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Abstract

We analyze set identification in Bayesian vector autoregressions (VARs). Because

set identification can be challenging, we propose to include micro data on heteroge-

neous entities to sharpen inference. First, we provide conditions when imposing a sim-

ple ranking of impulse-responses sharpens inference in bivariate and trivariate VARs.

Importantly, we show that this set reduction also applies to variables not subject to

ranking restrictions. Second, we develop two types of inference to address recent criti-

cism: (1) an efficient fully Bayesian algorithm based on an agnostic prior that directly

samples from the admissible set and (2) a prior-robust Bayesian algorithm to sam-

ple the posterior bounds of the identified set. Third, we apply our methodology to

U.S. data to identify productivity news and defense spending shocks. We find that

under both algorithms, the bounds of the identified sets shrink substantially under

heterogeneity restrictions relative to standard sign restrictions.

Keywords: Structural VAR; set-identification; heterogeneity and sign restrictions; posterior

bounds; Bayesian inference; sampling methods; productivity news; government spending.

1 Introduction

Since the seminal paper by Sims (1980), the structural vector autoregressive (SVAR) model

has been the workhorse for analyzing the dynamics caused by macroeconomic shocks. The

first generation of the literature focused on zero short-run, medium-run, or long-run restric-

tions on impulse responses for identification (e.g., Sims, 1980; Uhlig, 2004; Blanchard and

Quah, 1989). More recent contributions have attempted to work with weaker assumptions.

One popular strand of the literature, going back to Uhlig (2005), Faust (1998), and Canova

and De Nicolo (2002), abandons point identification. Most prominently, Uhlig (2005) in-

troduces agnostic beliefs with qualitative sign restrictions on impulse response functions to

identify a set of impulse response functions. Here, we build on this agnostic approach and
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show how to use easily available micro data in the analysis to sharpen inference for macro

variables.

We make three contributions to the class of set-identified dynamic time series models:

First, we make a conceptual contribution by showing how to formally use micro data for

the sharper identification of macroeconomic shocks by ranking impulse responses. Second,

we derive conditions under which restrictions on the relative ranking of responses sharpen

inference relative to standard sign restrictions. Importantly, this includes inference about

responses of variables not subject to extra restrictions. Third, we contribute theoretically

well founded algorithms for inference. Specifically, we propose two inference methods: (1) We

design an algorithm to directly sample from the posterior over the admissible set, satisfying

all identifying restrictions under agnostic beliefs. The algorithm uses the insight that we

can normalize draws from the appropriately truncated multivariate distribution to generate

draws from the truncated Haar measure that satisfy all restrictions. (2) We also propose an

algorithm for prior robust inference under ambiguous beliefs that generates a distribution

over the bounds of the identified set. One byproduct of this algorithm is a novel way to

characterize the importance of individual constraints. Additionally, both algorithms draw

on the insight that we can use a simple linear program to determine whether the identified

set has positive measure.

How do we rank responses? Consider heterogeneity in an a priori shock elasticities of

different micro aggregates such as industries, such as in the context of a defense spending

shock. Manufacturing industry A might, a priori, be more exposed to these shocks relative

to sector B if the military is a key client of the former industry but not of the latter industry.

We would then restrict industry A to respond more than industry B to a defense spending

shock. We label such restrictions heterogeneity restrictions. While earlier papers such as

De Graeve and Karas (2014) have used heterogeneity restrictions, we show systematically

how such restrictions affect inference. First, we derive analytically conditions under which

our approach sharpens inference. Second, we provide two quantitative applications, to pro-

ductivity news shocks and to defense spending shocks, to show that such restrictions using

micro data also lead to set reduction in practice. In both applications, we also show how

to impose additional heterogeneity restrictions on macro data that reflect beliefs on macro

elasticities.

Our analysis builds on the recent literature on set-identified SVARs. Moon and Schorfheide

(2012) discuss how any prior, no matter how uninformative, can lead to overly informative

inference. Bayesian credible sets thus lie strictly within the frequentist identified set. As a

consequence, Moon, Schorfheide, and Granziera (2013) and others (Giacomini and Kitagawa,
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2014; Gafarov, Meier, and Montiel Olea, 2016a,b)1 have developed methods for inference di-

rectly over the identified set. Our prior robust algorithm samples from the distribution over

the bounds of the identified set. To understand the determinants of the identified set and

building on Moon, Schorfheide, and Granziera (2013), we derive conditions when heterogene-

ity restrictions lead to a strict set reduction relative to standard sign restrictions in bivariate

and trivariate cases. While the logic of the bivariate case carries over to the trivariate case,

the latter matters because we need three dimensions to analyze variables not directly in-

volved in a ranking of restrictions. Intuitively, sign restrictions shrink the identified set if

the conditional covariance required by sign restrictions on impulse responses has the oppo-

site sign of the unconditional covariance: The identified shock then cannot account for all

of the variation in the data. Heterogeneity restrictions impose sign restrictions on linear

combinations of variables. This leads to a set reduction relative to sign restrictions if the

linear combination of covariances following a shock is more at odds with the unconditional

covariances.

Our algorithm for agnostic Bayesian inference is designed to handle even tight identified

sets of strictly positive measure. Its novelty is that it samples directly from the set of admis-

sible rotation vectors. These rotation vectors map reduced-form parameters into structural

parameters. We show that sampling from the truncated multivariate standard normal dis-

tribution and normalizing these draws provides draws from the Haar measure over rotation

vectors, truncated to the admissible set. To implement this insight, we build on the Gibbs

sampler for the truncated multivariate normal distribution from Li and Ghosh (2015). While

the rejection samplers in Uhlig (2005) and Rubio-Ramı́rez, Waggoner, and Zha (2010) can

work well in applications with relatively few restrictions, we show that in our medium-sized

VAR applications, the corresponding acceptance rates are impractically low.

Instead of working with an agnostic prior, some researchers prefer a procedure that is

robust to the choice of prior over rotation vectors. We also consider this case. Our algorithm

for prior robust Bayesian inference is related to the ones in Giacomini and Kitagawa (2014)

when applied to impulse response functions and to Faust (1998) when applied to variance

decompositions. Like the algorithms in Faust (1998) and Giacomini and Kitagawa (2014),

our algorithm provides a distribution of the bounds over the identified set. Giacomini and

Kitagawa (2014) provide a detailed numerical recipe and elegantly derive conditions when

a prior robust Bayesian posterior is asymptotically equivalent to frequentist inference. The

key differences of our algorithm compared with Giacomini and Kitagawa (2014) are: (1) We

avoid rejection sampling to determine whether the identified is empty. Instead, we show that

1See also Faust (1998) and Faust, Swanson, and Wright (2004) for two early different and early applica-
tions to variance decompositions and high-frequency identification, respectively.
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solving a simple linear programming problem allows us to identify empty sets. (2) We always

use optimization to find the boundaries of the identified set rather than rejection sampling.

Given our finding that rejection samplers perform poorly in our quantitative applications,

these differences matter. Instead, for each set of reduced-form parameters, we optimize the

bounds on variance decompositions or impulse responses also in our quantitative applications.

(3) As a byproduct of our algorithm, we compute Lagrange multipliers for each restriction.

These multipliers are a natural measure of the importance of restrictions for set reduction.

Heterogeneity restrictions can also address recent criticism that seemingly uninformative

priors used in applications can have implications that researchers do not desire. Baumeister

and Hamilton (2015) show that the uniform prior over rotation matrices and dominates

the posterior over the structural parameters. They propose to elicit priors directly on the

structural representation of the SVAR. Instead, we show how, besides micro heterogeneity

restrictions, we can impose beliefs on macro elasticities while working with an agnostic

prior or being prior robust. Technically, this is another heterogeneity restriction. In one

application, we use this device to discipline the posterior distribution over fiscal multipliers.

Conceptually, this is similar to the elasticity bounds Kilian and Murphy (2012) introduce in

their analysis of oil markets. Arias, Rubio-Ramirez, and Waggoner (2014) analyze agnostic

Bayesian inference with sign and zero restrictions. They provide a sophisticated framework

for such inference and provide examples of how existing papers imposed beliefs that were

only implicit in their analysis. Our algorithm for agnostic inference is efficient also in large

VARs and does not require special treatment of zero restrictions. Instead, we approximate

zero restrictions as “soft” zero restrictions that are just another heterogeneity restriction.

This approach is less dogmatic than precise zero restrictions and works well in our news

shock application.

We show in two quantitative applications that heterogeneity restrictions on micro vari-

ables sharpen inference about macro variables substantially in practice. In our first ap-

plication we identify the dynamic effects of productivity news shocks. These shocks raise

the value of stocks, are expansionary, and lead to higher TFP in the future. Beaudry and

Portier (2006) and most recently Kurmann and Sims (2017) have argued that productivity

news shocks are an important determinant of output, accounting for 60-80% of the output

forecast error — despite disagreement about the relevant horizon. We revisit this topic

under the heterogeneity restriction that productivity news move the stock returns of R&D-

intensive industries more. We measure the R&D intensity using Compustat data for five

Fama and French (1997) industries. The restriction that more innovative sectors respond

more sharpens our inference substantially: Heterogeneity restrictions lower the maximum

forecast error variance (FEV) in output from 70-90% of the total variance to about 30-60%
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at the posterior median, depending on the horizon. The peak prior robust impulse response

of output to productivity news also falls, by about 30% or 0.6pp at the 99th percentile.

Heterogeneity restrictions are more important than standard sign restrictions for sharpening

the upper bound on impulse responses. We also use a macro heterogeneity restriction to

show that our results are robust to a (soft) zero restriction on initial TFP, similar to Barsky

and Sims (2011).

In our second application, we identify a defense spending shock financed through higher

taxes. In the spirit of Nekarda and Ramey (2011) we characterize the macroeconomic effects

with the help of the differential effects on manufacturing industries. Our heterogeneity

assumption is that shipments of all manufacturing industries rise, but more so in industries

with a higher share of sales to the government, as measured by the input-output linkages

computed by Nekarda and Ramey (2011). One of the variables included in this application

is real federal debt, and its response is left unrestricted. With heterogeneity restrictions,

but not with sign restrictions, we find evidence that despite the tax increase, federal debt

rises in response to spending shocks under the fully Bayesian posterior. We also find that

heterogeneity restrictions halve the width of the 90% fully Bayesian credible set, so that the

10-year present value multiplier (Mountford and Uhlig, 2009) lies between 0.5 and 3 with

68% posterior probability. This compares to a range of -1 to 4 with standard sign restrictions.

We see at least two avenues for future research based on our work. First, our contributions

naturally carry over to factor-augmented VARs and dynamic factor models in general as in

Amir-Ahmadi and Uhlig (2015), to panel VARs as in De Graeve and Karas (2014), or to

time-varying parameter VARs with stochastic volatility popularized by Primiceri (2005)

and Cogley and Sargent (2005). Our proposed identification scheme is independent of the

specific statistical model, and our analytical results regarding its efficiency are static and

thus independent of how the dynamics are modeled. In addition, the algorithms we develop

can also easily be applied to more general VAR-style models. Given that inference in these

models is already more demanding, having an efficient algorithm for sampling from the

admissible set becomes even more important than in our VAR application. Second, we could

potentially combine heterogeneity restrictions with sign restrictions on shocks, developed by

Antolin-Diaz and Rubio-Ramı́rez (2016) and Ludvigson, Ma, and Ng (2017), to combine our

approach with approaches that use proxy variables for inference.

This paper is structured as follows. First, we set up the general statistical model and

identification problem with sign and heterogeneity restrictions. In this general framework,

we characterize the identified sets in bivariate and trivariate models. Second, we show how to

detect whether identified sets are non-empty for given restrictions, derive our direct sampler

from the admissible set of rotation vectors, and develop two algorithms for inference. Third,
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we provide two quantitative applications to productivity news shocks and defense spending

shocks in the US. An extensive appendix contains all proofs and additional empirical results.

2 Model

Here we set up the standard Bayesian VAR framework and define the sign and heterogeneity

restrictions that we analyze. We discuss that heterogeneity restrictions can narrow the

identified set and provide sufficient conditions for identified sets to have positive measure.

We illustrate the concept of heterogeneity restrictions through examples. Last, we provide

conditions when heterogeneity restrictions, compared with pure sign restrictions, lead to

strict set reduction and no set reduction in bivariate and trivariate VARs.

2.1 Setup

We work with a Gaussian VAR with a conjugate prior over the identifiable reduced-form

parameters. Specifically, the p × 1 vector of observables yt depends on k lags and has iid

normally distributed forecast errors et.

yt = µ+

k∑

ℓ=1

Bℓyt−ℓ + et, et
iid∼ N (0,Σ). (2.1)

Structural VARs are underidentified and require a number of additional restrictions to

provide a one-to-one mapping of the reduced-form innovations et to structural shocks ǫt by

factoring the variance-covariance matrix Σ. This can be summarized as follows:

et = Aǫt, ǫt
iid∼ N (0, Ip), Σ = AA′. (2.2)

In addition to this generic VAR restriction, we impose restrictions on the signs of impulse-

response functions. We now lay out the notation needed to formalize these restrictions.

We define impulse vectors following Uhlig (2005):

Definition 1 (Impulse vector). The vector a ∈ Rp is called an impulse vector, iff there is

some matrix A, so that AA′ = Σ and so that a is a column of A.

Formally, let Ã be the lower Cholesky matrix and take any rotation matrix Q = [q1, . . . , qp].

Then the columns of ÃQ are impulse vectors. We can thus express impulse vectors without

loss of generality as:

a = Ãq, ||q|| = 1. (2.3)
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We use || · || to denote the Euclidean norm throughout. Generally, these impulse vectors

do not have an economic interpretation, unless they satisfy economic restrictions that we

introduce below. In general, we can then write our full model as:

p(Y T , B,Σ, Q) = ℓ(B,Σ|Y T )π0(B,Σ)πQ(Q|B,Σ), (2.4)

where Y T collects the history of observables, ℓ is the likelihood function, π0 denotes the

prior over the identifiable reduced-form parameters, and πQ denotes the prior over Q that

incorporates restrictions on impulse responses. We later assume a standard conjugate prior

over (B,Σ) and take these parameters for now as given. We discuss estimation in section 3.

Now we focus on what we can learn about Q from the reduced-form parameters and beliefs

about impulse responses. We assume that πQ has full support over the identified set.

2.2 Sign and heterogeneity restrictions

To identify structural impulse vectors, we impose qualitative restrictions on the impulse-

responses Q induces. To define these restrictions, we need extra notation. Given the com-

panion form Yt = BY Yt−1 + Aǫt of the VAR (2.1) the impulse-response at horizon h is:

rha =
[

Ip 0p,p×(k−1)

]

(BY )
h

[

a

0p×(k−1),1

]

(2.5)

We are now equipped to define sign restrictions, following Amir-Ahmadi and Uhlig (2015).

Imposing sign restrictions is equivalent to picking a list LSR ⊆ {(s, n)|s ∈ {−1, 1}, n ∈
{1, . . . , p}} of variables n and signs s as well as a restriction horizon H ≥ 02.

Definition 2 (Sign restrictions). The impulse vector a satisfies the sign restrictions (LSR, H)

iff s× rha,n ≥ 0 for all (s, n) ∈ LSR and h ∈ {0, . . . , H}.

We define heterogeneity restrictions similarly, except that they are defined for pairs of

variables (n,m) and have an associated strength λ ∈ R+. Define LHR ⊆ {(s, n,m, λ)|s ∈
{−1, 1}, (n,m) ∈ {1, . . . , p}2, λ(n−m) 6= 0, λ ≥ 0}.

Definition 3 (Heterogeneity restrictions). The impulse vector a satisfies the heterogeneity

restrictions (LHR, H) iff s× rha,n ≥ λs× rha,m for all (s, n,m, λ) ∈ LHR and h ∈ {0, . . . , H}.

Sign or heterogeneity restrictions shape the admissible set of q and the identified set of

structural parameters that we now define:

2Note, that extending the list to have have potentially different binding horizons for each pair of inequality
restrictions would be straightforward. For ease of notation, we use a common H here.
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Definition 4 (Admissible set). The admissible set AS(L, H) is the collection of all q, with

L2−norm 1 for which a = Ãq satisfies the restrictions in (L, H).

Definition 5 (Identified set). The identified set IS(f | L, H) is the set of all f(q) with q in

the admissible set, where f(q) is some objective function.

f(q) can be any nonlinear function of parameters such as impulse response functions or FEV

decompositions.

With a specific prior over Q and for given percentiles of the posterior distribution, the

heterogeneity restrictions can produce more dispersed posterior percentiles: The tighter re-

strictions can shift mass away from the center of the prior toward the tails of the distribution,

as we show in our applications. For the (distribution-free) identified set, however, there is

a clear sense in which heterogeneity restrictions are tighter than sign restrictions: Hetero-

geneity restrictions can nest the standard sign restrictions. If they do so, the identified set

is weakly smaller.

Lemma 1 (Weakly smaller identified set with heterogeneity restrictions). Write LSR =

{(s(j), n(j))|j = 1, . . . , J} for the full set of sign restrictions and write LHR = {(s(j), n(j), m(j), λ(j))|j =
1, . . . , J} for the analogous set of heterogeneity restrictions. If for all j = 1, . . . , J n

(j)
SR = n

(j)
HR

and λ(j) ≥ 0, then the identified set for a induced by LHR is weakly smaller than the set for

a induced by LSR.

Proof. (Sketch.) Note that for λ(j) = 0, the restrictions in L
(j)
HR imply the restrictions in L

(j)
SR

given that n
(j)
SR = n

(j)
HR.

Below we provide conditions under which the identified sets are also strictly smaller than

with pure sign restrictions in two- and three-dimensional VARs.

Heterogeneity restrictions may also apply when no sign restrictions are available because

we can only sign the difference in the responses. For example, we might know that lump-sum

fiscal transfers raise the expenditure of highly leveraged households more than those with

low leverage. Depending on how the transfers are financed, some household might actually

cut expenditures, for example if they pay most taxes. In that case we might want to impose

only heterogeneity restrictions that do not nest the standard sign restrictions.3

Can heterogeneity restrictions be too tight and result in empty identified sets? We now

provide sufficient conditions to guarantee a non-empty identified set. While the focus on

impact restrictions is more restrictive than our empirical specifications, the same intuition

applies when we can rule out overshooting responses or the restricted horizon is short enough.

3In a sense, also in that case the heterogeneity restrictions are stronger because the sign restrictions
could leave an unrestricted set of a = Ãq subject only to ||q|| = 1, while the heterogeneity restrictions imply
restrictions.
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Formally, if heterogeneity restrictions are imposed on impact only and satisfy the order

condition J ≤ p and a rank condition, there is always a set of impulse-vectors a that are

consistent with the heterogeneity restrictions.

Lemma 2 (Non-empty identified set under rank condition). Assume H = 0, J ≤ p, all

n(j) are distinct. Let Λ be a J × p matrix of zeros, except for λ(j)s in the (j,m(j)) positions,

j = 1, . . . , J . Let E be a J × p matrix of zeros, except for ones in the (j, n(j)) positions,

j = 1, . . . , J . If M ≡ E − Λ is of rank J , then the identified set for a induced by LHR has

positive measure given that πq has full support.

Proof. See (A.1)

This Lemma is also useful to guide the design of heterogeneity restrictions: If the rank of

M equals R < J only a degenerate solution with zero Lebesgue measure may exist. Consider

the case that J = 2 and M =

[

1 −1

−1 1

]

. In this case, only q ∝
[

1, Ã11−Ã21

Ã22

]

, scaled to have

unit norm, is a possible solution. Thus, if we want to increase the odds that a nondegenerate

solution exists, we have to rule out cycles: This is natural on economic grounds, but we need

to formalize this notion. Restricting ourselves to no more restrictions than variables and

focusing on chains of restrictions is sufficient for the rank condition in Lemma 2.

In our application, we always impose heterogeneity restrictions for groups of variables.

While this restriction is by no means necessary, we now show that this type of restriction is

sufficient for the rank condition in the previous Lemma 2.

Corollary 1 (Non-empty identified set if heterogeneity restrictions do not overlap). Assume

H = 0, J ≤ p, all n(j) are distinct, and there is at most one restriction L
(j)
HR with m(j) = n

and λ(j) > 0 for each variable n = 1, . . . , p. Furthermore, heterogeneity restrictions come in

non-overlapping groups G = {j1, j2, . . . , j̄} with s(j) = s(ℓ) = sG for all j, ℓ ∈ G with one

λ(j1) = 0, i.e.:

0 ≤ sGra,n(j1)

sGλ(j2)ra,n(j1) = sGλ(j2)ra,m(j2) ≤ ra,n(j2) using n(j1) = m(j2)

. . .

sGλ(j̄)ra,m(j̄) ≤ ra,n(j̄)

Then the the identified set for a induced by LHR has positive measure.

Proof. See (A.2)

The logic underlying our existence results does not generally hold when H ≥ 1 because

dynamic restrictions involve interaction terms between restrictions of potentially different
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sign or reversal to the mean that is not monotone. Heterogeneity restrictions and simple

sign restrictions alike can lead us to reject reduced-form draws in these cases. We discuss in

Section 3 how to detect empty sets.

2.3 Equivalence to change of variables

There is an equivalence between heterogeneity restrictions and sign restrictions with an ap-

propriate change of variables in simple settings. Let [1, 0] and [λ,−1] be the rows of M

encoding the heterogeneity restrictions on Yt = [Y1,t, Y2,t]
′. Then this heterogeneity restric-

tion is equivalent to two standard univariate sign restrictions [1, 0] and [0,−1] in a VAR of

Ỹt = [Y1,t, λY1,t − Y2,t] with associated Cholesky factor:

˜̃
A =

[

1 0

−λ 1

][

Ã1,1 0

Ã2,1 Ã2,2

]

=

[

Ã1,1 0

λÃ1,1 − Ã2,1 −Ã2,2

]

.

For example, take Y1,t to be the nominal interest rate and Y2,t to be the inflation rate. Then

the first restriction identifies an increase in the nominal interest rate, and the second restric-

tion requires the ex post real rate to rise. Equivalently, we can represent these restrictions

as sign restrictions in a bivariate VAR with the nominal and the ex post real interest rate.

More generally, if there are J = p full-rank heterogeneity restrictions in a VAR of {Yt},
these are equivalent to standard sign restrictions in a VAR of {Ỹt} = {MYt} with covariance

matrix Σ̃ ≡ MΣM ′. Here, M = E − Λ. Our argument can, thus, alternatively be viewed

as a theory of the VAR observables. Our setup is, however, more general because we do not

require the order condition J = p but can allow for more restrictions than observables.

2.4 Different variations of heterogeneity restrictions

While we focus on heterogeneity restrictions in the form of qualitative short-run restrictions

on responses in most of our applications, our approach also applies to several variations:

Strength of the restrictions. How do we choose the strength of the heterogeneity re-

strictions λ? If we have a notion that we want to rank the responses of different sectors

qualitatively, the case of λ = 1 is the most natural. However, λ can also express confidence

in the measured heterogeneity. For example, setting λ ∈ (0, 1) expresses a weaker ranking.

Qualitative beliefs about macroeconomic relationships can generate bounds that translate

to heterogeneity restrictions of varying strengths. For example, to restrict impact multipliers

for government spending to be smaller than two, write:
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r0a,output ≤ λ×r0a,government spending with λ = 2× Ḡ

Ȳ
.

Thus, our framework allows us to use prior information on some elasticities, as advocated by

Baumeister and Hamilton (2015), without specifying full priors for all elasticities. In prior

work, Kilian and Murphy (2012) introduce elasticity bounds in the context of oil markets.

Soft zero restrictions. We can also use varying ranking intensities λ to impose approx-

imate zero restrictions (i.e., soft zero restrictions). For example, Christiano, Eichenbaum,

and Evans (1999) identify monetary policy shocks via zero short-run restrictions, imposing,

among other things, that real output cannot respond contemporaneously to monetary policy

shocks. Here, we could also impose an analogous, but less dogmatic, soft zero restriction by

imposing for a small value of λ for the following restrictions:

−λ× r0a,FFR ≤ r0a,GDP ≤ λ× r0a,FFR with λ = 0.01.

Long run heterogeneity restrictions. Long run identification under heterogeneity re-

strictions is also straightforward. Consider the case of productivity news shocks and of two

industries, A and B. A is more R&D intensive than B. To impose that the long run impulse

response of productivity industry A be stronger than productivity in industry B, impose:

r∞a,Productivity in A ≥ λr∞a,Productivity in B with λ = 1.

Long run zero restrictions. Zero restrictions can also be useful in the long run. For

example, consider long run monetary neutrality. To enforce approximate monetary neutrality

after a monetary policy shock, impose:

−λ× r0a,FFR ≤ r∞a,GDP ≤ λ× r0a,FFR with λ = 0.01.

Fully Bayesian analysis of models with extreme values of λ can be challenging. Therefore,

we develop an efficient algorithm in Section 3 that works well even with soft zero restrictions.4

2.5 Characterizing the identified set analytically

When do heterogeneity restrictions sharpen inference relative to sign restrictions? Here

we first follow Moon, Schorfheide, and Granziera (2013) to characterize the identified set

analytically in a bivariate VAR with impact restrictions only. We show that for the common

restrictions associated with λ
(j)
HR = 0, the identified set for an(j) can be strictly or weakly

4Existing Bayesian analyses of sign and zero restrictions often inadvertently impose non-stated beliefs
in the identification. See Arias, Rubio-Ramirez, and Waggoner (2014), who analyze sign and hard zero
restrictions in a fully Bayesian fashion.
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smaller, depending on reduced-form parameters. For an(j′) with λ
(j′)
HR > 0, however, we

find that the identified set is strictly smaller, except for degenerate cases. Either type of

restriction shrinks the set more if the reduced-form correlation of forecast errors is more

negative. Trivially, heterogeneity restrictions have the more bite, the stronger the known

degree of heterogeneity and the higher the ratio of conditional standard deviations. We also

show that the results generalize to trivariate VARs. Trivariate VARs allow us to distinguish

between variables directly affected by heterogeneity restrictions and variables subject only

to sign restrictions.

2.5.1 Bivariate VAR with impact restrictions

We impose two restrictions to identify the first shock. In a bivariate VAR, we can use (2.3)

to express these restrictions as:5

Standard sign restrictions Heterogeneity restrictions

q1Ã1,1 ≥ 0 q1Ã1,1 ≥ 0 (2.6a)

q1Ã2,1 + q2Ã2,2 ≥ 0 (q1Ã2,1 + q2Ã2,2)− λq1Ã1,1 ≥ 0 (2.6b)

Since the heterogeneity restriction nests the standard sign restriction for λ = 0, we now

focus on this more general case.

To understand the implied restrictions, express the Cholesky factor Ã in terms of the

correlation and variances of the reduced-form errors.6 We can then rewrite (2.6) as:

q1 ≥ 0 (2.7a)

q2 ≥
(

λ
Ã1,1

Ã2,2

− Ã2,1

Ã2,2

)

q1 =
(

λ
Ã1,1

Ã2,2
︸︷︷︸

>0

− ρ
√

1− ρ2

)

q1. (2.7b)

In (q1, q2) space, q2 has to lie in the plane above the ray through the origin with slope

− ρ√
1−ρ2

with pure sign restrictions. The slope depends on correlation between the reduced-

form forecast errors. Heterogeneity restrictions can always flip the slope for λ high enough.

Intersecting the set described by (2.7) with the unit circle yields Figure 2.1, an extension

5As written, we impose one sign and one heterogeneity restriction. An example is identifying a cost shock
in a competitive industry with decreasing returns for which we observe prices and quantities. The restriction
that demand is elastic translate to the heterogeneity restriction that minus the quantities fall more strongly
than the prices within that industry.

6The elements of the Cholesky decomposition Σ = ÃÃ′ are: Ã1,1 =
√
Σ11, Ã2,1 = Σ21

Ã1,1
= Ã2,2

ρ√
1−ρ2

,

Ã2,2 =
√

Σ22 − (Ã2,1)2 = |Ã2,1|
√

1/ρ2 − 1. Σ is the covariance matrix of the forecast errors, and ρ is the

reduced-form correlation between the forecast errors.
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of Moon, Schorfheide, and Granziera (2013): First, q1 is positive. Second, q2 lies above the

straight line through the origin, which may have positive or negative slope. The slope is

increasing in λ. Last, (q1, q2) are confined to the unit circle since ||q|| = 1. Given λ > 0,

three cases can arise: (a) the reduced-form correlation is positive and dominates the positive

contribution of the heterogeneity restriction, (b) the reduced-form correlation is positive,

but the contribution from the heterogeneity restriction dominates, or (c) the correlation is

negative so that both contributions are positive. In cases (b) and (c), the admissible set

for q1 is strictly smaller with heterogeneity restrictions. In case (a), the admissible set for

q1 is [0, 1] in both cases, but the admissible set for q2 is strictly smaller with heterogeneity

restrictions.

(a) λÃ1,1 − Ã2,1 ≤ 0, Ã2,1 ≥ 0 (b) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≥ 0 (c) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≤ 0
Weak heterogeneity restriction Strong heterogeneity restriction Strong heterogeneity restriction
Positive correlation Positive correlation Negative correlation

q1

q2

SR

HR

q1

q2

SR

HR

q1

q2

SR

HR

Note: The admissible set is given by the intersection of the unit circle with the q1 ≥ 0 plane and the plane

above the heterogeneity restrictions (HR) and sign restrictions (SR) lines, respectively. The resultant joint

set on the unit circle as well as the marginal sets on the axes are marked in red (and solid) lines for the case

of HR and in dashed and blue lines for the traditional SR. The HR set is strictly smaller on the unit circle;

this always translates into a tighter set for q2 and in cases (b) and (c) also in smaller sets for q1. We show

in the text that this also translates to tighter sets for a1 and a2 in the HR case.

Figure 2.1: Graphical representation of the admissible set for the two types of restrictions

However, we are not interested in the set of admissible q per se but in the induced set for

a = Ãq. Since a1 = Ã11q1, we can simply read off the results from Figure 2.1. Appendix A.3

summarizes the identified sets for both a1 and a2. Proposition 1 uses this characterization

to summarize when we have a strict set reduction for the responses. Since Ã11 =
√
Σ11 and

Ã21 =
Σ21√
Σ11

, these restrictions depend only on the reduced-form variances and covariances.

Proposition 1 (Set reduction of IS (·) under heterogeneity restrictions in bivariate VAR).

The identified set for the structural impulse a1 from (2.6) is strictly smaller under hetero-

geneity restrictions than under sign restrictions iff λÃ11 − Ã21 > 0. The identified for a2 is

strictly smaller unless λÃ11 = Ã21.

13



Proof. See (A.3)

Independent of the presence of heterogeneity restrictions or sign restrictions, a negative

reduced-form correlation leads to a smaller identified set of q1 and, consequently, of a1.

These sets are, in turn, smaller with heterogeneity restrictions. The differences in the sets

are most pronounced when the correlation is positive, but the heterogeneity restriction is

strong compared with the reduced-form standard deviations of the second variable relative

to the first.

Intuitively, we find set reductions with sign restrictions if the reduced-form correlation

between the variables is of the opposite sign than the one attributed to the identified shock:

In this case, the identified shock cannot account for the entire impact response or else the

VAR could not generate the observed reduced-form correlation. This intuition also applies to

the case of heterogeneity restrictions, with the reduced-form correlation between the linear

combinations [1, 0]Yt and [−λ, 1]Yt replacing the correlation between variables 1 and 2.

When are the two sets equal? When there is only one common shock to both variables

and an idiosyncratic shock to the second variable, the identified sets in response to the

common shock will be equal. The second shock is an idiosyncratic shock to variable 2, such

as an industry-specific shock: A = [a11, 0; a21, a22]. In this case, Ã = A. Assume a positive

covariance. Then Ã21 = κÃ11 for κ = a21
a11

. If λ = κ, the two sets are equal.

Proposition 1 implies that for λ large enough, identified sets for both responses a1, a2 are

strictly smaller. A different way to understand our results is through Proposition 4 in Amir-

Ahmadi and Uhlig (2015). They show that in a bivariate VAR, all possible sign restrictions

are spanned by two sign restrictions with a maximal 180◦ angle. Standard sign restrictions

as defined above imply an angle of 90◦, but heterogeneity restrictions imply an angle of more

than 90◦.7 Here, as λ ր ∞, the angle spanned by the heterogeneity restriction approaches

180◦. In this case, our identified sets for a2 converge to a point mass at Ã22. This case

arises when we impose a soft zero restriction: For large λ, we are constraining the response

of variable one, that is, ra(0)1, to lie in [0, λ−1ra(0)2]. Given that ra(0)2 ≥ 0, the limit of

λ ր ∞ is point identification.

The idea of ranking the responses of two different variables to one shock carries over to

ranking the response of a single variable to two different shocks: The response of the first

variable to the two shocks can be written as a1,1(Q) = Ã11[q1,1, q1,2] subject to ||[q1,1, q1,2]|| =
1. Assuming positive responses, the heterogeneity restriction then takes the form of q1,1 ≥ 0

and λq1,1 ≥ q1,2 =
√

1− q21,1 ≥ 0 so that q11 ≥ 1√
1+λ2 > 0. Because q12 =

√

1− q211 =
|λ|√
1+λ2 > 0, we have a strict set reduction.

7Because [1, 0][−λ, 1]′ < 0 but [1, 0][0, 1] = 0, the angle implied by sign restrictions is wider.
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2.5.2 Trivariate VAR with impact restrictions

Proposition 1 shows that the impulse response of the variable on the right-hand side of

the heterogeneity restriction belongs to a strictly smaller identified set with heterogeneity

restriction compared with sign restrictions under conditions on the reduced-form conditional

covariance. Higher dimensional cases are more complicated. However, in the trivariate case,

there is a set of sufficient conditions that parallel the necessary and sufficient conditions of

the bivariate case. These sufficient conditions also imply either equal-sized sets or a strict

set reductions for the variable that is not involved in the heterogeneity restrictions.

We begin by stating the heterogeneity restriction for the trivariate case; to obtain the

sign restrictions, set λ = 0. In the Appendix, we allow for restrictions of different signs.

q1Ã11 ≥ 0 (2.8a)

q1Ã21 + q2Ã22 ≥ 0 (2.8b)

q1Ã31 + q2Ã32 + q3Ã33 ≥ λ(q1Ã21 + q2Ã22) (2.8c)

Proposition 2 (Set reduction of IS (·) under heterogeneity restrictions in trivariate VAR).

The identified set for the structural impulse a1 from (2.8) is strictly smaller under hetero-

geneity restrictions than under sign restrictions if λÃ21 > Ã31 and Ã31 > 0. The identified

set for a1 is equal under heterogeneity and sign restrictions if λÃ21 ≤ Ã31 and Ã21 ≥ 0.

Proof. See (A.4)

The intuition from Proposition 1 also explains Proposition 2: Consider a case in which

shock identification calls for positive comovements between the variables. The sufficient

condition applies to the case in which the reduced-form correlations are the same as the cor-

relations conditional on the shock. The heterogeneity restriction strictly sharpens inference

if, in the space of transformed variables, the conditional correlation has the opposite sign

from the reduced-form correlation.

Proposition 2 implies that heterogeneity restrictions can sharpen the inference also on

standard macro variables, say variable 1, even if the heterogeneity restrictions only involve

micro variables 2 and 3. Again, since Ã1i =
Σ1i√
Σ11

, these conditions involve only the reduced-

form covariances between the forecast errors.8

In Appendix B, we provide three examples that show that the sufficient condition in

Proposition 2 has bite in real-world applications: (1) We analyze the workhorse New Keyne-

sian model of the nominal interest rate, a measure of real activity, and the rate of inflation.

(2) We look at fiscal policy in a VAR of GDP, spending, and taxes, motivated by Blanchard

8The same logic generalizes to the case of a p dimensional VAR in which Σ1i ≥ 0 for i = 1, . . . , p with
up to p− 3 positivity restrictions on the extra variables appended to (2.8).
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and Perotti (2002). (3) We also look at a news shock, in a VAR with GDP, TFP, and a stock

index. In these examples, we consider a range of values for λ that implement a “soft” zero

restriction on, respectively, real activity, government spending, and current TFP, motivated

by Beaudry and Portier (2006). In the New Keynesian application, the sufficient condition

for equal sets applies and we verify that for any λ, the identified sets for the macro variable

(the interest rate) is unchanged. In the fiscal policy application, we find that the sufficient

condition for set reduction applies for modest λ. The set reduction builds up to about 10-

15% of the impact response of GDP. The results are similar for the third application, with

a set reduction of up to 7.5% for the output response.

What happens if there are only two aggregate shocks and the responses of variables 2

and 3 to both shocks satisfy the heterogeneity restriction in population? We show in Ap-

pendix B.2 that in this case, the heterogeneity restriction simply becomes redundant, and

we are left with two simple sign restrictions, (2.8a) and (2.8b), to identify the shock of in-

terest. Thus, when responses to all aggregate shocks satisfy the heterogeneity restrictions,

heterogeneity restrictions have no bite.

3 Estimation

The uncertainty about the identified impulse response functions stems from two sources –

the size of the identified set given reduced form parameters and the estimation uncertainty

about the reduced form parameters. We consider two types of inference: First, we consider

prior-robust inference (Algorithm 1) about the identified set. Second, we also consider an

efficient fully Bayesian inference (Algorithm 2). We provide numerical algorithms for both

schemes and begin by summarizing inference over reduced form parameters.

3.1 Reduced form parameter uncertainty

We quantify the uncertainty about the reduced form parameters using a Bayesian approach.

This approach is also perfectly valid from a frequentist perspective. The posterior distribu-

tion is standard for our Gaussian Bayesian VAR.

Specifically, stacking all the coefficients in a vector β and denoting the FEV by Σ, we

have the following conjugate prior distribution over the reduced form parameters:

β|Σ−1 ∼ N (β̄0, N
−1
0 ⊗ Σ) (3.1)

Σ−1 ∼ Wp(ν0(Σ̄0)
−1, ν0). (3.2)

The marginal posterior distribution for Σ−1 is a Wishart distribution, from which we draw
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directly. Given the draw for Σ−1, we can draw from the conditional normal distribution for

the coefficients B. The resultant draws are independent realizations of the reduced form

posterior; see Uhlig (1994). We drop reduced form draws with admissible sets of measure

zero.

To find out which reduced form parameters to drop, if any, we first re-write the restrictions

in a convenient matrix form. We use this matrix form below to check whether the admissible

has positive measure. Specifically, given draws B(d) and Ã(d) = chol(Σ(d)), compute the

following matrix:

W (d) ≡









S(E − Λ)B(d)
0 Ã(d)

S(E − Λ)B(d)
1 Ã(d)

. . .

S(E − Λ)B(d)
H Ã(d)









, (3.3)

where B(d)
h =

∑h

s=0(B
(d))s if estimated in growth rates and B(d)

h = (B(d))h if estimated in

levels. We then write the restrictions on q as W (d)q ≤ 0. In the previous section, we focused

on impact restrictions only with h = 0 so that W (d) simplified to W (d) = S(E − Λ)Ã(d).

We provide a novel condition for assessing whether identified sets have positive measure:

We check that the Chebychev center of the constrained set (prior to normalization) is non-

degenerate. Intuitively, the Chebychev center is the center of the largest ball inscribed in

the constrained set. We prove below that for continuous prior distributions, existence of a

Chebychev center xc with a ball of radius r > 0 ball around it is equivalent to an identified

set with positive measure. To ensure the problem is well defined, we additionally restrict

the solution to [−1, 1]n, the unit n-cube. If r > 0, then we can construct a set of positive

measure on the constrained unit n-sphere. And if the identified set has positive measure, it

must lie strictly in the interior, so that we can construct a candidate Chebychev center that

is nondegenerate.

Definition 6 (Chebychev center). The Chebychev center of the constrained set Wx ≤ 0 is

given by xc that solves:

{xc, r} = arg max
xc,r≥0

r s.t. W (xc + u) ≤ 0, xc + u ≤ 1, −(xc + u) ≤ 1, ∀u : ||u|| ≤ r,

where the inequalities are element by element.

The center point xc need not be unique, as Figure 3.1 shows. However, the constrained

set is convex and the objective linear. Any local maximum r∗ is therefore a global maximum.

Proposition 3 (Non-empty admissible set). Take any continuous prior πq over q with

strictly positive support on the unit sphere. The identified set for reduced form parame-
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(a) λÃ1,1 − Ã2,1 ≤ 0, Ã2,1 ≥ 0 (b) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≥ 0 (c) λÃ1,1 − Ã2,1 ≥ 0, Ã2,1 ≤ 0
Chebychev center xc not unique Chebychev center xc unique Chebychev center xc unique
Largest radius r Smaller radius r Smallest radius r

q1

q2

1

1

0

HR

xc

x′
c

q1

q2

1

1

0

HR

xc

q1

q2

1

1

0

HR
xc

Note: The plot shows the Chebychev centers xc for the cases considered in Figure 2.1. While the center

is not unique in case (a), the radius r of the largest ball inscribed in the intersection of Wx ≤ 0 and the

unit n-cube is well defined. If r is strictly positive, the identified set has positive measure under any strictly

positive prior on the unit n-sphere.

Figure 3.1: Chebychev center: Examples in R2.

ters (B,Σ) has positive measure under πq iff the Chebychev center xc of the constrained set

in [−1, 1]n satisfies r > 0 with strict inequality.

Proof. See (A.5)

In our algorithms below, we use a standard reformulation of the Chebychev center prob-

lem that transforms it to a simple linear programming problem whose solution is easy to

compute numerically.9 The condition that guarantees a non-empty identified set in Giaco-

mini and Kitagawa (2014), in contrast, is stated in terms of a vector they search for by

Monte Carlo integration.

3.2 Prior-robust inference

In a standard BVAR with sign restrictions such as Uhlig (2005), the posterior distribution

of impulse response functions (IRF) results from integrating out both the rotation matrix Q

and the reduced form parameter uncertainty. However, the many possible prior distributions

over Q may imply different shapes for the resultant IRF: Baumeister and Hamilton (2015)

point out that the commonly used prior that Q is uniformly distributed in the space of

orthonormal matrices does not translate to a uniform distribution over the identified set of

the structural parameters. We also find this in our applications below. Additionally, Arias,

9Specifically, Definition 6 is equivalent to solving maxxc,r r s.t. Wi,◦xc + r||Wi,◦|| ≤ 0∀i and −xn + r ≤
1,+xn + r ≤ 1∀n given that Wi,◦u ≤ ||Wi,◦||||u|| ≤ ||Wi,◦||r.
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Rubio-Ramirez, and Waggoner (2014) argue that practitioners have combined sign and zero

restrictions in ways that introduced unnoticed prior information.

One can address the criticism by Baumeister and Hamilton (2015) and Arias, Rubio-

Ramirez, and Waggoner (2014) by being conservative and choosing the worst-case prior

possible over Q. However, when we are conservative about the distribution of Q, we still

know how to quantify the posterior distribution over the reduced-form parameters (β,Σ),

and we should use this information that transparently reflects the data.

Thus, we follow Moon, Schorfheide, and Granziera (2013) to compute the infimum and

supremum over all admissible rotation matrices Q. This set is distribution free, as we

compute the infimum and supremum over the set of all prior distributions over admissable

rotation matrices. We compute this set conditional on the reduced form parameters (β,Σ),

similar to Faust (1998) and Giacomini and Kitagawa (2014). While this set is robust to

any full-support prior over rotation matrices, we still care about the parameter uncertainty:

Some parameter combinations (β,Σ) have very low posterior probability. These parameter

draws may or may not have large bounds for the impulse response functions attached to

them, but since the data tell us that these have very lower posterior density, we argue that

we should communicate this. We therefore compute a distribution over the [inf, sup]-bounds

that reflects the posterior reduced-form parameter uncertainty.

Formally, define the posterior distribution over the IRF for variable j at horizon h given

the prior π over the rotation vectors q as:

F̃ π
j,h(x) =

∫ ∫

q

1{r
Ãq

(h;Σ,β)j≤x}1{r
Ãq

(s;Σ,β)n≥λr
Ãq

(s;Σ,β)m∀(n,m,λ)∈L(j)
HR

∀j=1,...J}π(q)dq × p(Σ, β; Y T )dΣdβ

In contrast, we define the prior-robust posterior distribution over the IRFs as:

Fj,h(x) =

∫

sup
π,q|π(q)>0

1{r
Ãq

(h;Σ,β)j≤x}1{r
Ãq

(s;Σ,β)n≥λr
Ãq

(s;Σ,β)m∀(n,m,λ)∈L(j)
HR

∀j=1,...J}p(Σ, β; Y
T )dΣdβ

Our prior-robust inference avoids taking a stance on the shape of the prior over the

identified set. It is therefore “frequentist friendly” in the language of DiTraglia and Garćıa-

Jimeno (2016). Our approach follows the principle of transparent parameterization detailed

in Schorfheide (2016).

In contrast to the simple sampling scheme for the reduced form parameters, characterizing

the bounds of the identified set via Monte Carlo integration is hard, particularly in higher

dimensions, and can become impractical. We therefore rely on the following numerical

algorithm to compute the identified sets. It mimics the analytical approach that we use to

characterize the identified set in the bivariate and trivariate VAR examples.

As a byproduct of the optimization problem in the algorithm, we obtain Lagrange multi-
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pliers on the constraints. These multipliers serve as a measure of the importance of restric-

tions, as we illustrate in our empirical applications.

Algorithm 1 Prior robust inference

For d = 1, . . . , D do:

1. Draw B(d) and Σ(d) from p(B,Σ|Y ).

2. Given B(d) and Ã(d) = chol(Σ(d)), compute W (d) according to (3.3).

3. Calculate the bounds if the identified set it is non-empty:

(a) Solve for the Chebychev center xc of the set W (d)x ≤ 0:

{xc, r} = argmax
x,r

r s.t. W
(d)
i,◦ x+ r||W (d)

i,◦ || ≤ 0∀i,

e′ix+ r ≤ 1,−e′ix+ r ≤ 1∀i.

(b) Verify that the identified set is non-empty, i.e., proceed if r > 0. Otherwise, go

back to Step 1.

(c) For each variable i = 1, . . . , p and for each horizon s = 0, . . . , S solve:

min
q

and max
q

e′jB(d)
s Ã(d)q

s.t. W (d)q ≤ 0, and ||q|| = 1.

Save the resulting values as upper and lower bounds as well as the Lagrange multipliers

on the constraints Wq ≤ 0.

Our Algorithm 1 is close to those of Faust (1998) and Giacomini and Kitagawa (2014).

Faust (1998) focuses just on upper bounds for the variance decomposition. Giacomini and

Kitagawa (2014) focus on impulse response functions. They differences to Giacomini and

Kitagawa (2014) are three: (1) We avoid simulation to determine whether the identified

set is non-empty and use the Chebychev center instead. (2) We always use optimization

to compute bounds rather than approximating the bounds using stochastic integration in

complex cases: We have found our algorithm to work well in high-dimensional problems when

the dimension of q was 19 and the number of restrictions above 200. Our applications below

operate in 10 to 14 dimensions. The numerical optimization problem in the algorithm has

a simple structure: A linear objective and inequality constraint and an equality constraint

with gradient 2q. We find that Matlab’s fmincon10 solves the problem efficiently. For high-

dimensional problems, we can run the algorithm in parallel, given independent posterior

10We experimented with different algorithms and solvers to ensure robustness of the results.
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draws for B(d) and Ã(d) = chol(Σ(d)).11 (3) We use the optimization to compute Lagrange

multipliers as a natural measure of the importance of restrictions.

Moon, Schorfheide, and Granziera (2013) show that, under some conditions, the identified

set for IRFs is convex and bounded. Our setup maps into theirs12 so that under their

Assumption 1, convexity follows. Giacomini and Kitagawa (2014) show that under convexity,

the prior-robust Bayesian algorithm restores asymptotic equivalence between frequentist and

Bayesian inference, which does not hold for fully Bayesian inference on set-identified models

(Moon and Schorfheide, 2012).

We can adapt the prior-robust algorithm to compute bounds on any well-defined moment

of the reduced form parameters and rotation vectors. For, example, the admissible set

over q also has implications for policy rules (see Arias, Caldara, and Rubio-Ramirez, 2015),

multipliers, or the FEV decomposition. Besides impulse responses, we focus here on the FEV

decomposition. In Appendix C we follow Uhlig (2003) to show that the FEV for variable

i at horizon H associated with the orthonormal vector q can be expressed as q′Si,Hq where

Si,H ≡ ∑H
h=0(eiB

(d)
h Ã)′(eiB(d)

h Ã). We can now compute bounds on the FEV contribution of

any variable i up to horizonH by replacing the objective e′jB(d)
s Ã(d)q in the previous algorithm

with q′Si,Hq. This approach is the algorithm used in Faust (1998) to assess whether the

finding that monetary policy shocks only explain a small proportion of output are robust.

3.3 Fully Bayesian inference

If a researcher has beliefs that provide information in addition to the sign restrictions, she

might want to impose these beliefs. Here, we provide a framework for conducting inference

under the belief that the rotation vector q is distributed uniformly over the unit n-sphere,

conditional on lying in the admissible set. Because the admissible set can be small, we provide

an algorithm for drawing from this set that is efficient and leads to a perfect acceptance rate.

Our prior belief that conditional on a given reduced form draw, whose associated iden-

11In the language of Giacomini and Kitagawa (2014) and Kline and Tamer (forthcoming), we find that
for the applications reported here, the posterior plausibility of our restrictions is 100% unless we introduce
soft zero restrictions. With soft zero restrictions, the posterior plausibility was 97% or higher.

12Our notation maps to Moon, Schorfheide, and Granziera (2013) as follows: Rv = [B0Ã; . . . ;Bmax
h̃,H

Ã],

where Bh is defined below (3.3), H is the restriction horizon, and h̃ is the impulse response horizon of
interest. MS,1 = [e′

h̃
⊗ e′j ; IH ⊗ (S(E − Λ))], MS,2 = I and j ∈ {1, . . . , n} is the impulse response variable

of interest. Their equation (24) then becomes S̃(q)φ = ((MS,1)′ ⊗ q′)Sφφ where φ = vec(Rv). Note that

Sφ, S̃(·) are Moon, Schorfheide, and Granziera (2013) notation, unrelated to our matrix S. Furthermore,

this setup already imposes k̃ = 1 (one structural parameter of interest) and that S̃R(q) includes the response
of interest if it is sign-restricted, as assumed in their Lemma B1.
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tified set is non-empty, the rotation vector q is distributed uniformly on the unit n-sphere

corresponds to the following complete Bayesian model:13

p(Y,B,Σ, q;R(·)) = ℓ(B,Σ|Y )πB,Σ(B,Σ)πq(q|B,Σ;R(·)), (3.4a)

πq(q|B,Σ;R) =
1{R(B,Σ)q ≤ 0}
∫

Q∩{q̃|R(B,Σ)q̃≤0} dq̃
(3.4b)

In practice, we found that it can be extremely difficult to sample from πq(q|B,Σ;R(·))
when R has many restrictions. We therefore devise an efficient algorithm for drawing from

the posterior (Algorithm 2). To do this, we use the fact that our restricted set is scale free

and that a draw from the multivariate normal distribution rescaled to have unit norm is

uniformly distributed on the unit n-sphere.14 We formally state these facts in Proposition 4.

Proposition 4 (Condition for admissible set to represent valid draw from Haar measure.).

If x
iid∼ N (0, In) and Wx ≤ 0, then q = x

||x|| is a uniform draw from the unit n-sphere that

satisfies Wq ≤ 0.

Proof. See (A.6)

Proposition 4 allows us to draw efficiently from the truncated unit n-sphere efficiently

by drawing from the truncated multivariate normal distribution subject to inequality con-

straints. Practically, we use the Gibbs sampling algorithm in Li and Ghosh (2015). More

efficient direct samplers such as Botev (2016), which uses a recursive sampler based on

the LQ decomposition of the W matrix of restrictions, are available when the number of

restrictions is no larger than the dimension of q.1516

13Our formulation of the agnostic prior is the same as the one in Del Negro and Schorfheide (2011). While
our prior without restrictions is also agnostic in the sense of Arias, Rubio-Ramirez, and Waggoner (2014) it
may not be conditionally agnostic in their language, because the size of the identified set enters the probability
of q via

∫

Q∩{q̃|R(B,Σ)q̃≤0} dq̃ in our setup. Our prior implies that the marginal data density is unaffected by the

prior over q when the identified set is never empty: p(Y ) =
∫ ∫ ∫

p(Y |B,Σ)p(B,Σ)p(q|B,Σ;R(·))dqdBdΣ =
∫ ∫

p(Y |B,Σ)p(B,Σ)
∫
p(q|B,Σ;R(·))dqdBdΣ =

∫ ∫
p(Y |B,Σ)p(B,Σ)dBdΣ.

14If we had a set of restrictions {q|Wq ≤ b} for b 6= 0, then Wx ≤ b does not imply that W x
||x|| ≤ b – for

example, if an equality is strict and ||x|| < 1. This limits our algorithm to scale-free problems.
15We simply use the inverse normal CDF in Matlab to draw from its truncated distribution, unlike Li

and Ghosh (2015). The inverse standard normal CDF transform is accurate up to ±8. Simulating draws
from both the Li and Ghosh (2015) method and the inverse normal method showed that the Li and Ghosh
(2015) method was no more accurate in the tails and on some occasions less accurate. Also, experimenting
with an alternative approximation to the inverse normal CDF produced indistinguishable results.

16Notice that the thinning step 3(c)ii in Algorithm 2 is not strictly necessary. However, thinning in-
creases the effective sample size and therefore ensures that comparisons between the measure of different
sets associated with restrictions R and R′ are not driven by differences in the effective sample size.
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Algorithm 2 Fully Bayesian inference

For d = 1, . . . , D: do:

1. Draw B(d) and Σ(d) from p(B,Σ|Y ).

2. Given B(d) and Ã(d) = chol(Σ(d)), compute W (d) according to (3.3).

3. Draw from p(q|B(d),Σ(d);R)

(a) Verify that the identified set is non-empty, i.e., proceed if r > 0. Otherwise, go

back to Step 1.

(b) Initialize x(d,0) = xc

||xc|| where xc is the following Chebychev center:

{xc, r} = argmax
x,r

r s.t. W
(d)
i,◦ x+ r||W (d)

i,◦ || ≤ 0∀i,

e′ix+ r ≤ 1,−e′ix+ r ≤ 1∀i.

(c) Draw ℓ̄ realizations of q(d,ℓ) using the following Gibbs sampler:

i. For ℓ = 1, . . . , ℓ̂ + f × ℓ̄: For m = 1, . . . n, draw x
(d,ℓ)
m from

the univariate truncated normal distribution truncated to [l
(d,ℓ)
m , u

(d,ℓ)
m ],

where u
(d,ℓ)
m = min

{

∞,min{j:W (d)
jn >0} −

W
(d)
jn x

(d,ℓ−1{n>m})
−m

W
(d)
jn

}

and l
(d,ℓ)
n =

max

{

−∞,max{j:W (d)
jn <0}−

W
(d)
jn x

(d,ℓ−1{n>m})
−m

W
(d)
jn

}

.

ii. Drop the first ℓ̂ draws and then keep every fth draw.

iii. For the remaining draws, compute B(d)
s Ã(d) x(d,ℓ)

||x(d,ℓ)|| .

4 Applications

We are now equipped to analyze whether heterogeneity restrictions also sharpen inference

in practice in two applications. The first application analyzes productivity news shocks; the

second application analyzes defense spending shocks.

4.1 Productivity news shocks

In our first application, we ask: Is news about future fundamentals an important source

of economic fluctuations? Beaudry and Portier (2006) prominently argue that news shocks

about future productivity constitute one of the main drivers of business cycles. Beaudry and

Portier (2014) report that news shocks account for 50%-80% of the variance in consumption,

investment, and GDP at the two-year horizon. Kurmann and Sims (2017), in contrast, use
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a different identification scheme in the spirit of Barsky and Sims (2011) to argue that news

shocks account for 60% of the variation in these variable but not at horizons of less than

five years. These approaches all use methods to point identify news shocks. Alternatively,

Beaudry, Nam, and Wang (2011) use sign restrictions as an identification strategy. However,

Arias, Rubio-Ramirez, and Waggoner (2014) show that their approach uses prior informa-

tion that is not acknowledged and, when implemented only with the stated prior, inference

becomes imprecise.

We show here how adding and exploiting heterogeneity combined with our suggested

inference method sharpens inference substantially but is impractical with standard inference

methods because of the larger dimension of the model and the larger cardinality of the set

of restrictions. To incorporate heterogeneity restrictions, we include and rank the exposure

of different industry returns to news shocks. The novel identifying assumption is that we

restrict productivity news shocks to move the stock returns of the most innovative sectors

the most.

4.1.1 Data, specification, and identification

Data. Our benchmark data set consists of nine variables in total in quarterly frequency. We

include four macro variables, namely real gross value added in the business sector (output),

utilization-adjusted TFP, hours worked in the business sector (all taken from Fernald, 2014)

and consumer confidence. For the micro series, we use readily available real industry stock

returns. To keep the estimation simple, we focus on the five-industry classification by Fama

and French (1997), namely consumers, manufacturing, high tech, health and other17. For

firms within each industry, we compute the distribution of R&D intensities, measured as

the ratio of the three-year moving average of R&D expenses to a lagged measure of firm

size. Figure 4.1 displays the distribution of the R&D intensity, pooled across firm-years, for

each of the five industries using either gross operating income or total assets as a measure

of size.18 While we focus on five industries to keep the model parsimonious, we show below

that our results hold using the finer ten industry classification. Table 4.2 summarizes the

benchmark data. The sample period is from 1960:Q1 to 2015:Q4.

Specification. We use quarterly data in log-levels and allow for four lags. Our benchmark

specification uses a flat prior. When we use a flat prior, we also include a deterministic

17The returns are available in Kenneth’s French’s data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

18We use Compustat data and drop observations with negative net sales, assets, or employment. Also,
we keep only firms that are incorporated in the U.S. and whose records are denominated in U.S. dollars. For
our analysis, we winsorize the data at the 1st and 99th percentile year by year.
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Note: The boxes show the median along with the interquartile range of the R&D intensity for each of the

five industries in the coarsest Fama and French (1997) classification. The upper whiskers end in the values

just above the 75th percentile plus 1.5 times the interquartile range and analogous for the lower whiskers.

We measure firm size either as the lagged three-year moving average of operating income or total assets.

Source: Compustat. U.S. firms, 1960–2015.

Figure 4.1: R&D intensity by industry in the five industry classification

quadratic trend, as recommended by Ramey (2016). Below we also report results with a

Minnesota prior. Throughout, we take 500 reduced-form draws from the posterior. For

each reduced-form draw, we generate 10, 000 draws of the rotation vector q from the Gibbs

sampler, with a thinning parameter of 10 that leaves us 1, 000 draws of q.

Identification. We require a news shock to raise real GDP, hours, productivity, and con-

sumer confidence as well as cumulative real stock returns. Based on the R&D intensities in

Figure 4.1, we impose the following ranking on industry returns: (1) Health and high tech

returns increase more than those in manufacturing, (2) manufacturing returns increase more

than those in the consumer and other industries, and (3) stock returns in the consumer and

other industries increase. We impose these restrictions on impact and in the two subsequent

quarters. Below we also report an extension that imposes a (soft) zero restriction on initial

TFP in the spirit of Beaudry and Portier (2006) and Barsky and Sims (2011).

Turning to the results, we discuss the impulse-responses first because this is where we

impose the restrictions. We then turn to the FEV decomposition. Next, we analyze which

restrictions are the most important and then conclude with various robustness checks. In

what follows, we focus on a select number of results, but we provide a full set of results for

each subsection in Appendix E.1. Throughout, we show results for heterogeneity and sign

restrictions for the same reduced-form draws.
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Benchmark data Sign restrictions Heterogeneity restrictions

Macro

Real output Real output ≥ 0 Real output ≥ 0
TFP TFP ≥ 0 TFP ≥ 0
Confidence Confidence ≥ 0 Confidence ≥ 0
Hours worked Hours worked ≥ 0 Hours worked ≥ 0

Micro

FF-5 Consumers FF-5 Consumers ≥ 0 FF-5 Manu ≥ FF-5 Consumers ≥ 0
FF-5 Manufacturing FF-5 Manufacturing ≥ 0 FF-5 Manufacturing ≥ FF-5 Other ≥ 0
FF-5 High Tech FF-5 High Tech ≥ 0 FF-5 Health ≥ FF-5 Manu
FF-5 Health FF-5 Health ≥ 0 FF-5 High Tech ≥ FF-5 Manu
FF-5 Other FF-5 Other ≥ 0 FF-5 Other ≥ 0

Table 4.1: Benchmark data and identifying restrictions

4.1.2 Impulse response functions

We begin our discussion of impulse-response functions by abstracting from reduced-form

parameter uncertainty. Figure 4.2 shows the corresponding impulse-response function at

the posterior mean of the reduced-form parameters. Specifically, the shaded areas are the

identified set, computed using the prior-robust Algorithm 1. The identified set with sign

restrictions is on the left in shades of red, while the set with heterogeneity restrictions is on

the right in shades of blue. The lines on top of the identified set show the percentiles of

the fully Bayesian posterior, conditional on the reduced-form parameters. Two conclusions

emerge: First, the fully Bayesian algorithm has good coverage over the identified set: The

numerical min and max according to the fully Bayesian algorithm come close to the bounds

of the identified set. Second, heterogeneity restrictions sharpen the inference substantially:

The identified set for TFP after six years is 30% smaller than with sign restrictions and

bounded away from zero. Heterogeneity restrictions reveal a more pronounced hump-shaped

increase in output. Peak responses shrink by 0.1-0.2pp relative to sign restrictions.19

The set reduction due to heterogeneity restrictions increases when we consider parameter

uncertainty. Figure 4.3 shows the impulse-response functions for three macro variables (for

micro responses and confidence, see the Appendix) computed according to Algorithm 1.

The figure shows the posterior distribution over the bounds of the identified set (i.e., the

prior-robust posterior). The shaded areas represent the inner 98%, 95%, and 68% of the

posterior. After the shock impact, parameter uncertainty muddies the conclusions about

the shape of most responses based on the identified set, indicated with blacked dashed lines

for comparison. The exception is output, whose hump-shaped response is significant across

parameters with heterogeneity restrictions. Overall, parameter uncertainty amplifies the set

reduction due to heterogeneity restrictions: The peak output and hours responses shrink

19The Appendix shows the response of consumer confidence, which is unremarkable: Confidence rises
initially and then reverts back to zero. Heterogeneity restrictions sharpen inference.
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Output TFP Hours

prior-robust:
identified set

fully Bayesian:
min/max

fully Bayesian:
2.5th / 97.5th

fully Bayesian:
5th / 95th

fully Bayesian:
16th / 84th

Note: Heterogeneity restrictions sharpen the inference with sign restrictions in economically meaningful

ways: TFP is found to increase persistently, consistent with a one standard deviation news shock leading to

a strictly positive increase within (0, 0.3%] after six years. With sign restrictions, in contrast, the range is

[−0.1%, 0.35%], 50% wider. Heterogeneity restrictions also reveal a well-defined hump-shaped rise in output.

On the technical side, the close match of the sampled outer bounds of the fully Bayesian algorithm with the

shaded identified set confirms that our sampling algorithm samples virtually from the entire support.

Figure 4.2: Plug-In: Responses of macro variables to a productivity news shock.

by 0.6pp, or 30-40%, with heterogeneity restrictions. Also the conceivable drop in TFP six

years after an initially positive news shock is cut by 0.25pp or 50%. Table E.1(a) in the

Appendix shows the set reduction.

What can researchers with conditionally agnostic priors learn from sign or heterogeneity

restrictions? Figure 4.4 shows that agnostic beliefs about q sharpen inference substantially:

The pointwise 98% credible sets all exhibit well-defined shapes. While we could say little

about the shape of the TFP response while being robust to any prior, our fully Bayesian

posterior implies that TFP increases in a hump-shaped fashion in response to a productivity

news shock, plausibly reflecting technology diffusion. Inference about the hump is much

sharper with heterogeneity restrictions that place the peak increase in TFP between 0.1%

and 0.5% about three years after the initial shock with 95% probability. This causes a hump-

shaped expansion in output, peaking one year out between 0.3-0.8% with 95% confidence,

according to the model with heterogeneity restrictions or 0.3-1.1% with sign restrictions

only. Hours worked peak at 0.15% to 0.6% (0.15% to 0.9% with sign restrictions) with 95%

probability and then may turn negative: In the long term, the wealth effect on labor supply

seems to offset productivity growth, returning output to trend. Overall, we see economically

sensitive responses that are much sharper with heterogeneity restrictions.

The credible sets alone could obscure irregular posterior distributions, but we show that

they do not in Figure 4.5.20 The posterior densities are unimodal and largely symmetric.

20At short horizons, when the restrictions are still binding, we sometimes observe higher densities around
zero, reflecting the truncation.
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Parameter uncertainty is pervasive after the impact of the shock. Taking it into account we can only bound

the responses with the restrictions. Heterogeneity restrictions do, however, sharpen the bounds: The peak

upper bounds with heterogeneity restrictions are a third smaller for output and hours at the 99th percentile.

Heterogeneity restrictions cut the lowest lower bound for TFP also by half.

Figure 4.3: Prior-robust responses of output, TFP, and hours worked to a productivity news
shock

Output TFP Hours

 4  8 12 16 20 24

Horizon (quarters)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Heterogeneity Restrictions

prior-robust 16th / 84th 5th / 95th 2.5th / 97.5th 1st / 99th SR HR

Note: Our fully Bayesian posterior implies that TFP increases in a hump-shaped fashion in response to

a productivity news shock. The hump shape in TFP is well defined only with heterogeneity restrictions.

Heterogeneity restrictions also visibly reduce the credible sets for hours and TFP. In economic terms, negative

wealth effects due to the permanent TFP increase on labor supply may explain the high probability put on

a decline in hours worked and the zero response of output after six years.

Figure 4.4: Prior-robust responses of output, TFP, and hours worked to a productivity news
shock

The plot also confirms that the densities assign positive measure to almost the extremes

of the distribution over identified sets, shown as thick lines underneath the zero line. On

the substantive side, the densities show that for the three macro variables except TFP, the

posterior mass shifts toward zero using heterogeneity restrictions. In contrast, the mass

shifts toward positive values for TFP. For all variables, the densities are more concentrated

with heterogeneity restrictions.
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Note: Heterogeneity restrictions lead to both a reduction in the identified set, here integrated over all

reduced-form parameters, and the dispersion of the fully Bayesian responses, shown as density plots two

years after impact. Heterogeneity restrictions both lead to less dispersed distributions of responses, but can

also shift mass away from zero: The TFP response puts 2.5-5% probability on zero with sign restrictions but

less than 1% with heterogeneity restrictions.

Figure 4.5: Distribution of responses to productivity news: Macro variables two years out.

We now turn to the micro-responses of cumulative industry stock returns in Figure 4.6.

Heterogeneity restrictions on these responses yield tighter bounds on the macro variables.

Mechanically, they also sharpen inference about the micro responses themselves. The initial

gains erode more quickly under heterogeneity restrictions in the other industries and the

manufacturing industry than sign restrictions would indicate. We find similar patterns for

all five industries and show here one of each category: the low R&D intensive other industries,

manufacturing, and high tech. Heterogeneity restrictions reduce the magnitudes of responses

up to 43% on impact and 67% one year out (Table E.1(b)).

4.1.3 Forecast error variance decomposition

The literature on news shocks often highlights that news shocks explain a significant part

of the FEV in macro variables (e.g., Beaudry and Portier, 2014). Barsky and Sims (2011),

and Kurmann and Sims (2017) advocate identifying productivity news shocks by maximizing

the FEV. Here we decompose the FEV using both prior-robust and agnostic beliefs. The

substantive conclusion that emerges is that under some beliefs news shocks could indeed

drive most of the FEV in macro variables over some horizons, but an agnostic belief points

to an important but more modest role.

Figure 4.7 summarizes the variance reduction relative to pure sign restrictions for each

variable at horizons of up to six years in its upper panel. The red line, the posterior median

bound with sign restrictions, shows that sign restrictions alone are uninformative because

the FEV contribution ranges from 60% to 100% of the total FEV. Heterogeneity restrictions,
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Note: We rank the responses of stock returns of industries from zero to two quarters according to their R&D

intensity. Our goal was to sharpen inference about macro variables, but the restrictions also helps to sharpen

inference about the size of returns differences. With sign restrictions, there is little difference between the

response of other industries and the high tech industry but heterogeneity restrictions mechanically deliver

this difference and narrow the range of possible returns.

Figure 4.6: Responses of (cumulative) industry returns to a productivity news shock.

in contrast, bring the median bound for the FEV contribution to below 70% of the total

throughout. At the one-year horizon, the median reduction in the FEV contribution ranges

from is 32pp for output. The 68% credible set, the shaded area, ranges from 20pp to 38pp.

The set reductions are persistent.

While our prior-robust results show that news shocks can play a very large role even under

heterogeneity restrictions, they play a more modest role under agnostic beliefs. The bottom

panel of Figure 4.7 shows the variance decomposition in this case. News shocks are still

important but far less so than the upper bounds indicate: For output, news explains 14-28%

of the total FEV at the one-year peak, and 11-27% of TFP after six years with heterogeneity

restrictions. Compared with sign restrictions, heterogeneity restrictions suggest that news

shocks are less important for output, hours, and confidence but more important for TFP,

suggesting that heterogeneity restrictions identify a productivity news shock more sharply.

4.1.4 Important restrictions

We impose tighter restrictions to achieve sharper identification. Which of these restrictions

matter? We show that as a byproduct of the prior-robust Algorithm 1, we can easily quantify

the importance of individual restrictions. This makes our results even more transparent.

We use Lagrange multipliers to quantify the role of individual restrictions in sharpening

our inference about IRFs. Lagrange multipliers answer the question: How would responses

change if we tightened a given restriction by a small amount? For example, how would the
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(a) Prior-robust: Upper bound on FEV contribution of news shocks
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(b) Fully Bayesian: Posterior over FEV contribution of news shocks
Output TFP Hours Confidence
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Note: We normalize FEV contributions relative to the total FEV. Heterogeneity restrictions significantly

reduce the maximum role of news shocks (upper panel): With sign restrictions alone, news could explain

all of the initial output and confidence FEV. Heterogeneity restrictions shrink the maximum FEV by about

20pp to 50pp for output. The reduction in the bound for TFP is lower but positive and ranges up to 30pp.

The bounds remain wide in the short-run. With agnostic beliefs (lower panel), the importance of news peaks

at below 30% for output after one year with 68% probability, compared to the prior-robust bound of 60%:

News shocks can be a key driver of business cycles under some beliefs, but an agnostic belief suggests a

modest role.

Figure 4.7: Forecast error variance contribution of productivity news shock: Macro variables.

output response two years after a news shock change if we required consumer confidence

not only to be positive initially but also bigger than ǫ? Or what if manufacturing stock

returns had to increase more than consumer goods stock returns plus ǫ? Figure 4.8 answers

these questions for all our restrictions. The left panel shows the multipliers characterizing

the lower bound, and the right panel shows those for the upper bound. Because multipliers

depend on uncertain parameters, we show their distribution across reduced-form parameters.

To simplify, we sum multipliers on restrictions across the entire horizon for which we impose

them.21

Heterogeneity restrictions are the most important for tightening the upper bound on the

output response but matter little for the lower bound, according to Figure 4.8. For example,

21Figures E.6 and Figures E.5 in the Appendix show different horizons and more macro variables.
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(a) Lower bound multipliers (b) Upper bound multiplier
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This figure quantifies the importance of all sign and heterogeneity restrictions that we use to identify the

news shock for narrowing the identified set of the output response at the two-year horizon. It shows the

distribution of Lagrange multipliers on all restrictions over all reduced-form draws, separately for multipliers

on the lower and upper bound. We sum the multipliers across the restrictions horizons 0, . . . , H̄ . Multipliers

on upper bounds are negative because tighter restrictions reduce the upper bound. We find that for pinning

down the upper bound on output, the heterogeneity restrictions on stock return micro data matter more

than the macro sign restrictions. Restrictions on manufacturing relative to other industries are particularly

important, reducing the upper bound by 0.11pp to 0.23pp. For the lower bound on responses, the opposite

pattern emerges: Sign restrictions on macro variables dominate.

Figure 4.8: Importance of restrictions for output responses to news shock two years after
impact: Lagrange multipliers on restrictions.

the upper bound would not decrease if we imposed that consumer confidence had to rise

more initially. In contrast, tightening the heterogeneity restriction that stock returns in the

manufacturing industry rise relative to returns in the other industry would lower the upper

bound of output by 0.11 to 0.23 pp. The restriction that manufacturing stocks rise more

than consumer industry stocks still would lower the upper bound by 0.02 to 0.14 pp. When

we look at the determinants of the lower bound, the opposite picture emerges: The initial

restrictions on macro variables, and consumer confidence in particular, matter the most while

the micro restrictions hardly matter.

Our analysis of multipliers in the Appendix also shows that sign restrictions on stock

returns per se has little effect on the bounds of the identified set: Looking at the distribution

of differences in multipliers with λ = 0 and λ = 1, we found that multipliers on micro

restriction would be close to zero when we set λ = 0 and work with pure sign restrictions.

In contrast, multipliers on macro restrictions do not change systematically. This highlights

the importance of our heterogeneity restrictions (Figures E.6 and E.5).22

22We also show in the appendix, in Figure E.7, that the first and the last restriction horizon matter the
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4.1.5 Robustness

More industries. Our results are robust to the particular industry classification we use.

We double the number of industries in our VAR and again use R&D expenses to order the

industry-level responses. In Figures E.8 and E.9, we contrast the responses of the macro vari-

ables across the datasets. We find significant set reductions with heterogeneity restrictions

in both cases: For example, we see a reduction of the 99th percentile of the prior-robust

GDP response from 1.2% to about 0.7% at the three-year horizon. One minor difference

emerges when using ten industries: Instead of a hump shape, we find a constant increase in

the TFP level.

Variations in the restriction horizon. Varying the horizon for which restrictions bind

from five quarters (H = 0, . . . , 4) to three quarters, we find that all qualitative results hold

(Figures E.10 and E.11). As restrictions bind longer, impulse-responses tend to be sharper

and stronger. This is consistent with the findings in Uhlig (2005, Figure 7).

Soft zero restrictions. Beaudry and Portier (2006) and Barsky and Sims (2011) impose

the restriction that news cannot raise TFP immediately to identify news shocks. Here

we incorporate this assumption as a “soft” zero restriction on the initial TFP response.23

Table E.4 shows that this extra restriction yields an additional set reduction: For output,

this reduces the maximal FEV by an additional 10pp to 15pp compared with heterogeneity

restrictions alone. The reduction for employment is 5pp to 10pp, while consumer confidence is

hardly affected. By construction, the FEV for TFP that can be explained drops dramatically

at short horizons but rises with the forecast horizon. The impulse-responses change little,

except for TFP (Figures E.12 and E.13).

Minnesota prior. Our benchmark is implemented with a flat prior on the identifiable

reduced-form parameters as in Uhlig (2005) and Arias, Rubio-Ramirez, and Waggoner

(2014). However, it is common to implement BVARs with shrinkage in the form of a Min-

nesota prior. As a robustness check, we implement our baseline model specifications with a

Minnesota prior (Figures E.14 and E.15). As expected, impulse-responses are now smoother

and more persistent. Otherwise, our qualitative results hold.

most. In absolute terms, the multipliers on the restrictions at h = 0 and at h = H̄ are the largest, both for
H̄ = 2 and H̄ = 4. This is intuitive when responses are monotone over the restriction horizon. Then the
boundary conditions at h = 0, H̄ largely determine the shape in between.

23Formally, we impose on impact that output > 10 × TFP, in addition to TFP > 0.
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Information set. To implement heterogeneity restrictions, we need more observables.

These increase both the information set and the number of unknown parameters in the

VAR. Figures E.16 and E.17 show that the larger VAR with sectoral stock returns and

heterogeneity restrictions sharpens inference about the macro variables also relative to a

smaller VAR despite the extra parameter uncertainty. The smaller VAR has the same four

macro variables, but only an aggregate stock index.24 For output, hours, and confidence, the

estimated IRFs are sharper with heterogeneity restrictions and micro data. For TFP, the

credible sets are comparable at the six-year horizon but again sharper at short horizons.

4.1.6 Comparison with the traditional rejection sampler

Sampling admissible rotations for a given set of reduced-form draws can infeasible using

rejection sampling even if we now that the admissible set has positive measure: Rejection

sampling becomes hard when the admissible set is relatively small. Examples include high-

dimensional VARs or many restrictions for long horizons. While these case may interest

practitioners, traditional samplers may fail to deliver admissible draws and underrepresent

the identified set. Our approach delivers, in contrast, a perfect acceptance rate. In many

of our applications, we would be unable to provide fully Bayesian results without it, as

Figure 4.9 illustrates based on 5 million draws for q. To put this in perspective, Inoue and

Kilian (2013) report that they used 20,000 draws for numerical stability. In our baseline

application, the median acceptance rate across reduced-form draws is just 0.0014%. With

the harder problem of including a soft zero restriction, the median acceptance rate drops by

two orders of magnitude, to 0.00002%. Without the soft zero restriction but in the higher

dimensional version with ten industry returns, the acceptance rate was zero for all reduced-

form draws. In the relaxed problem that imposes the restrictions for a total of three instead

of five quarters, the median acceptance rate is still 0 for the rejection sampler. We conclude

that Algorithm 2 is important in practice.

4.2 Fiscal shocks

What are the effects of increased discretionary spending on the economy? A large literature

that includes, among others, Blanchard and Perotti (2002), Mountford and Uhlig (2009),

Barro and Redlick (2011), and Ramey (2011) debates this question. Here, we focus on de-

fense spending as the largest component of federal government consumption and investment.

We use sign restrictions for identification as in Mountford and Uhlig (2009) but incorporate

24In the Appendix, we show results for an equally weighted average of the five sectoral real returns.
Results based on the real Wilshire 5000 index are almost identical.
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Note: Using a simple uniform proposal density, as customary since the seminal paper by Uhlig (2005),

becomes impractical with tight sign restrictions. We show the distribution of acceptance probabilities as a

function of the reduced-form parameter draws. The acceptance probability is based on 5 million draws for

each vector of reduced-form parameters. With ten industries and restrictions for h = 0, . . . , 4 (not shown),

we find a zero acceptance rate for all reduced-form draws.

Figure 4.9: Distribution of acceptance probabilities for uniform proposal density over
reduced-form draws

our belief that defense spending shocks benefit the defense industry more than other indus-

tries. Fisher and Peters (2010) exploit this insight to construct a proxy for defense spending

shocks based on the excess returns of military contractors. Perotti (2008) and Nekarda and

Ramey (2011) use this insight to analyze defense spending shocks based on shipments of

manufacturing industries to the government. Here, we follow Nekarda and Ramey (2011)

and use differences in defense shipments to better identify defense spending shocks.

4.2.1 Data, specification and identification

Data. Building on Nekarda and Ramey (2011), we use the NBER manufacturing database

and IO-table information as the sources of our micro data. Specifically, we focus on the

20 SIC2 manufacturing industries. Our heterogeneity restriction is that shipments of all

industries rise after a defense spending shock, but more so when the government is an

important client of an industry.

Figure 4.10 measures the importance of the government for each SIC2 industry by showing

the median and distribution of the government share for the industry over time. The left

panel uses direct shipments and the right panel overall shipments to the government to

normalize.25 Both measures clearly show that the electronics (SIC 36), transportation (SIC

37), and sensors (SIC 38) are the most exposed to the government. Our strategy is to pick

two industries at the top of the distribution, two in the middle, and two in the bottom of the

distribution. We consider different variants but choose the following six industries for our

25Because we aggregate industries up to the SIC2 level, we focus on direct shipments to avoid double
counting of indirect shipments.
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baseline model. Transportation and electronics are the most exposed industries, petrol and

refineries (SIC 29) and equipment (SIC 35) are the industries with an intermediate exposure,

and tobacco (SIC 21) and lumber (SIC 24) are the least exposed to defense spending.

Our baseline VAR includes annual data on defense spending, GDP, the real market value

of federal debt, total hours worked (all in logs and per capita terms), the average marginal

tax rate and shipments from the six industries.26 The sample period is 1959 to 2008.

(a) Relative to industry shipments (b) Relative to aggregate shipments
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Note: The boxes show the median along with the interquartile range of the importance of government

shipments within 2-digit SIC manufacturing industries for the seven years between 1963 and 1992 with

matching IO tables. The whiskers cover the values just outside the interquartile range ±1.5 times the

interquartile range. We obtain the data from Nekarda and Ramey (2011). For our baseline, we choose the

aggregate of 36 (electronics) and 37 (transportation) as the industries most exposed to the government, 29

(petrol and refineries) and 35 (equipment) as industries with an intermediate exposure, and 21 (tobacco)

and 24 (lumber) as those with the lowest exposure.

Figure 4.10: Importance of government shipments by industry

Specification. We estimate an annual VAR with one lag in levels and, following Ramey

(2011), include a linear-quadratic trend to remove low-frequency movements.27 In alternative

specifications we use both different sets of industries and control for expectations to rule out

that our results are driven by fiscal foresight.

Identification. We define a tax-financed defense spending shock as follows: Defense spend-

ing, GDP, total hours, and the average marginal tax rate increase for two years. The most

26The macro data, except for debt, is taken from Ramey (2011). We use the Dallas Fed data for the
nominal market value of federal debt (https://www.dallasfed.org/research/econdata/govdebt) and
deflate it by the CPI.

27With sign restrictions alone, reduced-form draws with explosive eigenvalues often dominated the tails.
We therefore decided to reject draws with eigenvalue above 1.03 in absolute value to make sign restrictions
more competitive by reducing the incidence of explosive roots.
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exposed industries increase their shipments more than those with more modest exposure.

The modestly exposed industries, in turn, increase shipments more than the industries with

no exposure. Output in the lumber and tobacco industries weakly increases. Debt is free to

respond in any way.

For brevity, we focus on a few results only. We provide the full results, ordered by

subsection, in Appendix E.2. Let us now turn to the implied responses.

Benchmark data Sign restrictions Heterogeneity restrictions

Macro

Real defense spending Real defense spending ≥ 0 Real defense spending ≥ 0
Real GDP Real GDP ≥ 0 Real GDP ≥ 0
Real federal debt none none
Total hours worked Total hours worked ≥ 0 Total hours worked ≥ 0
Marginal tax rate Marginal tax rate≥ 0 Marginal tax rate≥ 0

Micro

SIC21 Tobacco Tobacco ≥ 0 Tobacco ≥ 0
SIC24 Lumber Lumber ≥ 0 Lumber ≥ 0
SIC29 Petrol Petrol ≥ 0 Petrol ≥ Tobacco

Petrol ≥ Lumber
SIC35 Equipment Equipment ≥ 0 Equipment ≥ Tobacco

Equipment ≥ Lumber
SIC36 Electronics Electronics ≥ 0 Electronics ≥ Petrol

Electronics ≥ Equipment
SIC37 Transportation Transportation ≥ 0 Transportation ≥ Petrol

Transportation ≥ Equipment

Table 4.2: Benchmark data and identifying restrictions

4.2.2 Impulse-response functions

Inference that is robust to the prior distribution is hard, but the heterogeneity restrictions

tighten bounds and allow qualitative inference at the posterior mean. Figure 4.11 shows

the results for three macro variables: defense spending, output, and federal debt. As in the

analysis of the news shocks, at short horizons, the uncertainty is modest and mostly due

to the width of the identified set that would also prevail at the posterior mean. At longer

horizons, parameter uncertainty compounds the uncertainty about the identified set at the

posterior mean. Heterogeneity restrictions lower the upper bound by between 8% (hours

at the three-year horizon) and 48% (tax rates at the eight-year horizon); see Table E.5. In

addition, at the posterior mean heterogeneity restrictions permit inference about the shape

of the responses. The unrestricted debt response is positive despite the tax increase. Defense

spending and hours (not shown) remain persistently high, while output quickly reverts back

toward zero. Figure E.18 in the Appendix shows all responses.
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Note: Heterogeneity restrictions yield set reductions that allow to sign responses for both defense spending

and debt at the posterior mean, even though the debt response is left unrestricted. While parameter

uncertainty blurs these findings, heterogeneity restrictions still lower the 95th percentile of upper bounds by

between 10% and 25% for the variables shown across the different horizons.

Figure 4.11: Prior-robust responses to defense spending shock: Macro variables

A Bayesian with an agnostic prior would find that her prior sharpens inference signif-

icantly because there is little mass in the extremes of the identified set.28 Already with

sign restrictions, a Bayesian can infer that output increases for two years after impact, along

with hours worked and tax rates. With heterogeneity restrictions, however, we isolate a more

persistent increase in spending up to four years, find a hump-shaped increase also in output,

and find clear evidence that debt rises initially and, with some confidence, up to eight years

after the shock. The 95% credible set for a one standard deviation defense spending increase

is wide, around 0.25-3.5%, with initial increases in GDP of 0.1-0.6%. See Figure 4.12.

Shipments in the industries used for heterogeneity restrictions exhibit a sensible pattern;

see Figure E.19 in the Appendix. As for aggregate output, industry shipments revert back

to zero after three years. Heterogeneity restrictions cut the prior-robust upper bounds by

17% to 63% and almost shrink the width of the inner 95% credible sets; see Table E.5.

4.2.3 Defense spending multipliers

What does our model imply about how effectively defense spending stimulates the economy?

Following Mountford and Uhlig (2009), we compute cumulative present discounted value

multipliers to answer this question.

Without additional beliefs, the multiplier can be implausibly high – and virtually un-

bounded on impact: Our identifying assumptions are consistent with large GDP increases

that coincide with tiny defense spending increases. This scenario may be caused by shocks

28The tails of the numerically computed posterior confidence sets cover the identified set well. See Fig-
ure E.21 in the Appendix for a comparison at the posterior mean of the reduced for parameters.
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Note: Both sign and heterogeneity restrictions produce economically sensible responses: Defense spending

shocks are persistent and raise output above trend for two years. Heterogeneity restrictions, however, allow

sharper inference that reveals a more persistent increase in defense spending as well as a pronounced increase

in debt even though part of the spending increase is tax financed.

Figure 4.12: Prior-robust responses to defense spending shock: Macro variables

that are not spending shocks. To rule this out, we add our belief that the impact multiplier

is no larger than two: a heterogeneity restriction on defense spending and output. Unlike

the micro heterogeneity restrictions, this macro heterogeneity restriction has little effects on

impulse-responses, so we show the corresponding impulse-responses only in the Appendix.29

Figure 4.13 shows the distribution of the cumulative multipliers over time: With sign

restrictions, the impact multiplier ranges up to 40 with 90% posterior probability. With

68% it still ranges from 3 to 11. With our baseline heterogeneity restrictions the 68%

credible set covers 1.5 to 6 – an improvement but still implausible. Restricting the impact

multiplier to lie below two mechanically does just that on impact, yielding a 68% range of

0.75 to just below 2. The tighter restriction on impact multipliers gives way to increasing

multipliers at the two-year horizon that converge to a range of 0.5 to 2.5 after ten years with

68% posterior probability compared with a range of -1 to 4 with sign restrictions.

4.2.4 FEV decomposition

Pure sign restrictions would allow defense spending shocks to be a main driver of business

cycles: According to Table E.6 in the Appendix, the posterior mean of the prior-robust

bounds on the forecast error explained by the defense shock range from 64% to 85% of the

variance on impact for macro variables. After 10 years, the shock could still account for up

to 33 to 43%. As Table 4.3 shows, heterogeneity restrictions tighten these bounds by 13%

29The added assumption shrinks the 95th percentile of the impact response from 0.70% to 0.25%. Sub-
sequent responses of output and the other macro variables are, however, virtually unchanged.
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Note: We compute PDV multipliers using a 5% discount rate and a defense share in GDP of 5.5%. With

sign restrictions, credible sets are very wide. Heterogeneity restrictions on industry shipments cut the range

for impact multipliers in half, but still puts significant probability on unreasonable multipliers. With the

added belief that impact multipliers do not exceed two as a macro heterogeneity restriction, we obtain a

reasonable distribution: With 68% probability, multipliers lie between 0.5 and 2 on impact, rise to 2 to 5

after two years, and then converge toward a range of 0.5 and 2.5. After impact, about half of the uncertainty

stems from uncertain parameters.

Figure 4.13: Distribution of present discounted value (PDV) output multipliers.

to 35% on impact and 11% to 22% after 10 years. The reduction is particularly pronounced

for taxes in which case the posterior median of the upper bound is essentially cut in half.

4.2.5 Important restrictions

To assess which restrictions are important, we focus on the output response. We conclude

from the Lagrange multipliers that the heterogeneity restrictions on micro data are more

important for bounding the output response from below after three years than the macro

sign restrictions. For the upper bound on output, the opposite is true.

Specifically, the posterior median of the Lagrange multipliers on the macro sign restric-

tions is zero at the three-year horizon, according to Figure E.25 in the Appendix. In contrast,

the heterogeneity restrictions on transportation shipments have median Lagrange multipli-

ers around 0.1, implying that marginally tightening these restrictions would raise the upper

bound on output by 0.1pp. Also, the sign restrictions on tobacco and lumber are important,

with Lagrange multipliers around 0.15. In contrast, the median upper-bound multipliers on

the micro data are close to zero but -0.4 for the sign restriction on tax rates. This implies
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Difference between HR and SR (% of total FEV)
Horizon H (year)

Variable 0 1 2 3 10
Defense spending 14 (6,19) 10 (2,15) 8 (2,13) 8 (1,12) 11 (2,14)
Output 35 (21,42) 19 (9,25) 11 (6,16) 9 (4,14) 13 (7,15)
Debt 13 (5,18) 15 (7,23) 26 (10,34) 26 (11,32) 16 (5,22)
Hours 17 (8,22) 10 (3,15) 10 (3,14) 9 (2,13) 12 (6,14)
Tax rate 27 (12,32) 25 (12,31) 24 (12,32) 26 (11,33) 22 (7,36)

Note: We find a moderate to large reduction in the maximum FEV of macro variables when comparing

heterogeneity restrictions with sign restrictions, even though the direct restrictions on macro variables are

the same. Set reductions at the posterior median peak at more than 25% of the total FEV for output, debt,

and the tax rate at some horizons. The reduction for defense spending and hours worked is 8% to 17% of the

total FEV. The table shows the posterior median along with 68% credible sets across reduced-form draws.

Table 4.3: FEV of macro variables due to defense spending shocks: Prior-robust bounds

that marginally strengthening restriction that tax rates rise would lower the upper bound

on the output response after three years by 0.4pp.

We also find that moving from pure sign restrictions on all variables to sign and hetero-

geneity restrictions does not diminish the importance of macro sign restrictions: The 68%

posterior for the change in multipliers always includes zero. Indeed, imposing heterogene-

ity restrictions on some industries makes the sign restrictions on tobacco and lumber more

important.

4.2.6 Robustness

Other industries. To address specification uncertainty, we consider different sets of SIC2

industries. We still find set reductions but sometimes for different macro responses than in

our baseline. In one variant, we keep electronics and transportation (SIC 36 and 37) as the

industries most exposed to defense but use chemicals and metal (SIC 28 and 34) as industries

with an intermediate exposure and furniture and leather (SIC 25 and 31) as the industries

with the lowest exposure. In another variant, we use just four industries: We impose that

transportation reacts more than instruments (SIC 38), instruments react more than metals,

and metals react more than apparel. The first variant leads to sharper inference on output

than our baseline but is ambiguous about the initial debt response. The second variant

is similar to the baseline in terms of allowing us to sign the initial debt response, but for

output, the difference to sign restrictions is less pronounced. See Figures E.29 and E.30.

Fiscal foresight. To address fiscal foresight, we control for expectations by including fore-

cast of industrial production (IP) from the Livingston Survey in the VAR and the proxy for

defense spending news from Ramey (2011) as an exogenous regressor, following Anderson, In-
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oue, and Rossi (forthcoming). Controlling for general expectations and defense news hardly

changes the results: Hours worked increase slightly less both with sign and heterogene-

ity restrictions. Defense spending may become slightly more persistent. See Figures E.29

and E.30. Interestingly, the forecast for IP increases one year after the shock, although we

do not restrict the IP response. This increase is sharper with heterogeneity restrictions.30 If

IP forecasts and the news proxy in Ramey (2011) capture fiscal foresight well, our results

are robust to fiscal foresight.31

5 Conclusion

Our paper shows how to design and implement heterogeneity restrictions to sharpen inference

in VARs. Heterogeneity restriction impose a ranking on the relative magnitude of impulse-

responses. For most of our paper, we impose them based on easily available micro data,

but we also provide two applications with heterogeneity restrictions on macro variables. We

derive conditions under which these restrictions sharpen our inference about variables not

subject to extra restrictions. These conditions say that heterogeneity restrictions sharpen

inference if they require the conditional covariance to be more at odds with the unconditional

forecast error covariance than the standard sign restrictions.

To implement our approach in quantitative models, we develop algorithms for both prior-

robust and efficient fully Bayesian inference. The prior-robust algorithm provides a distri-

bution over the bounds of the identified set of the object of interest – impulse-responses or

variance decompositions. The fully Bayesian algorithm is a novel way to draw from sign

restrictions with a 100% acceptance rate by exploiting a connection between the truncated

uniform distribution of rotation vectors and a truncated multivariate normal distribution.

We find that the algorithm works well in several examples, sampling even in the tails of the

identified set and with soft zero restrictions. Both algorithms use a simple linear program

to determine whether the identified set has positive measure.

Using these tools, we demonstrate how useful heterogeneity restrictions are in two appli-

cations: First, we identify productivity news shocks with the help of stock return information

on sectors with different R&D intensities. Second, we identify a defense spending shock with

the help of information on the importance of the government as a client. We find that het-

30Figure E.31 shows that heterogeneity restrictions shrink the identified set at the identified mean suf-
ficiently to exclude negative responses and to exclude negative responses with 97.5% posterior probability
when being fully Bayesian.

31We have also explored an alternative quarterly dataset that includes less industry detail but includes
the Korean war (results available on request). For this dataset, we found that responses differ in the early
and late sample period with significant effects of heterogeneity restrictions in the second half of the sample.
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erogeneity restrictions on micro data, but not pure sign restrictions, allow inference about

the shape of responses for several macro variables at the posterior mean without imposing

any prior over the space of rotation matrices. More generally, we find that heterogeneity

restrictions cut the size of the identified set significantly relative to sign restrictions, with

peak reductions of bounds on variance decompositions and impulse-responses for output in

the order of 30% in both applications. We verify the importance of heterogeneity restrictions

for set reduction using Lagrange multipliers. These show, for example, that heterogeneity

restrictions on micro data can be more important for the bounds on output responses than

sign restrictions on macro variables.

Heterogeneity restrictions also help to sharpen fully Bayesian inferences. Interestingly,

the extra restrictions do not simply shrink the response toward zero. For example, in the

fiscal application, we find that we cannot sign the debt response with sign restrictions but

find that debt increases significantly after a spending shock with heterogeneity restrictions.
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A Proofs

A.1 Proof of Lemma 2

Proof. Let S be a J × J diagonal matrix with the direction of the restrictions on its diagonal
Sj,j = s(j). Then the heterogeneity restriction in LHR are equivalent to

S (E − Λ)
︸ ︷︷ ︸

=M

Ãq ≥ 0.

Since M is of rank J by assumption, we can rewrite M = U [D, 0J×(p−J)]V , where U, V are orthog-
onal matrices of dimension J and p, respectively. D is a J×J diagonal matrix with nonzero entries
along its main diagonal. Define M̃ = V ′[D−1; 0(p−J)×J ]U

′. Note that MM̃ = I.
Now define

q̃ ≡ Ã−1M̃S−11J×1.

Note that q̃ is nonzero. To see this, assume by contradiction that q̃ = 0p×1. Equivalently, after left
multiplying by Ã and then by M , MM̃S−11J×1 = M0p×1 = 0J×1. But MM̃ = I and since S is
invertible, 1J×1 = 0J×1, a contradiction. Thus ||q̃|| > 0.

Let q ≡ q̃
||q̃|| . Then:

SMÃq = ||q̃||−1SMÃÃ−1M̃S−11J×1 = ||q̃||−11J×1 > 0,

where the inequality is taken elementwise. Since the inequality is strict, by continuity there exists
a δ > 0 such that all q̂ with ||q̃ − q̂|| < δ small enough can be rescaled so that Ã q̂

||q|| satisfies LHR.
Thus, the set of admissible q and the identified set for a have positive measure given that πq has
full support.

A.2 Proof of Corollary 1

Proof. To keep the notation simpler, assume that the variables with restrictions are ordered first in
the VAR, such that n(j) = j for j = 1, . . . , J . Otherwise the proof below holds after multiplication
with appropriate permutation matrices.

Since groups are non-overlapping, we have that the rows of E,Λ involving any variables j ∈ G

do not involve any variables j′ ∈ G′,G′ 6= G. Note that E,Λ are zero except for (1) positions
{(j1, j1), . . . , (j̄ , j̄)} in E, which are unity, and (2) positions {(j1,m(j1)), . . . , (j̄,m(j̄))} in Λ, which
equal λ(j1), . . . , λ(j̄), respectively. Proceed by Gaussian elimination.

Note that λ(j1) = 0 by assumption. Then, multiplying row j1 by −λ(j2) and adding it to row
j2 ensure that Mj2,◦ − λ(j2)Mj1,◦ = Ej2,◦ − Λj2,◦ − λ(j2)Ej2,◦ = Ej2,◦ = ej2 – a zero row except for
one entry equal to unity.

Now assume that Mjn,◦ = Ejn,◦ = ejn. Multiplying row jn by −λ(jn+1) and adding it to row
jn ensure that Mjn+1,◦−λ(jn+1)Mjn,◦ = Ejn+1,◦ = ejn+1. Continue until jn+1 = j̄. Thus, we can
rewrite Mj1,◦, . . . ,Mj̄,◦ as a linear combination of the independent basis vectors Ej = ej , j ∈ G.
Thus, their rank equals the cardinality of G.

Since groups are non-overlapping, the total rank is the cardinality of all groups, which equals
J . Thus, Lemma 2 applies.
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A.3 Proof of Proposition 1 (Bivariate VAR(0))

Proof. This follows directly from comparing the sets listed below for λ = 0 and λ > 0. Recall the
restrictions:

a1 ≡ q1Ã11 ≥ 0

a2 ≡ q1Ã21 + q2Ã22 ≥ λq1Ã11

Trivially, the lower bound for a1 of zero is always within our set: a1 = 0.
Note that if the heterogeneity restriction binds with equality, we have that:

q1 =
Ã22

√

Ã2
22 + (Ã2

21 − λÃ11)2
q2 = ± |Ã21 − λÃ11|

√

Ã2
22 + (Ã2

21 − λÃ11)2

Case (a) Ã21 ≤ 0.

• Upper bound for a2: Since q1 ≥ 0, the upper bound for a2 is, trivially, ā2 = Ã22.

• Lower bound for a2: Since Ã22 > 0, the lower bound is attained by the largest q1 and
the lowest q2, i.e. with a binding heterogeneity restriction for q2 > 0. Then: the lower

bound for a2 is a2 =
λÃ11Ã22√

Ã2
22+(Ã2

21−λÃ11)2
.

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction:

ā1 =
Ã22√

Ã2
22+(Ã2

21−λÃ11)2
Ã11.

Case (b) λÃ11 − Ã21 ≤ 0, Ã21 ≥ 0.

• Upper bound for a2: a2 is now weakly positive, and the heterogeneity constraint is
slack. The SOC for the unique interior extremum to be a maximum always holds. At

the interior extremum, q1 =
Ã21√

Ã2
22+Ã2

21

and q2 =
Ã22

Ã21
q1. Thus: ā2 =

√

Ã2
22 + Ã2

21.

• Lower bound for a2: A negative q2 is now possible, but constrained by the heterogeneity
constraint, as its RHS is increasing faster in q1 than its LHS. Thus, the lower bound is

associated with a binding heterogeneity constraint and a2 =
λÃ11Ã22√

Ã2
22+(Ã2

21−λÃ11)2
.

• Upper bound for a1: Since q2 = 0, q1 = 1 is possible, the upper bound is simply
ā1 = Ã11.

Case (c) λÃ11 − Ã21 ≥ 0, Ã21 ≥ 0 or 0 ≤ ρ ≤ λ
√
Σ11√
Σ22

.

• Upper bound for a2: We proceed by brute force, checking whether the heterogeneity

constrained is binding at the unconstrained maximum. We find that if λ ≤ Ã2
22+Ã2

21

Ã11Ã21
=

Σ22
Σ21

, the heterogeneity constraint is slack. Thus:

ā2 =







√

Ã2
22 + Ã2

21 λ ≤ Ã2
22+Ã2

21

Ã11Ã21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11

λÃ11Ã22√
Ã2

22+(Ã2
21−λÃ11)2

λ ≥ Ã2
22+Ã2

21

Ã11Ã21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11
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• Lower bound for a2: Since the interior extremum is always a maximum, we check the
corners. Comparing the two corners, we find:

a2 =







Ã22 λ ≥ 1
2
Ã2

22+Ã2
21

Ã11Ã21
= 1

2
Σ22
Σ21

= 1
2
1
ρ

√
Σ22√
Σ11

λÃ11Ã22√
Ã2

22+(Ã2
21−λÃ11)2

λ ≤ 1
2
Ã2

22+Ã2
21

Ã11Ã21
= 1

2
Σ22
Σ21

= 1
2
1
ρ

√
Σ22√
Σ11

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction:

ā1 =
Ã22√

Ã2
22+(Ã2

21−λÃ11)2
Ã11.

A.4 Proof of Proposition 2 (Trivariate VAR(0))

Proof. Identified set Here we only consider bounds for a1. We seek a solution to the following
problem:

min
q

or max
q

Ã11q1 (A.1a)

s.t. ||q|| = 1 (A.1b)

Ã11q1 ≥ 0 (A.1c)

Ã21q1 + Ã22q2 ≥ 0

(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

q1 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3 ≥ 0 (A.1d)

Since Ãii > 0∀i, we can write equivalently:

min
q

or max
q

√

1− (q2)2 − (q3)3

s.t. Ã21

√

1− (q2)2 − (q3)3 + Ã22q2 ≥ 0

(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

√

1− (q2)2 − (q3)3 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3 ≥ 0

Note that a1 = 0 is always feasible by setting q3 = 1. We therefore focus on the maximization
problem.

Using Lagrange multipliers νSR and νHR to denote the inequality constraints we can equivalently
write the Lagrangian as

min
νSR,νHR

max
q2,q3

L =
√

1− (q2)2 − (q3)3 − νSR(Ã21

√

1− (q2)2 − (q3)3 + Ã22q2)

− νHR(Ã
λ
31

√

1− (q2)2 − (q3)3 + Ãλ
32q2 + Ã33q3)

with the associated Kuhn-Tucker conditions as:

[q2]−
q2

√

1− (q2)2 − (q3)3
(1− νSRÃ21 − νHRÃ

λ
31) = νSRÃ22 + νHRÃ

λ
32

νSR(Ã21

√

1− (q2)2 − (q3)3 + Ã22q2) = 0

νSR ≥ 0

48



[νSR]Ã21

√

1− (q2)2 − (q3)3 + Ã22q2 ≥ 0.

[q3]−
q3

√

1− (q2)2 − (q3)3
(1− νSRÃ21 − νHRÃ

λ
31) = νHRÃ33

νHR(Ã
λ
21

√

1− (q2)2 − (q3)3 + Ãλ
22q2 + Ã33q3) = 0

νHR ≥ 0

[νHR]Ã
λ
31

√

1− (q2)2 − (q3)3 + Ãλ
32q2 + Ã33q3 ≥ 0.

Clearly, the Kuhn-Tucker conditions show that the unconstrained optimum, when the multipliers
νSR, νHR are zero, involves setting q2 = q3 = 0.

We assume throughout that λ ≥ 0. For λ = 0, the heterogeneity restrictions become standard
sign restrictions. We focus on the case of Ã21, Ã31 > 0.

1. All (conditional) covariances positive, heterogeneity restriction weak:
Note that when 0 ≤ Ã21, Ã31 and λÃ21 ≤ Ã31, then Ãλ

31 ≥ 0 and q2 = q3 = νSR = νHR = 0
is a local extremum – specifically, an optimum. All conditions are trivially satisfied at zero.
This equals the unconstrained optimum.

2. All (conditional) covariances positive, heterogeneity restriction strong:
Note that when λÃ21 > Ã31 > 0, then Ãλ

31 < 0. q2 = q3 = νSR = νHR = 0 no longer satisfies
the optimality conditions with λ > 0, since the HR constraint is violated at this candidate
point. With λ = 0, however, q2 = q3 = 0 is feasible, and the unconstrained maximum attains.
The bound on q1 is thus strictly tighter with heterogeneity restrictions.

3. Small negative conditional covariance, weak heterogeneity restriction:
When Ã31 < 0, it follows that Ãλ

31 < 0 for all λ. For λ,A31 close enough to zero, the optimum
involves νHR > 0 = νSR. In this case, the solution is given by:

qHR
1 =

(Ãλ
32)

2 + (Ã33)
2

√

((Ãλ
32)

2 + (Ã33)2)2 + Ã33(Ãλ
31)

2(1 + (Ãλ
32/Ã33)2)

It can be shown that
dqHR

1
dλ

∣
∣
∣
λ=0

< 0: Introducing heterogeneity restrictions tightens the upper

bound.

More generally, both restrictions or only the second restriction can bind if the optimum
involves q2 < 0. The solution for q1 is q1 = max{qHR

1 , qHR,SR
1 , qSR1 } where:

qHR,SR
1 =

Ã33
√

((Ã31 − (Ã21/Ã22)Ã32)2 + (Ã33)2)2 + (Ã33)2(1 + (Ã21/Ã22)2)

qSR1 =
1

√

1 + (Ã21/Ã22)2
.

A.5 Proof of Proposition 3

Proof. Suppose without loss of generality that there are no zero rows of W : ∀i = 1, . . . , nr :
||Wi,◦|| > 0.
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⇒: Let y1,2 = xc ± α
√

r
n
1, where α ∈ [0, 1]. Let qi =

yi
||yi|| . Then

q1 − q2 = ||y1||−1
[

(x(i)c − α
√

r/n)(1 − ||y1||/||y2||)
]

i
6= 0,

for (almost) all α. Thus the identified set has a measure at least as large as:

π

{
y

||y|| |y = xc + α

√
r

n
1,−1 ≤ α ≤ 1

}

.

⇐: We first show that the identified set cannot have positive measure if it imposes an equality
restriction on any element of q. Then we we use this to construct a candidate solution to the
problem of finding the Chebychev center.

Note that if the identified set has positive measure, then there exists a q such that Wq ≤ 0
and ||q|| = 1.

By means of contradiction, assume ∃i ∈ {1, . . . , nr} such that ∀q satisfying ||q|| = 1, Wq ≤ 0,
and Wi,◦q = 0. Let j denote a non-zero entry Wij. Then qj = − 1

Wij

∑

ℓ 6=j Wiℓql∀q. However,
such a q has zero π measure for continuous π, contradicting the assumption that the identified
set has positive measure. Thus, for each i there exists a q̃i such that Wi,◦q̃i < 0 and Wqi ≤ 0.
By continuity, we can also find a nearby qi such that Wqi < 0.

Now we construct, by induction, a q such that Wq < 0. Pick q such that W1q < 0 and
W2q ≤ 0. Let ǫ = δ × (−W1q) and define q̂ = [qℓ − δn−1ǫ sgn(W2,ℓ)W2,ℓ]ℓ and q′ = q̂

||q̂|| .

Note that W2q
′ ∝ W2q̂ = W2q − δn−1ǫ

∑

ℓ |W2,ℓ| < 0. Also, for δ small enough, W1q
′ < 0.

Now assume that Wiq < 0 for i = 1, . . . , n and Wn+1q = 0. Proceed as before but with
ǫ = maxi δ|Wiq|. Going through the same argument shows that we can then also generate a
q′ such that Wiq

′ < 0 for all i = 1, . . . , n + 1.

Thus, Wq < 0. First, this implies that q 6= 0. Second, by continuity, there exists an r̃ > 0
small enough such that ∀u satisfying ||u|| < r̃ also W (q + u) ≤ 0. Because ||q|| = 1, q ∈
[−1, 1]n. Thus, there exists a feasible solution to the Chebychev problem with r > 0.

A.6 Proof of Proposition 4

Proof. Let x̃ ∼ N (0, In) such that Wx̃ ≤ 0, where the inequality is elementwise. Let Q be a given
orthonormal matrix. Thus, ỹ = Qx̃ ∼ N (0, QQ′) = N (0, In). Let A be a Borel set on the σ-algebra
on the unit n-sphere. Then:

Prx̃ {x ∈ A ∩ {x′|Wx′ ≤ 0}}
Prx̃ {Wx ≤ 0} =

Prx̃ {x ∈ A ∩ {x′|Wx′/||x′|| ≤ 0}}
Prx̃ {Wx/||x|| ≤ 0}

=
Prỹ {y ∈ A ∩ {y′|Wy′/||y′|| ≤ 0}}

Prỹ {Wy/||y|| ≤ 0}

=
PrQx̃ {Qx ∈ A ∩ {Qx′|WQx′/||Qx′|| ≤ 0}}

PrQx̃ {WQx/||Qx|| ≤ 0}

=
Prq̃ {q ∈ A ∩ {q′|Wq′ ≤ 0}}

Prq̃ {Wq ≤ 0} .
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The first equality follows because ||x|| > 0 with probability one, the second equality follows because

ỹ
D
= x̃, the third equality follows from substituting ỹ = Qx̃, and the last equality follows from the

definition of q̃. Thus, the resultant distribution has the desired rotation-invariant measure on the
truncated unit n-sphere.
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B Trivariate VAR: Further analysis and empirical ex-

amples

B.1 General signs

To take Proposition 2 to the data, we need to allow for general sign restrictions. We thus generalize
the setup from Appendix A.4 by introducing signs for each restriction si ∈ {−1, 1}.

min
q

or max
q

Ã11q1 (B.1a)

s.t. ||q|| = 1 (B.1b)

s1Ã11q1 ≥ 0 (B.1c)

s2(Ã21q1 + Ã22q2) ≥ 0 (B.1d)

s3






(Ã31 − λÃ21)
︸ ︷︷ ︸

≡Ãλ
31

q1 + (Ã32 − λÃ22)
︸ ︷︷ ︸

≡Ãλ
32

q2 + Ã33q3







≥ 0 (B.1e)

Now, define Âij = Ãij if i = j and Âij = Ãij × sj
∏j

ℓ=1 sℓ for i = 1, 2, 3 and j ≤ i. Also define

q̂i = siqi and λ̂ = s3λ. Then we can re-write problem (B.1) as

min
q

or max
q

s1Ã11q̂1 (B.2a)

s.t. ||q|| = 1 (B.2b)

Ã11q1 ≥ 0 (B.2c)

Â21q̂1 + Ã22q̂2 ≥ 0 (B.2d)

(Â31 − λ̂Â21)
︸ ︷︷ ︸

≡Âλ
31

q̂1 + (Â32 − λ̂Â22)
︸ ︷︷ ︸

≡Âλ
32

q̂2 + Ã33q̂3 ≥ 0, (B.2e)

whose constraints are of the same form as (B.1). Thus, the previous solution applies to the trans-
formed vector q̂ in terms of the transformed coefficients Âij. However, if s1 = −1, maximization
and minimization are interchanged.

Thus, the sufficient condition for set reduction from Appendix A.4 becomes λ̂Â21 > Â31 > 0.
In terms of the original components:

λs3s2s1Ã21 > s3s1Ã31 > 0.

For these sufficient conditions to apply, we need that Â21 > 0 and Â31 > 0. In terms of the
original components:

s2s1Ã21 > 0, s3s1Ã31 > 0.

Examples include:

1. Traditional New Keynesian example: Variable 1 is the funds rate. Variable 2 is a real activity
measure. Variable 3 is the measure of prices. s1 = s3 = −1. s2 = 1: As the FFR rises,
inflation and real activity fall.
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(a) Interest rates rise: s1 = +1

(b) Industrial production or PCE falls: s2 = −1, and

(c) Prices fall (and more than λ× output): s3 = −1.

Thus, the sufficient condition here becomes λÃ21 > −Ã31 > 0. Equivalently, −λÃ21 < Ã31 <
0. For this condition to apply, we also need that Â21, Â31 > 0, or −Ã21 > 0 and Ã31 > 0 in
this example.

Cholesky of covariance matrix MLE estimate for FFR, PCE prices, and PCE quantities:





0.5086 0 0
0.0610 0.4899 0
−0.0022 0.0425 0.1493





Thus, Ã31 < 0, and our theorem does not apply.

Cholesky of covariance matrix MLE estimate for FFR, PCE prices, and IP quantities:





0.4990 0 0
0.1645 0.5877 0
0.0002 0.0052 0.1564





Thus, Ã21 > 0 and our theorem does not apply. Because our conditions are only sufficient,
we also verify the lack of set reduction numerically. As the right panel of Figure B.1 shows,
there is no set reduction in the Federal Funds Rate response, nor in the response of prices.
By construction, higher λ enables us to impose soft zero restrictions.

2. New Keynesian housing example: Variable 1 is the interest rate. Variable 2 is the measure of
housing starts, variable 3 of house price inflation. s1 = s3 = −1. s2 = 1: As the FFR rises,
inflation and real activity fall.

(a) Interest rates rise: s1 = +1

(b) Housing starts: s2 = −1, and

(c) House prices fall (and more than λ× output): s3 = −1.

Thus, the sufficient condition here becomes: λÃ21 > −Ã31 > 0. Equivalently: −λÃ21 <
Ã31 < 0. For this condition to apply we also need that Â21, Â31 > 0, or −Ã21 > 0 and
Ã31 > 0 in this example.

Cholesky of covariance matrix MLE estimate for FFR, housing prices, and median house
prices:





0.5086 0 0
−0.6119 6.5659 0
−0.0567 0.0538 2.6529





Thus, Ã31 < 0 and our theorem does not apply. However, we still find a very modest set
reduction; see the upper panel in Figure B.2.
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If we replace the median house price with the Case-Shiller index, we find that the following
Cholesky factor of the covariance matrix MLE estimate:





0.5035 0 0
−0.4178 6.5342 0
0.0105 0.0090 2.1261





Now our theoretical results also apply formally and we expect a set reduction. The bottom
panel of Figure B.2 displays the results and shows that the set reduction happens but is
negligible. In both cases, it is clear how the large value for λ imposes a soft zero restriction
on housing starts, as intended.

3. Blanchard and Perotti (2002) example: Variable 1 becomes output. Variable 2 is government
consumption. Variable 3 is the tax rate. s1 = 1 (arbitrary), s2 = +1, s3 = +1.

(a) Output rises: s1 = +1,

(b) G rise: s2 = +1.

(c) Taxes τ rise (and more than λ× government spending): s3 = +1, and

For high values of λ, this restriction imposes a “soft” zero restriction on government spending:
Spending does not rise (significantly) on impact in response to tax shocks.

The sufficient condition is thus simply λÃ21 > Ã31 > 0.

Cholesky of Blanchard and Perotti (2002) covariance matrix MLE estimate, after ordering:





0.0086 0 0
0.0135 0.0220 0
0.0044 −0.0007 0.0232





Thus, Ã31 = 0.0044 > 0 and λÃ21 > Ã31 iff λ > 0.44
1.35 ≈ 1

3 . Figure B.3 shows the corresponding
set reduction. Note the nonlinear scale of λ that shows that for small λ, there is no set
reduction, confirming our theoretical analysis.

Figure B.1: Set reduction for impact response in traditional NK application
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Figure B.2: Set reduction for impact response in NK housing application
Median house price
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Figure B.3: Set reduction for impact response in Blanchard and Perotti (2002) application
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Note: The dashed vertical line marks the threshold for λ above which there is set reduction for the output

response, i.e. λ̄ = Ã31/Ã21.
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4. Productivity news example (inspired by Beaudry and Portier, 2006): Variable 1 is output
growth. Variable 2 is utilization-adjusted TFP growth (Fernald, 2014). Variable 3 is the real
growth of the Wilshire 5000 index.

(a) Output rises: s1 = +1,

(b) TFP τ does not fall: s2 = +1, and

(c) The stock market rises (and more than λ× TFP): s3 = +1.

For high values of λ, this restriction imposes a “soft” zero restriction on TFP: TFP does not
rise (significantly) on impact in response to positive news.

The Choleski of the covariance matrix MLE estimate, after ordering:





0.44 0 0
1.02 2.47 0
0.75 0.68 4.61





Here, Ã31 = 0.75 > 0 and λÃ21 > Ã31 iff λ > 0.75
1.02 ≈ 3

4 . Figure B.4 shows the corresponding
set reduction. Note the nonlinear scale of λ that shows again that for small λ, there is no set
reduction.

B.2 Redundant restrictions

Consider a three-variable, three-shock case in which the true impulse matrix is given by:

A =





a11 a12 0
a21 a22 0
a31 a32 a33



⇒ AA′ =





a211 + a212 a11a21 + a22a12 a11a31 + a12a32
a21a11 + a22a12 a221 + a222 a21a31 + a22a32
a31a11 + a12a32 a31a21 + a32a22 a231 + a233 + a232



 (B.3)

One interpretation of this structure is that there are only two aggregate shocks. These aggregate
shocks affect all three variables while the third variables also contains a third idiosyncratic shock.

The lower-triangular Cholesky decomposition is given by:

Ã11 =
√

a211 + a212

Ã21 =
a21a11 + a22a12

Ã11

Ã22 =

√

a221 + b222 − Ã2
21

Ã31 =
a31a11 + a12a32

Ã11

Ã32 =
a31a21 + a32a22 − Ã31Ã21

Ã22

Ã33 =

√

a231 + a233 + a232 − Ã2
31 − Ã2

32
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Figure B.4: Set reduction for impact response in News application
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Note: The dashed vertical line marks the threshold for λ above which there is set reduction for the output

response, i.e. λ̄ = Ã31/Ã21.

Now consider the case that a31 = κa21 and a32 = κa22. In this case:

Ã31 = κÃ21, (B.4a)

Ã32 = κÃ22, (B.4b)

Ã33 = |a33|. (B.4c)

We now show that if the heterogeneity restrictions are weaker than those of the data-generating
process (i.e., λ ≤ κ), then adding the heterogeneity restrictions does not change the identified set
for variables 1 and 3. We start by stating the problem:32

max
q

e′iÃq, i ∈ {1, 2}, (B.5a)

s.t. ||q|| = 1 (B.5b)

e′1Ãq ≥ 0 (B.5c)

e′2Ãq ≥ 0 (B.5d)

(e3 − λe2)
′Ãq ≥ 0, (B.5e)

where Ã is the Cholesky factor of AA′ in (B.3) that satisfies (B.4). ei denotes a selection vector
with zeros except for a one in the ith position.

We derive the Kuhn-Tucker conditions using a Lagrangean:

min
µ,νi≥0

max
q

L = e′iÃq + µ(1− ||q||)−
2∑

j=1

νje
′
jÃq − ν3(e3 − λe2)

′Ãq

32We focus on the upper bounds because we can always attain the lower bound of zero.
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The necessary conditions are:



e′i −
2∑

j=1

νje
′
jÃ− ν3(e3 − λe2)

′



 Ã− 2µq′ = 0

νje
′
jÃq = 0 νj ≥ 0 , j = 1, 2

ν3(e3 − λe2)
′Ãq = 0 ν3 ≥ 0.

Note that ν3−i = 0 for i = 1, 2, by the complementary slackness condition. We now guess and verify
that we can ignore the heterogeneity restrictions, i.e., the third set of restrictions. Simplifying:

q′SR =
1

||
(

e′i − ν3−ie′3−iÃ
)

||

(

e′i − ν3−ie
′
3−iÃ

)

ν3−ie
′
3−iÃq = 0.

Note that e′3qSR = 0. Now, does this solution satisfy the heterogeneity restriction?

(e3 − λe2)
′ÃqSR = e′3ÃqSR − λe′2ÃqSR

= [κe′2Ã+ e′3Ã]qSR − λe′2ÃqSR

= κe′2ÃqSR − λe′2ÃqSR

= (κ− λ)e′2ÃqSR ≥ 0,

where the last inequality follows from κ ≥ λ and the sign restriction e2Ãq ≥ 0. Thus, the solution
without heterogeneity restriction is also a solution with heterogeneity restriction. Thus, the upper
bound coming from the heterogeneity restriction is not binding when λ ≤ κ, i.e. the imposed
restriction is weaker than the one implied by the data generating process.

Intuitively, in this case, the heterogeneity restrictions have no bite because they do not help to
tell the first shock from the second shock. This is, in turn, because responses to both shocks satisfy
the heterogeneity restrictions in the data-generating process. They are, thus, redundant.
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C Forecast error variance decomposition

The total forecast error variance (FEV) for Yt+H given information up to time t is given by:

FEVH =

H∑

h=0

((Bh
XÃ)(Bh

X Ã)′).

We can decompose the FEV into the contribution due to an identified shock with impulse-vector
Ãq. We call this the conditional forecast error variance (CFEV):

CFEVH(q) =

H∑

h=0

((Bh
XÃq)(Bh

XÃq)′).

Let CFEVi,H(q) by the (i, i)th element of the CFEV. As shown by Uhlig (2003), we can rewrite
the cumulative conditional forecast error variance from horizon H to H̄, CFEVi,H,H̄(q), as:

CFEVi,H,H̄(q) =
H̄∑

h=H

h∑

k=0

((Bk
X Ãq)(Bk

XÃq)′)(ii) = q′Si,H,H̄q, (C.1)

Si,H,H̄ ≡
H̄∑

h=0

(H̄ + 1−max{H,h})(eiBh
XÃ)′(eiB

h
XÃ). (C.2)

We can compute the upper and lower bound on CFEVi,H simply by replacing the objective function
algorithm in Section 4 by q′Si,Hq and keeping the same set of constraints.

To interpret the FEV explained by the identified shock, we normalize CFEVi,H(q) by the total
FEV for variable i up to horizon H.
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D Data

D.1 News data

We use the following macro variables:

• The average of business sector GDP and GDI: BEA via Fernald (2014) (accumulated growth
rates)

• Consumer confidence CSCICP03USM665S from the St. Louis Fed FRED website

• PCE price index PCEPI from the St. Louis Fed FRED website

• Utilization adjusted TFP: Fernald (2014) (accumulated growth rates)

• Business sector hours worked: BLS via Fernald (2014) (accumulated growth rates)

All variables enter the VAR in log-levels.
We use industry data from Ken French’s data library, based on Fama and French (1997).

Specifically, we use the FF5 industry returns and convert them to real ex post returns using the
change in the log of the PCE price index.

To compute industry R&D intensities, we use Compustat data. We drop all firms not head-
quartered in the U.S. and all observations with negative sales or assets. For each year, we winsorize
the data at the 1st and 99th percentiles, although our results do not depend on this. We then
compute the R&D intensity as the ratio of the three-month moving average of R&D expenditures
xrd relative to the three-year moving average of operating income before depreciation oibdp, net
sales sales, or total assets at. We tabulate the data pooling firm-calendar year observations and
drop observations with multiple fiscal years in a given calendar year.

D.2 Fiscal data

We merge the datasets of Ramey (2011) and Nekarda and Ramey (2011). To this, we add infor-
mation on the market value of publicly held federal debt from the Dallas Fed website33 that we
then deflate by the CPI from Ramey (2011). All variables enter the VAR in log-levels relative to
population.

33See https://www.dallasfed.org/research/econdata/govdebt.
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Figure D.1: Raw data: News application with five Fama-French industries
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Figure D.2: Raw data: Defense spending application with six industries
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E Additional results

E.1 News shocks

E.1.1 IRFs

Output TFP Confidence

Employment Consumer industries: return Manufacturing: return

High tech: return Health: return Other industries: return

prior-robust:
identified set

fully Bayesian:
min/max

fully Bayesian:
2.5th / 97.5th

fully Bayesian:
5th / 95th

fully Bayesian:
16th / 84th

Figure E.1: Identified set of responses of all variables to productivity news shock: Baseline
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Figure E.2: Prior-robust responses of all variables to productivity news shock: Baseline
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Figure E.3: Fully Bayesian responses of all variables to productivity news shock
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(a) Prior-robust
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 8.3 7.1 10.5 12.3 18.7 33.6 35.2 26.9 23.2 28.6
TFP 9.0 6.7 7.0 8.0 10.8 4.1 7.1 9.0 9.9 9.6
Confidence 12.1 20.1 25.5 25.4 31.5 33.2 23.7 19.1 10.2 14.5
Employment 6.3 5.5 8.4 15.2 21.7 34.6 41.4 38.8 35.2 25.2
Consumers 23.6 22.8 29.9 36.4 48.8 52.1 40.8 45.5 48.7 57.3
Manu 8.8 14.6 17.9 15.3 29.1 53.2 51.7 48.5 52.0 52.6
HiTec 9.9 9.2 10.6 15.8 21.7 30.1 35.2 35.7 32.5 32.9
Health 12.6 17.0 15.0 21.1 29.5 28.2 26.6 31.9 38.3 40.3
Other 31.7 36.4 43.0 50.7 57.8 51.6 50.6 40.8 39.4 37.5

(b) Fully Bayesian
Horizon H (quarters)

Variable 0 1 2 3 4 8 12 16 20 24
Output 10.5 8.5 10.6 11.8 17.8 38.4 38.8 26.2 12.5 9.6
TFP 16.2 13.1 6.4 1.4 0.2 -13.0 -9.1 -6.6 -5.4 -4.1
Confidence 19.1 26.7 34.4 39.3 43.0 52.7 29.2 6.4 6.2 13.0
Employment 6.9 8.8 13.2 17.1 21.9 45.1 55.2 48.0 28.5 9.7
Consumers 35.0 30.0 39.9 50.5 64.3 75.0 61.1 58.9 64.8 70.7
Manu 13.4 15.7 19.8 23.6 35.4 66.8 67.3 65.2 60.8 61.1
HiTec 9.0 4.7 9.0 17.3 23.2 29.8 29.2 27.1 27.9 30.7
Health 12.5 14.4 9.8 17.7 26.1 26.5 29.9 36.5 39.8 42.8
Other 43.1 42.0 52.1 60.6 67.4 68.7 56.5 50.1 47.8 47.1

Note: The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only.

A negative number implies a higher IRF with heterogeneity restrictions. Here, this happens in the Fully

Bayesian case and indicates that the heterogeneity restriction shifts posterior mass up. By construction, this

cannot happen with prior-robust bounds.

Table E.1: Reduction of 99th percentile of IRF relative to sign restrictions
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E.1.2 FEVD

Output
Prior-robust Fully Bayesian Comparison

Medians + 68% of differences Median + 68% Medians of upper bounds
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Figure E.4: FEVD of news shock: Macro variables

E.1.3 Importance of restrictions
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Sign restrictions
Horizon H (year)

Variable 0 4 8 12 16 24
Output 100 (97,100) 91 (89,92) 84 (79,87) 82 (72,83) 80 (69,82) 73 (57,78)
TFP 90 (85,92) 68 (63,71) 64 (57,70) 67 (57,73) 68 (59,72) 70 (60,71)
Confidence 100 (100,100) 92 (88,93) 83 (77,86) 74 (64,78) 68 (57,72) 61 (54,66)
Employment 75 (65,78) 86 (81,89) 83 (77,85) 77 (69,80) 71 (62,75) 59 (51,65)

Heterogeneity restrictions
Horizon H (year)

Variable 0 4 8 12 16 24
Output 82 (70,84) 67 (55,70) 50 (39,54) 38 (31,46) 31 (24,37) 30 (21,33)
TFP 74 (63,77) 57 (48,62) 57 (46,59) 57 (45,60) 58 (47,60) 57 (45,62)
Confidence 73 (64,77) 48 (40,55) 38 (29,42) 33 (26,37) 35 (26,36) 35 (26,39)
Employment 64 (50,67) 60 (52,65) 44 (36,48) 33 (27,40) 32 (25,36) 31 (24,35)

Difference between SR and HR
Horizon H (year)

Variable 0 4 8 12 16 24
Output 17 (12,21) 25 (16,32) 35 (20,39) 41 (26,44) 45 (31,49) 41 (26,48)
TFP 15 (8,20) 10 (5,13) 7 (4,12) 10 (3,13) 9 (2,14) 9 (2,18)
Confidence 27 (19,31) 42 (33,46) 44 (33,48) 39 (27,42) 34 (22,38) 26 (15,31)
Employment 11 (6,14) 24 (19,28) 38 (26,41) 42 (27,47) 39 (24,43) 29 (15,34)

Note: Each cell of the table for a given variable and horizon shows the following three percentiles across

reduced-form draws respectively: Median and 68% credible set (16th, 84th).

Table E.2: FEVD of news shocks: Prior-robust bounds
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(a) Sign restrictions
Horizon H (year)

Variable 0 4 8 12 16 24
Output (4,26) (16,39) (19,41) (16,38) (15,34) (13,30)
TFP (2,20) (3,14) (4,15) (6,18) (7,21) (7,23)
Confidence (5,32) (8,32) (7,28) (7,25) (7,23) (7,23)
Employment (0,6) (8,24) (12,32) (10,29) (10,26) (10,24)

(b) Heterogeneity restrictions
Horizon H (year)

Variable 0 4 8 12 16 24
Output (1,12) (14,28) (11,24) (8,19) (7,17) (7,15)
TFP (1,9) (2,9) (5,14) (9,22) (11,26) (11,27)
Confidence (6,26) (5,18) (4,13) (4,13) (4,13) (5,13)
Employment (0,3) (6,16) (5,15) (4,12) (4,11) (5,13)

(c) Difference between SR and HR 16th percentile
Horizon H (year)

Variable 0 4 8 12 16 24
Output 2 (1,3) 1 (-2,3) 6 (2,8) 7 (3,8) 6 (3,7) 5 (2,6)
TFP 1 (0,2) 1 (-0,1) -1 (-5,-0) -5 (-10,-3) -6 (-13,-4) -6 (-16,-3)
Confidence -3 (-9,-1) 2 (-1,4) 2 (-1,3) 2 (-2,3) 2 (-2,3) 1 (-2,3)
Employment 0 (-0,0) 1 (-1,3) 5 (2,7) 5 (2,7) 4 (1,6) 3 (-0,5)

(d) Difference between SR and HR 68th percentile
Horizon H (year)

Variable 0 4 8 12 16 24
Output 13 (8,16) 12 (6,14) 18 (12,21) 19 (13,21) 18 (12,20) 15 (9,17)
TFP 11 (6,12) 5 (2,6) 0 (-3,3) -4 (-10,-1) -5 (-12,-1) -3 (-14,2)
Confidence 7 (2,11) 15 (10,18) 14 (9,17) 12 (7,14) 11 (6,13) 10 (4,12)
Employment 2 (0,3) 9 (3,11) 17 (9,19) 17 (11,21) 14 (8,18) 12 (5,15)

Note: Each cell of the table for a given variable and horizon shows the full posterior 68% credible set

(16th, 84th) for panels (a) and (b) and the posterior median and 68% credible set across reduced-form draws

for panels (c) and (d).

Table E.3: FEVD of news shocks: Fully Bayesian
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GDP response
Multipliers with heterogeneity restrictions Difference in multipliers to sign restrictions
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This figure quantifies the importance of all sign and heterogeneity restrictions that we use to identify the

news shock by showing the distribution of Lagrange multipliers on these restrictions over all reduced-form

draws. We sum the multipliers across the restrictions horizons 0, . . . , H̄. Multipliers are negative because

tighter restrictions reduce the upper bound. We find that for pinning down the upper bound on both the

GDP response and for the macro variables as a whole, the heterogeneity restrictions on stock return micro

data matter little as much or more as the macro restrictions. Restrictions on manufacturing are particularly

important. Comparing multipliers under heterogeneity restrictions (λ = 1) with those with sign restrictions

(λ = 0) reveals that the large multipliers on the micro heterogeneity restrictions rarely reduce multipliers

on macro restrictions. The distribution of multipliers is asymmetric: For a few reduced-form draws, the

restriction that TFP rise is very important on impact, but it is small for the median reduced-form draw.

Figure E.5: Importance of restrictions for upper bounds of responses: Lagrange multipliers
on restrictions. Upper bound.
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GDP response
Multipliers with heterogeneity restrictions Difference in multipliers to sign restrictions
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This figure quantifies the importance of all sign and heterogeneity restrictions that we use to identify the news

shock by showing the distribution of Lagrange multipliers on these restrictions over all reduced-form draws.

We sum the multipliers across the restrictions horizons 0, . . . , H̄ . We find that for pinning down the lower

bound on both the GDP response and for the macro variables as a whole, the restrictions on stock return

micro data matter little – the corresponding multipliers are close to zero. Intuitively, the Lagrange multiplier

on the non-negativity restriction on GDP on impact is unity: Tightening the non-negativity constraint to

a positive value would raise the impact-response one to one. On impact, this restriction on GDP is the

only binding restriction. At longer horizons, the restrictions on initial confidence are more important. The

importance of these restrictions changes little with and without heterogeneity restrictions.

Figure E.6: Importance of restrictions for upper bounds of responses: Box plot of Lagrange
multipliers on restrictions. Lower bound.
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GDP response. H̄ = 5.
Lower bound Upper bound
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All macro variables (average multipliers). H̄ = 5.
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All macro variables (average multipliers). H̄ = 3.
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Impact: h = 0 h = 1 h = 2 h = 3 h = 4

The Lagrange multipliers show the importance of all the restrictions at different restriction horizons. Because

all Lagrange multipliers have the same sign or are zero, we sum them across all restrictions. Because

all restrictions force responses to be positive, the impact multiplier for lower bounds for each of the own

restrictions on macro variables is unity. When restrictions are imposed for three or five quarters, i.e., at

quarters h = 0, . . . , H̄ − 1, we find that the impact restriction and the restriction at h = H̄ − 1 are the most

important, measured by the absolute size of the multipliers. This is natural with largely smooth responses

– the restrictions at after impact and before H̄ − 1 mostly lie between those at the extremes and make the

restrictions at the extremes the most important.

Figure E.7: Importance of restrictions for upper bounds of responses: Lagrange multipliers
on restrictions by restriction horizon plotted over IRF horizon.
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E.1.4 Robustness

(a) Difference between sign and baseline heterogeneity restrictions
Horizon H (quarters)

Variable 0 4 8 12 16 24
Output 34 (23,40) 32 (20,38) 39 (25,43) 46 (28,49) 47 (27,51) 46 (22,51)
TFP 26 (16,31) 17 (11,21) 15 (10,19) 9 (4,13) 11 (5,18) 15 (1,22)
Confidence 30 (22,36) 43 (35,49) 47 (36,53) 41 (28,47) 36 (24,42) 28 (17,35)
Employment 22 (12,26) 26 (14,31) 40 (25,46) 47 (33,49) 42 (26,50) 33 (20,39)

(b) Difference between sign and heterogeneity restrictions with soft zero restriction
Horizon H (quarters)

Variable 0 4 8 12 16 24
Output 46 (34,55) 41 (28,45) 46 (34,52) 51 (35,55) 52 (32,55) 47 (28,55)
TFP 89 (84,91) 59 (52,60) 46 (37,48) 35 (22,42) 28 (19,37) 28 (13,37)
Confidence 32 (23,38) 46 (37,51) 47 (36,54) 44 (30,49) 39 (26,45) 33 (19,40)
Employment 29 (17,35) 37 (23,41) 46 (32,52) 50 (36,55) 47 (34,53) 39 (26,45)

(c) Level with baseline heterogeneity restrictions
Horizon H (quarters)

Variable 0 4 8 12 16 24
Output 57 (42,63) 58 (47,64) 45 (35,50) 36 (23,40) 31 (19,36) 27 (18,32)
TFP 63 (53,69) 51 (38,55) 50 (33,53) 55 (41,59) 57 (43,60) 55 (39,61)
Confidence 70 (59,73) 46 (37,51) 35 (27,39) 31 (24,35) 30 (22,34) 32 (22,37)
Employment 39 (22,45) 47 (36,53) 36 (22,43) 28 (16,34) 26 (18,30) 25 (17,29)

(d) Level with sign and heterogeneity restrictions with soft zero restriction
Horizon H (quarters)

Variable 0 4 8 12 16 24
Output 44 (27,51) 49 (38,54) 36 (27,42) 30 (19,35) 24 (16,31) 20 (14,24)
TFP 0 (0,1) 8 (6,10) 17 (8,20) 30 (22,35) 37 (28,42) 41 (28,49)
Confidence 67 (56,72) 44 (32,50) 33 (23,40) 28 (21,34) 27 (20,31) 29 (19,32)
Employment 31 (14,40) 39 (23,45) 29 (14,39) 25 (10,31) 20 (12,26) 20 (11,26)

Note: Compared with the results with heterogeneity restrictions but without the soft zero restriction (upper

panel), the soft zero restriction causes a significant further reduction in the maximal FEV attributable to

the news shock (lower panel). By construction, this is most pronounced for TFP at the short run, but

the identified shock becomes more important for TFP in the medium term. Reduction for output and

employment are between 20 and 30%. We normalize variance contributions by the total FEV. The table

shows the posterior median and 68%.

Table E.4: Maximum forecast error variance explained by productivity news: Heterogeneity
restrictions without and with soft zero restriction
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Figure E.8: Prior-robust responses to productivity news shock for macro variables: Five vs.
ten FF industries

74



Output
5 industries 10 industries

 4  8 12 16 20 24

Horizon (quarters)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Heterogeneity Restrictions

TFP
5 industries 10 industries

 4  8 12 16 20 24

Horizon (quarters)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Heterogeneity Restrictions

Consumer confidence
5 industries 10 industries

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Heterogeneity Restrictions

Employment
5 industries 10 industries

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Heterogeneity Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Pe
rc

en
t

Sign Restrictions

 4  8 12 16 20 24

Horizon (quarters)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Heterogeneity Restrictions

prior-robust 16th / 84th 5th / 95th 2.5th / 97.5th 1st / 99th SR HR

Figure E.9: Responses to productivity news shock for macro variables: Five vs. ten FF
industries
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Figure E.10: Prior-robust responses to productivity news shock for macro variables: Restric-
tions for three vs. five quarters
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Figure E.11: Fully Bayesian responses to productivity news shock for macro variables: Re-
strictions for three vs. five quarters
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Figure E.12: Prior-robust responses of macro variables and industry returns to productivity
news shock with soft zero restriction.
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Figure E.13: Fully Bayesian responses of macro variables and industry returns to productiv-
ity news shock with soft zero restriction.
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Figure E.14: Prior-robust responses to productivity news shock for macro variables: Flat vs.
Minnesota reduced-form prior
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Figure E.15: Fully Bayesian responses to productivity news shock for macro variables: Flat
vs. Minnesota reduced-form prior
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Figure E.16: Prior-robust Bayesian responses of macro variables and industry returns to
productivity news shock: Effect of information set and parameter uncertainty.
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Figure E.17: Fully Bayesian responses of macro variables and industry returns to productiv-
ity news shock: Effect of information set and parameter uncertainty.
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E.2 Fiscal shocks

E.2.1 IRFs

Prior-robust
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending 8.5 8.7 11.3 9.4 13.2 24.4 26.8
Output 23.6 10.7 12.9 13.3 24.9 26.8 29.4
Debt 12.9 14.3 16.7 16.3 15.1 20.6 23.9
Hours 11.1 12.6 11.8 21.0 25.2 22.9 24.0
Tax rate 18.7 27.5 32.7 36.8 43.3 44.4 37.9
Tobacco 62.8 56.5 43.8 37.4 43.5 40.2 26.9
Lumber 48.2 34.2 32.5 38.4 39.5 28.5 30.9
Petrol 35.0 33.3 34.6 34.3 34.2 28.6 30.9
Equipment 46.7 40.1 28.7 30.6 33.3 44.7 35.3
Electronics 33.0 33.5 31.1 34.0 42.0 49.8 32.3
Transportation 22.5 13.5 15.9 24.9 32.6 29.0 20.0

Fully Bayesian
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending -11.7 -20.9 -19.3 -13.6 -8.3 4.8 13.0
Output 19.3 -0.7 -7.7 -4.5 2.7 6.5 3.0
Debt -10.8 -17.0 -32.5 -43.7 -17.9 3.8 9.8
Hours 0.7 -0.8 -5.6 0.4 10.2 7.4 11.4
Tax rate 15.5 30.6 34.4 38.3 41.9 43.6 37.7
Tobacco 65.4 57.5 42.0 36.6 45.8 21.2 7.6
Lumber 58.3 19.5 10.6 24.0 31.7 2.4 4.4
Petrol 34.8 34.0 33.7 33.4 32.3 10.6 19.2
Equipment 51.3 38.4 22.1 22.8 33.8 30.1 14.2
Electronics 35.6 31.4 24.0 24.2 31.5 49.5 15.8
Transportation 16.6 -4.3 -1.6 3.4 3.7 -4.0 0.5

Note: The contribution is expressed in percent of the 95th percentile of the IRF using sign restrictions only.

Negative entries imply a larger response under heterogeneity restrictions.

Table E.5: Reduction of 99th percentile of IRF to defense spending shocks relative to sign
restrictions
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Figure E.18: Prior-robust responses to defense spending shock: All variables, baseline model
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Figure E.19: Fully Bayesian responses to defense spending shock: All variables, baseline
model
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Figure E.20: Fully Bayesian posterior density of responses to defense spending shock three
years out: All variables, baseline model
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Figure E.21: Plug-In: Identified set and conditional posterior of responses to defense spend-
ing shock.
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E.2.2 IRFs with restricted multipliers

Baseline model
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Figure E.22: Prior-robust responses to defense spending shock: Select macro variables, with
and without restrictions on multipliers
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Baseline model
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Figure E.23: Fully Bayesian responses to defense spending shock: Select macro variables,
with and without restrictions on multipliers
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E.2.3 FEVD

Sign restrictions
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending 79 (59,84) 58 (44,67) 51 (36,60) 48 (31,55) 46 (28,54) 42 (27,50) 40 (27,46)
Output 85 (71,90) 57 (45,62) 44 (33,48) 38 (28,42) 36 (28,40) 32 (26,36) 33 (27,36)
Debt 67 (52,73) 50 (39,56) 51 (40,56) 45 (36,50) 37 (29,43) 35 (23,39) 36 (23,44)
Hours 84 (70,89) 66 (55,74) 60 (45,65) 52 (37,55) 45 (32,50) 40 (27,44) 43 (29,46)
Tax rate 64 (46,73) 56 (42,62) 54 (37,62) 50 (33,58) 48 (28,56) 41 (24,51) 38 (21,49)

Heterogeneity restrictions
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending 61 (36,71) 47 (30,56) 40 (26,49) 38 (24,44) 35 (23,44) 30 (18,38) 27 (17,34)
Output 47 (33,53) 33 (24,40) 30 (23,35) 25 (20,32) 25 (18,29) 19 (9,24) 20 (12,23)
Debt 53 (37,59) 34 (24,38) 25 (17,28) 20 (14,23) 17 (14,21) 19 (12,24) 19 (11,25)
Hours 65 (48,72) 54 (38,62) 47 (35,51) 37 (30,42) 32 (27,36) 29 (18,34) 31 (18,35)
Tax rate 35 (25,45) 28 (18,33) 24 (15,31) 20 (14,25) 18 (11,21) 13 (9,17) 14 (9,17)

Difference between SR and HR
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending 14 (6,19) 10 (2,15) 8 (2,13) 8 (1,12) 8 (2,12) 11 (2,14) 11 (2,14)
Output 35 (21,42) 19 (9,25) 11 (6,16) 9 (4,14) 10 (4,15) 13 (7,15) 13 (7,15)
Debt 13 (5,18) 15 (7,23) 26 (10,34) 26 (11,32) 19 (7,25) 11 (4,17) 16 (5,22)
Hours 17 (8,22) 10 (3,15) 10 (3,14) 9 (2,13) 10 (2,13) 10 (5,13) 12 (6,14)
Tax rate 27 (12,32) 25 (12,31) 24 (12,32) 26 (11,33) 27 (11,33) 27 (6,37) 22 (7,36)

Note: Each cell of the table for a given variable and horizon shows the following three percentiles across

reduced-form draws respectively: Median and 68% credible set (16th, 84th).

Table E.6: FEVD of defense spending shocks: Prior-robust bounds

91



Defense spending
Prior-robust Fully Bayesian

 2  4  6  8 10
Horizon (years)

0

20

40

60

80

100

m
ax

 e
xp

la
in

ed
 F

E
V

 (
%

 o
f 

to
ta

l)

 2  4  6  8 10
Horizon (years)

0

5

10

15

20

25

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

GDP
Prior-robust Fully Bayesian

 2  4  6  8 10
Horizon (years)

0

20

40

60

80

100

m
ax

 e
xp

la
in

ed
 F

E
V

 (
%

 o
f 

to
ta

l)

 2  4  6  8 10
Horizon (years)

0

5

10

15

20

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

Publicly held debt
Prior-robust Fully Bayesian

 2  4  6  8 10
Horizon (years)

0

20

40

60

80

100

m
ax

 e
xp

la
in

ed
 F

E
V

 (
%

 o
f 

to
ta

l)

 2  4  6  8 10
Horizon (years)

0

5

10

15

20

25

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

Total hours worked
Prior-robust Fully Bayesian

 2  4  6  8 10
Horizon (years)

0

20

40

60

80

100

m
ax

 e
xp

la
in

ed
 F

E
V

 (
%

 o
f 

to
ta

l)

 2  4  6  8 10
Horizon (years)

0

5

10

15

20

25

30

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

Average marginal tax rate
Prior-robust Fully Bayesian

 2  4  6  8 10
Horizon (years)

0

20

40

60

80

100

m
ax

 e
xp

la
in

ed
 F

E
V

 (
%

 o
f 

to
ta

l)

 2  4  6  8 10
Horizon (years)

0

2

4

6

8

10

ex
pl

ai
ne

d 
FE

V
 (

%
 o

f 
to

ta
l)

prior-robust:
posterior median

prior-robust:
difference SR-HR (median and 68%)

fully Bayesian:
SR (68%)

fully Bayesian:
HR (68%)

Figure E.24: FEVD of defense spending shock: Macro variables
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(a) Sign restrictions
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending (2,15) (1,9) (1,8) (1,7) (2,8) (2,10) (2,10)
Output (3,20) (7,19) (7,16) (6,14) (5,13) (5,11) (5,11)
Debt (0,8) (1,6) (2,8) (2,9) (2,7) (2,8) (2,8)
Hours (2,17) (6,22) (7,21) (7,18) (6,16) (5,14) (5,14)
Tax rate (1,8) (1,7) (1,7) (1,7) (1,7) (2,8) (2,8)

(b) Heterogeneity restrictions
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending (4,25) (3,19) (3,17) (3,16) (3,16) (4,15) (4,14)
Output (2,12) (7,16) (7,16) (6,14) (5,12) (4,10) (4,9)
Debt (11,24) (6,14) (5,10) (4,9) (3,7) (3,9) (3,9)
Hours (3,20) (11,25) (13,26) (12,23) (11,20) (8,16) (8,15)
Tax rate (1,7) (1,5) (1,4) (1,4) (1,4) (1,5) (1,5)

(c) Difference between SR and HR 16th percentile
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending -5 (-15,-1) -4 (-13,-1) -3 (-11,-2) -3 (-10,-2) -4 (-10,-2) -3 (-10,-1) -3 (-9,-1)
Output 1 (-2,2) -2 (-4,0) -1 (-5,-0) -1 (-3,-0) -1 (-3,0) -0 (-2,1) 0 (-2,1)
Debt -13 (-19,-11) -6 (-10,-5) -3 (-6,-2) -2 (-5,-1) -2 (-4,-1) -2 (-5,-1) -1 (-4,-0)
Hours -2 (-7,-0) -6 (-10,-4) -8 (-13,-6) -7 (-13,-5) -6 (-11,-4) -4 (-8,-3) -4 (-7,-2)
Tax rate -0 (-2,0) 0 (-1,0) 0 (-1,1) 0 (-1,1) 0 (-1,1) 0 (-3,1) 0 (-3,1)

(d) Difference between SR and HR 68th percentile
Horizon H (year)

Variable 0 1 2 3 4 8 10
Defense spending -6 (-20,-1) -8 (-17,-3) -7 (-14,-4) -7 (-14,-4) -6 (-14,-3) -4 (-11,-1) -3 (-9,-1)
Output 8 (1,11) 3 (-2,5) 1 (-4,3) 0 (-3,2) 1 (-2,2) 2 (-1,4) 2 (-1,3)
Debt -14 (-21,-12) -7 (-11,-5) -3 (-6,-0) -0 (-4,2) -0 (-4,2) -1 (-5,1) -0 (-5,2)
Hours -2 (-10,2) -4 (-10,1) -4 (-11,-1) -3 (-10,-2) -3 (-9,-1) -1 (-7,-0) -1 (-7,0)
Tax rate 2 (-2,4) 2 (-1,4) 2 (-0,5) 3 (-0,5) 2 (-1,5) 2 (-2,4) 3 (-2,5)

Note: Each cell of the table for a given variable and horizon shows the full posterior 68% credible set

(16th, 84th) for panels (a) and (b) and the posterior median and 68% credible set across reduced-form draws

for panels (c) and (d).

Table E.7: FEVD of defense spending shocks: Fully Bayesian
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E.2.4 Importance of shocks

(a) Lower bound multipliers for HR (b) Upper bound multiplier for HR
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This figure quantifies the importance of all sign and heterogeneity restrictions that we use to identify the

news shock for narrowing the identified set of the responses of output at the two year horizon. It shows the

distribution of Lagrange multipliers on all restrictions over all reduced-form draws, separately for multipliers

on the lower and upper bound. We sum the multipliers across the restrictions horizons 0, . . . , H̄ . Multipliers

on upper bounds are negative because tighter restrictions reduce the upper bound. We find that for pinning

down the upper bound on the average macro variable, the heterogeneity restrictions on stock return micro

data matter more than the macro sign restrictions. Restrictions on manufacturing are particularly impor-

tant, reducing the upper bound by 0.10 to 0.17 percentage points. For the lower bound on responses, the

opposite pattern emerges: Sign restrictions on macro variables dominate, even though multipliers on some

heterogeneity restrictions are significantly positive.

Figure E.25: Importance of restrictions for output responses to defense spending shocks two
years after impact: Lagrange multipliers on restrictions.
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(a) Lower bound multipliers: Defense spending (b) Upper bound multiplier: Defense spending
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Figure E.26: Importance of restrictions for macro responses to defense spending shocks two
years after impact: Lagrange multipliers on restrictions.
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(a) Lower bound multipliers: Defense spending (b) Upper bound multiplier: Defense spending
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Figure E.27: Change in the importance of restrictions for macrp responses to defense spend-
ing shocks two years after impact: Change in lagrange multipliers on restrictions with het-
erogeneity restrictions relative to sign restrictions
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E.2.5 Acceptance rates with standard algorithm

Baseline model Restricted impact multiplier
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Using a simple uniform proposal density, as customary since the seminal paper by Uhlig (2005), becomes

impractical with tight sign restrictions. We show the distribution of acceptance probabilities as a function of

the reduced-form parameter draws. The acceptance probability is based on 5 million draws for each vector

of reduced-form parameters.

Figure E.28: Distribution of acceptance probabilities for uniform proposal density over
reduced-form draws: Fiscal application

97



E.2.6 Robustness
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Figure E.29: Prior-robust responses to defense spending shock: All variables, baseline model
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Figure E.30: Fully Bayesian responses to defense spending shock: All variables, robustness
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Figure E.31: Prior-robust and fully Bayesian responses of IP expectations to defense spending
shock: Controlling for news proxy
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