
ISSN: 1962-5361
Disclaimer: This Philadelphia Fed working paper represents preliminary research that is being circulated for discussion purposes. The views  
expressed in these papers are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of  
Philadelphia or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. Philadelphia Fed working papers 
are free to download at: https://philadelphiafed.org/research-and-data/publications/working-papers.

Working Papers

Regulating a Model

Yaron Leitner
Federal Reserve Bank of Philadelphia Research Department

Bilge Yilmaz
Wharton School, University of Pennsylvania

WP 16-31
Revised May 2018
November 2016
https://doi.org/10.21799/frbp.wp.2016.31

https://www.philadelphiafed.org/
https://philadelphiafed.org/research-and-data/publications/working-papers
https://www.philadelphiafed.org/research-and-data
https://www.philadelphiafed.org/research-and-data/publications/working-papers
https://www.philadelphiafed.org/consumer-finance-institute
https://doi.org/10.21799/frbp.wp.2016.31
https://www.philadelphiafed.org/research-and-data


Regulating a Model∗

Yaron Leitner† Bilge Yilmaz‡

Forthcoming in the Journal of Financial Economics

Abstract

We study a situation in which a regulator relies on risk models that banks
produce in order to regulate them. A bank can generate more than one model
and choose which models to reveal to the regulator. The regulator can find
out the other models by monitoring the bank, but in equilibrium, monitoring
induces the bank to produce less information. We show that a high level of
monitoring is desirable when the bank’s private gain from producing more
information is either suffi ciently high or suffi ciently low. When public models
are more precise, banks produce more information, but the regulator may end
up monitoring more.
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1 Introduction

Regulators rely on information that banks produce in order to regulate them. One

example is the advanced internal ratings-based approach to calculating capital re-

quirements for credit risk. Under this approach, banks use their internal risk models

to estimate the borrower’s probability of default, loss given default, and exposure

at default. These estimates are then used to calculate risk weights and capital

requirements. Another example is stress tests. Banks’internal credit ratings are

used to project losses on corporate loans to companies that are not publicly traded.

Banks’internal models are also used to estimate losses on trading positions.

The idea behind this approach is that banks may know more than regulators

about their own risk. After all, banks have strong incentives to develop good models

for their own portfolio decisions. Yet, a concern exists that, while banks will use

their best models for trading purposes, for the purpose of regulation they will select

models that underestimate risk. This concern is supported by empirical evidence.1

The first question we address in this paper relates to this concern: Should

regulators attempt to find out all relevant information from banks, even if regulators

can do so without incurring any cost? In our model, a bank can create more than

one model and choose which models to reveal to the regulator. The regulator uses

the information from the models he observes to decide whether to allow the bank

to invest in some risky asset. The regulator also decides how much to monitor the

bank, which leads to an endogenous probability q that the regulator will find out

the other models that the bank produces.

As we explain here, there are two forces that push the optimal q in different

directions. A higher q allows the regulator to learn more from the information

that the bank produces. This can lead to better investment decisions from the

regulator’s point of view. However, a higher q may also induce the bank to produce

less information overall (in the sense of Blackwell, 1951). This is because, if the

regulator finds out the information, he can use it to restrict investment when the

bank wants to invest but the regulator does not want it to.

1See, e.g., Behn, Haselmann, and Vig (2014), and Plosser and Santos (2014).
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The conflict of interest between the bank and the regulator could arise for vari-

ous reasons. Banks do not internalize externalities, while regulators are concerned

with systemic risk and take into account total social costs. Similarly, banks have

limited liability, and, as such, shareholders do not necessarily maximize total firm

value. Our main insights do not depend on the specific source of conflict.

For concreteness, we focus on one source of conflict. In our model, the regula-

tor wants to invest only if a project has a positive net present value (NPV), but

the bank, facing limited liability, wants to invest also in some projects that have

negative NPV. This conflict of interest is also impacted by the fact that the bank

has other assets, which could be used to pay debt holders when the project fails.

Since both the value of these assets and the value of the project depend on the

state of the world, the bank’s ideal investment rule may not be just a simple cutoff

rule. For example, for some parameter values, it is optimal for the bank to invest in

good states (when the project has positive NPV) and bad states (when the project

has negative NPV and other assets are worthless) but not in intermediate states

(when the value of the other assets is too high to lose). More generally, the bank’s

ideal investment rule includes intervals of the state space in which the bank wants

to invest and intervals in which the bank does not want to invest.

The bank can generate information to guide its investment decisions. Specif-

ically, the bank generates models, which are information partitions of the state

space. We restrict attention to information partitions, such that each element in

the partition is a convex set (i.e., an interval or a singleton). Then the bank faces

a tradeoff. When the bank generates more information, the bank can make better

investment decisions for its equity holders. However, if the regulator finds out the

information, the regulator can use the information against the bank to ban invest-

ment when the bank wants to invest but the regulator does not want it to. The

outcome of this tradeoff is that, when the regulator sets a higher level of monitoring,

the bank produces less information. Consequently, the optimal level of monitoring

could have an interior solution.

We characterize the optimal level of monitoring. In particular, we provide

necessary and suffi cient conditions under which it is optimal to set q = 1. When
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these conditions hold, it is optimal that the regulator observes all the models that

the bank creates. When these conditions do not hold, it is optimal that the bank

creates two sets of models. The bank reveals to the regulator the first set of models

but does not reveal the second set of models. The regulator allows the bank to

invest as long as he is convinced that the state of the world is suffi ciently high

for the project to have a nonnegative NPV, in expectation. The bank maintains

discretion whether to invest when the regulator allows it to invest.

Interestingly, it is optimal to set a high level of monitoring q = 1 when the bank’s

private gain from producing information is either suffi ciently high or suffi ciently

low. When the private gain is high, the bank produces a lot of information even

if it is highly monitored. In this case, it is optimal to set q = 1 because the

regulator can learn everything the bank knows without impacting the amount of

information that the bank produces. If instead the bank’s gain is intermediate,

the regulator must set a lower level of monitoring q < 1 to induce the bank to

produce information. In this range, the optimal level of monitoring decreases when

the bank’s gain from producing information falls because it becomes harder to

induce the bank to produce information. Finally, when the bank’s private gain from

producing information is very low, the regulator can induce the bank to produce

information only if the level of monitoring is very low. But then the regulator

does not learn much from the information that the bank produces, and it is again

optimal to set q = 1, even though this reduces the overall amount of information

that the bank produces.

Using this insight, we derive comparative statics as to how the optimal q changes

with respect to model parameters, such as the amount of debt that the bank owes,

the value of its existing assets, or the quality of its new project. We also discuss

the case in which the bank faces some exogenous cost of producing information and

the case in which the regulator can impose penalties on the bank. In general, the

relationship is nonmonotone. For example, for some parameter values, it is optimal

to set a high level of monitoring for banks that have either a low cost or a high cost

of producing information and a lower level of monitoring for banks that have an

intermediate cost. Similarly, banks that have either high levels of debt or low levels
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of debt could face a high level of monitoring, while banks with an intermediate

level of debt could face a lower level of monitoring. As for the amount of informa-

tion produced, our model predicts that for a given (positive) level of monitoring,

banks will produce less information when they have more debt, when the value of

their existing assets falls, and, perhaps surprisingly, when they have higher quality

projects. All these changes increase the bank’s gain from investing, and so the fact

that the regulator could use the bank’s information to ban investment has a more

significant effect on the bank.

We also analyze the role of public information. We show that when public mod-

els become more informative, the bank generates more information. However, there

is a nonmonotone relationship between the informativeness of the public models and

the optimal level of monitoring q. Intuitively, there are two forces that push the

optimal q in different directions. On the one hand, with more public information,

the regulator can monitor less because he already has some information. On the

other hand, public information can affect the bank’s private gain from producing

information. In particular, under some circumstances it can increase the bank’s

incentive to produce more information. This makes it easier for the regulator to

induce the bank to produce information and allows the regulator to increase the

probability of monitoring.

The paper proceeds as follows. In Section 2, we review the literature, and in

Section 3, we provide an example. The formal model is in Section 4. In Section 5,

we analyze the benchmark case of an unregulated bank, and in Section 6, we provide

an equilibrium analysis of a regulated bank (and most of our results). Comparative

statics are in Section 7. Section 8 contains an analysis of the case of public models,

and in Section 9, we discuss applications, such as corporate governance, new drug

approval, bank stress tests, and capital requirements. We conclude in Section 10,

which also contains a discussion of model assumptions. Proofs are in the Appendix.
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2 Literature review

Our paper is closely related to the Bayesian persuasion literature (Kamenica and

Gentzkow, 2011), in which one agent (the bank) generates a signal (a model) to

persuade another agent (the regulator) to allow some action. A key difference

between our paper and existing literature is that, in our setting, the bank can

generate a second signal, which it does not reveal to the regulator. The bank can

then use information from both signals to decide whether to take the action. Our

paper allows us to answer questions such as whether and under what conditions

the regulator can gain by committing not to find out what the second signal is.

More generally, our paper is an example of an information design problem (e.g.,

Bergemann and Morris, 2016, 2017), in which the bank (the information designer)

designs the information structure for itself and for the regulator, and in which

payoffs in the induced game depend on the (endogenous) monitoring intensity that

the regulator sets.2

Our paper also relates to the literature on delegation of authority within orga-

nizations, in particular the literature that focuses on the tradeoff between incor-

porating more information into decision making and controlling decision-making

authority when the agent has relevant information. In a strategic communication

setting, Dessein (2002), Harris and Raviv (2005, 2008, 2010), Chakraborty and

Yilmaz (forthcoming), and Grenadier, Malenko, and Malenko (2016) study condi-

tions under which the principal should allocate decision-making authority to the

agent. In this framework, keeping decision-making authority may hurt the principal

because the gains from doing so are outweighed by the losses arising from imper-

fect information transmission between the agent and the principal. In a related

work, Aghion and Tirole (1997) also analyze the optimal allocation of authority

but without strategic communication. They emphasize a distinction between for-

mal and real authority, showing that often the party with formal authority will

delegate authority to another party with information. In our framework, the regu-

2Other papers that study information design (or Bayesian persuasion, in particular) in the
context of bank regulation include Goldstein and Leitner (2015), Gick and Pausch (2014), Williams
(2017), and Orlov, Zryumov, and Skrzypacz (2017).
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lator can gain by delegating authority to the bank to decide whether to invest. A

key difference between our paper and the existing literature is that, in our setting,

the regulator allocates authority based on the realization of a signal that the bank

produces (endogenously). The bank obtains authority only if the signal realization

is above some threshold (and the regulator does not observe the other signal(s) the

bank produces).3

Our paper also relates to the literature on bank regulation in which the regulator

uses information that banks provide to set capital requirements. Prescott (2004)

studies a framework in which the bank has private information about its own risk,

and the regulator sets capital requirements based on the risk that the bank reports.4

The source of ineffi ciency is that the bank can misrepresent its true risk. The

regulator can mitigate this problem by monitoring the bank (e.g., auditing and

imposing penalties).5 In our framework, the bank does not know its own risk

but can generate information. In contrast to earlier literature on the benefits of

monitoring, our model shows that too much monitoring could have perverse effects.

Monitoring diminishes the banks’incentive to produce valuable information.

There is also a growing empirical literature on the effect of regulation that relies

on banks’internal models. Plosser and Santos (2014) find systematic differences in

risk estimates that large U.S. banks provided for the same (syndicated) loan. In

particular, banks with less regulatory capital reported lower probability of default,

and their risk estimates had less explanatory power with regard to the loan prices.

Behn, Haselmann, and Vig (2014) compare risk estimates that German banks pro-

vided on loan portfolios that shifted to the internal rating-based approach and loan

portfolios that were waiting for approval for the new approach and for which capital

was calculated based on the traditional risk-weights method. They show that, for

3Aghion and Bolton (1992) also analyze allocation of control rights based on a signal realization,
but in their setting, the signal is exogenous.

4See also Marshall and Prescott (2006).
5Blum (2008) shows that, when the regulator has limited ability to audit or impose penalties,

minimum leverage ratios in addition to capital requirements can help. However, Colliard (forth-
coming) shows that imposing minimum leverage ratios could lead to unintended consequences with
respect to equilibrium loan supply. In his setting, the bank has private information regarding the
distribution of true risks.
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the first group of loans, banks provided lower probability of default estimates. Yet,

the interest rates they charged on these loans and actual default rates were higher.

The findings of this literature are consistent with the idea that banks don’t reveal

all the information they have to the regulator.6

In a different context, Bond and Goldstein (2015) study a situation in which a

government relies on a firm’s stock price to decide how to intervene in the firm. They

show that it might be optimal for the government to commit to limit its reliance

on the firm’s stock price because relying on the price could harm the aggregation

of information from market participants into the price. Instead, in our setting, the

regulator relies on information that is produced by the regulated party itself.

Finally, the idea that a principal can benefit by committing not to monitor too

much also appears in Crémer (1995). In his model, a principal has a monitoring

technology, which allows him to obtain the reason behind a low output. The prin-

cipal may benefit from ineffi cient monitoring because it allows him to precommit to

fire a high-quality agent who produced low output. Cohn, Rajan, and Strobl (2016)

show that, when credit rating agencies screen issuers more heavily, issuers could

have stronger incentive to manipulate the information they provide to the credit

rating agency. In the context of regulation of disclosure in the product market,

Polinsky and Shavell (2012) show that forcing firms to disclose information about

product risk may lead firms to gather less information.7 In the context of corporate

governance, Burkart, Gromb, and Panunzi (1997) show that excessive monitoring

can reduce managerial effort to learn about new investments and that dispersed

ownership could act as a commitment device not to exercise excessive control.

3 An example

There is a bank and a regulator. The bank has a debt liability with a face value

of $1. The bank also has $1 in cash, other existing assets, and a new investment

opportunity (project). The project requires an investment of $1. It can either

6Other related work includes Begley, Purnanandam, and Zheng (forthcoming), Firestone and
Rezende (2016), Mariathasan and Merrouche (2014), and Rajan, Seru, and Vig (2015).

7See also Shavell (1994).

7



succeed and yield $2 or fail and yield nothing. The project’s success probability and

the value of the bank’s existing assets (other than cash) depend on the unobservable

state of nature, as described in Table 1. Table 1 also shows the project’s NPV in

each state, namely, the project’s expected payoff minus the initial investment. All

states have the same probability.

Table 1
State s1 s2 s3 s4

Project’s success probability 0.1 0.4 0.4 0.8
Value of existing assets 0.3 0.3 0.8 1
Project’s NPV −0.8 −0.2 −0.2 0.6

There is a conflict of interest between the bank and the regulator. The regulator

wants to maximize total surplus, which is the sum of payoffs to debt holders and

equity holders. Hence, the regulator wants to invest only if the project has positive

NPV. The bank has limited liability and acts to maximize the expected payoff to

its equity holders. Hence, as we illustrate below, the bank wants to invest not only

when the project has positive NPV but also in some states in which the project

has negative NPV.

To see that, consider state s2. If the bank does not invest, debt holders are

fully paid. However, in the case of investment, if the project fails, which occurs

with probability 0.6, the bank cannot pay off its debt. In this case, the bank’s debt

holders obtain the bank’s existing assets, which are worth only 0.3. The expected

loss for debt holders due to investment in state s2 is then 0.6 × (1 − 0.3) = 0.42.

From the perspective of the bank’s equity holders, this is beneficial because this is

a transfer of wealth from debt holders. Since the sum of this gain (0.42) and the

project’s NPV in state s2 (−0.2) is positive, the bank wants to invest in state s2.

Table 2 repeats these calculations for the other three states. It follows that the

bank wants to invest in states s2 and s4 but not in states s1 and s3.

Table 2
State s1 s2 s3 s4

Gain from default 0.63 0.42 0.12 0
Project’s NPV + Gain from default −0.17 0.22 −0.08 0.6
Bank’s ideal investment rule Don’t invest Invest Don’t invest Invest
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If the regulator knew the state, he would allow the bank to invest only in state

s4. However, the regulator is not an expert in producing information. The only

way for the regulator to learn more about the state is to rely on information that

the bank produces.

The bank can generate two types of signals. The first signal is very informative.

It fully reveals the state. The second signal is less informative. It tells only whether

the success probability is 0.1 or above 0.1. In other words, the second signal tells

whether the true state is in the set {s1} or in the set {s2, s3, s4}. The regulator
cannot dictate to the bank which signal (or signals) to generate, but he can force

the bank to disclose the signal realization. Putting it differently, the regulator

has a monitoring technology that allows him to find out the signals that the bank

generates. Note that if the bank does not generate any signal, the regulator would

ban investment because the project’s expected NPV, averaged across all states, is

negative.

Suppose first that the regulator monitors the bank. Which signal will the bank

generate? If the bank generates the very informative signal, the regulator would

allow it to invest only in state s4. The expected gain for the bank’s equity holders

is then 0.25 × 0.6. If the bank generates the less informative signal, the regulator

will ban investment when he learns that the state is s1 but will allow investment

when the state is in {s2, s3, s4}. The last part follows because conditional on being
in {s2, s3, s4}, the project has positive NPV. The bank will then invest in the three
states s2, s3, s4, yielding an expected gain of 0.25× (0.22− 0.08 + 0.6) to its equity

holders. Hence, the bank will generate the less informative signal, as it leads to a

higher gain to its equity holders.

Now suppose the bank can generate both signals and reveal to the regulator

only the less informative one. In other words, the regulator does not monitor the

bank. As before, the regulator will allow investment only in states {s2, s3, s4}.
However, now the bank can use the information from the more informative signal

to decide whether to invest. So, the bank will invest only in states s2 and s4, in

which the gain to its equity holders is positive. From the regulator’s point of view

(and also from the bank’s), this outcome is preferred to the outcome when the bank
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is monitored because the bank does not invest in state s3. Hence, the regulator will

not monitor the bank.

The result above changes when the bank has less debt. Suppose the face value

of debt is only $0.8. Now the bank’s equity holders gain from defaulting on the

bank’s debt only in states s1 and s2, in which the value of existing assets is less than

the face value of debt. As we show in Table 3, the bank will still want to invest only

in states s2 and s4. However, the bank’s incentives to produce information change.

Now the bank will produce the more informative signal even if it is being monitored.

To see why, note that if the bank generates the more informative signal, it obtains

0.25× 0.6, as in the case of debt with face value of 1. If the bank generates the less

informative signal, it obtains only 0.25 × (0.1 − 0.2 + 0.6). Hence, the bank will

generate the more informative signal, although it knows that it will be forced to

reveal the information. From the regulator’s perspective, this is the best possible

outcome. Hence, the regulator will monitor the bank.

Table 3
State s1 s2 s3 s4

Gain from default 0.45 0.3 0 0
Project’s NPV + Gain from default −0.35 0.1 −0.2 0.6
Bank’s ideal investment rule Don’t invest Invest Don’t invest Invest

We can interpret the signals in this example as internal risk models that the

bank generates for regulatory purpose. The example illustrates three points. First,

the regulator could benefit from relying on internal risk models that the bank

generates. Second, the regulator could gain by allowing the bank to produce two

sets of models. The first model is used to persuade the regulator to allow the bank

to invest, while the second model – which is not shared with the regulator – is

used by the bank to decide whether to invest when the regulator allows it to do so.

Third, whether the regulator could gain by allowing the bank to produce two sets

of models depends on the bank’s private gain from producing information, which,

in turn, depends on bank characteristics, such as how much debt the bank has.
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4 The model

The formal model generalizes the example in Section 3. In particular, we assume

a continuous state space and allow the bank to choose from a larger set of signals.

We refer to these signals as models. In addition, we allow for partial monitoring,

which induces a probability q ∈ [0, 1] that the regulator will find out all the models

that the bank has generated.

4.1 Economic environment

As in the example, the bank’s assets consist of cash, which is normalized to 1; a risky

asset; and a new investment opportunity (project). The value of the risky asset

depends on the unobservable state ω, according to some continuous function v(ω).

The state ω is drawn from the set Ω = [0, 1], according to a continuous cumulative

distribution function F (everything is common knowledge). The value of the new

project also depends on the state. The new project requires an investment of 1. It

generates x > 1 with probability ω and 0 with probability 1 − ω.8 The bank also
has a debt liability with face value D ≤ 1. The bank has limited liability.

The bank acts to maximize the expected payoff to its equity holders. The

regulator maximizes total surplus, which is the sum of payoffs to debt holders and

equity holders.

4.2 Information production

The bank can generate information about ω by creating models. A model is an

information partition of Ω, with the added requirement that each set in the infor-

mation partition is convex (i.e., a singleton or an interval). Formally:

Definition 1 A model is defined by a set of indexes I ⊂ R and a collection of sets

P = {Pi}i∈I, such that the following hold:

1. ∪i∈IPi = Ω.

8The nature of the results remains if the project’s probability of success depends on the state
according to some arbitrary function that is (weakly) increasing in the state.
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2. For every i 6= j, Pi ∩ Pj = ∅.

3. For every Pi ∈ P and λ ∈ (0, 1), if ω1, ω2 ∈ Pi, then λω1 + (1− λ)ω2 ∈ Pi.

We let P (ω) stand for the set in P to which ω belongs. So, when the realized

state is ω ∈ Ω, the model P tells that the event P (ω) has occurred. For example,

a model that consists of only singletons fully reveals ω. A model that consists of

two intervals tells whether ω is above or below some threshold. We can think of a

model as a collection of experiments, where each experiment tells whether the state

is above or below some threshold. Note that {P (ω)}ω∈Ω fully defines a model.9

The bank can create more than one model. With probability q, the regulator

observes all the models that the bank creates. With probability 1−q, the regulator
observes only the models that the bank chooses to reveal. The probability q is

endogenous and determined by the regulator before the bank creates models.

We refer to q as the probability of monitoring and assume that the regulator

can precommit to acting according to it. In practice, monitoring could take various

forms. One example is on-site audits. In this case, a higher q could capture the

idea that the regulator devotes more resources into monitoring the bank (e.g., by

having more staff on site); commitment to act according to q arises naturally in

this case. As we explain later (Section 7.3), a higher q could also capture the

outcome of penalties that the regulator imposes on the bank if the project fails and

the regulator finds out that the bank knew that the project had negative NPV.

Here, commitment could arise from the fact that the regulator must follow some

pre-specified rules that determine what the regulator can or cannot do.

For simplicity, we assume that all choices of q entail the same cost.10 The

regulator can allow or ban investment based on the information it has about ω.

However, the regulator cannot precommit to investment rules that are suboptimal

ex post.

9In practice, the models that the bank produces could be based on hard information (e.g.,
statistical analysis of past returns to project future returns) and/or soft information (e.g., loan
offi cer opinions).
10This assumption helps us focus on the main tradeoff in our paper. It is easy to relax this

assumption, but relaxing this assumption does not provide any interesting insights.
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Without loss of generality, we can assume that the bank generates only two

models, PB and PR, such that model PB contains all the information that the

bank produces and model PR contains only the information that the bank chooses

to reveal to the regulator. In particular, if the bank creates m models P1, ...,Pm

and reveals to the regulator only the first l ≤ m models, we can define for every

ω ∈ Ω, PB(ω) = ∩mj=1P
j(ω) and PR(ω) = ∩lj=1P

j(ω). We refer to models PB and

PR as the bank model and regulator model, respectively. Note that PB is at least

as informative as PR.

4.3 Sequence of events

The sequence of events is as follows:

1. The regulator chooses q ∈ [0, 1] and publicly announces it.

2. The bank chooses models PB and PR.

3. Nature draws the state ω. The bank observes PB(ω). As for the regulator,

with probability q, he observes PB(ω), and with probability 1−q, he observes
PR(ω).

4. The regulator allows or bans investment.

5. If investment is allowed, the bank chooses whether to invest.

6. The project either succeeds or fails. Debt holders and equity holders get paid.

We focus on perfect Bayesian equilibria of the game above. Assume that if

the bank is indifferent between investing and not investing, the bank invests. If

the regulator is indifferent between allowing and banning investment, the regulator

allows investment.

5 Unregulated bank (benchmark)

We start with the benchmark case in which the bank is unregulated; that is, the

regulator cannot ban investment. In this case, we can assume, without loss of
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generality, that the bank generates only one model, which fully reveals the state.

That is, for every ω ∈ Ω, PR(ω) = PB(ω) = ω.

We derive the bank’s ideal investment rule as follows. If the bank does not

invest, debt is riskless, and the bank’s equity holders obtain

v(ω) + 1−D. (1)

If the bank invests, debt holders obtainD when the project succeeds andmin{v(ω), D}
when the project fails. So, if the bank invests, the expected payoff to the bank’s

equity holders is

ω[x+ v(ω)−D] + (1− ω) max{v(ω)−D, 0}. (2)

Denote the project’s NPV in state ω by

N(ω) ≡ ωx− 1. (3)

The expected gain to the bank’s equity holders from investing in state ω [i.e., (2)

minus (1)] is then

G(ω) ≡ N(ω) + (1− ω) max{D − v(ω), 0}. (4)

The second term in (4) is the expected gain to the bank’s equity holders from

defaulting on the bank’s debt when the project fails. This gain arises when the

value of the risky asset is less than the face value of debt. In this case, equity

holders benefit at the expense of debt holders, who get paid less than the promised

amount. The bank invests if and only if G(ω) ≥ 0.

Lemma 1 G(ω) ≥ 0 if and only if either (i) ω ≥ 1
x
; or (ii) ω < 1

x
and v(ω) ≤

D + N(ω)
1−ω .

Lemma 1 says that an unregulated bank invests if either (i) the project has

positive NPV; or (ii) the project has negative NPV, and the value of the bank’s

existing asset, v(ω), is less than D + N(ω)
1−ω .

Fig. 1 illustrates the function D + N(ω)
1−ω , which is convex and increasing in

ω, and the function v(ω). The bank’s ideal investment rule depends on how the
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two functions intersect. In general, it is composed of intervals in which the banks

invests and intervals in which the bank does not invest. To simplify the exposition,

we assume that the functions D + N(ω)
1−ω and v(ω) intersect at a finite number of

points and that there exists a finite set of numbers b1 > a1 > ... > bl > al, such

that v(ω) ≤ D + N(ω)
1−ω if and only if ω ∈ ∪

l
i=1[ai, bi]. Then, G(ω) ≥ 0 if and only if

ω ∈ ∪li=1[ai, bi].

6 Regulated bank

Consider now a regulated bank. If v(ω) > D + N(ω)
1−ω for every ω < 1

x
, it follows

from Lemma 1 that the bank wants to invest if and only if the project has positive

NPV. In this case, there is no conflict of interest between the bank and regulator,

and so, regulation is unnecessary.

The rest of this paper focuses on the case in which v(ω) ≤ D + N(ω)
1−ω for some

ω < 1
x
. In this case, the bank and the regulator do not agree on the investment rule.

Both want to invest when the project has a positive NPV (ω ≥ 1
x
), but the bank

wants to invest also in some states in which the project has a negative NPV [Part

(ii) in Lemma 1]. We explore optimal regulation in this case. We first characterize

equilibrium outcomes, taking q as given. Then, we solve for an optimal q (i.e., a q

that the regulator chooses in an equilibrium).

Remark 1 The analysis below does not depend on the specific microfoundations

assumed above. It applies to any continuous bank’s and regulator’s payoff functions

G(ω) and N(ω), such that N(ω) is increasing in ω and G(ω) ≥ N(ω).

6.1 Equilibrium outcomes for a given q

We solve the game backward. Suppose the bank chooses models PB and PR. If the

regulator allows investment, the bank invests if and only if the expected gain to its

equity holders is positive. Anticipating the bank’s behavior, the regulator allows

investment if and only if he expects the project to have positive NPV, conditional

on the bank investing.

The next lemma simplifies the analysis.
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Lemma 2 For any equilibrium outcome, there exist ωB, ωR ∈ Ω, such that ωR ≤
ωB and:

(i) When the regulator observes model PB, investment takes place if ω > ωB

but not if ω < ωB.

(ii) When the regulator observes model PR, (a) investment takes place if ω >

ωB; (b) investment does not take place if ω < ωR; and (c) if ω ∈ (ωR, ωB), invest-

ment takes place when G(ω) > 0 but not when G(ω) < 0.

The first part in Lemma 2 follows from two observations. First, if the regulator

allows investment in state ω (and the bank invests), the regulator allows investment

also in higher states ω′ > ω. This follows because N(ω) is increasing in ω and

each set in the model partition is convex. Second, the bank invests whenever

the regulator allows it to invest. This follows because in the first part, the bank

and regulator share the same information (they both observe PB) and because

G(ω) ≥ N(ω).

The second part also uses the first observation above. However, now the reg-

ulator has less information than the bank. So, whenever the regulator allows in-

vestment, the bank decides whether to invest based on information from the more

informative model PB, which is not shared with the regulator. In equilibrium, the

bank chooses PB, so that, if ω ∈ (ωR, ωB), the bank invests according to its ideal

investment rule: namely, if G(ω) > 0 but not if G(ω) < 0.

In fact, we can assume, without loss of generality, that PB fully reveals the

state when ω < ωB. To see that, note that if the regulator observes PB, revealing

the exact state below ωB does not hurt the bank because the regulator does not

allow investment anyway. If, instead, the regulator does not observe PB, learning

the exact state below ωB helps the bank because it can invest according to its ideal

investment rule.

Hence, we can assume, without loss of generality, that model PB takes the

simple form:

PB(ω) =

{
ω if ω < ωB
[ωB, 1] otherwise.

(5)

That is, model PB fully reveals the state below ωB but does not generate any
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information above ωB. Intuitively, pooling the states above ωB together makes it

easier for the bank to persuade the regulator to allow investment in some projects

that have negative NPV.

Similarly, we can assume, without loss of generality, that model PR takes the

simple form:

PR(ω) =

{
ω if ω < ωR
[ωR, 1] otherwise.

(6)

Formally:

Lemma 3 For any equilibrium outcome, there exists an equilibrium that achieves

that outcome and in which the bank chooses models PB and PR that take simple

form as in Eq. (5) and (6).

The problem of finding models PB and PR reduces to finding the thresholds ωB

and ωR. The two thresholds must satisfy the following:

E[N(ω̃)|ω̃ ≥ ωB] ≥ 0 (7)

E[N(ω̃)| ω̃ ≥ ωB or ω̃ ∈ {ω ∈ [ωR, ωB) : G(ω̃) ≥ 0} ≥ 0. (8)

Eq. (7) ensures that when the regulator observes PB, he allows the bank to

invest when ω ≥ ωB. Eq. (8) ensures that when the regulator observes only PR, he

allows the bank to invest when ω ≥ ωR. Note that in the second case, the regulator

understands that the bank will use the second model PB to decide whether to

invest.

The bank’s expected payoff is

V (ωB, ωR) ≡ (1− q)
∫ ωB

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ωB

G(ω)dF (ω). (9)

In particular, the bank always invests when ω ≥ ωB. But if ω ∈ (ωR, ωB), the bank

invests only if the regulator does not observe PB, which happens with probability

1− q, and G(ω) ≥ 0.

Let ω̄R(ωB) be the lowest ωR ∈ Ω that satisfies Eq. (8). Since the term inside

the first integral in (9) is positive, we can assume, without loss of generality, that

ωR = ω̄R(ωB). (10)
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That is, the bank sets ωR as low as possible subject to Eq. (8).11

As for ωB, we proceed in two steps. First, we derive a necessary and suffi cient

condition for ωB to be an equilibrium threshold. Then, we derive a closed-form

solution.

Denote the lowest ωB ∈ Ω that satisfies Eq. (7) by ω̄B. Clearly, we must have

ωB ≥ ω̄B. (11)

In addition, for every ω′B ≥ ω̄B, the following equilibrium condition must hold:

V (ωB, ω̄R(ωB)) ≥ V (ω′B, ω̄R(ωB)). (12)

Eq. (12) rules out a deviation in which the bank chooses model PB with threshold

ω′B instead of ωB, while keeping model P
R unchanged with threshold ω̄R(ωB).

It turns out that ruling out the deviation above is not only a necessary equilib-

rium condition but is also a suffi cient condition. Formally,

Lemma 4 ωB ∈ Ω is an equilibrium threshold if and only if ωB ≥ ω̄B and Eq.

(12) holds for every ω′B ∈ Ω, such that ω′B ≥ ω̄B.

For use below, recall that G(ω) ≥ 0 if and only if ω ∈ ∪li=1[ai, bi]. Let K =

{a1, a2, ..., al}, and let

Ω0 =

{
{ω ∈ K : ω ≥ ω̄B} ∪ {ω̄B}, if ω̄B ∈ (ai, bi) for some i ∈ {1, .., l}
{ω ∈ K : ω ≥ ω̄B}, otherwise.

(13)

That is, K includes the left corners of the intervals in which the bank wants to

invest. Ω0 includes the points in K that are above ω̄B, and if ω̄B belongs to an

interval in which the bank wants to invest, Ω0 also includes ω̄B. Lemma 5 below

shows that, when looking for the equilibrium threshold ωB, we can restrict attention

to the set Ω0.

Before we present Lemma 5, we illustrate the sets K and Ω0 in special cases.

11Any ωR ∈ [ω̄R(ωB), ω̂R(ωB)] will give the same outcome, where ω̂R(ωB) denotes the lowest
ωR ∈ Ω that satisfies both Eq. (8) andG(ωR) ≥ 0. Any other ωR will give a worse outcome for
the bank.
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Example 1 Suppose D = 0.9, x = 1.2, and ω̄B = 0.5.

1. If v(ω) = 0.5, it follows from Lemma 1 and Fig. 2 that the bank wants to

invest if and only if ω ≥ 0.75. Hence, K = {0.75}. Hence, Ω0 = {0.75}.
2. If v(ω) = max{0, 4.4ω − 2.64}, it follows from Lemma 1 and Fig. 3 that

the bank wants to invest if and only if ω ∈ [0.33, 0.67] ∪ [0.83, 1]. Hence, K =

{0.33, 0.83}. Since ω̄B ∈ (0.33, 0.67), it follows that Ω0 = {0.5, 0.83}.
3. If v(ω) is as in Fig. 1, then K = {a1, a2, a3}, where a1, a2, and a3 are the left

corners of the red intervals. Since a1 < 0.5 < a2 < a3 and ω̄B does not lie inside an

interval in which the bank wants to invest (it lies at the corner), Ω0 = {a2, a3}.

Lemma 5 ωB ∈ Ω is an equilibrium threshold if and only if ωB ∈ Ω0 and Eq. (12)

holds for every ω′B ∈ Ω0.

The idea behind Lemma 5 is simple. As noted earlier, ωB ≥ ω̄B. Moreover,

unless ωB = ω̄B, the equilibrium threshold ωB cannot lie inside an interval in which

the bank wants to invest because the bank could increase its payoffby reducing ωB.

The equilibrium ωB can also not lie inside an interval in which the bank does not

want to invest because the bank could increase its payoff by increasing ωB. Hence,

the equilibrium ωB must be in the set Ω0. In the proof, we show that we can also

restrict attention to Ω0 when we consider deviations.

Using Lemma 5, we can derive a closed-form solution for ωB as a function of q.

An easy case is when Ω0 contains only one threshold ω1 (e.g., part 1 in Example

1). In this case, ωB = ω1, independently of q.

The more interesting case is when Ω0 contains more than one threshold.12 To

obtain intuition, we start with the case in which Ω0 contains only two thresholds,

ω1 and ω2, where ω1 > ω2 (e.g., parts 2 and 3 in Example 1). From Lemma 5, ω1

is an equilibrium threshold if and only if

V (ω1, ω̄R(ω1)) ≥ V (ω2, ω̄R(ω1)). (14)

Similarly, ω2 is an equilibrium threshold if and only if

V (ω2, ω̄R(ω2)) ≥ V (ω1, ω̄R(ω2)). (15)

12A necessary condition for this is that G(ω) is nonmonotone.
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Let

ρ(ω1, ω2) ≡
|
∫ ω1
ω2

1{ω:G(ω)<0}G(ω)dF (ω)|∫ ω1
ω2

1{ω:G(ω)>0}G(ω)dF (ω)
. (16)

Eq. (14) reduces to q ≤ ρ(ω1, ω2), and Eq. (15) reduces to q ≥ ρ(ω1, ω2). (The

appendix contains more details.) Hence, if q < ρ(ω1, ω2), the unique equilibrium

threshold is ωB = ω1. If q > ρ(ω1, ω2), the unique equilibrium threshold is ωB = ω2.

If q = ρ(ω1, ω2), both ω1 and ω2 are equilibrium thresholds.

In what follows, whenever there is more than one equilibrium threshold ωB,

we focus on the equilibrium that is most preferred by the regulator: namely, the

equilibrium with the highest threshold. This equilibrium is also weakly preferred

by the bank.13 We let ωB(q) stand for the equilibrium threshold ωB for a given q.

We obtain the following.

Proposition 1 If Ω0 contains only two thresholds ω1 > ω2, then:

1. If ρ(ω1, ω2) ≥ 1, then ωB(q) = ω1 for every q ∈ [0, 1].

2. If ρ(ω1, ω2) < 1, then

ωB(q) =

{
ω1 if q ≤ ρ(ω1, ω2)
ω2 if q > ρ(ω1, ω2)

. (17)

Choosing a lower ωB corresponds to producing less information. Hence, Propo-

sition 1 captures the intuition that when the regulator monitors more, the bank

produces less information.14

Intuitively, the bank faces a tradeoff. Producing more information is beneficial

for the bank because the bank can make better investment decisions for its equity

holders. However, producing more information can also be costly for the bank

because if the regulator finds out the information, he can use it to ban investment

when the bank wants to invest but the regulator does not want to invest. This

tradeoff is captured by the ratio ρ in Eq. (16). Specifically, the numerator reflects

the gain from choosing the higher threshold ωB = ω1, namely the bank avoids

investment when ω ∈ (ω2, ω1) and G(ω) < 0. The denominator (times q) captures

13In particular, when ωB is higher, the bank can satisfy Eq. (8) by setting a weakly lower ωR.
14Consistent with Blackwell (1951), less information here means less information that is relevant

to investment decisions.
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the cost; namely if the regulator observes model PB, he bans investment when

ω ∈ (ω2, ω1) and G(ω) > 0. Since the expected cost is increasing in q, the bank

prefers the higher threshold only if q is suffi ciently low.

We refer to the ratio ρ in Eq. (16) as the bank’s private gain (relative to cost)

from producing information.

Example 2 Consider Part 2 in Example 1. So, ω1 = 0.83 and ω2 = 0.5. The

bank’s private gain from producing information is

ρ(ω1, ω2) =
|
∫ 0.83

0.67
G(ω)dF (ω)|∫ 0.67

0.5
G(ω)dF (ω)

. (18)

Fig. 4 illustrates ρ(ω1, ω2) graphically as the ratio of two “areas”under the function

G(ω).

The next theorem extends Proposition 1 to the general case in which Ω0 contains

n thresholds ω1 > ω2 > ... > ωn. The theorem shows that the equilibrium threshold

ωB can be described by a step function, which is decreasing in q.15

Theorem 1 There exist δ1, δ2, ..., δm ∈ Ω0, such that

ωB(q) =


δ1 if q ∈ [0, q̄1]
δ2 if q ∈ (q̄1, q̄2]
...
δm if q ∈ (q̄m−1, 1],

(19)

where q̄i = ρ(δi, δi+1) for i ∈ {1, 2, ...,m− 1}. Moreover, δ1 = ω1 > δ2 > ... > δm.

The proof (in the Appendix) fully defines the number of steps m and the values

for δ1, δ2, ..., δm. Note that each q̄i represents the bank’s private gain from producing

information by moving from threshold δi+1 to the next (higher) threshold δi.

As an aside, observe that, while ωB is (weakly) decreasing in q, ωR is (weakly)

increasing. In other words, when the regulator monitors more heavily, the bank

reveals more information to the regulator but produces less information overall.

This follows because ωR = ω̄R(ωB), which is weakly decreasing in ωB. Intuitively,

15At the corners of the steps there could be more than one equilibrium threshold ωB , and as
noted earlier, we focus on the equilibrium with the highest threshold.
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when the regulator monitors the bank more heavily, the bank produces less infor-

mation for itself, and so, the bank is more likely to invest in negative NPV projects

even though the bank’s equity holders do not gain from such investment. Since

the regulator is aware of this, it becomes harder to persuade the regulator to allow

investment, and so, the model that the bank reveals to the regulator becomes more

informative.

6.2 Optimal q

The regulator’s payoff from choosing a probability of monitoring q is

u(q) ≡ (1− q)
∫ ωB(q)

ω̄R(ωB(q))

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ωB(q)

N(ω)dF (ω). (20)

The regulator’s payoff is similar to the bank’s [Eq. (9)], but instead of G(ω), we

have N(ω). In equilibrium, the regulator chooses q ∈ [0, 1] to maximize (20).

The next lemma shows that the regulator’s problem has a solution that lies

at the (right) corners of the intervals that define the step function in Theorem 1.

That is, there is a solution q ∈ {q̄1, ..., q̄m−1, 1}. This follows because ωB(q) is left-

continuous and the first integral in (20) is at most zero.16 In general, there are no

solutions that lie inside an interval (q̄i−1, q̄i).

Lemma 6 If K contains only one state or the highest state in K is at most ω̄B

(i.e., a1 ≤ ω̄B), then every q ∈ [0, 1] is optimal. Otherwise, any solution q to the

regulator’s problem must be in the set {q̄1, ..., q̄m−1, 1}.

A special case is when Ω0 = {ω1}. In this case, the step function in Theorem
1 has only one step: ωB(q) = ω1 for every q ∈ [0, 1]. Hence, q = 1 is optimal.

From Lemma 6, q = 1 is uniquely optimal if |K| ≥ 2 and a1 > ω̄B; otherwise,

every q ∈ [0, 1] is optimal. Examples when every q is optimal are the first case in

Example 1 or the second case in Example 1 but with ω̄B > 0.83.

16In particular, since ωB(q) ≤ 1
x , the project has negative NPV when ω < ωB(q).
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The rest of this section focuses on the more interesting case in which Ω0 contains

more than one state. In this case, |K| ≥ 2 and a1 > ω̄B. So, by Lemma 6, any

solution to the regulator’s problem satisfies q ∈ {q̄1, ..., q̄m−1, 1}.
We illustrate our main result for the case Ω0 = {ω1, ω2}, where ω1 > ω2. If

ρ(ω1, ω2) ≥ 1, we know from Proposition 1 that ωB(q) = ω1 for every q ∈ [0, 1].

Hence, q = 1 is uniquely optimal. If, instead, ρ(ω1, ω2) < 1, then ωB(q) is given

by the step function in (17), and any solution to the regulator’s problem satisfies

q ∈ {ρ(ω1, ω2), 1}. Consequently, if u(1) > u(ρ(ω1, ω2)), it is uniquely optimal to

set q = 1, and if u(1) < u(ρ(ω1, ω2)), it is uniquely optimal to set q = ρ(ω1, ω2).

In the first case, the bank responds by choosing the lower level of information

production (ωB = ω2). In the second case, the bank responds by choosing the

higher level of information production (ωB = ω1).

Let

q̂ ≡
|
∫ ω2
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ ω1
ω2

1{ω:G(ω)<0}N(ω)dF (ω)|
|
∫ ω2
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ ω1
ω2

1{ω:G(ω)≥0}N(ω)dF (ω)|
. (21)

Observe that q̂ < 1. The condition u(1) < u(ρ(ω1, ω2)) reduces to ρ(ω1, ω2) > q̂.

Hence, we have established the following:

Proposition 2 If Ω0 contains only two thresholds ω1 > ω2, then

1. If ρ(ω1, ω2) > q̂, the regulator sets q = min{ρ(ω1, ω2), 1}, and the bank
responds by choosing ωB = ω1.

2. If ρ(ω1, ω2) < q̂, the regulator sets q = 1, and the bank responds by choosing

ωB = ω2.

3. If ρ(ω1, ω2) = q̂, both q = ρ(ω1, ω2) and q = 1 are optimal.

Part 1 in Proposition 2 captures the intuition that, if the bank’s private gain

from producing information is relatively high, it is optimal to induce the bank to

produce information. If the private gain is very high, it is possible to do so even

if q = 1, and so q = 1 is optimal. Otherwise, a lower q < 1 is necessary. Part 2

captures the intuition that, if the bank’s private gain from producing information

is low, it is possible to induce the bank to produce information only if the regulator

precommits to a very low level of monitoring. But then, the regulator cannot make
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much use of the information that the bank produces and is better off setting q = 1,

even though this induces the bank to produce less information overall.

Example 3 Consider Example 2. Suppose ω̄R(0.83) = 0.4.17 Then

q̂ ≡
|
∫ 0.5

0.4
N(ω)dF (ω)| − |

∫ 0.83

0.67
N(ω)dF (ω)|

|
∫ 0.5

0.4
N(ω)dF (ω)|+ |

∫ 0.67

0.5
N(ω)dF (ω)|

. (22)

If q̂ ≤ 0, it is optimal to set q = min{ρ(ω1, ω2), 1}. In this case, the optimal q falls
as ρ(ω1, ω2) falls. If instead q̂ ∈ (0, 1), we obtain a nonmonotone relationship, as

follows. If ρ(ω1, ω2) < q̂, it is optimal to set q = 1; if ρ(ω1, ω2) ∈ (q̂, 1), it is optimal

to set q = ρ(ω1, ω2); and if ρ(ω1, ω2) > 1, it is again optimal to set q = 1.

The next theorem extends the previous intuition to the general case. The the-

orem shows that it is optimal to set a high level of monitoring q = 1 when the

bank’s private gain from producing more information is either suffi ciently high or

suffi ciently low. Formally, let

q̂i ≡
|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm

1{ω:G(ω)<0}N(ω)dF (ω)|

|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ δi
δm

1{ω:G(ω)≥0}N(ω)dF (ω)|
< 1. (23)

Then:

Theorem 2 If |Ω0| ≥ 2, then:

1. q = 1 is optimal if and only if eitherminω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1 or ρ(δi, δi+1) ≤
q̂i for every i ∈ {1, 2, ...,m− 1}.
2. q = 1 is uniquely optimal if and only if either minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1 or

ρ(δi, δi+1) < q̂i for every i ∈ {1, 2, ...,m− 1}.
(m, δ1, δ2, ..., δm are from Theorem 1.)

The condition minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1 in Theorem 2 says that the bank gains

a lot from producing information by moving from threshold ω < ω1 to the (highest)

threshold ω1. In the proof, we show that when this condition holds, the step

function in Theorem 1 has only one step, and so, q = 1 is uniquely optimal.

17Note that we must have ω̄R(0.83) < ω̄B = 0.5.
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The second condition, ρ(δi, δi+1) ≤ q̂i for every i ∈ {1, 2, ...,m − 1}, applies
to the case in which the step function in Theorem 1 has m > 1 steps. In this

case, any solution to the regulator’s problem satisfies q ∈ {q̄1, ..., q̄m−1, 1}, and so,
q = 1 is optimal if and only if u(1) ≥ u(q̄i) for every i ∈ {1, 2, ...,m − 1}. In the
proof, we show that the condition u(1) ≥ u(q̄i) reduces to ρ(δi, δi+1) ≤ q̂i. The last

condition says that the bank’s private gain from producing information by moving

from threshold δi+1 to the next (higher) threshold δi is suffi ciently low.

7 Comparative statics

We use the insights above to derive comparative statics on how the optimal q and

the amount of information that the bank produces change with respect to model

parameters. We also discuss the case in which information production is costly and

the case in which the regulator can impose penalties. We illustrate for the case in

which changing the bank’s gain from producing information has a nonmonotone

effect on the optimal q.

7.1 Cost of producing information

Suppose the bank incurs a cost z > 0 if it produces information on states above

ω2. That is, the bank incurs the cost if it chooses a model that includes a proper

subset of (ω2, 1]. As before, we can focus, without loss of generality, on models

that take the simple form as in Eq. (5) and (6). So, the bank’s expected payoff is

V (ωB, ωR)− z1{ωB>ω2}. If ωB > ω2, the cost z also reduces the regulator’s payoff.

Proposition 1 continues to hold, but we need to replace the gain from producing

information ρ(ω1, ω2) with the following:

ζ(z) =
|
∫ ω1
ω2

1{ω:G(ω)<0}G(ω)dF (ω)| − z∫ ω1
ω2

1{ω:G(ω)≥0}G(ω)dF (ω).
(24)

Intuitively, the cost z reduces the bank’s gain from producing information, and this

is reflected in the numerator of Eq. (24).18

18Given our assumption on the cost of information production, the set Ω0 from which the
bank chooses ωB does not change. However, a different specification for the cost function (e.g.,
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Using similar logic as in Proposition 2, we obtain the following:

Proposition 3 There exists z̄ ∈ R, such that:
1. If z < z̄, the regulator sets q = min{1, ζ(z)} and the bank responds by

choosing ωB = ω1. In this range, q is decreasing in z.

2. If z > z̄, the regulator sets q = 1, and the bank responds by choosing ωB = ω2.

3. If z = z̄, the regulator is indifferent between setting q = 1 and setting

q = ζ(z).

Part 1 captures the intuition that, if the cost of producing information is suf-

ficiently low, the regulator can induce the bank to produce information while still

maintaining a relatively high level of monitoring. In this range, as the cost of

producing information increases, the regulator monitors less because it becomes

harder to induce the bank to produce information. Part 2 captures the intuition

that if the cost of producing information is very high, it becomes too costly, or

even impossible, for the regulator to induce the bank to produce information. In

this case, it is optimal to set a high level of monitoring, even though the bank will

produce less information.

7.2 Changes in model parameters

We explore the effect of changes in project cash flow x, the face value of debt D,

and the value of existing assets v(ω). As we show below, these model parameters

affect the bank’s gain from investing G(ω), which, in turn, affect the bank’s gain

from producing information ρ(ω1, ω2) and the optimal monitoring intensity q.

Specifically, from Eq. (4), an increase in x, an increase in D, or a reduction

in v(ω) increase G(ω). And from Eq. (16), an increase in G(ω) leads to a lower

ρ(ω1, ω2), noting that the numerator decreases and the denominator increases.

Hence, for a given q > 0, an increase in x, an increase inD, or a reduction in v(ω)

lead the bank to produce less information.19 Intuitively, when the bank’s gain from

assuming that the cost is zωB) could potentially affect Ω0. Although the main force and intuition
we identify here will still be valid, some of the derivations and arguments may be more convoluted
(see also Footnote 20).
19The parameter changes above could also affect the set {ω : G(ω) = 0}, and hence, the set
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investment increases, the bank has less incentive to produce information because

the cost that the regulator will use the information to ban investment becomes

more significant, while at the same time, the gain from producing information to

avoid investment in negative NPV projects becomes less significant.

As for the optimal q, under some regularity conditions,20 the fact that model

parameters affect ρ(ω1, ω2) leads to similar implications as in Proposition 2. Specif-

ically:

With respect to the bank debt level, when D is very low, the bank has strong

incentives to produce information, and, therefore, the regulator chooses a high level

of monitoring without much perverse effect. As D increases, the regulator needs

to lower the level of monitoring to induce information production. Finally, when

D is suffi ciently high, the regulator moves back to full monitoring as information

production is very diffi cult to induce.

As for the asset value v(ω), the predictions are opposite to those related to D.

When asset values are high, the regulator monitors extensively, as the bank has

strong incentives to produce information. When asset values are moderate, the

regulator monitors less to induce the bank to produce more information. When

asset values are low, the regulator monitors extensively, but the bank produces less

information.

Finally, as for the project cash flow x, when x is low, the regulator monitors

extensively, and the bank produces a lot of information. When x is medium, the

regulator monitors less to induce the higher level of information production. When

x is suffi ciently high, the regulator monitors extensively, but the bank produces less

information.

Ω0 from which the bank chooses ωB . For example, when D increases, the thresholds ω1 and ω2
become lower. This effect also works to reduce the amount of information that the bank produces.
20Such conditions are needed because, as noted earlier, the set Ω0 could change. This could

affect the regulator’s gain from implementing a higher level of information production versus a
lower level of information production. Moreover, with respect to x, we should also take into
account the direct effect of x on the regulator’s payoff.
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7.3 Penalties

Although we do not conduct a formal analysis of the effect of penalties, our model

provides some insights. We discuss two types of penalties. The first type of penalty

is imposed on the bank whenever its project fails. The second type of penalty is

also imposed upon project failure but only if it is found that the bank knowingly

invested in a negative NPV project (without the regulator’s approval). In our

model, the bank has limited liability, so it is natural to think of nonpecuniary

penalties.

The first type of penalty reduces the bank’s gains from investing G(ω). For

example, a fixed penalty upon failure c will reduce G(ω) by (1−ω)c. As we showed

above, this leads the bank to produce more information. However, if G(ω) is close

toN(ω), this penalty could also lead to a negativeG(ω) even whenN(ω) is positive.

So, the bank could forego investment in some positive NPV projects.

The second type of penalty solves the underinvestment problem above. More-

over, taking the information that the bank produces as given, this penalty reduces

the conflict of interest between the bank and the regulator because the bank’s gain

from investing in negative NPV projects is reduced. However, a higher penalty

could also induce the bank to produce less information overall because the regula-

tor could use the information against the bank to show that the bank knowingly

invested in negative NPV projects. This effect is similar to that of increasing q.

Our model suggests that imposing high penalties of the second type could be ben-

eficial if the bank’s private gain from producing information is either suffi ciently

high or suffi ciently low. Otherwise, such penalties could be suboptimal.

8 Public information

In this section, we analyze how public information affects the optimal q as well as

the bank’s incentives to produce information.

Suppose it is common knowledge that everyone is endowed with some model P̂.

In other words, P̂ is public information. For example, P̂ could represent existing

rules that are used to determine risk weights without relying on bank internal
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models. P̂ could also represent publicly available credit ratings or models that the

regulator produces and shares with the bank.21 So, in Step 3 in the sequence of

events, the bank observes PB(ω) and P̂ (ω). As for the regulator, with probability

q, he observes PB(ω) and P̂ (ω), and with probability 1− q, he observes PR(ω) and

P̂ (ω).

Let φ1 and φ2 be the corners of the information set in P̂ that contains the state
1
x
. Formally, φ1 = inf P̂ ( 1

x
) and φ2 = sup P̂ ( 1

x
). For any PB and PR, if ω < φ1,

investment will not take place because the regulator knows that the project has

negative NPV. Similarly, if ω > φ2, investment will take place because both the

bank and the regulator know that the project has positive NPV. Hence, the models

that the bank chooses affect the outcome only when ω ∈ (φ1, φ2) (and potentially

at the corners φ1 and φ2).

The problem reduces to finding the thresholds ωB and ωR, as in the previous

section, but instead of ω̄B and ω̄R(ωB), we now have ω̆B and ω̆R(ωB), which are

defined as follows: ω̆B is the lowest ωB ∈ [φ1, φ2] that satisfies

E[N(ω̃)|ω̃ ∈ [ωB, φ2)] ≥ 0, (25)

and ω̆R(ωB) is the lowest ωR ∈ [φ1, φ2] that satisfies

E[N(ω̃)|ω̃ ∈ [ωB, φ2) or ω̃ ∈ [ωR, ωB) and G(ω) ≥ 0] ≥ 0. (26)

An interesting question is how the optimal q changes when φ1 or φ2 change. We

illustrate for the case in which Ω0 = {ω1, ω2}, where ω1 > ω2 > ω̄B, and focus on

the more interesting case in which ρ(ω1, ω2) < q̂. So, without any information, the

regulator sets q = 1 and the bank responds by choosing ωB = ω2 (Proposition 2).22

Start with the case φ2 = 1, and for use below, let φ̄ = max{ω < ω1 : G(ω) ≥ 0}.

Proposition 4 If φ2 = 1 and Ω0 contains only two thresholds ω1 > ω2, such that

ρ(ω1, ω2) < q̂, then there exists φ̂ ∈ (ω̄R(ω1), ω2), such that:

21We abstract from an important question of whether the regulator should share its models
with the bank. See Leitner and Williams (2017) for a recent paper that explores this issue.
22If ρ(ω1, ω2) > q̂, the first case in Proposition 4 is absent and the second case holds for every

φ1 < ω2 with the regulator setting q = min{1, ρ(ω1, ω2)}.
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1. If φ1 < φ̂, the regulator sets q = 1, and the bank responds by choosing

ωB = ω2.

2. If φ1 ∈ (φ̂, ω2], the regulator sets q = ρ(ω1, ω2), and the bank responds by

choosing ωB = ω1.

3. If φ1 ∈ (ω2, φ̄], the regulator sets q = min{1, ρ(ω1, φ1)}, and the bank responds
by choosing ωB = ω1. In this range, the optimal q is increasing in φ1.

4. If φ1 ∈ (φ̄, 1
x
), any q is optimal, and the bank choice of models is irrelevant.

(When φ1 = φ̂, there are two equilibria: the equilibrium from Part 1 and the

equilibrium from Part 2.)

Proposition 4 illustrates two forces that push q in different directions. When the

public model is more informative (φ1 increases), the benefit from monitoring the

bank is reduced because the regulator can use the public model to ban investment.

This could lead to a lower q. However, it could also become easier to induce the

bank to produce information because if the regulator uses the public model to ban

investment, the bank gains less from not producing information. This could lead to

a higher q. Part 2 in Proposition 4 illustrates the first force, while part 3 illustrates

the second force. As an aside, note that the Proposition also shows that, when φ1

increases, the bank produces more information (i.e., ωB increases).

Fig. 5 illustrates. If φ1 < ω2, an increase in φ1 affects q because it increases

ω̆R(ω1), which, in turn, increases the regulator’s payoff u(ρ(ω1, ω2)) from imple-

menting ω1. Since there is no effect on u(1), the regulator switches from q = 1 to

q = (ω1, ω2). If φ1 > ω2, then ω̆B = φ1, and the set Ω0 becomes {φ1, ω1}. In this
case, the regulator sets q = ρ(φ1, ω1), which is increasing in φ1.

Finally, reducing φ2 has a similar effect to increasing φ1. If φ2 is suffi ciently

large so that ω̆B < ω2, reducing φ2 increases ω̆R(ω1), which leads to a lower q. If

φ2 is lower, so that ω̆B > ω2, reducing φ2 increases ω̆B, which leads to a higher q.

9 Applications

The insights from our model can be applied in other settings. One example is when

the regulator uses bank internal risk models to set minimum capital requirements.
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Suppose capital can be either high or low and the state ω represents how safe the

bank portfolio is. Suppose the social gain and bank’s private gain from having

low capital rather than high capital are given, respectively, by some (exogenous)

functions N(ω) and G(ω), which satisfy the conditions in Remark 1. That is, the

bank’s gain from having a lower amount of capital is larger than the regulator’s

gain, and the regulator’s gain is increasing in the state (it could take both positive

and negative values). To apply the insights from our model, relabel “investment”

to mean having low capital. So, allowing investment means that the regulator

allows the bank to have low capital (but the bank can still choose to maintain high

capital), while banning investment means that the regulator requires high capital.

Our theory suggests that when existing models (e.g., Basel I risk weights) mea-

sure risk imperfectly, it might be socially optimal to rely on bank internal risk

models. Moreover, under some conditions, it is optimal to allow the bank to pro-

duce two sets of models: one for regulation (to determine capital requirements)

and one for its own portfolio decisions. Our theory also suggests that when exist-

ing models measure risk more precisely, the bank will produce more information,

but it may be optimal to monitor the bank more.

In practice, the bank’s actions (e.g., the interest rate it charges on its loans) may

reveal information to the regulator beyond the information that the bank revealed

initially for the purpose of regulation. The regulator may then be tempted to

set capital requirements based on this additional information. Our theory suggests

that such practice could be suboptimal because it could induce the bank to produce

less information. An extension of our theory could provide conditions under which

such practice is optimal and under which such practice is suboptimal.23 Another

interesting extension would be a setting in which multiple banks hold correlated

information. In this case, the regulator could use information from one bank to

regulate another bank.

We obtain similar implications in the context of bank stress tests. Here the

23The idea that incentives to produce information should be taken into account also appears
in Rajan, Seru, and Vig (2015). They provide evidence suggesting that securitization reduces
lenders’ incentives to collect soft information, which leads to a breakdown of statistical models
used to predict default.
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regulator decides whether the bank can pay dividends (pass the test) or not (fail

the test), and the functions N(ω) and G(ω) represent the social gain and the bank’s

private gain from paying dividends.

There are also applications outside the banking industry. For example, in the

context of regulation in the pharmaceutical industry, we can think of N(ω) and

G(ω) as the benefits to society and to the drug company from introducing a new

drug. Here the state ω could represent, for example, potential side effects (which

are decreasing in the state).

Our framework can also be applied in corporate governance. The optimality

of delegation of authority to the management has been studied in the context of

information transmission and incorporation of private information into decision

making. Our model provides new insights on the benefits of curbing boards’and

shareholders’power to create shareholder value. In particular, when the agency

costs are intermediate, it may be optimal for shareholders to commit to a less

stringent monitoring mechanism.

10 Concluding remarks

We analyze a situation in which a regulator relies on information that a bank

produces to regulate the bank. We show that monitoring induces a tradeoff. By

monitoring the bank, the regulator obtains information, which could be used to the

regulator’s advantage. However, a higher level of monitoring could induce the bank

to produce less information overall. Solving for the optimal level of monitoring,

we show that, in general, the optimal level of monitoring should be high when

the bank’s private gain from producing information is either suffi ciently high or

suffi ciently low. We use this result to derive comparative statics as to how the

optimal level of monitoring varies with respect to model parameter, such as the

bank’s level of debt. We also analyze the case in which some public information

already exists. We show that when public models are more precise, banks produce

more information, but the regulator may end up monitoring more.

One can think of our framework as a persuasion game in which the bank pro-
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duces two signals. The first signal is used to persuade the regulator to delegate

authority to the bank, and the second signal is used to make better investment

decisions, once authority is delegated. As is standard in the Bayesian persuasion

literature, we assumed that the bank has full control in choosing the information

technology, and as such, the regulator cannot (or chooses not to) force the bank

to choose a specific information technology. This could be due to the fact that the

bank privately observes its ability to produce information.

Two assumptions are crucial for our results. First, the regulator can commit to

a prespecified monitoring intensity, but he cannot commit to contracts that bind

him to allow investment when it is ineffi cient to do so given his information ex

post.24 Second, we need a restriction on the information technology. In particular,

the bank cannot produce information partitions that pool together high and low

states while excluding the states in the middle. If we maintained only the first

assumption but not the second, the bank would not need to generate a second

signal, and the optimal signal could be obtained along the lines of Kamenica and

Gentzkow (2011).

In practice, the regulator’s commitment to a monitoring technology often arises

via various mechanisms and rules that dictate what the regulator and banks can or

cannot do. Our findings lend support in favor of simple policy rules, as opposed to

complicated recipes that try to get all available information from banks to fine-tune

regulation. Our main tradeoff continues to hold in dynamic settings or in settings

in which full commitment is not feasible, as long as the regulator cannot perfectly

adjust the monitoring technology ex post.

Our framework can be extended in several directions. One possible path is to

allow the regulator to choose whether to rely on banks’internal models. The main

tradeoff we identified will continue to hold in such an extension. However, a richer

strategy space will enable us to address other issues in bank regulation, such as the

impact of using banks’models on banks’risk-taking behavior. Another path is to

allow the regulator to use banks’internal models to impose capital requirements

24If the regulator could commit to allowing investment in negative NPV projects, he could
induce the bank to produce more information even under monitoring.
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coupled with restrictions on investment decisions or endogenous investment deci-

sions by the bank. Such an extension will enable us to make more complete policy

prescriptions.

Appendix

Proof of Lemma 1. We first show that, if G(ω) ≥ 0, then either (i) or (ii) holds.

To see that, note that, if (i) does not hold, then N(ω) < 0. So, to satisfy G(ω) ≥ 0,

we must have D > v(ω). Hence, N(ω) + (1− ω)[D − v(ω)] ≥ 0, which reduces to

v(ω) ≤ D + N(ω)
1−ω . Hence, (ii) holds. Next, we show that, if (i) or (ii) holds, then

G(ω) ≥ 0. Clearly, if (i) holds, then N(ω) ≥ 0, and so, G(ω) ≥ 0. If (ii) holds,

then N(ω) + (1− ω)[D − v(ω)] ≥ 0, and so N(ω) + (1− ω) max[D − v(ω), 0] ≥ 0.

Hence, G(ω) ≥ 0.

Proof of Lemma 2. Consider an equilibrium in which the bank chooses models

PB and PR. The equilibrium outcome can be described by a pair of functions

IB, IR : Ω→ {0, 1}, where for γ ∈ {B,R}, Iγ(ω) = 1 if and only if investment takes

place when the state is ω and the regulator observes P γ(ω). Clearly, Iγ(ω) = 1 if

and only if the regulator allows investment and the bank chooses to invest. Let

ωγ =

{
inf{ω ∈ Ω : Iγ(ω) = 1} if Iγ(ω) = 1 for some ω ∈ Ω
1 otherwise.

(A-1)

We show that ωB, ωR satisfy parts (i) and (ii) in the lemma, and that ωR ≤ ωB.

Part (i) follows from the observation that, if IB(ω) = 1 for some ω ∈ Ω, then

IB(ω′) = 1 for every ω′ > ω. To see that, suppose IB(ω) = 1. Then, E[N(ω̃)|ω̃ ∈
PB(ω)] ≥ 0 because otherwise the regulator would ban investment upon observing

PB(ω). Now consider ω′ > ω. Because N(ω) is increasing in ω and each set in the

model partition is convex, it follows that E[N(ω̃)|ω̃ ∈ PB(ω′)] > 0. Moreover, since

G(ω) ≥ N(ω), it follows that E[G(ω̃)|ω̃ ∈ PB(ω′)] > 0. Hence, upon observing

PB(ω′), the regulator allows investment and the bank invests. That is, IB(ω′) = 1.
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The result ωR ≤ ωB follows because, if this were not true, the bank could strictly

increase its expected payoff by choosing model P̂R = PB instead of the original

model PR.

Part (ii) is satisfied as follows.

If ω < ωR, then IR(ω) = 0, by the definition of ωR.

If ω > ωB, then IR(ω) = 1, as follows. Suppose to the contrary that IR(ω) = 0.

From part (i), the bank wants to invest at state ω, given its information PB(ω).

Hence, IR(ω) = 0 would imply that inf PR(ω) < 1
x
because otherwise the regulator

would allow investment and the bank would invest. Now consider ω′ ≤ inf PR(ω),

such that ω′ /∈ PR(ω). Because N(ω) is increasing in ω and each set in the model

partition is convex, it follows that upon observing PR(ω′), the regulator knows

that the project has negative NPV, and so investment does not take place. That

is, IR(ω′) = 0. But then it follows from the definition of ωR that ωR > ωB, which

contradicts what we showed earlier.

Finally, consider ω ∈ (ωR, ωB). We first show that if G(ω) > 0, then IR(ω) = 1.

Suppose to the contrary that IR(ω) = 0. Then either E[G(ω̃)|ω̃ ∈ PB(ω)] < 0, so

the bank does not want to invest, or E[G(ω̃)|ω̃ ∈ PB(ω)] ≥ 0 and the regulator

does not allow investment. Following similar logic as above, the second case cannot

happen because this would imply that IR(ω′) = 0 for every ω′ < ω, which leads to

a contradiction inf{ω ∈ Ω : Iγ(ω) = 1} > ωR. Hence, E[G(ω̃)|ω̃ ∈ PB(ω)] < 0.

Hence, PB(ω) is an interval. Since G is continuous, PB(ω) contains a positive

measure of states with G(ω) > 0 in which the bank does not invest according to its

ideal investment rule. But then the bank can increase its payoff by choosing model

P̂B instead of PB, where

P̂B(ω) =

{
PB(ω) if ω > ωB
ω otherwise.

(A-2)

In particular, if the regulator observes P̂B(ω), investment will continue to take

place when ω > ωB, and revealing the state when ω < ωB does not make the bank

worse off. However, if the regulator does not observe P̂B(ω), the bank is better off

learning the exact state and investing according to its ideal investment rule. Using

similar arguments, we can show that if G(ω) < 0, we must have IR(ω) = 0. This
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completes the proof.

Proof of Lemma 3. Consider an equilibrium outcome IB, IR, as described in

the proof of Lemma 2. Let ωB, ωR be the corresponding thresholds.

We first show that Eq. (7) and (8) must hold. Let γ ∈ {B,R}. For every ω,
such that Iγ(ω) = 1, we must have E[N(ω̃)|ω̃ ∈ P γ(ω), Iγ(ω̃) = 1] ≥ 0. That is, the

project must have positive NPV conditional on the regulator’s information P γ(ω)

and investment taking place. It then follows that E[N(ω̃)|ω̃ ∈ ∪ω>ωγP γ(ω), Iγ(ω̃) =

1] ≥ 0. Hence, E[N(ω̃)|ω > ωγ, Iγ(ω̃) = 1] ≥ 0. Hence, Eq. (7) and (8) hold.

Now suppose the bank chooses simple models as in Eq. (5) and (6). Denote

the equilibrium outcome in this case by ÎB, ÎR. We show that for every ω ∈ Ω ,

ÎB(ω) = IB(ω) and ÎR(ω) = IR(ω). Since Eq. (7) holds, we know that ÎB(ω) = 1 if

ω > ωB, and since Eq. (8) holds, we know that ÎR(ω) = 1 if ω > ωR and IR(ω) = 1.

Moreover, ÎB(ω) = 0 if ω < ωB because if this were not true, if follows from the

continuity of G (similar to the proof of Lemma 2) that the bank could increase

its payoff by choosing the simple models instead of the original models. Similarly,

ÎR(ω) = 0 if ω < ωR. Hence, the simple models lead to the same outcome as the

original models.

Proof of Lemma 4. Consider an equilibrium in which the bank chooses

models PB and PR with thresholds ωB and ωR, as in Eq. (5) and (6), and assume,

without loss of generality, that ωR = ω̄R(ωB). To ensure that the regulator allows

the bank to invest when ω > ωB, Eq. (7) must be satisfied. Hence, ωB ≥ ω̄B. Next,

consider a deviation in which instead of model PB, the bank chooses (a simple)

model P̂B with a threshold ω′B ≥ ω̄B , while keeping model PR unchanged. The

bank’s payoff from this deviation is at least V (ω′B, ω̄R(ωB)) because if the regulator

observes P̂B, he allows investment if ω > ω′B, and if the regulator observes P
R,

he continues to believe that the other model is PB, and so he continues to allow

investment when ω ≥ ω̄R(ωB). Hence, to rule out this deviation, Eq. (12) must

hold for every ω′B ∈ Ω, such that ω′B ≥ ω̄B.

It remains to show the other direction. Suppose ωB ≥ ω̄B and Eq. (12) holds

for every ω′B ∈ Ω, such that ω′B ≥ ω̄B. We show that there is an equilibrium in
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which the bank chooses models PB and PR with thresholds ωB and ωR = ω̄R(ωB).

In such an equilibrium, the bank’s payoff is V (ωB, ω̄R(ωB)). We need to show that

the bank cannot increase its payoff by choosing different models.

Consider a deviation in which the bank chooses models P̂B and P̂R, which do

not necessarily take the simple form in Eq. (5) and (6). Without loss of generality,

we focus on payoffs from the best possible (or limit of best possible) deviation for

the bank. Assign out-of-equilibrium beliefs, such that when the regulator observes

P̂R 6= PR, he believes that the other model is PB. Then, upon observing P̂R(ω),

the regulator anticipates that if he allows investment, the bank will invest if and

only if E[G(ω̃)|ω̃ ∈ PB(ω)] ≥ 0.

Following the logic of Lemma 2, we can show that ω̂B ∈ Ω exists, such that the

outcome of the deviation is as follows. When the regulator observes model P̂B(ω),

the bank invests if ω > ω̂B but not if ω < ω̂B; and when the regulator observes

models P̂R(ω), he allows the bank to invest when ω > ω̂R, but investment does not

take place when ω < ω̂R. Since the regulator allows investment only if he believes

that the project has nonnegative NPV, we must have ω̂B ≥ ω̄B and E[N(ω̃)|ω̃ > ωB

or ω̃ ∈ [ω̂R, ωB) and G(ω̃) ≥ 0] ≥ 0. Hence, ω̂R ≥ ω̄R(ωB) (from the definition of

ω̄R). Hence, the bank’s payoff from the deviation is at most V (ω̂B, ω̄R(ωB)). But

since Eq. (12) holds for every ω′B ∈ Ω, such that ω′B ≥ ω̄B, this payoff is at most

V (ωB, ω̄R(ωB)). This completes the proof.

Proof of Lemma 5. As a preliminary, we show that for every ω /∈ Ω0 and

ωR ∈ Ω, such that ω ≥ ω̄B ≥ ωR, there exists ω′ ∈ Ω0, such that V (ω, ωR) <

V (ω′, ωR). Consider ω /∈ Ω0 and ωR ∈ Ω, such that ω ≥ ω̄B ≥ ωR. There

exists i ∈ {1, ..., l}, such that either ω ∈ (ai, bi) or ω ∈ [bi+1, ai). (bl+1 ≡ 0.) If

ω ∈ (ai, bi), let ω′ = max{ai, ω̄B}. If ω ∈ [bi+1, ai), let ω′ = ai. Then ω′ ∈ Ω0 and

V (ω, ωR) < V (ω′, ωR).

We use the observation above to prove the lemma. Suppose ωB ∈ Ω is an

equilibrium threshold. From Lemma 4, ωB ≥ ω̄B and Eq. (12) holds for every ω′B ∈
Ω such that ω′B ≥ ω̄B. Hence, Eq. (12) holds under the weaker condition ω′B ∈ Ω0.

Moreover, we must have ωB ∈ Ω0 because otherwise the observation above would
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imply that there exists ω′ ∈ Ω0, such that V (ωB, ω̄R(ωB)) < V (ω′, ω̄R(ωB)), which

contradicts Lemma 4.

Now suppose ωB ∈ Ω0 and Eq. (12) holds for every ω′B ∈ Ω0. We show

that Eq. (12) also holds for every ω′B /∈ Ω0, such that ω′B ≥ ω̄B, and hence, by

Lemma 4, ωB is an equilibrium threshold. Suppose to the contrary that ω′B /∈
Ω0 exists such that ω′B ≥ ω̄B and V (ωB, ω̄R(ωB)) < V (ω′B, ω̄R(ωB)). From the

observation above, ω′ ∈ Ω0 exists, such that V (ω′B, ω̄R(ωB)) < V (ω′, ω̄R(ωB)).

Hence, V (ωB, ω̄R(ωB)) < V (ω′, ω̄R(ωB)), which contradicts the starting assumption

that Eq. (12) holds for every ω′B ∈ Ω0.

Lemma A-1 For any ωR ∈ Ω and ω, ω′ ∈ Ω0, such that ω > ω′, the following

holds:

1. If q < ρ(ω, ω′), then V (ω, ωR) > V (ω′, ωR).

2. If q = ρ(ω, ω′), then V (ω, ωR) = V (ω′, ωR).

3. If q > ρ(ω, ω′), then V (ω, ωR) < V (ω′, ωR).

Proof of Lemma A-1. The proof applies to a more general case in which

there is a cost z ≥ 0, as in Section 7. Consider ωR ∈ Ω and ω, ω′ ∈ Ω0, such that

ω > ω′. Observe that V (ω, ωR)− z > V (ω′, ωR) is equivalent to

(1− q)
∫ ω

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ω

G(ω)dF (ω)− z (A-3)

> (1− q)
∫ ω′

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ω′
G(ω)dF (ω).

After rearranging terms, (A-3) reduces to

(1− q)
∫ ω

ω′
1{ω:G(ω)>0}G(ω)dF (ω) >

∫ ω

ω′
G(ω)dF (ω) + z, (A-4)

which reduces to∫ ω

ω′
1{ω:G(ω)≥0}G(ω)dF (ω)−

∫ ω

ω′
G(ω)dF (ω)− z > q

∫ ω

ω′
1{ω:G(ω)>0}G(ω)dF (ω).

(A-5)
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Since ω, ω′ ∈ Ω0 and ω > ω′, the integral on the right-hand side of (A-5) is positive.

Hence, (A-5) reduces to

q <
−
∫ ω
ω′ 1{ω:G(ω)<0}G(ω)dF (ω)− z∫ ω
ω′ 1{ω:G(ω)>0}G(ω)dF (ω)

=
|
∫ ω
ω′ 1{ω:G(ω)<0}G(ω)dF (ω)| − z∫ ω
ω′ 1{ω:G(ω)>0}G(ω)dF (ω)

. (A-6)

Hence, we proved part 1. Parts 2 and 3 follow in a similar fashion.

Proof of Proposition 1. From Lemma 5, the equilibrium threshold ωB be-

longs to {ω1, ω2}. Moreover, ω1 is an equilibrium threshold if and only if Eq. (14)

holds, and ω2 is an equilibrium threshold if and only if Eq. (15) holds. From

Lemma A-1, Eq. (14) holds if and only if q ≤ ρ(ω1, ω2), and Eq. (15) holds if and

only if q ≥ ρ(ω1, ω2). The results then follow easily.

Proof of Theorem 1. We construct the step function ωB(q) as follows. Let

q̄0 = 0, δ1 = ω1, and for integers i ≥ 1, define recursively:

q̄i =

{
min{1,minω∈Ω0∩[0,δi) ρ(δi, ω)} if δi > ωn
1 otherwise.

(A-7)

δi+1 =

{
min{ω ∈ Ω0 ∩ [0, δi) : ρ(δi, ω) = q̄i} if q̄i < 1
δi otherwise.

(A-8)

Let m = min{i : q̄i = 1}.
From the definition of m, q̄i < 1 for every i < m. Hence, from Eq. (A-8),

δ1 > δ2 > ... > δm and

q̄i = ρ(δi, δi+1) for every i < m. (A-9)

In addition, from Eq. (A-7), δi > ωn for every i < m.

We show that ωB(0) = δ1, and that for i ∈ {1, ...,m}, ωB(q) = δi if q ∈ (q̄i−1, q̄i].

The proof is by induction. For i = 1, we know from the definition of q̄1 that

q̄1 ≤ minω∈Ω0∩[0,ω1) ρ(ω1, ω). Hence, when q ≤ q̄1, we know from Lemma A-1 that

V (ω1, ω̄R(ω1)) ≥ V (ω, ω̄R(ω1)) for every ω ∈ Ω0 ∩ [0, ω1), and so by Lemma 5, ω1

is an equilibrium threshold. Since in the case of multiple equilibria, we focus on

the one with the highest threshold, it follows that ωB(q) = ω1 when q ∈ [0, q̄1].

Now suppose i < m and ωB(q) = δi if q ∈ (q̄i−1, q̄i]. We show that ωB(q) = δi+1

if q ∈ (q̄i, q̄i+1]. There are a few steps:
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1. From Lemma A-1, it follows that, if V (ωB, ω̄R(ωB)) ≥ V (ω′B, ω̄R(ωB)),

then V (ωB, ωR) ≥ V (ω′B, ωR) for every ωR ∈ Ω. Hence, we can rewrite Lemma

5 as follows: ωB ∈ Ω is an equilibrium threshold if and only if ωB ∈ Ω0 and

V (ωB, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 and ωR ∈ Ω.

2. We show that, if q = q̄i, then V (δi+1, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 and

ωR ∈ Ω. In other words, if q = q̄i, then δi+1 weakly dominates any other threshold

candidate. This follows from the following two observations. First, if q = q̄i, we

know from the induction assumption that δi is an equilibrium threshold, and so,

from Step 1, V (δi, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 and ωR ∈ Ω. Second, since

q̄i = ρ(δi, δi+1), it follows from Lemma A-1 that V (δi+1, ωR) = V (δi, ωR) for every

ωR ∈ Ω.

3. Now we show that, if q > q̄i, then δi+1 strictly dominates any other threshold

candidate that is greater than δi+1. It follows from Step 2 and Lemma A-1 that

q̄i ≥ ρ(ω′, δi+1) for every ω′ ∈ Ω0 ∩ (δi+1, 1]. It then follows from Lemma A-1 that,

if q > q̄i, then V (δi+1, ωR) > V (ω′, ωR) for every ω′ ∈ Ω0 ∩ (δi+1, 1] and ωR ∈ Ω.

4. It also follows from Step 2 and Lemma A-1 that q̄i ≤ ρ(δi+1, ω) for every

ω ∈ Ω0 ∩ [0, δi+i).

5. If δi+1 = ωn, then q̄i+1 = 1, and from Steps 1 and 3, δi+1 is a unique

equilibrium when q ∈ (q̄i, q̄i+1]. So, the proof is complete.

6. If δi+1 > ωn, then q̄i+1 ≤ minω∈Ω0∩[0,δj+1) ρ(δi+1, ω). Hence, from Lemma

A-1, if q ≤ q̄i+1, then V (δi+1, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 ∩ [0, δi+1) and

ωR ∈ Ω. In other words, δi+1 weakly dominates any other threshold candidate that

is smaller than δi+1. Note that, if q̄i+1 6= 1, then q̄i+1 = ρ(δi+1, δi+2) ≥ q̄i, where

the last inequality follows from Step 4.

7. It follows from Steps 1, 3, and 6 that, if q ∈ (q̄i, q̄i+1], δi+1 is an equilibrium

and any other ωB ∈ Ω0 ∩ (δi+1, 1] is not an equilibrium. Since in the case of

multiple equilibria we focus on the one with the highest threshold, it follows that

ωB(q) = δi+1 if q ∈ (q̄i, q̄i+1].

Proof of Lemma 6 As a preliminary, observe that for every q ∈ [0, 1], ωB(q) ≥
ω̄B ≥ ω̄R(ωB(q)). Moreover, ω1 ≤ 1

x
. Hence, for every q and ω < ωB(q), N(ω) < 0.
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Hence, the first integral in (20) is either zero or negative. Let q̄m ≡ 1.

If |K| = 1 and a1 > ω̄B, then Ω0 = {a1} and ωB(q) = a1. Since G(ω) = 0

for every ω < a1, the first integral in (20) equals zero, and so, every q is optimal.

Similarly, if a1 ≤ ω̄B, then Ω0 = {ω̄B} and ωB(q) = ω̄B. Since ω̄R(ω̄B) = ω̄B, the

first integral in (20) equals zero, and again, every q is optimal.

Now suppose |K| > 1 and a1 > ω̄B. We show that any solution q to the

regulator’s problem satisfies q ∈ {q̄1, ..., q̄m−1, 1}. Suppose to the contrary that
there exists a solution q /∈ {q̄1, ..., q̄m−1, 1}. There are two cases:
Case 1: ωB(q) > al (recall al is the lowest element in K). In this case,

ω̄R(ωB(q)) < ωB(q), and the first integral in (20) is negative. In particular, either

ωB(q) > ω̄B ≥ ω̄R(ωB(q)) or ωB(q) = ω̄B > ω̄R(ωB(q)), where the last inequality

follows since a1 > ω̄B and ωB(q) > al. Consequently, if q ∈ [0, q̄1), we know from

Theorem 1 that ωB(q) = ωB(q̄1), and so, u(q̄1) > u(q), which contradicts the opti-

mality of q. Similarly, if q ∈ (q̄i−1, q̄i) for some i ∈ {2, ...,m}, then ωB(q) = ωB(q̄i),

and so, u(q̄i) > u(q), which is, again, a contradiction.

Case 2: ωB(q) = al. In this case, the first integral in (20) is zero, and the

regulator’s payoff reduces to
∫ 1

al
N(ω)dF (ω). We obtain a contradiction because

the regulator can increase his payoff by setting q = q̄1. Then the bank responds

by choosing ωB(q) = a1 > al, and the regulator’s payoff increases because, with

probability q̄1, the bank does not invest when ω < a1.

Proof of Proposition 2. Suppose Ω0 = {ω1, ω2}, where ω1 > ω2. Then in

Theorem 1, δ1 = ω1 and q̄1 = min{1, ρ(ω1, ω2)}.
If ρ(ω1, ω2) ≥ 1, then m = 1, and by Lemma 6, q = 1 is uniquely optimal

(because |Ω0| ≥ 2 implies that |K| ≥ 2 and a1 > ω̄B). The bank responds by

choosing ωB = δ1 = ω1.

If ρ(ω1, ω2) < 1, then q̄1 = ρ(ω1, ω2), δ2 = ω2, q̄2 = 1, and m = 2. Hence, from

Lemma 6, q ∈ {q̄1, 1}. There are three subcases. If q̄1 ∈ (q̂, 1), then u(1) < u(q̄1).

(The proof of Theorem 2 contains more details.) So, q = q̄1 is uniquely optimal,

and the bank responds by choosing ωB = δ1 = ω1. If q̄1 < q̂, then u(1) > u(q̄1).

So, q = 1 is uniquely optimal, and the bank responds by choosing ωB = δ2 = ω2.
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Finally, if q̄1 = q̂, then u(1) = u(q̄1). Hence, both q = q̄1 and q = 1 are optimal.

Proof of Theorem 2. Suppose Ω0 contains n ≥ 2 thresholds ω1 > ω2 >

... > ωn. Then, in Theorem 1, δ1 = ω1 and q̄1 = min{1,minω∈Ω0∩[0,ω1) ρ(ω1, ω)}.
If minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1, then m = 1, and by Lemma 6, q = 1 is uniquely

optimal. If instead, minω∈Ω0:ω<ω1 ρ(ω1, ω) < 1, then m > 1, and any solution to the

regulator’s problem satisfies q ∈ {q̄1, ..., q̄m−1, 1}. Hence, q = 1 is optimal if and

only if u(1) ≥ u(q̄i) for every i ∈ {1, ...,m − 1}, and it is uniquely optimal if and
only if u(1) > u(q̄i) for every i ∈ {1, ...,m − 1}. From Theorem 1, q̄i = ρ(δi, δi+1)

for every i ∈ {1, ...,m − 1}. Hence, to complete the proof, we need to show that,
for every i ∈ {1, ...,m − 1}, u(1) ≥ u(q̄i) reduces q̄i ≤ q̂i. (Similarly, u(1) > u(q̄i)

reduces q̄i < q̂i.) The details are as follows.

Observe that u(1) =
∫ 1

δm
N(ω)dF (ω), and for i ∈ {1, ...,m − 1}, u(q̄i) = (1 −

q̄i)
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω) +
∫ 1

δi
N(ω)dF (ω). Hence, after rearranging terms,

u(1) ≥ u(q̄i) reduces to∫ δi

δm

N(ω)dF (ω) ≥ (1− q̄i)
∫ δi

ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω). (A-10)

Since δm < δm−1 < ... < δ1 ≤ 1
x
, it follows that N(ω) < 0 when ω < δi. Hence, the

integrals on both sides of Eq. (A-10) are negative. Hence, Eq. (A-10) reduces to

1− q̄i ≥
∫ δi
δm
N(ω)dF (ω)∫ δi

ω̄R(δi)
1{ω:G(ω)≥0}N(ω)dF (ω)

=
|
∫ δi
δm
N(ω)dF (ω)|

|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|
, (A-11)

or equivalently,

q̄i ≤
|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm
N(ω)dF (ω)|

|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|
(A-12)

=
|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm

1{ω:G(ω)<0}N(ω)dF (ω)|

|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ δi
δm

1{ω:G(ω)≥0}N(ω)dF (ω)|
= q̂i.

Proof of Proposition 3. From the proof of Lemma A-1, Proposition 1 con-

tinues to hold if we replace ρ(ω1, ω2) with ζ(z). Observe that ζ(z) is decreasing in
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z. Let z1 be the unique z that satisfies ζ(z) = 1, and let z2 be the unique z that

satisfies∫ 1

ω2

N(ω)dF (ω) = (1− ζ(z))

∫ ω1

ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ω1

N(ω)dF (ω)− z.

(A-13)

A unique z2 exists because
∫ ω1
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω) < 0, and so the right-hand

side in Eq. (A-13) is decreasing in z. Moreover, z2 > z1. To see that, it is suffi cient

to show that, when ζ(z) = 1, the right-hand side in Eq. (A-13) is greater than the

left-hand side. This follows because, from Eq. (24), ζ(z) = 1 implies that

− z > −|
∫ ω1

ω2

1{ω:G(ω)<0}G(ω)dF (ω)| =
∫ ω1

ω2

1{ω:G(ω)<0}G(ω)dF (ω)

≥
∫ ω1

ω2

1{ω:G(ω)<0}N(ω)dF (ω) ≥
∫ ω1

ω2

N(ω)dF (ω). (A-14)

If z ≤ z1, then ζ(z) ≥ 1, and so ωB(q) = ω1 for every q ∈ [0, 1]. In this case,

the regulator’s payoff is u(q)− z, which is increasing in q. Hence, q = 1 is uniquely

optimal.

If z > z1, then ζ(z) < 1, and so,

ωB(q) =

{
ω1 if q ≤ ζ(z)
ω2 if q > ζ(z).

(A-15)

In this case, the regulator’s payoff is u(q)− z1{ωB(q)=ω1}. Hence, the left-hand side

in Eq. (A-13) is the regulator’s payoff if q = 1, and the right-hand side is the

regulator’s payoff if q = ζ(z). Hence, when z = z2, the regulator is indifferent

between choosing q = 1 and choosing q = ζ(z). If z ∈ (z1, z2), choosing q = ζ(z)

is preferred to choosing q = 1. Similarly, if z > z2, choosing q = 1 is preferred to

choosing q = ζ(z). To complete the proof, set z̄ = z2, and note that from Lemma

6, it follows that any q /∈ {ζ(z), 1} is suboptimal.

Proof of Proposition 4.

Parts 1 and 2. If φ1 ≤ ω2, then

ωB(q) =

{
ω1 if q ≤ ρ(ω1, ω2)
ω2 otherwise

(A-16)
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and

u(q) = (1−q)
∫ ωB(q)

max{φ1,ω̄R(ωB(q))}
1{ω:G(ω)≥0}N(ω)dF (ω)+

∫ 1

ωB(q)

N(ω)dF (ω). (A-17)

From Proposition 2, we know that, when φ1 = 0, the regulator sets q = 1. Since

q̂ > ρ(ω1, ω2) > 0 and ω2 > ω̄B, we know that G(ω) > 0 for some ω < ω̄B. In

addition, G(ω̄B) < 0. Let ω′2 = max{ω < ω̄B : G(ω) ≥ 0}. When φ1 = ω′2, it is

optimal to set q = ρ(ω1, ω2) because

u(ρ(ω1, ω2)) = (1− q)
∫ ω1

ω2

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ω1

N(ω)dF (ω)

>

∫ 1

ω2

N(ω)dF (ω) = u(1). (A-18)

Since u(q) is continuous and increasing in φ, and u(1) does not depend on φ1, there

exists φ̂ ∈ (ω̄R(ω1), ω′2), such that, when φ1 < φ̂, the regulator sets q = 1, and

when φ1 ∈ (φ̂, ω′2), the regulator sets q = ρ(ω1, ω2).

Part 3. Observe that φ̄ ∈ (ω1, ω2). If φ1 ∈ (ω2, φ̄), the set Ω0 changes to

{φ1, ω1}. Hence,

ωB(q) =

{
ω1 if q ≤ ρ(ω1, φ1)
φ1 otherwise

(A-19)

and

u(q) = (1− q)
∫ ωB(q)

φ1

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ωB(q)

N(ω)dF (ω). (A-20)

Since u(ρ(ω1, φ1)) > u(1), it is (uniquely) optimal to choose q = ρ(ω1, φ1). The

bank responds by choosing ωB = ω1 and ωR = φ1.

Part 4. If φ1 > φ̄, the set Ω0 includes only one state: max{ω1, φ1}. Hence,
ωB(q) = max{ω1, φ1} for every q ∈ [0, 1]. In this case, the first integral in Eq.

(A-20) equals zero, and any q is optimal.
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Figure 1. The figure illustrates the function v(ω) (in light green) and the function D + N(ω)
1−ω (in

blue). The bank’s ideal investment rule is to invest when the state ω is in the red intervals. This
happens when either (i) ω ≥ 1

x , so the project has positive NPV; or (ii) ω <
1
x , and the green line

is below the blue line.
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Figure 2. The figure illustrates the function v(ω) (in light green) and the function D + N(ω)
1−ω (in

blue) when D = 0.9, x = 1.2, and v(ω) = 0.5. The bank’s ideal investment rule is to invest when
ω ≥ 0.75.
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Figure 3. The figure illustrates the function v(ω) (in light green) and the function D + N(ω)
1−ω (in

blue) when D = 0.9, x = 1.2, and v(ω) = max{0, 4.4ω − 2.64}. The bank’s ideal investment rule is
to invest when ω is in the red intervals.
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II

I

Figure 4. The figure plots the function G(ω) when D = 0.9, x = 1.2, and v(ω) = max{0, 4.4ω−2.64}.
The bank’s private gain from producing information is represented by the ratio of “area I”to “area
II,”where both areas are calculated according to the probability distribution function F .
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Figure 5. The figure illustrates the optimal q as a function of φ1 (black line). The red intervals on
the horizontal axis represent the states in which an unregulated bank wants to invest.
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