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Abstract

We investigate the dynamic response of local U.S. labor markets to increased job

creation by new firms and compare the effects to overall labor demand shocks. To account

for both dynamic and spatial dependence we develop a spatial panel VAR that builds

on recent advances in the VAR literature to identify structural shocks using external

instruments. We find that startup shocks have a small but persistent effect on local

employment through population growth. Population growth, in turn, is largely driven by

immigration. We also investigate how the responses differ by local characteristics such as

population density. Finally, we show that startups are not closely linked to innovation.
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1 Introduction

A growing literature has documented the importance of startups for the U.S. labor market:

Haltiwanger et al. (2013) may have been the first to document the significant role of new firms

in creating jobs in the U.S. economy. New firms created an average of 3.6 million jobs between

1977 and 2013, adjusted for changes in the working-age population relative to 2013. At the

same time, the economy as a whole created 2.1 million jobs, on net. Of course, gross job

creation ran higher, at 19.6 million – but Haltiwanger et al. (2013) also show that surviving

new firms grow faster than incumbents. This picture of the secular importance of startups is

complemented by Decker et al. (2014) and Pugsley and Sahin (2015), who document a trend

decline in startup formation. In addition, Siemer (2014), Gourio et al. (2015), and Sedlacek

and Sterk (2014) document a drop in startup activity in the Great Recession.

In this paper we examine two questions: First, to what extent is startup activity driven by

shocks to startups? Second, what effects do startups have on the local economy? We develop a

spatial panel VAR that uses external instruments to separately identify shocks to overall labor

demand and to startup labor demand. Identifying both shocks matters, because more firms

enter when overall labor demand is high. Half of local startup job creation is due to startup

shocks. These startup shocks have small but persistent effects on local employment through

gradual increases in population.

There is a small but growing literature looking at either the causes or the economic effects

associated with the slowdown in new firm entry. A number of recent papers consider the

importance of demographic shifts for explaining the decline in startups. Karahan et al. (2015)

show that a decline in the working-age population accounts for an important share of the decline

in firm entry. Hathaway and Litan (2014) also find a correlation between the startup deficit

and slowing population growth as well as an increased rate of business consolidations. Lazear et

al. (2014) document that countries with older workers have lower rates of entrepreneurship and

new business formation. Ouimet and Zarutskie (2014) show the proportion of a state’s young

workers is a good predictor of its startup rate, especially for high-tech firms. Dent et al. (2016)

look at the role of startups in the evolution of employment across firm age for three sectors:

manufacturing, retail trade, and services. They find that since the late 1980s, the entry margin

accounted for one-half of employment reallocation across sectors. Decker et al. (2016) note

that since 2000 there has a rapid decline in skewness in the growth rates of employment with

differential patterns across sectors. They report that the decline reflects a notable decline in

the 90th percentile of the employment growth rate distribution “accounted for by the declining

share of young firms and the declining propensity for young firms to be high-growth firms.”1

1See Karahan et al. (2015) for a broader discussion of the causes of the startup deficit, such as financial
constraints or changes in regulation.
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There has been considerably less research concerning the economic consequences of the

startup deficit, which is what we study. In a paper closely related to ours, Gourio et al. (2016)

use a panel of U.S. states for the period 1982–2014 and find that shocks to the number of startups

has long-lasting effects on employment, productivity, and to a lesser extent on population. We

similarly find small but persistent effects of startup shocks on population and employment. But

our strategy for estimating the regional consequences of the startup decline differs from Gourio

et al. (2016) because we jointly identify shocks to startups and to overall labor demand. This is

important because both Adelino et al. (2014) and we find that positive shocks to overall labor

demand also increase firm entry. As both the labor demand shocks in Adelino et al. (2014)

and the entry shocks in Gourio et al. (2016) are identified using instruments based on local

industry structure and national industry outcomes, the identified entry shocks in Gourio et

al. (2016) plausibly also reflect overall labor demand shocks. Our strategy is to first identify

overall labor demand shocks with the same interpretation as in Bartik (1991) and Blanchard

and Katz (1992) and then identify startup shocks using the residual variation in the exposure of

local labor markets to sectoral job creation rates.2 In contrast to Blanchard and Katz (1992),

where migration is a residual, we provide direct evidence on the response of migration to labor

demand shocks. We find that startup shocks are more important for population growth and

migration than overall labor demand shocks.

Specifically, we construct two instruments: one proxy for local startup shocks and another

for overall labor demand shocks in the tradition of Bartik (1991). The idea of Bartik (1991)

was to instrument for local labor demand using predictors based on the past industry structure

of a location and the national evolution of its different industries. Here, we use the standard

Bartik (1991) instrument alongside a second instrument that predicts local job creation through

startups by the national evolution of startups and the local industry structure.

We use a structural VAR for our analysis that allows us to flexibly capture the equilibrium

effects of startup activity. Our setup uses the Bartik (1991)-type shocks as an external in-

strument to identify the shock, building on the recent proxy-VAR literature initiated by Stock

and Watson (2012) and Mertens and Ravn (2013, 2014). The advantage of the proxy-VAR

approach is that it allows not only for dynamic but also for contemporaneous feedback between

startups and incumbents, unlike the traditional Choleski identification. In our context, this can

be important, because Hombert et al. (2014) show that entry by startups leads to significant

crowding out of incumbents that we do not want to limit using zero restrictions.

In the analysis, we combine the spatial error panel VAR in Mutl (2009) with the iden-

tification strategy in Mertens and Ravn (2013). Mutl (2009) models error terms as spatial-

2We also differ from Gourio et al. (2015) because we look at MSAs, which are local labor markets. In
addition, we model and estimate the degree of spillovers among MSAs directly by allowing for the errors to be
spatially correlated.
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autoregressive (SAR) processes, with a spillover parameter that is common for all variables in

the VAR.3 A SAR process for the VAR errors implies in our context that the local markets are

small open economies, but that these economies influence each other through trade or migra-

tion linkages. We document that this SAR structure is important in the data. However, we

allow the degree of spillovers to differ across variables. This generalization is also supported

by the data: For example, we estimate smaller spillovers for job creation than for population

growth. We also show how to factor several shocks that are jointly identified by proxies differ-

ently from Mertens and Ravn (2013) so that one of the shocks is identified exactly by one of

the instruments. This is natural in our application because it allows us to identify an overall

labor demand shock as in the literature. Our framework is useful beyond the specific question

we analyze here, because as Beaudry et al. (2014) illustrate, it is straightforward to use regional

variation to identify both demand and supply shocks using historical predictors.4

Jentsch and Lunsford (2016) have shown that a block bootstrap in a time series setup is

asymptotically valid for proxy VARs as in Mertens and Ravn (2013). Here, we use a block

bootstrap on the spatially filtered data. To account for potential bias in the estimates of

autocorrelation over time and space, we use a bootstrap after bootstrap procedure following

Kilian (1998).

Estimates of the causal effects of startups also matter from a substantive point of view: Pol-

icy makers have often pinned hopes for improving the economy on promoting entrepreneurship.

A recent example is in the city of Detroit, where an initiative to promote startups is reported to

have been put in place to help reverse the decline in population.5 Within the VAR, a typical,

i.e., a one-standard deviation, shock to startup labor demand increases startup employment

initially by 0.6% of overall employment. On impact, the effect of overall employment is am-

biguous, but employment gradually increases and after five years stabilizes 1% higher. We show

that this response is driven by population growth. We also construct historical counterfactuals

of population growth in specific MSAs with and without the identified shocks. For example,

population growth in the San Francisco MSA would have been about 0.25pp. lower per year

from 2008 to 2013 without startup shocks.

To shed light on the driving forces behind our results, we also estimate variants of our model

that allow for heterogeneity across ex ante different MSAs. In the main text, we focus on initial

3Yang and Lee (2015) consider a wide range of spatial interactions in dynamic models. Spatial lags in
outcomes, rather than just spatial errors, are challenging, however, since they can lead to explosive dynamics
across time and space.

4For example, a Card (2001)-type instrument could identify population supply shocks.
5The Economist writes that “people continue to leave a city that has shrunk from 1.8m inhabitants in

1950 to 680,000 today. To reverse this trend, Detroit and the state of Michigan are pinning their hopes on
entrepreneurs. In his address the mayor announced the creation of ‘Motor City Match’, a new programme
funded by foundations and the federal government that will provide $500,000 every quarter for the next five
years as seed money for people wanting to start a business.” (“After the bankruptcy. Green shoots. Can
entrepreneurs revive Motor City?”, US edition, 03/21/2015, p. 22)
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density. Density matters because it captures both congestion or agglomeration forces. We find

that our results are mostly driven by stronger responses of low-density MSAs to startup shocks.

We also extend the analysis to patenting activity as a measure of innovation. We find that

patenting shocks do not lead to much startup activity, nor do startup shocks lead to greater

patenting activity.6

We proceed as follows: In Section 2 we introduce the data and summarize national trends

and regional variation. In Section 3 presents the spatial panel VAR and discusses shock iden-

tification. Section 4 discusses our findings: First, we present standard impulse-responses, the

variance decomposition, and historical counterfactuals for specific MSAs in our baseline model.

Second, we summarize various robustness checks. Third, we allow for heterogeneity by initial

density. Fourth, we analyze patenting activity and startups. Section 5 concludes.

2 Regional Data on Startups

2.1 Data description

We collect data on local labor markets for 354 MSAs from 1978 to 2014, although some series

are available only for a shorter period. The main challenge in assembling the data from various

sources is consistency across space and time: Various sources sample at different points of the

calendar year. Similarly, the composition of metropolitan areas has changed over time. When

combining different data sources we also carefully align the timing as closely as possible with

the startup and employment data. Appendix A provides more detailed descriptions of the data

and how we construct the variables.

Startup data. We use the administrative data from the U.S. Census Bureau’s Business Dy-

namics Statistics (BDS), described in Haltiwanger et al. (2013), for sector-level and metropoli-

tan area-level employment by firm age, and firm exit and entry rates.7 Following Haltiwanger

et al. (2013), we define rates relative to a denominator that averages employment or the number

of firms in the current and the previous year.

Metropolitan area definitions. For consistency with the BDS, we aggregate counties to

MSAs using the 2009 MSA definitions. In rare cases, the definitions of counties themselves have

6This exercise is similar in spirit to the model with group specific coefficients and fixed effects in Bonhomme
and Manresa (2015), except that our cluster is deterministic and based on a single measure. Introducing a
clustering step based on one or multiple measures should be a straightforward extension of our work.

7The sectors are: Agricultural services, mining, construction, manufacturing, utilities, wholesale, retail,
FIRE (finance, insurance, and real estate), and services.
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changed over time. We found only one MSA that was affected by this change.8 Table A.1 lists

all MSAs in our sample.

Metropolitan employment. We use the administrative data from the Census’ County Busi-

ness Patterns for average wage rates and industry-level employment at the MSA level. Average

wage rates are simply first quarter payroll per employee, both summed across all counties within

an MSA. To compute industry-level employment, we need to impute some county-industry-level

employment data. We build on the code from Autor et al. (2013) for the imputation. See Ap-

pendix A for details.

Migration data. Migration data for the United States are obtained from the Internal Rev-

enue Service’s (IRS) Statistics on Income Division. The migration data are based on year-to-

year address changes reported on individual income tax returns filed with the IRS. We use

county-to-county flows for the period 1990–2013 and convert the county flows to MSA flows

using the 2009 MSA definitions. For the period from 1984 to 1989, we use archived IRS data

from the National Archives.9 As most households file tax returns by mid-April of each year,

the migration data lines up with our snapshot of employment and startup data.

Population and density data. Population data were obtained at the county level from

the Census Bureau. Counties are aggregated to MSAs using the 2009 MSA definitions. We

calculate population density as population per square km per MSA, using data from the Census’

American Fact Finder.10 Population is measured for the middle of the calendar year.

MSA proximity matrix. We construct the proximity matrix based on the Census Bureau’s

MAF/TIGER shape files. The proximity is the (inverse) squared Euclidean distance between

the centroids of any pair of MSAs.11 In the appendix, we also consider alternative measures.

House prices. Metropolitan area housing prices are from the CoreLogic Solutions monthly

repeat-sales Housing Price Index. We use March values of the index. MSA level data were used.

However, MSA data where not available for eleven MSAs (Boston, Chicago, Dallas, Detroit,

8The newly created Broomfield county was split out of the Boulder, CO, MSA and as a new county became
part of the neighboring Denver, CO, MSA. We therefore combine the data on the Denver and Boulder MSAs.
In 1997, Dade county, FL, was renamed to Miami-Dade county. This change does not affect our analysis.

9See https://www.irs.gov/uac/soi-tax-stats-migration-data for data from 1990 onward and https:

//catalog.archives.gov/id/646447 for the archived data.
10The population data is from https://www.census.gov/programs-surveys/popest/data/data-sets.

All.html and the area data from https://factfinder.census.gov/faces/tableservices/jsf/pages/

productview.xhtml?pid=ACS_09_5YR_G001&prodType=table.
11https://www.census.gov/geo/maps-data/data/tiger-line.html.
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Los Angeles, Miami, NYC, Philadelphia, San Francisco, Seattle, Washington DC). For these

MSAs, we used data at the NECTA metropolitan division level.12

Patent data. Patents data are often used as an indicator of innovation and we use them as a

robustness check on our finding for startup activity. We use data on patent applications obtained

from the NBER Patent Data Project. The data span the years 1976–2006.13 We identify the

inventors on a patent using data on inventor codes found in the Patent Network Dataverse

(Lai et al., 2013). Patents are assigned to locations based on the zip code associated with the

residential address of the first inventor on the patent. When there are multiple inventors named

on a patent, we assigned the patent to MSAs in proportion to the number of inventors in each

MSA.14

2.2 National trends and regional variation

The national context of our analysis of the local effects and determinants of startup activity

is a trend decline in firm entry, as Figure 1 shows. The median entry rate, measured relative

to the stock of firms, has declined from about 13% in 1978 to 6% in 2014. At the same time,

job creation rates by startups have remained relative stable: The median change in startup job

creation, relative to MSA employment, declined substantially in 1978, but has been averaged

around zero since. The median MSA grew its population around 1% in our sample. There

is, however, substantial variation around these national trends: The median change in the job

creation rate was about 1.25pp. in 1978, and 5% of MSAs experienced a decline of more than

3.5pp. At the same time, however, 5% of MSAs also saw an increase of 1pp. or more. The range

of outcomes in the firm entry rate is also large: in 1978, the bottom 5% of MSAs had entry

rates below 10%, while the top 5% saw entry above 20%. Along with this disparity, population

growth also varied widely.

In our analysis, we study this regional variation. We ask to what extent labor demand

shocks to startups and established firms can explain the different outcomes. Our focus are

regional outcomes relative to time fixed effects. As in Blanchard and Katz (1992), these have

12We use CoreLogic Solutions’ Single Family Combined Index (HPI 4.0 Data) that excludes distress sales.
There are 11 MSAs deemed large enough to be subdivided into their component metropolitan divisions. For ex-
ample, the Dallas-Fort Worth-Arlington, Texas MSA is composed of the Dallas-Plano-Irving, Texas Metropolitan
Division and the Fort Worth-Arlington, Texas Metropolitan Division. We aggregate both metropolitan divi-
sions in this case, and proceed similarly in the other ten cases. We use house prices for the first quarter of each
calendar year to line up approximately with the BDS and CBP data. In rare cases, the first quarter is missing
so we use the last quarter of the preceding year.

13We use only applications up to 2001 to ensure they were processed by 2006. http://www.nber.org/

patents/
14We use application dates for which we only have the calendar year. For grant dates we observe both year

and month, but but the grant date is typically several years in the future.
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Firm entry shows a trend decline in the average MSA, while the change in the job creation rate by startups

and population growth have remained relatively stable. The regional variation around these median outcomes

is large. Our paper studies regional variation and uses predictors based on local industry structure to identify

shocks.

Figure 1: National trends and cross-sectional distribution of VAR variables: 1978 – 2014.

the interpretation of national averages in our baseline analysis. To identify the labor demand

shocks, we also use regional variation. Bartik (1991) proposes to identify shocks using past

local industry composition and industry-specific growth.

Following Bartik (1991), we define our instruments Zx
m,t for some target variable x as:

Zx
m,t =

∑
i

ωm,i,t−τ × xi,t, (2.1)

where ωm,i,t−τ is the industry ith share in region m at time t − τ, τ > 0. xi,t is the national

value of x in industry i at time t, for example, the growth rate of employment in an industry

or the change in the startup job creation rate. In the special case of constant industry shares,

subtracting year and MSA fixed effects, as we do in our analysis, highlights the residual variation

we use to identify shocks:

Zx
m,t − µ̂m − γ̂t =

∑
i

(ωm,i − ω̄m,i)× (xi,t − x̄i) = Ĉov[ω◦,m, x◦,t]. (2.2)

The residual variation predicts higher x in area m at time t, say employment growth, when m

is historically relatively stronger in industries that have grown faster than average in time t. As

Blanchard and Katz (1992, p. 49) discuss, this instrument is valid for labor demand if national

xt is uncorrelated with supply shocks in areas m.15

Figure 2 shows that the standard Bartik (1991) instrument for overall labor demand is a good

15Data permitting, we compute xi,t excluding the MSA whose outcome we want to predict to further vouch
against a mechanical relationship between national xi,t and xm,t. Data limitations prevent us from doing so for
startup labor demand. However, we use data at the sector level that is less concentrated in few areas.
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In the raw data, Bartik (1991)-type instruments for startup activity and overall labor demand are good predic-

tors. To visualize the data, we winsorize the variables at the 0.5% and 99.5% levels. All four variables are in

deviations from time and MSA fixed effects. We bin the observations for clarity with the radius of the circles

indicating the number of observations.

Figure 2: Static reduced form first stage relationship

predictor. Its deviation from year and time fixed effects predicts changes in MSAs employment-

to-population ratio well, with an F -statistic of 67.8. We also construct an analogous instrument

to predict changes in startup job creation. For this instrument, we have to rely on a coarser

industry classification, but we also find it to predict the local change in startup job creation

well with an F -statistic of 31.1. These statistics are, of course, only suggestive: They do not

account for spatial correlation or predictable variation in the outcomes. To do this, we now

turn to a spatial panel VAR. In this VAR, the Bartik (1991)-type predictors serve as external

instruments to identify orthogonal shocks.

3 Empirical Methodology

Our empirical approach is built on a reduced form spatial panel VAR. We use spatially filtered

instruments to identify two shocks in the VAR and use a bootstrap algorithm for inference.

3.1 Reduced form VAR

Our VAR is meant to model local labor markets and ultimately identify shocks based on how

well national industry-specific trends predict outcomes in these local markets. To rule out

that the estimation and identification is biased by common aggregate factors or excluded MSA

specific characteristics, we allow for both location fixed effects µi and year fixed effects ηt. In
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addition, we suspect potential spatial dependence in the shocks affecting the different locations

and therefore allow for a spatial error structure via the distance weights D = [dij]
N
i,j=1. Here,

dij is a measure of the spatial proximity between locations i and j.16 The resulting model for

location i at time t is given by:

Yi,t =
k∑
`=1

A`Yi,t−` + µi + ηt + ui,t︸︷︷︸
q×1

(3.1)

uit =
N∑
j=1

dijRujt +Bεit, εit
iid∼ N (0, Iq), (3.2)

where R = diag([ρ1, . . . , ρq]) with −1 < ρ1, . . . , ρq < 1 parametrizes the degree of spatial

dependence. D is row-standardized such that non-zero rows sum to one and the matrix has a

maximal eigenvalue of unity.

As it stands, equation (3.2) is part of a system of simultaneous equations and as such

untractable. To simplify, it is useful to bring it into vector notation. As a first step, rewrite

equation (3.2):

uit = R
[
u1t . . . uNt

]
D′ei,N +Bεit ≡ RutD

′ei,N +Bεit,

where ei,N is an N × 1 selection vector of zeros except for a one in its Nth position. When

obvious from the context, we drop the second subscript of the selection vector in what follows.

Stacking the model horizontally for each period across all MSAs:

Yt ≡


Y ′1t
...

Y ′Nt


′

= AXt−1 + µ+ ηt1
′
N + ut, A ≡

[
A1 . . . Ak

]
, Xt−1 ≡


Yt−1

...

Yt−k−1

 (3.3)

ut ≡


u′1,t

...

u′N,t


′

= RutD
′ +Bεt. (3.4)

Using the vec operator rule that vec(ABC) = (C ′ ⊗ A) vec(B) and that vec(BC) = (C ′ ⊗
I) vec(B), this can in turn be rewritten as:

vec(Yt) ≡ (IN ⊗ A) vec(Xt−1) + vec(ut), (3.5)

vec(ut) = (D ⊗R) vec(ut) + (IN ⊗B) vec(εt)

= (INq − (D ⊗R))−1 ((IN ⊗B) vec(εt)) , (3.6)

16We discuss the specific proximity measures below.
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where vec(εt) ∼ N (0, INq). This form of the spatial VAR is tractable as it expresses the

forecast error in terms of the iid standard normal residuals vec(εt) and therefore allows us to

write down the likelihood function or to derive the form of the impulse-responses. To gain

intuition, however, it is instructive to consider two special cases:

Special case 1: Common spatial autocorrelation.

Let R = Iqρ. Then:

(INq − (D ⊗R))−1 = (IN ⊗ Iq − (D ⊗ Iqρ))−1

= (IN ⊗ Iq − (Dρ⊗ Iq))−1

= ((IN −Dρ)⊗ Iq)−1

= (IN −Dρ)−1 ⊗ Iq

Using vec(AB) = (B′ ⊗ I) vec(A) in reverse:

vec(ut) = (INq − (D ⊗R))−1(IN ⊗B) vec(εt)

= vec
(
Bεt(IN −D′ρ)−1

)
⇔ ut = Bεt(IN −D′ρ)−1

The term (IN − Dρ)−1 =
∑∞

s=0(ρD)s captures that shocks are multiplied across neigh-

boring regions. The condition that −1 < ρ < 1 guarantees convergence given that D is

row-standardized. This corresponds to the case in the literature, e.g. Mutl (2009).

Special case 2: Univariate process.

Let q = 1. Then:

(INq − (D ⊗R))−1 = (IN −Dρ)−1

and vec(ut) = u′t and similarly for µ. Therefore:

ut = vec(ut)
′ = (INε

′
tB
′)
′
(IN −D′ρ)−1,

in line with the results for a common spatial autocorrelation before.

3.2 Identification

We propose to use instruments external to our spatial panel VAR model for identification, as

in Stock and Watson (2012) and Mertens and Ravn (2013). Denote these instruments by zt.
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Stack the qz ×N instrument matrix zt below the q ×N forecast error ut matrix to yield:17

vec

[
ut

zt − µz − ηzt 1′N

]
= (IN(q+qz) − (D ⊗ R̃))−1(IN ⊗ B̃) vec(ε̃t), (3.7)

where ε̃i,t = [ε′i,t, (ε
z
i,t)
′]′ stacks the shocks to the instruments and the endogenous variables.

Ordering the shocks of interest first, we assume that

B̃ =

[
B 0q,qz

[G,0qz ,p−qz ]B C

]

for full rank matrices B,C, and G. The zero restriction on the upper right corner simply states

that the VAR is not subject to the measurement or prediction error that the instruments are

subject to and that is implicit in the standard VAR formulation. The zero restriction on the

lower left corner [G,0qz ,q−qz ]B corresponds to the standard exclusion restriction in the literature

on instrumental variables: The instruments are uncorrelated with the other structural shocks.

The assumption that G is of full rank corresponds to the standard assumption of instrument

relevance. Together these assumption imply that the qz external instruments identify the qz

structural shocks that are ordered first.

If we have qz > 1 instruments to identify qz shocks, impulse-responses are only set-identified.18

Formally, Mertens and Ravn (2013) show that the instruments reduce the identification problem

from imposing the standard q(q−1)
2

identifying restrictions in the VAR to the lower dimensional

problem of imposing the qz(qz−1)
2

restrictions to factor S1S
′
1 in the following equation:

β[1] =

[
(I − ηκ)−1

(I − κη)−1κ

]
(S1S

′
1)1/2. (3.8)

See Drautzburg (2016, Appendix A.4) for closed-form expressions of η, κ, and S1S
′
1 in terms of

the reduced-form VAR covariance matrix V = B̃B̃′.

Since there are infinitely many square-root matrices when qz > 1, the identified sets for

the impulse-responses are wide. Mertens and Ravn (2013) consider two particular decompo-

sitions: lower and upper triangular factorizations of S1S
′
1. While Drautzburg (2016) shows

that certain policy rules justify these factorizations in the case of policy shocks, our analysis is

concerned with a different type of shock.19 Instead, we pursue a different type of identification.

Importantly, neither of the schemes we consider imposes zero restrictions on impulse-responses.

17More precisely, we extract year and MSA fixed effects from the instruments first.
18 See Moon et al. (2011) for a frequentist analysis of identified sets in VARs.
19Both Mertens and Ravn (2013) and Drautzburg (2016) analyze fiscal and monetary shocks that may well

be described by policy rules for which the theory in Drautzburg (2016) applies. Here, the upper and lower
triangular factorizations have different implications.
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We identify shocks by attributing the variation in the well-understood Bartik instrument

for overall labor demand entirely to the labor demand shock. This makes sure the overall labor

demand shock inherits the standard interpretation in the literature, starting with Bartik (1991)

and with Blanchard and Katz (1992) for VAR models. The startup shock identifies a startup

shock based on the residual variation.

Formally, our identification works by identifying the first shock as proportional to the co-

variance between the first instrument, here the Bartik (1991) instrument, and the within-MSA

forecast errors. We then choose the other shocks to be the orthogonal shock that explains the

residual variation that is jointly explained by all instruments. In our case, there are only qz = 2

instruments and this pins down both shocks exactly.

Proposition 1 (Identifying shocks.). Let V = B̃B̃′ and Γ = V ′q+1:q+qz ,1:q. Partition Γ =

[Γ′1,Γ2]′, where Γ1 is qz × qz. Assume Γ1 is invertible, so that κ = Γ2Γ−1
1 is well defined.

(a) If we only use the first instrument for identification of the first shock, we have β[1] =

[1, (Γ2e1)′ 1
Γ1e1

]′ × c̄ ∝ Γe1 for c̄ > 0 defined below.

(b) Let q1 = c̄1(I − ηκ)Γ1e1. Let q2 = F chol(Λ), where F are the qz − 1 eigenvectors and Λ

the diagonal matrix of strictly positive eigenvalues of S1S
′
1 − q1q

′
1. Then the first identified

shock equals the shock identified using only the first instrument, i.e., β[1]e1 ∝ Γe1.

See Appendix B for the proof.

While we find shocks identified according to Proposition 1, we also report shocks based

on the conditional Cholesky factorization. We find that a lower Cholesky factorization of S1S
′
1

yields results similar to attributing the entire variation in the first instrument to the first shock.

3.3 Inferring additional responses

Using data rather than zero-restrictions to identify shocks makes shock identification more

uncertain. This is particularly true in higher dimensions, when the covariance matrix that

drives the identification grows in size. We therefore find it useful to proceed in a block-recursive

manner, following Zha (1999) and Uhlig (2003): (1) We identify shocks in a relatively small-

scale VAR that contains q core variables, as specified in (3.1); and (2) we estimate the dynamics

of a second block of qp variables. These peripheral variables respond to all shocks and variables

in the system, but do not influence the core variables themselves.20

This approach allows us to infer the response of a number of additional variables without

impeding inference. Of course, if the information set of the smaller VAR were insufficient,

20If we wanted to consider more variables, we could also consider a dynamic factor model or factor-augmented
VAR (Bernanke et al., 2005) estimated at the MSA level in which the external instruments identify structural
shocks to the factors. For the small number of variables we consider, we prefer our simpler approach.
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this approach would be invalid. We show, however, that in practice our findings in the core-

periphery VAR are consistent with estimates of a larger VAR. The larger VAR has qualitative

similar implications but wider confidence intervals for some responses.

Formally, we add two additional sets of equations to the model, analogous to (3.1) and (3.2):

Y p
i,t =

k∑
`=0

Ap,c` Yi,t−` +
k∑
`=1

Ap,p` Y p
i,t−` + µpi + ηpt + upi,t︸︷︷︸

p×1

(3.9)

upit =
N∑
j=1

dijR
pupjt +Bppεit, εit

iid∼ N (0, Iqp). (3.10)

We only use the own lags for the peripheral variables, so that Ap,p` is diagonal. But importantly,

we include all the contemporaneous core variables Yi,t−` in the peripheral VAR. This allows

us to infer responses of the peripheral variables as Ap,c` β[1]. More generally, the responses

of Y p
i,t at longer horizons depend on the interplay of the core and the peripheral variables.

The combined system has a VAR(k) representation with zero restrictions; see Uhlig (2003).21

We can estimate the error structure, however, without any complications. Below we define

R̃ = diag([ρ1, . . . , ρq, ρ
p
1, . . . , ρ

p
qp ]). Also define Ap = [Ap,c0 , . . . , Ap,ck , A

p,p
1 , . . . , Ap,pk ].

3.4 Estimation

We follow the two-step procedure proposed in Mutl (2009) and adapted for our setup with vary-

ing degrees of spatial autocorrelation. First, we difference the data and use an IV procedure

with model-internal instruments to identify the dynamic relationship between the variables of

interest, i.e. A and Ap. Second, we compute the concentrated likelihood for given D and con-

ditional on Â, Âp and choose ρ1, . . . , ρq, ρq+1, . . . ρq+qz to maximize the concentrated likelihood

of {ut, zt}t.22

The concentrated log likelihood is given by:

logLc = −1

2

(
NT log(2π) + 2T log(|IN(q+qp+qz) −D ⊗ R̃|)−NT log(|V̂ |)

)
+ c, (3.11)

where V̂ is the sample covariance matrix of {ε̃i,t}i,t, that is of the residuals [û′it, z
′
it, u

p
it]
′ after

spatial filtering, and c is a constant independent of parameters. The concentrated likelihood

thus depends directly on {ρi} through the determinant |INq − D ⊗ R̃| and indirectly through

the determinant of V̂ . Intuitively, more spatial autocorrelation tends to lower the remaining

21To trace out the dynamic effects, we can write the VAR without constants and spillovers as [Yi,t;Y
p
i,t] =∑k

`=1[I, 0;Ap,c
0 , I][A`, 0;Ap,c

` , Ap,p
` ][Yi,t−`;Y

p
i,t−`] + [B, 0;Ap,c

0 B,Bpp]εi,t.
22For numerical purposes we impose bounds on each ρi to lie within (−0.999, 0.999), but these bounds do

not appear to bind in practice.
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variance of the spatially filtered residuals {ε̃i,t}i,t and thereby increases the likelihood, but

simultaneously lowers the likelihood by lowering the determinant of the Jacobian of the spatial

transform, i.e. |IN(q+qz+qp) −D ⊗ R̃|.
For future reference, it is useful to rewrite the quasi-likelihood function by commuting rows

and columns of the spatial transform. This corresponds to re-ordering the vector of VAR-

residuals. It simplifies performing the computations and extending the model below. Since

|IN(q+qz+qp) − R̃⊗D| =
∏q+qz+qp

s=1 |IN − ρ̃sD|, it follows that:23

logLc = −1

2

(
NT log(2π) + 2T

q+qz+qp∑
s=1

log(|IN − ρ̃sD|)−NT log(|V̂ |)

)
+ c, (3.12)

3.5 Inference

Since the distribution of the implied estimator is non-standard given our two-step estimation

procedure, we use a bootstrap procedure.24 In designing the bootstrap procedure, we exploit

that the residuals are spatially uncorrelated once run through an appropriate spatial filter. We

therefore draw iid with replacement from the spatially filtered residuals vectors, pooled across

MSAs and blocks of time of length τ .25 See Algorithm 1 for details. In practice, we set B = 500

and τ = 3. τ = 3 equals T 1/3 up to rounding in our different specifications.

Blocking of residuals over time accounts for potential residual correlation in the instrument

equations and VAR residuals. We find that it matters little in practice. This is intuitive for the

VAR, because its lags should capture the autocorrelation. And because we use growth rates to

construct the instruments, these should be close to uncorrelated over time absent strong mean

reversion.

When applying this procedure we notice small biases in the estimated autocorrelation: an

upward bias in the estimated degree of spatial autocorrelation and a slight downward bias in

the degree of temporal autocorrelation. We therefore adapt the “bootstrap-after-bootstrap”

procedure from Kilian (1998)26 and run the bootstrap twice. First, with half the number of

23To derive the equality, first define a square N(q+ qz + qp)×N(p+ pzv) commutation matrix PN(q+qz+qp).
|PN(q+qz+qp)| = |P(q+qz+qp)N | = ±1, depending on whether N and q + qz + qp are even or odd, see Lütkepohl

(2005, p. 664) for this and the following results. Then PN(q+qz+qp)D ⊗ R̃P(q+qz+qp)N = PN(q+qz+qp)D ⊗
R̃P−1

N(q+qz+qp)
= R̃ ⊗ D. Putting these results together |IN(q+qz+qp) − D ⊗ R| = |PN(q+qz+qp)||IN(q+qz+qp) −

D ⊗ R||P−1
N(q+qz+qp)

| = |IN(q+qz+qp) − PN(q+qz+qp)D ⊗ R̃P
−1
N(q+qz+qp)

| = |IN(q+qz+qp) − R̃ ⊗ D|. Because R is

diagonal, the matrix inside the determinant is block-diagonal. Using the rule for the determinant of partitioned
matrices (Lütkepohl, 2005, p. 660) repeatedly gives us that |IN(pq+qz+qp) − R̃⊗D| =

∏q+qz+qp
s=1 |IN − ρ̃sD|.

24Note that the wild bootstrap in Mertens and Ravn (2013) typically does not take uncertainty about the
covariance between instruments and forecast errors into account. Jentsch and Lunsford (2016) show that, in a
pure time-series setup, a moving block bootstrap provides asymptotically valid inference.

25For the terminal period, the terminal block has length τ + mod (T, τ). We sample dT/τe blocks with
replacement and use only the first T observations.

26To be precise, Kilian (1998) proposes a bias correction that shrinks the bias correction term towards zero
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Algorithm 1 Bootstrap

For b = 1, . . . , B:

1. Set the initial observations Y
(b)
i,0 , . . . , Y

(b)
i,−(k−1) equal to the actual values.

2. For r = 1, . . . , dT/τe and n = 1, . . . , N :

(a) Draw j(b, n, r) and s(b, n, r) iid (with replacement) from {1, . . . , N} and blocks
{1, . . . , bT/τc}, respectively.

(b) For each n, retain the first T observations to account for the (weakly) longer length
of the terminal block.

3. For t = 1, . . . , T and n = 1, . . . , N :

(a) Generate spatially correlated error terms from spatially filtered residuals:

vec(res
(b)
t ) = (INq ⊗ (D ⊗ ̂̃R))−1 vec([ε̂(j(b,n,r(t)),s̃)]n) for s̃ ∈ s(b, n, r(t)).

(b) Generate variables of interest:

• Y (b)
i,t = cyi +ηyt +

∑k
`=1 A`Y

(b)
i,t−`+res

(b)
i,t,1:p, where res

(b)
i,t,1:p denotes elements 1, . . . , p

of res
(b)
i,t .

• Y p(b)
i,t = cy,pi + ηy,pt +

∑k
`=0 A`Y

(b)
i,t−` +

∑k
`=1 A

p
`Y

p(b)
i,t−` + res

(b)
i,t,q+qz+1:q+qz+qp

, where

res
(b)
i,t,q+qz+1:q+qz+qp

denotes the last qp elements of of res
(b)
i,t .

(c) Generate instruments: Z
(b)
i,t = ĉzi + ηzt + res

(b)
i,t,p+(1:qz).

4. Re-estimate the VAR: Â
(b)
IV ,

ˆ
A
p,(b)
IV , {̂̃ρ(b)

i }i, V̂ (b). Compute and save the statistics of interest.
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repetitions we estimate the average bias in the VAR coefficients and the spatial autocorrelation.

Second, we re-run the algorithm with the bias-corrected coefficients. See Algorithm 2.

Algorithm 2 Bootstrap with bias-correction

1. Run algorithm 1 with B/2 repetitions.

2. For X ∈ {[A1, . . . , A`], [ρ1, . . . , ρq+qz ]}:

(a) Compute the average bias: ΨX = ̂E[X̂ −X] = 1
B/2

∑B/2
b=1 X̂

(b) − X̂.

(b) Compute the bias-corrected coefficient: X̃ = X̂ −ΨX .

3. Re-run Algorithm 1 with B repetitions and {[Ã1, . . . , Ã`], [Ã
p
1, . . . , Ã

p
` ], [ρ̃1, . . . , ρ̃q+qz+qp ]}

in step (3).

3.6 Heterogeneous coefficients

We also examine whether the dynamics differ depending on MSA characteristics. To do so, we

split the sample based on MSA characteristics. When possible, we choose characteristics before

the start of our estimation sample, such as the population density in 1976 or the startup entry

rate in 1978. We then estimate VAR-coefficients, within-MSA VAR-covariances, and spatial

correlations with neighboring MSAs separately for each group. However, we do take account

of the fact that the errors are dependent across groups.27

Specifically, a simple transformation still purges the overall MSA-specific error term of their

spatial dependence. Take the ith component of the overall error term in (3.6). Let G(m) map

MSA m to group g. Define vit = e′i[BG(m)εm,t]
N
m=1 to be the vector of within-MSA forecast

errors. With heterogeneous spatial correlations, the overall error term becomes:

uit =

[∑
n

dmnρ
i
G(m)u

i
n,t + vim,t

]N
m=1

= uitD diag([ρiG(m)]m) + vit

= vit(I −D diag([ρiG(m)]m))−1 (3.13)

Post-multiplying the spatial errors by I − D diag([ρiG(m)]m) therefore rids the error terms of

to ensure that the largest root of the companion matrix of AIV , i.e. KIV in our notation, lies inside the unit
circle. While this correction is irrelevant in our baseline specification, we include it for robustness exercises for
both AIV and {ρj}.

27This is similar in spirit to Bonhomme and Manresa (2015) with group fixed effects and heterogeneous
coefficients, but with known group assignments.
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their spatial dependence. We can estimate Σg = BgB
′
g from the transformed error terms of all

MSAs m that belong to group g.

Thus we conduct our inference separately across groups of MSAs, except for estimating the

spatial correlation coefficients. The group-specific spatial correlation coefficients still maximize

the joint quasi-likelihood across MSAs of all groups. Of course, the bootstrap re-samples from vit,

either using an iid or a block bootstrap, ant then re-introduces the estimated spatial correlation

by post-multiplying with (I −D diag([ρiG(m)]m))−1. This, of course, affects the quasi-likelihood.

Specifically, in (3.12) the common spatial transform now becomes group-specific:

logLc = −1

2

(
NT log(2π) + 2T

q+qz∑
s=1

log(I −D diag([ρsG(m)]m))−NT log(|V̂ |)

)
+ c. (3.14)

4 Results

Here we present our estimates of the local labor market effects of shocks to startups and overall

labor demand. First, we present our baseline specification in detail. Second, we discuss that

the findings carry over to several variations of the baseline specification. Third, we analyze how

the results differ by MSA characteristics. Fourth, we argue, based on our analysis of patenting

and trademark filings, that the average startup boom differs from increases in innovation.

Our specification varies slightly with the available data. Unless we analyze innovation, we

consider 354 MSAs. We allow two lags in our annual VAR. Most samples cover 1986 to 2013,

the era for which we have migration data with k = 2 lags. Discarding the late 1970s and early

1980s has the advantage of excluding observations of rapid decline in startup activity that may

be due to inaccurate measurement in the early part of the sample. However, we show that

similar results hold for the longer sample.

We design our main VAR to capture local labor demand and supply factors. It includes the

change in the job creation rate by startups, the (log) of the employment-to-population ratio,

population growth, and the growth of average wages. We back out the response of the employ-

ment level by accumulating the (log) population response and adding this cumulative change

to the response of the (log) employment-to-population ratio for each bootstrap realization. The

periphery includes the firm entry rate, the firm exit rate of firms aged one, the net migration

rate, and house price growth. While wage growth and house price growth are nominal variables,

we control for national inflation rates and MSA-specific trend inflation by subtracting year and

MSA fixed effects. We thus interpret these variables as real.
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4.1 Baseline results

Impulse-responses. Figure 3 shows the impulse-response functions of our baseline specifica-

tion.28 The top panel in parts (a) and (b) shows the response of the variables in the main VAR,

the bottom panel the response of additional variables. We show the 68% and 90% point-wise

confidence intervals in shades of gray, with the median as the center of the confidence interval as

the black line. We normalize shocks so that both the shock to labor demand by startups and the

overall labor demand shock increase the job creation rate and the employment-to-population

ratio, respectively.

We find that startup shocks have small but persistent effects on local labor demand. In

response to a one standard deviation shock to startup labor demand, the job creation rate

by startups rises by 0.6pp. This means that startups increased employment by about 0.6% of

initial employment. The response of the employment level is, however, initially centered around

zero and becomes significantly positive only after one year. In response to the increased startup

activity, employment rises by about 1% after four years and stays persistently high, driven by

population growth. Population growth, however, leaves the average wage rate unchanged. As

net migration mirrors population growth, this is consistent with low-wage migration in response

to the job creation. We also find a small but persistent increase in house prices following a

startup shock, consistent with population growth causing congestion. Qualitatively, our findings

are in line with the effects of a state-wide entry rate shock identified in Gourio et al. (2016).

They also find persistent increases in population and employment, and higher house prices.

A startup shock also increase firm entry and, with a delay, exit. The firm entry rate increases

by about 0.15pp. on impact and slowly declines back to zero after seven years. The exit rate of

firms one year of age is initially centered at zero and then rises by about 0.01–0.02pp. and also

slowly declines to zero. The higher exit rate following entry likely reflects a selection effect as

unproductive firms exit. However, the entry effect is much stronger – both rates are measured

relative to the stock of firms of all ages.

Overall labor demand shocks largely resemble persistent business cycle shocks: a one stan-

dard deviation overall labor demand shock has a large effect on MSA employment, increasing

employment by about 2.5% and the average wage rate by 1.0% to 1.5%. Population growth

and net migration rise temporarily, but the population level reverts to its mean after about ten

years. Since the employment-to-population ratio is also stationary, employment reverts to zero

after about ten years. Both entry and, with a one year lag, exit rates rise. The effect on entry

is only slightly weaker than the effect of a shock to startup labor demand.

Surprisingly, house prices increase only initially, then start falling two years after the ini-

28We compute IRFs for a counterfactual isolated MSA without spatial spillovers. With spatial autocorrelation
in the errors, the spatial spillovers change the IRFs in each MSA by a constant factor of proportionality that
depends only on the MSA and the variable of interest, but not on the horizon of the IRF.
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tial shock. While this could reflect either construction booms or endogenous changes in land

regulation, we show below that only the pattern, not the relative magnitudes, are robust to

different specifications. The robust pattern of initial appreciation and subsequent reversal is

intuitive for a temporary shock.

Startups also respond to the overall labor demand shock by entering in greater numbers

and increasing their job-creation rate. Subsequently, this leads to higher exit rates of startups.

On impact, however, we find that the exit of young and old firms drops (not reported). This

points to a selection effect concentrated among firms that enter opportunistically as demand

for an MSAs product, or local productivity, increases profits.

We interpret the difference between the responses of the net migration rate and population

growth as reflecting measurement error. Note that the migration response is roughly 0.6 times

that of population growth and shares the same shape in response to both shocks. Figure 4(a)

shows that if we just regress the net migration rate on the population growth rate, after purging

it of MSA fixed effects, we find a cofficient of 0.55. This is about the factor of proportionality

of the VAR responses. Figure 4(b) compares the demeaned time series within the median-sized

Lake Charles, LA, MSA. Except for the late 1980s, the series track each other almost perfectly.

Figure A.1 shows similar patterns for ten more MSAs. Because the series track each other most

of the time, we interpret the discrepancy as measurement error. The alternative would be an

influx of migrants who do not file tax returns or a sudden increase in fertility.

Quality of instruments. Our instruments are good predictors of the shocks. After stripping

out the predictable VAR-variation and disentangling shocks we find F -statistics of 16.2 and 84.3

for the two identified shocks, see Table 1. The 68% confidence interval lies significantly above

10.0. These F -statistics test for each of the two identified shocks whether the instruments are

a good predictor of these shocks.

Table 1: First-stage F -statistics

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 16.2 7.0 10.0 14.8 20.7 26.0
Employment/Pop (log, BDS) 84.3 34.3 47.3 72.6 92.9 104.7

We find that the instruments in our baseline specification are strong: The F -statistics of the first stage regression

of the identified structural shocks on the (spatially filtered) instruments are above 10 with a bootstrapped 90%

confidence interval of (7.0, 26.0) and (34.3, 104.7), respectively.

Spatial correlation. We find that the spatial autocorrelation ranges from small to large

across variables. Table 2 lists the estimated correlation coefficients for each variable: the
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(b) Overall labor demand shock
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Startup shocks have small but persistent effects on local employment, driven by population growth. Average

wages do not rise, possibly due to migration. Overall labor demand shocks have only small effects on startup

employment, but large initial effects on employment that die out after about 10 years. Both shocks lead to more

entry and exit. House price data are from CoreLogic Solutions.

Figure 3: Impulse-responses to startup shocks and overall labor demand shocks in our baseline
VAR.
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(a) Bivariate relationship across MSAs (b) Time-series in median-sized MSA
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We argue that the migration impulse-responses are a scaled-down version of population growth. The lower scale

likely reflects attenuation bias due to measurement error in net migration rates. The scaling factor corresponds

virtually to the slope coefficient in regressions of net migration rates on population growth; see panel (a). As

our example for the MSA with median population size in 1986 in panel (b) shows, the net migration rate often

tracks the population growth rate closely, but can, at times, differ erratically, indicating measurement error in

migration rates.

Figure 4: Relationship between net migration rates and population growth rates

point estimates range from 0.08 for the change in the gross job creation rate to 0.76 for net

migration rates and 0.79 for house price growth. Our bootstrap finds that these estimates are

biased upward. The bias is absolutely larger for the larger coefficients, but always small. The

autocorrelation is significantly positive for all variables at the 95% level, even for the small

autocorrelation for the change in the gross job creation rate.

Table 3 compares our baseline specification with variable-specific spatial auto-correlation

to two restricted specifications: First, a version with common spatial autocorrelation. Second,

a version without spatial correlation. Given that Table 2 documents a high but variable-

specific degree of spatial correlation, it is unsurprising that we can reject the more restrictive

hypotheses: We compare the increase in the (log) quasi-likelihood of our unrestricted model

relative to the restricted models to the bootstrapped differences in the quasi-likelihood under the

more restrictive hypotheses. In both cases we find that the actual increase in the log-likelihood

far exceeds the 99% bootstrapped critical value.

Variance decomposition. Our variance decomposition shows that much of the variation in

labor demand by startups and incumbents is driven by the identified labor demand shocks for

a hypothetical MSA with no neighbors. However, Table 4 also shows that one-fifth to two-

thirds of the variation in the startup job creation rate could be explained by non-identified

shocks, both on impact and at the ten-year horizon. The overall labor demand shock is more
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Table 2: Spatial autocorrelation: Coefficients estimates by variable.

Point Avg. Bias-corrected confidence interval
Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) 0.08 -0.01 0.03 0.05 0.08 0.12 0.16
Employment/Pop (log, BDS) 0.41 -0.02 0.36 0.37 0.40 0.43 0.45
Pop growth 0.55 -0.02 0.49 0.50 0.53 0.56 0.57
Wage growth 0.25 -0.01 0.20 0.21 0.24 0.27 0.30
Firm entry rate 0.58 -0.03 0.52 0.53 0.55 0.57 0.58
House price growth 0.79 -0.03 0.73 0.75 0.76 0.77 0.78
Firm exit rate 0.38 -0.02 0.33 0.34 0.36 0.38 0.40
Net migration rate 0.76 -0.03 0.70 0.71 0.73 0.75 0.76
Firm exit rate (all) 0.54 -0.02 0.49 0.50 0.52 0.53 0.54
Bartik: Entrant’s job creation 0.74 -0.03 0.68 0.70 0.71 0.73 0.74
Bartik: Employment 0.55 -0.03 0.50 0.51 0.53 0.55 0.57

The estimated spatial correlation varies significantly across variables as shown in panel. Prior to bias-correction,

the estimated spatial correlation shows a small upward bias across all variables. House price data are from

CoreLogic Solutions.

Table 3: Spatial autocorrelation: Bootstrapped likelihood ratio test for differential spatial
autocorrelation.

Point Confidence interval
Comparison estimate 1% 5% Median 95% 99%
H0: Constant spatial correlation

Same ρ vs. varying ρs 4.384 0.009 0.015 0.035 0.074 0.115
H0: No spatial correlation

No spatial correlation vs. varying ρs 32.786 0.012 0.018 0.042 0.077 0.108

The table shows likelihood ratio test statistic −2 ln(Lrestricted/Lvarying), divided by N for legibility with boot-

strapped confidence intervals. The hypotheses of a common spatial correlation or no spatial correlation are

rejected at the 1% level according to the simulated distribution of the test statistic in panel. Underlying house

price data are from CoreLogic Solutions.
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tightly estimated, and we find that other shocks account for only one-third to one-quarter of

the variation in the employment-to-population ratio. The identified shocks account for 29% to

72% of the variation in population growth and less than 36% of the variation in wage growth.

This is consistent with a potentially important role for labor supply shocks.

Despite the estimation uncertainty, we find that startup shocks are an important driver

of population growth at both horizons. Because in this model population growth is the only

source of long-run employment growth, this highlights that both startup shocks and the non-

identified shocks are important sources of employment fluctuations. In contrast, the shock

to startup labor demand only has a modest effect on the firm entry rate. This indicates that

increases in startup employment largely operate through the intensive margin of a small number

of entrants.29

Counterfactual histories. A concrete way of understanding the impulse-responses and the

variance decomposition is to look at the historical implications for specific MSAs. We focus on

three large MSAs: Boston, MA (Boston-Cambridge-Quincy, MA-NH), Chicago, IL (Chicago-

Joliet-Naperville, IL-IN-WI), San Francisco, CA (San Francisco-Oakland-Fremont, CA). Fig-

ure 5 shows for each of these MSAs the change in the job creation rate and the rate of population

growth, net of the MSA and year fixed effect. For each series and MSA, we also show estimates

of the counterfactual evolution without either the startup shock (gray area plot) or the overall

labor demand shock (dashed red lines) with 68% confidence intervals.

One conclusion is that the startup job creation rate reflects startup shocks and other shocks,

but overall labor demand shocks hardly matter: In all three MSAs, the path of overall labor

demand shocks are hard to distinguish from the actual data. While the counterfactual without

startup shocks differs significantly from the data, the variation without it is far from zero,

leaving a role to other, unidentified shocks. This confirms the variance decomposition.

The specific contribution of startup shocks varies across MSAs – as it should, given that

we strip out national factors. In Boston, the job creation rate would have been significantly

higher in the absence of startup shocks around 1990 and 2004, but would have been lower in

the mid-1990s and since 2007. In Chicago, we find that the increase in the job creation rate in

1992 was largely driven by startup shocks, but not the one in 1988. Startup shocks subtracted

from job creation for much of 2000 to 2006. In San Francisco, a large startup shock lowered

job creation in the early 2000s. But startup shocks largely contributed to the 1988 boom and

to job creation since 2007.

Both labor demand shocks have significant effects on population growth: In Boston, pop-

ulation growth would have been lower without either shock. In particular, startup shocks

contributed to its population growth in the late 1980s and 2010s, but subtracted from it in

29We verify that this finding also holds when we include the firm entry rate in the core VAR; see Table C.4.
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Table 4: Variance decomposition in our baseline VAR. 68% confidence interval.

(a) Impact effect

Startup shock Overall labor demand Other VAR shocks Idiosyncratic shock
Gross job creation (births) 53.0 (28.8, 76.2) 1.9 (0.3 , 3.5) 45.0 (22.2, 68.8) 0.0 (0.0 , 0.0)
Employment/Pop (log, BDS) 3.8 (0.2 , 7.9) 70.4 (64.0, 77.4) 25.8 (18.1, 33.3) 0.0 (0.0 , 0.0)
Pop growth 39.5 (18.1, 61.3) 10.8 (6.9, 14.6) 49.8 (27.6, 71.0) 0.0 (0.0 , 0.0)
Wage growth 6.2 (0.2, 12.7) 20.4 (14.7, 26.1) 73.4 (64.5, 82.5) 0.0 (0.0 , 0.0)
Firm entry rate 6.8 (4.4 , 9.0) 1.7 (1.0 , 2.4) 2.4 (0.7 , 4.0) 89.2 (87.7, 90.7)
House price growth 0.7 (0.2 , 1.1) 0.2 (0.0 , 0.4) 0.7 (0.3 , 1.1) 98.4 (97.9, 98.9)
Firm exit rate 0.1 (0.0 , 0.1) 0.1 (0.0 , 0.3) 0.3 (0.1 , 0.4) 99.5 (99.3, 99.7)
Net migration rate 13.9 (6.3, 21.8) 6.2 (4.2 , 8.2) 18.5 (10.1, 27.5) 61.3 (56.6, 66.2)
Firm exit rate (all) 0.8 (0.1 , 1.5) 1.9 (1.4 , 2.5) 1.9 (0.9 , 3.0) 95.3 (93.9, 96.8)

(b) 10 year horizon

Startup shock Overall labor demand Other VAR shocks Idiosyncratic shock
Gross job creation (births) 50.9 (26.8, 74.0) 1.8 (0.4 , 3.3) 47.2 (24.4, 70.8) 0.0 (0.0 , 0.0)
Employment/Pop (log, BDS) 2.9 (1.1 , 5.1) 76.5 (70.8, 82.6) 20.6 (14.6, 26.6) 0.0 (0.0 , 0.0)
Pop growth 39.1 (18.0, 60.5) 11.6 (7.8, 15.3) 49.3 (27.6, 70.2) 0.0 (0.0 , 0.0)
Wage growth 6.2 (0.6, 12.3) 20.7 (15.7, 25.8) 73.1 (64.7, 81.4) 0.0 (0.0 , 0.0)
Firm entry rate 9.9 (8.0, 11.9) 2.3 (1.5 , 3.1) 3.9 (2.4 , 5.3) 83.9 (82.3, 85.6)
House price growth 1.1 (0.4 , 2.0) 11.0 (9.9, 12.2) 3.9 (2.8 , 5.0) 83.9 (83.0, 84.9)
Firm exit rate 0.8 (0.4 , 1.2) 3.5 (3.1 , 3.8) 1.1 (0.7 , 1.5) 94.6 (94.1, 95.0)
Net migration rate 15.7 (7.3, 24.4) 7.4 (5.3 , 9.5) 20.7 (11.3, 30.6) 56.2 (51.5, 61.0)
Firm exit rate (all) 1.0 (0.3 , 1.7) 4.1 (3.6 , 4.7) 2.7 (1.7 , 3.8) 92.2 (90.9, 93.7)

The variance decomposition shows that startup shocks explain about half of the variation in the job creation

rate by startups and about 40% of population growth. Overall labor demand shocks contribute little to the

variation in the job creation rate by startups, but explain most of the variation in the employment-to-population

ratio. The variance decomposition differs little at the 10-year horizon. The estimates are more precise for the

overall labor demand shock. Except for migration, the VAR shocks explain relatively little of the peripheral

variables. But Table C.4 shows that the results are similar when we include more variables in the core VAR.

House price data are from CoreLogic Solutions.
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the early 1990s and 2000s. Overall labor demand shocks are significant at times, but removing

them leaves a counterfactual closer to the actual data. In Chicago, population growth would

have been lower without startup shocks during the early 1990s, but higher from 2004 to 2008.

Overall labor demand pulled Chicago’s population growth down in the early 1990s and 2000s,

after being expansionary in the late 1980s. San Francisco mirrors Boston’s population growth,

with a more pronounced contribution from startups to population growth in since 2007 and

before 1990.30
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Startup shocks, but not overall labor demand shocks, are important determinants of the change in the job

creation rate. For example, job creation would have been significantly lower in Boston at the end of our sample

without positive startup shocks. These shocks also matter for population growth, which would also have been

lower in Boston at the end of our sample absent positive startup shocks. All variables in deviations net of MSA

and year fixed effects. We show 68% confidence intervals.

Figure 5: Historical contributions to the change in the job creation rate and population growth:
Comparison of three large MSAs, 1986–2013.

30Note that here, unlike the variance decomposition, we take spatial autocorrelation into account. Setting the
spatial autocorrelation to zero when constructing the counterfactual data diminishes the role of both shocks, but
particularly of overall labor demand shocks. Figure C.1 illustrates that turning off the spatial autocorrelation
in counterfactuals shrinks the counterfactuals toward zero. See, for example, San Francisco’s population growth
in the early 2000s.
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4.2 Alternative specifications

We consider variations of our baseline specification in Appendix C.2. To assess the role of the

identification scheme, we consider alternative a conditional Cholesky factorization to distinguish

the overall labor demand shock from the startup labor demand shock. Figure C.2 shows the

results. For most responses, it is hard to tell the difference between the two schemes. The

difference is most pronounced in the response of the change in the job creation rate to overall

labor demand shocks. With the conditional Cholesky factorization the startup-response has

slightly tighter confidence intervals. Similarly, our block bootstrap produces results that are

very similar to an iid bootstrap. In Figure C.3, the most noticeable difference is the upper error

bands of the population and employment level response to the overall labor demand shock. The

similarity is intuitive because we choose a long enough lag length for the VAR to capture the

autocorrelation of residuals. We also construct instruments out of growth rates that have little

or no persistence.

Using a different distance measure changes the analysis little. In Figure C.4 we classify

MSAs as neighbors when they share a common state, rather than using the inverse Euclidean

distance. The resultant responses are hard to distinguish from the baseline. The same figure

also shows results using the correlation of HP-filtered (log) employment as a proximity measure.

This measure is in the spirit of Crone (2005), who uses it to cluster regions. The results are

again very similar. But Table C.1 shows that the data strongly favors our baseline measure and

both geographic measures beat the measure based on business cycle correlations. This indicates

that the spatial correlation is related to trade costs or commuting costs.

Our results are largely comparable when we extend the lag length. First, the larger number

of regressors does not change the quality of our first stage, see Table C.5. Second, when we

examine impulse-response functions in Figure C.5, we find that the main results carry through to

a VAR estimated with three lags: A startup shock leads to a small but persistent increase in the

employment level that is driven by population growth, the firm entry rate rises, and house prices

increase. An overall labor demand shock causes only a transient increase in the employment

level, has few effects on employment by startups, and raises the entry rate temporarily. House

prices follow the same qualitative pattern of initial appreciation and subsequent reversal. But

the reversal of house price growth is much shorter and simply undoes the initial increase when

employment returns to its initial level. In contrast, a VAR with a single lag appears misspecified:

Figure C.5 indicates that with a single lag, the VAR appears non-stationary. This suggests that

the VAR does not approximate labor market dynamics well.31

31Note that if the underlying data were generated from a DSGE model, our V AR(k) would have to be
fundamental and to approximate the underlying state-space system well. Being fundamental requires a large
enough number of variables in the VAR. Approximating the state-space system requires adding more lags to
the VAR. We therefore trust the results with k ≥ 2 lags that give qualitatively comparable results.

27



Moving variables from the periphery to the core VAR has few effects on the impulse-

responses. In particular, it leaves the responses of the core variables largely unchanged, see

Figure C.6.32 The responses of the peripheral variables show some differences, but still convey

the same message: The firm entry rate still rises significantly in response to a startup shock,

but the impact-response is no longer significant in the larger VAR. House price growth exhibits

the same pattern, but the impact response has a much larger confidence interval in response

to the startup shock. This pattern is intuitive, because the larger VAR and its larger covari-

ance matrix make it harder to identify the shock with external instruments. We find that the

first-stage F -statistics fall by about half compared to our baseline model (Table C.3).

We also consider a longer estimation sample in Figure C.7. Dropping the migration rate,

we begin the estimation in 1980. We find qualitatively similar results, but the effects of the

startup shock on employment and population growth are noisier. At the beginning of the

sample measured startup activity was high but quickly declining. This may reflect a different

type of dynamic than during the remainder of the sample.

4.3 Metro characteristics

Here we analyze whether labor market dynamics differ as a function of an MSA’s characteristics.

In the main text, we focus on the initial density of an MSA. Density is related to spillovers,

which could be positive externalities from innovation, or negative congestion. In Appendices C.4

and C.5 we show that when we split the sample by the initial firm entry rate or Wharton

Regulation Index (Gyourko et al., 2008) the estimates are similar.

Figure 6 shows the main impulse-responses when we allow the 25% densest MSAs in 1978 to

differ from the sparser 75% of MSAs. For overall labor demand shocks we find few differences

across sparser and denser MSAs. However, a one standard deviation shock to overall labor

demand is smaller in denser MSAs and the effect on population growth is slightly smaller,

whereas the effects on wages are slightly larger. By and large, however, the effects mirror our

baseline results in Figure 3.

For startup shocks we find that the response in sparser MSAs is a stronger version of our

baseline estimates, whereas the response in denser MSAs is insignificant. This difference may

reflect weaker spillovers from entry in the denser MSAs or weaker identification. Indeed, we

cannot rule out that our instruments are weak predictors of startup shocks in the denser MSAs

(Table 5). Table C.6 also shows that the spatial correlation is much stronger among denser

MSAs, reducing the independent variation we use for identification. We conclude that the

32Table C.4 compares the variance decompositions. We find that for the firm entry rate, the identified shocks
in the larger VAR that includes the entry rate in the core VAR explain just as much as the shocks in the baseline
VAR. For house prices, the explanatory power is higher in the larger VAR, but still 13% of the variance are
explained by the identified shocks.
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sparser MSAs drive our main results, although it remains unclear whether this is for economic

or statistical reasons.
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We find that MSAs with low initial density have a stronger response to startup shocks than our baseline

estimates, while we cannot identify a significant response in high density MSAs. Overall labor demand shocks,

which are identified well in both groups, have smaller effects in denser MSAs. House price data are from

CoreLogic Solutions.

Figure 6: Impulse-responses to startup and overall labor demand shocks for MSAs grouped by
their initial population density.
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Table 5: First-stage F -statistics for MSAs grouped by their initial population density.

(a) Low density MSAs
Point Confidence interval

Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 27.7 14.3 18.3 25.1 34.0 40.4
Employment/Pop (log, BDS) 81.5 42.3 59.7 77.8 96.0 108.0

(b) High density MSAs
Point Confidence interval

Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 1.5 0.4 0.8 2.3 4.7 6.4
Employment/Pop (log, BDS) 21.5 5.2 9.1 17.1 27.6 34.8

Our instruments are strong predictors of the structural shocks in the low-density MSAs. However, the startup

shock is not well identified in high-density MSAs.

4.4 Innovation

Startups are sometimes conceived as innovators, even though Hurst and Pugsley (2011) caution

that many firms are started for motives other than growing a large business. Here we compare

the response of startups to shocks to patenting in an MSA, one measure of innovation. We

also consider the response of patenting as well as trademark filings to the startup shock we

previously defined. Below we show that the response of innovation to startup shocks and

startups to innovation are insignificant. This finding is in line with Hurst and Pugsley (2011)

that not all startups are innovative – and innovation can be independent of startups.

We identify patenting shocks using historic patenting patterns and nationwide growth in the

technological category of patents. The first stage is similar for both factorizations. The instru-

ments are weaker than in our baseline specification, but the point estimates of the F -statistics

are above 10 for both shocks (Table C.2).33 To allow for the possibility that innovation drives

(part of) industry-level employment, we treat the variation in the patent-Bartik as independent,

now assigning the overall labor demand shock the remainder.34

While we find some evidence that the patenting shock stimulates economic activity, the

effects are short-lived: The employment level reverts to zero after three years. Job creation by

startups increases only by about one-tenth of the increase of the startup shock we identified

previously. The increase in firm entry is statistically significant, but reversed within one period.

33We found that historic trademark filing patterns were only a weak predictor of local trademark filings.
34In Figure C.10, we show the analogous results when we identify the overall labor demand shock as in our

baseline. We find less significant effects on startups, but also on economic activity overall. This is intuitive,
because patenting shocks are likely to also benefit certain industries more than others and the identified shocks
in Figure 7 look very similar. Our baseline identification that treats overall industry variation would thus
attribute most variation to the labor demand shock, even if some is coming from industry shocks to innovation.
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Overall, the responses to patenting resemble those of the overall labor demand shock that is

now identified as the residual. See Figure 7.
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Treating variation in predicted patenting as independent, we find that the identified innovation shock resembles

a shock to overall labor demand, but with smaller effects on employment. The effects of these innovation shocks

on entry and job creation by startups are small.

Figure 7: Impulse-responses to patenting and overall labor demand shocks: 1986–2001.

The response of patenting to startup shocks is centered around zero, but positive in response

to overall labor demand shocks; see Figure 8. Both shocks are identified as before, but estimated

on the smaller sample of MSAs with data on patents.35 This may imply that the overall labor

demand shock picks up industry-specific innovation, but the same is not true for startup shocks.

Figure C.12 shows that for trademarks, the connection between startup shocks and innovation

is weaker still: Trademark filings drop when labor demand increases after a startup shock, but

rises slightly two years after an overall labor demand increase.

35The responses are very close to our baseline response, but noisier given the smaller sample. Extending
the sample to the years for which we do not have migration data confirms the results with tighter confidence
intervals; see Figure C.11.
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Startup shock
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Overall labor demand shock
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Patenting activity reacts little to startup shocks, identified as in our baseline VAR but estimated in the smaller

sample with patent data. Other responses are affected little and the estimates are similar but more precise

when we extend the sample to 1980 (Figure C.11).

Figure 8: Impulse-responses to startup and overall labor demand shocks in MSAs with patent
data: 1986–2001.

Table 6: First-stage F -statistics in VAR with patent shock

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Patent growth 10.3 5.9 7.8 11.1 14.6 17.4
Employment/Pop (log, BDS) 23.5 13.1 16.2 23.4 31.3 37.3

Our Bartik (1991)-type predictor of patenting activity has a reasonably strong first-stage F -statistic and the

overall labor demand shock is well-identified in the smaller sample with patenting data.
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5 Conclusion

Startup activity has declined in the U.S. over the last 35 years. Our main contribution is to

analyze to what extent startup activity is driven by startup shocks and what the consequence

of startup shocks are for local labor markets. Our second contribution is to develop a spatial

panel VAR to do so.

For our analysis, we adapt the recent VAR-identification via external instruments (Stock

and Watson, 2012; Mertens and Ravn, 2013) for spatial panel data models. We base inference

on a simple bootstrap algorithm that allows for residual autocorrelation within MSAs. This

spatial panel VAR model with external instruments allows us to generate external instruments

using historical predictors based on local characteristics. Here, we follow the approach by

Bartik (1991) to generate these instruments for labor demand, but one can derive supply-side

instruments analogously following Card (2001). In our context, multiple instruments jointly

identify the shocks of interest. We show how to factor the identified shocks to preserve the

interpretation of a well-studied first shock, here labor demand shocks as in Blanchard and Katz

(1992).

Our analysis focuses on identifying startup shocks and their dynamic effects on local U.S.

labor markets. We differentiate shocks to labor demand by startups from overall labor demand

shocks. Both types of shocks increase firm entry, so it is important to allow for both channels.

Startup shocks account for roughly half of the variation in labor demand by startups. They

have small but persistent effects on local labor markets. An average startup shock increases

population by roughly 1% after ten years and with it overall employment. The initial employ-

ment effects are small. The population increase is driven by migration, which may explain why

we find that wages are flat after a startup shock. In contrast, overall labor demand shocks have

larger initial effects on employment, but these effects die out after a few years. Our findings on

startup shocks are largely driven by less densely populated and regulated areas. We also find

that startup activity does not relate closely to innovation, in line with research showing that

many firm owners have non-pecuniary motives.
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A Data

County-industry employment imputation. We build on Autor et al. (2013) for our im-
putation. Their code uses the county of establishments within industry-size brackets as well
as employment totals at higher levels to impute county-level employment at the four digit SIC
and six digit NAICS level. Intuitively, the algorithm computes a year-industry specific map-
ping of the binned size distribution of establishments to total year-industry employment. The
algorithm runs repeatedly until estimates on the pooled disclosed and imputed data converge.
We then aggregate the county-industry-level employment to the metropolitan level. Following
Autor et al. (2013), we begin with OLS imputation, imposing lower and upper bounds for av-
erage employment by size bracket after the estimation. This procedure always converges for
the decadal data analyzed in Autor et al. (2013), but not in all years. When the OLS analysis
with ex-post bounds does not converge, we switch to non-linear least squares that imposes the
bounds during the estimation. After imputing employment according to the prevailing classifi-
cation scheme in each year, we use cross-walks from the 1977 SIC classification to the 1987 SIC
classification and from future NAICS classifications to the 1997 six-digit NAICS classification,
which we then, in turn, transform to the 1987 four-digit SIC classification and aggregate up
to the three-digit level.36 We also use this data to compute sectoral weights to predict startup
activity.

Trademark data. We believe the concept of innovation has two parts: the generation of
ideas and the conversion of these ideas into useful commercial applications. A patent refers to
the first stage of innovation. Many inventions are patented, but most patents never reach the
point of commercialization. Those that do often require a long gestation period. A trademark
is a brand name used to identify and distinguish a firm’s goods and services from those of other
firms. We believe trademarks are more closely linked to commercialization of a product than
are patents. Trademarks often do not require a corresponding patent. For these reason we use
trademarks as an additional robustness check.37

Main variable definitions.

• Net migration rate: We define the net migration rate as the difference between inflows

36For the NAICS to SIC crosswalk, we use the crosswalk from Autor et al. (2013). We could not find
a comprehensive crosswalk for the minor within-SIC and within-NAICS changes. To that end, we first use
correspondence tables to identify the mapping between sectors. For some industries, this identifies the mapping
uniquely, i.e., 100% of one or more industries map into a single industry. If one industry maps into more than
one industry, we compute the weights in the crosswalk by regression: We regress the share in the originating
industry in the last year of the old classification on the shares of the receiving industries in the new classification
at the county-industry level. In our baseline specification, we use OLS and set negative coefficients to zero before
normalizing weights to add up to unity. A non-linear LS procedure that respects these constraints yields similar
results, but can become unwieldy in the rare cases when a large number of industries are the receiving industries,
e.g. in the case for some wholesale sectors.

37U.S. Patent and Trademark Office. Overview of the U.S. Patent Classification System (USPC). Washington,
D.C. (2012), http://www.uspto.gov/patents/resources/classification/overview.pdf.
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and outflows of IRS exemptions, divided by the population level in the prior period. The
number of exemptions on tax returns is, typically, the number of household members.

net migration ratem,t =
No. exemptions (inflow)m,t − No. exemptions (outflow)m,t

Populationt−1

(A.1)

• Job creation rate: We define the job creation rate as the change in job creation by firms
aged 0, divided by the average of overall private employment in the current and prior
year.

∆job creation ratem,t =
∆job creation by firms aged 0 in MSAm,t

1
2
(MSA employmentm,t−1 + MSA employmentm,t)

(A.2)

The numerator follows Haltiwanger et al. (2013).

• Firm entry rate: We define the firm entry rate as the number of firms aged 0, divided by
the average of the number of firms of any age in the current and prior year.

firm entry ratem,t =
Firms aged 0 in MSAm,t

1
2
(All firmsm,t−1 + All firmsm,t)

(A.3)

• Firm exit rate: We define the firm exit rate as the number of firms aged 1 that exit,
divided by the average of the number of firms of any age in the current and prior year.

firm exit ratem,t =
Firm deaths of firms aged 1 in MSAm,t

1
2
(All firmsm,t−1 + All firmsm,t)

(A.4)

• Overall firm exit rate: We define the overall firm exit rate as the number of firms of any
age that exit, divided by the average of the number of firms of any age in the current and
prior year.

overall firm exit ratem,t =
Firm deaths of any firm in MSAm,t

1
2
(All firmsm,t−1 + All firmsm,t)

(A.5)

• Employment-to-population ratio: We use overall employment from the County Business
Patterns to compute the log growth rate. This measure agrees closely with BDS employ-
ment; see Figure A.2. It enters the analysis in logs.

• Population growth: We compute the log growth rate. The log growth rate has the advan-
tage of being additive to compute level changes, from which we can back out the change
in the employment level.

• Growth of average wages: We compute the log growth rate of the average wage rate in
the County Business Patterns.

• House price growth: We compute the log growth rate of first quarter house prices.
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• Patent growth: We compute the log growth rate of one plus the inventor-weighted number
of patents in an MSA. We add one to account for the sometimes small number of patents.

• Trademark growth: We compute the log growth rate of one plus the number of trademark
filings in an MSA. We add one to account for the sometimes small number of trademarks.

Definition of instruments.

• Overall labor demand shock proxy:

Zoverall
m,t =

∑
i

ωSIC3
m,i,t−5∆(log(empi,t − empm,i,t) (A.6)

• Startup labor demand shock proxy:

Zstartup
m,t =

∑
i

ωsectorm,i,t−5∆job creation ratei,t (A.7)

• Patenting and trademark shock proxy:

Zpatent
m,t =

∑
i

ωtechnologicalcategorym,i,t−5 ∆(log(#patentsi,t −#patentsm,i,t) (A.8)

• Trademark shock proxy:

Ztrademark
m,t =

∑
i

ωUSPTOclassm,i,t−5 ∆(log(#trademarksi,t −#trademarksm,i,t) (A.9)
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For most periods, population growth and the net migration rate track each other in MSAs. Given that the

two series move closely together for most periods, we interpret the occasional deviations of the net migration

rate from the population growth rate as measurement error. We show the MSAs with the smallest and largest

population in 1986, the start of the migration series, and MSAs next to the deciles of the population size

distribution.

Figure A.1: Net migration rate and population growth rate for MSAs of various sizes
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County Business Pattern (CBP) employment measures and Business Dynamics Statistics employment (BDS)

track each other closely. Population levels change smoothly. We show the MSAs with the smallest and largest

population in 1986, the start of the migration series, and MSAs next to the deciles of the population size

distribution.

Figure A.2: Population, CBP employment, and BDS employment for MSAs of various sizes
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Firm entry rates show a trend decline, whereas job creation rates are almost stable in many MSAs such as New

York, NY, or Ann Arbor, MI. Focusing on the change in job creation by startups, converted to a rate relative to

overall employment, we see stationary series. Firm exit rates also appear stationary. We show the MSAs with

the smallest and largest population in 1986, the start of the migration series, and MSAs next to the deciles of

the population size distribution.

Figure A.3: startup activity for MSAs of various sizes
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The variables in our VAR and its periphery have regional variation that we model and use for identification.

We show the median across MSAs along with the inner 50% and 90% for each point in time.

Figure A.4: Cross-sectional distribution of variables in VAR over time

45



Initial density Entry rate (% of firms) Avg. startup size Patents Trademarks
MSA, state(s) Pop. per sq mi Initial 2013 Initial 2013 Median # Median #
Abilene, TX 49 15.0 6.1 5.3 6.9 5 x
Akron, OH 736 11.8 5.6 5.8 5.4 276 191
Albany, GA 73 12.5 5.1 5.0 6.6 x x
Albany-Schenectady-Troy, NY 276 10.5 7.0 4.4 4.7 328 95
Albuquerque, NM 52 16.0 6.9 5.7 6.1 144 85
Alexandria, LA 75 11.7 4.4 5.9 12.8 5 x
Allentown-Bethlehem-Easton, PA-NJ 432 10.6 5.9 5.0 6.2 249 108
Altoona, PA 261 8.8 5.0 5.9 7.8 7 9
Amarillo, TX 47 14.6 6.5 5.4 4.6 12 13
Ames, IA 122 13.1 4.9 6.6 15.2 46 x
Anchorage, AK 7 21.4 7.1 5.2 5.3 22 18
Ann Arbor, MI 365 13.7 6.6 5.4 5.0 239 96
Anniston-Oxford, AL 186 14.6 4.4 5.4 4.6 3 x
Appleton, WI 161 12.2 4.9 5.0 5.4 60 45
Asheville, NC 133 14.8 7.5 4.6 4.9 54 44
Athens-Clarke County, GA 105 14.3 7.1 5.0 5.9 19 15
Atlanta-Sandy Springs-Marietta, GA 262 16.6 9.2 5.4 5.1 372 1144
Atlantic City-Hammonton, NJ 341 12.9 6.2 4.0 6.8 12 34
Auburn-Opelika, AL 118 13.2 8.2 5.9 8.5 13 x
Augusta-Richmond County, GA-SC 109 13.6 5.6 5.6 10.7 33 26
Austin-Round Rock-San Marcos, TX 126 15.8 10.7 5.7 5.3 556 279
Bakersfield-Delano, CA 46 17.2 7.3 5.2 5.1 57 32
Baltimore-Towson, MD 846 11.9 6.9 4.6 5.6 431 499
Bangor, ME 40 13.3 5.3 3.2 5.0 5 8
Barnstable Town, MA 351 15.5 6.4 4.0 4.1 37 38
Baton Rouge, LA 136 13.3 6.3 6.0 6.2 147 46
Battle Creek, MI 202 10.1 4.6 5.5 5.4 22 19
Bay City, MI 275 10.3 4.2 5.1 5.5 22 x
Beaumont-Port Arthur, TX 173 12.1 5.9 6.1 5.6 29 x
Bellingham, WA 47 19.8 6.9 11.6 4.1 27 37
Bend, OR 16 27.4 8.3 5.2 3.6 20 18
Billings, MT 24 13.5 6.5 5.0 4.2 8 x
Binghamton, NY 219 10.8 5.4 5.4 5.3 113 20
Birmingham-Hoover, AL 172 14.0 6.2 5.8 9.7 33 112
Bismarck, ND 21 17.1 7.5 5.7 5.2 7 x
Blacksburg-Christiansburg-Radford, VA 117 14.6 5.3 7.0 7.7 37 x
Bloomington, IN 106 13.3 5.6 5.3 7.0 22 17
Boise City-Nampa, ID 22 16.7 8.6 5.3 5.2 53 62
Boston-Cambridge-Quincy, MA-NH 1132 11.3 6.9 5.6 5.2 1846 1502
Bowling Green, KY 92 12.8 7.9 8.7 5.1 x 16
Bremerton-Silverdale, WA 319 18.9 7.6 4.5 4.8 22 22
Bridgeport-Stamford-Norwalk, CT 1297 11.8 7.1 4.6 5.5 488 534
Brownsville-Harlingen, TX 219 13.8 7.0 6.0 5.9 5 x
Brunswick, GA 53 16.4 6.7 5.5 5.3 x 5
Buffalo-Niagara Falls, NY 824 11.2 6.4 5.2 6.1 273 172
Burlington, NC 232 11.3 5.2 3.9 5.1 13 26
Burlington-South Burlington, VT 118 16.4 5.7 7.0 4.5 90 55
Canton-Massillon, OH 414 12.3 5.1 5.1 4.7 65 63
Cape Coral-Fort Myers, FL 222 21.4 10.6 5.8 4.5 32 46
Cape Girardeau-Jackson, MO-IL 54 13.2 6.0 4.4 4.3 x 4
Carson City, NV 189 24.2 6.2 5.4 3.4 10 24
Casper, WY 12 15.6 5.6 5.9 4.8 5 x
Cedar Rapids, IA 105 11.9 5.2 5.5 4.5 74 43
Champaign-Urbana, IL 105 14.2 5.8 5.9 5.8 40 29
Charleston, WV 129 12.3 4.4 4.6 7.4 48 14
Charleston-North Charleston-Summerville, SC 157 15.5 8.1 6.3 5.4 52 67
Charlotte-Gastonia-Rock Hill, NC-SC 262 13.8 8.7 5.2 5.3 161 306
Charlottesville, VA 74 13.9 5.8 4.3 5.0 33 44
Chattanooga, TN-GA 197 13.1 6.5 5.7 5.5 34 76
Cheyenne, WY 25 16.6 8.8 5.3 4.8 x x
Chicago-Joliet-Naperville, IL-IN-WI 1118 12.0 7.8 6.0 5.1 2372 3414
Chico, CA 79 17.0 7.0 4.0 4.1 12 15
Cincinnati-Middletown, OH-KY-IN 393 11.6 6.3 5.1 6.3 412 499
Clarksville, TN-KY 77 13.0 6.4 4.3 5.5 7 15
Cleveland, TN 99 13.0 4.5 4.1 4.9 15 7
Cleveland-Elyria-Mentor, OH 1108 10.8 5.5 6.1 7.6 606 670
Coeur d’Alene, ID 41 22.1 7.3 5.0 4.5 10 x
College Station-Bryan, TX 50 13.5 7.1 5.4 6.5 32 x
Colorado Springs, CO 115 18.0 8.0 4.9 4.1 34 85
Columbia, MO 91 14.3 7.8 5.5 3.9 22 17
Columbia, SC 129 14.9 6.6 4.7 5.7 54 61
Columbus, GA-AL 131 12.5 5.8 4.9 4.6 9 18
Columbus, IN 153 11.9 4.2 5.6 7.3 29 x
Columbus, OH 318 12.6 7.3 5.0 7.0 292 356
Corpus Christi, TX 182 12.8 6.2 5.7 9.7 28 11
Corvallis, OR 97 19.2 5.9 6.7 4.0 47 11
Crestview-Fort Walton Beach-Destin, FL 116 16.9 8.0 4.2 5.2 9 13
Cumberland, MD-WV 143 9.2 4.7 4.4 8.8 4 x
Dallas-Fort Worth-Arlington, TX 311 15.7 9.5 6.1 6.7 1085 1459
Dalton, GA 129 17.1 4.9 6.5 5.1 4 28
Danville, IL 109 10.8 3.4 4.5 5.1 6 x
Danville, VA 110 10.7 4.1 4.1 5.5 x x
Davenport-Moline-Rock Island, IA-IL 176 12.1 5.3 5.8 5.3 49 52
Dayton, OH 484 12.0 5.2 5.2 5.9 238 145
Decatur, AL 92 15.7 5.8 5.3 7.2 11 x
Decatur, IL 226 11.3 4.9 5.0 6.8 17 14
Deltona-Daytona Beach-Ormond Beach, FL 208 17.0 8.1 5.0 4.1 28 48
Denver-Aurora-Broomfield, CO 182 16.0 9.3 5.8 4.9 597 884
Des Moines-West Des Moines, IA 135 13.6 6.3 5.9 5.3 43 110
Detroit-Warren-Livonia, MI 1119 12.8 7.5 6.1 6.7 1537 796
Dothan, AL 65 14.5 5.3 6.4 7.2 x 7
Dover, DE 164 11.9 7.3 4.5 4.5 8 27
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MSA, state(s) Pop. per sq mi Initial 2013 Initial 2013 Median # Median #
Dubuque, IA 155 11.5 4.7 5.6 3.7 13 11
Duluth, MN-WI 35 11.6 4.1 6.0 6.0 15 30
Durham-Chapel Hill, NC 160 13.3 7.0 5.2 5.0 145 112
Eau Claire, WI 77 13.9 6.0 4.8 7.9 31 21
El Centro, CA 21 14.2 5.7 4.8 3.8 7 6
Elizabethtown, KY 111 15.4 7.8 3.8 4.0 x x
Elkhart-Goshen, IN 288 11.3 5.4 6.2 6.9 47 51
Elmira, NY 244 10.5 4.7 4.6 4.2 40 x
El Paso, TX 444 13.8 8.0 6.0 5.2 23 36
Erie, PA 350 9.7 3.7 4.7 5.6 63 24
Eugene-Springfield, OR 55 20.0 6.3 5.3 6.5 51 63
Evansville, IN-KY 137 13.2 5.6 5.0 5.7 25 29
Fairbanks, AK 8 20.5 7.2 6.3 5.6 x x
Fargo, ND-MN 47 13.2 6.8 4.8 4.4 18 23
Farmington, NM 13 15.9 5.3 6.4 13.8 6 x
Fayetteville, NC 252 14.0 6.0 4.6 6.4 8 x
Fayetteville-Springdale-Rogers, AR-MO 60 16.2 8.5 4.9 4.9 22 44
Flagstaff, AZ 4 14.4 6.5 4.8 6.5 x x
Flint, MI 701 12.3 5.7 5.8 5.9 56 30
Florence, SC 122 12.9 5.2 5.1 5.5 21 11
Florence-Muscle Shoals, AL 103 13.6 4.9 4.3 7.6 14 23
Fond du Lac, WI 122 11.2 3.8 4.3 5.0 22 x
Fort Collins-Loveland, CO 51 20.4 8.7 4.8 4.8 128 61
Fort Smith, AR-OK 52 12.0 5.7 4.8 6.6 11 x
Fort Wayne, IN 249 11.6 5.4 4.9 7.0 31 57
Fresno, CA 82 16.2 6.8 5.6 5.2 33 67
Gadsden, AL 187 12.0 3.7 8.1 7.5 3 x
Gainesville, FL 116 17.4 7.8 5.7 6.1 70 28
Gainesville, GA 181 12.1 7.5 4.8 4.9 12 x
Glens Falls, NY 65 11.9 5.6 3.6 5.9 22 13
Goldsboro, NC 171 10.7 5.0 4.6 4.6 3 x
Grand Forks, ND-MN 30 11.3 5.0 4.9 9.0 x x
Grand Junction, CO 21 17.5 5.9 5.8 3.6 9 x
Grand Rapids-Wyoming, MI 199 11.9 6.0 5.5 6.6 131 167
Great Falls, MT 32 13.6 5.5 5.5 5.6 x x
Greeley, CO 28 13.9 9.2 4.7 4.2 20 20
Green Bay, WI 117 12.1 5.4 7.7 5.9 34 52
Greensboro-High Point, NC 239 13.1 6.2 5.5 4.9 49 121
Greenville, NC 105 14.4 5.9 4.7 5.4 x x
Greenville-Mauldin-Easley, SC 201 13.3 6.9 5.2 6.2 120 121
Gulfport-Biloxi, MS 124 14.3 5.4 6.7 6.5 11 x
Hagerstown-Martinsburg, MD-WV 164 10.3 5.0 4.2 5.6 13 x
Hanford-Corcoran, CA 52 13.6 5.1 4.5 4.8 x x
Harrisburg-Carlisle, PA 268 10.0 5.5 4.7 8.9 118 62
Harrisonburg, VA 87 11.5 6.0 4.4 5.7 5 9
Hartford-West Hartford-East Hartford, CT 687 11.5 5.8 4.8 6.7 424 285
Hattiesburg, MS 59 12.8 6.4 5.6 7.6 7 x
Hickory-Lenoir-Morganton, NC 157 13.1 4.8 5.5 5.6 40 49
Hinesville-Fort Stewart, GA 38 24.4 5.7 5.1 9.9 x x
Hot Springs, AR 100 13.0 5.6 6.0 4.5 x x
Houma-Bayou Cane-Thibodaux, LA 72 13.3 4.5 5.6 6.1 16 x
Houston-Sugar Land-Baytown, TX 318 17.0 9.6 6.3 7.1 800 804
Huntington-Ashland, WV-KY-OH 174 12.4 5.2 4.1 7.0 21 12
Huntsville, AL 174 14.6 6.6 4.7 5.7 87 26
Idaho Falls, ID 26 13.1 7.1 4.9 3.8 24 18
Indianapolis-Carmel, IN 308 13.1 7.6 5.6 5.8 357 335
Iowa City, IA 84 14.5 6.5 6.0 5.3 25 10
Ithaca, NY 182 13.8 5.0 4.4 4.7 70 17
Jackson, MI 214 9.5 4.2 5.0 8.7 28 14
Jackson, MS 105 14.9 6.8 5.2 4.9 19 33
Jackson, TN 100 11.9 5.3 5.7 7.3 8 6
Jacksonville, FL 220 14.8 9.5 6.0 4.8 70 150
Jacksonville, NC 153 15.5 6.5 4.5 6.6 x x
Janesville, WI 192 11.8 4.3 5.3 6.4 27 21
Jefferson City, MO 47 13.4 5.5 4.9 4.5 7 x
Johnson City, TN 175 12.1 4.8 4.4 6.1 20 x
Johnstown, PA 276 9.0 3.9 5.6 7.0 8 x
Jonesboro, AR 61 14.2 6.9 4.8 6.0 5 x
Joplin, MO 98 12.2 6.7 4.9 3.7 15 13
Kalamazoo-Portage, MI 233 12.1 4.9 5.0 5.2 97 50
Kankakee-Bradley, IL 150 11.1 5.1 6.0 5.1 9 x
Kansas City, MO-KS 189 14.0 7.9 5.7 5.6 160 558
Kennewick-Pasco-Richland, WA 41 16.4 7.2 5.0 4.0 43 11
Killeen-Temple-Fort Hood, TX 83 13.2 6.8 6.1 6.1 x x
Kingsport-Bristol-Bristol, TN-VA 133 13.6 5.2 5.2 5.2 90 25
Kingston, NY 140 11.1 6.0 3.6 4.6 49 28
Knoxville, TN 260 15.2 6.1 5.4 5.9 59 91
Kokomo, IN 188 10.5 4.3 5.4 6.2 40 x
La Crosse, WI-MN 106 12.1 5.0 6.2 7.3 17 13
Lafayette, LA 175 15.3 7.0 5.4 6.9 31 20
Lake Charles, LA 70 13.2 7.5 5.1 6.0 12 x
Lake Havasu City-Kingman, AZ 3 20.3 7.3 4.4 4.5 x 7
Lakeland-Winter Haven, FL 165 15.6 7.4 4.7 6.3 28 31
Lancaster, PA 372 11.0 5.7 4.9 4.8 100 65
Lansing-East Lansing, MI 238 12.7 5.9 5.3 5.1 43 52
Laredo, TX 27 12.5 9.0 5.9 4.5 x x
Las Cruces, NM 23 15.6 5.8 6.2 5.7 10 x
Las Vegas-Paradise, NV 49 17.6 12.0 7.9 7.0 59 364
Lawrence, KS 138 13.6 5.1 6.0 4.5 18 15
Lawton, OK 108 12.4 4.7 5.3 8.5 x x
Lebanon, PA 299 8.5 4.3 4.2 5.1 14 9
Lewiston, ID-WA 32 12.5 5.3 4.6 3.8 x x
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Lewiston-Auburn, ME 210 11.2 5.0 4.9 9.7 6 x
Lexington-Fayette, KY 210 14.0 7.2 5.6 4.7 72 52
Lima, OH 274 9.4 3.7 4.7 5.4 8 x
Lincoln, NE 142 13.4 6.5 5.0 4.9 46 46
Little Rock-North Little Rock-Conway, AR 115 13.9 7.1 5.2 6.0 33 68
Logan, UT-ID 33 14.5 6.9 5.5 3.6 33 22
Longview, TX 87 14.3 6.0 6.0 5.3 21 9
Longview, WA 65 15.8 5.8 4.9 8.7 7 7
Los Angeles-Long Beach-Santa Ana, CA 1869 16.5 9.2 6.1 6.0 2689 4536
Louisville/Jefferson County, KY-IN 254 12.0 6.3 6.0 6.5 68 198
Lubbock, TX 118 14.0 6.5 5.1 6.1 25 16
Lynchburg, VA 88 11.9 5.7 4.9 3.6 38 19
Macon, GA 114 11.9 5.7 4.0 6.2 14 12
Madera-Chowchilla, CA 25 17.3 6.3 4.6 4.3 x 7
Madison, WI 137 13.1 6.1 5.5 5.3 76 151
Manchester-Nashua, NH 300 15.7 6.1 4.8 5.2 170 83
Manhattan, KS 58 12.7 5.2 4.3 7.9 10 6
Mankato-North Mankato, MN 65 10.2 4.1 5.7 6.0 10 16
Mansfield, OH 264 9.4 4.3 4.0 5.3 12 10
McAllen-Edinburg-Mission, TX 165 13.4 9.4 6.4 5.9 x 10
Medford, OR 44 20.1 6.6 5.4 4.5 16 26
Memphis, TN-MS-AR 211 13.0 6.4 5.8 6.4 104 227
Merced, CA 65 13.6 5.8 4.2 5.5 x 8
Miami-Fort Lauderdale-Pompano Beach, FL 579 19.6 11.4 6.0 4.8 630 1459
Michigan City-La Porte, IN 181 11.0 3.7 4.9 3.8 15 12
Midland, TX 82 14.4 9.4 6.3 6.9 13 7
Milwaukee-Waukesha-West Allis, WI 958 11.5 6.0 5.1 6.6 390 382
Minneapolis-St. Paul-Bloomington, MN-WI 352 13.9 7.1 6.2 5.8 1399 1470
Missoula, MT 27 17.7 6.2 5.4 5.4 10 12
Mobile, AL 287 15.7 5.0 5.7 6.6 22 19
Modesto, CA 165 18.6 7.3 5.1 4.6 34 35
Monroe, LA 104 12.8 5.9 4.8 6.8 13 9
Monroe, MI 237 11.8 5.3 4.4 4.4 27 14
Montgomery, AL 101 15.5 5.7 6.6 7.0 8 26
Morgantown, WV 101 12.4 5.9 4.0 10.0 12 x
Morristown, TN 131 12.8 6.0 5.3 6.4 x x
Mount Vernon-Anacortes, WA 33 19.1 5.4 8.7 3.8 10 18
Muncie, IN 332 10.3 4.2 6.6 6.4 10 14
Muskegon-Norton Shores, MI 315 11.0 4.6 4.9 5.1 22 13
Myrtle Beach-North Myrtle Beach-Conway, SC 83 18.6 8.1 5.9 4.8 8 20
Napa, CA 129 15.2 6.9 4.1 6.5 15 86
Naples-Marco Island, FL 35 20.4 9.5 5.3 5.0 x 19
Nashville-Davidson–Murfreesboro–Franklin, TN 151 15.4 8.4 5.3 6.7 89 308
New Haven-Milford, CT 1254 11.2 5.8 4.7 9.3 326 206
New Orleans-Metairie-Kenner, LA 417 12.4 6.7 6.4 7.1 109 133
New York-Northern New Jersey-Long Island, NY-NJ-PA 2482 11.5 8.9 4.9 5.0 4009 7869
Niles-Benton Harbor, MI 308 11.4 4.0 6.7 8.3 40 33
North Port-Bradenton-Sarasota, FL 236 18.4 9.3 5.6 5.7 73 107
Norwich-New London, CT 363 11.2 5.9 4.1 5.8 100 32
Ocala, FL 69 17.2 8.1 4.8 5.4 15 x
Ocean City, NJ 311 15.6 6.1 3.4 2.6 5 x
Odessa, TX 117 14.5 8.2 6.3 5.8 5 x
Ogden-Clearfield, UT 182 16.4 8.2 6.0 5.4 72 53
Oklahoma City, OK 149 14.4 7.7 5.8 6.4 81 121
Olympia, WA 148 19.4 7.0 5.4 3.9 9 13
Omaha-Council Bluffs, NE-IA 151 12.4 6.8 5.6 5.3 40 184
Orlando-Kissimmee-Sanford, FL 209 18.7 10.8 5.3 5.9 176 321
Oshkosh-Neenah, WI 301 11.8 4.7 7.1 5.1 64 43
Owensboro, KY 112 12.4 4.9 5.3 6.1 6 x
Oxnard-Thousand Oaks-Ventura, CA 260 18.3 7.9 5.1 5.1 143 268
Palm Bay-Melbourne-Titusville, FL 238 20.6 8.7 5.6 3.7 103 46
Panama City-Lynn Haven-Panama City Beach, FL 123 15.8 6.6 4.9 5.0 11 x
Parkersburg-Marietta-Vienna, WV-OH 121 12.0 4.3 4.2 6.8 26 13
Pensacola-Ferry Pass-Brent, FL 171 15.3 7.2 5.1 4.9 30 28
Peoria, IL 155 11.4 4.6 5.1 5.5 112 32
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1144 11.5 7.0 5.4 6.9 1764 1943
Phoenix-Mesa-Glendale, AZ 97 17.8 9.5 6.0 6.2 516 610
Pine Bluff, AR 53 11.8 5.1 5.0 6.8 x x
Pittsburgh, PA 508 10.8 5.3 4.7 6.0 644 465
Pittsfield, MA 156 11.8 4.2 4.3 4.7 37 23
Pocatello, ID 27 12.2 5.5 5.7 3.6 6 x
Portland-South Portland-Biddeford, ME 179 13.8 6.2 4.8 4.4 67 87
Portland-Vancouver-Hillsboro, OR-WA 186 17.1 8.2 5.2 4.4 356 499
Port St. Lucie, FL 114 20.0 9.6 5.9 4.8 41 29
Prescott, AZ 7 20.3 7.3 4.3 4.4 15 17
Providence-New Bedford-Fall River, RI-MA 896 10.8 6.0 6.1 5.1 293 348
Provo-Orem, UT 36 16.7 11.2 6.0 6.2 52 141
Pueblo, CO 52 14.2 6.5 4.5 4.9 x x
Punta Gorda, FL 69 21.9 8.9 5.4 4.0 x x
Racine, WI 516 11.4 5.3 8.5 4.7 24 54
Raleigh-Cary, NC 178 15.2 8.8 4.6 5.0 241 144
Rapid City, SD 15 17.8 7.0 5.7 4.8 6 x
Reading, PA 358 9.4 5.4 5.5 6.7 61 54
Redding, CA 27 21.9 5.3 4.1 5.6 12 10
Reno-Sparks, NV 26 17.4 7.4 7.1 5.7 52 129
Richmond, VA 144 13.2 7.2 5.0 5.3 100 177
Riverside-San Bernardino-Ontario, CA 49 19.4 9.3 5.5 5.8 254 255
Roanoke, VA 138 12.0 5.0 4.6 6.3 23 25
Rochester, MN 76 12.9 6.1 4.6 4.8 77 23
Rochester, NY 334 11.6 6.6 5.1 5.0 856 183
Rockford, IL 345 11.4 5.3 5.5 6.1 103 44
Rocky Mount, NC 116 12.1 5.1 4.3 6.5 4 8
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Rome, GA 158 12.4 5.9 6.3 8.3 5 7
Sacramento–Arden-Arcade–Roseville, CA 196 18.9 8.3 5.5 5.1 207 200
Saginaw-Saginaw Township North, MI 284 11.2 4.5 5.0 7.0 37 15
St. Cloud, MN 74 13.3 5.1 5.5 4.6 13 16
St. George, UT 9 15.1 10.8 5.8 5.4 x x
St. Joseph, MO-KS 73 12.3 7.1 4.8 6.3 6 17
St. Louis, MO-IL 291 12.1 8.7 5.6 4.5 506 804
Salem, OR 119 18.2 6.6 4.8 5.9 29 26
Salinas, CA 86 16.0 5.8 4.8 5.2 31 68
Salisbury, MD 119 12.7 5.8 3.7 5.0 5 11
Salt Lake City, UT 62 15.3 8.9 6.2 5.5 225 341
San Angelo, TX 31 12.8 6.5 5.6 4.8 x x
San Antonio-New Braunfels, TX 151 13.8 8.6 5.9 6.6 134 257
San Diego-Carlsbad-San Marcos, CA 408 20.9 8.9 5.2 5.8 849 971
Sandusky, OH 312 8.9 4.5 4.9 5.8 12 8
San Francisco-Oakland-Fremont, CA 1295 15.7 8.3 5.7 5.1 1347 1861
San Jose-Sunnyvale-Santa Clara, CA 468 17.8 8.8 5.5 4.9 2032 835
San Luis Obispo-Paso Robles, CA 42 20.6 6.5 4.3 4.6 26 47
Santa Cruz-Watsonville, CA 393 20.8 6.1 4.9 5.1 86 89
Santa Fe, NM 38 15.4 6.1 4.8 6.3 20 39
Santa Rosa-Petaluma, CA 173 19.4 6.4 4.7 5.4 74 149
Savannah, GA 168 13.6 7.2 5.6 5.5 14 16
Scranton–Wilkes-Barre, PA 346 10.5 5.2 5.6 5.0 40 48
Seattle-Tacoma-Bellevue, WA 326 18.1 8.7 6.3 4.4 678 884
Sebastian-Vero Beach, FL 100 17.0 7.6 6.1 4.2 12 18
Sheboygan, WI 197 11.1 4.2 9.1 4.6 39 27
Sherman-Denison, TX 90 11.4 7.0 3.6 4.9 17 x
Shreveport-Bossier City, LA 134 11.6 6.0 5.6 7.4 22 18
Sioux City, IA-NE-SD 67 11.6 4.8 5.7 5.8 8 15
Sioux Falls, SD 52 14.7 6.8 4.6 5.2 7 25
South Bend-Mishawaka, IN-MI 304 11.8 4.8 5.9 7.5 73 41
Spartanburg, SC 242 12.4 5.5 4.5 7.2 57 34
Spokane, WA 182 15.7 6.5 4.7 4.7 45 57
Springfield, IL 159 10.1 4.7 5.0 7.8 18 16
Springfield, MA 352 9.7 5.4 6.1 4.1 103 106
Springfield, MO 82 15.9 8.5 5.6 4.5 30 63
Springfield, OH 379 9.2 4.1 5.1 5.0 15 12
State College, PA 102 11.4 5.2 4.4 4.4 26 18
Stockton, CA 231 15.0 6.6 4.9 6.1 27 50
Sumter, SC 130 11.7 5.3 5.6 7.2 x x
Syracuse, NY 271 10.8 6.0 5.0 5.0 149 81
Tallahassee, FL 82 15.7 7.1 4.8 5.6 19 30
Tampa-St. Petersburg-Clearwater, FL 588 17.3 9.6 5.5 5.1 218 431
Terre Haute, IN 119 10.1 4.0 5.2 7.7 4 10
Texarkana, TX-Texarkana, AR 73 11.9 5.2 5.2 7.3 x x
Toledo, OH 404 10.6 5.2 5.5 8.5 155 122
Topeka, KS 62 13.2 4.3 4.8 11.3 6 26
Trenton-Ewing, NJ 1387 9.7 7.3 4.3 4.5 289 134
Tucson, AZ 53 16.6 6.5 6.9 5.4 192 117
Tulsa, OK 104 14.3 7.0 5.2 5.5 87 122
Tuscaloosa, AL 60 14.3 6.3 7.6 4.8 7 10
Tyler, TX 127 12.7 7.3 6.2 6.0 12 15
Utica-Rome, NY 125 10.3 4.6 3.9 6.1 27 34
Valdosta, GA 56 12.6 5.1 5.0 7.2 x x
Vallejo-Fairfield, CA 249 16.9 6.1 5.5 5.1 31 34
Victoria, TX 38 14.7 7.3 5.6 7.8 x x
Vineland-Millville-Bridgeton, NJ 279 10.8 5.3 4.7 7.3 7 14
Virginia Beach-Norfolk-Newport News, VA-NC 440 14.4 6.9 4.6 5.3 120 135
Visalia-Porterville, CA 47 16.0 6.2 4.2 4.2 11 22
Waco, TX 158 12.5 6.0 5.7 5.4 11 27
Warner Robins, GA 197 12.7 6.9 3.6 6.0 x x
Washington-Arlington-Alexandria, DC-VA-MD-WV 599 14.0 7.9 5.8 5.5 743 1800
Waterloo-Cedar Falls, IA 115 12.9 4.7 4.6 5.2 23 15
Wausau, WI 69 13.1 4.1 6.6 6.1 16 12
Wenatchee-East Wenatchee, WA 14 14.5 7.5 3.6 3.1 x 8
Wheeling, WV-OH 197 8.7 4.0 3.6 7.9 9 7
Wichita, KS 109 13.6 6.0 5.3 5.6 35 86
Wichita Falls, TX 53 11.1 4.7 5.2 7.2 11 x
Williamsport, PA 96 9.8 5.1 4.0 9.9 23 13
Wilmington, NC 82 15.0 7.9 6.8 4.4 32 30
Winchester, VA-WV 62 12.2 5.4 3.6 4.5 7 15
Winston-Salem, NC 217 13.8 5.9 4.8 5.2 87 93
Worcester, MA 425 9.8 5.8 5.7 4.9 209 130
Yakima, WA 38 16.1 5.5 4.7 4.0 13 19
York-Hanover, PA 333 9.6 5.6 5.1 6.3 58 63
Youngstown-Warren-Boardman, OH-PA 392 10.4 4.6 4.8 7.9 61 46
Yuba City, CA 79 16.6 6.1 5.3 5.3 5 x
Yuma, AZ 14 13.3 5.4 6.1 7.2 3 x
Minimum 3 8.5 3.4 3.2 2.6 3 4
25th percentile 73 11.9 5.3 4.8 4.8 12 16
Median 134 13.3 6.1 5.2 5.5 31 34
75th percentile 239 15.6 7.2 5.7 6.5 87 113
Maximum 2482 27.4 12.0 11.6 15.2 4009 7869

Table A.1: List of MSAs included with MSA characteristics
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B Proof of Proposition 1

Here we re-state and then prove Proposition 1.

Proposition 1 (Identifying shocks.). Let V = B̃B̃′ and Γ = V ′q+1:q+qz ,1:q. Partition Γ =

[Γ′1,Γ2]′, where Γ1 is qz × qz. Assume Γ1 is invertible, so that κ = Γ2Γ−1
1 is well defined.

(a) If we only use the first instrument for identification of the first shock, we have β[1] =
[1, (Γ2e1)′ 1

Γ1e1
]′ × c̄ ∝ Γe1 for c̄ > 0 defined below.

(b) Let q1 = c̄1(I − ηκ)Γ1e1. Let q2 = F chol(Λ), where F are the qz − 1 eigenvectors and Λ
the diagonal matrix of strictly positive eigenvalues of S1S

′
1 − q1q

′
1. Then the first identified

shock equals the shock identified using only the first instrument, i.e., β[1]e1 ∝ Γe1.

Proof. Part (a): The treatment in Stock and Watson (2012) shows most clearly that with a
single shock, the impact response is proportional to Γ. But even if it requires more algebra, we
now also show how this follows from (3.8). Here, we follow the notation in Drautzburg (2016,
Appendix A), except for substituting β for α.

To identify a single shock from (3.8), set qz = 1. η = β12β
−1
22 and κ = β21β

−1
11 = Γ2Γ−1

1 . It
follows that S1 = (β11− β12β

−1
22 β21). By construction, β11 is the conditional standard deviation

of the first variable attributable to the identified shock: β11 =
√

Σ11 − f(Σ, κ), normalizing the
sign of the shock so that the impact-response is positive. κ = Γ2Γ−1

1 , and f(Σ, κ) ≡ β12β
′
12 =

(Σ′12 − κΣ11)′(ZZ ′)−1(Σ′12 − κΣ11) with ZZ ′ =
[
κ −Im−mz

]
Σ

[
κ′

−Im−mz

]
(Drautzburg, 2016,

Appendix A).
To prove that β21 = Γ2 is as desired, use the Woodbury matrix identify to write

(I − κη)−1 = I + κ(I − ηκ)−1η

= I + κη(I − ηκ)−1

where the second equality uses that (I − ηκ)−1 is a scalar with qz = 1.
Consequently:

β21 = (I − κη)−1κS1

= κS1 + κηκ(I − ηκ)−1S1

= κS1 + κ(ηκ− I + I)(I − ηκ)−1S1

= κS1 − κ(I − ηκ)(I − ηκ)−1S1 + κ(I − ηκ)−1S1

= κ(I − ηκ)−1S1 ≡ κβ11 ≡ Γ2
β11

Γ1

. (B.1)

Therefore, β[1] = [Γ1,Γ
′
2]′ β11

Γ1
.

In Proposition 1 we consider qz > 1, so that we need to replace the scalar Γ1 here with
[Γ1]11 = e′1Γ1e1. Consequently, the constant in Proposition 1 is given by c̄ = β11

[Γ1]11
where

β11 =
√

Σ11 − f(Σ, κ), normalizing the sign of the shock so that the impact-response is positive.
Part (b): We proceed in two parts. First, we prove that [q1, q2][q1, q2]′ = S1S

′
1. Second, we

prove that for (S1S
′
1)1/2 = [q1, q2] it holds that β[1]e1 ∝ Γe1.
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(1) Note that the qz × qz matrix S1S
′
1 − q1q

′
1 is symmetric of rank qz − 1. Therefore:

S1S
′
1 − q1q

′
1 =

[
F f⊥

] [Λ 0
0 0

] [
F ′1
f ′⊥

]
= FΛF ′,

where F are qz − 1 normed qz × 1 eigenvectors associated with the strictly positive eigenvalue
λi, where Λ = diag([λi]

qz−1
i=1 ). Because the eigenvectors are normed F ′F = Iqz−1 , f ′⊥f⊥ = 1 and

F ′f⊥ = 0. Therefore q2 = F chol(Λ) satisfies q2q
′
2 = S1S

′
1 − q1q

′
1 as desired.

(2) Rewrite β[1]e1:

β[1]e1 =

[
(I − ηκ)−1

(I − κη)−1κ

]
q1.

By construction:

(I − ηκ)−1q1 = (I − ηκ)−1c̄1(I − ηκ)Γ1e1 = c̄1Γ1e1, (B.2)

as desired.
It remains to show that

(I − κη)−1κq1 = c̄1Γ2e1 (B.3)

to ensure the same factor of proportionality. Plugging in for q1:

(I − κη)−1κc̄1(I − ηκ)Γ1e1 = c̄1Γ2e1.

⇔ c̄1(κ− κηκ)Γ1e1 = c̄1(I − κη)Γ2e1.

⇔ c̄1(I − κη)κΓ1e1 = c̄1(I − κη)Γ2e1.

⇔ c̄1(I − κη)Γ2e1 = c̄1(I − κη)Γ2e1.

The second to last equality uses that κ = Γ2Γ−1
1 . Combining (B.2) and (B.3) it follows that

β[1]e1 ∝ Γe1.
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C Additional estimates

Section C.1 presents additional results for our baseline model. Section C.2 presents various
alternative specifications for our baseline model. Section C.3 shows additional results when we
split MSAs by initial density. Section C.4 shows all results when we split MSAs by initial firm
entry. Section C.6 contains additional results that examine the link between innovation and
startups.

C.1 Additional baseline results
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This plot quantifies the importance of startup shocks and overall labor demand shocks for three MSAs while

turning off the spatial correlation. Compared to Figure 5, we find that turning off the spatial correlation

brings the counterfactuals closer to zero, highlighting the role of spatial correlation in explaining outcomes. All

variables in deviations net of MSA and year fixed effects. We show 68% confidence intervals.

Figure C.1: Historical contributions to the change in the job creation rate and population
growth: Comparison of three large MSAs, 1986–2013. No spatial spillovers (R̃ = 0).
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C.2 VAR specification

(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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We compare two ways to factor the two identified shocks: In our baseline (“independent”), we attribute all the

variation in the standard Bartik (1991) instrument to the overall labor demand shock. In the alternative, we

choose a Cholesky factorization of the variance attributable to the two identified shocks that orders the overall

labor demand shock first (“conditional Cholesky”). Both give almost identical answers. House price data are

from CoreLogic Solutions.

Figure C.2: Impulse-responses in baseline VAR: Treating the standard Bartik IV as independent
vs. ordering it first in a conditional Cholesky factorization.
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(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock
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We compare two bootstrap schemes: In our baseline, we sample blocks of three years at a time. In the iid

bootstrap, we sample year by year independently. We find that the two schemes give very similar answers. We

would expect this if the VAR captured dynamics well and the instruments had little autocorrelation. House

price data are from CoreLogic Solutions.

Figure C.3: Impulse-responses in baseline VAR: 3-period block bootstrap (baseline) vs. iid
bootstrap.
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(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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We compare three different proximity measures: The inverse Euclidian distance between MSA centroids (our

baseline measure), treating MSAs with a common state as neighbors, and using the correlation of HP-filtered

employment levels. All three give very similar identical answers. House price data are from CoreLogic Solutions.

Figure C.4: Impulse-responses in baseline VAR: Inverse Euclidean distance vs common state
or employment correlation as proximity measure.
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Table C.1: First-stage F -statistics: Baseline VAR with various lag lengths

2 ln(LEc /L
S
c )/N

Specification Distance vs. common state Distance vs. correlation of employment
Common spatial correlation 5.4 28.0
Variable-specific spatial correlation 5.0 24.3

The concentrated log-likelihood clearly favors the inverse Euclidean distance as a proximity measure. With

variable-specific spatial autocorrelation, the likelihood ratio is 5.4, and with common spatial correlation the

ratio is 5.0. The differences are much larger when using the correlation of cyclical employment to compute

correlations. The models are not nested, but the distance-based measure increases the fit significantly. House

price data are from CoreLogic Solutions.

Table C.2: First-stage F -statistics in patent VAR for two different shock factorizations

(a) Patent variation independent

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Patent growth 10.3 5.9 7.8 11.1 14.6 17.4
Employment/Pop (log, BDS) 23.5 13.1 16.2 23.4 31.3 37.3

(b) Standard Bartik variation independent

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Patent growth 10.3 5.9 7.7 11.1 14.6 17.4
Employment/Pop (log, BDS) 23.5 13.1 16.3 23.6 31.7 37.8

The F -statistics that measure how well the instruments identify the structural shocks are very similar for both

factorizations of the joint variance spanned by the startup and overall labor demand shocks.
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(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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We compare our baseline model with two lags to specifications with one or three lags. With a single lag, the

VAR seems close to unstable and shock responses are qualitatively different from our baseline estimates. In

contrast, with three lags we find qualitatively similar responses. Because theory suggests that we need a rich

enough VAR specification, we conclude that we need at least two lags to capture the structural impulse-response

functions well. House price data are from CoreLogic Solutions.

Figure C.5: Impulse-responses in baseline VAR: Comparing the lag length
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(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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In our baseline VAR, we model firm entry rate, house price growth, and other variables without allowing them

to feed back into the VAR. When we include entry and house prices in the core VAR, the responses of the

original VAR variables changes little. The responses of the entry rate and house price growth change slightly,

but the larger model has less precise estimates whose confidence intervals are consistent with the estimates from

the smaller model. House price data are from CoreLogic Solutions.

Figure C.6: Impulse-responses in baseline VAR and in larger VAR with entry rate and house
prices.
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(a) Startup shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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(b) Overall labor demand shock

∆ job creation rate Employment level Population growth Firm entry rate House price growth
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Here we drop the migration rate from the peripheral VAR to begin the estimation in 1980. We find qualitatively

similar results, but noisier effects of the startup shock on employment and population growth. House price data

are from CoreLogic Solutions.

Figure C.7: Impulse-responses in baseline VAR: Migration sample (1986–2013) vs. full sample
(1980–2014).
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Table C.3: First-stage F -statistics in baseline VAR and large VAR

(a) Baseline

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 16.2 7.0 10.0 14.8 20.7 26.0
Employment/Pop (log, BDS) 84.3 34.3 47.3 72.6 92.9 104.7

(b) Large VAR

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 7.7 2.4 3.7 6.1 9.4 12.6
Employment/Pop (log, BDS) 42.2 11.7 20.8 33.5 43.9 50.3

The F -statistics that measure how well the instruments identify the structural shocks drop in the larger VAR.

Intuitively, the identification problem becomes harder when we try to tell the two shocks apart from four other

shocks, rather than two other shocks.
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Table C.4: Variance decomposition: Comparison of baseline and large wage VARs. Standard
Bartik independent. 1986–2013. 2 lags. 68% Confidence interval

(a) Baseline VAR

Startup shock Overall labor demand Other VAR shocks Idiosyncratic shock
Gross job creation (births) 53.0 (28.8, 76.2) 1.9 (0.3 , 3.5) 45.0 (22.2, 68.8) 0.0 (0.0 , 0.0)
Employment/Pop (log, BDS) 3.8 (0.2 , 7.9) 70.4 (64.0, 77.4) 25.8 (18.1, 33.3) 0.0 (0.0 , 0.0)
Pop growth 39.5 (18.1, 61.3) 10.8 (6.9, 14.6) 49.8 (27.6, 71.0) 0.0 (0.0 , 0.0)
Wage growth 6.2 (0.2, 12.7) 20.4 (14.7, 26.1) 73.4 (64.5, 82.5) 0.0 (0.0 , 0.0)
Firm entry rate 6.8 (4.4 , 9.0) 1.7 (1.0 , 2.4) 2.4 (0.7 , 4.0) 89.2 (87.7, 90.7)
House price growth 0.7 (0.2 , 1.1) 0.2 (0.0 , 0.4) 0.7 (0.3 , 1.1) 98.4 (97.9, 98.9)
Firm exit rate 0.1 (0.0 , 0.1) 0.1 (0.0 , 0.3) 0.3 (0.1 , 0.4) 99.5 (99.3, 99.7)
Net migration rate 13.9 (6.3, 21.8) 6.2 (4.2 , 8.2) 18.5 (10.1, 27.5) 61.3 (56.6, 66.2)
Firm exit rate (all) 0.8 (0.1 , 1.5) 1.9 (1.4 , 2.5) 1.9 (0.9 , 3.0) 95.3 (93.9, 96.8)

(b) Large VAR

Startup shock Overall labor demand Other VAR shocks Idiosyncratic shock
Gross job creation (births) 48.4 (27.8, 68.9) 1.6 (0.1 , 3.1) 50.1 (29.7, 70.5) 0.0 (0.0 , 0.0)
Employment/Pop (log, BDS) 3.1 (0.1 , 6.1) 46.4 (36.7, 55.6) 50.5 (40.8, 60.6) 0.0 (0.0 , 0.0)
Pop growth 39.5 (21.8, 57.2) 9.9 (5.7, 14.1) 50.7 (32.0, 69.0) 0.0 (0.0 , 0.0)
Wage growth 4.6 (0.2 , 9.2) 25.6 (18.6, 32.6) 69.8 (61.3, 78.1) 0.0 (0.0 , 0.0)
Firm entry rate 5.9 (0.3, 11.9) 3.3 (0.7 , 5.6) 90.8 (83.5, 97.4) 0.0 (0.0 , 0.0)
House price growth 11.9 (1.3, 21.2) 1.2 (0.0 , 2.5) 86.9 (78.1, 96.9) 0.0 (0.0 , 0.0)
Firm exit rate (all) 2.8 (0.8 , 4.9) 2.8 (1.7 , 3.9) 8.4 (5.9, 10.9) 86.0 (83.6, 88.4)
Firm exit rate 0.5 (0.1 , 1.0) 0.7 (0.4 , 1.0) 2.9 (2.0 , 3.7) 95.9 (94.9, 96.9)
Net migration rate 17.4 (9.3, 26.2) 6.8 (4.3 , 9.4) 22.7 (13.5, 31.1) 53.1 (48.2, 57.8)

Estimating a larger VAR leads to a similar variance decomposition for the variables that we model only in the

periphery in our baseline but include in the larger VAR. The identified shocks still explain less 15% of house

price growth and less than 10% of firm entry. House price data are from CoreLogic Solutions.
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Table C.5: First-stage F -statistics: Baseline VAR with various lag lengths

k = 3

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 18.4 2.2 3.0 5.2 7.6 9.5
Employment/Pop (log, BDS) 39.6 18.5 23.5 31.9 41.7 47.3

k = 2

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 16.2 7.0 10.0 14.8 20.7 26.0
Employment/Pop (log, BDS) 84.3 34.3 47.3 72.6 92.9 104.7

k = 1

Point Confidence interval
Variable estimate 5% 16% Median 84% 95%
Gross job creation (births) 14.0 3.9 6.6 11.4 16.7 21.0
Employment/Pop (log, BDS) 83.6 24.8 40.5 68.7 89.0 102.2

The F -statistics measuring the strength of the identification vary little with the number of lags included in the

VAR and are always above 10.0. However, with three lags the bootstrapped distribution of the F -statistic shifts

to the left.
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C.3 Differences in initial density

Table C.6: Spatial autocorrelation: Coefficients estimates by variable; split by density

(a) Point estimates and confidence intervals for model with varying ρs: Low density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) -0.02 0.01 -0.03 -0.02 -0.01 -0.00 0.00
Employment/Pop (log, BDS) -0.07 0.03 -0.06 -0.05 -0.04 -0.03 -0.02
Pop growth -0.14 0.06 -0.12 -0.10 -0.08 -0.06 -0.05
Wage growth -0.06 0.02 -0.05 -0.05 -0.04 -0.03 -0.02
Firm entry rate -0.10 0.05 -0.06 -0.06 -0.05 -0.04 -0.02
House price growth -0.16 0.06 -0.11 -0.11 -0.10 -0.09 -0.08
Firm exit rate -0.06 0.02 -0.05 -0.04 -0.03 -0.03 -0.02
Net migration rate -0.14 0.08 -0.08 -0.07 -0.06 -0.05 -0.04
Firm exit rate (all) -0.12 0.06 -0.07 -0.07 -0.06 -0.05 -0.05
Bartik: Entrant’s job creation -0.08 0.03 -0.06 -0.05 -0.04 -0.04 -0.03
Bartik: Employment -0.11 0.05 -0.08 -0.07 -0.06 -0.05 -0.05

(b) Point estimates and confidence intervals for model with varying ρs: High density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) 0.17 -0.10 -0.03 0.01 0.07 0.14 0.19
Employment/Pop (log, BDS) 0.50 -0.21 0.15 0.21 0.28 0.35 0.42
Pop growth 0.92 -0.34 0.35 0.40 0.54 0.70 0.80
Wage growth 0.40 -0.12 0.17 0.21 0.27 0.33 0.38
Firm entry rate 0.66 -0.30 0.17 0.25 0.33 0.39 0.44
House price growth 1.00 -0.33 0.58 0.61 0.66 0.71 0.75
Firm exit rate 0.40 -0.16 0.16 0.19 0.24 0.29 0.33
Net migration rate 0.90 -0.49 0.25 0.32 0.41 0.49 0.54
Firm exit rate (all) 0.78 -0.36 0.34 0.37 0.42 0.48 0.50
Bartik: Entrant’s job creation 0.56 -0.23 0.22 0.26 0.32 0.38 0.42
Bartik: Employment 0.73 -0.30 0.33 0.37 0.43 0.49 0.52

The estimated spatial correlation is small for low density cities, but larger than in the baseline estimates for

high density areas. For high density MSAs, the spatial correlation varies significantly across variables. House

price data are from CoreLogic Solutions.
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C.4 Differences in initial entry rate

Startup shock: few startups
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Startup shock: many startups
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Overall labor demand shock: few startups
∆ job creation rate Employment level Population growth Wage growth House price growth

0 2 4 6 8 10
years after shock

0

0.1

0.2

p.
p.

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

0

1

2

3

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-0.1

0

0.1

0.2

0.3

0.4

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-0.5

0

0.5

1

1.5

2

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-2

-1.5

-1

-0.5

0

0.5

%

5% / 95%
16% / 84%
median

Overall labor demand shock: many startups
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We split MSAs by their initial firm entry rate. The distribution is skewed to the right, and we set the cutoff at

the 75th percentile. The effects of both shocks differ across MSAs with stronger effects in the MSAs with an

initially lower startup rate. For MSAs with low initial startup rates, our results mirror our baseline estimates.

For MSAs with many startups, our estimates of the effects of startup shocks are very noisy, and we find in

Table C.8 that the corresponding F -statistic is low. We conclude that our identification is likely driven by

MSAs with lower initial entry rates. House price data are from CoreLogic Solutions.

Figure C.8: Impulse-responses to startup and overall labor demand shocks for MSAs grouped
by their initial entry rate.
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Table C.7: Spatial autocorrelation: Coefficients estimates by variable; split by startup entry
rate

(a) Point estimates and confidence intervals for model with varying ρs: Low density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) -0.02 0.01 -0.02 -0.02 -0.01 -0.00 0.00
Employment/Pop (log, BDS) -0.04 0.01 -0.04 -0.04 -0.03 -0.02 -0.01
Pop growth -0.07 0.01 -0.07 -0.06 -0.05 -0.04 -0.04
Wage growth -0.03 0.01 -0.02 -0.02 -0.01 -0.01 -0.00
Firm entry rate -0.13 0.02 -0.11 -0.11 -0.10 -0.09 -0.09
House price growth -0.14 0.02 -0.13 -0.12 -0.11 -0.11 -0.10
Firm exit rate -0.07 0.02 -0.07 -0.06 -0.06 -0.05 -0.04
Net migration rate -0.17 0.03 -0.16 -0.15 -0.14 -0.13 -0.12
Firm exit rate (all) -0.08 0.02 -0.07 -0.07 -0.06 -0.05 -0.05
Bartik: Entrant’s job creation -0.11 0.03 -0.09 -0.09 -0.08 -0.07 -0.06
Bartik: Employment -0.08 0.02 -0.07 -0.07 -0.06 -0.05 -0.05

(b) Point estimates and confidence intervals for model with varying ρs: High density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) 0.10 -0.05 -0.03 0.00 0.05 0.10 0.14
Employment/Pop (log, BDS) 0.25 -0.07 0.09 0.13 0.17 0.22 0.26
Pop growth 0.40 -0.08 0.23 0.27 0.31 0.36 0.38
Wage growth 0.17 -0.08 0.00 0.04 0.08 0.13 0.15
Firm entry rate 0.69 -0.12 0.50 0.53 0.57 0.61 0.63
House price growth 0.75 -0.11 0.57 0.60 0.64 0.67 0.70
Firm exit rate 0.43 -0.10 0.27 0.29 0.33 0.37 0.40
Net migration rate 0.86 -0.12 0.66 0.70 0.75 0.79 0.82
Firm exit rate (all) 0.49 -0.13 0.29 0.32 0.35 0.39 0.42
Bartik: Entrant’s job creation 0.60 -0.14 0.38 0.42 0.47 0.51 0.54
Bartik: Employment 0.49 -0.12 0.28 0.31 0.36 0.41 0.44

The estimated spatial correlation is small for MSAs with few startups, but comparable to the baseline estimates

for areas with high entry rates. For high entry MSAs, the spatial correlation varies significantly across variables.

House price data are from CoreLogic Solutions.
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Table C.8: First-stage F -statistics split by initial entry rates

(a) Low initial entry rate

Point Confidence interval
Gross job creation (births) 24.1 9.6 14.0 22.2 30.9 38.9
Employment/Pop (log, BDS) 88.7 33.9 48.2 69.5 90.1 110.1

(b) High initial entry rate

Point Confidence interval
Gross job creation (births) 5.6 1.8 3.0 5.8 10.0 12.9
Employment/Pop (log, BDS) 25.9 12.7 16.6 23.9 32.5 39.5

The F -statistics measuring the strength of the identification indicate that our instruments predict the identified

shocks well, except for startup shocks in high entry MSAs.
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C.5 Differences in Wharton Regulation Index

Startup shock: low regulation
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Startup shock: high regulation
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Overall labor demand shock: low regulation
∆ job creation rate Employment level Population growth Wage growth House price growth

0 2 4 6 8 10
years after shock

-0.4

-0.2

0

0.2

0.4

p.
p.

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-1

0

1

2

3

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-0.2

0

0.2

0.4

0.6

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-1

0

1

2

%

5% / 95%
16% / 84%
median

0 2 4 6 8 10
years after shock

-2.5

-2

-1.5

-1

-0.5

0

0.5

%

5% / 95%
16% / 84%
median

Overall labor demand shock: high regulation
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We split MSAs by their initial firm entry rate. The distribution is skewed to the right, and we set the cutoff at

the 67th percentile. The effects of both shocks differ across MSAs with stronger effects in the MSAs with an

initially lower startup rate. For MSAs with low regulation, our results are similar to our baseline estimates, but

stronger. For MSAs with high regulation, our estimates of the effects of startup shocks are very noisy, and we

find in Table C.10 that the corresponding F -statistic is low. We conclude that our identification is likely driven

by MSAs with lower regulation. Higher regulation MSAs, however, also show a weaker response to overall labor

demand shocks. House price data are from CoreLogic Solutions.

Figure C.9: Impulse-responses to startup and overall labor demand shocks for MSAs grouped
by their Wharton Regulation Index number.
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Table C.9: Spatial autocorrelation: Coefficients estimates by variable; split by Wharton Regu-
lation Index

(a) Point estimates and confidence intervals for model with varying ρs: Low density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) -0.06 0.03 -0.07 -0.06 -0.04 -0.02 -0.01
Employment/Pop (log, BDS) -0.17 0.03 -0.16 -0.14 -0.12 -0.10 -0.09
Pop growth -0.17 0.07 -0.13 -0.12 -0.10 -0.07 -0.05
Wage growth -0.07 0.02 -0.08 -0.07 -0.05 -0.03 -0.02
Firm entry rate -0.27 0.07 -0.23 -0.22 -0.20 -0.18 -0.17
House price growth -0.31 0.07 -0.26 -0.25 -0.24 -0.22 -0.21
Firm exit rate -0.17 0.04 -0.17 -0.15 -0.13 -0.11 -0.10
Net migration rate -0.36 0.09 -0.30 -0.29 -0.27 -0.25 -0.23
Firm exit rate (all) -0.27 0.10 -0.20 -0.19 -0.18 -0.16 -0.15
Bartik: Entrant’s job creation -0.29 0.10 -0.23 -0.21 -0.19 -0.17 -0.16
Bartik: Employment -0.19 0.08 -0.15 -0.13 -0.11 -0.09 -0.07

(b) Point estimates and confidence intervals for model with varying ρs: High density
Point Avg. Bias-corrected confidence interval

Variable estimate bias 5% 16% Median 84% 95%
Gross job creation (births) 0.18 -0.08 0.02 0.05 0.11 0.16 0.20
Employment/Pop (log, BDS) 0.45 -0.09 0.26 0.29 0.34 0.40 0.43
Pop growth 0.45 -0.18 0.15 0.21 0.28 0.33 0.36
Wage growth 0.21 -0.06 0.06 0.10 0.15 0.20 0.24
Firm entry rate 0.74 -0.19 0.46 0.50 0.54 0.59 0.62
House price growth 0.83 -0.19 0.58 0.60 0.64 0.68 0.71
Firm exit rate 0.46 -0.11 0.29 0.32 0.37 0.41 0.46
Net migration rate 0.94 -0.22 0.61 0.66 0.73 0.77 0.80
Firm exit rate (all) 0.74 -0.26 0.40 0.43 0.48 0.53 0.55
Bartik: Entrant’s job creation 0.78 -0.26 0.43 0.47 0.53 0.58 0.62
Bartik: Employment 0.52 -0.21 0.21 0.25 0.31 0.37 0.41

The estimated spatial correlation is slightly negative for MSAs with low regulation, but comparable to the

baseline estimates for areas with high regulation. For both high and low regulation MSAs, the spatial correlation

varies significantly across variables. House price data are from CoreLogic Solutions.
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Table C.10: First-stage F -statistics split by Wharton Regulation Index

(a) Low Wharton Regulation Index

Point Confidence interval
Gross job creation (births) 17.2 5.3 9.0 15.4 21.9 26.5
Employment/Pop (log, BDS) 61.6 23.1 29.0 43.0 58.0 71.9

(b) High Wharton Regulation Index

Point Confidence interval
Gross job creation (births) 4.9 1.3 2.2 4.4 7.2 9.3
Employment/Pop (log, BDS) 13.4 7.0 9.9 14.9 21.6 28.3

The F -statistics measuring the strength of the identification indicate that our instruments predict the identified

shocks well, except for startup shocks in highly regulated MSAs.
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C.6 Innovation

Patent shock
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Here we show the responses in a model with patenting shock when we identify the overall labor demand shock as

in our baseline. We find less significant effects on startups, but also on economic activity overall. This cautions

against assuming strong effects of innovative activity on local labor markets.

Figure C.10: Impulse-responses to patenting shocks and overall labor demand shocks in our
patenting VAR with the labor demand shock identified as in our baseline VAR.
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Startup shock
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Here we estimate our baseline model in the patent sample and include patenting in the periphery. We find that

patenting does not respond to identified startup shocks, suggesting that much of startup activity does not lead

to measurable increases in innovation.

Figure C.11: Impulse-responses to startup shocks and overall labor demand shocks in our
baseline VAR estimate for MSAs with patenting data: 1980–2001.
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Here we estimate our baseline model in the trademark sample and include trademark filings in the periphery. We

find that trademarking does not respond to identified startup shocks, suggesting that much of startup activity

does not lead to measurable increases in innovation.

Figure C.12: Impulse-responses to startup shocks and overall labor demand shocks in our
baseline VAR estimate for MSAs with trademark data.
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