pricing is present in virtually all sectors of

the U.S. economy (see Nakamura and Steinsson (2008)). Of the two benchmarks, the low-

flexibility benchmark is more in line with the evidence presented in Nakamura and Steinnson

(2008). They indicate that between 1988 and 2005 the fraction of firms raising their price

has varied between roughly 6.0% and 10.0% and the fraction lowering their price has been

in the neighborhood of 3.0%. The low-flex benchmark displays price-changing behavior that

accords well with their calculations.
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Figure 13. Positive and negative price changes.

4.7 Sensitivity

In order to examine the sensitivity of our benchmark results, we vary the model along

two independent dimensions. First, we change the specification of adjustment costs to be

approximately zero variance, and then we examine how the dynamics are altered by changing

the parameter that governs relative risk aversion.

4.7.1 Changing the specification on adjustment costs

There is a small effect on the less-flexible benchmark results if we calibrate adjustment

costs so that they are nearly identical across firms and across time (Figure 14). Recall

that this specification also matches the steady-state degree of stickiness in the KK data and

the distribution of price changes. As mentioned, there are more flexible-price firms in this

economy than in the low-flexibility benchmark. The dynamics in this economy are a bit

more persistent and show some oscillatory behavior, which is similar to what occurred in the

more-flexible benchmark model. This occurs because the sticky-price firms are somewhat

stickier (they have an average duration of price equal to 12.3 months, whereas in the low-flex
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benchmark the average duration is 9.5 months). Apparently, greater stickiness leads to some

oscillatory behavior. It is generally more costly to adjust prices in this specification, and as

a result, firms wait longer before adjusting, implying that a relatively larger mass of firms

adjust. This leads to some overshooting in adjustment fractions and the distribution of firms

displays oscillatory behavior as it converges back to steady state. Oscillations in inflation

are a natural implication.
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Figure 14. IRF to persistent money shock, common fixed cost.

4.7.2 Changing relative risk aversion

In Figure 15, we examine the dynamics of the low-flex benchmark specification with coeffi-

cients of relative risk aversion of 1 and 2. This parameter does not influence the steady state,

so all other parameters are the same as the benchmark, which sets  = .25. Recall that 

basically governs the elasticity of marginal cost with respect to output, and larger values of

 imply larger changes in marginal cost. Hence, firms adjust prices more aggressively as 

increases and the response to a monetary shock becomes less persistent. Dotsey and King
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(2005, 2006) explored alternative mechanisms, such as nonconstant elasticity of demand,

the use of intermediate inputs in production, and varying capacity utilization that produce

low elasticities of marginal cost with respect to output. Elsewhere in the New Keynesian

literature, researchers commonly adopt habit persistence in consumption and investment

adjustment costs to augment endogenous persistence in the models. We view the choice of

 = 025 as a stand-in for these types of mechanisms.
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Figure 15. IRFs, different values of 

5 Aggregation and Upward- and Downward- Sloping

Hazard Functions

A notable feature of both our benchmark cases is the wide range over which the aggregate

hazard is relatively flat or even downward-sloping, even though conditional on remaining

in the same state all hazards are upward-sloping. This feature of our model is consistent

with hazard functions estimated on micro-data underlying the Japanese CPI (see Ikeda and

Nishioka (2007)). Along any pricing spell, the hazards for most goods and services in Japan

are increasing and none are decreasing. Appropriately aggregating these various hazards

produces a downward-sloping hazard for goods and a relatively flat hazard for services. In
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order for our model to replicate the broad features of hazards in the U.S. and Japanese data,

there must be many firms with a low hazard, and the fraction of firms with a low hazard

must be increasing as we consider older and older prices (i.e., as we move out along the

hazard function). The reasoning is analogous to but more involved than that which explains

a downward-sloping aggregate hazard in a model with two types of firms with different,

constant adjustment probabilities as in Calvo. Aggregating across these two types of firms

gives a downward-sloping hazard even though the hazard rates are constant for each type.

As the age of a price increases, the fraction of firms that have not adjusted is increasingly

dominated by those with the lower hazard — implying a downward-sloping aggregate hazard

rate. In the limit, the aggregate hazard approaches that of the low hazard-type firms. In

this example, the proportion of firms with a low hazard is increasing in age over a significant

range and aggregation implies a downward-sloping hazard.

One can see this by examining panels A and C of Figure 16, where we graph the state-

specific hazards as functions of relative prices and the weights placed on firms with those

particular hazards in a model which for simplicity has only two microstates. First, examine

Figure 16.A, which gives the hazard rates for the various types of firms when shocks are

persistent. The age of a price is represented by the number of symbols one must count to

the right in order to reach the firm’s reset price (at which point the hazard is zero). For

example, the downward-sloping line with circles depicts the upward-sloping hazard (upward

in age, that is) of low-productivity firms that remain low-productivity firms, and the fourth

circle to the left of the reset price is the relative price of a firm that reset its price while in the

low productivity state four periods ago and is still in the low productivity state at that time.

The upward-sloping squares indicate the downward-sloping (age) hazards of firms that were

low productivity but switch to being high productivity. This hazard is downward-sloping

because over time inflation erodes the relative price and makes it closer to the optimal price

of resetting high-productivity firms. If there are enough of these types of firms, then the

aggregate hazard will be downward-sloping.

Thus, one needs to know the evolution of the fraction of firms over time. This evolution

is given in Figure 16.B, where again the time elapsed since prices were reset is depicted

by the distance from the reset price. The fraction of firms that transit from the low- to

high-productivity state 12 is increasing over time, eventually becoming more than half the

firms. Because these are the firms that experience a falling hazard rate and their share is

rising, the aggregate hazard is downward-sloping.

When the idiosyncratic productivity shocks are i.i.d., the downward-sloping portion of the

hazard function for the low to high transiting firms is smaller (see Figure 16.C and 16.D).

The distribution of optimal prices is much narrower, so the fraction of firms that are on
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the downward-sloping portion never gets large enough to offset the upward-sloping hazards

faced by most firms. Thus, a combination of relatively large persistence and dispersion in

productivity shocks is required in order to generate a downward-sloping aggregate hazard.

The effect that price dispersion and persistence have on the shape of the aggregate hazard

is shown in three dimensions in Figure 17. The left-hand panel analyzes the effect of changing

persistence for a dispersion of 0.156 and the right-hand panel investigates the effects of

dispersion for a shock process in which there is an 80% probability of remaining in the same

idiosyncratic state. Look first at the right-most slice of the right-hand panel; it represents the

aggregate hazard function for a model with zero dispersion of the idiosyncratic shocks — that

is, a model without idiosyncratic shocks. The hazard function is everywhere upward sloping,

as are the hazards displayed in DKW for a model without idiosyncratic shocks. With zero

dispersion all firms have the same optimal price. Constant nonzero inflation means that age

moves all firms uniformly away from their optimal price, raising the adjustment probability

for all firms. As the dispersion of idiosyncratic shocks increases (moving left along the axis

labeled “dispersion”), the successive slices become flatter, and for dispersion around 0.7, the

hazards begin to have downward-sloping portions. It is in this region that there is a large

fraction of firms transiting from low to high productivity and then letting their relative price

depreciate as described above. For very high degrees of dispersion, the hazards again become

upward-sloping. In this region reset prices vary greatly across productivity levels, so changes

in productivity inevitably involve changes in price

The left-hand plot in Figure 17 illustrates how the aggregate hazard function varies with

the idiosyncratic shock’s persistence. Without persistence, the right-most slice of the figure,

the hazard is everywhere upward-sloping. In this case, reset prices are relatively insensitive

to productivity because firms’ future productivity levels are independent of productivity

at the time they set their prices. As persistence increases, the reset prices spread apart,

creating the condition described above under which hazards may slope downward. For very

high degrees of persistence, transitions across states are rare, so that although they can lead

to decreasing hazards for certain productivity trajectories, there are too few firms with such

trajectories for the aggregate hazard to slope downward.
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Figure 16. Explaining the aggregate hazard.

Figure 17. Hazard surfaces.
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6 Summary and Conclusions

In this paper, we construct a state-dependent pricing model with idiosyncratic productivity

variation. With only small menu costs, two parameterizations of the model are capable

of matching many of the facts that have recently been uncovered concerning firms’ pricing

behavior. In particular, not only do they match the distribution of price changes, they also

match the moderate degree of stickiness, measured by average price duration. Further, the

dispersion in productivity across firms needed by the models to account for the size and

dispersion of price changes in the data does not seem overly large when looked at through

the lens of the plant productivity literature. Also, the aggregate hazard functions generated

by the benchmark models are rather flat, which is consistent with the data. This result

occurs despite the fact that conditional on productivity, all hazards are upward sloping, a

feature that appears to be consistent with micro-hazard data from the Japanese CPI and

U.S. scanner data. We are able to trace out the way that aggregation works in our model

and show that flat hazards are a feature of the dispersion and persistence of idiosyncratic

productivity shocks. Additionally, our models are consistent with the size of prices changes

and the time since the last price change being uncorrelated.

Despite the relatively high degree of steady-state price flexibility in our model, there is

moderate nonneutrality of monetary disturbances in the less flexible benchmark and signif-

icant nonneutrality in the more flexible benchmark. There is also substantial persistence

in response to shocks. From our pricing decompositions, it is clear that state-dependence

plays an important role in the way monetary shocks propagate in the model. Our analysis

also reinforces Cabellero and Engel’s (2007) suggestion that steady-state stickiness and dy-

namic persistence are not as closely related in state-dependent models as is time-dependent

models. As well, we confirm the analysis in Karadi and Reiff (2014), who indicate that

“without direct information on the menu costs or the distribution of idiosyncratic shocks,

the unconditional cross-sectional price change distribution does not identify the extent of

money non-neutrality.”
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