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Abstract

Using a multi-industry real business cycle model, we empirically examine the mi-

croeconomic origins of aggregate tail risks. Our model, estimated using industry-level

data from 1972 to 2016, indicates that industry-specific shocks account for most of the

third and fourth moments of GDP growth.
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1 Introduction

Aggregate activity exhibits tail risks. That is, the distribution of aggregate fluctuations

has fatter tails than that of a normally distributed random variable. Understanding these tail

risks is important for multiple macroeconomic topics, including evaluating the utility cost

of macroeconomic fluctuations (Barro, 2009) and forecasting aggregate activity (Curdia,

Del Negro, and Greenwald, 2014). In this paper, we empirically investigate whether higher

moments have sectoral origins.

We begin by exploring the skewness and kurtosis of GDP and industries’ output

growth rates. As we document, GDP growth exhibits positive excess kurtosis of 2.34.1

Moreover, for most of the industries in our sample, output growth is kurtotic. There are,

however, substantial differences across industries in the extent to which their output growth

rate distributions deviate from normality.

We apply the structural approach of Foerster, Sarte, and Watson (2011) to filter the

underlying productivity shocks from data on industries’output growth rates. With these

productivity shocks, we evaluate the contribution of industry-specific shocks to aggregate

fluctuations’departures from normality: We first compute the model-implied higher moments

of GDP with both common and industry-specific shocks and then with industry-specific

shocks only. Our main finding from this exercise is that the importance of industry-specific

shocks depends on the assumed complementarity of inputs in sectoral production functions.

For values of complementarity estimated in Atalay (2017), industry-specific shocks account

for the predominant share of the third and fourth moments of GDP fluctuations.

Our work contributes first to the literature, initiated by Long and Plosser (1983),

that hypothesizes that localized disturbances shape aggregate fluctuations. Within this lit-

erature, our paper is closest to Foerster, Sarte and Watson (2011) and Atalay (2017). Like

these papers, we apply a general equilibrium multi-industry model to recover the produc-

tivity shocks experienced by each industry, and then extract the common component of

our recovered productivity shocks. We contribute to this literature by assessing the role of

industry-specific shocks in generating deviations from normality in GDP growth.

Second, our paper contributes to the literature on the micro sources of macroeco-

nomic tail risks. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017) provide necessary and suf-

ficient conditions for idiosyncratic, industry-specific productivity shocks to engender macro-

economic tail risk even as the number of industries becomes exceedingly large. In a model

in which industries’production functions exhibit complementarities across inputs and de-

1To put this in context, the excess kurtosis of the Laplace (double exponential) distribution equals 3, that
of the normal distribution is zero.
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Figure 1: The two panels give the skewness (left panel) and excess kurtosis (right panel)
of quarterly output growth, with corresponding 90 percent confidence intervals (computed
from 1000 bootstrapped samples). A filled in circle indicates that the estimate is statistically
different from zero (at 10 percent significance); an "x" indicates no significance.

creasing returns to scale, Baqaee and Farhi (2017) demonstrate that GDP growth can be

fat-tailed even with thin-tailed productivity shocks. Compared to these two papers, our

contribution is to empirically recover the distribution of fundamental shocks, then establish

whether the common component of these micro shocks generates aggregate tail risk.

2 Data

Figure 1 presents the skewness and kurtosis of growth rates of GDP and of individual

sectors’gross output. These growth rates are at the quarterly frequency, computed using

data from the Federal Reserve Board (for goods-producing industries) and the Bureau of

Economic Analysis (for all other industries) from 1972 to 2016.2

GDP growth exhibits tail risk: Over the sample period, the excess kurtosis of GDP

2For industries outside the Federal Reserve Board data set, industry output is measured at the annual
frequency. We impute quarterly growth rates at the industry level to match the industry’s annual output
growth and the quarterly growth rate of non-industrial production.
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growth is 2.34, with a bootstrapped 90 percent confidence interval of 0.95 to 3.53.3 GDP

growth is also slightly negatively skewed, but not statistically significantly so. These statistics

are depicted in the first rows of the two panels of Figure 1. In the remaining rows, we

present the output growth rates of the 39 constituent industries in our data set. Among

these industries, output growth rates are significantly negatively skewed for 16 industries,

significantly positively kurtotic for 25 industries, with many of these industries concentrated

within durable goods manufacturing.

Figure 1 singles out certain industries as potential sources of aggregate tail risk.

However, since input-output linkages and general equilibrium effects may lead shocks in one

industry to manifest as output fluctuations in another, we have yet to determine the extent

to which individual industries contribute to the GDP tail risk that we have documented in

Figure 1. We turn to this task in the following section.

3 Model

The model broadly follows that in Foerster, Sarte, andWatson (2011) and Atalay (2017).

The aim of this model is to recover industries’productivity shocks from data on industry

output. The economy consists of N perfectly competitive industries and a representative

consumer.

The consumer supplies labor (Lt) and consumes the goods and services (CtJ) pro-

duced by each industry:

U0 = E0

∞∑
t=0

βt
{

logCt −
φ

φ+ 1
L
φ+1
φ

t

}
, where Ct =

N∏
J=1

(
CtJ
ξJ

)ξJ
. (1)

In equation 1, ξJ represents the importance of the industry J good in the consumer’s

preferences, and φ the labor supply elasticity.

3We begin the sample in 1972, coinciding with the date at which the Federal Reserve Board Industrial
Production begins measuring output of individual goods-producing industries. Using annual data from 1929
to 2016 the excess kurtosis of GDP growth equals 3.29, with a 90% confidence interval of (1.51, 5.26).

4



The production function of industry J is given by:

QtJ = AtJ ·
(
KtJ

αJ

)αJ
·
(

LtJ
1− αJ − µJ

)1−αJ−µJ
·
(
MtJ

µJ

)µJ
, where (2)

MtJ =

[
N∑
I=1

(
ΓMIJ
) 1
ε (Mt,I→J)

ε−1
ε

]ε/(ε−1)

, and (3)

Kt+1,J = (1− δ) ·KtJ +
N∏
I=1

(
Xt,I→J

ΓXIJ

)ΓXIJ

. (4)

Output is produced with capital, labor, and intermediate inputs (with cost shares αJ , 1−
αJ−µJ , and µJ , respectively). Here, AtJ characterizes industry J’s exogeneous productivity
at time t (equation 2). The intermediate input bundle is a CES composite of materials

purchased from other industries (equation 3). Capital is industry-specific, depreciates at a

common rate δ, and is augmented through investment goods purchased from other industries

(equation 4).

Each industry’s output can either be consumed or purchased by other industries:

QtJ = CtJ +
N∑
I=1

Xt,J→I +Mt,J→I . (5)

Total labor supply equals the sum of all labor demanded by the N industries:

Lt =
N∑
J=1

LtJ . (6)

Finally, productivity follows a geometric random walk:

logAt = logAt−1 + ωt, (7)

where At ≡ (At1, ...AtN)′, and ωt is a zero-mean i.i.d. random vector.

We focus on a competitive equilibrium of the economy characterized by equations 1

through 7. As shown in Foerster, Sarte, and Watson (2011), in the competitive equilibrium

output growth evolves according to:

∆ logQt+1 = Π1 ·∆ logQt + Π2 · ωt + Π3 · ωt+1, (8)

up to a first-order approximation.4 In equation 8, Qt ≡ (Qt1, ...QtN)′, and Π1, Π2, and

4See Online Appendix F of Atalay (2017) for the derivation of equation 8.
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Figure 2: Each panel gives the skewness and excess kurtosis of the ωtJ . The left two panels
use ε = 0.1; the right two panels use ε = 1.0.

Π3 are matrices whose elements are functions of the parameters of the model.

We calibrate the model following Atalay (2017): We set φ = 2, β = 0.99, and

δ = 0.025. We compute αJ , ξJ , µJ , ΓMIJ , and ΓXIJ from the 1997 BEA Industry Economic

Accounts.5 Finally, we take a range of values of ε, from 0.1 to 1.0. The lower end of this

interval is taken from Atalay (2017), while the upper end is the calibrated value in Foerster,

Sarte, and Watson (2011), among others.

Using our industry-level data from 1972 to 2016, we retrieve industry×quarter-level
productivity shocks, ωtJ , from a Kalman-filter application of equation 8. As an analogue

to Figure 1, Figure 2 plots the skewness and kurtosis of the ωtJ . For both ε = 0.1 and

ε = 1.0, the recovered productivity shocks have positive kurtosis, consistent with one of

the necessary conditions of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017). However, the

shocks may share a common component and thus violate the independence assumption in

Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017). We now investigate this possibility.6

5Proxying for within-industry repair and maintenance expenditures (McGrattan and Schmitz, 1999), we
add 0.35 to the diagonal elements of ΓX .

6As Baqaee and Farhi (2017) emphasize, since we approximate our model log-linearly, it is a priori
conceivable that the distribution of filtered productivity shocks (absent such an approximation) would more
closely resemble that of a normal random variable. However, the calibration in Baqaee and Farhi (2017) also
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4 Results and Discussion

With the estimates of ωtJ , we perform two exercises to evaluate the industry-specific

contribution of aggregate tail risk.

First, Foerster, Sarte, and Watson (2011) and Atalay (2017) compute the average

pairwise correlation of ω to summarize the importance of the common component of produc-

tivity shocks. Building off of this idea, we measure the higher-order analogue of the pairwise

correlation: the co-skewness and co-kurtosis. Using µωX and σωX to denote the mean and

standard deviation of productivity shocks in industry X, we define the co-skewness of pro-

ductivity shocks in industries H, I, and J as:

ρ̂3 (ωH , ωI , ωJ) =
ρ3 (ωH , ωI , ωJ)

σωH · σωI · σωJ
, where (9)

ρ3 (ωH , ωI , ωJ) = E
[(
ωH − µωH

)
·
(
ωI − µωI

)
·
(
ωJ − µωJ

)]
, (10)

and the co-kurtosis as:

ρ̂4 (ωL, ωH , ωI , ωJ) =
ρ4 (ωL, ωH , ωI , ωJ)

σωG · σωH · σωI · σωJ
, where (11)

ρ4 (ωL, ωH , ωI , ωJ) = E
[(
ωG − µωG

)
·
(
ωH − µωH

)
·
(
ωI − µωI

)
·
(
ωJ − µωJ

)]
. (12)

The left panel of Figure 3 plots the average pairwise correlation, co-skewness, and

co-kurtosis. Consistent with Atalay (2017), productivity shocks are less correlated with one

another when ε is small. Similarly, the average co-skewness and co-kurtosis are closer to

zero with relatively low values of ε, suggesting a stronger role for industry-specific shocks for

higher-moment GDP fluctuations under this parameterization.

Our second exercise consists of principal component analysis and its higher order

analogue: moment component analysis (see Jondeau, Jurczenko, and Rockinger, 2017.) The

principal component analysis procedure that we perform partitions the productivity shocks’

covariance matrix into two components: a rank-one matrix representing the contribution

of common shocks, and a diagonal matrix representing the contribution of industry-specific

shocks. With these two covariance matrices in hand, we compute the model-implied covari-

ance matrices for industries’value added that results only from sector-specific shocks or from

both sector-specific and common shocks. We then compute the fraction of aggregate output

volatility that is explained by the independent component of industries’productivity shocks;

see equation 17 of Atalay (2017).

indicates that – for our calibrated value of ε – the first-order approximation is fairly accurate so long as
inputs can be freely re-allocated across sectors, as is the case in our setup.
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Figure 3: The left panel gives the correlation, co-skewness, and co-kurtosis of ω, with the
latter two statistics defined by equations 9 and 11. The right panel gives the share of the
second, third, and fourth moments of GDP growth which are induced by industry-specific
shocks.

While principal component analysis extracts the first eigenvector – corresponding to

the largest eigenvalue – of the covariance matrix, moment component analysis extracts the

first eigenvector from the co-skewness and co-kurtosis tensors. To recover the contribution

of industry-specific shocks to aggregate skewness, we begin by performing the singular value

decomposition of the N ×N ×N dimensional tensor containing the third-order central co-

moments ρ3 (ωH , ωI , ωJ). We retrieve the tensors associated with the common factor and

with industry-specific shocks. We then compute the ratio of the third-moment of GDP growth

that is due to industry-specific shocks only and that which is due to both industry-specific

and common shocks. We perform a corresponding procedure to assess the contribution of

industry-specific shocks to the fourth moment of GDP fluctuations.

The right panel of Figure 3 contains the result of this exercise. As with Foerster,

Sarte, and Watson (2011) and Atalay (2017), industry-specific shocks account for less than

half of aggregate volatility when ε ≈ 1, and a substantially larger portion with smaller

values of ε. The new results in this figure relate to the share of the third and fourth moment

of GDP fluctuations which are due to sectoral shocks. With a Cobb-Douglas production

function, sectoral shocks account for approximately 7 percent of the fourth moment of GDP

fluctuations and essentially none of the third moment of GDP fluctuations. With lower

elasticities of substitution, sectoral shocks are the primary source of tail risk.

These results extend and reinforce those in Atalay (2017). Using data on industries’

input choices and input prices, that paper estimates that industries have limited ability to

substitute across their inputs in the short run. Since complementarity in sectoral production
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functions induces co-movement in industries’output, that earlier paper indicates that shocks

specific to individual industries are responsible for a large portion of aggregate volatility.

This same logic applies when assessing the role of industry-specific shocks in contributing to

higher moments of the distribution of GDP growth. Complementarity in production leads

(exceptionally large) shocks in individual industries to induce large shifts in the industries

upstream and downstream of the shocked industry. This co-movement of exceptionally large

output shifts across industries then manifests as large GDP fluctuations.

References

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2017. “Microeconomic

Origins of Macroeconomic Tail Risks.”American Economic Review, 107(1): 54-108.

Atalay, Enghin. 2017. “How Important Are Sectoral Shocks?” American Economic

Journal: Macroeconomics, 2017, 9(4): 254-280.

Baqaee, David, and Emmanuel Farhi. 2017. “The Macroeconomic Impact of Microeco-

nomic Shocks: Beyond Hulten’s Theorem.”Mimeo.

Barro, Robert. 2009. “Rare Disasters, Asset Prices, and Welfare Costs.” American

Economic Review, 99(1): 243-64.

Curdia, Vasco, Marco Del Negro, and Daniel Greenwald. 2014. “Rare Shocks, Great

Recessions.”Journal of Applied Econometrics, 29(7): 1031-52.

Foerster, Andrew, Pierre-Daniel Sarte, and Mark Watson. 2011. “Sectoral vs. Aggre-

gate Shocks: A Structural Factor Analysis of Industrial Production.” Journal of Political

Economy, 119(1): 1-38.

Jondeau Eric, Emmanuel Jurczenko, and Michael Rockinger. 2017. “Moment Compo-

nent Analysis: An Illustration With International Stock Markets.”Journal of Business and

Economic Statistics, forthcoming.

Long, John, and Charles Plosser. 1983. “Real Business Cycles.” Journal of Political

Economy, 91(1): 39-69.

McGrattan, Ellen and James Schmitz. 1999. “Maintenance and Repair: Too Big to

Ignore.”Federal Reserve Bank of Minneapolis, Quarterly Review, 23: 2-13.

9


	wp18-08_cover-v1.0.pdf
	wp_Drautzburg_PFed_td_01312018_rev.pdf
	wp18-08_.pdf
	wp_Drautzburg_PFed_td_01312018.pdf

	tail_risk_.pdf


