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Abstract

I study Los Angeles Metro Rail’s effects using panel data on bilateral commuting flows, a quan-
titative spatial model, and historically motivated quasi-experimental research designs. The
model separates transit’s commuting effects from local productivity or amenity effects, and
spatial shift-share instruments identify inelastic labor and housing supply. Metro Rail con-
nections increase commuting by 16% but do not have large effects on local productivity or
amenities. Metro Rail generates $94 million in annual benefits by 2000, or 12–25% of annual-
ized costs. Accounting for reduced congestion and slow transit adoption adds, at most, another
$200 million in annual benefits.
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1 Introduction

High commuting costs limit consumer choice and mobility within cities. Governments invest large
sums in urban rail transit infrastructure to mitigate the costs of distance and congestion. What are
the benefits of these investments, and what margins of urban economic geography do they shift?

I study the effects of Los Angeles Metro Rail on commuting, non-commuting margins, and
welfare. I assemble data on census tract-to-census tract commuting flows in 1990 and 2000 and
develop a new approach to measure the effects of transit on commuting using these flows. Iden-
tification of the commuting effect exploits bilateral and panel aspects of the data. To study the
non-commuting effects of infrastructure and quantify welfare impacts, I describe a quantitative
spatial general equilibrium model and develop a new strategy to identify its key parameters.

A panel gravity equation, which can be embedded in the model, estimates the commuting ef-
fect of transit on bilateral flows. Instead of comparing single locations, identification hinges on
selecting pairs of locations that satisfy treatment ignorability. This means comparing changes in
flows between pairs of locations that both receive treatment to changes in flows between pairs of
locations in which just one, or neither, receives treatment. I leverage unanticipated shocks to route
construction, historical streetcar routes, and proposed subway lines to limit selection concerns.1

The commuting effect is substantial: flows increase 11%–16% between connected tract pairs that
both contain stations by 2000. Tract pairs both slightly more distant from new stations see in-
creases of 8%–14%; there is no effect farther away. I also find evidence of moderate medium-run
congestion improvements by 2000 and further commuting growth of 9%–12% between previously
connected tracts by 2015. These results suggest that latent demand may not fully displace reduced
congestion in the medium run, in contrast to the Fundamental Law of Congestion (Downs 1962).

The model distinguishes the commuting effect of transit from non-commuting effects. Non-
commuting effects impact all residences or workplaces near a station, rather than just commuters
using transit-served routes. Conditional on model parameters, data on local housing and labor
prices and quantities map to tract-specific and time-varying non-commuting fundamentals (e.g.,
productivity, amenities). I then estimate the effect of transit on changes in these fundamentals with
a differences-in-differences strategy, which controls for confounding time-invariant factors (e.g.,
proximity to the coast). The commuting effect dominates; impacts from non-commuting channels
appear minimal.

The model quantifies welfare and accounts for general equilibrium adjustments. Panel data on
average wage and industry mix at place of work identify key model parameters.2 Foremost is the
local extensive-margin elasticity of labor supply to a tract, which governs how responsive agents
are to changes in prices, amenities, and commuting costs. It is also essential for translating treat-

1. See Redding and Turner (2015) for a review of this challenge and common solutions.
2. Workplace wage is often unobserved. I use panel workplace wage data to test a key identifying assumption in

Ahlfeldt et al. (2015) meant to overcome unobserved workplace wage and find that is unlikely to hold precisely.
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ment effects to welfare. Estimates indicate a low value, implying agents heterogeneous in their
preferred locations and relatively unwilling to move in response to changes in local characteris-
tics. I also interact local labor demand shocks with the spatial configuration of the city to estimate
a tract-scaled housing supply elasticity.

By 2000, LA Metro Rail generates a baseline $94 million (in 2016 dollars) in annual surplus
(12%–25% of the annualized cost) through commuting channels.3 A bootstrap 95% confidence
interval of this benefit is 2%–64% of costs. Upper bounds on additional annual benefits are $132
million from reduced congestion and $76 million from slow adjustment in commuting behavior.
Back-of-the-envelope calculations of air pollution benefits may add $100 million annually. Though
substantial, the commuting benefit alone of LA Metro Rail does not clearly exceed its cost over its
first two decades, highlighting the difficulty in shifting commuting behavior in restrictively zoned,
car-oriented cities. Had zoning allowed 10% greater residential density near transit, the benefits
of transit would have doubled.

This approach bridges the hedonic method of valuing transportation infrastructure (e.g., McMillen
and McDonald 2004) with a generalized form of the travel time-based method typical of quantita-
tive urban models (e.g., Ahlfeldt et al. 2015; Monte, Redding, and Rossi-Hansberg 2018; Tsivanidis
2018). The hedonic method gives a real estate-mediated measure of the overall effect of transit due
to both commuting and non-commuting margins, but cannot disentangle these margins nor ac-
count for general equilibrium effects.4 In contrast, quantitative urban models often only allow
transit to shift commuter market access.

Panel commuting flow data offer a substantial improvement over common practice in the lit-
erature, which relies on cross-sectional flow data to parameterize gravity models and infer market
access. The literature often interprets changes in travel times as perfectly determining changes
in commuting flows. Instead, I directly use commuting flows, which reflect travel times but also
capture any other hard-to-measure, route-specific characteristics of commute choice (e.g., pleas-
antness or reliability). The panel aspect permits the use of pair-specific fixed effects, which control
for the time-invariant components of these hard-to-measure characteristics. Moreover, commut-
ing flow data obviate the need to estimate historical travel times from modern routing engines.

Los Angeles is a populous, car-oriented region that built an extensive rail network within a
decade, so its experience may be more informative for many cities considering rail-based mass
transit than evidence from older, denser cities. It is an active line of inquiry whether new mass
transit infrastructure in less dense cities provides appreciable benefits, particularly given the newer

3. There are three important caveats. First, while I calculate the commuting effects over a 25-year window, I examine
other channels only from 1990 to 2000 due to data limitations. Second, the welfare analysis assumes that agents have
homothetic preferences. Finally, transit may benefit non-commuting travel or have environmental effects on cities as a
whole. I discuss these in Section 8.

4. Equilibrium effects (e.g., price spillovers) violate the stable unit treatment value assumption and can invalidate he-
donic analysis. Donaldson and Hornbeck (2016) highlight the importance of equilibrium adjustments when evaluating
transportation infrastructure.
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role of cities as centers of consumption (Baum-Snow, Kahn, and Voith 2005). There is a budding
line of research examining the consequences of LA Metro Rail.5

I describe the setting and data in Section 2. Section 3 discusses identification and estimation
of the commuting effect. Section 4 develops and characterizes the model. Section 5 addresses
the second empirical challenge: estimating the model’s elasticities. I describe estimating the non-
commuting effects of transit in Section 6. Section 7 reports baseline welfare analysis, and Section
8 discusses extensions and discusses broader conclusions.

2 Setting and Data: Transit in Los Angeles

Automobiles have long been a common feature of mobility in Los Angeles. Angelenos adopted
automobiles in large numbers during rapid urban growth in the 1920s, leading to early complaints
of crowded streets and attempts to relieve traffic delays (Fogelson 1967). Increasing congestion in
the 1960s and 1970s led to several failed referendums to expand rail transit. By 1980, the situation
reached a political tipping point and voters passed Proposition A—a sales tax increase to fund rail
transit. The proposed plan combined heavy rail (subway) and light rail operations in an intercon-
nected urban rail transit system. Construction on the system began in 1985 and the first light rail
line (the Blue Line) partially opened in mid-1990 (construction delays meant it did not reach its
urban termini until early 1991). The subway line faced routing difficulties and first opened in 1993.
It was expanded in 1996 and 1999 and is now run as two lines: the Red and Purple Lines. Another
light rail line initially meant to connect to the international airport (the Green Line) opened in 1995
largely in the median of a new freeway, but without reaching the airport.6

To study the effects of rail transit in Los Angeles, I develop a panel of tract-level variables
in 1990 and 2000 that covers Los Angeles County and four adjacent counties (Orange, Riverside,
San Bernardino, and Ventura). This five-county area is economically distinct from nearby conur-
bations and captures most relevant local interactions. I briefly discuss primary data sources and
processing below; additional details can be found in the Appendix.

Geo-normalization. The standard unit of observation is a census tract or tract pair using 1990
Census geography. I normalize to 1990 geography to minimize rounding errors. I areally weight
more recent geographies when crosswalking to 1990 tracts.

Commuting flow data. Tract-to-tract commuting flow data are primarily from the 1990 and
2000 Census Transportation Planning Packages (CTPP). I normalize origin-destination pairs to
1990 geography and apply consistent rounding and suppression rules to create a consistent panel.
I also use commuting flow data covering 2002 and 2015 from the Longitudinal Employer-Household
Dynamics Origin Destination Employment Statistics (LODES), normalized to 2010 geographies.

5. See, for example, Redfearn (2009), Schuetz (2015), and Schuetz, Giuliano, and Shin (2018).
6. LA Metro Rail’s line names recently changed. I use the older designations for continuity. The system continues to

grow, with 6 lines, 93 stations, and 106 miles of rail as of 2016.
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Due to methodological differences, CTPP and LODES data are not combined.
Place of residence and place of work data. Data on residential census tracts and block groups

are from the National Historic Geographic Information System (NHGIS) and GeoLytics Neighbor-
hood Change Database (NCDB). The CTPP contains tract of work wage data unavailable elsewhere
and employment by industry in 18 aggregate Standard Industrial Classification (SIC) codes. I trim
the data to exclude implausible changes between 1990 and 2000 levels.

Transit data and treatment; other data sources. I combine geodata on Metro Rail transit sta-
tions and lines from the Los Angeles County Metropolitan Transportation Authority (LACMTA)
with published information on the timing of openings. To construct labor demand shocks, I use
IPUMS microdata on all workers outside of California from the 1990 and 2000 Censuses. Panel
land use data are from the Southern California Association of Governments (SCAG).

3 Commuting Effects of LA Metro Rail

The number of commuters from residential tract i to workplace tract j at time t, denoted Nijt,
depends on residential tract characteristics, θit, workplace tract characteristics, ωjt, and trip char-
acteristics τijt. Let T denote some function of proximity to transit. Commuting is:

Nijt = Nijt

(
θit(Tit), ωjt(Tjt), τijt(Tit, Tjt)

)
. (1)

The commuting effect of transit isolates transit’s effect connecting i and j: ∂N
∂τ

∂τ
∂T . Transit can

generally shift residential or workplace characteristics as well. Comparing flows by T alone does
not differentiate commuting effects from other margins.

Panel bilateral commuting flow data can separate these margins. Bilateral data allow flexibly
controlling for residential and workplace characteristics and shocks, while temporal variation al-
lows controlling for time-invariant pair-specific characteristics. Let Tijt denote proximity to transit
at both i and j. I estimate:

ln(Nijt) = ωjt + θit + T ′ijtλ
D + x′ijtβ + d̄ij + ιsisjt + dijt, (2)

where d̄ij are pair fixed effects and dijt captures unobserved variation in commuting between
locations over time.7 Residential and workplace tract-by-year fixed effects, θit and ωjt, capture
non-commuting effects of transit.

Equation (2) is a panel gravity equation, wherein the pair fixed effects subsume distance.8

7. While the structural model interprets dijt as an unobserved utility shifter, Dingel and Tintelnot (2020) highlight
how granularity can produce measurement error.

8. Nijt = 0 for some observations, so ln(Nijt) is undefined. I estimate high-dimension fixed-effects Poisson PML
models to show robustness (Larch et al. 2019). Results are broadly consistent, as only tract pairs that are zero in one
period and non-zero in the other period can lead to differences (always-zero pairs separate out).
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These fixed effects also capture unobserved determinants of commuting flows—such as bus ser-
vice, ease of parking, pleasantness, or even workplace-residential matching—to the extent that
such features are time invariant. Some specifications use subcounty-by-subcounty-by-year fixed
effects (ιsisjt) to capture regional shifts in commuting patterns and allow flexible trends in regional
integration. In xijt, I include time-varying measures of proximity to the Century Freeway, which
opened in the mid-1990s.

Treatment, Tijt, reflects three mutually exclusive, binary definitions of proximity of both a resi-
dential and a workplace tract to LA Metro Rail stations open before the end of 19999:

i) O & D contain station: Both tracts either contain a transit station or have their centroid within
500 meters of a transit station.

ii) O & D <250m from station: Both tracts have some part within 250 meters of a transit station,
but i) is not true.

iii) O & D <500m from station: Both tracts have some part within 500 meters of a transit station,
but neither i) nor ii) is true.

3.1 Identification

Equation (2) estimates a dyadic difference-in-differences (DD) design supplemented with origin-
and destination-by-year fixed effects. Interpreting λD as the average causal effect of LA Metro Rail
on commuting flows requires assuming parallel counterfactual trends: In the absence of treatment,
commuting between treated and control tract pairs would have evolved similarly on average, con-
ditional on separable changes to residential and workplace locations. This substantially relaxes standard
DD assumptions. Time-varying origin and destination fixed effects largely control for confound-
ing factors (e.g., school quality, zoning).

While nonrandom siting of transit threatens the parallel trends assumption, origin and desti-
nation fixed effects remove concerns about where stations are placed. I limit pair-specific selection
concerns with two approaches. First, I use historical data giving the locations of a proposed sub-
way network and former streetcar lines, which embeds shocks to route placement and thus selects
pairs of tracts that share common historical trends and could have both plausibly been treated by
2000. The second approach considers only tract pairs that are both near existing or not-then-built
transit stations, comparing pairs along the same subway line with pairs that are not.

History & Shocks designs. Kelker, De Leuw & Co. (1925) designed a rail transit network to
accommodate Los Angeles’ booming population in the 1920s (the plan was shelved partly because
of skepticism of rail companies and a preference for tunneled lines).10 The plans also show former

9. For a hypothetical square tract of median area (1.38km2) with a uniformly distrbuted population, average distance
to a station for each proximity is i) 444m–888m, ii) 689m–888m, and iii) 901m–1219m; see Appendix A.4.

10. The relevant maps from Kelker, De Leuw & Co. (1925) are shown in Appendix Figure H1.
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Pacific Electric Railroad (PER) lines, an at-grade passenger rail system. I define two samples as
the union of tract pairs near LA Metro Rail by 2000 and pairs that lie near: (i) the Kelker, De Leuw
& Co. (1925) subway proposal, “1925 Subway Plan”; or (ii) PER lines, “PER Sample”. The 1925
Subway Plan itself has two variants: an “Immediate” plan meant for immediate construction, and
a plan meant to accommodate buildout (“All”). These research designs are mapped in Figure 1.

The validity of these groups as controls is supported by several lines of reasoning and evi-
dence. First, many control pairs contain one “end” (either the origin or destination) that is treated,
though the other end is not. Such control pairs compare changes in the number of commuters
residing in iwho work in j (which receives a transit linkage) to the number who work in j′ (which
does not). Similarly, workers in j who reside in i are compared with those who reside in i′. These
comparisons control for many potential unobserved motives for changing commuting behavior.

Second, control tracts selected by this approach are near historical transit corridors, as are
treated locations. Brooks and Lutz (2019) show that locations near former streetcar routes in Los
Angeles are generally on similar land use trajectories. This promotes viability of transit siting, and
land use itself can have an impact on travel behavior (Duranton and Turner 2018).

Third, there was significant variation in the timing of route construction due to reasons likely
orthogonal to transit demand. Notably, a geologic shock limited westward expansion of the
Red/Purple Line (its original routing was along Wilshire Boulevard, one of the densest corri-
dors in Los Angeles). Methane seeping into a nearby clothing store exploded in March 1985. Even
though the explosion was not related to subway construction, legislation soon restricted tunneling
along Wilshire. This corridor is served by transit in both the 1925 Subway and PER samples, and
in almost every plan since. Similarly, the Green Line’s route was built partially within an under-
construction highway to minimize construction costs. Its westward end was meant to serve Los
Angeles International Airport (LAX), but the Federal Aviation Administration’s concerns about
electromagnetic interference detoured this alignment to the south. Construction is underway on
connections between the system and the Wilshire corridor and LAX, so these shocks can be seen
as generating plausibly exogenous variation to the timing of treatment.

Routes also reflect other non-transportation concerns, such as satisfying political pressures,
ensuring political support for transit revenue allocations, and spurring political favor from com-
peting oversight agencies.11 To illustrate, politicians demanded that heavy rail serve the San Fer-
nando Valley, despite the cost and difficulty of doing so. It was also deemed necessary to connect
Long Beach to ensure access to its portion of state gas tax revenue. At one point, a particularly
serpentine route was dubbed the “wounded knee” because it touched so many local political ju-
risdictions. In sum, Elkind (2014, p. 50)’s statement that “politics, outside circumstances, and the
geography of power . . . played an outsized role in influencing where the new rail lines would go”

11. The political setting is presented in Elkind (2014), who notes that “plotting a subway through the politically de-
centralized landscape of Los Angeles meant ceding control to numerous fiefdoms of federal, state, and local politicians”
(p. 70).

7



indicates the presence of factors unrelated to travel demand in the planning process.
Finally, I provide econometric evidence. While the data do not permit testing pre-trends in

tract-pair flows, I examine pre-trends in tract-level housing and labor market characteristics using
NCDB data from 1970 to 1990.12 Among economic variables later captured in the model (columns
1–4 of Appendix Table H2), there are no significant differences in pre-trends in employed popula-
tion or household income in any sample; there is marginal evidence of pre-trends in housing val-
ues and number of households. However, the Immediate 1925 Subway Plan specification shows
no evidence of differential pre-trends in model-relevant characteristics, and so is preferred.

I also investigate differential trends in neighborhood and travel characteristics (columns 5–10
of Appendix Table H2). In some samples, residents of treated tracts were becoming less college
educated and more impoverished and were moving less often. Evidence on differences in travel
pre-trends is mixed: in two samples, the share of household with no cars was decreasing prior to
treatment. In none of the samples was the commuting share by auto differentially changing, but
in all samples the relative transit commuting share transit was increasing slightly. The Immediate
1925 Subway Plan sample shows the least evidence of pre-trends across all variables.

Recall that the fixed effects in Equation (2) render it robust to any tract-level pre-trends, whether
observable or not. While tract-level pre-trends do not impede identification of the commuting ef-
fect, they may confound the non-commuting analysis in Section 6.

Same Line designs. These designs compare tract pairs on the same line to tract pairs that lie along
different lines. This design expects that tract pairs along the same line are “more treated” than
those that are not. Parallel trends are violated if planners targeted directly connecting (by the
same line) locations that would have seen larger increases in commuting anyway relative to other
treated—but indirectly connected—locations. I consider two variants. The first includes locations
treated by 2000 and locations not yet treated in 2000 but that are treated by 2015. In this ‘Ever
Treated’ variant, treated pairs both lie near stations along the same line and control pairs both lie
near stations open by 2015 but that are not along on the same line. In the second, more stringent
variant (Treated by 2000), I restrict control pairs to those that lie near a station open by 2000.

There are two caveats regarding these designs. First, they identify the commuting effect of
transit only if it is infinitely costly to switch from one line to another (i.e., a very high transfer
penalty). Under a finite (but non-zero) transfer penalty, these designs reflect the marginal effect
of being directly connected relative to being indirectly connected. Second, these designs rely on
fewer observations and are less precise.

12. NCDB is, by default, normalized to 2010 geographies. I use the same treatment rules, but this results in higher
observation counts due to denser tracts in 2010 than 1990.
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3.2 Commuting flow estimates

Panel A of Table 1 reports estimates of λD on commuting flows between 1990 and 2000. Columns
1–3 show results from the full sample, successively adding in measures of treatment proximity,
subcounty pair-by-year fixed effects, and controls. Columns 4–6 reflect the History & Shocks
designs. Columns 7–8 report results from the Same Line designs. Clustered standard errors are
robust to correlation within tract pairs, residential tracts, and workplace tracts.

LA Metro Rail increased commuting 10%–22% between tracts nearest transit stations by 2000.
Estimates are significant across all specifications. The preferred specification (column 6) indicates
an increase of 14.9 log points (16%). Slightly fewer transit-proximate tract pairs see an effect of
8%–14%, with a preferred estimate of 12.8 log points (14%). Tract pairs at a farther distance from
stations see no significant effect.13

Several features of the results are reassuring. First, estimates are ordered by proximity. To-
gether these form a specification test: effects should concentrate near stations with little no effect
farther away. Second, as the control group becomes more targeted (and sample size decreases),
point estimates become larger (ascending from left to right). This ordering implies that control
tract pairs experience progressively less commuting growth than in the full sample. As these
designs increasingly select connections between older, more mature parts of the city, this is rea-
sonable. Finally, Same Line estimates are a bit larger than the History & Shocks estimates, but also
less precise. This suggests that proximity to directly connected stations is more important than
simply being near a transit station.14

Panel B of Table 1 extends the analysis to determine if there are additional effects from 2002–
2015 using LODES data. Because LA Metro Rail expanded during this period, I estimate a variant
of Equation (2) with two different effects: Existing connections for the additional increase between
tracts connected by stations built earlier (between 1990 and 2002), and New connections for stations
built after 2002. Existing connections experience additional commuting growth of 8%–12% by 2015
if both tracts were previously connected and 5%–10% if the tracts were a bit farther from stations.
New connections increase commuting by 10%–14% between tracts that both contain new stations
by 2015 and up to 9% for those slightly more distant from stations. While substantial, these effects
are likely smaller than for tracts connected between 1990 and 2000 because stations built between
2002 and 2015 are generally more suburban.

13. See footnote 9 for interpretation of these distance bins and robustness in Appendix Figure H6. Similar estimates
result from Poisson PML specifications; see Appendix Table H4.

14. Appendix Table H5 directly tests this. Though noisy, effects are always for locations along the same line. The
data allow further exploration in this vein. Interacted proximity bins for origin and destination tracts indicate a greater
effect of proximity at the destination than the origin, suggesting commuters respond more to closer workplace-to-
station proximity than to closer residence-to-station proximity (Appendix Table H6). Treatment does not generally
alter the extensive margin of connection, but its effect may increase slightly over time (Appendix Table H3).
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3.3 Commuting time (congestion) estimates

A common motivation for rail transit is to relieve automobile congestion. Anderson (2014) finds
that a 2003 labor strike that disrupted LA Metro Rail service increased nearby automobile conges-
tion by 47%. However, that strike lasted 35 days. It is unclear how to map that short-run response
to the long run. Duranton and Turner (2011) find no aggregate evidence that transit decreases au-
tomobile travel. This notion, called the “Fundamental Law of Congestion” (Downs 1962), suggests
that congestion improvements (and downstream benefits like air pollution) may be transitory.

I combine reported CTPP travel times with inferred travel routes to test for decreased con-
gestion due to transit.15 I map the fastest driving route between all location pairs in my sample
and calculate the share of each route (`ij∈k/`ij) that falls within five mutually exclusive distance
buffers k (omitting the share of the route more than 4km distant). I then estimate:

ln(τijt) =
∑
k

λτ,k
`ij∈k
`ij

1[t=2000] + ωjt + θit + ςij + εijt, (3)

where τijt is the average reported travel time from i to j in year t.
Table 2 shows results for two measures of travel time: log travel time across all modes and log

travel time for private cars. Results for all-mode travel times are negative but mostly insignificant;
they may reflect mode switching to transit. Car-only results, however, show clear evidence of a
reduction in travel time.16 Routes that are entirely within 250m meters of lines by 2000 see a 15.0
log point (14%) reduction in travel time. For routes lying entirely 250m–500m from lines by 2000,
travel times decrease by 18.9 log points (17%). Though not statistically different, the larger effect
slightly farther from the rail lines may indicate slower travel due to at-grade crossings. Portions
of routes that lie farther than 500m from a rail line see no change in travel times.

The estimates in columns 3–4 of Table 2 are roughly one-third those in Anderson (2014). This
suggests substantial but incomplete attenuation of congestion benefits over a period of 5–10 years,
indicating that congestion benefits of transit may not be entirely transitory. Any downstream
benefits, like improved air quality, may similarly last over longer time horizons.

4 A Model of Urban Location Choice

I turn to a quantitative urban model of residential and workplace choice to recover the non-
commuting effects of transit and translate the effects of transit to welfare. The model links local,
observable equilibrium outcomes to local, unobservable economic fundamentals (e.g., productiv-

15. The setting is comparable to Anderson (2014), though he uses a different research design and focuses primarily
on observed highway travel speeds. See Brinkman (2016) and Allen and Arkolakis (2019) for endogenous congestion.

16. Sample sizes are smaller than in Table 1 due to disclosure restrictions, which is also why the sample for private
car travel time is yet smaller. I also drop pairs for which the implied trip speed is greater than 80mph.

10



ity, amenities). The model includes a collection of N locations in a city, operationalized as census
tracts, that each contain a labor market and a housing market.17

Joint market household decision: Labor supply and housing demand

Atomistic households make consumption decisions and choose a tract of work and a tract of resi-
dence. Conditional on residential location i, households face per-unit housing costsQi and receive
amenity B̃i. Conditional on place of work j, households inelastically provide one unit of labor in
exchange for wage Wj . Given locations and prices, households make decisions over consumption
of housing and a composite good. Specifically, household o chooses location pair ij, consumption
C, and housing H to maximize Cobb-Douglas utility:

max
C,H,{ij}

Uijo = max
C,H,{ij}

νijoB̃i
δij

(
C
ζ

)ζ ( H

1− ζ

)1−ζ
s.t. C +QiH = Wj ,

where νijo is household o’s idiosyncratic preference for location pair ij. The commuting cost
between i and j is captured by δij ≥ 1. The share of household expenditures on housing is 1 − ζ.
Indirect utility conditional on location pair ij is:

vo|ij =
νijoB̃iWjQ

ζ−1
i

δij
.

Housing consumption for o conditional on ij is Hijo = (1− ζ)Wj/Qi.
I assume νijo is distributed Fréchet with scale parameter Λ̃ij = TiEjDij and shape parameter

ε > 0. The CDF of ν is thus: Fij(ν) = eTiEjDijν
−ε

. The scale parameter captures mean idiosyncratic
preference for location pair ij: Ti captures the mean utility of residing in i, Ej the mean non-
wage utility of working in j, and Dij an unobserved pair-specific shift in the utility of a particular
commute. The shape parameter governs the degree of homogeneity in preferences: For high ε,
agents view location pairs homogeneously, while for low ε, their valuations are heterogeneous.
The share of the population that chooses residential location i and place of work j under the
Fréchet assumption is:

πij =
Λ̃ij

(
δijQ

1−ζ
i

)−ε
(B̃iWj)

ε∑
r

∑
s Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε

. (4)

17. The model is similar to Ahlfeldt et al. (2015), with five differences: (i) origin-destination pairs can differ in mean
utility, which permits deriving Equation (2) from the model; (ii) a local housing efficiency parameter captures differ-
ences in local regulations and per unit housing costs; (iii) land use between housing and production is exogenously
determined; (iv) endogenous externalities are omitted (though I discuss model variants with endogenous agglomera-
tion for welfare calculations in the Appendix); and (v) the model can be written as a system of three equations log-linear
in data and fundamentals.
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Observable commuting flows are Nij = πijN̄ , where N̄ is total population.
The city can be viewed as either existing in autarky or being nested in a large, open economy.

This assumption makes little difference outside of welfare calculations (due to homothetic prefer-
ences). In an open economy, no spatial arbitrage requires that the average welfare from moving to
the city equal the reservation utility of living elsewhere, so:

E[Uijo] = Γ

(
ε− 1

ε

)
·

[∑
r

∑
s

Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)

ε

]1/ε

, (5)

where Γ(·) is the gamma function and the aggregate population N̄ is given or implicitly defined.
Under free mobility E[Uijo] = Ū and aggregate population changes to maintain Ū .

Production: Labor demand

Measure-zero firms produce a globally tradable commodity in each location j under perfect com-
petition. Firms select labor NY and land LY inputs to maximize profits under constant returns to
scale. Production is multiplicatively separable in local productivity Aj and a technology that is
identical across j: Y = AjF (NY

j , L
Y
j ). Because of the atomistic size of firms, land use decisions are

made in accordance with profit maximization despite the locally fixed quantity of land. Perfect
competition in labor markets implies that firms pay workers the marginal product of labor: Wj =

AjFN (NY
j , L

Y
j ). I assume Cobb-Douglas production technology: F (NY , LY ) = (NY )α(LY )1−α.

Inverse labor demand is given by:

Wj = αAj
(
LYj /N

Y
j

)1−α
. (6)

Housing supply

Measure-zero builders construct housing using land LH and material inputs M . A local, multi-
plicatively separable housing productivity term C̃i captures cost drivers such as geography and
regulation. Materials are readily available in all locations at the same cost, but local land supply
for housing is predetermined.18 Convexity in land pricing serves as a congestive force, driving up
prices in desirable locations until agents look elsewhere. I specify Cobb-Douglas housing produc-
tion: H = (LH)φM1−φC̃i. Developers sell housing in location i in a competitive market at unit
price Qi to maximize profit: QiH − PLi L

H − PMM . The price of construction materials PM is
exogenous and common to all locations.

Because detailed data on housing production are not available, I utilize a zero-profit condition
to develop an empirical formula for housing costs. The first-order condition for developer profits

18. This simplifies the model while maintaining fidelity to the setting. Strong zoning and the medium-run time frame
of this study may not match the temporal patterns required for land use change.
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with respect to construction materials gives:

Qi =
PM

(1− φ)C̃i

(
M

LH

)φ
. (7)

Substituting this into the developer’s profit function and enforcing zero-profit conditions gives

construction material demand,M∗ = 1−φ
φ

LHPLj
PM

, as well asQi = (PLi L
H+PMM)/((LHi )φM1−φC̃i).

Substituting in M∗ gives the cost function: Qi = Ci(P
L
i )φ, where Ci = (PM )1−φ/(1 − φ)1−φφφC̃i

captures the inverse efficiency in housing production.
The price of land, PLi , responds to changes in demand and land availability: I parameterize it

as a function of local housing density PLi = (Hi/L
H
i )ψ̃, where the parameter ψ̃ > 0 captures local

price elasticity of land with respect to density. This parameter provides a congestive force to the
model. Combining the expression for land price with Equation (7) relates housing supply, price,
and land availability:

Qi = Ci
(
Hi/L

H
i

)ψ
, (8)

where ψ = ψ̃φ. As housing productivity C̃i increases, Ci falls, so increases in housing productivity
(decreases in Ci) increase the quantity of housing supplied at any price.

Equilibrium characterization

In equilibrium, labor and housing markets clear in all locations. Labor market clearing requires
that demand equal supply locally:

NY
i =

∑
r

N̄πri. (9)

Given Cobb-Douglas preferences, housing demand is a constant fraction of the ratio of wage to
housing price. Aggregate housing demand in i is the sum of wage-rent ratios weighted by com-
muting flows, reflecting heterogeneity in income stemming from variation in wage (i.e., place of
work). Housing market clearing requires that the local housing supply equal demand:

Hi = (1− ζ)
∑
s

N̄πis
Ws

Qi
. (10)

Given model parameters {α, ε, ζ, ψ}, reservation utility Ū , vectors of land availability by use
{LY,LH}, vectors of residential fundamentals {B̃,C,T}, vectors of place of work fundamentals
{A,E}, and matrices of commuting fundamentals and costs {D, δ}, an equilibrium is referenced
by price vectors {W,Q}, commuting vector π, and scalar population measure N̄ . Existence and
uniqueness conditions are (proofs are in Appendix B):

Proposition 1. Consider the equilibrium defined by Equations (4), (6), (8), (9), (10):
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i) At least one equilibrium exists for residential tracts with strictly positive quantities of residential land
and work tracts with strictly positive quantities of land used in production.

ii) There is at most one equilibrium if

2ε(ε+ 1)(1− α)(1− ζ)

1 + ε(1− α)
− 1 ≤ 1

ψ
. (11)

Inversion

Though the model may have multiple equilibria, for a given set of parameters, there is a unique
mapping from the observed data to local fundamentals. Model parameters are estimated using
these fundamentals and the observed values of the endogenous variables in combination with
instruments to define moment conditions. B̃i and Ti enter isomorphically; let Bi = TiB̃

ε
i and

Λij = BiEjDijδ
−ε
ij .19 Local fundamentals A, C, and Λ can be expressed as unique functions of

data and parameters:

Proposition 2. Given parameters {α, ε, ζ, ψ} and observed data {W,Q,π, N̄}, a unique set of funda-
mentals {A,C,Λ} exists and is consistent with the data being an equilibrium of the model.

5 Model Identification and Estimation

Local labor and housing market elasticities provide a mapping between local fundamentals (and
interventions that shift them) and observed prices and quantities. Consistent estimates of the
elasticities are required to use observable data to learn about changes to local fundamentals and
to simulate counterfactual scenarios. I develop an identification strategy that uses panel variation
in wages at place of work, housing prices, and commuting flows, permitting the use of fixed effects
to control for unobserved, time-invariant characteristics that confound identification (for example,
location near a port, on a pleasant hillside, or in town with stringent land use regulations).20

All components of the model are expressed in the commuting flow (4), wage setting (6), and
housing price (8) equations. Denote log values in lowercase letters. Adding time subscripts, in-
cluding tract and tract-pair fixed effects (e.g., ln(Ajt) = āj+ajt), and letting nYjt be log employment
density, hit be log housing density, the g be constants, α̃ = α−1, and ζ̃ = −ε(1−ζ), these equations

19. This mapping diverges from Ahlfeldt et al. (2015). Note that the components of Λ are not uniquely identified from
the data; I use statistical arguments to separate B, E, and Dδ−ε.

20. Persistent, difficult-to-measure amenities play an anchoring role in cities (Lee and Lin 2018). Strong land use
regulation likely locks in such anchors in Southern California (Severen and Plantinga 2018).
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deliver a tractable system log-linear in data and fundamentals (see Appendix B):

Labor demand: wjt = g0t + α̃nYjt + āj + ajt (12)

Commuting: nijt = g1t + εwjt + ēj + ejt︸ ︷︷ ︸
= ωjt,

Labor supply

+ ζ̃qit + b̄i + bit︸ ︷︷ ︸
= θit,

Housing demand

+d̃ijt (13)

Housing supply: qit = g2t + ψhit + c̄i + cit (14)

Local fundamentals are potentially functions of covariates (āj + ajt = a(xjt) and so on), such
as transit proximity. Equation (13) interprets Equation (2) structurally, with fixed effects ωjt =

εwjt + ēj + ejt and θit = ζ̃qit + b̄i + bit, and utility-equivalent commuting costs such that d̃ijt =

T ′ijtλ
D + x′ijtβ + d̄ij + ιsisjt + dijt.

5.1 A general approach to identifying local elasticities

I develop a local shift-share instrument to overcome simultaneity in Equations (12)–(14). I leverage
tract-level variation in shocks to labor demand, interacting these with the distance between tracts
to create variation in local economic shocks. I focus on identification of ε (the elasticity of labor
supply) and ψ (the inverse elasticity of housing supply), as these embed information about the
local economic environment and cannot be calibrated from microdata.21

Identification requires a demand or supply shock that shifts one of Equations (12)-(14) but
is excludable from the others. I construct tract-level labor demand shocks from changes in na-
tional wage and employment levels and ex ante local employment shares by industry. Effective
variation comes from changes in wages and employment determined by ex ante local industrial
composition. These shocks are relevant if correlated with changes in local productivity (∆ajt) and
excludable if uncorrelated with changes in other local fundamentals. Under these assumptions,
labor demand shocks trace out the labor supply curve. Housing demand nearby shifts in response.
Because this downstream response will be stronger nearer the workplace origination of the shock,
I take a linear combination of labor demand shocks with weights determined by spatial decay and
commuting to map labor demand shocks to a residential tract and trace out the housing supply
curve.

Let Rq,Natt be average national wage or total national employment in industry q in year t, N q
j,0

be the number of workers in each two-digit SIC industry q in the initial year (1990) in tract j, and
Ni,0 =

∑
qN

q
j,0 the ex ante total employment in tract i. The labor demand shock sums interactions

21. I also develop moment conditions that can identify all housing and labor demand elasticities in Appendix D,
which exploit further interactions of city geography and local economic shocks.
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of changes in wages or employment with ex ante employment shares across industries:

∆zjt =
∑
q

Rq,Natt −Rq,Nat0

Rq,Nat0

·
N q
j,0

Nj,0
.

Because the demand shock embeds information on ex ante industry shares, an implicit identifica-
tion assumption is that changes in non-productivity latent variables (e.g., amenities) are uncorre-
lated with prior industry structure. To ensure that local factors do not drive national changes, I
exclude all workers in California.

5.2 The labor supply elasticity (Fréchet shape parameter)

The shape parameter ε governs the homogeneity of location preference and is an extensive-margin
labor supply elasticity that conditions on commuting and residential geography. I estimate ε using
a two-step strategy. In the first step, I recover ω̂jt from Equation (13) estimated by either a linear
model or Poisson PML. In the second step, ω̂jt is the dependent variable in the wage equation:
∆ω̂jt = ε∆wjt + ∆ejt. Instrumenting wage with the labor demand shock zjt identifies the labor
supply elasticity if:

E[∆zjt ×∆ejt] = 0, ∀j. (M-1)

Moment condition M-1 requires that the labor demand shock in a tract j be uncorrelated with
unobservable changes in factors that shift labor supply to that tract, such as workplace-specific
amenities or accessibility to tract j.22 Place of residence-by-year fixed effects (θit) control for any
changes in residential amenities that may be correlated with labor demand shocks.

Table 3 shows results using three different methods of recovering ω̂it instrumenting with the
wage variant of the labor demand shock. Columns 1–2 estimate ωit jointly using both years of data
in a log-linear panel. Columns 3–4 use a separate Poisson PML model for each year to estimate
ωit, conditioning on bilateral travel costs. Columns 5–6 jointly use both years of data, but with a
Poisson PML estimator and pair fixed effects. As such, columns 3–4 include all tract pairs with
zero flows, columns 5–6 drop tract pairs that have zeros flows in both time periods, and columns
1–2 omit tract pairs with zero flows in any years (see footnote 8).

The first stage is significant, has the right sign, and is of a reasonable magnitude across all spec-
ifications.23 Using the log-linear estimator of ω̂, estimates of ε are about 1. Unlike the commuting
analysis, zeros matter because any individual tract may have many incoming zeros. Estimates of
ε based on ω̂ from Poisson PML models vary between between 2.18 and 2.90. The inclusion of

22. Any differences in ∆dijt that apply to tract j as a whole confound ω̂jt and potentially contaminate ejt.
23. The first stage captures the transmission of national wage shocks to local wages, so a value near 1 is expected.

A robust bootstrap 95% confidence interval is [0.562, 8.856] with a median value of 2.157; see Appendix E. Appendix
Tables H7 and H8 provide specification tests from Goldsmith-Pinkham, Sorkin, and Swift (2020) that correspond to
columns 5–6 of Table 3.
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subcounty-by-year fixed effects in columns 4 and 6 identifies the effect more narrowly from sub-
regional variation. I take ε = 2.18 from Column 6 as the preferred estimate. The generally low
value of ε implies that workers are quite heterogeneous in location preferences and is roughly in
line with extensive-margin labor supply elasticities found in studies of labor markets: Falch (2010)
estimates labor supply elasticities between 1.0 and 1.9, Suárez Serrato and Zidar (2016) find values
between 0.75 and 4.2, and Albouy and Stuart (2020) recover 1.98.

M-1 is a local, rather than citywide, moment condition, and is weaker than standard applica-
tions of shift-share labor supply instruments. When a citywide labor demand shock is used to
trace out labor supply, identification requires the shock be orthogonal to non-wage determinants
of labor supply (i.e., E[∆z̄t · (∆b̄t + ∆d̄t + ∆ēt)] = 0, where ·̄ averages over locations within a city).
This suggests potential pitfalls in standard applications of shift share instruments. First, changes
in residential amenities, commuting costs, and workplace amenities must be uncorrelated with
labor demand shocks regardless of where in the city they occur. Second, changes in amenities cannot
be correlated with the labor demand shock, whereas in my design, even unobserved and time-
varying residential amenities are not confounding. Finally, in the standard design, changes in
commuting costs cannot be correlated with labor demand shocks locally or elsewhere within the
city.

The urban economic geography literature often identifies ε from a combination of modeling
assumptions and cross-sectional variation in travel time. Because I observe workplace wage, I
can test a prominent assumption. Ahlfeldt et al. (2015) select ε to rescale the variance of model-
implied wages.24 This implicitly disallows positive correlation between w and e, and requires
either (i) E[wjej ]/V[ej ] = −1/2ε or (ii) V[ej ] = 0.25 Panel C of Table 3 presents tests of (i), where
estimates of ε from Panel A are enforced to calculate ej = ω̂j − ε̂wj . Most specifications show a
negative correlation between wj and ej , as required if E[wjej ]/V[ej ] = −1/2ε. The first row of
p-values treats ε as a constant, the second as a random variable (see Appendix D for details). If
ε is fixed, most specifications reject the null hypothesis that E[wjej ]/V[ej ] = −1/2ε. However, if
uncertainty in ε is taken into account, only Columns 3 and 4 reject the null.

Supplementary results in Appendix D indicate that wages explain only a relatively small
amount of the variation in workplace fixed effects ω. Similarly, Kreindler and Miyauchi (2020)—
who also observe workplace wage—find only a modest cross-sectional relationship. Together,
these results highlight the importance of carefully considering the relationship between workplace

24. Other papers take varied, ad hoc approaches to unobserved workplace wages. For example, Monte, Redding, and
Rossi-Hansberg (2018) assume an elasticity of substitution σ, specify a trade-in-goods model to recover productivity
from cross-sectional trade flows, then assume recovered productivity is orthogonal to workplace and origin-destination
specific amenities E[aj(σ)× (ej + dij)] = 0, ∀i, j, implicitly requiring correct model specification.

25. To see this, Ahlfeldt et al. (2015) require V(ω̊j) = V(wj̄), where ω̊ = ẘj + 1
ε
ej , ẘj are model-implied wages, and

V(wj̄) is the variance of average wage across twelve districts of Berlin. Rearranging, noting that ej is mean zero, and
substituting observed wage wj for ẘj and wj̄ yields 2εE[wjej ] + V[ej ] = 0. Consider three cases: (i) if wj and ej are
negatively correlated, E[wjej ]/V[ej ] = −1/2ε; (ii) E[wjej ]⇔ V[ej ] = 0; and (iii) positive correlation wj and ej imply a
negative variance of e.
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wages and workplace amenities. While the variance assumption used to identify ε in Ahlfeldt et
al. (2015) is unlikely to hold precisely or be universally reasonable, it may not be unreasonable
where wj and ej are expected to have moderate negative correlation.

5.3 The (inverse) housing supply elasticity

A labor demand shock in one location shifts demand for housing in locations where workers
might live, and thus can be used to identify the slope of the housing supply curve. To map labor
demand shocks to residential housing shocks, I use linear combinations of shocks ∆zHDit = zt ·ϑi,
with weights ϑ that decay in travel time between locations that ever have positive commuting:

∆zHDit (ρ) =
∑
s

e−ρϑis1ňis>0∆zst∑
s e
−ρϑis1ňis>0

,

where ϑjs is the travel time between j and s, ρ is spatial decay, and ňis denotes the maximum
flow value from i to s in any year. With ρ > 0, labor demand shocks nearer a residential location
i are more important than labor demand shocks farther from i. The resulting inverse-travel time
weighted labor demand shock can be used to instrument housing density and identify ψ, the
inverse price elasticity of housing supply, under the following condition:

E[∆zHDit (ρ)×∆cit] = 0, ∀i. (M-2)

Although both elements of M-2 relate to tract i, the housing demand shock draws on labor demand
shocks from any j (including i).

M-2 requires labor demand shocks be uncorrelated with changes in (inverse) housing pro-
ductivity, ∆cit, which reflects the efficiency of housing provision. One potential concern with
Assumption A-2 is whether local zoning responds to local labor demand shocks. An alternative
version drops the most local component of the labor demand shock (from i itself):

∆zHD,ait (ρ) =
∑
s 6=i

e−ρϑis1ňis>0∆zst∑
s 6=i e

−ρϑis1ňis>0
.

This identifies housing supply if E[∆zHD,ait (ρ) × ∆cit] = 0, ∀i, which is more easily parsed as a
function of the labor demand shock itself:

kijE[∆zjt ×∆cit] = 0, ∀ i 6= j, (M-2a)

where kij = e−ρϑij1ňij>0 is a weight. Condition M-2a requires that innovations in housing effi-
ciency be uncorrelated with nearby productivity shocks.

Implementing these moment conditions requires choosing the spatial decay parameter, ρ > 0,
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governing how labor demand shocks propagate across space. I experiment with different values in
ln(ρ) ∈ [−10,−2]. I report results for ln(ρ) = −5.5, estimated in differences using the employment
instrument. Table 4 estimates the inverse housing supply elasticity in Equation 14 under M-2 (odd
columns) and M-2a (even columns). First stage estimates (panel D) are significant and negative,
indicating that a positive productivity shock decreases nearby residential density. Productivity
shocks increase per worker demand for residential floorspace, which—given restrictive zoning in
this area—either manifests as larger (likely single-family) homes or drives residential mobility to
less dense housing options.

Estimates imply supply elasticities of 0.45–0.46 without income-driven adjustment in quan-
tity (columns 1 and 2), and 0.57–0.62 when income can influence housing quantity (columns 3–
6). Columns 3 and 4 provide a specification test for Equation (8).26 Even columns exclude the
own-tract labor demand shock when aggregating the instrument (under M-2a); this permits local
housing productivity to covary with the local labor demand shock. Estimates are similar. Results
suggest that local, tract-level housing provision is inelastic from 1990 to 2000. While Saiz (2010)
finds the population-weighted housing supply elasticity in large U.S. cities is 1.75, the estimate for
the Los Angeles area is 0.63, which is very close to the results in columns 3–6 of Table 4.

6 Non-commuting Effects of Transit

Given parameters {ε, ψ, α, ζ} and data on workplace wages, residential housing prices, and com-
muting, the model delivers straightforward expressions to recover local economic fundamentals—
they are the model residuals {A,B,C,E}.27 These economic fundamentals represent economic
characteristics of a place that exist outside of a market equilibrium. In combination with market
forces, fundamentals determine equilibrium prices and the distribution of people.

Because these residuals embed information on local fundamentals, they can be used to study
the effects of policy. Consider a local intervention, T . In general, the intervention could impact
any local fundamental. I model the effect of T on fundamentals with panel data as

Ŷit = λTit + ςi + εit, (15)

where λ = {λA, λB, λC , λE} are the effects to be estimated and Ŷ = {â, b̂, ĉ, ê} are the logged
(non-commuting) fundamentals. Standard research designs can be used to identify λ (the full
sample should be used to estimate the structural elasticities, but intervention effects may use a

26. The coefficients in columns 3–4 in Table 4 should be equal in magnitude and opposite in sign. They are not
statistically different in absolute value (Panel C). A robust bootstrap 95% confidence interval is [1.008, 3.672] with a
median value of 1.608 for the results in column 6; see Appendix E for details.

27. I assume ζ = 0.65, implying that the household expenditure share on housing is 1−ζ = 0.35 and that the elasticity
of housing demand is −ε(1− ζ) = −0.76. I assume that labor’s share in production is α = 0.68.
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different sample). I use a continuous measure of tract location relative to transit stations:

Tit = Proximityd̄i =
max{0, d̄−mink{disti(MetroStationk)}}

d̄
∈ [0, 1],

where k indexes stations and d̄ is some maximum distance (either 500m or 1km). This normalizes
proximity to be one when a tract contains a station and zero if a tract is more than d̄ from a station.
I reuse the History & Shocks designs to identify λA and λB .28

Data limitations prohibit pre-trend analysis in fundamentals. However, recall the pre-trend
comparisons in Section 3 (Appendix Table H2). The Immediate 1925 Plan sample does not exhibit
differential pre-trends in model-relevant variables. However, because there are some pre-trends in
other variables, I include the 1990 levels of sociodemographic variables (income, education, and
manufacturing employment) to allow for differential trends according to initial conditions.

I find little evidence of large non-commuting effects of LA Metro Rail. Table 5 reports the es-
timated effect of changes in transit proximity between 1990 and 2000 on tract-level productivity
(panels I and II) and residential amenities (panels III and IV). I assume exogenous fundamentals
in panels I and III, but also show results from a model extension with endogenous agglomeration
effects in panels II and IV (see Appendix D). Results are similar across different values of d̄, dif-
ferent research designs, and whether or not endogenous agglomeration effects are accounted for.
The one exception is that there is some evidence of a positive residential amenity effect in the PER
sample. However, it is countered by smaller and insignificant estimates in other samples.

These results are perhaps surprising, as these margins have been the subject of considerable
research. Duranton and Turner (2012) find evidence that transit increases city-level productivity
and employment growth, while Kahn (2007) and Billings (2011) show some gentrifying effects of
transit and that transit can anchor local development. Table 5 indicates that Los Angeles does not
mirror such experience (at least by 2000) and is consistent with Schuetz (2015), who does not find
that new rail transit stations generally increase consumption amenities in California.

There are two important caveats to the results in Table 5. These results apply only to LA Metro
between 1990 and 2000; I cannot extend the non-commuting analysis to more recent years. The
network was limited in size and connectivity at this time. As the transit network has expanded,
responses that depend on scale—or are slow—could manifest in more recent years. Second, the
estimates in Table 5, while generally insignificant, are not precisely estimated zeros. For example,
the productivity estimates are all between about 0.03 and 0.05 log points. Their insignificance does
not preclude small positive effects.

Transit users may differ from those who do not use transit (Glaeser, Kahn, and Rappaport
2008; LeRoy and Sonstelie 1983); if so, transit could induce equilibrium sorting. However, Figure
2 shows that rail usage among commuters is constant across most of the income distribution. Fur-

28. I assume that λC = λE = 0 as it is unlikely that transit itself can shift either of these margins. Appendix Table
H10 tests these assumptions.
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thermore, median household income in treated tracts does not appear to diverge after treatment
(see Appendix Table H11). The lack of sorting response may be related to strict zoning and land
use regulation (e.g., Quigley and Raphael 2005).29

7 Welfare Effects by 2000

I use the model, estimated and selected parameters, and treatment status to estimate counter-
factuals and calculate welfare changes. I employ hat notation (Dekle, Eaton, and Kortum 2008),
letting X̂it = X ′it/Xit, where X ′it is a counterfactual value. An iterative algorithm recovers coun-
terfactual endogenous vectors {Ŵ, Q̂}∀i, {π̂}∀ij∈C+ (where C+ is the set of ij pairs with positive
flows) relative to their observed values in 2000 (see Appendix C for details). Alternative scenarios
are defined by adjusting fundamentals so that X̂i(j) = exp(−λXTi(j)), for X ∈ {A,B,C,D,E}.
In the scenarios I consider below, I maintain the assumption that λC = λE = 0 and enforce the
insignificance of other variables.30

The assumption of an open or closed city plays an important role. In a closed city, total popu-
lation does not adjust. This means that there are real utility gains; these gains are equalized across
the city through general equilibrium movements in prices. The model delivers a simple expres-
sion for welfare changes as a function of changes in local fundamentals and prices—a hat-notation
variant of Equation (5):

%∆ Welfare ≈ ln ˆ̄U =
1

ε
ln

(
B̂iÊjD̂ijŴ

∗ε
j Q̂

∗−ε(1−ζ)
i

π̂∗ij

)
(16)

for each ij, where X̂∗ indicates the equilibrium value of X in the counterfactual under autarky
(that is, fixing ˆ̄N = 1). Because utility is homogeneous of degree one in wage, a proportional
change in utility is equivalent to a proportional change in wage. To convert this to levels, I multiply
the proportional change in utility by the average annual wage ($31,563) and aggregate population
of workers (6.73 million) in 2000. Instead, if the city is open, its total population ˆ̄N also adjusts
so that the expected utility in the city remains Ū . Thus aggregate welfare for incumbent residents
is unchanged. Because no spatial arbitrage means Ū in an open city is unchanged in response to
changes in fundamentals, I instead report changes in total population.

Annualized costs combine two elements: (i) operating subsidies and (ii) annualized capital
expenditures. The annual operating subsidy for the rail portion of LA Metro’s operations for FY
2001–2002 is about $162 million (2016 dollars). Total system cost for lines and stations completed
by 1999 is $8.7 billion (2016 dollars). I provide several annualizations of capital expenses. LA

29. I find little evidence of zoning changes near new LA Metro Rail stations; see Appendix Table H11.
30. That is, λA = λB = 0 from Table 5, and the third element of λD corresponding to proximity iii) is also 0 (from

Table 1). Appendix Table H13 experiments with other λA and λB and reduced land use regulation.
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Metro’s borrowing terms at the time were about 6%, so the annual payment for a 30-year loan is
roughly $635 million. However, subways last for a long time, so it may be appropriate to use a
lower social discount rate. With a discount rate of 2.5% over an infinite horizon, capital expendi-
tures are $218 million per year. Combining with the operating subsidy yields an annualized cost
between $380 million and $797 million per year.

Table 6 reports the changes in aggregate welfare and population due to LA Metro Rail. Panels
A and B report baseline parameter values and estimates, respectively (column 1), as well as boot-
strap values (columns 2–3). The bootstrap procedure preserves the correlation structure across
{ε, ψ, λD ′}; see Appendix E for details. LA Metro Rail by 2000 generates an annual baseline bene-
fit of $93.6 million in 2016 USD (a 0.044% increase in welfare). In an open economy, the employed
population of the Los Angeles region is 0.088% higher with LA Metro Rail. The 95% bootstrap
confidence interval is [$11.9 million, $380.5 million] (an increase of welfare between 0.006% and
0.179%). The baseline commuting benefit of LA Metro Rail by 2000 is about 16% of an annualized
cost of $597 million; the baseline benefit most likely lies between 2% and 64% of this annualized
cost. Under the lowest assumption of the annualized costs, the baseline benefit is 25% of cost (con-
fidence interval from 3% to 100%) by 2000. Under the highest assumption, the baseline benefit is
12% of cost (confidence interval from 1% to 48%) by 2000.

A general conclusion across baseline specifications is that the commuting benefit of rail transit
in Los Angeles does not exceed its cost by 2000. Regardless of the discount rate, baseline benefits
are a bit more than half of the operating subsidy of $162 million. However, the baseline commuting
benefits do not cover the capital expenses at standard discount rates.

8 Extensions and Discussion

The baseline estimate of the benefit of LA Metro Rail in Section 7 solely reflects non-congestion
commuting benefits of roughly $100 million per year. I consider several additional margins of
benefits that the baseline analysis excludes, as there is significant uncertainty about their magni-
tude or persistence. Accounting for these margins may increase the benefit of LA Metro Rail by
up to $300 million annually, roughly in line with annualized costs. I then discuss headwinds that
may have limited the upside benefits of LA Metro Rail.

Longer-run Commuting Effects. Continued commuting growth from 2002–2015 between previ-
ously connected stations indicates that (i) aggregate commuting flows take decades to adjust to
new transit modes (i.e., habituation), and/or (ii) there are increasing returns to transit network
size. Only when assuming that this additional growth is due to habituation can we combine the
additional benefits using the same cost basis as in Section 7.31 Calculating welfare combining the
effects of Panel A and the existing connection effects of Panel B in Table 1 yields $169.2 million an-

31. If the benefit is due to network effects, the cost basis should be adjusted to reflect network expansion costs.
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nually by 2015. The increase of $75.6 million over the baseline is an upper bound estimate of the
habituation effect. Unfortunately, data limitations prevent testing for longer-run effects on non-
commuting margins.

Congestion. As discussed in Section 3.3, the Fundamental Law of Congestion suggests no long-
run effect of transit capacity on road congestion. However, Table 2 shows that measurable con-
gestion benefits persist several years after transit lines open. Implicitly assuming these congestion
benefits last in perpetuity, I combine them with a two-step gravity-based estimate of the elasticity
of commuting with respect to travel time of -0.239 (see Appendix F). The benefit of LA Metro Rail
accounting for decreased congestion from transit is $225.9 million annually by 2000 (an increase
of $132.3 million from baseline).

Air Pollution. Another benefit may be decreased air pollution from decreased congestion. Gendron-
Carrier et al. (2021) show that subways lead to a mild decrease in air pollution in highly polluted
cities. Applying their estimates to Los Angeles County, LA Metro Rail by 2000 would have led to
reductions in air pollution corresponding to 50.4 fewer infant deaths annually. As the medium-
run results travel-time savings in Table 2 are roughly one-third of those in Anderson (2014), I take
one-third of the potential avoided infant deaths as a baseline long-run estimate of 16.8 fewer in-
fant deaths. Assuming a standard value of statistical life of $6 million, this generates $101 million
annually in additional benefits.32

Agglomeration. Incorporating agglomeration changes welfare little, because the relative effects
of LA Metro Rail in any one location are not large. There are two margins to consider: At the
metropolitan level, suppose a simple agglomerative force increases productivity by 5% every-
where for each doubling of city population. Welfare is homogeneous of degree one in wage, and
wage is proportional to productivity, so productivity in an open city increases by ln(1 + 0.05 ×
0.00088) ≈ 0.0044%, about $9 million annually. The other margin is local agglomeration. Includ-
ing these forces as implemented in Ahlfeldt et al. (2015) slightly decreases the welfare generated by
LA Metro Rail (to $91.8 million), indicating that LA Metro Rail slightly decentralizes population.

8.1 Discussion: Headwinds

Some particular characteristics of LA Metro Rail and Los Angeles warrant note when interpreting
these results to draw broader conclusions. Of note are targeting and disperse commuting patterns,
zoning, costs, and federal funding.

LA Metro Rail does not connect the residences and workplaces of many commuters. Only
1%–3% of the 1990 population of Los Angeles County both lived and worked in tract pairs near
rail stations by 2000 (Appendix Table H1). Figure 3 plots the likelihood of becoming treated by ex

32. This calculation is imprecise and only meant to give a sense of magnitude. An alternative calculation using results
from Deryugina et al. (2019) indicates $13 million–$14 million annually in benefits due to decreased mortality and
hospital expenditures among local Medicare recipients.
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ante (1990) flows for pairs ij with i 6= j in the Immediate 1925 Plan sample. While the positive
relationship indicates that transit was sometimes placed where it could have a larger effect, many
high-flow pairs are not connected. Linking denser corridors (e.g., Wilshire Boulevard) would
have generated greater gains. Regardless, Los Angeles has a polycentric distribution of jobs and
residences (Redfearn 2007) that is less amenable to transit adoption. Indeed, residing close to
a transit station increases the likelihood of using LA Metro Rail by only 0.8 percentage points
without conditioning on workplace on a base of zero (Appendix Table H12).33

Land use regulations inhibit the ability of locations receiving stations to adjust building stock
(Bunten and Rolheiser 2020; Schuetz, Giuliano, and Shin 2018). Essentially no land was converted
to residential use near LA Metro Rail before 2000 (Appendix Table H11). Moreover, Proposition U,
which passed in 1986, halved allowable density throughout much of Los Angeles just before LA
Metro Rail opened. Such legislation combined with political constraints meant the “coordinated
land use and rail planning . . . died a gory death” (Elkind 2014, p. 71). Restrictive zoning likely
slowed adjustment to and adoption of LA Metro Rail; longer-run analysis may well find larger
effects. Indeed, if land use regulations had eased to permit 10% higher residential density in
census tracts that contained transit stations, LA Metro Rail’s effect would have been 44%–140%
larger without much (or any) additional expense (see Appendix Table H13).

While I take costs as given, lowering the capital and operating costs of transit would aid cost-
benefit calculations. There is a growing body of evidence that infrastructure is more costly in the
United States than elsewhere in the world and that these costs have been increasing over time
(Brooks and Liscow 2019; Levy 2016; Mehrotra, Turner, and Uribe 2019). While there is not yet a
clear consensus on solutions to these differences, if the costs of LA Metro Rail were, for example,
half of their observed levels, estimated benefits would meet or exceed costs.

Finally, capital expenditures on transit are largely funded with federal dollars in the U.S., with
states and localities making up the difference. From 1996 and 1999, 26%–45% of LACMTA’s capital
expenditures were funded with local dollars. It is therefore possible for a benefit-cost calculation
considering only local costs to be positive, which may be the relevant decision margin for local
decision makers.

There are also margins to which this paper does not speak. City-wide effects are difficult
to measure with this approach. Nor can I directly speak to benefits resulting in better transit
provision for non-commuting trips (though this margin could show up as a residential amenity,
which I do not find). This framework does not capture the benefits for non-workers. Such effects
are particularly important for equity concerns and are unfortunately understudied. Relatedly, the

33. Tsivanidis (2018) finds that Bus Rapid Transit (BRT) in Bogotá increases welfare roughly 40 times more than the
baseline effect of LA Metro Rail. Comparing commuter behavior across the two cities suggests that the difference is due
to relatively low adoption of rapid transit in Los Angeles. Before Bogotá’s BRT was built, 73% of commuters took the
bus; afterwards, the BRT had 2.2 million trips/day and 36% of commuters used it. In contrast, in Los Angeles before
Metro Rail, 5%–7% of commuters took the bus; by 2000, just 0.4% of commuters used the subway, with at most 150,000
trips/day.
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assumption of homothetic preferences may limit my ability to measure more sizable utility gains
for populations with greater transportation cost sensitivity.

9 Conclusion

I develop a method for evaluating the benefits of transit from commuting flow data and estimate
the impact of Los Angeles Metro Rail. A parsimonious model permits transparent identification
and estimation, but can still isolate commuting effects from non-commuting channels (e.g., ameni-
ties). LA Metro Rail increases commuting between the census tracts nearest to stations by 16% in
the first decade after construction, relative to control groups selected by proposed and historical
transit routes. There is some evidence that Metro Rail reduces congestion in the medium run.

The elasticity of labor supply plays a key role in the model and governs homogeneity in lo-
cation preference; its small estimated value indicates agents are relatively unwilling to relocate
and are not very responsive to changes in local conditions. Conversely, this implies that observed
responses to transit correspond to significant utility gains.

Baseline welfare estimates show positive annual benefits of LA Metro Rail to be $94 million
by 2000. These welfare benefits are smaller than the operational and capital costs of LA Metro’s
light rail and subway lines. When combined with additional congestion effects and back-of-the-
envelope calculations on the benefits of reduced air pollution, total benefits may be up to $300 mil-
lion per year more. While the estimates omit some margins (such as benefits for non-workers), re-
sults warrant a note of caution to cities—and particularly polycentric, automobile-oriented cities—
expecting rail investment to dramatically alter their commuting environment within 10 to 25 years.
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Figure 1: Map of LA Metro lines, stations, and the 1925 Plan and PER Lines

(a) 1925 Plan Sample

(b) PER Lines Sample
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Figure 2: Take-up of LA Metro Rail by commuters does not vary by income, but overall take-up of transit
(including bus) does.
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Figure 3: Tract pairs with higher ex ante commuting flows are a bit more likely to receive LA Metro Rail
by 2000, but many high commuting pairs do not.
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Table 1: Effect of transit on commuting flows by 2000 (log-linear)

Full Sample History & Shocks Same Line

(1) (2) (3) (4) (5) (6) (7) (8)

A. Commuting effects 1990–2000 (CTPP data)

O & D contain station 0.100*** 0.111*** 0.100*** 0.111** 0.145*** 0.149** 0.157* 0.201**
(0.038) (0.038) (0.038) (0.044) (0.045) (0.061) (0.089) (0.093)

O & D <250m from station 0.076* 0.056 0.090* 0.104** 0.128** 0.051 0.061
(0.046) (0.047) (0.051) (0.051) (0.065) (0.075) (0.079)

O & D <500m from station 0.001 -0.013 0.020 0.014 0.012 -0.032 0.070
(0.037) (0.036) (0.040) (0.042) (0.053) (0.067) (0.067)

N 291532 291532 291110 99480 74408 19222 8280 4496

B. Commuting effects 2002–2015 (LODES data)
New connections

O & D contain station 0.108*** 0.110*** 0.094*** 0.105*** 0.112*** 0.133***
(0.034) (0.034) (0.032) (0.033) (0.031) (0.036)

O & D <250m from station 0.038 0.038 0.022 0.035 0.046** 0.083***
(0.024) (0.024) (0.024) (0.024) (0.023) (0.027)

O & D <500m from station 0.032 0.031 0.017 0.035* 0.025 0.045*
(0.022) (0.023) (0.021) (0.020) (0.020) (0.025)

Existing connections
O & D contain station 0.091** 0.084** 0.099*** 0.098*** 0.112***

(0.038) (0.036) (0.034) (0.032) (0.030)

O & D <250m from station 0.049* 0.048* 0.059* 0.061* 0.091***
(0.027) (0.029) (0.032) (0.035) (0.029)

O & D <500m from station 0.056** 0.048* 0.043* 0.041 0.028 0.032
(0.022) (0.025) (0.025) (0.025) (0.025) (0.029)

N 1993198 1993198 1992702 514082 385278 105794

Control Group All All All PER
Full Immed. Ever Treated

‘25 Plan ‘25 Plan Treated by 2000
Standard Three-Way FEs Y Y Y Y Y Y Y Y
Subcounty Pair-×-Year FEs - - Y Y Y Y Y Y
Highway Controls - - Y Y Y Y Y Y

High-dimensional fixed effects estimates of λD with log-linear estimator; standard three-way fixed effects are tract of work-by-year, tract of
residence-by-year, and tract pair. Outcome is log commuting flow. Treatment variables are mutually exclusive. Column titles refer to design:
tracts pairs on any lines are treated in Columns (1)-(6), while only tract pairs on the same line are treated in Columns (7) and (8). Panel A uses
CTPP data and is normalized to 1990 geographies. Panel B uses LODES data normalized to 2010 geographies. Standard errors clustered by
tract pair, tract of residence, and tract of work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 2: Does transit decrease congestion?

ln(TimeAll
ijt) ln(TimeCar

ijt )

(1) (2) (3) (4)

Share of route <250m from transit line -0.079* -0.020 -0.144* -0.150*
(0.043) (0.042) (0.084) (0.085)

Share of route 250m-500m from transit line -0.051 -0.023 -0.197** -0.189**
(0.062) (0.063) (0.089) (0.093)

Share of route 500m-1km from transit line -0.036 -0.016 0.011 -0.024
(0.048) (0.047) (0.076) (0.075)

Share of route 1km-2km from transit line -0.039 -0.022 -0.052 -0.070
(0.028) (0.028) (0.057) (0.054)

Share of route 2km-4km from transit line -0.006 0.012 0.013 0.002
(0.019) (0.019) (0.032) (0.035)

N 286392 286142 89614 89432

Control Group All All All All
Standard Three-Way FEs Y Y Y Y
Subcounty Pair-×-Year FEs - Y - Y
Transit Controls Y Y Y Y
Highway Controls Y Y Y Y

High-dimensional fixed effects estimates of the changes in the share of a route near transit on
log travel time; standard three-way fixed effects are tract of work-by-year, tract of residence-by-
year, and tract pair. Average reported travel time from the CTPP reflects all modes in Columns
(1)-(2) and only automobiles in Columns (3)-(4). Times with implied speeds greater than 80mph
are excluded. Treatment variables are mutually exclusive. Highway controls are shares of a
route within 250m and 1km of the Century Freeway, and transit controls are the treatment
variables in Table 1. Standard errors clustered by tract pair, tract of residence, and tract of work
in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3: IV estimates of labor supply elasticity (ε)

∆ω̂jt

(1) (2) (3) (4) (5) (6)

A. IV Estimates of ε

∆ ln(Wjt) 1.284* 0.807 2.904** 2.373** 2.512** 2.180*
(0.698) (0.693) (1.221) (1.206) (1.094) (1.171)

B. First Stage

∆zjt 1.150*** 0.918*** 1.165*** 0.939*** 1.165*** 0.939***
(0.332) (0.333) (0.331) (0.332) (0.331) (0.332)

F-stat (CD) 48.2 27.9 50.8 29.8 50.8 29.8
F-stat (KP) 12.0 7.6 12.4 8.0 12.4 8.0

N 2432 2426 2533 2525 2533 2525

C. Ahlfeldt et al. (2015) Specification Test (H0 : E[wjej ]/V[ej ] = −1/2ε)

E[wjej ]/V[ej ] -0.313 -0.219 -0.015 0.010 -0.178 -0.165
p-value of H0, ε fixed [0.018] [0.000] [0.000] [0.000] [0.137] [0.000]
p-value of H0, ε̂ random var. [0.729] [0.455] [0.031] [0.037] [0.819] [0.605]

ω̂ estimated: Linear PPML PPML
Panel Yr-by-Yr Panel

Subcounty-×-Year FEs - Y - Y - Y

Panel instrument variable (IV) estimates of regression of ω̂jt on wit estimated in differences using wage
instrument. CD and KP refer to the Cragg-Donald and Kleibergen-Paap tests, respectively. Weighted by
1990 workplace employment. Columns 1-2 use a log-linear panel specification to estimate ωjt; columns
3-6 use PPML estimation (estimated year-by-year in columns 3-4 using distance as a gravity term and as a
panel in columns 5-6 with ij fixed effects). Place of work-by-year fixed effects (ω̂jt) estimated in the panel
in columns 1 and 3 with ij fixed effects. Panel C presents specification tests of Ahlfeldt et al. (2015), see
Section 5.2. Sample size reflects count of differenced observations. Robust standard errors in parentheses: *
p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4: IV estimates of inverse housing supply elasticity (ψ)

∆qit = ∆ ln(Qit)

(1) (2) (3) (4) (5) (6)

A. IV Estimates of ψ

∆ ln(Densityit) 2.325** 2.168***
(0.939) (0.807)

∆ ln(Hous. Cons.it) 1.762*** 1.644***
(0.533) (0.476)

∆ ln(Res. Landit) -2.082** -1.927**
(0.970) (0.945)

∆ ln(Hous. Densityit) 1.687*** 1.602***
(0.508) (0.453)

B. Housing Supply Elasticity

1/ψ 0.430** 0.461*** 0.568*** 0.608*** 0.593*** 0.624***
(0.174) (0.172) (0.172) (0.176) (0.178) (0.177)

C. Specification Test (H0 : ψHous. Cons./ψRes. Land = −1)

ψHous. Cons./ψRes. Land -0.846 -0.853 -1 -1
p-value of H0 [0.590] [0.616]

D. First Stage

∆z
HD(,a)
it (ρ) -1.397*** -1.468*** -2.398*** -2.303*** -1.945*** -2.003***

(0.525) (0.504) (0.711) (0.721) (0.588) (0.571)

F-stat (CD) 5.5 6.1 9.6 10.7 10.9 11.5
F-stat (KP) 7.1 8.5 11.3 12.4 10.9 12.3

N 2232 2232 2175 2175 2175 2175

Empl. instrument All Not i All Not i All Not i

Panel instrument variable (IV) estimates of regression of median house value on population, housing
consumption, and residential land, using ln(ρ) = −5.5 and estimated in differences using the employ-
ment instrument. Housing prices excluded if either year is top-coded. Weighted by 1990 number of
homeowners. Columns 2, 4, and 6 exclude own tract during instrument construction. CD and KP refer
to the Cragg-Donald and Kleibergen-Paap tests, respectively. Sample size reflects count of differenced
observations. Robust standard errors in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

35



Table 5: Transit and non-commuting fundamentals (other effects of transit)

∆Ŷit (Productivity and Amenities)

d̄ = 500m d̄ = 1km

(1) (2) (3) (4) (5) (6) (7) (8)

Effect on productivity
I.) λA estimated using ∆Â

Proximityi × t 0.033 0.029 0.016 0.020 0.041 0.040 0.026 0.034
(0.039) (0.039) (0.039) (0.043) (0.037) (0.038) (0.037) (0.043)

N 2509 1167 934 394 2509 1167 934 394

II.) λA estimated using ∆Â = ∆Â− µ∆ ln(Υ)

Proximityi × t 0.028 0.029 0.017 0.021 0.036 0.041 0.026 0.036
(0.038) (0.039) (0.038) (0.042) (0.036) (0.037) (0.037) (0.042)

N 2469 1167 934 394 2469 1167 934 394

Effect on residential amenity level
III.) λB estimated using ∆B̂

Proximityi × t 0.053 0.070** 0.047 0.008 0.038 0.057* 0.027 -0.027
(0.033) (0.034) (0.034) (0.036) (0.029) (0.032) (0.031) (0.035)

N 2160 994 815 343 2160 994 815 343

IV.) λB estimated using ∆B̂ = ∆B̂ − η∆ ln(Ω)

Proximityi × t 0.049 0.066** 0.043 0.007 0.034 0.054* 0.023 -0.027
(0.031) (0.032) (0.032) (0.034) (0.028) (0.030) (0.029) (0.032)

N 2153 993 814 343 2153 993 814 343

Control Group All PER Full Immed. All PER Full Immed.
‘25 Plan ‘25 Plan ‘25 Plan ‘25 Plan

Results from thirty-two regressions of transit proximity on local fundamentals. Here, the distance effect of ag-
glomeration decays at the values in Ahlfeldt et al. (2015). All regressions include tract fixed effects, subcounty-
by-year fixed effects, and controls. Controls include changes in highway proximity and 1990 levels of log
household income, share of residents with at least a high school degree, and manufacturing employment. Sam-
ple size reflects number of differenced tracts. Robust standard errors in parentheses: * p < 0.10, ** p < 0.05, ***
p < 0.01
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Table 6: Welfare estimates in 2000 (in $2016)

Bootstrapped Results

Preferred
Estimate Median 95% CI

(1) (2) (3)

A. Parameter Values
ε 2.180 2.157 [0.562, 8.856]
ψ 1.602 1.608 [1.008, 3.672]

λD, O & D contain station 0.149 0.136 [0.016, 0.257]
λD, O & D <250m from station 0.128 0.117 [0.022, 0.211]

B. Bootstrapped Welfare Change (Primary Model)
Closed Economy

Annual ∆ in welfare 0.044% 0.040% [0.006%, 0.179%]
(in $2016) $93.6 mil. $85.1 mil. [$11.9 mil., $380.5 mil.]

Open Economy
Population ∆ 0.088% 0.081% [0.008%, 0.348%]

C. Extensions ($2016) Total Addition to $93.6 mil.

Congestion† $225.9 mil. $132.3 mil.
Network Effects through 2015† $169.2 mil. $75.6 mil.
Agglomeration $91.9 mil. -$1.7 mil.
Air Pollution Mortality $194.4 mil. $100.8 mil

D. Annualized Cost ($2016)
Capital Costs

At 6% over 30 years -$635 mil.
At 5% over 50 years -$479 mil.
At 5% in perpetuity -$435 mil.
At 2.5% in perpetuity -$218 mil.

Operational subsidy in 2002 -$162 mil.

Total Cost -$380 to -$797 mil.

Op. subsidy refers to the annual operation subsidy. Other parameters are ζ = 0.65, α = 0.68,
εκ = −0.239, and λD as reported in column 6 of Table 2 (with the coefficient corresponding to
distance iii) set to 0). Bootstrap results reflect 400 wild bootstrap draws. See text and appendices
for details. †indicates an upper bound on the effect.
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A Discussion of Data

In this Appendix section, I discuss all the sources of data that this project draws from and details
relevant to sample construction. I pay particular attention to normalization. I also compare the
CTPP and LEHD LODES data sources, and explain why they are not suitable to be used together.

A.1 Sources

• Census Transportation Planning Project (CTPP)

– 1990 Urban Part II: Place of Work, Census Tract

– 1990 Urban Part III: Journey-to-Work, Census Tract

– 2000 Part 2

– 2000 Part 3

• National Historical Geographic Information System (NHGIS)

– Shapefiles, Block Group and Census Tract, 1990, 2000, and 2010

– Census, Block Group and Census Tract aggregates, 1990 and 2000

• Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statis-
tics (LODES)

– Aggregated to tract-to-tract flows, 2002 and 2015, using constant 2010 geographies

• GeoLytics Neighborhood Change Database (NCDB)

– Census aggregates in constant 2010 geographies from 1970-2000

• Los Angeles County Metropolitan Transportation Authority (LACMTA)

– Shapefiles of LA Metro stations and lines

– Opening dates for stations and lines

– Ridership data

– Kelker, De Leuw & Company (1925). I georeference this map in ArcGIS, and then pro-
cess it in R to provide geographic data to delineate the 1925 Plan and PER Line samples.

• IPUMS USA

– Microdata on employment, wage, and industry by MSA for all non-CA residents, 1980-
2000.

– Microdata on transit in the 1990 and 2000 Censuses for LA area residents.

• Southern California Association of Governments

– Land use and zoning maps: 1990, 1993, 2001, 2005.

• National Highway Planning Network
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– Shapefiles for the Century Freeway (I-105)

• Dynamap Road Network (Tele Atlas)

– Calculate travel times using ArcGIS

• HERE API

– Calculate travel times using HERE API, interfaced via HereR package in R

• Graphhopper routing engine and OpenStreetMap data

– Develop shapefiles for fastest driving routes between tracts, and intersect with buffers
around LA Metro Rail lines to determine route exposure transit.

A.2 Data construction details

Geographic normalization

Through my primary analysis (all results from 1990 and 2000, excluding the check on pre-trends),
the unit of observation is the census tract according to 1990 Census geographies. The Transporta-
tion Analysis Zones used in Southern California in the 1990 CTPP are equivalent to census tracts
from the 1990 Census that have been subdivided by municipal boundaries if they overlay multiple
jurisdictions. I merge TAZs in 1990 that cross municipal boundaries and assign them to the corre-
sponding census tract. Data from the 2000 CTPP and 2000 Census are both in 2000 geographies. I
therefore overlay shapefiles delineating 2000 geographies on 1990 census tracts to develop a cross-
walk that translates 2000 data into 1990 geographies.A.1 Where possible, I use 2000 block group
data and shapefiles to refine the crosswalk. More precisely, to create the crosswalk, I intersect the
2000 census tracts and census block group files with 1990 census tracts, and then clean to provide
a set of weights to be used in converting 2000 data to the 1990 geographies. Note that the intersec-
tion method varies according to whether summation or averaging is desired. If summing, weights
are the portion of a 2000 geography that overlays the 1990 census tract. If averaging, weights are
the portion of the 1990 census tract that is covered by a 2000 geography. In all cases, I excluded
intersected values that cover less than 0.5% of the targeted area to reduce noise (P1).A.2

To normalize 2000 flows and travel times to 1990 geographies, the crosswalk is merged twice
into the data, once by origin and once by destination (using the Stata command joinby to ensure
all combinations were made). I then collapse these data by 1990 origin-destination pairs, taking
the raw sum areal weights as the 1990 flow counts and using the areal weights to determine travel
times. Many travel times are not disclosed in the 2000 data, and are treated as missing and are
ignored. The 2000 CTPP data do not report actual counts, instead rounding to the nearest 5 (except
for 1-7, which is labeled 4). In order to treat 1990 and 2000 data similarly, I develop two approaches
that are conservative, though they throw away potentially useful variation. Both are similar, but
differ in how they treat small numbers. In approach (P2a), I divide flows by 5, and round to the

A.1. This is essentially the reverse process of the Longitudinal Tract Data Base in Logan, Xu, and Stults (2014); I bring
current data to 1990 geographies because merging tracts induces less error than (perhaps incorrectly) splitting tracts.
A.2. There are constant small realignments of census blocks (which aggregate to tracts) to account for roads, construc-
tion, lot mergers, etc. I choose the 0.5% threshold because it is unlikely that this represented a substantive change in the
census tract, but rather just a minor border adjustment.
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nearest digit. In approach (P2b), I change any flow values between 1 and 4 inclusive to be 4, and
divide by 5 and round to the nearest digit. Small digits are different in the two years: In 1990,
digits <4 have actual meaning, whereas in 2000 digits <4 can only have been created through the
areal weighting process. Both approaches accommodate these differences in a different way, and
offer different truncation points (2.5 for approach (a), and 1 for approach (b)). Approach (b) is
my preferred specification. For all flows-by-mode, I follow approach (b), as not doing so would
result in significant left-truncation. I also drop all pairs with a value of 0 in both 1990 and 2000 for
approach (b) (P4), as well as a small number of flows that failed to merge.

Labor demand shock construction

I construct wage and employment variants of the Bartik (1991) labor demand shock using Census
microdata from 1990 and 2000. I exclude all workers in California. To create measures of national
changes in labor demand, I calculate the change in wage or employment by two digit SIC industry
from 1990 to 2000. I then interact this with the 1990 employment share by industry at each census
tract of work to create a local measure of (plausibly exogenous) change in labor demand. While it
would be preferable to use 1980 employment share by industry at tract of work, I have not been
able to locate such data.

I then follow the approach described in Section 4 and interact the labor demand shock with the
distance between tracts to model how the shock dissipates into adjacent markets. Because each
tract may be joined to a different number of tracts, I weight by distance and exclude tracts that
experience zero commuting flows (P3).

Data trimming

The various processes above produce relatively standardized data that accord reasonably well
with ad hoc probes of quality. However, there are instances of extreme values that become in-
fluential observations during estimation. I experimented with a number of approaches to deal
with this: (i) doing nothing, (iia) winsorizing in levels, (iib) trimming in levels, (iiia) winsoriz-
ing in changes, and (iiib) trimming in changes, where all winsorizing and trimming takes places
at the 1st and 99th centiles. While I select (i) for all results reported in the main paper, the ex-
tended identification results for the labor demand elasticities use data cleaned according to (iiib),
likely because it reduces the number of influential observations and removes observations with
implausible-seeming characteristics from the data.

I also remove observations with top-coded data where applicable; this matters most for the
estimation of ψ and recovery of residential amenities B. If a variable was top-coded differently in
different years, I standardize the top code to the most conservative year.

Travel time, route construction, and exposure to transit

Travel times were originally calculated using Dynamap data and ArcGIS, however, I no longer
have access to that data. I also have calculated travel times using HERE’s API developer.
here.com to ensure that those numbers are reasonable (they are). In general, I use the Dynamap-
generated travel times because it was based on an older model of the street network, and thus is
more likely to match the driving environment under study (in 1990 and 2000) than HERE’s travel
times, which reflect the current street network.
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To determine which driving routes were most exposed to LA Metro Rail, I use a local instance
of Graphhopper, an open source routing engine. I provide it data from OpenStreetMap on all of
Southern California, and feed it all combinations of pairs of origins and destinations. This returns
a shapefile for each route. I intersect these routes with buffers of various distances around LA
Metro Rail lines, and assign to each buffer bin the share of the route that lies within that bin.

Construction of treatment and control groups

The Dorothy Peyton Gray Transportation Library of LACMTA hosts historical data on proposed
transit plans for the Los Angeles area, including the Kelker, De Leuw & Company (1925) plan. I
obtain high-resolution digital copies of Plates 1 and 2 of this document and georeference them in
ArcGIS using immutable landmarks and political boundaries.A.3 I then trace the proposed lines
and the existing PER lines from this map, and convert these traces into shapefiles.

To define treatment status, I spatially join shapefiles on actual LA Metro Rail stations from
LACMTA to both census tract centroids and boundaries. I define treatment in two ways:

i) O & D contain station: Both tracts either contain a transit station or have their centroid within
500 meters of a transit station.

ii) O & D <250m from station: Both tracts have some part within 250 meters of a transit station,
but i) is not true.

iii) O & D <500m from station: Both tracts have some part within 500 meters of a transit station,
but neither i) nor ii) is true.

Only stations open before the end of 1999 are considered. Appendix Figure H6 uses a single mea-
sure treatment variable that determines treatment based on various combinations of maximum
distances from centroid and perimeter to station. As expected, under very stringent definitions,
the estimated effect is large and positive. As distances increase, the estimated effect drops to zero.

All treated tracts are included in all estimates. To develop a set of control tracts, I spatially join
the shapefiles descended from the Kelker, De Leuw & Company (1925) document to the census
tract shapefiles, and keep all tracts that have boundaries within 500 meters of the tracks. This
assigns non-treated tracts to a control group for three different reasons: (i) They lie along spurs
of proposed tracks that were never built, (ii) they are near a built track but distant from a station,
or (iii) they lie slightly farther away from stations than nearby treated tracts. Previous iterations
of this paper have used alternative definitions of these control groups, but the use of a 500 meter
boundary seems to provide the closest comparison. I perform this separately for 1990 tract ge-
ographies (for the main specifications) and 2010 tract geographies (for use with the NCDB and
LEHD LODES).

A.3 CTPP vs. LODES

I draw data primarily from the CTPP. There are a number of advantages and a few disadvantages
of the CTPP over another popular source of data, the Longitudinal Employer-Household Dynamic
(LEHD) Origin-Destination Employment Statistics (LODES). The benefits of CTPP data:

A.3. Maps are available through the LACMTA library and online at https://www.metro.net/about/library/
archives/visions-studies/mass-rapid-transit-concept-maps/.
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1. In CTPP data, place of work is determined from household responses to a particular set of
census questions. The response indicates where an individual worked in the week prior
to the census, which may or may not correspond to a fixed establishment. LODES data
come from federal tax records, and so identify people as working at the address on a firm’s
tax statement. Thus for firms with several establishments, there may be clustering at the
mailing location that is not indicative of actual workplace. This is particularly true for large,
multi-establishment firms.

2. The CTPP included median and mean wage at place of work prior in the 1990 and 2000
enumerations. LODES provides only a few large bins. Accurate measures of local wage at
place of work are key to this analysis, and a novel contribution to the urban trade literature.

3. CTPP data include reported travel times. Thus, these estimates take into account congestion
and other items unobservable to route planning GIS systems that may induce measurement
error.

4. CTPP location data are accurately reported, while there is some geographic randomization
(within block group) in LODES data to preserve confidentiality.

5. The CTPP data go back to 1990, while LODES does not begin until 2002. Thus, with CTPP I
can fully capture commuting in ‘pre’ and ‘post’ periods.

Benefits of LODES data:

1. LODES data provide annual measures of commuting between locations since 2002, and the
geocoding of workplace mailing address has a higher match rate than in the CTPP.

2. The CTPP has rather odd rounding rules that induce more measurement error in low commute-
flow tract pairs. LODES has no such rounding rules (though there is geographic jittering).

3. LODES is calculated with consistent geography over time, while the CTPP is estimated using
whatever geographies are decided upon by state census and transportation entities. This
means that CTPP data must undergo geographic normalization, while LODES data do not.

There are two further disadvantages to the CTPP data: (i) Not all fields from the 1990 and 2000
CTPP are reported in the 2006/10 CTPP. Important for this paper is the lack of wage at place of
work data in 2006/10. (ii) Industry coding changed between the 1990 and 2000 census reports.

I have tried combining data sources to provide a more complete panel of commuting flows
across time. There are a number of issues with this approach, namely concern that measurement
error in flows drowns out meaningful variation in observed commuting flow changes over time.
In fact, this seems to be the case when combining the 1990 CTPP with 2002 LODES data, or the
1990 and 2000 CTPP data with more recent LODES data. Further, the lack of wage at place of
work data in LODES is a severe disadvantage. While I have experimented with alternative (fixed
effects) methods to estimate wage at place of work, measurement error swamps meaningful mea-
surement.
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A.4 Distance calculations on an idealized geography

To help interpret and contextualize the estimated coefficients on the commuting flow treatment
bins in Section 4, I describe below functions of the distances implied by the treatment bins on an
idealized geography. Real-world census tracts show a wide variety of shapes and vary in density in
ways that make such calculations on actual geography challenging. The approach below abstracts
away from from both random census tract shaping and variation in density within census tracts.

Suppose all locations on a map are covered by square tracts with an identical area A; we will
use the median tract area 1.38km2 for the calculations below. This corresponds to a square with
edges of length ` =

√
A = 1.17km. Consider a station at the origin. We can calculate the av-

erage distance to a square with vertices (starting in the SW corner of the square and proceeding
clockwise) at (a, b), (a, b+ `), (a+ `, b+ `), (a+ `, b) by using the following expectation:∫ b+`

b

∫ a+`

a

√
x2 + y2

A
dxdy

Note that this expectation is valid only under a uniform density in the square. It also uses straight-
line distance: In the presence of buildings that obstruct straight-line walking paths, this measure
will therefore understate the true distance. Denote by dε some tiny distance, positive distance to
be used as a limit for the calculations below (i.e., it will equal 0m for calculation).

Table A1 maps the treatment bins presented in Section 4 to several descriptions of minimum,
maximum, and average distance. The simple measure is Range, which is just the minimum and
maximum distances from a station to a point in a tract that falls under definition i), ii), or iii).
Under definition i), the minimum Range is just 0m and the range assumes a station located at a
vertex of the tract. The minimum Range for definitions ii) and iii) assumes the station is nearest to
the midpoint of one side of the tract, at a perpendicular distance of dε and 250m respectively. The
maximum Range assumes the station is located diagonally away from a vertex of the tract, with a
perpendicular distance of 250m and 500m

The Station at centroid measure assumes that a station is located at the centroid of the tract. The
expectation above is therefore evaluated at the given values of a and b in the table; this corresponds
to the average distance from the origin to any point in a square of area A that is centered at the
origin. If the station is a centroid, however, no tracts can fall under definition ii) or iii), because
the station is `/2 > 500m from the nearest edge.

The Minimum Average Distance and Maximum Average Distance measures instead calculate the
average distance from the station if it were as close as possible or as far as possible, respectively,
according to the expectation criteria above. For i), that means putting the station in the centroid
of the tract or at a vertex of the tract. For ii), it means placing the station just outside the midpoint
of an edge of the tract or 250m diagonally away from the vertex of the tract. For iii), it means
placing the station 250m perpendicularly away from the midpoint of an edge of the tract or 500m
diagonally away from the vertex of the tract. Numerical values of Station at centroid, Minimum
Average Distance, and Maximum Average Distance were calculated using Wolfram Alpha’s online
integral evaluator (note that analytic solutions exist).
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Table A1: Distances for different treatment bins under uniform square geography of median area

Range Station at centroid Min. Ave. Dist. Max. Ave. Dist.

Distances under i) [0m, 1655m] 444m 444m 888m
a = − `

2 a = − `
2 a = −dε

b = − `
2 b = − `

2 b = −dε
Distances under ii) (0m, 2008m) - 689m 888m

a = . a = dε a = dε
b = . b = − `

2 b = dε

Distances under iii) [250m, 2363m) - 901m 1219m
a = . a = 250m+ dε a = 250m+ dε
b = . b = − `

2 b = 250m+ dε
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B Proofs and Algebra

Proposition 1

To establish Proposition 1i (existence), I utilize a fixed point argument and homogeneity. To estab-
lish Proposition 1ii, I make use of Theorem 1ii from Allen, Arkolakis, and Li (2014) (AAL) and the
Perron-Frobenius Theorem.

Existence in a closed economy: Land use is assumed to be predetermined. Denote the set of location
pairs with positive land use for housing and production as C = {ij : LHi > 0 and LYj > 0}, and the
cardinality of C as NC . Assume that LHi > 0 ⇔

∑
s πis > 0 and LYj > 0 ⇔

∑
r πrj > 0. The model

can be entirely expressed in terms of the aggregate population N̄ , the data on land use, local fun-
damentals, travel costs, and commuting shares {LHi , LYj , Aj , B̃i, Ci, Dij , Ej , Ti, δij , πij}∀ij∈C . Note
that the commuting shares and aggregate population are endogenous; all else is given.

The commuting share from ij can be written as an implicit function of the vector of all com-
muting shares, population, exogenous variables, and models parameters: Define Tij(π; N̄):

Tij(π; N̄) =

Λij ·
Ăεj

(N̄
∑
r πrj)

ε(1−α) ·
(
N̄C̆i ·

∑
s

πisĂs

(N̄
∑
r πrs)

1−α

)−εψ(1−ζ)
1+ψ

∑
r

∑
s Λrs · Ăεs

(N̄
∑
r′ πr′s)

ε(1−α) ·
(
N̄C̆r ·

∑
s′

πrs′ Ăs′

(N̄
∑
r′ πr′s′)

1−α

)−εψ(1−ζ)
1+ψ

with Ăj = αAjL
Y
j

1−α and C̆i = (1 − ζ)C
1/ψ
i LHi

−1. An equilibrium of the model is the vector π
and aggregate population N̄ such that π is a fixed point of Tij(π; N̄) and the no spatial arbitrage
condition is satisfied. First, note that Tij(π; N̄) is homogeneous of degree zero in N̄ , so Tij(π; N̄) =
Tij(π) and the existence of commuting shares is independent of aggregate population.

Consider Tij(π). By assumption, for all ij ∈ C, we have LHi > 0, LYj > 0, and
∑

r πrj > 0
and

∑
s πis > 0. This implies that πij ≥ 0, and πij ≤ 1 because π represent shares. Stack-

ing equations, equilibrium commuting shares are a fixed point T (πFP ) = πFP . The function
T : [0, 1]NC → [0, 1]NC is continuous and maps a compact, convex set into itself. Therefore, by the
Brouwer fixed point theorem, an equilibrium vector πFP exists. In a closed economy, aggregate
population is fixed, so this establishes existence.

Existence in an open economy: In an open economy, existence of equilibrium follows from Existence
in a closed economy, but also the no spatial arbitrage that requires expected utility to be equalized
to Ū in equilibrium. Denote element ij of πFP as πij . Rewriting the no spatial arbitrage condition:

N̄ =


Ū

Γ
(
ε−1
ε

)
·

∑
r

∑
s Λrs · Ăεs

(N̄
∑
r′ πr′s)

ε(1−α) ·
(
N̄C̆r ·

∑
s′

πrs′ Ăs′

(N̄
∑
r′ πr′s′)

1−α

)−εψ(1−ζ)
1+ψ

1/ε



1

1−α
(

1+
ψ(1−ζ)

1+ψ

)
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Given πFP , existence requires that the preceding equation give a real, finite value of N̄ . This is the
case so long as ε > 1 and α 6= 1+ψ

1+ψ(2−ζ) .

Uniqueness: Consider now the set of places with the positive land use for either housing or produc-
tion, denoted J (a theorem referenced below requires that the set of possible housing locations be
the same as the set of possible production locations). Rearranging the system in Equations (4), (6),
(8), (9), and (10) into a more convenient form gives:

W
1+ε(1−α)

1−α
j Ψj = N̄−1K0j

∑
s∈J

W ε
sΨs

Ψj =
∑
r∈J

K1rjQ
−ε(1−ζ)
r

Q
−ε(1−ζ)− 1+ψ

ψ

i Φi = N̄−1K2i

∑
s∈J

W ε
sΨs

Φi =
∑
r∈J

K1isW
ε+1
s

where K0j = Ă
1/(1−α)
j , K1ij = Λij , and K2i = C̆

−1/ψ2

i are functions of predetermined parameters.
This transforms the model into the form of Equation 1 in AAL. Let G represent the matrix of

exponents on the left hand side of the above system in the order (W , Ψ, Q, Φ), and let B be the
corresponding exponents on the right hand side:

G =


1+ε(1−α)

1−α 1 0 0

0 1 0 0

0 0 −ε(1− ζ)− 1+ψ
ψ 1

0 0 0 1

 , B =


ε 1 0 0
0 0 −ε(1− ζ) 0
ε 1 0 0

ε+ 1 0 0 0


Note that G is invertible. To address uniqueness, define A = BG−1 and A+ to be the element-wise
absolute value of A. That is,

A+ =


ε[(1−α)−µ]
1+ε(1−α)

1
1+ε(1−α) 0 0

0 0 ε(1−ζ)
ε(1−ζ)+ 1+ψ

ψ

ε(1−ζ)
ε(1−ζ)+ 1+ψ

ψ
ε[(1−α)−µ]
1+ε(1−α)

1
1+ε(1−α) 0 0

(ε+1)[(1−α)−µ]
1+ε(1−α)

(ε+1)(1−α)
1+ε(1−α) 0 0


Theorem 1ii in AAL establishes that there is a unique equilibrium to the model if the spectral
radius (largest eigenvalue) of A+ is less than or equal to one. Thus, uniqueness is established
when ρ(A+) ≤ 1.

Because A+ corresponds to a strongly connected graph and is nonnegative, it is irreducible.
The Perron-Frobenius Theorem states that a nonnegative, irreducible matrix has a positive spec-
tral radius with corresponding strictly positive eigenvector. So finding a condition under which
ρ(A+) ≤ 1 is identical to determining conditions under which A+x ≤ x for x � 0. Solving the
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implied system of inequalities gives condition (11).B.1

Proposition 2

Existence: Ai is uniquely determined from:

Ai =
Wi

α

(∑
r N̄πri

LYi

)1−α

and Ci is uniquely determined from:

Ci = Q1+ψ
i

(
LHi∑

s N̄πisWs

)ψ
Define an excess demand function:

Dij(Λ) = πij −
ΛijW

ε
j

(
Q1−ζ
i

)−ε
∑

r

∑
s ΛrsW ε

s

(
Q1−ζ
r

)−ε = 0

Note that D is continuous and homogeneous of degree zero. Homogeneity implies that Λ can be
rescaled and restricted to the unit simplex: {Λ :

∑
r

∑
s Λrs = 1}. This means that D : [0, 1]N

2 →
[0, 1]N

2
. So D is a continuous function from a compact, convex set into itself; the Brouwer fixed

point theorem guarantees existence.

Uniqueness: To establish uniqueness, note that by homogeneity of degree zero, we have
∑

r

∑
sDrs(Λ) =

0. Define Mij = W ε
j

(
Q1−ζ
i

)−ε
. The Jacobian of D has diagonal elements:

−
Mij · ((

∑
r

∑
s ΛrsMrs)− ΛijMij)

(
∑

r

∑
s ΛrsMrs)

2 < 0

and off-diagonal elements
ΛijMijM{ij}′

(
∑

r

∑
s ΛrsMrs)

2 > 0

where {ij}′ refers to an origin destination pair such that i′ 6= i and/or j′ 6= j. Thus the aggregate
excess demand function exhibits gross substitution, and equilibrium is unique.B.2

B.1. To ensure the algebra is correct, I have numerically verified ρ(A+) ≤ 1 iff Equation (11) holds.
B.2. See Proposition 17.F.3 in Mas-Colell, Whinston, and Green, Microeconomic Theory (Oxford University Press, 1995).

An alternative approach could be to use weak diagonal dominance of this positive matrix (following Bayer and Tim-
mins (2005) but for weaker conditions).
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Rewriting the Model as a Three Linear Equation System

Taking logs of Equations (4), (6), and (8) gives the following cross-sectional system (where lower-
case letters represent the log counterparts of level variables):

wj = g0 + (α− 1)nYj + ln(Aj) (B-1)

nij = g1 + εwj − ε(1− ζ)qi − εδij + ln(BiEjDij) (B-2)
qi = g2 + ψhi + ln(Ci) (B-3)

where nYj = ln
(
N̄
∑

r πrj/L
Y
j

)
is log employment density and hi = ln

(
(1− ζ)N̄

∑
s πisWs/QiL

H
i

)
is log housing density. The g capture remaining constants: g0 = ln(α),

g1 = ln(N̄) − ln

(∑
r

∑
s Λrs

(
δijQ

1−ζ
r

)−ε
W ε
s

)
, and g2 = 0. Local fundamentals are potentially

functions of covariates (A = A(X) and so on) such as transit proximity.
This system can be re-expressed to more clearly represent the supply and demand linkages

and better exposit the identification strategy. First, separate the unobservables into time-varying
and time-invariant components, so that ln(Ajt) = āj + ajt, etc. Under the assumption that land
use and travel times are constant, this means making the structural assumptions:

ln(AjtL
Y
jt

1−α
) = āj + ajt (B-4)

−εδijt + ln(BitEjtDijt) = b̄i + bit + ēj + ejt + d̃ijt (B-5)

ln(CitL
H
it
−ψ

) = c̄i + cit (B-6)

where d̃ijt captures statistical measures of travel costs:B.3

d̃ijt = T ′ijtλ
D + x′ijtβ + d̄ij + ιsisjt + dijt.

Altogether, substituting into Equations (B-1) to (B-3) gives:

Labor demand in j: wjt = g0t + α̃nYjt + āj + ajt (B-7)
Labor supply to j: ωjt = εwjt + ēj + ejt (B-8)

Commuting between i and j: nijt = g1t + ωjt + θit + d̃ijt (B-9)
Housing demand in i θit = ζ̃qit + b̄i + bit (B-10)
Housing supply in i: qit = g2t + ψhit + c̄i + cet (B-11)

where α̃ = α−1, ζ̃ = −ε(1−ζ). The system resembles standard linear supply and demand models,
but for many interconnected housing and labor markets.

B.3. That is, −εδijt + ln(Dijt) = T ′ijtλ
D + x′ijtβ + d̄ij + ιsisjt + dijt.
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Welfare under ε ≤ 1 (Frechet is Multinomial Logit)

First, I show that the expression in Equation (16) has an equivalent log-sum representation. Begin
by dividing counterfactual and factual expected utilities (from Equation 5):

ˆ̄U =
E[U ′ijo]

E[Urso]
=

Γ
(
ε−1
ε

)
·
(∑

{ij} Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)1/ε

Γ
(
ε−1
ε

)
·
(∑

{rs} Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε

)1/ε
=


∑
{ij} Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε∑

{rs} Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε


1/ε

(B-12)
where {ij} = {rs} track summation sets. Substituting in Equation (4) for some particular ij into
the above twice (once for π′ij and once for πij) and taking logs gives Equation (16).

From Train (2009), the change in consumer welfare due to changes of the characteristics of the
elements in the choice set is:

E[W̄ ′]− E[W̄] =
1

µ
ln

(∑
k∈K1

eV
′
k∑

k∈K0
eVk

)
(B-13)

where here µ is the marginal utility of income.B.4 Let:

V ′k = ln

(
Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)
Vk = ln

(
Λ̃rs

(
δrsQr

1−ζ
)−ε

(B̃rWs)
ε

)
µ = ε

K0 = K1 = {ij} = {rs}

Taking logs of Equation (B-12) then delivers Equation (B-13). Note that µ = ε is natural as ε
already captures the utility effect of wage dollars. Thus the Frechet framework is identical to a
multinomial logit framework where the utility from choice ij is:

Uijo = ln

(
Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)
+ εijo

for εijo distributed iid extreme value. In fact, this is very precisely (up to interpretation of amenity
terms and trade costs) the specification often used in the discrete location choice literature (e.g.,
Bayer, Keohane, and Timmins 2009). To map interpretation of the change in consumer welfare
between the two frameworks, note:

E[W̄ ′]− E[W̄] = lnE[U ′ijo]− lnE[Uijo] = ln ˆ̄U ≈ %∆ Welfare

B.4. Thanks to Wei You for noting that (16) and a log-sum expression are interchangeable:

ˆ̄U =

(
ˆ̃Λij(

ˆ̃BiŴj)
εQ̂
−ε(1−ζ)
i

π̂ij

)1/ε

=

∑
{ij}

πij
ˆ̃Λij
(
δ̂ijQ̂

1−ζ
i

)−ε
( ˆ̃BiŴj)

ε

1/ε
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That is, welfare change is naturally expressed in relative terms (rather than monetary terms) when
used with Frechet framework. Equation F-2 only requires ε > 0, and so Equation (16) can be used
for welfare evaluation when ε ∈ (0, 1] and well as ε > 1.
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C Cost-benefit Calculations

This section details the costs of the subway built by 2000, and additional discussion and details on
back-of-the-envelope calculations of the air pollution benefit of transit.

I do not track costs since 2000, as the calculation becomes much less clear with more recent
data. To compare the costs and benefits of transportation interventions, I require annualized esti-
mates of costs to compare with the annualized welfare benefits calculated in the text. Costs consist
of two components: (i) the annualized cost of capital investment in rail, rail cars, stations, and
similar expenses, and (ii) net operating expenses (operating costs less revenues), and are simply
summed:

Total Annual Cost = Operating Subsidy + Annualized Capital Expenditure

C.1 Annualized Capital Expenditure

Cost information is from a consolidation of capital expenditures on lines built before 2000 from
fiscal budgets.C.1 After adjusting all costs to 2015 dollars, the total capital expenditure for the rail,
rolling stock, and stations built prior to 2000 is $8.7 billion. To annualized this, I assume annual
payments are made on this principal balance over a 30-year horizon with 6% interest rate (the
interest rate used for some internal calculations by LA Metro). This gives an annualized capital
cost of $634.6 million. This does not include other financing charges, the cost of planning, or some
other expenses.

However, LA Metro’s internal cost of borrowing may not be a suitable social discount rate, and
the 30-year horizon may be too short. I provide several alternative definitions: (i) 5% interest over
a 50-year horizon, (ii) 5% over an infinite horizon, and (iii) 2.5% over an infinite horizon. For (i)
and (ii), the 5% rate is roughly equal to a low-yielding municipal bonds in 2000. For (iii), the 2.5%
rate is low, roughly equal to the recent cost of borrowing, and is meant to represent a policy maker
that highly values future generation or is uncertain about future discount rates (see Weitzman
1998). Once built, subways typically remain in operation for the long run (perhaps forever).

C.2 Operating Subsidies

Like most transit systems in the United States, LA Metro has incomplete farebox recovery, mean-
ing that it subsidizes a portion of every ride. For rail in 2001, the farebox recovery ratio was about
20%. To estimate the welfare effects, I use the net subsidy: operating costs less fare revenue. Op-
erating expenses from 1999 or 2000 are unavailable, so I use operating expenses from 2001 and
2002 as a proxy. Rail (light and heavy) operations total $202.4 million in 2015 dollars, and rail fare
revenue is $40.2 million. The net subsidy is $162.2 million per year.

C.3 Air Pollution Benefits

Notation in this section is independent of anywhere else in the paper.
There is substantial uncertainty about the precise mapping of non-point sources of pollution to

health damages. For example, Anderson (2020) discusses meta-analysis that suggests that many
transportation-based pollutants generated on highways (including PM2.5) decay to background

C.1. Source: http://demographia.com/db-rubin-la-transit.pdf.
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levels over a short distance. On the other hand, both Chen and Whalley (2012) and Gendron-
Carrier et al. (2021) link citywide air pollution levels to subway openings, reflecting either further
dispersion horizons or reduced congestion spread out over a dense network of streets. A literature
in transportation science also seeks to understand the dispersion of roadway-generated pollutants,
often using atmospheric dispersion models.

I provide two methods to roughly calculate potential air pollution benefits of LA Metro Rail.
Any approach must take a stance on whether the effects are transient or expected to persist because
the Fundamental Law of Congestion argument discussed in the paper. Both methods below take
the view that there is some medium-run persistence of reduced congestion due to transit.

Note, however, that the primary benefits of both methods are in terms of reduced mortality
for at-risk (very young and old) populations, because I have been unable to find research that
provides all the links required size the effect of the morbidity channel. Additional research in the
morbidity effects of transportation-induced reductions in air pollution and health is needed, es-
pecially for the prime-age population.

Infant Mortality and Subway Openings

Subway openings in polluted cities reduce PM10 by 3.2 µg/m3 (Gendron-Carrier et al. 2021), who
also review the literature and show a roughly linear relationship of 10 infant deaths per 100,000
births per µg/m3 of PM10. Given the number of births in Los Angeles County in 2000, this corre-
sponds to a short-run effect of 50.4 fewer infant deaths annually. In Section 3.3, I find a long-run
effect of LA Metro Rail on congestion to be about one-third of the short-run effect estimated in An-
derson (2014), so I discount this effect by two-thirds. Finally, I use a standard value of statistical
life of 6,000,000 to translate avoided mortality to a dollar measure.
Formula & Details:

(A×B × C)× δ × VL

A: Subway opening reduces PM10 by 3.2 µg/m3 (Gendron-Carrier et al. 2021)

B: 10 infant deaths per 100,000 birth per µg/m3 of PM10 (Gendron-Carrier et al. 2021)

C: Number of births in Los Angeles County in 2000: 157,508 (US Natality Files)

δ: Long-run discounting: 1/3 (based on congestion results in Section 3.3)

VL: Statistical present value of life at birth: $6,000,000

Medicare-Eligible Mortality and Subway Ridership

By 2000, LA Metro Rail had roughly 150,000 weekday boardings, or about 1.1% of Los Angeles
County’s total daily trips (assuming 3.8 trips per household per day from Gendron-Carrier et al.
(2021), 2.62 people per household, and 9,500,000 residents in Los Angeles County). Assume that
all these trips would have otherwise taken place by automobile (rather than bus) and that there
is no induced demand. Given that about 55% percent of Los Angeles’ PM2.5 levels are generated
from roadway traffic, and that average PM2.5 was 20 µg/m3 in 2000, this corresponds to a 0.12
µg/m3 reduction in PM2.5. From Deryugina et al. (2019), a 1 µg/m3 increase in PM2.5 destroys
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2.99 life-years per million Medicare recipients per day (measured over a three-day period). Scal-
ing that up by the number of days in a year and a value per life-year saved of $100,000, and then
finally by the local Medicare-eligible population (approximate by those aged 65 or older), the an-
nual benefit is about $13 million for older Los Angeles County residents.

Formula & Details:

LW
D
H × PLA

×RLA ×M × YL ×
365 days

year
× VLY × (p65+ × PLA)

D: Household trips per day in 2009: 3.8 (Gendron-Carrier et al. 2021).

H : People per household in 2000 in US: 2.62.

LW : Weekday LA Metro Rail trips in 2000: 150,000

PLA: Population of Los Angeles County in 2000: 9,500,000

RLA: Fraction of overall PM2.5 emission from roadways in LA: 55% (HEI Panel on the Health
Effects of Traffic-Related Air Pollution 2010).

M : Los Angeles air pollution (PM2.5) in 2000: 20 µg/m3 (Current Air Quality and Trends in the
South Coast Air Quality Management District 2000)

YL: Life-years saved per µg/m3 reduction in PM2.5 per million medicare recipients per day: 2.99
(Deryugina et al. 2019).

VLY : Value per life-year saved: $100,000 (Deryugina et al. 2019).

p65+: Share of population 65 and older in Los Angeles in 2000: 10%
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D Model Extensions and Alternative Identification

D.1 Additional Identification Methods and Results

This section extends the approach of interacting labor demand shocks with geography to identify
the remaining (housing and labor demand) elasticities. I also discuss two modifications to the
standard identification framework: (i) endogenous land use determination (no zoning), and (ii)
the presence of agglomeration and other forces.

Residents of one location commute to many different locations for work. Workers who live in
i and work in j are sensitive to the housing demands of workers who work in j′ but also live in i.
A labor demand shock to workers ij′ can change the effective housing supply to workers ij. Thus
labor demand shocks for ij′ workers can be used to instrument changes in housing prices for ij
workers and identify the slope of housing demand. To develop an average measure of the shocks
for ij′, j′ 6= j, I employ inverse weighting as before, but exclude own tract j:

∆zHSi(−j)t(ρ) =
∑
s 6=j

e−ρϑis1ňis>0∆zst∑
s 6=j e

−ρϑis1ňis>0

Note that place of work-by-year fixed effects (ωjt) control for changes in workplace amenities. The
following moment condition identifies ζ̃ = ε(1− ζ):

E[∆zHSi(−j)t(ρ)× (∆bit + ∆dijt)] = 0, ∀ i, j′ 6= j (M-3)

This instrument varies for every commuting pair. It is generally difficult to recover estimates of
housing demand without microdata due to difficulties in quantifying housing services. Nonethe-
less, because tract pairs express more variation than individual tracts, this approach can identify
the housing demand elasticity.

Finally, workers employed at j observe the labor demand shock to j′ 6= j, and may respond by
leaving j for j′. This suggests that a labor demand shock at j′ can be used to instrument changes in
employment at j, functioning as a labor supply shock in j and identifying labor demand. But this
is reflected through residential location, rather than through location at place of work. Consider
residents in i: A positive shock to j′ entices more workers from i the closer j′ is to i, rather than
the closer j′ is to j. The following weighting uses this intuition and interacts with distance twice:

∆zLSjt (ρ) =
∑
r

 e−ρϑrj1ňrj>0∑
r e
−ρϑrj1ňrj>0

∑
s 6=j

e−ρϑsr1ňis>0∆zst∑
s 6=j e

−ρϑsr1ňis>0


The own tract labor demand shock is excluded in order to remove mechanical correlation with
local changes in productivity. The corresponding moment condition is:

E[∆zLSjt (ρ)×∆ajt)] = 0, ∀j (M-4)

This identifies the labor demand elasticity, α̃ = α− 1, and provides an alternative way to estimate
this parameter that is conceptually similar to the competing characteristics instrument of Berry,
Levinsohn, and Pakes (1995).

Because the instruments described above are all weighted averages of the labor demand shock,
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the identifying assumptions can be made more transparent. The following reframe M-1 through
M-4 in terms of a labor demand shock (note A-1 is identical to M-1):

E[∆zjt × (∆ejt + ∆dijt)] = 0, ∀ ij (A-1)
E[∆zjt ×∆cit] = 0, ∀ ij (A-2)

E[∆zj′t × (∆bit + ∆dijt)] = 0, ∀ ij′ 6= ij (A-3)
E[∆zj′t ×∆ajt] = 0, ∀ j′ 6= j (A-4)

Proposition 3. Assume A-1, A-2, A-3, and A-4 are true, ρ > 0, E[∆zjt ×∆wjt] 6= 0, housing demand is
downward sloping, and labor and housing supply are upward sloping. Then M-1, M-2, M-3, and M-4 are
satisfied and the model is identified.

Proof. Assumptions A-1 to A-4 are derived from M-1 to M-4 using the definitions of the instru-
ments. The requirement that ρ > 0 ensures variation in the labor demand shock across space. The
requirements are standard regularity conditions for identification in a system of simultaneous
equations.

It is difficult to estimate household expenditure shares or labor demand elasticities in urban
models that use aggregated data (e.g., Diamond 2016). Table D1 uses the employment variant of
∆zHSi(−j)t to instrument for housing prices to determine ε(1− ζ), the elasticity of housing demand.
The own tract can be excluded from the regression to limit concerns about the labor demand shock
driving confounding changes in amenities. Results are significant and vary between -1.00 and -
0.78. With ε = 2.18, these imply a housing expenditure share between 36% and 45% of income,
somewhat higher than microdata suggest but not unreasonable for high-cost areas.
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Table D1: IV estimates of housing demand elasticity (−ε(1− ζ))

∆nijt = ∆ ln(Nijt)

(1) (2) (3)

A. IV Estimates of −ε(1− ζ)

∆ ln(House Value) -0.782** -0.778** -1.008***
(0.378) (0.377) (0.382)

B. First Stage

∆zHSi(−j)t(ρ) 1.139*** 1.140*** 1.135***
(0.074) (0.074) (0.074)

F-stat (CD) 363.2 364.0 356.5
F-stat (KP) 239.7 240.0 236.5

N 143593 143593 141188

Sample All All not ii
Travel Time - Y -

Panel instrument variable (IV) estimates of regression of
flows on median housing values, using ln(ρ) = −5.5. Es-
timated in differences using employment instrument. CD
and KP refer to the Cragg-Donald and Kleibergen-Paap
tests, respectively. Variables are trimmed to exclude extreme
values (see text). All estimates include tract-of-work-by-
year and tract-pair fixed effects. Standard errors clustered
by tract in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

Finally, I estimate the inverse elasticity of labor demand (α−1) using demand shocks to nearby
census tracts as an instrument. Results, shown in Table D2 vary substantially. Column 2 of Table
D2 includes the own-tract demand shock, ∆zjt, as a control (recall that the instrument is ∆zLSjt (ρ)).
This permits limited spatial correlation (to the extent the observed labor demand shocks are spa-
tially correlated), and implies a slightly higher labor share of income. The measure may not be
unreasonable, particularly given the power of the first stage results (the magnitude is less inter-
pretable because of repeated aggregation across origins and destinations). Column 3 includes the
log measure of land zoned for productive uses, but this is measured poorly in the data.D.1 Simi-
larly, Column 4 indicates too large estimates.

D.1. Unlike residential land, it is difficult to classify different types of land used in production. For example, it is
unclear whether to add land used for storage. Further, the data show some unusual changes across waves.
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Table D2: IV estimates of inverse labor demand elasticity (α− 1)

∆wjt = ∆ ln(Wjt)

(1) (2) (3) (4)

A. IV Estimates of (α− 1)

∆ ln(Employment) -0.679* -0.346* -1.389
(0.382) (0.179) (1.595)

∆ ln(Prod. Land) 1.806
(2.050)

∆ ln(Emp. Density) -0.999
(0.888)

B. Specification Test (H0 : ψEmployment/ψProd. Land = −1)

ψEmployment/ψProd. Land -0.769
[·] = Pr(H0) [0.004]

C. First Stage

∆zLSjt (ρ) -15.205** -22.181*** -6.625 -8.878
(7.367) (7.747) (7.242) (7.245)

F-stat (CD) 5.4 10.6 1.0 1.9
F-stat (KP) 4.3 8.2 0.8 1.5

N 2442 2442 2385 2385

Own shock as control - Y Y Y

Panel instrument variable (IV) estimates of regression of employment, em-
ployment density and land in production, using ln(ρ) = −5.5. CD and KP
refer to the Cragg-Donald and Kleibergen-Paap tests, respectively. Vari-
ables are trimmed to exclude extreme values (see text). Columns 2-4 in-
clude the own tract labor demand shock as a control. Standard errors clus-
tered by tract in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

Reasonable estimates of α̃ and ζ̃ provide confidence in this interconnected approach to identi-
fication and serve as an informal test of overidentification. Estimation of these parameters is more
demanding than ε and ψ, both in terms of the stringency of the moment conditions and in the
amount of exogenous variation needed to avoid weak instrument problems. Overall, these results
suggest that interacting locally defined labor demand shocks with spatial structure can be used to
create broad, omnipurpose tools for identifying local price elasticities.

D.2 Extension with externalities

I also consider a model extension with production and residential externalities. I model these as
in Ahlfeldt et al. (2015), who define production and residential externalities as an inverse-distance
weighted sum of employment and residential population, respectively. This recasts endogenous
measures of productivity and amenities in terms of an exogenous fundamental, the observable
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distribution of population, and four new parameters. Specifically,

Aj = AjΥµ
j , Υj =

∑
n

eκAdjn
∑

r πrn

LYj

Bi = BiΩη
i , Ωi =

∑
n

eκBdni
∑

s πns

LHi

where I use parameters from Ahlfeldt et al. (2015) as needed.
If the parameters for the spillovers are known (of both the effects and the distance functions),

then it is not necessary to develop new identification assumptions. Instead, the following substi-
tutions can be made:

wjt − µ ln(Υjt) for wjt in the labor demand equation
θit − η ln(Ωit) for θit in the housing demand equation

Note that these equations reveal why the presence of these forces has little effect in this setting:
They are mostly captured by the fixed effects āj and b̄i.

If the spillovers are omitted from the model, additional moment conditions are required. Mo-
ment conditions presented in Assumptions A-1, A-1a, A-2, and A-2a do not change. Recall that
those assumptions identify the key parameters of interest. Moment conditions corresponding to
A-3, A-3a, and A-4 are tightened:

E[∆zLD,Rj′t ×∆ ln(BitΩitDijt)] = 0, ∀ ij′ 6= ij

E[∆zLD,Rj′t ×∆ ln(BitΩit)] = 0, ∀ i

E[∆zLD,Rj′t ×∆ ln(AjtΥjt)] = 0, ∀ j′ 6= j

For these to hold, two additional assumptions are required in addition to Assumptions A-3 (or
A-3a) and A-4:

E[∆zLD,Rj′t ×∆ ln(Ωit)] = 0, ∀ i (S-3)

E[∆zLD,Rj′t ×∆ ln(Υjt)] = 0, ∀ j′ 6= j (S-4)

If these conditions hold in addition to Assumptions A, the model is identified.
However, recall that instrument relevant requires E[∆zLD,Rjt × ∆ ln(Ajt)] 6= 0. Both Ω and Υ

depend on nearby density, so to the extent location j′ is near i or j, productivity shocks influence
density and Assumptions S-3 and S-4 are unlikely to hold in a strict sense. However, they may
hold approximately: There is significant autocorrelation in the population mass in locations from
decade to decade. While this makes separately identifying agglomeration force difficult, in the
context of the model presented here, this stickiness aids identification because much of ∆Ω and
∆Υ are captured by time-invariant tract fixed effects.

D.3 Endogenous Land Use

If land use is observed (as here) and the amount of land used in housing and production is deter-
mined by market forces, no additional assumptions need be made for identification. This is not
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true for the theoretical model or counterfactual simulations; both would need to be modified with
an additional market clearing condition to account for the additional degree of freedom.

One minor change in interpretation of parameter values must be made if land use is endoge-
nous. The assumption of congestion in the relationship between land price and residential density
can no longer be supported: PLi 6= (Hi/L

H
i )ψ̃. This is because of the price of land also depends on

the demand for land for production (and so congestion occurs through displacing employment
instead of density costs). ψ has no role in this alternate model. However, because total output
(housing) is observable, we can modify the model to derive an estimating equation very similar
to that in the main paper.

Consider the developer’s problem. Zero profits imply QiHi = PLi L
H + PMM , and the first-

order conditions deliver an expression for M under profit maximization. This results in the ex-
pression:

QiHi =
1

φ
PLi L

H

which just requires that a constant fraction of developer income be spent on land. Solving this for
PLi and substituting into Equation (6) and solving for Qi delivers the equilibrium expression:

Qi =

(
Hi

LHi

) φ
1−φ

Ci

where Ci = 1−φ
φ2 PM C̃

1/(φ−1)
i contains the same elements as Ci. In fact, the estimating equation

based on the above expression is isomorphic to that in the main text. Here, however, we identify
φ

1−φ instead of ψ. Note that under this interpretation, φ (the share of land in construction costs) is
between 0.54 and 0.66. This is higher than a relatively standard value of 0.25 from Combes, Du-
ranton, and Gobillon (2012), Epple, Gordon, and Sieg (2010), and Ahlfeldt et al. (2015). However,
in Southern California land value anecdotally makes up high share of transacted real estate value.
Alternatively, this could be seen as evidence in favor in immutable zoning.

As a quick aside, to complete the theoretical model, it is necessary to specify a land market
clearing condition. I assume that the total land in a tract available for any use is fixed at L̄i;
market clearing then requires LHi + LYi = L̄i.D.2 This condition can be rewritten (using Equation
4):

Hi

(
Ci
Qi

) 1−φ
φ

+NY
i

(
Wi

αAi

) 1
1−α

= L̄i

This equation, in conjunction with the model in the main text, is sufficient to pin down land use.D.3

D.2. Note that this implies ∆LYit = −∆LHit .
D.3. Note that we can also rewrite this market clearing condition as an analytic expression of the observable prices,
quantities, parameters, and the unobservable price of land:

φQiHi
PLi

+NY
i

(
(1− α)WiN

Y
i

αPLi

) 1
α

= L̄i

The price and land can be be calculated from this expression.
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D.4 Agglomeration and Endogenous Land Use

Because endogenous land use did not alter identification, identification with both agglomeration
and endogenous land use requires the same assumptions as for the case with agglomeration: As-
sumptions S-3 and S-4 in addition to Assumptions A.

D.5 Specification Tests Using Workplace Wage

I provide a test of the identifying assumption of ε in Ahlfeldt et al. (2015) in Panel C of Table 3 of
the main paper. Using ρ in this subsection to denote E[wjej ]/V[ej ], I estimate by OLS:

wj = ρêj + uj (1)

using year 2000 data and êj = ω̂j − ε̂wj , where ω̂ and ε̂ correspond to the estimation method and
results presented in Panels A and B of Table 3. Identification in Ahlfeldt et al. (2015) requires a
weakly negative correlation, which is partially supported by my results.

To test whether E[wjej ]/V[ej ] = −1/2ε, I offer two approaches. The first ignores uncer-
tainty around estimates ε, recognizing that my IV estimates are somewhat imprecise and that
other approaches may give much more precise parameter estimates. The p-value is simply a
test of the linear restriction ρ = −1/2ε. That the null is rejected in most columns indicates that
E[wjej ]/V[ej ] = −1/2ε is unlikely to hold precisely.

The second approaches estimates a system by GMM. First, I estimate êj = ω̂j − ε̂wj enforcing
the IV point estimates of ε in Panel A of Table 3. Then I jointly estimate

∆ω̂jt = ε∆wjt + ∆ejt (2)
wj = ρêj + uj (3)

via system GMM, where I assume:

E[∆zjt ×∆ejt] = 0 (4)
E[êj × uj ] = 0 (5)

and test the non-linear restriction that: ρ = −1/2ε. This test has less power, and accordingly fails to
reject the null in four out of the six columns presented in Table 3. Interestingly, the null is rejected
in precisely the cases where correlation between wj and ej is weakly negative or even positive,
according with the statistical argument in Section 5 of the main paper.

I also provide a comparison of ω and w in order to maintain comparability with Kreindler and
Miyauchi (2020). Panel A of Figure D1 plots ω̂j as recorded by the destination fixed effects (and
which is equal to εwj + ej) against wj using data from Greater Los Angeles in 1990. If E[wjej ] = 0,
then wages and labor supply are not simultaneously determined, and then the slope in Panel A of
Figure D1 (0.17) is equal to ε. If E[e2

j ] = 0, this figure would reveal a one-to-one mapping between
ωj and wj . Instead, ωj is more closely related to workplace employment levels (Panel B of Figure
D1), highlighting the severity of simultaneity when wage is unobserved.

Importantly, note the difference in scale between the variation in ω and in w, and the rela-
tively low R-squared. This suggests that, non-wage workplace amenities play a first-order role in
determining the distribution of workplace population.
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Figure D1: Does ω = εw, and if not, what is it capturing?
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E Counterfactual Estimation & Bootstrap Procedure

E.1 Counterfactual Estimation

First, note that the following hold:

Ŵi = Âi
ˆ̄Nα−1

(∑
r πriπ̂ri∑
r πri

)α−1

(E1)

Q̂i = Ĉ
1/(1+ψ)
i

(
ˆ̄N
∑

s πisπ̂isWsŴs∑
s πisWs

)ψ/(1+ψ)

(E2)

π̂ij =
B̂iÊjD̂ijŴ

ε
j Q̂
−ε(1−ζ)
i∑

r

∑
s πrsB̂rÊsD̂rsŴ ε

s Q̂
−ε(1−ζ)
r

(E3)

where ˆ̄N = 1 in a closed economy. In the case of the open economy, aggregate population can
adjust, ensuring no arbitrage between the city and outside locations. To account for this, define:

ˆ̄N =

∑
r

∑
s

πrsB̂rD̂rs

(
Âs

(∑
r′ πr′sπ̂r′s∑
r′ πr′s

)α−1
)ε
×

Ĉr ·

∑

s′ πrs′ π̂rs′Ws′Âs′
(∑

r′ πr′sπ̂r′s∑
r′ πr′s

)α−1∑
s′ πrs′Ws′


ψ

−ε(1−ζ)

1+ψ


1+ψ

ε[(1+ψ)−α(1+ζψ)]

Simulating counterfactuals

An equilibrium is a fixed point in wages, housing prices, and commuting flows (in a closed econ-
omy). I use the algorithm below with an adaptive updating weight to find a new equilibrium after
a shock. I first simulate the closed economy counterfactual, then use that solution as the initial for
the open economy counterfactual, if required:

1. Make an initial guess of wages and housing prices: {Ŵ (0)
i }, {Q̂

(0)
i }. It is useful to set these

equal to 1. Set the initial updating weight ξ(0) ∈ (0, 1) (typically I use 0.8).

2. Calculate {π̂(0)
ij } using {Ŵ (0)

i }, {Q̂
(0)
i }, and {πij}.

3. Main Loop:

(a) Calculate {Q̂(temp)
i } using {Ŵ (t−1)

i }, {Wi}, {π̂(t−1)
ij }, and {πij}.

(b) Calculate {Ŵ (temp)
i } using {π̂(t−1)

ij }, and {πij}.

(c) Calculate {π̂(temp)
ij } using {Ŵ (t)

i }, {Q̂
(t)
i }, and {πij}.
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(d) Update X̂(t) = ξ(t)X̂(temp) + (1− ξ(t))X̂(t−1) for X̂ ∈ {Q̂, Ŵ , π̂}, where ξ is a weight that
disciplines updating.

(e) Calculate movement as (with N the number of pairwise observations):

∆(t) =
1

N
∑
r

∑
s

|π̂(t)
rs − π̂(t−1)

rs |.

(f) If ∆(t) ≥ ∆(t−1), set a new ξ(t+1) < ξ(t).

(g) Stop when movement is below convergence criterion.

4. Initial guess for ˆ̄N (0) using {Ŵ (temp)
i }, {Wi}, {Q̂(temp)

i }, {π̂(temp)
ij }, and {πij}, resetting ξ(0).

5. Main Loop:

(a) Calculate {Q̂(temp)
i } using ˆ̄N (t−1), {Ŵ (t−1)

i }, {Wi}, {π̂(t−1)
ij }, and {πij}.

(b) Calculate {Ŵ (temp)
i } using ˆ̄N (t−1), {π̂(t−1)

ij }, and {πij}.

(c) Calculate {π̂(temp)
ij } using {Ŵ (t)

i }, {Q̂
(t)
i }, and {πij}.

(d) Calculate ˆ̄N (temp) using {Ŵ (t)
i }, {Wi}, {Q̂(t)

i }, {π̂
(t)
ij }, and {πij}.

(e) Update X̂(t) = ξ(t)X̂(temp) + (1− ξ(t))X̂(t−1) for X̂ ∈ {Q̂, Ŵ , π̂, ˆ̄N}, where ξ is a weight
that disciplines updating.

(f) Calculate movement as:

∆ =
1

N
∑
r

∑
s

|π̂(t)
rs − π̂(t−1)

rs |.

(g) If ∆(t) ≥ ∆(t−1), set a new ξ(t+1) < ξ(t).

(h) Stop when movement is below convergence criterion.

With Agglomeration

When modeling agglomeration, I use the following system:

Υ̂i =

∑
n e

δAdin
∑

r πrnπ̂rn∑
n e

δAdin
∑

r πrn

Ω̂i =

∑
n e

δBdni
∑

s πnsπ̂ns∑
n e

δBdni
∑

s πns

Ŵi = ÂiΥ̂
µ
i

ˆ̄Nα−1

(∑
r πriπ̂ri∑
r πri

)α−1

Q̂i = Ĉ
1/(1+ψ)
i

(
ˆ̄N
∑

s πisπ̂isWsŴs∑
s πisWs

)ψ/(1+ψ)

π̂ij =
B̂iÊjD̂ijŴ

ε
j Q̂
−ε(1−ζ)
i Ω̂η

i∑
r

∑
s πrsB̂rÊsD̂rsŴ ε

s Q̂
−ε(1−ζ)
r Ω̂η

r
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E.2 Additional Counterfactual Exercises

Appendix Table H13 presents a variety of additional model results. I describe them here. The table
contains three columns, reflecting partial equilibrium, general equilibrium, and general equilib-
rium with spillovers. The general equilibrium with and without spillovers are as presented in the
main text and in these appendices.

The partial equilibrium results are calculated in a different manner. Rather than being the
result of a fixed point algorithm, these are akin to only initializing the first round of fixed point
process. That is, for Equations (E1)–(E2), let wages and housing prices reflect just the changes in
fundamentals:

Â→ Ŵ

Ĉ → Q̂

Next, feed the changes in B̂, D̂, and Ê into the following variant of Equation (E3), which ignores
the price changes:

π̂ij =
B̂iÊjD̂ij∑

r

∑
s πrsB̂rÊsD̂rs

Then, feed the updated prices and π̂ vector into the welfare formula:

ln ˆ̄U =
1

ε
ln

(
B̂iÊjD̂ijŴ

ε
j Q̂
−ε(1−ζ)
i

π̂ij

)

Thus, this partial equilibrium effect accounts for mobility induced changes to B, D, and E, and
changes to utility induced by changes in wage or housing prices (only because of changes in A
and C), but does not reflect mobility induced by changes in prices or changes in prices induced by
mobility.

The first panel of Appendix Table H13 corresponds to the results presented in the main text.
The second panel assumes a Ĉ just in tracts that contain a transit stations such that the partial
equilibrium effect results in a 10% higher residential population in those tracts (allowing Ĉ →
Q̂→ π̂). The third panel assumes that λB = 0.05 using the 500m measure of treatment proximity.
The fourth panel assumes that λA = 0.04 using the 500m measure of treatment proximity.

Combining historic and future counterfactuals

All of the main counterfactual simulations presented in Table 6 except the dynamic 2015 effects
are historic in nature: by how much would the region be worse off if LA Metro Rail were removed,
relative to observed outcomes in 2000. The dynamic 2015 effect takes that as given and instead
asks additionally about the future: by how much is the region better off assuming commuting
growth through 2015, relative to the observed data in 2000 (which includes the transit system as
built). The bottom three panels of Appendix Table H13 all assume that the additional effects are
future effects, taking place after 2000.
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E.3 Bootstrapping Procedure

To my knowledge, no off-the-shelf bootstrapping procedure works well for developing joint boot-
strap estimates of the parameters of the model presented in Equations (12)–(14). A central chal-
lenge is the need to preserve the correlation structure of parameters estimated across these equa-
tions. This, in turn, is complicated by the use of both IV to estimate some parameters, and the
possible presence of dyadic correlation structures in the estimation of other parameters. This
multiple-cluster case suffers from a potential degeneracy issue that renders standard bootstrap-
ping approaches for dyadic data, such as the pigeonhole bootstrap (Owen 2007), as overly con-
servative (Davezies, D’Haultfœuille, and Guyonvarch 2019; Menzel 2020). Fortunately, recent
research offers bootstrapping procedures that produce more accurate confidence intervals for IV
and for dyadic data under some additional assumptions (Davidson and MacKinnon 2010; Dav-
ezies, D’Haultfœuille, and Guyonvarch 2019; Menzel 2020). For an overview of inference under
multiple clusters and networks more generally, see Graham (2020).

I therefore describe a hybrid wild bootstrap procedure that combines recent results on boot-
strapping under multi-way error structures by Menzel (2020) and the wild restricted efficient
residual bootstrap for IV by Davidson and MacKinnon (2010). There are two key features of this
approach. Foremost and essentially, the same sets of bootstrapping weights are used across equa-
tions, so this procedure captures the correlation of estimates across equations. This is vital for
correct model inference. Second, the approach used for each equation is relatively efficient.E.1

A central challenge is bootstrapping the dyadic estimating equation in a way that reflects the
three-way cluster error structure implemented in the paper. Experimentation revealed that both
the pigeonhole bootstrap (Owen 2007) and the related method presented in Davezies, D’Haultfœuille,
and Guyonvarch (2019) are much more conservative than the three-way cluster. There is likely a
good reason: the bootstrap can fail in degenerate settings, such as if errors are approximately iid
(Davezies, D’Haultfœuille, and Guyonvarch 2019; Graham 2020; Menzel 2020). Such degeneracy
is quite likely conditional on rich sets of fixed effects (Menzel 2020).

Modern techniques rely on the correspondence of dyadic data to exchangeable arrays (Dav-
ezies, D’Haultfœuille, and Guyonvarch 2019). Menzel (2020) suggests a solution in the degenerate
case.E.2 In the particular case of an additive regression model with homoskedastic errors (which
is not unlikely conditional on fixed effects), a double differencing approach has excellent conver-
gence properties, but has a non-standard limiting distribution. However, he develops a bootstrap
procedure that approximates the limiting distribution. This is a form of wild bootstrap that uses
a convolution of two Gamma-distributed random variables to form bootstrap residuals. Each
weight corresponds to ‘one dimension’ of the dyadic data, and so can naturally be used as the
wild bootstrap weight for non-dyadic estimating equations. Those are IV estimators, so I turn to
the wild restricted efficient residual bootstrap by Davidson and MacKinnon (2010), but use the
same Gamma-distributed weights as used for the dyadic data.

In order to fit my research design into the double-differencing framework of Menzel (2020),
I first take differences of Equation (2); this implicitly controls for autocorrelation with origin-
destination pair (see Davezies, D’Haultfœuille, and Guyonvarch 2019, for a similar first step).
Let ∆ẍijt denote the double-differenced value of ∆xijt with respect to i and j, where ∆xijt =

E.1. Note that the procedure developed here allows for correlation within {i, j} pairs over time, across pairs {i, j} and
{i, j′} for j′ 6= j, and across pairs {i, j} and {i′, j} for i′ 6= i, but does not allow correlation between {i, j} and {j′, i},
even for j = j′. How to handle this case is an active area of research; see Graham (2020) for more discussion.
E.2. Menzel (2020) also offers a more sophisticated adaptive bootstrap procedure.
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xij,t=1 − xij,t=0. That is,
∆ẍijt = ∆xijt − ∆̄xiJt − ∆̄xIjt + ∆̄xIJt

where ∆̄xiJt = J−1
∑

j ∆xijt, ∆̄xIjt = I−1
∑

i ∆xijt, and ∆̄xIJt = (I × J)−1
∑

i

∑
j ∆xijt are one-

and two-way averages.
The estimating equations for the bootstrap are:

∆n̈ijt = ∆T̈ijtλ+ ∆d̈ijt (D1)

∆Ωjt = ε∆wjt + ∆ejt (D2.IV)
∆wjt = πε∆zjt + ∆uε,jt (D2.1st)

∆qit = ψ∆hit + ∆cit (D3.IV)

∆hit = πψ∆zHD,ait (ρ) + ∆uψ,it (D3.1st)

where I’ve omitted writing covariates or subcounty and subcounty-pair fixed effects for parsi-
mony (but include them in estimation), let λ = λD, and assumed that Ωjt is fixed. The bootstrap-
ping procedure below applies the same set of wild bootstrap residual weights to create estimates
using the method of Menzel (2020) for Equation (D1) and Davidson and MacKinnon (2010) for the
two sets of IV equations in (D2) and (D3).

Note that Equations (D2) and (D3) are precisely identical to those presented in the paper. Equa-
tion (D1) is estimated in a slightly different way than that in the paper, in that it does not use itera-
tive demeaning (instead employing the double difference). Therefore, point estimates are slightly
different. These are presented in Table E1. While I provide results from the full and PER samples
for comparison, I rely on the Immediate 1925 Plan Sample for the bootstrap procedure. Because
the coefficient on “O & D <500m from station” is close to zero and insignificant, I do not use it in
welfare simulations (instead setting it equal to 0).

Table E1: Effect of Transit on Commuting Flows by 2000 (time differenced then double differenced)

(1) (2) (3)

O & D contain station 0.088** 0.098** 0.134**
(0.039) (0.045) (0.058)

O & D <250m from station 0.048 0.079 0.115*
(0.047) (0.051) (0.061)

O & D <500m from station -0.022 0.009 0.004
(0.036) (0.039) (0.049)

N 145555 49740 9611

Control Group All PER Immed.
‘25 Plan

Standard Three-Way FEs Y Y Y
Subcounty Pair-×-Year FEs Y Y Y
Highway Controls Y Y Y

Standard errors clustered by tract pair, tract of residence, and tract
of work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Bootstrap Routine
The bootstrap implemented in the paper takes as fixed ζ and α, assigns λD under distance iii)
(O&D<500m from station) equal to zero, assigns λA = λB = 0 consistent with empirical results,
and maintains the assumption that λC = λE = 0. The bootstrapped input parameters are ε, ψ, and
λD
′ under distance i) and ii). I use B = 400 wild bootstrap draws.

1. Separately estimate Equations D1, D2, and D3 as above, using IV for Equations D2 and D3.

Recover parameter estimates λ̃, ε̃, and ψ̃; as well as residual estimates ∆
ˆ̈
dijt.

2. Estimate the equations below using OLS while enforcing the identified coefficients ε̃ and ψ̃,
then recover the residuals ∆êjt and ∆ĉit:

∆Ωjt − ε̃∆wjt = covariates + ∆ejt

∆qit − ψ̃∆hit = covariates + ∆cit

3. Because the second stage residuals in Equations D2.1st and D3.1st do not reflect correla-
tion with ∆êjt and ∆ĉit, using them to create the bootstrap sample is inefficient. Instead,
separately estimate:

∆wjt = πε∆zjt +$ε∆êjt + ∆oε,jt

∆hit = πψ∆zHD,ait (ρ) +$ψ∆ĉit + ∆oψ,it

and then save the estimates π̂ε and π̂ψ, then generate first stage residuals incorporating the
predicted contribution of the second stage correlation to the estimated residuals as follows:

∆ûε,jt ≡ $̂ε∆êjt + ∆ôε,jt

∆ûψ,it ≡ $̂ψ∆ĉit + ∆ôψ,it

4. Draw B̃ = B ∗ 1.025 sets of 2N iid random variables from a Gamma distribution with shape
parameter 4 and scale parameter 1/2, and subtract 2 from these values (such that these vari-
ables are mean 0, variance 1, and skewness 1). For each set of random variables b ∈ 1, . . . , B̃,
index elements in the first half by i ∈ 1, . . . ,N and in the second half by j ∈ 1, . . . ,N , so
that, e.g., ωbi is the bootstrap weight for correspond to location i in bootstrap sample b.

5. Generate bootstrap samples and recover bootstrap estimates. That is, for each b:

(a) Create bootstrap residual values as follows:

∆
ˆ̈
d∗ijt ≡ ωbi · ωbj ·∆

ˆ̈
dijt

∆ê∗jt ≡ k∗ε · ωbj ·∆êjt
∆û∗ε,jt ≡ l∗ε · ωbj ·∆ûε,jt

∆ĉ∗it ≡ k∗ψ · ωbi ·∆ĉit
∆û∗ψ,jt ≡ k∗ψ · ωbi ·∆ûψ,jt
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where k∗ = (N/(N − k))1/2 and l∗ = (N/(N − l))1/2 are scale adjustments wherein the
denominators are the residual degrees of freedom for the uninstrumented and instru-
mented equations, respectively.

(b) Create the bootstrap sample as follows, where Equations SMP.3 and SMP.5 are respec-
tively defined before SMP.2 and SMP.4:

∆̂̈n∗ijt ≡ ∆T̈ijtλ̃+ ∆
ˆ̈
d∗ijt (SMP.1)

∆Ω̂∗jt ≡ ε̃∆ŵ∗jt + ∆ê∗jt (SMP.2)

∆ŵ∗jt ≡ π̂ε∆zjt + ∆û∗ε,jt (SMP.3)

∆q̂∗it ≡ ψ̃∆ĥ∗it + ∆ĉ∗it (SMP.4)

∆ĥ∗it ≡ π̂ψ∆zHD,ait (ρ) + ∆û∗ψ,it (SMP.5)

(c) Separately estimate Equations BS1, BS2, and BS3 as below, using IV for equation BS2
and BS3. Save bootstrap estimates {λ∗, ε∗, ψ∗}b.

∆ˆ̈n∗ijt = ∆T̈ijtλ
∗ + ∆d̈∗ijt (BS1)

∆Ω̂∗jt = ε∗∆ŵ∗jt + ∆e∗jt (BS2.IV)

∆ŵ∗jt = π∗ε∆zjt + ∆u∗ε,jt (BS2.1st)

∆q̂∗it = ψ∗∆ĥ∗it + ∆c∗it (BS3.IV)

∆ĥ∗it = π∗ψ∆zHD,ait (ρ) + ∆u∗ψ,it (BS3.1st)

6. Remove any sets b of bootstrap estimates for which ε∗ < 0 or ψ∗ < 0. Randomly sample
from the remaining sets of bootstrap estimates to ensure B replicates.

7. For each set of bootstrap estimates, simulate the model using {λ∗, ε∗, ψ∗}b to create a boot-
strapped welfare estimateW∗b

8. Report the 95% central CI discarding the tails ofW∗b , ∀b.
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F Gravity and Commuting Costs

First, a note on measures of travel time/cost:

• τGIS: Network travel times are calculated from route-querying software. These are available
only in a cross-section, but are available for every origin-destination pair.

• τObs: Observed travel times come from the CTPP. They are panel data, but available only
between pairs with positive commuting that satisfy disclosure requirements.

I calculate gravity comparing both of these measures and several techniques. The availability
of panel data creates a challenge for gravity models using cross-sectional measures of travel time:
There is no time variation, and so time-invariant pair fixed effects absorb all variation in travel
times, and κ cannot be identified.

To illustrate, Table F1 reports estimates of εκ from the following models, with and without pair
fixed effects

nijt = ωjt + θit − εκτObs
ijt + λD

′
Tijt + ln(Dijt)

nijt = ωjt + θit − εκτObs
ijt + λD

′
Tijt + ςDij + ln(Dijt)

Without pair fixed effects, the elasticity of commuting with respect to travel time is -0.41 (in col-
umn 1), substantially smaller in magnitude than the -1 sometimes used in trade. In comparison,
including pair fixed effects generates an estimate of 0.07, indicating that small increases in travel
time may actually increase commuting. This captures the tricky issue with using panel data for
measuring gravity: For tract pairs that see increases in commuting, congestion may increase, caus-
ing increases in travel time (and reverse causality). However it is striking that the sign switches.

Observed travel times in the census are averages of recalled times across all commuters, and
may be subject to measurement error. How bad might this measurement error be? For compari-
son, column (3) reports the results from:

nijt = ωjt + θit − εκτGIS
ij + λD

′
Tijt + ln(Dijt)

using the GIS-calculated measure of travel time. It is about 50% larger in magnitude than column
1. This indicates that there is measurement error, but also that observed travel times likely contain
substantial signal.

An ideal approach would control for time-invariant determinants of commuting between pairs,
but still allow recovering the elasticity of commuting. I propose a two-step approach, first recov-
ering estimates of ςDij from above then regressing them on a measure of time:

ς̂Dijt = −εκτObs
ijt + uijt

ς̂Dij = −εκτGIS
ij + uij

where ς̂Dij0 = ς̂Dij1 in the first model. Note that, unlike for the ω and θ fixed effects, it is unreasonable
to assume asymptotic arguments as the pair fixed effects are estimated from a short panel. This
means there may be large measurement error ς̂Dij , although expanding the time dimension of the
panel likely improves this margin.
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Columns 4–7 show the results of the second stage of this two-step process. In columns 4–5,
ς̂Dij are estimates from a log-linear model, while in columns 6–7, ς̂Dij are estimates from a PPML
model. Note that the coefficients on observed and GIS-calculated measures of travel time are
roughly similar now. The log-linear first step results are also a bit smaller than the PPML first step
results.

Table F1: Measuring Gravity in the Panel

nijt ς̂Dij (Two-Step Estimator)

(1) (2) (3) (4) (5) (6) (7)

ln(τObs
ijt ) -0.414*** 0.073*** -0.239*** -0.391***

(0.010) (0.005) (0.012) (0.011)

ln(τGIS
ij ) -0.600*** -0.257*** -0.368***

(0.013) (0.014) (0.012)

N 717073 276128 771999 282757 143353 726261 628129

Origin- & Destination-by-Year FEs Y Y Y na na na na
Pair FEs - Y - na na na na
First Step Estimated by: na na na Lin. Lin. PPML PPML

Estimates of marginal disutility of travel time; outcome is log commuting flow in columns 1–3, and pair FEs derived from gravity in
columns 4–7. Standard errors clustered by tract pair (columns 1, 2, 3, 4, 6), tract of residence (all columns), and tract of work (all columns)
in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure H1: Map of Proposed LA Metro Lines and PER Lines in Kelker, De Leuw & Co. (1925)
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Figure H2: LA Metro Rail Ridership, 1990-2000
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Figure H3: LA Metro Rail Ridership, 1990-2014
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Figure H4: Glossary of variables and parameters

Parameters Interpretation

ε Homogeneity of location preferences (and wage elasticity of labor supply)
ζ Household expenditure share on non-housing goods

ζ̃ = −ε(1− ζ) Price elasticity of housing demand
α Share of (production) income spent on labor

α̃ = α− 1 Inverse wage elasticity of labor demand
φ Share of housing income spent on land
ψ̃ Congestive cost of housing

ψ = ψ̃φ Inverse price elasticity of housing supply
κ Semi-elasticity of commuting with respect to travel time
ρ Spatial decay for instrumental variable construction
λx Treatment effect for outcome x

Variables Interpretation

A Workplace productivity
B = TB̃ε Gross residential amenity

B̃ Simple residential amenity
T Mean residential utility
C Inverse housing efficiency
C̃ Housing productivity
D Mean utility commute (net of time)
E Workplace amenity (net of wage)
C Consumption
H Housing quantity
W Wage
Q Housing price

δ = eκτ Commuting friction
τ Travel time
π Commuting share
N̄ Aggregate population
NY Employment at place of work
LY Land used for production
M Housing materials
LH Land used for housing
PM Price of housing materials

PL = (H/LH)ψ Price of land
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Figure H5: Timeline of transportation in Los Angeles

1925 Comprehensive Rapid Transit Plan for the County of Los Angeles, Kelker, De Leuw & Co.
developed at the request of local governments

1951 Los Angeles Metropolitan Transit Authority (LAMTA) formed
1961 Pacific Electric (Red Cars) end of service
1963 Los Angeles Railway (Yellow Cars) end of service
1964 Southern California Rapid Transit District (SCRTD) formed from LAMTA

3/24/1985 Ross Dress for Less methane explosion in Wilshire-Fairfax
1985 Construction begins on LA Metro Rail

11/20/1985 Department of Transportation and Related Agencies Appropriation Act (1986) includes lan-
guage prohibiting funding of tunnels for transit along Wilshire corridor due to concerns
about methane (HR 3244)

7/14/1990 Blue Line opens
2/15/1991 Metro Center station opens

1993 Los Angeles County Metropolitan Transportation Authority forms from SCRTD
1/30/1993 Red Line opens, connects system to Union Station
10/14/1993 Century Freeway (I-105) opens
8/12/1995 Green Line opens in median of Century Freeway
7/13/1996 Red Line expands to Wilshire/Vermont
6/12/1999 Red Line expands to Hollywood/Vine
6/24/2000 Red Line expands to North Hollywood
7/26/2003 Gold Line opens

2006 Purple Line renamed from Red Line branch
9/20/2006 HR 3244 amended to remove prohibitions on funding of tunnels for transit along Wilshire

corridor
11/15/2009 Gold Line expands in East LA

4–6/2012 Expo Line opens
3/5/2016 Gold Line expands to Azusa

5/20/2016 Expo Line expands to Santa Monica
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Figure H6: Robustness to different distance bin assumptions

Effect of a single treatment under various definitions of i) as estimated by Equation (2). P represents the
distance from a station to the exterior perimeter of the tract if the tract does not contain a station and is zero
if the tract contains a station; in the main text it is zero. C represents the second criterion of i) in the main
text, the limiting centroid distance; it is 500m in the main text.
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Table H1: Descriptive statistics on transportation in Los Angeles and station placement

LA County Full Sample

(1) (2) (3) (4)

A. Pre-treatment mode choice characteristics (1990)
% workers commuting via: Drive alone 71.8% 74.5%
% workers commuting via: Carpool 15.8% 15.8%
% workers commuting via: Bus 6.9% 4.6%

B. Commuting characteristics
Commute time (minutes, 1990) 26.3 [16.8]
Commute time (minutes, 2000) 28.0 [18.3]

Centroid Any Centroid Any
C. % of pre-treatment population that becomes treated < 500m < 500m < 500m < 500m

% workers at POW tract that receive treatment 11.3% 19.4% 7.2% 12.3%
% workers at RES tract that receive treatment 2.6% 8.1% 1.6% 4.8%
% workers that receive transit connection RES-POW 0.6% 2.9% 0.4% 1.7%

Data from Census micro records (from IPUMS) and 1990 CTPP. LA County restricts analysis to workers both living and
residing in Los Angeles county, while the full sample includes all five counties in the main sample. Brackets indicate standard
deviation. Commute times are weighted by flows.

Table H2: Pre-trends in tract-level characteristics, 1970-1990

Model-relevant Other characteristics Travel characteristics

ln ln % % %HHs %Com. %Com.
Res. ln ln House Coll. Pov. Moved No Use Use

Emp. #HHs HHI Value Grads Rate <5yrs Car Auto Transit
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

All Tracts
Proximity500m

i × t 0.025 -0.032* -0.015 -0.023 -0.015*** 0.015*** -0.016*** -0.015*** 0.004 0.012***
(0.020) (0.016) (0.012) (0.014) (0.003) (0.004) (0.005) (0.006) (0.005) (0.004)

N 11643 11632 11556 11383 11650 11651 11651 7774 11644 11644
PER Sample

Proximity500m
i × t 0.003 -0.036** -0.015 -0.042*** -0.015*** 0.012*** -0.014** -0.014** 0.004 0.012***

(0.022) (0.017) (0.014) (0.016) (0.004) (0.005) (0.006) (0.006) (0.005) (0.004)
N 3696 3695 3689 3591 3696 3696 3696 2464 3696 3696

Full 1925 Plan Sample
Proximity500m

i × t -0.003 -0.032* -0.018 -0.023 -0.011*** 0.010** -0.012** -0.010 0.006 0.008*
(0.021) (0.017) (0.013) (0.016) (0.004) (0.005) (0.006) (0.006) (0.005) (0.005)

N 2886 2886 2881 2788 2886 2886 2886 1924 2886 2886
Immediate 1925 Plan Sample

Proximity500m
i × t 0.023 -0.010 -0.015 -0.004 -0.007* 0.007 -0.007 -0.010 0.006 0.011**

(0.021) (0.019) (0.015) (0.019) (0.004) (0.006) (0.006) (0.007) (0.006) (0.005)
N 1236 1236 1236 1158 1236 1236 1236 824 1236 1236

Subcounty-×-Year FEs Y Y Y Y Y Y Y Y Y Y

Estimates show pre-trends from 1970-1990 for tracts treated between 1990-1999, except Column (8), which covers only 1980–1990. HH is households,
and HHI is household income. Data are from GeoLytics Neighborhood Change Database and reflect 2010 geographies. All regressions include tract and
subcounty-by-year fixed effects. Standard errors clustered by tract in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table H3: Treatment is not related to changes in zero flows or years opened

1Nijt>0 ln(Nijt)

(1) (2) (3) (4) (5) (6) (7) (8)

O & D contain station 0.015 0.008 0.005 0.185*** 0.150** 0.098** 0.167** 0.142**
(0.034) (0.031) (0.038) (0.061) (0.058) (0.040) (0.082) (0.059)

O & D <250m from station 0.005 0.000 -0.026 0.148** 0.105* 0.058 0.145* 0.128**
(0.027) (0.026) (0.033) (0.061) (0.058) (0.046) (0.077) (0.065)

O & D <500m from station 0.052** 0.035 0.019 0.073 0.036 -0.009 0.030 0.013
(0.024) (0.022) (0.027) (0.058) (0.053) (0.035) (0.071) (0.052)

Years Open 0.073 0.036 0.030
(0.058) (0.053) (0.071)

Years Open × O & D contain station 0.004 0.027*
(0.013) (0.015)

Years Open × O & D <250m from station -0.010 -0.011
(0.015) (0.018)

Years Open × O & D <500m from station -0.014 -0.012
(0.010) (0.013)

N 1263082 1262478 69614 291532 291110 291110 19222 19222

Control Group All All
Immed.

All All All
Immed. Immed.

‘25 Plan ‘25 Plan ‘25 Plan
Standard Three-Way FEs Y Y Y Y Y Y Y Y
Subcounty Pair-×-Year FEs - Y Y - Y Y Y Y
Highway Controls - Y Y - Y Y Y Y

High-dimensional fixed effects estimates of transit on an indicator for positive flows (Columns 1-3) or log commuting flow (Columns 4-8); standard
three-way fixed effects are tract of work-by-year, tract of residence-by-year, and tract pair. Sample consists of all non-missing/singular tract pairs. Years
opened is relative to the newest station nearest either the origin or destination, centered on 5 years (the mean value). Standard errors clustered by tract
pair, tract of residence, and tract of work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table H4: Effect of transit on commuting flows by 2000 (PPML)

Full Sample History & Shocks Same Line

(1) (2) (3) (4) (5) (6) (7) (8)

O & D contain station 0.135** 0.164** 0.125* 0.107 0.131* 0.163** 0.207* 0.152
(0.069) (0.074) (0.065) (0.068) (0.068) (0.081) (0.123) (0.125)

O & D <250m from station 0.135** 0.101 0.129* 0.122* 0.120 0.210** 0.158
(0.067) (0.062) (0.067) (0.068) (0.079) (0.093) (0.103)

O & D <500m from station 0.129** 0.077 0.084* 0.071 0.063 0.096 0.101
(0.058) (0.049) (0.050) (0.051) (0.057) (0.070) (0.077)

N 1261978 1261978 1259440 407832 310924 69596 26270 12172

Control Group All All All PER
Full Immed. Ever Treated

‘25 Plan ‘25 Plan Treated by 2000
Standard Three-Way FEs Y Y Y Y Y Y Y Y
Subcounty Pair-×-Year FEs - - Y Y Y Y Y Y
Highway Controls - - Y Y Y Y Y Y

High-dimensional fixed effects estimates of λD with PPML estimator; standard three-way fixed effects are tract of work-by-year, tract
of residence-by-year, and tract pair. Outcome is commuting flow. Treatment variables are mutually exclusive. Column titles define
treatment: tracts pairs on any lines are treated in Columns (1)-(6), while only tract pairs on the same line are treated in Columns (7) and
(8). Standard errors clustered by tract pair, tract of residence, and tract of work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

H-10



Table H5: Effects are larger for tract pairs on same line

(1) (2) (3) (4) (5) (6)

O & D contain station
Same line 0.151*** 0.163*** 0.144*** 0.153*** 0.192*** 0.205***

(0.053) (0.053) (0.051) (0.055) (0.058) (0.071)

Not same line 0.026 0.035 0.040 0.056 0.087 0.075
(0.076) (0.077) (0.076) (0.084) (0.082) (0.088)

O & D <250m from station
Same line 0.094 0.064 0.096 0.115* 0.145**

(0.058) (0.060) (0.062) (0.062) (0.071)

Not same line 0.046 0.049 0.087 0.095 0.105
(0.059) (0.059) (0.062) (0.064) (0.079)

O & D <500m from station
Same line 0.032 0.015 0.048 0.046 0.041

(0.044) (0.042) (0.046) (0.048) (0.060)

Not same line -0.069 -0.072 -0.037 -0.051 -0.048
(0.046) (0.044) (0.046) (0.046) (0.056)

N 291532 291532 291110 99480 74408 19222

Control Group All All All PER Full Immed.
‘25 Plan ‘25 Plan

Standard Three-Way FEs Y Y Y Y Y Y
Subcounty Pair-×-Year FEs - - Y Y Y Y
Highway Controls - - Y Y Y Y

High-dimensional fixed effects estimates of λD with log-linear estimator; standard three-way
fixed effects are tract of work-by-year, tract of residence-by-year, and tract pair. Outcome is log
commuting flow. Treatment variables are mutually exclusive. Standard errors clustered by tract
pair, tract of residence, and tract of work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table H6: Interactions of residential and workplace station proximity

(1) (2)

D contains D<250m from D<500m from D contains D<250m from D<500m from
station station station station station station

O contains station 0.094** 0.146* -0.144* 0.108* 0.171* -0.197**
(0.038) (0.077) (0.076) (0.063) (0.100) (0.094)

O<250m from station 0.021 0.017 0.043 0.096 0.118 0.051
(0.059) (0.074) (0.103) (0.075) (0.110) (0.111)

O<500m from station 0.009 -0.012 0.034 0.087 0.083 0.056
(0.049) (0.060) (0.047) (0.063) (0.084) (0.069)

N 291110 19222

Control Group All Immediate ‘25 Plan
Standard Three-Way FEs Y Y
Subcounty Pair-×-Year FEs Y Y
Highway Control Y Y

High-dimensional fixed effects estimates of λD with log-linear estimator; standard three-way fixed effects are tract of work-by-year, tract of residence-
by-year, and tract pair. Outcome is log commuting flow. Treatment variables. Standard errors clustered by tract pair, tract of residence, and tract of
work in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table H7: Bartik tests from Goldsmith-Pinkham, Sorkin, and Swift (2020), no subcounty fixed
effects

Panel A: Negative and positive weights

Sum Mean Share

Negative -0.245 -0.035 0.164
Positive 1.245 0.113 0.836

Panel B: Correlations of Industry Aggregates

αk gk βk Fk Var(zk)

αk 1
gk 0.043 1
βk 0.132 0.463 1
Fk 0.148 -0.178 -0.477 1
Var(zk) 0.490 -0.112 -0.047 -0.025 1

Panel C: Top 5 Rotemberg weight industries

α̂k gk β̂k 95 % CI Ind Share

Manufacturing (durable) 0.395 -0.058 3.526 N/A 13.135
Transportation 0.226 -0.110 0.558 (-1.6,2.0) 4.141
FIRE 0.193 0.106 2.248 (-0.4,12.4) 7.805
Personal Services 0.124 0.178 5.181 (2.4,22.6) 3.565
Wholesale Trade 0.112 -0.058 -0.897 (-2.5,0.2) 4.919

Panel D: Estimates of βk for positive and negative weights

α-weighted Share of
sum overall β Mean

Negative -0.315 -0.126 1.730
Positive 2.827 1.126 1.985

Panel E: Alternative estimates and overidentification

Bartik TSLS LIML MBTSLS HFUL

∆ ln(Wjt) 2.512 1.457 2.911 1.571 2.470
(1.094) (0.662) (1.835) (0.705) (5.065)

Over ID Test Stat. 34.2 22.2 23.9
p-value [0.01] [0.14] [0.09]

This table reports statistics about Rotemberg weights and alternate IV estimators as suggested in
Goldsmith-Pinkham, Sorkin, and Swift (2020). The results correspond to Table 3 column 5. In all
cases, statistics reflect normalized growth rates. Panel A reports the share and sum of negative
Rotemberg weights. Panel B reports correlations between the weights (αk), the national compo-
nent of growth (gk), the just-identified coefficient estimates (βk), the first-stage F-statistic of the
industry share (Fk), and the variation in the industry shares across locations (VAR(zk)). Panel C
reports variation in the weights across years. Panel D reports the top five industries according to
the Rotemberg weights. The 95% CI uses the weak-instrument robust CI from Chernozhukov and
Hansen (2008) over a range from -25 to 25 and is N/A if it exceeds that range, and Ind Share is the
industry share (multiplied by 100). Panel E reports a variety of alternative estimates. TSLS uses
each industry share separately as instruments. LIML reports estimates using the limited informa-
tion maximum likelihood estimator with the same set of instruments. MBTSLS uses Anatolyev
(2013) and Kolesár et al. (2015) with the same set of instruments. HFUL uses the HFUL estimator
(Hausman et al. 2012) with the same set of instruments, and the J-statistic from Chao et al. (2014).
p-values are in brackets.
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Table H8: Bartik tests from Goldsmith-Pinkham, Sorkin, and Swift (2020), with subcounty fixed
effects

Panel A: Negative and positive weights

Sum Mean Share

Negative -0.290 -0.048 0.184
Positive 1.290 0.108 0.816

Panel B: Correlations of Industry Aggregates

αk gk βk Fk Var(zk)

αk 1
gk -0.051 1
βk -0.009 0.460 1
Fk 0.180 -0.347 -0.468 1
Var(zk) 0.524 -0.112 -0.218 0.092 1

Panel C: Top 5 Rotemberg weight industries

α̂k gk β̂k 95 % CI Ind Share

Manufacturing (durable) 0.457 -0.058 2.980 N/A 13.149
Transportation 0.262 -0.110 -0.305 (-1.80,0.80) 4.143
FIRE 0.144 0.106 3.398 N/A 7.814
Health 0.137 0.050 -1.110 (-6.80,1.40) 7.047
Wholesale Trade 0.100 -0.058 -2.690 (-7.80,-1.10) 4.924

Panel D: Estimates of βk for positive and negative weights

α-weighted Share of
sum overall β Mean

Negative -0.178 -0.082 0.735
Positive 2.358 1.082 3.066

Panel E: Alternative estimates and overidentification

Bartik TSLS LIML MBTSLS HFUL

∆ ln(Wjt) 2.180 0.450 25.760 0.464 .
(1.171) (0.542) (1363.467) (0.813) ()

Over ID Test Stat. 75.9 0.8 .
p-value [0.00] [1.00] [.]

This table reports statistics about Rotemberg weights and alternate IV estimators as suggested in
Goldsmith-Pinkham, Sorkin, and Swift (2020). The results correspond to Table 3 column 6. In all cases,
statistics reflect normalized growth rates. Panel A reports the share and sum of negative Rotemberg
weights. Panel B reports correlations between the weights (αk), the national component of growth (gk),
the just-identified coefficient estimates (βk), the first-stage F-statistic of the industry share (Fk), and the
variation in the industry shares across locations (VAR(zk)). Panel C reports variation in the weights
across years. Panel D reports the top five industries according to the Rotemberg weights. The 95% CI
uses the weak-instrument robust CI from Chernozhukov and Hansen (2008) over a range from -25 to
25 and is N/A if it exceeds that range, and Ind Share is the industry share (multiplied by 100). Panel
E reports a variety of alternative estimates. TSLS uses each industry share separately as instruments.
LIML reports estimates using the limited information maximum likelihood estimator with the same set
of instruments. MBTSLS uses Anatolyev (2013) and Kolesár et al. (2015) with the same set of instru-
ments. HFUL uses the HFUL estimator (Hausman et al. 2012) with the same set of instruments, and the
J-statistic from Chao et al. (2014). p-values are in brackets.
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Table H9: Transit and non-commuting fundamentals with half spatial decay

d̄ = 500m d̄ = 1km

(1) (2) (3) (4) (5) (6) (7) (8)

Effect on productivity
I.) λA estimated using ∆Â = ∆Â− µ∆ ln(ΥFar)

Proximityi × t 0.031 0.030 0.017 0.021 0.040 0.041 0.027 0.035
(0.039) (0.039) (0.038) (0.043) (0.037) (0.038) (0.037) (0.043)

N 2469 1167 934 394 2469 1167 934 394

Effect on residential amenity level
IV.) λB estimated using ∆B̂ = ∆B̂ − η∆ ln(ΩFar)

Proximityi × t 0.050 0.068** 0.045 0.007 0.035 0.056* 0.025 -0.028
(0.032) (0.033) (0.033) (0.035) (0.029) (0.031) (0.030) (0.034)

N 2149 994 815 343 2149 994 815 343

Control Group All PER
Full Immed.

All PER
Full Immed.

‘25 Plan ‘25 Plan ‘25 Plan ‘25 Plan

Results from sixteen regressions of transit proximity on local productivity after removing agglomeration. Here, the
distance effect of agglomeration decays at half the values in Ahlfeldt et al. (2015). All regressions include tract fixed
effects, subcounty-by-year fixed effects, and controls. Controls include changes in highway proximity and 1990 levels
of log household income, share of residents with at least a high school degree, and manufacturing employment. Sample
size reflects number of differenced tracts. Standard errors clustered by tract in parentheses: * p < 0.10, ** p < 0.05, ***
p < 0.01
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Table H10: Transit and non-mutable fundamentals

∆Ŷit

d̄ = 500m d̄ = 1km

(1) (2) (3) (4) (5) (6) (7) (8)

A. Effect on inverse housing supply efficiency ∆Ĉ, λC

Proximityi × t 0.006 0.007 -0.024 -0.041 0.007 0.012 -0.031 -0.053
(0.049) (0.051) (0.051) (0.058) (0.044) (0.047) (0.048) (0.057)

N 2172 996 818 348 2172 996 818 348

B. Effect on workplace amenity ∆Ê, λE

Proximityi × t -0.016 -0.083 -0.064 -0.115 -0.004 -0.087 -0.062 -0.138*
(0.070) (0.072) (0.075) (0.084) (0.066) (0.069) (0.072) (0.084)

N 2516 1168 935 395 2516 1168 935 395

Control Group All PER
Full Immed.

All PER
Full Immed.

‘25 Plan ‘25 Plan ‘25 Plan ‘25 Plan

Results from sixteen regressions of transit proximity on local fundamentals. All regressions include tract fixed effects,
subcounty-by-year fixed effects, and controls. Controls include changes in highway proximity and 1990 levels of log
household income, share of residents with at least a high school degree, and manufacturing employment. Sample size
reflects number of differenced tracts. Standard errors clustered by tract in parentheses: * p < 0.10, ** p < 0.05, ***
p < 0.01
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Table H11: Transit, income change, and land use change (robustness)

∆Ŷit

d̄ = 500m d̄ = 1km

(1) (2) (3) (4) (5) (6) (7) (8)

A. Change in residential land

Proximityi × t 0.006*** 0.002 0.001 0.001 0.007*** 0.003 0.002 0.001
(0.002) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

N 2468 1152 920 385 2468 1152 920 385

B. Change in household income

Proximityi × t -0.016 -0.006 -0.006 -0.019 -0.025 -0.014 -0.015 -0.034*
(0.017) (0.017) (0.017) (0.018) (0.016) (0.017) (0.017) (0.019)

N 2476 1142 915 380 2476 1142 915 380

Control Group All PER
Full Immed.

All PER
Full Immed.

‘25 Plan ‘25 Plan ‘25 Plan ‘25 Plan

Results from sixteen regressions of transit proximity on residential land use and household income. All regressions in-
clude tract fixed effects, subcounty-by-year fixed effects, and controls. Controls include changes in highway proximity
and 1990 levels of log household income, share of residents with at least a high school degree, and manufacturing em-
ployment. Sample size reflects number of differenced tracts. Standard errors clustered by tract in parentheses: * p < 0.10,
** p < 0.05, *** p < 0.01

Table H12: Effect of LA Metro Rail on residential commute share using rail transit

Residential Commute Share using Rail Transit

d̄ = 500m d̄ = 1km

(1) (2) (3) (4) (5) (6) (7) (8)

Proximityi × t 0.0084*** 0.0081*** 0.0081*** 0.0079*** 0.0078*** 0.0077*** 0.0077*** 0.0076***
(0.0015) (0.0014) (0.0014) (0.0015) (0.0012) (0.0012) (0.0013) (0.001)

N 2262 1037 848 371 2262 1037 848 371

Control Group All PER
Full Immed.

All PER
Full Immed.

‘25 Plan ‘25 Plan ‘25 Plan ‘25 Plan

Results from eight regressions of transit proximity on subway/light rail commute share. All regressions include tract fixed effects,
subcounty-by-year fixed effects, and controls. Controls include changes in highway proximity and 1990 levels of log household income,
share of residents with at least a high school degree, and manufacturing employment. Sample size reflects number of differenced tracts.
Standard errors clustered by tract in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table H13: Welfare effects of model extensions (% change in welfare)

General
Partial General Equilibrium

Equilibrium Equilibrium + Spillovers
(1) (2) (3)

Baseline: Commuting Effect through 2000 0.04410 0.04404 0.04324
+ Dynamic Effect (through 2015) 0.08032 0.07965 0.07838
+ Congestion Effect 0.10671 0.10632 0.10431
+ Dynamic & Congestion Effects 0.14295 0.14196 0.13946

Baseline & Reduced Land Use Regulation 0.12234 0.10574 0.10371
+ Dynamic Effect (through 2015) 0.15859 0.14266 0.14040
+ Congestion Effect 0.18500 0.16806 0.16481
+ Dynamic & Congestion Effects 0.22127 0.20500 0.20153

Baseline & 5% Amenity 0.10757 0.10688 0.10478
+ Dynamic Effect (through 2015) 0.14544 0.14355 0.14118
+ Congestion Effect 0.17022 0.16920 0.16588
+ Dynamic & Congestion Effects 0.20811 0.20589 0.20230

Baseline & 4% Productivity 0.36608 0.28847 0.28735
+ Dynamic Effect (through 2015) 0.40241 0.32548 0.32400
+ Congestion Effect 0.42888 0.35090 0.34857
+ Dynamic & Congestion Effects 0.46524 0.38794 0.38524

This table gives the percentage change in welfare for various model scenarios (e.g., 0.04409 is a
0.044% change in welfare). Columns 1–3 show partial equilibrium results, general equilibrium re-
sults that ignore endogenous agglomeration, and general equilibrium results that account for en-
dogenous agglomeration. Partial equilibrium reflects only changes in items that feed into the utility
function, but no feedbacks (but effects to A and C do have price effects). The first panel includes
the results in the main paper, whereas the other panels present experiments presuming other effects
become present: Reduced Land Use Regulation assumes λC = −0.3297 just in tracts containing
transit stations, such that residential density increases in those locations by 10%; 5% Amenity as-
sumes λB = 0.05 with the 500m proximity measure of treatment; and 4% Productivity assumes
λA = 0.04 with the 500m proximity measure of treatment.
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