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Abstract

We present theory and evidence highlighting the role of natural amenities in neighborhood dy-
namics, suburbanization, and variation across cities in the persistence of the spatial distribution
of income. Our model generates three predictions that we confirm using a novel database of
consistent-boundary neighborhoods in U.S. metropolitan areas, 1880-2010, and spatial data for
natural features such as coastlines and hills. First, persistent natural amenities anchor neigh-
borhoods to high incomes over time. Second, naturally heterogeneous cities exhibit persistent
spatial distributions of income. Third, downtown neighborhoods in coastal cities were less sus-
ceptible to the widespread decentralization of income in the mid-20th century and experienced
an increase in income more quickly after 1980.
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1 Introduction

Neighborhood change is common and contentious. Two-thirds of neighborhoods in the 35 U.S.
metropolitan areas studied by Rosenthal (2008) transitioned from one income quartile to another
between 1950 and 2000. In declining areas, homeowners fear deteriorating values even as entrants
enjoy new opportunities; in gentrifying areas, rising prices cause anxiety for longtime renters. And
in response to shifting neighborhood demands, policymakers often act to preserve neighborhood
quality or quicken the pace of change.

Although changes in neighborhood status are widespread, it is less well known that neighbor-
hood change varies across cities. While in some cities neighborhoods seem immune from change—
leading to overall persistence in the internal structure of the city—other cities experienced quickly
changing neighborhoods and spatial patterns of income. For example, Los Angeles has long had
a stable arrangement of high incomes and prices along its beaches and in its foothills; between
1970 and 1980, the average neighborhood in the Los Angeles metropolitan area moved just 9 per-
centile points across the city’s income distribution. In contrast, over the same period, the average
metropolitan Dallas neighborhood moved 21 percentile pointsH

In this paper, we examine why the geographic distribution of income is persistent for some
neighborhoods and cities but turns over frequently elsewhere. Our explanation highlights the role
of natural geographic features that have persistent amenity value—for example, oceans, mountains,
and lakes. We begin with the idea that persistent natural amenities can “anchor” neighborhoods to
high incomes even as they experience various shocks over time. A key implication is that for cities as
a whole, greater natural variation among neighborhoods can hold back neighborhood change, lead-
ing to overall stability in the spatial distribution of income. Thus, in naturally heterogeneous Los
Angeles, the spatial distribution of income is persistent, but in flat Dallas, the spatial distribution
of income churns quickly.

We present a dynamic model of household neighborhood choice to formalize our thinking. Neigh-
borhoods derive amenity value from both natural features and endogenous characteristics such as
safety, school quality, or shopping. High-income households outbid low-income households for
neighborhoods with greater overall amenity value. Neighborhoods are also subject to idiosyncratic
shocks to amenity value over time. We characterize conditions when these shocks can potentially
reverse the historical spatial pattern of income.

We test and confirm several implications of our theory using a new database of consistent-
boundary neighborhoods in many U.S. metropolitan areas, spanning the census years from 1880
to 2010. We match these data to spatial information on the location of many persistent natural
features, including shorelines, mountains, lakes, rivers, temperate climates, and floodplains. We
also develop a hedonic weighting method to aggregate amenity values from many natural features

into a single index.

! Appendix Figure illustrates these differences between Dallas and Los Angeles.



Our first main result is that persistent natural amenities anchor neighborhoods to high incomes
over time. More precisely, conditioned on initial income, neighborhoods with superior natural
amenities are more likely to become or remain high-income neighborhoods. In short, this result is
a nuanced version of the folk wisdom among realtors that a beachfront home will better retain its
value versus one with a mundane view.

Our second and key result is that cities with dominant natural features (e.g., a coastline or
mountain range) exhibit internal spatial distributions of income that are dynamically stable. In
other words, neighborhood incomes tend to fluctuate less over time in a city such as Los Angeles,
with its beaches, hills, and valleys, than in a city such as Dallas, which more closely resembles
a flat, featureless plain. Intuitively, a shock to a neighborhood’s amenity value—because of id-
iosyncratic migration, effects of policy, natural disasters, etc.—has the potential to change the
historical distribution of income across neighborhoods. But in cities in which some neighborhoods
have overwhelming natural advantages, small shocks or interventions are unlikely to undo history.

Our final main result is that the anchoring effect of superior natural amenities is stronger in
a city with dominant natural features. Relying on the fact that many U.S. central cities were
founded near superior natural amenities, we show that downtowns in coastal cities, compared with
downtowns in interior cities, declined less in income in the early and mid-20th century and improved
more in income after 1980. In short, coastal city downtowns have been better anchored to high
incomes during periods of both nationwide suburbanization and gentrification.

This result relates to a central debate in economics about the roles of natural fundamentals
versus endogenous amenities in the spatial distribution of income. In our model, as in others
featuring endogenous amenities, multiple equilibria are possibleﬂ If households care only about
being near other households, then they might crowd together in any neighborhood (e.g., downtown
or in the suburbs). However, this multiplicity is limited by locational fundamentals: As emphasized
by our third result, fundamentals are more likely to determine outcomes when there is greater
natural heterogeneity across locations.

We address several identification issues in evaluating our evidence. One important empirical
challenge is that we do not directly observe the amenity value of natural features. For example,
a natural feature can be either an amenity or a disamenity: A river used for industrial purposes
can detract from surrounding neighborhoods. To address this concern, we first focus on high-value
natural features, such as proximity to the ocean, for which we believe the benefits are obvious
and significant relative to the value of other amenities. A second strategy is to condition natural
features on other observables, such as historical incomes or place names, that are more likely in the
presence of superior amenities. Intuitively, stretches of coastline that have historically attracted
high-income households are probably quite amenable. We also discuss the related identification

challenge of changes in the value of natural features over time. We find that the anchoring effect

2This feature is shared with models in which endogenous benefits come instead from agglomeration economies (cf.
Krugman, 1991; Rauch, 1993; and Arthur, 1994).



of natural amenities on neighborhood income ranks has not increased significantly nor has the
tendency for the highest-income households to locate near natural features.

Neighborhoods in growing cities tend to experience greater fluctuations in income. Our view
is that city growth acts as a shock to the relative value of extant neighborhoods. In our empirical
work, we adjust for changes in city size by examining only changes in relative percentile rankings
within a fixed group of neighborhoods in each 10-year period. In addition, we show that our results

are robust to controlling for city growth and the age of housing.

1.1 Related work

First, our work is related to a broad body of literature examining the geographic sorting of different
types of households (e.g., Tiebout, 1956). Of course, the cross-sectional implications of variation
in natural value are well known. Neighborhoods near large water features or at elevation have long

attracted afluent households. For example, patricians preferred ancient Rome’s hills:

Certain districts [were] favored more than others; some, because they are accessible; and others,
because they are beautiful in themselves or command a fine view. The Aventine, Caelian,
Palatine, even the Sacred Way and the Subura, the Carinae, the Esquiline, Quirinal, Viminal,
Pincian, the Campus Martius, the Capitoline and the district beyond the Tiber—all these furnish
sites for private homes. (Witherstine, 1926, p. 566)

Similarly, in New York City, “[bJefore the American Revolution, the wealthiest residents of Man-
hattan lived on the waterfront lanes—especially Dock Street—at the southeastern tip of the island,
where they could enjoy proximity to business and the beauty of the upper bay” (Jackson, 1985,
p. 18). What is less frequently observed is how natural features might restrain neighborhood
dynamics. In Brueckner, Thisse, and Zenou’s (1999) static monocentric city model of household
location choice, there may be multiple equilibria—with the rich living in either the city center or
the suburbs—if the exogenous amenity advantage of the center is small. Our contribution is to
extend this intuition to a dynamic setting. In addition, our work departs from theirs in testing
these implications empiricallyﬁ

Second, previous work has highlighted various factors in neighborhood change: aging homes
filtering from high- to low-income households (Brueckner and Rosenthal, 2009), spillovers among
neighborhoods (Aaronson, 2001; Guerrieri, Hartley, and Hurst, 2013), transportation technology
or infrastructure (LeRoy and Sonstelie, 1983; Baum-Snow, 2007; Glaeser, Kahn, and Rappaport,

2008), African American migration to cities (Boustan, 2010), or a combination of factors (Kolko,

30ther theoretical papers share a similar intuition about transitions between static equilibria, with Fujita and
Ogawa (1982) being an early example. Krumm (1980) provides and tests a static model with endogenous amenities
and location choices. Bond and Coulson (1989) note that neighborhoods are more likely to “tip” from high- to
low-income (or vice versa) when housing quality is more homogeneous across neighborhoods.



2()07)E| In contrast to much of this literature, we highlight the role of natural features and emphasize
variation across cities in neighborhood dynamics. Moreover, our results suggest that evidence for
alternative theoretical channels is often stronger when considering cities in which churning is more
salient (i.e., cities that more closely resemble flat, featureless plains).

Third, there is a large body of literature on changes in the internal structure of cities, especially
examining the widespread decentralization of U.S. cities in the early and mid-20th century and the
more recent gentrification of many central cities (Jackson, 1985; Mieszkowski and Mills, 1993). We
extend this literature by documenting income gradients for a wide section of cities as early as 1880.
In addition, our paper is one of the few to document and relate variation across cities to differences
in natural heterogeneity. Another exception is Burchfield et al. (2006), who show that sprawl—the
amount of undeveloped land surrounding an average dwelling—varies across cities according to the
presence of available aquifers on the suburban fringe and hilly terrain. Our paper differs in that
we examine neighborhood dynamics rather than land use.

Finally, our work is related to the literature in development and geography concerned with
persistence in the spatial distribution of income and population. In theory, such persistence might
be caused by geographic features, durable sunk factors, or amenities that are endogenous to location
decisions (cf. Davis and Weinstein, 2002; Rappaport and Sachs, 2003; Redding, Sturm, and Wolf,
2011; Bleakley and Lin, 2012; Lin, 2015). Our work departs from this literature by focusing on the
within-city distribution of income versus the distribution of income or population across cities or
other subnational regionsﬂ However, our results hint that natural variation may be an important

explanation for differences in locational persistence on other spatial scales.

2 Theory

The following stylized model highlights the role of natural amenities in neighborhood dynamics.
To clearly illustrate our key economic mechanism and its implications, we present a simple two-
neighborhood version. This model abstracts from other important theoretical channels emphasized
elsewhere in the literature, but we discuss and control for these omitted channels in our empirical
analysis. In Appendix [A.3] we relax assumptions and show that our theoretical predictions are

robust to settings with more than two neighborhoods and correlated amenity shocks over time.

“4Carlino and Saiz (2008) find that amenable neighborhoods, defined as those including tourist information offices
or sites on the National Register of Historic Places, experienced greater increases in incomes and prices in the 1990s.
In contrast to their study, we avoid the endogeneity of neighborhood amenities by examining only natural features.
In addition, while their evidence exploits only within-city comparisons, we examine heterogeneous neighborhood
dynamics across cities.

®Some recent studies examine persistence within a single city: Villarreal (2014) finds persisting effects of historical
marshes in Manhattan, and Brooks and Lutz (2014) document persistent influences of historical streetcar lines in Los
Angeles. In contrast, our paper compares persistence across cities.



2.1 Model

Consider a city with two neighborhoods, a beach and a desert, indexed by j = b, d. Each neighbor-
hood has one unit measure of land, owned by absentee landlords. The beach offers an exogenous,
persistently superior natural amenity level, ap > ay.

Neighborhoods vary in their endogenous, aggregate amenity level A, which consists of four parts:
Ajr = aj + E(0]5,1) + me + €. (1)

First, o is the persistent natural amenity value offered by neighborhood j in all periods. Second,
E(0|7,t) is the average income of neighborhood j residents in period ¢. With this term, we intend
to capture the value of endogenous amenities that tend to be correlated with neighborhood income,
such as safety, school quality, or shopping. Note that we normalize units of A;; so that E(6|j,t)
has a unit coefficient in utility. Third, m; captures city-level amenity trends common to all neigh-
borhoods, such as citywide improvements in transportation infrastructureﬁ Fourth, ¢;,; captures
idiosyncratic amenity shocks, such as natural disasters or unexpected changes to the quality of
local governance. We assume that €;; is independent and identically distributed with a cumulative
distribution function G(—o0, 00).

The city has a two-unit measure of workers, heterogeneous in income 6. In each period ¢, a
worker chooses a neighborhood j, consumes one unit of land, pays rent R;;, spends the rest of her
income on numeraire c;;, and receives utility A;; - c;;. There are no moving costs or savings, so
a worker need not solve a dynamic problem. Instead, each worker chooses the neighborhood that
provides the best utility in each period. In sum, a type 6 worker solves the following problem in

each period:

max Aj; - cj; subject to ¢ + R =6
j

= max Aj,t . ((9 — Rj,t)-
J

2.2 Equilibria within a period

Next, we characterize equilibria within a period. Note in the utility function A;;-c;; that aggregate
amenities A;; and numeraire consumption c;; are complements. This complementarity implies
that high-income workers are willing to pay more for aggregate amenitiesm Therefore, high-income

workers sort into superior aggregate amenity neighborhoods by outbidding low-income workers,

5 Any citywide trends m; cancel out when workers make neighborhood choices within the city and thus do not affect
our theoretical results. We include m; in equation only to account for the components of aggregate amenities
that affect (or do not affect) our theoretical results.

"Formally, the single crossing property holds between aggregate amenities and rents: i( ov/oA

P _6V/8R) > 0, where
V = A- (0 — R) is the utility a type 6 worker receives in a neighborhood with aggregate amenity A and rent R. Our

results are robust to alternative specifications that preserve this property.




who are then priced out by equilibrium rents.

Since each neighborhood has one unit of land and each worker consumes one unit of land, each
neighborhood accommodates one unit measure of workers in equilibrium. Therefore, the top 50%
of workers by income will live in the superior aggregate amenity neighborhood, and the bottom
50% will live in the other neighborhood. Let © g be the set of # in the top 50% and ©f, be the set
of § in the bottom 50%. Then, the average income of the superior aggregate amenity neighborhood
is 0y = F(0]6 € ©p) and that of the inferior neighborhood is 8, = E(0|0 € ©p).

Lemma 1 (Sorting) In each period, high-income © iy workers live in the superior aggregate amenity

neighborhood, and low-income O workers live in the inferior aggregate amenity neighborhood.

This perfect sorting implies that there are only two possible equilibrium states in each period:

S7 and S3. In S, high-income workers live at the beach, and low-income workers live in the desert.

This state is an equilibrium if and only if the aggregate amenity of the beach is greater than that
of the desert:

Sy Apr =+ 0 +me+epy > Agy = ag + 0 +me + €qy (2)

Analogously, in So, high-income workers live in the desert and low-income workers live at the beach.
This state is an equilibrium if and only if the aggregate amenity of the desert is greater than that
of the beach:

Syt Apr=cap+ 0L +my+ e < Agy = g+ 0 +my + €qy. (3)

Note that So can be supported as an equilibrium by superior endogenous amenities, a large idiosyn-
cratic shock, or both. Intuitively, good schools and high-income agglomerations can rationalize each
other in naturally mundane locations.

These two conditions jointly imply that an equilibrium always exists; if one condition is not
satisfied, the other one is always satisfied. They also imply that there can be multiple equilibria. For
example, both conditions are satisfied if endogenous amenity differences (6 — 6;) are sufficiently

large—if, say, households care a lot about school quality.

Proposition 2 (i) There exists an equilibrium in each period. (ii) There can be multiple equilibria

in each period.

Finally, rents are determined so that the marginal worker (i.e., the median worker on the © -
©r boundary) is indifferent between the two neighborhoods. We set rent for the inferior aggregate

amenity neighborhood to be OE|

8There are multiple equilibria in rents because demand and supply of land are both perfectly inelastic. Our
theoretical implications do not depend on which equilibrium rents are selected.



2.3 Equilibrium selection and history dependence

Amenity shocks to neighborhoods determine which one of the three possible equilibrium configura-
tions is realized. T'wo possibilities are that the within-period equilibrium is unique: 57 is the only
equilibrium, or S5 is the only equilibrium. A third possibility is that both S; and S are equilibria
in that period. When both S; and S are equilibria, we select the state chosen in the previous
periodﬂ Thus, the selected equilibrium state switches back and forth over time between S; and
Sa, and a selected equilibrium state persists until amenity shocks rule out the state as no longer an
equilibrium. Note that with multiple equilibria and history dependence, the model can rationalize
observations of persistent poverty in superior natural amenity neighborhoods (e.g., an inner-city
slum next to the beach).

Since the selected outcome of period ¢t depends on that of ¢ — 1, the selected equilibrium path
follows a Markov chain. We obtain transition probabilities between states from conditions and
(3). Following our equilibrium selection rule, the state changes from S; to Ss if and only if S; is

no longer an equilibrium. Thus, the transition probability is

Pr(S2|S1) = Pr(eqst1 — €ber1 > ap — ag + 0 — 01). (4)
Analogously, the probability of transitioning from Sy to Sy is

Pr(51]52) = Pr(epi+1 — €aps1 > aa — ap + 0 — 01). (5)

Note that Pr(S1|S2) is greater than Pr(S2|S1) because ap —ag > 0 > og— oy and both €411 —€p 141
and €441 — €4,4+1 follow the same probability distribution.

Lemma 3 Pr(S;|S2) > Pr(S2|51).

Intuitively, the economy tends to return to Si, the more “natural” state in which high-income
workers live in the superior natural amenity neighborhood.

2.4 Theoretical implications

This section derives three implications we test in Sections and[6] Because our empirical analysis
focuses on the relative rank of neighborhoods within a city, we cast theoretical implications in terms

of income percentile ranks (i.e., the percentage of neighborhoods in the same city that have the

9A large number of papers in economic geography use the idea that equilibrium selection might be determined by
history; see, e.g., Krugman (1991). A common way to motivate the role of history is to assume a myopic adjustment
process, with migration frictions, from an initial endowment or equilibrium. This approach simplifies analysis of
equilibrium selection, and, depending on certain parameter values, may be consistent with fully rational, forward-
looking households (Ottaviano, Tabuchi, and Thisse, 2002). Redding, Sturm, and Wolf (2011), Bleakley and Lin
(2012), and Hanlon (forthcoming) provide evidence of history dependence in the location of economic activity.



same or lower average income). In our model of two neighborhoods, the income percentile rank r
of the low-income neighborhood is r;, = 0.5 and that of the high-income neighborhood is rg = 1.

Our first implication is at the neighborhood level: Conditioned on initial income, the beach
tends to increase more (or decrease less) in future income versus the desert. In other words,
superior natural amenities “anchor” neighborhoods to high incomes over time. To illustrate this
implication, we separately calculate the expected change in income percentile rank for the beach
and the desert when they are inhabited by low-income workers.

First, consider the beach inhabited by low-income workers. This happens when the city is in
So. If the city remains in S in the next period, the income percentile rank of the neighborhood

does not change. If the city changes to 57, its income percentile rank rises from r, to rg. Thus,
E(Ar|j =b,r=rp) = (rg —rp) - Pr(S1|52). (6)

Next, consider the desert inhabited by low-income workers. This happens when the city is in .5;.

As above, we compute the expected change in rank as

E(Ar|j=d,r=rr) = (rg —rp) - Pr(S2]S1). (7)
These two equations and Lemma [3| jointly imply

E(Arjj=b,r=rr) > E(Ar|j =d,r =rL).

In other words, conditioned on initially containing low-income households, the beach tends to
increase in income more than the desert. Similarly, we can also show that, conditioned on initially
containing high-income households, the beach tends to decrease in income less than the desert.

Combining the two cases, we obtain Proposition [4]

Proposition 4 (Natural amenities anchor neighborhoods to high income.) Conditioned on initial
income percentile rank, a superior natural amenity neighborhood tends to increase more in income

than an inferior natural amenity neighborhood.

Our next implication is at the city level: Cities that feature greater heterogeneity in natural
amenities tend to have spatial distributions of income that are more stable over time. Notice that
(ap — ag) captures heterogeneity in natural amenities across neighborhoods. We use the expected
over-time variance of neighborhood income for the city E[Var(r;|j)] to capture instability in the

city’s spatial distribution of income.

Proposition 5 (Naturally heterogeneous cities have persistent spatial distributions of income.)
The expected over-time variance of neighborhood income percentile rank, E [Var(r;|j)], decreases

with across-neighborhood heterogeneity in natural amenity, ap — ayg.



Proof. See Appendix[AT1] m

Proposition [5] is our key theoretical result. To view the intuition, suppose that the two neigh-
borhoods are ex ante identical: a; = a4. Over time, each neighborhood’s income will be rg or
rr, with equal probability. This maximizes the over-time variance in income rank and churning at
the city level. Now suppose that natural heterogeneity o, — ag is larger. With greater natural
heterogeneity, more periods will be observed when the beach is the high-income neighborhood and
the desert is the low-income neighorhood. This will reduce the over-time variance of neighborhood
income. In the limiting case, if the difference in natural value ap — a4 is extremely large, then
the beach will be the high-income neighborhood nearly all of the time. This implies an over-time
variance in income for both beach and desert close to zero.

Our final implication combines elements from the previous two propositions. As in Proposition[d]
we compare how superior and inferior natural amenity neighborhoods change, and, as in Proposition

we compare cities with varying internal natural heterogeneity.

Proposition 6 (Natural amenities are stronger anchors in naturally heterogeneous cities.) The
difference between superior and inferior natural amenity neighborhoods, in expected income changes
conditioned on initial income, increases with across-neighborhood heterogeneity in natural ameni-

ties, ap — ag-

Proof. See Appendix[A.2] m
In other words, the anchoring effect of natural amenities increases with natural heterogeneity
at the city level. In Section [6] we test this implication and extend this test to the context of central

city neighborhood dynamics.

2.5 Discussion

Relaxing simplifying assumptions. Our stylized model makes several simplifying assump-
tions and uses specific functional forms to clearly illustrate the role of natural amenities without
unnecessarily complicating our analysis. For example, households’ perfectly inelastic demand for a
unit measure of land ensures that the income cutoff for sorting between neighborhoods is constant
at the median, thus avoiding cutoff changes over time.

However, our key propositions hold for other specifications that preserve the following core
elements. First, workers’ preferences are such that there is perfect sorting by income on aggre-
gate amenities. Second, aggregate amenities increase with natural amenities, average income, and
amenity shocks. Together, these assumptions ensure that there are three possible equilibrium con-
figurations in each period: S only, S only, or both S; and Ss. Combined with a history-based
equilibrium selection rule, our three main results follow.

Housing demand. A natural concern about simplifying assumptions is whether they are

innocuous. In fact, Proposition [4] might be reversed if the income elasticity of demand for land is

10



sufficiently high: High-income households would choose inferior aggregate amenity neighborhoods
in exchange for more space. This would violate the core structure described previously. Then,
conditioned on initial income, superior natural amenity neighborhoods would tend to decline in
income.

Fortunately, these contrasting predictions allow us to test whether the income elasticity of de-
mand for land is large enough to reverse our theoretical prediction. Our empirical results consistent
with Proposition [4] suggest instead that our simplifying assumption of inelastic demand is indeed
innocuous, at least in this context.

More than two neighborhoods and correlated amenity shocks. Other simplifying as-
sumptions in the model are that the city consists of two neighborhoods and that the idiosyncratic
shocks are uncorrelated over time. Appendix presents an extended model that relaxes these
assumptions and shows that our theoretical implications are robust. Instead of two neighborhoods,
the city has J € N neighborhoods, and the aggregate amenity shock ¢;; follows the AR(1) process
€jt+1 = P€jt + vy, where 14 is independent and identically distributed. We also extend the equilib-
rium selection rule in Section When multiple equilibria are possible, we choose the one that is
closest to the selected equilibrium in the previous period in terms of Euclidean distance between
neighborhood income vectors.

With the extended model, we analytically prove Lemmal[l] and Proposition[2] We use numerical
methods to demonstrate that Propositions [4] 5] and [6] hold widely when the aggregate amenity
shock follows a stationary process (i.e., p < 1). Note that the stationarity condition is not very

restrictive, since overall trends in amenities are captured by m; in equation .

3 Data

3.1 Census data and geographic normalizations

We confirm several testable implications of our theory using a novel database of consistent-boundary
neighborhoods spanning many U.S. metropolitan areas from 1880 to 2010. We use census tracts
as neighborhoods because tracts are relatively small geographic units and data are available at the
tract level over our sample period, even in historical census years. For each census tract, we collect
information about household income, population, and housing from decennial censuses between
1880 and 2000 and the American Community Survey (ACS) between 2006 and 2010H

Since boundaries change from one decade to the next, we normalize historical data to 2010
census tract boundaries. For example, we calculate average household income in 1940 for each

2010 tract by weighting the average household incomes reported for overlapping 1940 census tracts,

10Because of small annual sample sizes and privacy concerns, the ACS data represent five-year averages of residents
and houses located in each tract. For convenience, we refer to these data as coming from the year 2010, although
they actually represent an average from 2006 to 2010.

11



where the weights are determined by overlapping land areaE

Our panel is unbalanced. Growing cities that add neighborhoods and expanding census coverage
both contribute to increases in the number of tracts over time. In addition, our ability to match
households to neighborhoods is limited by the availability of maps showing the spatial location of
historical census tracts or enumeration districts. Table [I| shows the number of metropolitan areas
and consistent-boundary neighborhoods available in each year. Overall, we observe over 60,000
neighborhoods across 308 metropolitan areas and 12 census years from 1880 to 2010. However, the
number of observations used in our empirical analysis varies across tests with data availabilityE
The data are most complete for later census years, especially after 1960, and we do not have any
data for census years 1890 and 1900.

[Table 1 about here.]

We assign each neighborhood to a single metropolitan area, using the Office of Management and
Budget’s definitions of core-based statistical areas (CBSAs) from December 2009. We refer to each
metropolitan area as a “city.” (We address changes in metropolitan area boundaries over time by
dropping nonurbanized areas in each period, as described in Appendix Thus, neighborhoods
do not appear in our panel until they are urbanized and part of the metropolitan economy.) When
relevant, we aggregate CBSAs to consolidated statistical areas. For example, we combine the Los
Angeles-Long Beach-Santa Ana CBSA with the Oxnard-Thousand Oaks-Ventura and Riverside-San
Bernardino-Ontario CBSAs.

Finally, we spatially match neighborhoods to a variety of persistent natural features. We collect
information on a large number of highly visible and important physical attributes. For each neigh-
borhood, we separately calculate the distance from the tract centroid to (i) the nearest coastline
(i.e., the Atlantic or Pacific Ocean, the Gulf of Mexico, or a Great Lake), (ii) the nearest (non-
Great) lake, and (iii) the nearest major river. We also calculate (iv) the average slope, (v) the
flood-hazard risk, (vi) the average 1971-2000 annual precipitation, (vii) July maximum temper-
ature, and (viii) January minimum temperature. In addition, we match neighborhoods to other
factors, including distances to the nearest seaport and the city center or central business district
(CBD). Appendixes and describe these data.

3.2 Neighborhood percentile ranks

Because we are interested in neighborhood income relative to other neighborhoods within the

same city, we rank tracts within each metropolitan area and census year. We use neighborhoods’

"For census data from 1970 and later, we use the population of overlapping census blocks as weights, instead of
overlapping land area. Appendix describes the census data and geographic normalization in detail. Appendix
Table reports summary statistics.

128mall boundary normalization errors account for the small number of tracts in 2000 that do not appear in 2010,
but these tract fragments are ultimately dropped in our regressions.

12



percentile rank r; ;, a variable bounded by 0 and 1. For example, in 2010, Malibu (within the Los
Angeles metropolitan area) and the Upper East Side (within the New York metropolitan area)
have 7; 2010 = 0.979 and 0.990, respectively. By using ranks, we also control for differences in wage
levels across cities and years, and we accommodate alternative measures of neighborhood status in
historical years when income measures are unavailable.

We use average household income to rank tracts within each metropolitan area, except in
historical census years 1880-1940 when income data are not available. For 1930 and 1940, we
use average housing rents to rank tracts. In 1880-1920, lacking data on both income and prices,
we use an imputed occupational income score or the literacy rate. The assumption behind these
substitutions is that the ordering of average income among neighborhoods is the same as that of
housing rent, occupational income score, or the literacy rate. We have verified empirically that
our results are robust to using these alternative measures when they are available. For example, a
regression of neighborhood ranks by average rent on ranks by average income for the three census
years in which both measures are available yields an estimated coefficient of 0.927 (cluster-robust

s.e.= 0.002) and an R? of 0.857, suggesting that these measures are very closely related.

4 Natural amenities as neighborhood anchors

In this section, we evaluate Proposition [4]'s prediction that conditioned on initial income, neighbor-
hoods with superior natural amenities tend to increase in income more than other neighborhoods.

This proposition suggests the following neighborhood-level regression:

Arimy s = Bo + Bil(a;) + Barit + St + €, (8)

where Ar;(,,y ¢ is the forward change in neighborhood i’s income percentile rank within metropolitan
area m between ¢t and t + 1, 1(a;) is an indicator for superior natural amenities, 7;¢ is its initial
percentile rank in ¢, and d,, is a metropolitan area—year fixed eﬂ"ectﬁ We cluster errors ¢; ; at the
metropolitan area—year level.

Proposition [4] predicts that $; > 0. Including the initial rank r;; follows from the conditioning
statement of the proposition. The metropolitan area—year fixed effect ¢, ; ensures that identification
of 81 comes from variation in natural amenities within, not across, metropolitan area—years. As
noted previously, we use various persistent features to measure superior neighborhood natural

amenities: first separately and then combined into a single index using predicted values from a

!3Note that we compute the change in percentile rank Ar;; for each neighborhood by subtracting its initial rank
73+ from next period’s rank r; +41. Since this change can only be calculated for neighborhoods that exist in both the
initial period and the subsequent period, neighborhoods that are added to the metropolitan area are not included in
this calculation. This is one way in which our empirical analysis abstracts from differences in city growth rates. The
included metropolitan area—year effect also controls for city growth common to all neighborhoods in each metro—year.
In addition, using 10-year changes restricts our baseline sample to observations between 1910 and 2010, although
later robustness checks with varying time horizons and start years use our 1880 data.
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housing-price regression.

4.1 Coastal proximity

We begin with coastal proximity as a measure of natural amenity. In our baseline regressions, we
assign 1(a;) = 1 for a neighborhood ¢ if its centroid is within 500 meters of an ocean, the Gulf of
Mexico, or a Great Lake@ Table [2) column (1) reports estimation results for the starkest spec-
ification suggested by the model, including only coastal proximity, initial rank, and metropolitan
area—year effects. Conditioned on initial income, the estimated effect of coastal proximity is slightly

negative, although it is indistinguishable from zero.
[Table 2 about here.]

At first view, this result appears to challenge our theory. But omitted variables in this parsimo-
nious specification, which abstracts from several important neighborhood factors, bias the result
in column (1) downward. In particular, since many U.S. cities and their downtowns were founded
near significant natural features such as harbors, there is a strong correlation among neighbor-
hood proximity to coastlines, downtowns, and seaportsﬁ Because these factors may also affect
subsequent neighborhood change—Brueckner and Rosenthal (2009) show that neighborhoods with
older homes tend to decline—estimation of equation without them may lead to a downward
omitted-variables bias. In columns (2) through (4), we attempt to correct this bias by including
the following control variables: (i) distance to the nearest seaport (interacted with metropolitan
coastal status), (ii) distance to the CBD, (iii) initial population density, and (iv) the average age
of the initial stock of houses in the neighborhoodE By including these regressors, either singly or
together, we hope to control for the historical structure of the city.

When controlling for historical factors, the estimated effect of coastal proximity is now positive
and precisely estimated, consistent with Proposition |4} The estimate in column (4) suggests that,
conditioned on initial income, coastal neighborhoods tend to increase 1.4 percentile points more
than interior neighborhoods every 10 years. The comparison of the estimates across columns (2)
through (4) confirms that these variables control for omitted factors in similar ways.

A second source of downward bias is measurement error. We do not observe the true natural
amenity value of neighborhoods: Some beaches may be extraordinary, while others might be con-
tinually socked in by fog or even polluted. To address this downward bias, we condition natural
features on other observables that tend to increase with natural value. One, we examine natural

features near historically high-income neighborhoods. Because households can observe whether

"We use an indicator variable to allow for nonlinear effects of proximity. Our results are robust to alternative
distance thresholds; see Appendix Our results are also robust to considering oceans and Great Lakes separately.

15Tn our sample of coastal cities, the correlation coefficients between distance to the coast and distances to the city
center or the nearest seaport are 0.68 and 0.44, respectively.

SNote that data availability constraints narrow the sample sizes in columns (3) through (6).
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a particular natural feature is an amenity, natural features near top-ranked neighborhoods in an
initial year are more likely to be positive amenities. For example, the beach near historically
high-income Malibu is likely to be a superior amenityﬂ We assign 1(a;) = 1 if and only if the
neighborhood is proximate to a natural feature and the neighborhood was initially in the top decile
of neighborhoods by average income. (We verify that this strategy mitigates the effects of this type
of measurement error and reduces the downward bias of our estimates using Monte Carlo simula-
tions in Appendix [C]) Column (5) shows the estimated conditional effect of coastal proximity on
neighborhood change increases to 4.5 percentile points.

Two, we examine neighborhoods with names suggesting superior natural amenities. If a neigh-
borhood next to a polluted beach is relatively unlikely to call itself a “beach,” we can reduce
measurement error by assigning 1(a;) = 1 if and only if the neighborhood is proximate to a natural
feature and its name contains words connoting desirable natural amenities. We match neighbor-
hoods to place names from the Geographic Names Information System (GNIS)E Column (6) of
Table [2| shows that the estimated conditional effect of coastal proximity on neighborhood change

increases to 3.1 percentile points when conditioning on amenable names. (Conditioning coastal

bYANA4 bE A4 i

neighborhoods on names including “beach,” “coast,” “bay,” “cove,” “lagoon,” “ocean,” or “shore”
increases the average income of coastal neighborhoods from 0.47 to 0.57. This is one way to see
that conditioning on names increases the likelihood that a geographic feature is indeed an amenity.)

A third source of downward bias is unobserved time-invariant neighborhood factors. Suppose

that in equation , €.t = u; + v;¢, where u; captures unobserved factors.
Arimy s = Bo + Bi1l(a;) + Barit + Omt + ui + vig. 9)

The correlation between 1(a;) and wu;, conditioned on initial income r;;, is negative, leading to
downward bias in Bl This bias makes our estimate of Bl a lower bound for the true effect of
superior natural amenities (see Appendix . To see why, consider the two neighborhoods i and

J with varying measured natural amenities 1(a;) < 1(a;) but the same initial income 7;; = 7,

17While this strategy is consistent with our theory, unobservable factors that favor neighborhoods with both superior
natural amenities and high resident income could also generate the same empirical pattern. For example, land use
policy might favor coastal high-income neighborhoods compared with interior high-income neighborhoods but not
similarly favor coastal low-income neighborhoods compared with interior low-income neighborhoods. We discuss the
role of historical housing and land use regulation, two possible factors fitting this description, in Section

¥The GNIS maintains uniform usage of geographic names in the federal government. We use named populated
places, which range from rural clustered buildings to metropolitan areas and include housing subdivisions, trailer
parks, and neighborhoods. These named populated places exclude natural features. See Appendix

9This issue is related to dynamic panel bias in the cross-country growth convergence literature (c.f., Caselli,
Esquivel, and Lefort, 1996). However, it differs in that our interest is in the effect of time-invariant natural factors,
while that literature has traditionally focused on consistently estimating the mean reversion parameter 2. A further
issue raised by Caselli et al. is that control variables X, ; are endogenous. The direction of bias is not clear since
we do not model these control variables explicitly. However, the conditions for an endogenous control variable to
overestimate (51 are not easy to satisfy. In short, both the unobserved effect and the measured natural amenity must
increase neighborhood income, but their correlations with the endogenous control variable must have opposite signs.
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in period t. That they have the same initial income suggests that the neighborhood with inferior
measured natural amenities is likely to have other unobserved fixed characteristics that are amenable
(i.e., wj > u;). Unfortunately, the common solution to eliminate unobserved fixed factors u; by
time-differencing equation @ precludes identification of 3; since time-invariant natural features
drop out. Further, few instrumental variables would seem to satisfy the exclusion restriction since
any variable related to coastal proximity is likely to be correlated with income change@

It is well known that central-city neighborhoods declined in the mid-20th century: In our
data, neighborhoods within 5km of CBDs experienced a relative decline of 2.9 percentile points
every 10 years between 1950 and 1980. Interestingly, our estimates of the anchoring effect of
coastal proximity are similar in magnitude to the absolute average rate of decline of downtown
neighborhoods during this period. Further, the additional downward bias from unobserved fixed
factors suggests these estimates are a lower bound.

Finally, consistent with mean reversion in neighborhood status, the coefficient on initial rank is
negative and precisely estimated. In Appendix we note that this mean reversion is (i) robust
to using nonlinear techniques; (ii) driven by the middle of the income distribution, not by censored
changes at extreme incomes (as might be expected if mean reversion were purely mechanical); and
(iii) apparent even in nominal incomes, showing that this pattern is not exclusively driven by our
use of percentile ranks. Mean reversion in neighborhood status is also consistent to long-run results
for Philadelphia neighborhoods reported by Rosenthal (2008).

4.2 Other natural features and an aggregate natural amenity index

Table |3| shows that our results are robust to other amenity measures. Column (1) reproduces
estimated effects of coastal proximity from Table 2 Columns (2) through (6) use indicators for
different natural features: lakes, rivers, hills, temperate climates, and low flood risk@ Panel A
uses the specification from Table [2| column (1), controlling only for initial income and metro-year
fixed effects. Panel B adds controls for historical factors, as in column (4). Panel C corrects
for measurement error by conditioning natural features on their initial proximity to top-decile
neighborhoods, as in column (5). Finally, Panel D corrects for measurement error by conditioning

natural features on neighborhood names, as in column (6).
[Table 3 about here.]

In general, the estimated effect of natural features is positive. This is universally true when

we correct for measurement error in Panel C. But it is also true for most of our natural amenity

29Under certain conditions that appear to be satisfied in our data, it may be that an imperfect instrument can
provide a lower bound on the true value of 81 (Nevo and Rosen, 2012). In our experiments, using place names or an
alternative measure of coastal proximity as instruments yields estimates of the anchoring effect of coastal proximity
between 4.5 and 10.7 percentile points.

21The table notes describe how our indicator variables are defined and which sets of words are used to condition
on names in Panel D.
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measures in Panel A. This contrasts with the dependence of a positive result for coastal proximity
on the inclusion of controls for historical factors, and it highlights the unique effect of the historical
development of U.S. cities on our coastal proximity results. As noted previously, within coastal
metropolitan areas, neighborhood distance to an ocean or a Great Lake is strongly correlated with
distances to the nearest seaport and the CBD, log population density, and average house age (with
correlation coefficients of 0.68, 0.44, -0.40, and -0.22, respectively). In contrast, neighborhood dis-
tance to a non-Great lake is only weakly related to these factors (the absolute correlation coefficients
are all less than 0.06)E Thus, it is unsurprising that estimates of the conditional effect of lakes
and hills on neighborhood change in Panel A are positive and precisely estimated despite omitted
controls for historical factors

We combine these features together into an index of aggregate natural value by predicting
rent from our various observed natural features. We regress the logarithm of neighborhood median
housing rent, reported in censuses from 1930 to 2010, against a complete vector of dummy variables
indicating proximity to all of our natural features (at many thresholds), log population density, log
distance to the CBD, log number of housing units, average housing age, log distance to the nearest
seaport, and metropolitan area—year effects. Then, we predict values for housing rents based on
just the estimated natural feature coefficients ]

Table 3] column (7) shows that our results are robust to using this hedonic index to measure
aggregate natural value. The estimated effect of aggregate natural value is similar in magnitude to
that of coastal proximity. In our preferred estimates controlling for historical factors and correcting
for measurement error, the top 5% of neighborhoods by natural value tend to increase 1.3 to 4
percentile points more in rank than other neighborhoods over 10 years. This is about one-half of
the sample standard deviation of 0.16 in 10-year changes in neighborhood rank. Again, due to
unobserved neighborhood fixed factors, we consider these estimates to be a lower bound on the
anchoring effect of natural amenities.

The previous results estimate the average effect of natural amenities on neighborhood income
growth across different initial income ranks. As a robustness check, we estimate heterogeneous

effects using a nonparametric approach. Figure [1| plots kernel-weighted local polynomial smooths

22Hills are negatively correlated with historical factors, explaining the attenuation of their estimated effect from
Panel A to B.

23Note that the regressor of interest in column (5) is an indicator for moderate temperatures and little precipitation.
Nearly all of the within-metro variation in this variable comes from coastal California metropolitan areas. Thus, this
indicator is closely related to coastal proximity. Similarly, the indicator for low flood risk in column (6) is also strongly
correlated with coastal proximity. These correlations with coastal proximity explain why the estimates in Panel A
are negative.

24This hedonic regression omits endogenous factors such as school quality. However, the resulting predicted values
may be unbiased estimates of the natural amenity value of neighborhoods if omitted factors are related to the observed
factors in the same way. For example, if school quality is related to coastal proximity but not hills, then the estimated
coefficients on coastal proximity and hilliness will be biased, relative to each other. However, if school quality is related
to the overall natural advantage of neighborhoods, then the estimated coefficients on coastal proximity and hilliness
will be biased in the same way, but the relative weights will be unbiased. In this case, predicted rents may be a good
indicator for the aggregate natural value of neighborhoods.
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of sample changes in neighborhood income percentile rank, Ar; ; versus initial ranks 7;; separately
for neighborhoods in the top 5% and bottom 95% in aggregate natural value. Note that for a given
initial rank, superior natural amenity neighborhoods tend to improve more in income versus other

neighborhoods. The average vertical distance between the two lines corresponds to the estimate in
Table 3| Panel A, column (7)@

[Figure 1 about here.]

4.3 Discussion

Next we discuss various factors that may be correlated with natural features. As noted earlier,
endogenous factors excluded from both our stylized model and equation may be important
channels driving the anchoring of superior natural amenity neighborhoods to high incomes. We
also discuss the alternative explanation that our anchoring results may be driven by an increasing
valuation of natural amenities.

Historical housing and land use regulation. Historical buildings may attract high-income
workers, as emphasized by Brueckner, Thisse, and Zenou (1999), and we have just seen that they
tend to be correlated with coastal proximity. Similarly, coastal areas may attract households that
care about certain amenities and act to preserve them through restrictive land use zoning (Kahn
and Walsh, 2015). Ideally, these factors might be controls in our anchoring regression, except for
poor data availability in historical census years. Instead, here we perform cross-sectional regressions
of changes in income from 2000 to 2010 on coastal proximity, including controls for the pre-1940
housing stock in 2000 (as a proxy for historical buildings) and the Wharton Residential Land
Use Regulation Index (Gyourko, Saiz, and Summers, 2008). Other details of the estimation are
identical to equation . Conditioned on the metropolitan area fixed effects, identification comes
from variation across neighborhoods (or municipalities, in the case of the Wharton index) within

metropolitan areas.
[Table 4 about here.]

Table [4] shows the result. Columns (1) and (2) show that the cross-sectional results are similar
to the pooled results in Table In column (2), the estimated effect of house age on neighborhood
change is negative, suggesting that old homes are a disamenity. However, when we add a control
for the share of houses built before 1940 in column (3), its estimated effect becomes more negative,

while the estimated effect of pre-1940 homes is positive and precisely estimated. This is consistent

2Figure [I| may give the mistaken impression that unconditional changes in rank E(Ar) are greater for superior
natural amenity neighborhoods. This is not necessarily the case since superior natural amenity neighborhoods tend
to be of high initial rank.

260ne exception is that the unconditional estimate in column (1) is positive and precisely estimated, even without
controls for historical factors. Although on average over our sample period coastal neighborhoods have tended to
decline, the recent gentrification of central cities shows up here as a positive estimated coefficient.
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with pre-1940 homes being an amenity, especially if they have been positively selected for survivalm
Notably, there is hardly any attenuation of coastal proximity effect from column (2) to (3).

Estimates controlling for the Wharton index show similar results. For comparison, column
(4) restricts our sample to metropolitan areas where the Wharton index is available. Notably,
controlling for land use regulation in column (5) has little effect on the main estimated effect of
coastal proximity. Stricter regulation appears to act as an amenity, as seen by the positive estimated
coefficient on the Wharton index. But the insensitivity of the estimate on coastal proximity again
suggests that the anchoring of incomes is not significantly reinforced by stricter regulations.

Other factors. There may be other factors correlated with natural amenities. For example,
higher-quality houses might be built in coastal neighborhoods, further reinforcing the persistence of
income there. Or there may be substantial moving frictions in superior natural amenity neighbor-
hoods. However, a feature shared by many of these factors is that they diminish or depreciate over
time. If these frictions or other endogenous factors are responsible for generating our anchoring
result over 10-year horizons, then we would expect the estimated effects of natural amenities to
decline as these frictions dissipate over many decades or even a century@

Instead, we find the opposite. Figure [2] shows the conditional effects of natural amenities on
changes in neighborhood income over the (very) long run. Each point is an estimated effect from
a separate regression that varies the base year ¢ and the time horizon At. The dependent variable
is the change in percentile rank from ¢, the beginning year of its corresponding line segment, to
t + At, the year corresponding to the horizontal coordinate of the point. For example, in Panel
A, the point at the coordinate (1930, -0.009) indicates that the estimated conditional effect of
coastal proximity on the 50-year change (1880 to 1930) in neighborhood percentile rank is -0.009
(p = 0.916)@ (Estimates significant at p < 0.10 are circled.) Following the dashed line to the
right, the point at the coordinate (2010, 0.089) indicates that the estimated conditional effect of
coastal proximity on the 130-year change (1880 to 2010) in neighborhood percentile rank is 0.089
(p = 0.064). This figure shows that, across starting years and natural amenities considered, the
estimated conditional effects tend to be larger as the time horizon lengthens. We view this evidence

as inconsistent with the hypothesis that the anchoring effect is driven by other historical factors,

2TOne caution is that these are not causal estimates of housing age since preservation is an endogenous decision
that may depend on expectations of future neighborhood quality. We have experimented with instrumental variables
estimates using neighborhood age, historical lags of the stock of housing, and National Register sites as excluded
instruments. The results are similar to the OLS estimates reported here. Neighborhood age may be conditionally
independent of neighborhood change once distance to the city center is controlled for. Since National Register
buildings are self-nominated, they are not great candidates for an instrument. Instead, we use a separate list of
National Register sites noted for their historical, as opposed to aesthetic, significance.

280ne may wonder about endogenous factors caused by natural amenity differences between years t and ¢ + 1.
Since these natural amenity differences are predetermined, these factors are part of the overall causal effect of natural
amenity differences in the initial year and thus should not be controlled for. See Angrist and Pischke (2009, pp.
64-68) on bad control variables.

29In all regressions, we include controls for log neighborhood distance to the nearest port (interacted with metropoli-
tan coastal status), log neighborhood population density, and log neighborhood distance to the CBD. We omit the
control for log neighborhood average house age because of inconsistent data availability.
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endogenous to natural amenities, that exist in the initial year ¢ of our 10-year regressions.
[Figure 2 about here.]

Increasing valuation of natural amenities. A final concern related to the estimation of
equation is that the value of natural features may change over time. For example, the valuation
of natural features may have increased because of growing income, particularly in the right tail
of the income distribution. One way that this hypothesis might be tested is by estimating the
conditional effect of natural amenities on 10-year changes in neighborhood percentile rank. These
estimates can also be seen in Figure 2} A thick shaded line connects estimates of the 10-year effect
of natural amenities ending in each labeled census year.

According to Figure [2] there is little evidence that the conditional effect of natural amenities
has increased over time, at least for changes in the percentile ranking (as opposed to changes in
nominal prices or incomes) of neighborhoods. Instead, the conditional effect of natural amenities
looks stable, or even declining, over time. One potential explanation for these results is that our
theory implies that increases in the valuation of aggregate amenities do not affect the relative
ranking of neighborhoods. Since we focus on the relative ranking of neighborhoods, the effects of
national increases in income or income inequality are obscured. Instead, such income effects will
show up in housing or land prices in high-amenity areas, consistent with the results of Gyourko,
Mayer, and Sinai (2013) and Diamond (2016).

A second source of changes in the valuation of natural features is shifts in preferences among
amenities. Conditioned on tastes for aggregate neighborhood amenities, perhaps high-income
households place greater weight today on natural amenities compared with endogenous amenities
such as schools, shopping, or safety. One prediction of such a shift in preferences is that natural
amenities will better predict high-income neighborhoods today compared with the past. However,
we find little evidence in support of this hypothesis. Figure [3| shows that the relative likelihood

that a high-income neighborhood is coastal has remained roughly constant over 130 years.

[Figure 3 about here.]

5 Persistence in the spatial distribution of income

Next, we test Proposition [5s prediction that naturally heterogeneous cities have more persistent

spatial distributions of income. We begin with the following hierarchical linear model:

U(Ti(m)) =tm +¢;
@Zm :'70+'71Fm+Z;n 3+ m (10)

Here, o(r;) is the over-time standard deviation of neighborhood i’s percentile ranking within city

m between some base year t and 2010, and 1y, is the city mean of o(r;) estimated in the first level
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and used as the dependent variable in the second level. I, is a city-level measure of variation in
natural value among neighborhoods within city m. Thus, 1 is identified by cross-sectional variation
across cities in base year t in (within-city) natural heterogeneity. Proposition |5| predicts that
~v1 < 0. Following Wooldridge (2003), the minimum distance estimator is equivalent to estimating
the second step using weighted least squares, where the weights are 1/ m"(zﬂm) First-stage errors
g; are clustered at the city level.

Using 1960 as our base year, we compute o(r;) using the six observations from 1960 to 2010@
Earlier historical years have fewer neighborhood and city observations, as seen in Table Il Later
census years have fewer periods over which to compute the over-time volatility in neighborhood
income. We show later that our results are robust to the choice of base year. For all choices of base
year, we fully balance our panel; thus, for a base year of 1960, our regressions and computations
of ranks over time exclude any neighborhoods or cities that do not appear in our sample in any
census year between 1960 and 2010.

To measure I',,, we take two approaches. First, we use a metropolitan indicator for coastal
status. We expect coastal cities to have a higher internal variance in natural amenities than non-
coastal cities because the ocean is such a dominant natural amenity. Second, we use the within-city
standard deviation in log neighborhood distance to the coast. This continuous measure is larger in
cities where some neighborhoods are coastal and others are not, and the curvature of the logarithm
function ensures that this measure is small in interior cities where all neighborhoods have equally
poor access to the coast@

Finally, to control for factors excluded from the model, we add other city-level covariates related
to over-time volatility in neighborhood income in Z,,. For example, we control for the within-
metro standard deviation of neighborhood income to account for variation in nominal income
dispersion across cities. In some specifications, we control for the within-metro standard deviation
of neighborhood house age, since neighborhoods in cities with greater heterogeneity in endogenous
factors such as housing may be more resistant to turnover.

Table [5| displays results using 1960 as our base year. Each column shows a separate regression.
We multiply the dependent variable by 100 for presentation purposes, so the units are percentile
points. Column 1 shows that, on average, neighborhoods in coastal metropolitan areas experience
smaller fluctuations in income over time. The coefficient on a metropolitan indicator for proximity
to the ocean is negative and precisely estimated. The magnitude of the effect is approximately 23%
of one standard deviation in volatility across neighborhoods and almost two-thirds of one standard
deviation across cities; coastal status alone explains about 12% of the variation in neighborhood

volatility across cities.

300ur results are robust to using the variance Var(r;) = [o(r;)]?, but our linear model using the standard deviation
results in a better fit, as measured by RZ.

31Results are virtually identical when we interact this measure with a metropolitan coastal indicator, which me-
chanically sets the internal variation of interior cities to zero.
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[Table 5 about here.]

An alternative explanation of our result in column 1 is that heterogeneous cities are also land-
supply constrained. This view suggests that, in flat cities, the supply of housing is more elastic,
and therefore the causal link between geography and neighborhood stability is mediated by city
growth, not the value of natural amenities (cf. Saiz, 2010). To address this concern, we control for
log metropolitan area growth in population and area. Column 2 shows the result. The estimates
do suggest that growing cities are less stable, consistent with the alternative view. However, even
conditioned on city growth, coastal cities are more stable. Thus, we do not view our results as
being spuriously caused by differences in land-supply elasticity across cities.

Note that city population growth is associated with greater volatility in neighborhood incomes.
This is consistent with the idea that shocks to extant neighborhoods are greater in such cities.
Holding land area fixed, neighborhoods in cities experiencing more rapid population growth seem
likely to have experienced more rapid infrastructure investment, greater subdivision of older homes,
greater influx of immigrants, and so on, that might correspond to larger shocks in our model. But
conditioned on population growth, spreading these shocks over a larger area means more modest
shocks at the neighborhood level, and, hence, the negative estimated coefficient on metro change in
land area. Figure [d] further illustrates this relationship between metropolitan population and area

growth and neighborhood volatility.
[Figure 4 about here.]

In column (3), the coefficient on within-city income inequality is negative, too, but it is less
precisely estimated. This result suggests that cities with greater income dispersion across neighbor-
hoods are more stable. The coefficient on dispersion in house ages is imprecisely estimated. This
regression also includes additional controls for the top and bottom deciles of initial income in the
first level of the estimation. One concern is that because we are using percentile ranks to measure
income, the over-time volatility in neighborhood income may be censored for those neighborhoods
at the very top or very bottom of the income distribution. (Note, however, that such censoring
is likely to affect all cities equally. In addition, because Proposition [5] is derived using percentile
ranks, it already accounts for such censoring.) The insensitivity of the estimated effect of natural
variation to these first-level controls suggests that our results are robust to possible censoring issues
in the tails of the income distribution.

In columns (4) and (5), we use alternative measures of within-city natural heterogeneity I'y,.
Column (4) uses the within-city standard deviation in the logarithm of neighborhood distance to
an ocean or Great Lake. Column (5) uses the within-city standard deviation in our aggregate
natural value index described earlier. In both regressions, the estimated coefficients are negative

and precisely estimated. Standardizing the effect sizes implies similar magnitudes across measures.
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Table [6] shows that these results are robust when we vary base years. Each cell reports the
estimated coefficient on the within-metropolitan area standard deviation in natural value from a
separate regression, with a specification identical to Table [5, column 2. Thus, that estimate is

repeated in the first row, column 5 of Table [6]
[Table 6 about here.]

Each panel shows results where the measure of within-city natural heterogeneity is noted by
the panel title. FEach column displays results for regressions using the base year indicated. For
example, in column 1, we rely on cross-sectional variation in 1880 across 29 cities, and we use
the seven census years available for a balanced panel (1880, 1960, 1970, ..., 2010) to compute the
over-time volatility in income.

Neighborhoods in coastal cities (Panels A and B) or naturally heterogeneous cities (Panel C)
tended to experience smaller fluctuations in income over 1960-2010, echoing results in Table
These estimates are negative and precisely estimated. Overall, all of the estimated effects in 1940
or later are negative, and the results are especially strong and precisely estimated when considering
base years from 1950 to 2000.

Some of the earlier estimates for 1930 are positive and precisely estimated. In part, we find
that this is due to an unrepresentative sample of cities. The 10 metropolitan areas used in the
1930 regression are all in the Northeast and Midwest region@ Estimates from regressions in later
base years that are restricted to these cities tend to feature reduced magnitudes and precision,
suggesting that differences in the sample composition of cities may play a role in these historical
estimates.

Finally, Figure |p|illustrates our main result that neighborhoods in naturally heterogeneous cities
tended to experience smaller over-time fluctuations in income over 1960-2010. Each point represents
a metropolitan area. The vertical axis measures the metropolitan-level residual from a regression of
mean variance in percentile rank over time on controls as in Table 5] column 4. The horizontal axis
measures the within-city standard deviation in our predicted rent index; Los Angeles and the San
Francisco Bay Area (labeled San Jose) are the two most naturally heterogeneous metropolitan areas
by this index. The slope of the fitted line corresponds to the estimate reported in Table [6] panel
C, column 5@ Thus, naturally heterogeneous cities exhibit more persistent spatial distributions

of income over time.

[Figure 5 about here.]

32In 1930, our metropolitan areas are Boston, Buffalo, Chicago, Cleveland, Columbus, Indianapolis, Nashville,
Pittsburgh, St. Louis, and Syracuse.

33Note that two outliers, Las Vegas and Tucson, are desert cities that have low volatility but also low measured
natural heterogeneity. Intriguingly, there may be unmeasured natural amenities (such as access to aquifers) in these
cities that lead us to underestimate the true degree of natural heterogeneity.
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6 Decentralization and gentrification in coastal and interior cities

In this section, we test Proposition [6]s prediction that natural amenities are stronger anchors
in naturally heterogeneous cities. Intriguingly, this prediction also has implications for variation
across cities in the widespread decentralization of income in the early and mid-20th century and
the regentrification of downtowns since 1980. We show that coastal city downtowns, compared
with downtowns in river or interior cities, have been better anchored to high incomes during both
periods of nationwide suburbanization and gentrification.

First, we test Proposition |§| by adding to equation an interaction between a neighborhood

indicator for superior natural amenities 1(a;) and metropolitan natural heterogeneity T',:
Arimye = Bo + Barie + B11(a;) + B31(ai) X Tont + Ot + €z (11)

Proposition [6] predicts that 83 > 0. In Section 4, we introduced various measures for superior
natural amenities 1(a;), and, in Section 5, we introduced various measures for metropolitan natural
heterogeneity I'y, ;. With 1(a;) defined as an aggregate natural index value in the top 5%, I'p, ¢
measured with the (initial) within-city deviation in aggregate natural value, and controls following
Table column (4), we find that superior natural amenity neighborhoods increase in income
31 = 1.9 percentile points (c.r.s.e.= 0.6) in the average metropolitan area by natural heterogeneity,
and this effect increases Bg = 3.3 percentile points (c.r.s.e=0.6) for every one-standard-deviation
increase in metropolitan natural heterogeneity. This result is robust to other measures of 1(a;) and
| IS

[Table 7 about here.]

Proposition [6] also has implications for variation across cities in the nationwide decentralization
of income in the early and mid-20th century and the regentrification of downtowns since 1980.
Owing to historical development patterns, many cities have their central business districts near
superior natural amenities; coastal cities tended to develop from harbors and beaches, and interior
cities grew from rivers. Thus, intriguingly, since coastal cities are more naturally heterogeneous than
interior cities, Proposition [6] predicts that coastal city downtowns will have been better anchored
to high incomes compared with interior city downtowns during both the period of widespread
suburbanization and the more recent period of downtown gentrification. To test this prediction,
we replace 1(a;) with 1(CBD;) in equation (L1)).

Arimy e = Bo + Barie + 511(CBD;) + B31(CBD;) X Tt + 6mt + €it- (12)

The regression results reported in Table [7] confirm that coastal downtowns have been better
anchored to high incomes. Column (1) confirms the long-run decline in the income of interior

downtowns, by an average of 4.0 percentile points every 10 years, but as indicated by the positive
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estimated effect of the interaction term, downtown neighborhoods in coastal metros declined by
an average of just 0.8 percentile points every 10 years. We have verified that this result is robust
to using a continuous treatment and interaction instead of an indicator for downtown proximity@
This result is also robust to alternative measures of metropolitan natural heterogeneity versus a
simple metro coastal indicator 7]

Column (2) shows that conditioned on initial income, coastal downtowns tended to decrease less
in income versus interior downtowns. Controlling for initial income corresponds to the conditioning
statement of Proposition [f] Further, this result is robust in our 1910 to 2000 sample to controlling
for neighborhood distance to the nearest seaport and population density, as seen in column (3).

Columns (4) and (5) compare two distinct periods: the decentralization of income before 1980 and
the gentrification of city centers after that, respectively. In addition, these regressions restrict the
sample to years in which we have information on neighborhood average house age, an additional
control. In the first period, the negative coefficient estimate on city center proximity confirms the
suburbanization of income. In the second period, the positive estimate reflects the gentrification
of downtowns experienced in the past few decades. In columns (3) and (4), the attenuation of
the estimated coefficient on downtown proximity compared with columns (1) and (2) suggests that
some of the decline of downtowns can be attributed to observable characteristics such as housing
age, proximity to ports, or population density.

Notably, the coefficient of interest on the interaction between neighborhood city center proximity
and metropolitan coastal proximity remains stable across specifications. Our estimates suggest
that coastal downtowns have had a 3-percentile-point advantage over interior downtowns in terms
of conditional changes in income rank.

Finally, these results do not appear to be driven by less job decentralization in coastal metropoli-
tan areas. An alternative explanation for our results might be that naturally heterogeneous cities
also keep employment more centralized, due perhaps to greater transportation costs associated with
industrial or commercial activities. In columns (6) and (7), we show that our results are robust
to controls for the degree of job decentralization in a metropolitan area. Kneebone (2009) uses
ZIP Code Business Patterns data to estimate the changes in metropolitan employment shares over
1998-2006 in 3-, 3- to 10-, and greater than 10-mile rings around the CBDs of many metropolitan
areas, of which 86 match our metropolitan area definitions. Column (6) repeats regressions (4) and
(5) on the Kneebone-restricted sample. In column (7), we include the first two measures of job
decentralization (as the three shares sum to 1). The estimated effect of downtown proximity and
coastal proximity is identical across columns (6) and (7), suggesting that limited job decentraliza-

tion in coastal cities does not contribute to our results. Interestingly, increases in the job share

34For example, the estimated coefficient on log distance to city center is 0.028 (c.r.s..=0.002), and the coefficient
on log distance to city center times coastal metro indicator is —0.010, c.r.s.e.=0.005.

35For example, using the standard deviation of our hedonic measure of natural value yields similar results: The
estimated coefficient on downtown proximity is —0.038, c.r.s.e. = 0.004, and the estimated coefficient on downtown
proximity times the metropolitan standard deviation of hedonic natural value is 0.119, c.r.s.e. = 0.035.
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of neighborhoods within 3 miles of the central business district appear to bolster the incomes of
central neighborhoods, although the effect is imprecisely estimated. Job-share increases in a 3- to
10-mile ring around the CBD appear to be negatively and significantly related to incomes in the city
center, consistent with the importance of job access to the recent gentrification of central cities. In
addition, the estimated coefficient on downtown proximity becomes more positive, consistent with
intensifying gentrification of central cities starting in 1990.

These differences in patterns of decentralization and gentrification add a cross-city perspective
to literature that have documented historical changes in the location of income within U.S. cities.
LeRoy and Sonstelie (1983) report that downtown neighborhoods in 18th- and 19th-century Mil-
waukee, Philadelphia, Pittsburgh, and Toronto tended to feature higher incomes at least until the
introduction of the streetcar in the 1850s and 1860s “caused the first major flight of the affluent
to the suburbs” (p. 81). This decentralization would be repeated later on a larger scale between
central cities and their outlying suburbs, leading to the dominant U.S. pattern today of poor cen-
ters and rich suburbs (Brueckner and Rosenthal, 2009). Subsequently, many central cities have
experienced rising incomes and gentrification in the past several decades.

Figure [6] confirms these patterns for a fixed sample of 29 metropolitan areas over 10 census
years—a broader section of cities than in previous work. Each panel displays the pattern of income
and residential location: The horizontal axis measures distance from the city center, up to 15km,
and the vertical axis measures average household income on a percentile rank scale S| Plotted lines
show lowess regressions, fitted separately for coastal versus interior citiesm

The first panel shows that in 1880 income declined with distance to the city center in both
coastal and interior cities. This pattern is consistent with the fact that many of these cities were

still recently founded as of 1880, and the best-developed areas were clustered near downtown@
[Figure 6 about here.]

However, as early as 1930, we see a divergence in the fortunes of downtowns in coastal versus
interior cities: While all downtowns declined, those in interior cities tended to decline faster than
downtowns in coastal cities, at least until 1960. Further, the second row of Figure [6] shows that,
from 1970 onward, coastal city downtowns tended to improve faster in income than interior city
downtowns. Thus, the pattern seen in Figure [f] is consistent with Proposition [ Throughout
both the widespread decentralization of income and the more recent gentrification of central cities,

coastal city downtowns have been better anchored to high incomes.

360nly six cities in our sample had neighborhoods beyond 15km from the city center in 1880. Overall, the median
city’s maximum extent was 6km from the city center.

37See Appendix Table for our classification of cities.

38In Appendix Figure [B2] we show that the pattern of income varied across metropolitan areas. For example,
peripheral incomes in Columbus, Louisville, and Washington, DC, exceeded incomes in the core. And in Philadelphia,
Boston, Cleveland, and New York City, incomes were highest not in the core but at some distance from the center.
But most sample cities continued to feature the highest incomes closest to the center in 1880.
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7 Conclusion

We combine new theory and a novel database of consistent-boundary neighborhoods to study
both neighborhood dynamics and differences across cities in patterns of neighborhood change,
suburbanization, and persistence. Our theory and results highlight the role of natural amenities
in neighborhood dynamics. Persistent natural amenities anchor neighborhoods to high incomes
over time, and they affect neighborhood dynamics citywide. Downtown neighborhoods in coastal
cities have been both less susceptible to suburbanization and more responsive to gentrification
versus interior cities. Finally, cities with greater internal natural heterogeneity tend to exhibit
more persistent spatial distributions of income.

Although our stylized model assumes a closed city for simplicity, our insights should hold in
an open city setting. Even if migration across cities causes changes in a city’s nominal income
distribution, the sorting between workers’ income rank and neighborhood aggregate amenities still
holds. That said, there are many interesting questions to be examined in a model that considers
household mobility across cities. For example, cross-city sorting of households on preferences for
natural amenities may have important implications for income inequality and the political econ-
omy of coastal cities, complementing recent research by Moretti (2013) and Eeckhout, Pinheiro,
and Schmidheiny (2014). Further, the push to implement place-based policies, as well as their
consequences, may vary with natural heterogeneity and these sorting patterns. These interesting
topics are left for future research.

Finally, we have focused on neighborhood sorting by income in this paper. But our insights
extend to sorting on other characteristics as well. For example, the strong correlation between
race and income in the United States means that many of the patterns we find apply to racial

segregation dynamics as well.
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Figure 1: Conditioned on initial income, superior natural amenity neighborhoods increase in income

Kernel-weighted local polynomial smoothing using Stata’s lpoly function with Epanechnikov kernel, rule-of-thumb bandwidth,
and local-mean smoothing. Superior natural amenity neighborhoods are the top 5% of neighborhoods by our aggregate natural
value index.

31



A. Ocean or Great Lake within 500 meters

Change over 10 years

———— Change since 1880

——e—— Change since 1930, etc.
O p<005

-0.05 0.00 0.05 0.10 0.15

Effect of natural amenity
on change in neighborhood income

-0.10

1880 1930 1940 1950 1960 1970 1980 1990 2000 2010

B. Awverage slope greater than 15 degrees

Effect of natural amenity
on change in neighborhood income

-0.05 0.00 0.05 0.10 0.15 0.20

1880 1930 1940 1950 1960 1970 1980 1990 2000 2010

C. Natural aggregate value in top 5%

o

o o

E o

Q

o

25 ©

co

2§ ©

c<

-5 ©

go T

5c o

g2

CC [T}

Se S

SR

£2 o

we 9

5 ©

§ w

S 8]
S 7 T T T T T 7 7 T
1880 1930 1940 1950 1960 1970 1980 1990 2000 2010

Figure 2: Anchoring: Changes over time in 10-year effects and long-run effects

Each point shows results from a separate regression that varies the base year ¢ and the time horizon At. The vertical axis
measures the estimated conditional effect of the indicator for the natural amenity noted in the panel title. The dependent
variable is the change in percentile rank by income from ¢ (the beginning year of its corresponding line segment) to t + At
(the year corresponding to the horizontal coordinate of the point). Additional control variables are log distance to the nearest
seaport, log population density, and log distance to the CBD. Ten-year effects are connected by the thick shaded line. Circled
points are significant at p < 0.10.
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Figure 3: Relative likelihood that a high-income neighborhood is coastal

This figure shows, for each census year, the relative likelihood that a high-income neighborhood (versus a randomly selected
neighborhood) is within 500 meters of an ocean, the Gulf of Mexico, or a Great Lake.
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Figure 4: Persistence: Neighborhood volatility and metro growth

This graph shows 50-year changes in population and area for 135 metropolitan areas, 1960-2010. Each point is a metropolitan
area. Metropolitan areas with an average over-time variance in neighborhood rank at or above the 75th percentile across metros
are indicated by green “+4” symbols. Metros with an average over-time variance in neighborhood rank below the 25th percentile
are indicated by red “x” symbols.
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Figure 5: Neighborhoods in naturally heterogeneous cities experience smaller over-time fluctuations
in income

The vertical axis measures the metropolitan-level residual from a regression of mean neighborhood 1960 to 2010 standard
deviation (SD) in percentile rank by income (x100) on within-metropolitan SD in neighborhood income and log changes in
metropolitan population and land area over the same period. The horizontal axis measures the within-metropolitan SD in
aggregate natural value using estimated hedonic weights as described in the text. The slope of the fitted line corresponds to
the estimate in Table @, Panel C, column (5).
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Table 1: Number of consistent neighborhoods by census year

Year Metros Neighborhoods

2010 308 60,757
2000 308 60,766
1990 308 60,299
1980 277 56,176
1970 229 49,888
1960 135 38,669
1950 51 17,681
1940 43 11,527
1930 10 1,962
1920 2 2,505
1910 1 1,748
1880 29 3,071
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Table 2: Coastal proximity anchors neighborhoods to high incomes

(1) (2) (3) (4) (5) (6)

w o] ri¢ > 0.9 Names
1(Coast)* 1t 0.05  -0.004  0.013¢ 0.007*  0.014¢ 0.045°¢ 0.031¢

[0.22]  (0.004) (0.004) (0.004) (0.003)  (0.005)  (0.005)
Initial %ile 0.50 -0.161¢ -0.169¢° -0.184¢ -0.202¢ -0.204°  -0.203¢
rank by income (r;;) [0.29] (0.007) (0.007) (0.008) (0.008)  (0.008)  (0.008)
Log distance to 5.02 0.028¢ -0.004  -0.004*  -0.004%
nearest seaport? [4.83] (0.004) (0.002)  (0.002)  (0.002)
Log distance to 7.51 0.035¢  -0.008¢  -0.008°  -0.008¢
city center [1.95] (0.003) (0.002)  (0.002)  (0.002)
Log population 9.74 -0.036¢  -0.036°  -0.036°
density [1.04] (0.001)  (0.001)  (0.001)
Log average house 3.00 -0.019¢  -0.019¢  -0.019¢
age [0.53] (0.004)  (0.004)  (0.004)
Metro—year f.e. v v v v v v
R? 0.081  0.090  0.116  0.202 0.202 0.202
Neighborhoods 298,776 298,776 297,518 281,321 281,321 281,321
Metro—years 1,357 1,357 1,313 1,263 1,263 1,263

Each numbered column displays estimates from a separate regression. Column titled “u [0]” shows sample means and standard
deviations. Regressions use pooled observations of 60,872 consistent-boundary neighborhoods over 10 census years, 1910-2000.

Dependent variable is 10-year forward change in percentile rank by income (Ar;;); mean, 0, standard deviation, 0.16. All

regressions include metropolitan area—year effects. Standard errors, clustered on metropolitan area—year, in parentheses; *—

p<0.10, *—p<0.05, “—p<0.01. *—Neighborhood centroid is within 500m of an ocean, the Gulf of Mexico, or a Great Lake.

t—Explanatory variable in column (5) is neighborhood centroid is within 500m of an ocean, the Gulf of Mexico, or a Great
Lake, and neighborhood initial rank is in the top income decile. *—Explanatory variable in column (6) is neighborhood
centroid within 500m of an ocean, the Gulf of Mexico, or a Great Lake and neighborhood name includes “beach,” “coast,”

” o« ” o«

“bay,” “cove,” “lagoon,” “ocean,” or “shore.” % —Log distance to nearest seaport times metropolitan indicator for coastal

proximity.
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Table 3: Anchoring: Other measures of natural amenity

(1) (2) (3) (4) (5) (6) (7)
Temp. Pr(flood) Nat’l val.
Coast  Lakes Rivers Hills & dry < 1% > p(95)

A. Indicator for natural feature
-0.004  0.044¢  0.004°  0.050¢ -0.033¢  -0.025¢ 0.013°
(0.004) (0.006) (0.002) (0.004) (0.013)  (0.003) (0.005)

B. With controls for historical factors
0.014¢  0.031¢ -0.003" 0.008®  0.015 -0.001 0.028¢
(0.003) (0.005) (0.001) (0.003) (0.010)  (0.002) (0.004)

C. Indicator for natural feature and r;; > 0.9
0.045¢  0.057¢ 0.026° 0.034° 0.031°¢ 0.042¢ 0.040¢
(0.005) (0.014) (0.005) (0.004) (0.009)  (0.003) (0.005)

D. Place names'
0.031¢  0.030¢ -0.004 -0.005 0.025¢ 0.005° 0.019¢
(0.005) (0.007) (0.003) (0.003) (0.007) (0.002) (0.005)

E. Sample means of natural amenity indicator, 1910-2000
0.054 0.006 0.094 0.064 0.072 0.641 0.050

Each cell displays estimates from a separate regression. Dependent variable is the forward 10-year change in percentile rank
by income (Ar;;); mean, 0, standard deviation, 0.16. All regressions include metropolitan area—year effects. Panel E shows
the sample means of natural feature indicators noted in column headings. Standard errors, clustered on metropolitan area, in
parentheses; *—p<0.05, “—p<0.01. Explanatory variable is an indicator for proximity within 500m in columns (1)-(3), average
slope greater than 15 degrees in column (4), mean January minimum temperature between 0 and 18 degrees Celsius and mean
July maximum temperature between 10 and 30 degrees Celsius and mean annual precipitation less than 800mm in column (5),
mean annual flood probability of less than 1% in column (6), and top 5% in natural value estimated using hedonic weights
as described in the text in column (7). Regressions use 282,581 observations of 61,047 neighborhoods in 308 metros, 1910 to
2010, except column (6), which uses 90,987 observations of 27,133 neighborhoods in 177 metros with valid floodplain data for
more than 95% of neighborhoods. *—Explanatory variable in Panel C is an indicator for natural amenity and neighborhood
initial rank is in top income decile. T—Explanatory variable in Panel D, column (1) is an indicator for natural amenity and the
neighborhood name includes “bay,” “beach,” “cape,” “coast,” “cove, ”« 7

” o«

gulf,” “lagoon,” “ocean,” “sea,” or “shore.” Column
(2): “lake,” “pond,” or “island.” Column (3): “brook,” “creek,” “fall,” “rapid,” “river,” “spring,” or “stream.” Column
(4): “bluff,” “butte,” “canyon,” “cliff,” “height,” “hill,” “knoll,” “mount,” “ridge,” “summit,” “terrace,” “view,” or ‘“vista.”
Column (5): same as column (1). Column (6): “stream” or “river.” Column (7): all of the above.
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Table 4: Anchoring: Endogenous factors, 2000-2010

plol (1) (2) 3) (4) ()

1(Coast) 0.05 0.007° 0.011¢ 0.010° 0.014° 0.015°
[0.21] (0.004) (0.004) (0.004) (0.005) (0.005)
Initial %ile rank 0.50 -0.097¢ -0.129° -0.125¢ -0.119° -0.120°
by income (r; ) [0.29] (0.004) (0.005) (0.005) (0.004) (0.004)
Log distance 4.73 -0.006° -0.004> -0.001  -0.002
to seaport [4.88] (0.002) (0.002) (0.003) (0.003)
Log distance 9.87 -0.011¢  -0.009¢ -0.011¢ -0.010°¢
to city center [1.04] (0.002) (0.002) (0.002) (0.002)
Log population 7.53 -0.022¢  -0.022¢ -0.024° -0.024°¢
density [1.79] (0.001) (0.001) (0.002) (0.002)
Log average 3.37 -0.008¢ -0.020¢ -0.017¢ -0.016°
house age [0.48] (0.003) (0.003) (0.005) (0.005)
Share houses 0.15 0.070¢  0.092¢  0.092¢
built before 1940 [0.19] (0.010) (0.010) (0.010)
Wharton Residential — 0.13 0.004°
Land Use Reg. Index [0.98] (0.002)
R? 0.049 0.095 0.100 0.113 0.113
Neighborhoods 60,073 60,073 60,073 22,591 22,591
Metro areas 293 293 293 247 247

Each numbered column displays estimates from a separate regression. Column titled “u [o]” shows sample means and standard
deviations. Regressions use cross-section of consistent-boundary neighborhoods, 2000-2010. Dependent variable is change in
percentile rank by income (Ar;); mean 0, standard deviation 0.13. All regressions include metropolitan area fixed effects.
Standard errors, clustered on metropolitan area, in parentheses; *—p<0.10 *—p<0.05, “—p<0.01.
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Table 5: Persistence in metros with variation in coastal proximity, 1960-2010

(1) (2) (3) (4) (5)
r,, = 1(Coasty,)* O'(Ci‘m)T o*(d“m)i
7 0.29 0.42 0.07
[o] [0.45] [0.57] [0.03]
Metro natural -1.840°  -1.500¢ -1.362° | -1.487¢ | -36.242¢
heterogeneity (I'),) (0.742) (0.523) (0.529) | (0.417) | (5.149)
Metro log change in 0.94 4.231¢  4.213¢ 4.083¢ 5.353¢
population, 1960-2010 [0.78] (0.633) (0.658) | (0.629) | (0.564)
Metro log change in 1.61 -1.606¢ -1.572¢ | -1.817¢ | -2.457¢
land area, 1960-2010 [1.15] (0.363) (0.356) | (0.378) | (0.296)
Within-metro SD in 191 -0.902% | -0.746 -0.744¢
neighborhood income (thous.) [0.43] (0.504) | (0.563) | (0.441)
Within-metro SD in 3.69 0.191 0.138 0.726°
neighborhood avg. house age  [0.78] (0.372) | (0.340) | (0.335)
1st level
Initial rank decile v v v
R? 0.117 0.555 0.572 0.602 0.695
Metropolitan areas 135 135 135 135 135

Each column displays estimates from the second level of separate two-level regressions. Row and column titled “u [o]” show
sample means and standard deviations (SD) for dependent and explanatory variables, respectively. First-level OLS regressions
(unreported) use neighborhood observations in census year 1960 to estimate 135 metropolitan area means and cluster-robust
standard errors. Dependent variable is over-time SD in percentile rank x 100, 1960-2010; mean, 12.9, SD, 7.9 in balanced panel
of 38,293 neighborhoods over six census years. Second-level weighted least squares (WLS) regressions use 135 metropolitan
areas. Dependent variable is estimated metropolitan area means from first level, and weights are inverse estimated variance
from first level; mean, 13.1, SD, 2.8. Robust standard errors in parentheses; “—p<0.10, *—p<0.05, “—p<0.01. *—Measure
of metropolitan natural heterogeneity I';, in columns (1)—(3) is a metropolitan indicator for coastal proximity. T—Measure of
Ty, in column (4) is the within-metropolitan area SD in log neighborhood distance to an ocean or Great Lake. f—Measure of
Ty, in column (5) is the within-metropolitan area SD in estimated aggregate natural value.
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Table 6: Persistence: Robustness to other years and measures of within-metro natural heterogeneity

(1) (2) 3) (4) () (6) (7) (8) 9)

Base year: 1880 1930 1940 1950 1960 1970 1980 1990 2000
o 19.4 17.5 13.8 13.8 12.1 10.2 9.06 8.90 7.37
(o] 6.92]  [9.05]  [8.44]  [8.16]  [8.29]  [7.29]  [6.53]  [6.63]  [7.25]
A. Ty, = 1(Coasty,) (Metro indicator for coastal status)
0.22 0.013 3.490° -0.071 -0.210 -1.500°  -1.004° -0.372 -0.255  -0.089
[0.42] (0.388)  (1.772) (0.531) (0.518)  (0.523)  (0.398)  (0.300) (0.229) (0.176)
B. I'p, = 0(Coast;)y,) (Within-metro standard deviation in log distance to coast)
0.42 0.357 3.859¢ -0.236 -0.280 -1.605¢ -0.952¢  -0.479¢ -0.354® -0.183
[0.62] (0.746)  (1.681) (0.642) (0.551)  (0.389)  (0.227)  (0.164) (0.143) (0.120)
C. Ty, = 0(aj),) (Within-metro standard deviation in aggregate natural value)
0.08 19.701 81.591°  -4.199 -27.573°¢ -34.661¢ -24.080° -12.212¢ -7.346° -3.837°
[0.03] (12.217)  (29.894) (7.598) (9.574)  (5.085) (3.411) (2.435) (2.820) (2.220)
Years* 7 9 8 7 6 5 4 3 2
Metros 29 10 38 51 135 227 277 308 308

First level
Neighborhoods 3,002 1,935 11,167 17,420 38,293 49,660 55,911 60,063 60,545

Each cell displays estimates from the second level of separate two-level regressions. Column and row titled “u [0]” show
sample means and standard deviations for explanatory variables (in 2010) and dependent variables, respectively. Regression
specifications are same as Table |5} column (2). First-level OLS regressions (unreported) use neighborhood observations in the
base year to estimate metropolitan area means and robust standard errors. Dependent variable is over-time SD in percentile
rank X100, between base year and 2010; metropolitan-level means and standard deviations in the first row. Second-level WLS
regressions use metropolitan areas. Dependent variable is the estimated metropolitan area means from first level, and weights are
inverse estimated variance from first level. Robust standard errors are in parentheses; *—p<0.10, >—p<0.05, “—p<0.01. *—For
each base year, we balance our neighborhood panel to calculate over-time variances.
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Table 7: Decentralization of income and metropolitan coastal proximity

(1) (2) 3) (4) (5) (6) (7)

1950-  1980- 1990-2010

Sample years: 191020107 1980 2010 (Kneebone)
1(CBD)* -0.040¢  -0.085¢  -0.015¢ | -0.023¢  0.005° | 0.018° 0.018
(0.004) (0.004) (0.003) | (0.005) (0.003) | (0.004) (0.008)
1(CBD) x 0.032¢  0.034°  0.020° | 0.030°  0.029¢ | 0.025° 0.025°
1(Coastal metro)T (0.009) (0.008) (0.008) | (0.009) (0.009) | (0.011) (0.011)
Initial %ile -0.181¢  -0.205° | -0.313¢ -0.124¢ | -0.108° -0.108°
rank by income (7 ) (0.009) (0.006) | (0.010) (0.003) | (0.003) (0.003)
Log distance to -0.003 | -0.003  -0.008¢ | -0.007¢ -0.007¢
seaport (0.003) | (0.005) (0.002) | (0.002) (0.002)
Log population -0.035¢ | -0.048¢ -0.021¢ | -0.020° -0.020¢
density (0.001) | (0.001) (0.001) | (0.001) (0.001)
Log average -0.075¢  0.005* | 0.008¢  0.008°
house age! (0.010)  (0.002) | (0.003) (0.003)
1(CBD) x ACBD 0.034
job share? (0.242)
1(CBD) x A3-10 -0.378°
mi job sharel (0.148)

Metro—year f.e. v v v v v v v
R? 0.004 0.098 0.207 0.338 0.107 0.099  0.099
Neighborhoods 297,522 297,522 297,520 | 105,529 175,794 | 98,006 98,006

Metros 293 293 293 224 293 86 86

Each column displays estimates from a separate regression. Dependent variable is 10-year forward change in percentile rank
by income (Ar;;); mean, 0, standard deviation, 0.16. Standard errors, clustered on metropolitan area—year, in parentheses;
e 9<0.10, >—p<0.05, ©“—p<0.01. Regressions use observations of 60,400 neighborhoods in 293 metropolitan areas, 1910 to
2010. *—Neighborhood is within 5km of principal city CBD. f-——Metropolitan area CBD is within 1km of an ocean or a Great
Lake. —Available 1950 and later. 8, l—Changes in share of metro jobs within 3 miles and 3 to 10 miles, respectively, of CBD,
1998 to 2006 (Kneebone, 2009). T—Sample for which 10-year forward change in percentile rank by income is defined.
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A Theory Appendix
A.1 Proof of Proposition

We write the Markov transition matrix as

M= PI‘(51|51) =1- PI‘(SQ|51) PI‘(Sl|SQ) (13)
- PI‘(SQ|S1) Pr(S2|SQ) =1- PI’(51|52)
and define the steady-state vector m as
m™=Mn (14)

where the elements of 7 are positive and sum to 1. The steady-state vector 7 is a time-invariant probability
distribution over the two states, which we can also interpret as the long-run probability distribution over
the states in the city.

Any Markov chain with a regular transition matrix (defined as a matrix whose elements are all positive
for some power of the matrix) is known to converge to a steady state. Since M is a regular Markov matrix,
the probability distribution over states converges to the steady-state vector m. By solving equation , we

obtain 7:
WE{ P, }: ! { Pr(5115) } (15)
Ds, Pr(S2|S1) + Pr(S;]S2) | Pr(S2/S1)

Denote by Var(r;:) the over-time variance in percentile income rank of a neighborhood j. In steady
state, the beach’s over-time variance in income rank can be written as

Var(rjelj =b) = {ps,(ra)* + (1= p5,)(re)*} = {ps,rm + (1 = p§,)re}?
(1 =p5,) s, - (ru —rr)*.

Since the average income of the beach takes exactly the opposite value to that of the desert, the over-time
variances are equal. Thus, the average rank variance for the city can be written as

E(Var(rj:lj) = (1 — ps,)p%, - (ra —r)*

This city average variance is maximized when pg = 0.5 and decreases monotonically as ps moves away
from 0.5. Equations 7 7 and lj imply that, conditional on ry — rp, p§, increases from 0.5 with
|ay — aq|. Therefore, E(Var(r;j:|j)) decreases with |ap — ag|. Intuitively, the city’s spatial distribution of
income experiences the least persistence over time when there is no natural heterogeneity within the city
(i.e., the city is in a flat, featureless plain). As the beach’s natural advantage increases, the likelihood of
churning between states declines, leading to stability and persistence in the spatial distribution of income.

A.2 Proof of Proposition [6]

Just as we derive equations @ and 7 we can calculate expected income percentile rank change for each
neighborhoood and initial income:

[Table Al about here.]

Equations and (5)) imply that, as |, — gl increases, Pr(S2|S1) decreases and Pr(S1|S2) increases.
It follows from Table hat, as |ap — a4l increases, the gap between beach and desert in expected income
change increases regardless of initial income level. In other words, the anchoring effect of natural amenities
is stronger in naturally heterogeneous cities.
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A.3 Full model

This section presents the full model that allows the city to have more than two neighborhoods and the
amenity shocks €;+ to be correlated over time. The full model differs from the simple model presented in
Section [2.I] in the main text in the following ways. First, the city has J € N neighborhoods and J unit
measure of workers. Second, the aggregate amenity shock ;¢ follows an AR(1) process: €41 = pej s + 14
where v; is independent and identically distributed. Third, we extend the equilibrium selection rule in
Section [2.3] as follows: When there are multiple equilibria, we choose the one that is closest to the selected
equilibrium in the previous period, in terms of the Fuclidean distance in the vector of average incomes across
neighborhoods.

A.3.1 Equilibrium within a period

Lemma [I} which states that higher-income workers sort into superior aggregate amenity neighborhoods,
holds with the full model, because it is driven solely by workers’ preferences.

To precisely describe the sorting with J neighborhoods, we introduce new notation. First, we partition
the set of worker incomes [f, 6] into J intervals {©1,©,,...,0;} so that each group has a unit measure of
workers; O, is the top income group, and ©; is the bottom group. éi,i+1 denotes workers who divide group
¢ from group i+ 1; i.e.,, ©5 = [0, é.],u], O = [é']flw(]7é]72"]71}, vy ©1 = [élyg,é]. Second, we define a
neighborhood rank function 74 : J — J such that 7 (j) is the rank of neighborhood j in terms of aggregate
amenities in period ¢. For example, suppose that neighborhood 1 is the third best neighborhood in terms of
aggregate amenities in period 2. Then we have 75 (1) = 3. Note that its inverse function 7~ maps back to
neighborhood index numbers, given aggregate amenity rankings. For example, suppose that the second best
neighborhood in period 3 is neighborhood 4. Then we have fg_l (2) = 4

Since each ©; group of workers consumes one unit measure of land and each neighborhood has one unit
measure of land, each ©; group of workers occupies one and only one neighborhood. Further, since higher-
skill workers select into better aggregate amenity neighborhoods, each group ©; occupies neighborhood
71 (j) in each period t.

We characterized workers’ location choices as a function of the distribution of aggregate amenities across
neighborhoods. In turn, workers’ location choices must generate a distribution of aggregate amenities across
neighborhoods that is consistent with their location choices. In other words,

aft-1(j) + E(@W S @]) + 67:;1(]-) > a,i;t—l(j+1) + E(G\G € @j+1) +57~'t_1(j+1)' (16)

Proposition |2} which states that an equilibrium exists in each period and there can be multiple equilibria,
holds with the full model. First, an equilibrium always exists because condition is satisfied if higher-
income workers choose to live in neighborhoods with greater exogenous amenities: a; + €;+. Second, there
can be multiple equilibria. For example, condition is satisfied for any matching pattern between income
groups and neighborhoods if exogenous amenities (i.e., a; + €;;) are identical across all neighborhoods.

Now we characterize how rents are determined in each period. We normalize rent for the least favored
neighborhood to be 0, that is,

Rf_t—l(J) =0.

For the other neighborhoods, equilibrium rent R;t—l(j) is recursively determined so that éj’j+1 workers (i.e.,

workers who divide ©; and 0, 1) are indifferent between neighborhood 7, *(j) and 7; *(j + 1):

Aiory - G501 = Biorgye) = Anor - G0 = Biorggy)-

39Note also that this rank function 7 differs from the percentile rank income r in three ways. First, 7 ranks
neighborhoods based on their aggregate amenity levels A; while r on average income (i.e., endogenous amenity level)
E(8]j). Second, 7 assigns a lower number for a better aggregate amenity neighborhood, while r assigns a higher
number for a better average income neighborhood. Third, 7 gives an integer rank, while r gives a percentile rank.
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This equation recursively pins down rent for each neighborhood. Note that neighborhood rents follow the
same order as average incomes, as with the simple model.

A.3.2 Equilibrium selection and history dependence

When there are multiple equilibria, we choose the one that is closest to the selected equilibrium in the previous
period, in terms of the Euclidean distance in the vector of average incomes (i.e., endogenous amenities) across
neighborhoods.

Partly because the number of possible location-choice patterns increases dramatically with that of neigh-
borhoods (i.e., J! with J neighborhoods), we cannot analytically prove Propositions and |§| with the full
model. Instead, we use numerical methods to demonstrate that the results are robust with more than two
neighborhoods and serially correlated amenity shocks.

For various combinations of parameters, we calculate the equilibrium path for 100,000 periods and
test whether the propositions hold. The following list of parameters are used in the simulations. For the
number of neighborhoods J, we use 3, 5, and 7 neighborhoods. For the natural amenity distribution across
neighborhoods, we use £ x (1,2,...,J) and vary £ to be 1, 3, 5, and 10. Note that the variance in natural
amenity levels increases as £ increases. For the average income distributions across neighborhoods, we use
1 % (1,2,...,J) and vary ¢ to be 1, 3, 5, and 10. For amenity shocks, we assume that ¢;; follows an AR(1)
process €+ = peji—1 + Vjt, where v;, follows a Normal distribution (0,0%). We vary p to be 0, 0.2, 0.6,
0.9, 0.95, 0.98, 0.99, and 1 and vary o to be 1, 3, 5, and 10. p determines how much the amenity shocks
are correlated over time. Note that the amenity shocks are stationary if p is less than 1. ¢ determines how
volatile the shocks are. This grid of parameters generates 1,536 unique combinations of parameters.

We begin with Proposition |4 For each combination of all parameters with p < 1 (1,344 combinations in
total), we obtain a number J x 100,000 of neighborhood-period level simulated data. For each combination
with p < 1, we regress change in percentile rank income of a neighborhood on its percentile rank natural
amenity level and its current period percentile rank income. This is the base specification we use in our
empirical analysis.

Proposition [ implies that the coefficient on natural amenity should be positive. Our simulation results
confirm this prediction with stationary amenity shocks. With p < 0.98, the coefficients were weakly positive
for all 1,152 combinations. With p = 0.99, only four parameter combinations out of 192 show small negative
values. The small number of negative outcomes seem to be driven by numerical errors, as neighborhood
shocks become close to a nonstationary unit-root process. With a unit-root process (i.e., p = 1), our
predictions do not hold: 128 of 192 cases show negative values.

Next, we test Proposition[f] We calculate E(Var(r;|j)) for each parameter set. The Proposition implies
that E(Var(r;.|j)) decreases with £, and our simulation results show that E(Var(r;.|j)) indeed decreases
with a stationary amenity shock.

Finally, we test Proposition [(] The effect of superior natural amenities is captured by the coefficient
on percentile rank natural amenity level in the previous regressions used to test Proposition [ We test
if the coefficients tend to increase with . (Recall that natural amenity values are ¢ x (1,2,...,J) across
neighborhoods. As ¢ increases, heterogeneity in natural amenity values increases.) We calculate the mean
value of the coefficient estimates for each £=1, 3, 5, 10. Each £ group has 384 parameter sets. The results

show that the mean coefficient increases monotonically with &.
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Table Al: Expected change in income conditioned on natural amenity and initial income

Initial Income
Neighborhood TH TL

Beach (rp —rg)Pr(S2|S1) (ra —rr)Pr(S1|S2)
Desert (rp —rg)Pr(S1]S2) (ra —rp)Pr(S2|St)
Difference ‘ rg — L) (Pr(S1|S2) — Pr(S2|S1))  (rg —rp)(Pr(Si|S2) — Pr(S2|S1))
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B Data appendix

B.1 Figures and tables referenced in footnotes

[Figure B1 about here.]
[Figure B2 about here.]
[Table B1 about here.]

[Table B2 about here.]

B.2 Census data and boundary normalization

We use 2010 census tract data from the American Community Survey (ACS) five-year summary file via the
National Historical Geographic Information System (NHGIS) (Minnesota Population Center, 2011). These
data cover the entire geographic extent of the U.S., although we focus on metropolitan (core-based statistical)
areas only. The ACS is the annual replacement for the decennial long-form data, and it includes much of the
detailed information on population and housing (e.g., income) that is no longer reported in the decennial
census. However, the ACS has one important limitation. Because of small annual sample sizes and privacy
concerns, these data represent five-year averages of residents and houses located in each tract. Thus, although
we refer to these data as coming from the year 2010 throughout the paper, they really represent an average
over 2006-2010. Finally, since these data already follow 2010 census tract boundaries, no normalization is
required.

Census data for 1970-2000 are from the Geolytics Neighborhood Change Database (NCDB) (Tatian,
2003). These data are already normalized to 2000 (n.b., not 2010) census tract boundaries. The NCDB
methodology compares maps of the 2000 census tract and block boundaries with earlier years. Then, 1990
census block information (each tract is composed of many blocks) is used to determine the proportion of
people in each historic tract that should be assigned to each overlapping 2000 tract. These proportions are
then used as weights to normalize the data to 2000 boundaries[™]

To normalize the NCDB data to 2010 census tract boundaries, we use the Longitudinal Tract Database
(LTDB) (Logan, Xu, and Stults, 2014). The LTDB uses the same block-weighting methodology as the
NCDB. Thus, our analysis uses weights defined by 2000 census block populations to normalize all of the
Geolytics NCDB data, from 1970 to 2000, to 2010 census tract boundaries. It is important to note that
in 1980 and earlier, the entire geographic extent of the U.S. was not completely organized into tracts, and
missing data problems are more severe for earlier years. However, since we focus on metropolitan areas,
data quality is quite good as early as 1970. (We also drop tract observations in years when their respective
metropolitan area is incompletely tracted. See more on sample selection below.)

For census years 1910-1960, we use decennial census information from the NHGIS. The 1940, 1950, and
1960 NHGIS extracts are collectively known as the Bogue files (2000a, 2000b, and 2000c), and they are also
available from the Inter-university Consortium for Political and Social Research. These files contain tract
information for selected cities and metropolitan areas. The 1910, 1920, and 1930 NHGIS extracts are known
as the Beveridge files. Note that data availability is sparse, especially before 1950. Even for cities that
are completely tracted, sometimes the data do not contain complete information on population, housing,
or income. (For example, in 1910, tract information on household income is only available for New York
City; in 1920, such information is only available for New York City and Chicago. Ten metropolitan areas
have valid data in 1930, and 43 metropolitan areas have valid data in 1940.) We normalize these data to

1OWe make a small adjustment to the 1980 Geolytics NCDB. The 1980 census prized identification of “places”
(e.g., towns, villages, boroughs) over tracts when confidentiality restrictions were binding. The NCDB propagates
this censoring in its normalization procedure, even if the proportion of households in the tract with suppressed income
data is negligible. We restore this income information from the original 1980 census as long as the proportion of
censored households in a census tract is less than 20%.
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2010 census tract boundaries ourselves using NHGIS map layers. For each decade, we compare historical
tract boundaries with 2010 census tract boundaries. Since subtract or block information on population is
unavailable for these historical years, we are unable to exactly follow the NCDB and LTDB methodologies
of constructing weights using block populations. Instead, we normalize using a simple apportionment based
on land area.

Finally, we draw 1880 census information from the Integrated Public Use Microdata Series (IPUMS)
(Ruggles et al., 2010). We use both the 100% census and the 10% population sample; the 10% sample in-
cludes information on literacy, while the 100% census does not. The IPUMS includes data on each person’s
place of residence, via the enumeration district variable. Enumeration districts were areas assigned to census
enumerators to gather data, and they are comparable in population size with modern-day census tracts. (In
fact, on average, they are slightly smaller than modern-day census tracts.) We use enumeration districts
to normalize the historical 1880 data to 2010 census tract boundaries. First, we obtain maps on historical
enumeration district boundaries from the Urban Transition Historical GIS Project (UTHGIS) (Logan et
al., 2011). Maps are available for 32 present-day metropolitan areas (totaling 29 consolidated metropolitan
areas). (Note that our ability to match households to neighborhoods is limited both by availability of house-
hold data—the 1890 census was destroyed by fire—and the availability of maps showing the spatial extent
of historical census tracts or enumeration districts.) Second, using the same procedure as for 1910-1960,
we compare historical enumeration district boundaries with 2010 census tract boundaries. We apportion to
2010 census tract boundaries using land area.

B.3 Sample selection

We exclude a number of tract observations according to the following criteria. We drop tracts in Alaska,
Hawaii, and Puerto Rico. We exclude tracts with zero land area (these are typically “at sea” populations,
i.e., personnel on ships) or zero population (e.g., airports or zones otherwise reserved for nonresidential uses).

We do not consider tracts outside of metropolitan areas defined in 2009. One problem with nonmetropoli-
tan tracts is that many of them are not available before 1990, the first year that the U.S. was fully organized
into census tracts. Another problem with rural tracts is the difficulty in grouping these tracts into units that
share common labor, housing, product, and input markets. (Exceptions are the core-based statistical areas
called micropolitan areas. However, many of these micropolitan areas feature a very small number of tracts,
making them unsuitable for our analysis. The very small number of tracts means that the entry of even one
new neighborhood can elicit a volatile response in within-micropolitan area rankings.)

We drop tracts in particular years that are clearly nonurban. This restriction is more salient in historical
years, when tracts or enumeration districts on the urban fringe were not subject to urban land uses. We
classify tracts as nonurban if (i) the entire tract population is classified by the census as “rural” or (ii)
population density is less than 32 people per square mile, or one person per 20 acres. (Lowering this threshold
to one person per 40-160 acres affects the number of excluded tracts minimally. Population densities of less
than 32 people per square mile are already well short of standard definitions of urban population densities.)
We reason that while these tracts are within counties that contain urban uses, at the time of observation,
they are likely to be outside of metropolitan areas and urban household location decisions. In this way, we
also address concerns about changing metropolitan area boundaries over time.

We exclude tracts where our normalization procedure is likely to be poor. In some cases, especially for
early census years and tracts on the urban fringe, historical tracts cover only a portion of 2010 census tract
areas. This is more likely to be the case when historical city boundaries are much smaller than present-day
extents. When historical tracts cover less than 50% of the land area of the present-day tract, we exclude
these data from our analysis.

We also eliminate tract observations that disappear from one year to the next. This problem is partly
mechanical; we cannot compute income changes for a tract that does not appear in the next period. It
also is mostly limited to the transition between the 1880 UTHGIS data and the subsequent NHGIS data.
The reason this problem arises is because the UTHGIS maps, which we use for our normalization procedure,
typically cover entire counties, whereas the NHGIS data and maps used in the early 20th century are confined
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mostly to city boundaries. Thus, many of the UTHGIS tracts outside city boundaries are dropped anyway
because they are nonurban (as previously noted), but to avoid the problem of contracting metropolitan
boundaries, we exclude the remaining earlier tracts that do not appear in subsequent years.

A consequence of the unbalanced nature of the data is that forward lags vary by metropolitan area and
year. For example, after 1880, it is only 30 years until our next observation of New York neighborhoods
(in 1910), but it is 70 years until our next observation of Omaha neighborhoods (in 1950). Out of 1,684
metropolitan area-year groups in our data, 1,342 follow the standard 10-year gap between census year
observations. As a result, the actual number of neighborhoods used in regressions varies according to whether
the specification requires balancing across two subsequent census years or balancing over a large number of
years. In addition, some variables, such as flood hazard or average housing unit age, are unavailable in some
years, further affecting sample selection.

B.4 Natural amenity data

We spatially match our consistent-boundary neighborhoods to a number of natural and persistent geographic
features.

Water features—coastlines, lakes, and rivers. We use data on water features from the National
Oceanic and Atmospheric Administration’s (2012) Coastal Geospatial Data Project. These data consist of
high-resolution maps covering (i) coastlines (including those of the Atlantic, Pacific, Gulf of Mexico, and
Great Lakes), (ii) other lakes, and (iii) major rivers. For each 2010 census tract, we separately calculate the
distance to each of the nearest water features (ocean, lake, river) from the centroid of the tract.

Elevation and slope. We use the elevation map included in the Esri 8 package. These data have a 90-meter
resolution. In ArcGIS, we use the slope geoprocessing tool to generate a slope map. Then we use the zonal
statistics tool to calculate average slope in each 2010 census tract.

Floodplains. The Federal Emergency Management Agency (FEMA, 2012) publishes National Flood Hazard
Layer (NFHL) maps covering much of the U.S. The NFHL maps show areas subject to FEMA’s flood zone
designations. We assign to tracts either a high-risk or low-risk indicator. High risk means that an area has
at least a 1% annual chance of flooding (a 26% chance of flooding over a 30-year period), as determined by
FEMA. Note that flood maps are unavailable for some metropolitan areas. In our data, 261 metropolitan
areas have valid flood zone information.

Temperature and precipitation. We match tracts to temperature and rainfall data available from the
PRISM Climate Group (2004) at Oregon State University. These data are 1971-2000 averages, collected
at thousands of weather monitoring stations and processed at a spatial resolution of 30 arcseconds for the
entire spatial extent of the U.S.; of annual precipitation, July maximum temperature, and January minimum
temperature.

B.5 Other data

City centers. Data on principal city center locations for 293 metropolitan areas were generously provided
to us by Dan Hartley. Fee and Hartley (2013) identify the latitude and longitude of city centers by taking
the spatial centroid of the group of census tracts listed in the 1982 Census of Retail Trade for the central
city of the metropolitan area. Metropolitan areas not in the 1982 Census of Retail Trade use the latitude
and longitude for central cities using ArcGIS’s 10.0 North American Geocoding Service.

Seaports. Data on seaport locations are from the World Port Index, 23rd edition, published by the
National Geospatial-Intelligence Agency (2014).

Land use regulation. The Wharton Residential Land Use Regulatory Index is from Gyourko, Saiz, and
Summers (2008).
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Neighborhood names. Information on neighborhood names comes from the U.S. Geographic Names
Information System (GNIS), maintained by the U.S. Geological Survey (USGS), and the U.S. Board on
Geographic Names, which maintains uniform usage of geographic names in the federal government. We
use named populated places, which represent “named communities with a permanent human population”
(USGS, 2014). These communities range from rural clustered buildings to metropolitan areas and include
housing subdivisions, trailer parks, and neighborhoods. These names are assigned point coordinates by the
USGS. with no defined boundaries. In our database of consistent-boundary neighborhoods of U.S. cities,
8,983 neighborhoods (out of 60,758) have no named populated place. This could be because a neighborhood
has no name or (more likely) the neighborhood’s name is also associated with a nearby census tract that
happens to have been assigned the point coordinate by the USGS. The remaining tracts have one or more
associated place names.

Note that the populated place names database excludes names of natural features, and it includes both
incorporated and unincorporated place names.

B.6 Neighborhood percentile ranks

Figure shows the evolution of several New York neighborhoods over our sample period. Recall that each
neighborhood corresponds to data normalized to 2010 census tract boundaries. The solid lines show the
relative rankings of three neighborhoods—tracts corresponding to the Upper East Side, East Harlem, and
Tribeca. (Levittown was unpopulated in 1880 so a corresponding solid line does not appear in the figure.)
An interesting feature of this graph is variation in income dynamics across neighborhoods. For example, the
Upper East Side has remained a high-income neighborhood throughout our sample period. East Harlem,
which was a relatively high-income neighborhood in 1880, experienced decline and has been a low-income
neighborhood since 1910. Tribeca saw a large increase in average household income in the 1980s.

[Figure B3 about here.]

The dotted lines show the relative rankings of these three neighborhoods after 1960 and the relative
ranking of a fourth neighborhood, Levittown, which first appeared in that census year. In comparing the
solid with the dotted lines, note that we have changed the universe used to compute neighborhood ranks
from 1880 to 1960 neighborhoods, but the dynamic patterns for the extant three neighborhoods remain
qualitatively similar.

In our sample, most neighborhoods experience changes in percentile rank that are close to zero—that
is, neighborhood income ranks are largely persistent over time, especially over the 10-year changes that are
predominant in our sample. Few neighborhoods experience dramatic increases or declines in rank. The
distribution of percentile rank changes has a mean zero and standard deviation of 0.164.

B.7 Mean reversion

We begin by noting the overall relationship between neighborhood change and initial income. In short,
neighborhood status tends to mean revert. Figure [B4] shows local polynomial smoothing of sample 10-year
changes in neighborhood income percentile rank, Ar; ;, versus initial ranks r; ;. (The right axis smooths log
changes in average neighborhood income, net of the metropolitan area—year mean.) Neighborhoods that are
initially highly ranked tend to decline, and low-ranked neighborhoods tend to improve.

[Figure B4 about here.]
Several features of Figure [B4] are noteworthy. First, despite using a nonlinear technique, the pattern of
mean reversion is close to linear in initial rank, especially in the middle of the income distribution. In our

anchoring regressions, we condition linearly on initial rank. (In robustness checks, we allow differences by
decile in initial rank.)
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Second, by construction, the sum of changes in income percentile ranks is zero, because one neighbor-
hood’s improvements in rank are offset by other neighborhoods’ declines. An important implication is that
changes for a bottom-ranked neighborhood are restricted to the interval (0, 1), and changes for a top-ranked
neighborhood are restricted to (—1,0). Despite this, mean reversion appears to be driven not by neigh-
borhoods at the top and bottom of the income distribution (as would be expected if mean reversion were
purely mechanical) but by neighborhoods near the middle of the income distribution (whose changes in rank
are less restricted). The fact that the negative correlation between changes in income and initial income is
weaker for neighborhoods with initial rank below the 20th percentile and above the 80th percentile suggests
that mechanical effects contribute little to the overall pattern@

Finally, there is mean reversion even in nominal incomes, showing that this pattern is not exclusively
driven by our use of percentile ranks (Figure right axis). The expected 10-year sample change in average
household income for a neighborhood at the bottom of the income distribution, relative to the average
neighborhood in the metro—year, is an increase of about 2%. In contrast, the expected relative change for a
top neighborhood is about a 6% decline.

B.8 Robustness to proximity thresholds

In Figure [B5| we show that the effect of proximity to an ocean or a Great Lake is consistent for varying
definitions of proximity. The gray line connects estimates from 100 separate regressions of neighborhood
change on proximity, varying the proximity indicator. (As we move to the right along the horizontal axis,
our indicator variable classifies more neighborhoods as being “close” to the natural amenity and fewer
neighborhoods as being “far” from the natural amenity.) The black line displays regression estimates when
we use only natural features near top-income neighborhoods, as in Table |2} column 6 in the main text. (The
intersection of these lines with the vertical dotted line are the estimates from our baseline estimates using
a 500-meter definition, shown in Table ) Recall that we expect these features to more likely be positive,
versus negative, amenities. As expected, the results using this variable are always stronger than the results
using oceans and Great Lakes unconditioned on initial income.

[Figure B5 about here.]

Figure also shows the same results for lakes, rivers, and hills. These results show consistent patterns.
The important feature of this figure is that it shows that conditioning rivers on their proximity to high-
income neighborhoods improves the estimated effect of (positive-amenity) rivers on neighborhood change.
This is consistent with the view that, on average, rivers in our sample are a disamenity for households.

I'Weak mean reversion in the tails of the initial income distribution, despite mechanical censoring effects, may lend
further credence to the role of natural amenities: The existence of very strong amenities and disamenities may lead
to neighborhoods that are persistently very poor or very rich. See Section [5|in the main text.
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Percentile rank by income in 1880

0, Cincinnati OH 0, Columbus OH 0, Hartford CT 0, Louisville KY 0, Minneapolis MN
0, Philadelphia PA 0, Pittsburgh PA 0, St. Louis MO 0, Washington DC
1, Boston MA 1, Buffalo NY' 1, Chicago IL 1, Cleveland OH 1, Detroit Ml
1 Wi 1, New Orleans LA 1, New York NY 1, Rochester NY 1, San Francisco CA
T T T T T T T T T T T U T T T
0 5 10 150 5 10 150 5 10 150 5 10 150 5 10

Distance to central business district, kilometers

Figure B2: Income and residential location for large cities, 1880

This figure shows the pattern of neighborhood average household income on the vertical axis versus neighborhood distance to
the city center (up to 15km) on the horizontal axis for the 19 largest cities in our 1880 sample. Ten metropolitan areas with
20 or fewer neighborhoods in 1880 are not shown. Cities are organized by coastal status (O=interior, 1=coastal) and then
alphabetically. The plotted lines are results from lowess smoothing with bandwidth 0.9.
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Percentile Rank

O_

T T T T T 1 T T T | T
1880 1910 1920 1940 1950 1960 1970 1980 1990 2000 2010

Year

Upper East Side Tribeca  ———— EastHarlem ————— Levittown

Figure B3: Selected New York neighborhood rankings over time

Solid lines connect neighborhood percentile ranks among 1880 neighborhoods. Dotted lines connect neighborhood percentile
ranks among 1960 neighborhoods.
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Change in percentile rank
Log change in average household income

Change in percentile rank (left scale) N <
1 -=-=- Log change in average household income (right scale) ’\.
95% confi ence interval ) g
T T T T T !
0 .25 5 .75 1

Initial percentile rank

Figure B4: Mean reversion in neighborhood percentile rank by income

Kernel-weighted local polynomial smoothing using Stata’s lpoly function with Epanechnikov kernel, rule-of-thumb bandwidth,
and local-mean smoothing. Neighborhood log change in average household income (right scale) is normalized by metropolitan
area—year mean.
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Figure B5: Robustness to indicator variable thresholds

These graphs show the conditional effect of natural features on neighborhood change for varying indicator definitions of proximity
to natural features. Each connected point is from a separate regression. The gray solid line connects estimates of the effect
of natural amenities, varying the definition of the natural amenity on the horizontal axis, as in Table |3} Panel B. The black
solid line connects estimates of the effect of natural amenities conditioned on initial income r; ; > 0.9, varying the definition
of natural amenity on the horizontal axis, as in Table |3} Panel C. Dashed lines show 95% confidence intervals. Vertical dotted
line shows baseline definition used in Table Bl
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Table B1: Summary statistics

2 (o)

A. Consistent-boundary neighborhoods

Ar, 10-year forward change in percentile rank, 1910-2000 0.00 (0.16)
o (Tifm)) x 100, Std. dev. in 1960-2010 percentile rank 12.9 (7.9)
Population, 2010 4,283  (1,912)
Land area (km?) 27.5 (73.5)
Persons per square km, 1880 5,940 (12,406)
Persons per square km, 1960 2,901  (6,159)
Persons per square km, 2010 2,335  (4,807)
Distance from centroid to nearest seaport (km), 2010 163 (240)
Distance from centroid to city center (km), 2010 29.9 (27.2)
Mean age of housing units (years), 2010 37.3 (14.1)
B. Share of 2010 neighborhoods
... with centroid within 500m of ocean or Great Lake 0.047
.. with centroid within 500m of lake (ex. Great Lakes) 0.007
.. with centroid within 500m of major river 0.098
.. with average slope greater than 15 degrees 0.069
... with moderate temperatures* 0.091
...... and less than 800mm average annual precipitation 0.063
.. with less than 1% average annual flood riskf 0.630

C. Metropolitan areas
o(rm) x 100, Mean std. dev. in 1960-2010 percentile rank  13.1 (2.8)

*—Average January minimum temperatures between 0 and 18 degrees Celsius and average July maximum temperatures between
10 and 30 degrees Celsius. {-Flood information available for 49,517 neighborhoods.
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Table B2: Coastal and interior cities

Coastal Interior

Boston, MA Albany, NY
Buffalo, NY Atlanta, GA
Charleston, SC Cincinnati, OH
Chicago, IL Columbus, OH
Cleveland, OH Hartford, CT
Detroit, MI Indianapolis, IN
Milwaukee, WI Kansas City, MO
Mobile, AL Louisville, KY
New Orleans, LA  Memphis, TN
New York, NY Minneapolis, MN

Rochester, NY
San Francisco, CA

Nashville, TN
Omaha, NE
Philadelphia, PA
Richmond, VA
Pittsburgh, PA
St. Louis, MO
Washington, DC

99

These are the principal cities for consolidated metropolitan areas shown in Figure @ in the main text.



C Monte Carlo simulations

We analyze the biases in estimates reported in Section [4] of the anchoring effect of natural amenities, using
Monte Carlo simulations. There are two identification issues. First, we observe only whether a neighborhood
is near natural features (e.g., rivers, oceans), but we do not know whether these natural features are truly
amenable. For example, a polluted river can be disamenity. This is a type of measurement error. Second,
our anchoring regression includes a lagged dependent variable and may include unobserved neighborhood
factors, as in equation @ Unfortunately, we cannot employ the time-differenced approaches proposed by
Arellano and Bond (1991) or Caselli, Esquivel, and Lefort (1996) because differencing would eliminate our
time-invariant variable of interest. Therefore, in this Appendix, we sign these biases with Monte Carlo
simulations. Our simulations show that the regression estimates reported in the paper are lower bounds for
the true anchoring effect of natural amenities.

Section describes a data-generating process (DGP) for our simulated data. Section examines
the role of measurement error. Section examines the role of unobserved neighborhood factors. Section
[C:4] examines both issues together.

C.1 Data-generating process

For exposition, we use a set of parameters chosen to roughly match data. (Our results are robust to a
wide range of other parameter values@ We assume 50,000 neighborhoods, of which 10% are “beaches”
(1*(a;) = 1). Since not all coastal neighborhoods are amenable, we randomly assign only a half of these
beach neighborhoods to have positive natural amenity value (1(a;) = 1).

We generate 7; ¢, neighborhood incomes over time, using equation @ (repeated here for convenience):

Ariy = Bo + f11(a;) + Borip +u; + €t @

where we use By =0, f1 = .1, fo = —.1 and €;; ~ i.i.d. N(0,.05%). Recall that 3; is true natural amenity
effect. Proposition [ predicts 81 > 0.

The u; are unobservable neighborhood characteristics, where u; ~ i.i.d. N'(0,02). The standard devia-
tion of u;, oy, captures the importance of unobservable characteristics in determining neighborhood income
growth Ar; ;. It turns out that o, plays an important role in the bias coming from the lagged endogenous
regressors. In Section [C:3] we vary o, to see the effect of u; on 3 estimate.

We generate the data for 20 periods and keep only the last five periods. This is to allow time to arrive at
the steady state@ Note in equation @ that we use true natural amenity dummy 1(a;), not natural feature
dummy 1*(a;), in the data-generating process. This is because households in the real world can observe
whether a natural feature is an amenity or not.

C.2 Measurement error

This section examines the issue of the measurement error when we estimate equation @ using natural
feature indicator 1*(a;) instead of natural amenity 1(a;). To focus on the measurement error issue, we use
the DGP with o, = 0 which, as we show in Section removes the bias caused by the lagged endogenous
regresssor.

Our identification strategy in Table [2| column (5) is to condition observed natural features on historical
income. For each set of simulated data, we estimate the following model:

Aryy = Bo + 117 (a;) - 1(PRank(r; ¢) > 9;{)) + Baris + €y

42Replication files are available at the authors’ websites. Readers may try other parameter values with this program.
438ince we have 50,000 neighborhoods, the simulated data set has 250,000 observations. This is roughly similar to the
number of observations used in Table 2 (291,321 to 298,776 across specifications).
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where 1(PRank(r;;) > 6p) is an indicator variable for a historically high-income neighborhood with
a percentile rank of income greater than or equal to 0. Note that when we use 6y = 0 and thus
1(PRank(r;;) > 0g)) = 1 for all » € [0,1], the regression model becomes our base regression in equa-
tion (8) of the paper that estimates the natural amenity effect without conditioning on historical income.

We vary the cutoff 0y and report the mean f; estimates. We also report the mean of pap|H, the
correlation between observed natural amenity 1(a;) and measured natural features 1*(a;) among the top
income neighborhoods H whose percentile rank incomes are greater than 6. This correlation illustrates
how well the indicator for a natural feature measures the true natural amenity. The following table shows
the means of 3; and par|H with their standard errors in parentheses, from 1,000 trials:

O | f par[H

0 |0.032 (0.001) 0.698 (0.007)
0.5 | 0.049 (0.001) 0.809 (0.007)
0.7 | 0.064 (0.001) 0.872 (0.006)
0.9 | 0.088 (0.001) 0.951 (0.004)

The results are consistent with our predictions. As the cutoff for historical income (9}{) increases, the

estimate BAl increases toward the true value of 0.1. The correlation par|H also increases with the cutoff, and
this suggests that the natural feature is a better indicator for natural amenities after conditioning on historical

income.

C.3 Lagged endogenous variables as regressors

We pick o, and generate the data as described in Section With each resulting data set, we estimate
the following model by OLS:
Aryy = Bo + frl(a;) + Boris + € 4.

This regression model is the same as the base regression in equation (8), except that it uses true amenity 1(a;)
rather than natural feature 1*(a;). This removes the measurement error issue regarding natural amenity
and allows us to focus on the roles of the lagged dependent variable and unobserved neighborhood factors.

We vary the standard deviation of u;, oy, from 0 to 0.02, and, for each value, we repeat the entire Monte
Carlo exercise 1,000 times and report the mean of the ; estimates and its standard error:

Ou ‘ B1

0 | 0.1(0.001)
0.01 | 0.069 (0.001)
0.02 | 0.036 (0.001)

With o, = 0, the (§; estimate is virtually equal to its true value 0.1. Intuitively, when there are no
unobserved time-invariant neighborhood factors, the OLS estimator is consistent even when including the
lagged dependent variable. However, as o, increases from 0, the estimated (§; decreases away from the true
value.
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C.4 Two issues combined

Now we combine the two effects together. The following table shows mean estimates 31 and standard errors
from 1,000 trials when both o,, and 0 vary.

A
| o, =0.00 0.01 0.02

0 = 0.5 | 0.049 (0.001) 0.037 (0.001) 0.021 (0.001)
0.7 | 0.064 (0.001) 0.047 (0.001) 0.026 (0.001)
0.9 | 0.087 (0.001) 0.062 (0.001) 0.033 (0.001)

The two patterns we observed in the previous sections are robust. Either increasing o,, with 0y fixed
or decreasing 01 with oy, fixed decreases the estimate Bl away from its true value of 0.1. Moreover, the
estimates are always lower than the true effect, and this suggests that the true anchoring effect of natural
amenities is bounded from below by estimates from the regressions we report in the paper.
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