
WORKING PAPER 16-25 
LOCALIZED KNOWLEDGE SPILLOVERS: EVIDENCE  

FROM THE AGGLOMERATION OF AMERICAN R&D LABS AND 
PATENT DATA 

Kristy Buzard 
Syracuse University 

Gerald A. Carlino  
Research Department, Federal Reserve Bank of Philadelphia 

Robert M. Hunt 
Payment Cards Center, Federal Reserve Bank of Philadelphia 

Jake K. Carr 
The Ohio State University 

Tony E. Smith 
University of Pennsylvania 

October 2016 



1 

Localized Knowledge Spillovers:  
Evidence from the Agglomeration of American R&D Labs and Patent Data* 

Kristy Buzard 
Syracuse University 

Gerald A. Carlino and Robert M. Hunt 
Federal Reserve Bank of Philadelphia 

Jake K. Carr 
The Ohio State University 

Tony E. Smith 
University of Pennsylvania 

September 2016 

Abstract 

We employ a unique data set to examine the spatial clustering of private R&D labs. Instead of 

using fixed spatial boundaries, we develop a new procedure for identifying the location and size 

of specific R&D clusters. Thus, we are better able to identify the spatial locations of clusters at 

various scales, such as a half mile, 1 mile, 5 miles, and more. Assigning patents and citations to 

these clusters, we capture the geographic extent of knowledge spillovers within them. Our tests 

show that the localization of knowledge spillovers, as measured via patent citations, is strongest 

at small spatial scales and diminishes rapidly with distance.  
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1.  INTRODUCTION 

Popular accounts suggest that research and development (R&D) facilities are highly spatially 

concentrated into comparatively few geographic locations such as Silicon Valley and the Route 

128 Corridor outside Boston. That R&D labs are geographically concentrated is immediately 

evident from examining a national map of the locations of private R&D establishments (Figure 

1). What is not immediately clear from the map is whether the spatial concentration of R&D is 

significantly greater than economic activity in general. The primary purpose of the research 

addressed in this paper is whether the spatial pattern of R&D laboratories observed in Figure 1 is 

somehow unusual; that is, is it different from what we would expect based on the spatial 

concentration of the economic activity? We answer this question by using a new location-based 

data set of private R&D labs to document and analyze patterns in the geographic concentration 

of U.S. R&D labs.    

Rather than using fixed geographic units, such as counties or metropolitan areas, we use 

continuous measures to identify the spatial structure of the concentrations of R&D labs. 

Specifically, we use point pattern methods to analyze locational patterns over a range of selected 

spatial scales (within a half mile, 1 mile, 5 miles, etc.). This approach allows us to consider the 

spatial extent of the agglomeration of R&D labs and to measure any attenuation of clustering 

with distance more accurately.1 

Following Duranton and Overman (2005) — hereafter DO — we look for geographic clusters of 

labs that represent statistically significant departures from spatial randomness using simulation 
                                                 
1 Other studies that have used continuous measures of concentration include Marcon and Puech (2003) for French 
manufacturing firms; Arbia, Espa, and Quah (2008) for patents in Italy; and Kerr and Kominers (2015) in a more 
general model, one application of which uses data on patent citations. See Carlino and Kerr (2015) for a recent 
review of this literature. 
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techniques. We do not assume that “randomness” implies a uniform distribution of R&D 

activity. Rather, we focus on statistically significant departures of R&D labs at each spatial scale 

from the distribution of an appropriately defined measure of economic activity at that scale. This 

is important because studies have shown that manufacturing activity is agglomerated at various 

spatial scales (e.g., Ellison and Glaeser (1997); Rosenthal and Strange, 2001; and Ellison, 

Glaeser, and Kerr, 2010) and the large majority of R&D activity is performed by manufacturing 

firms. Our main results take manufacturing employment as the benchmark, but our findings are 

robust to alternative benchmarks such as manufacturing establishments and science, technology, 

engineering, and math (STEM) workers.   

While this multiple-scale approach is similar in spirit to that of DO, our test statistics are based 

on Ripley’s K-function rather than the “K-density” approach of DO.2 A significant advantage of 

K-functions of which we take advantage is that they can easily be disaggregated to yield 

information about the spatial locations of clusters of R&D labs at various scales. 

We begin the analysis by using global K-function statistics to test for the presence of significant 

clustering over a range of spatial scales. We find strong evidence of spatial clustering at even 

very small spatial scales — distances as small as one-half mile. Clustering exists at these and 

much larger spatial scales. 

Next, we focus on the question of where clustering occurs using a more refined procedure based 

on local K-functions. We introduce a novel procedure called the multiscale core-cluster approach 

to identify the location of clusters and the number of labs in these clusters. Core clusters at each 

scale are identified in terms of those points with the most significant local clustering at that scale. 

                                                 
2 The simulation procedure we use to construct the distribution of counterfactual K-functions takes edge effects into 
account since the same edge effects are present in all counterfactuals.   
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By construction, core clusters at smaller scales tend to be nested in those at larger scales. Such 

core clusters generate a hierarchy that reveals the relative concentrations of R&D labs over a 

range of spatial scales. In particular, at scales of 5 and 10 miles, these core clusters reveal the 

presence of the major agglomerations visible on any map.  

A secondary purpose of this article is to show that the local R&D clusters we identify are 

economically meaningful. In this part of our analysis, we document that patent citations are more 

highly geographically localized within the clusters of R&D labs we identify than outside them. 

To do this, we construct treatment versus control tests for the localization of patent citations in 

the spirit of those found in Jaffe, Trajtenberg, and Henderson (1993), hereafter, JTH. For labs in 

the Northeast Corridor, we find that citations are on average about three to six times more likely 

to come from the same cluster as earlier patents than one would predict using a (control) sample 

of otherwise similar patents. For California, citations are on average roughly three to five times 

more likely to come from the same cluster as earlier patents than one would predict using the 

control sample. Our results are robust to drawing the controls more narrowly from patents that 

share the same patent class and subclass as the citing patents.3 Finally, we show that our results 

persist when we use an alternative method to select the controls (Coarsened, Exact Matching) 

although the tests for the localization of patent citations are at the lower end of our findings, 

particularly in California.  

Thus, using samples of patents 15 to 20 years after those used by JTH — and after the Internet 

significantly reduced the cost of searching for prior art located anywhere — we confirm their 

                                                 
3 As a robustness check, we follow Thompson and Fox-Kean (2005) — hereafter TFK — and substitute six-digit 
technological categories for the three-digit patent class we use to identify controls in our main analysis. The results 
are found to be highly robust with respect to such controls, suggesting that they are not solely a consequence of 
technical aggregation. 
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main result. Moreover, we find that patents inside each cluster receive more citations on average 

than those outside the cluster in a suitably defined counterfactual area. This suggests that the 

geography and scale of the clusters we identify is related to the extent of localization of 

knowledge spillovers, at least as evidenced by patent citations. Moreover, our tests reveal clear 

evidence of the attenuation of the localization effect as distance increases. In other words, the 

localization of knowledge spillovers appears strongest at small spatial scales (5 miles or less) and 

diminishes rapidly with distance. 

2. THEORY AND DATA  

We introduce a novel data set in this paper, based on the 1998 vintage of the Directory of 

American Research and Technology, which profiles the R&D activities of public and private 

enterprises in the United States. The directory includes virtually all nongovernment facilities 

engaged in any commercially applicable basic and applied research. For this paper, our data set 

contains the R&D establishments (“labs”) associated with the top 1,000 publicly traded firms 

ranked in terms of research and development expenditure in Compustat.4 These firms represent 

slightly less than 95 percent of all R&D expenditures reported in the 1999 vintage of Compustat 

for 1998.5 Thus, each lab in our data set is associated with its Compustat parent firm and 

information on its street address and a text description of its research specialization(s) to which 

                                                 
4 We referenced several additional sources both to cross-check the information provided by this directory and to 
supplement it when we could not locate an entry for a Compustat listing. Dalton and Serapio (1995) provide a list of 
locations of U.S. labs of foreign-headquartered firms. In some cases, we found information about the location of a 
firm’s laboratories in the “Research and Development” section of the firm’s 10-K filings with the Securities and 
Exchange Commission. The following company databases were also used to supplement or confirm our main 
sources: Hoover’s Company Records database, Mergent Online, the Harris Selectory Online Database, and the 
American Business Directory. 
5Although we cannot know for sure the impact on the analysis of including smaller labs, if these labs tend to cluster 
near larger labs as is widely believed, then we will underestimate the significance of the labs in our data set. Some 
clusters that fail our tests of significance may indeed be significantly clustered in that case as well, and some cluster 
boundaries may be slightly different than what we identify. Our results on patent citation differentials will not be 
impacted, as these rely on the universe of patents, not only those of the firms who have labs in our data set. 
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we have assigned the corresponding four-digit Standard Industrial Classification (SIC) codes. 

Using the address information for each private R&D establishment, we geocoded the locations of 

more than 3,000 labs (shown in Figure 1).   

In this paper, we analyze two major regions of the U.S.: the Northeast Corridor and the state of 

California. There are 1,035 R&D labs in 10 states comprising the Northeast Corridor of the 

United States (Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, 

New York, Pennsylvania, Rhode Island, and Virginia, including the District of Columbia — the 

Washington, D.C., cluster). There are 645 R&D labs in California.  

Even at the most aggregate level, it is easy to establish that R&D activity is relatively 

concentrated in these two regions. For example, in 1998, one-third of private R&D labs (and 29 

percent of private R&D expenditures) were located within the Northeast Corridor, compared 

with 22 percent of total employment (21 percent of manufacturing employment) and 23 percent 

of the population. California accounted for almost 22 percent of all private R&D labs (and 22 

percent of private R&D expenditures) in 1998 compared with 12 percent of total employment 

(11 percent of manufacturing employment) and 12 percent of the population. Together, these two 

regions accounted for the majority of all U.S. private R&D labs (and private R&D expenditures) 

in 1998.6 This concentration is consistent with Audretsch and Feldman (1996), who report that 

the top four states in terms of innovation in their data are California, Massachusetts, New Jersey, 

and New York. 

In our formal analysis below, we assess the concentration of R&D establishments relative to a 

baseline of economic activity as reflected by the amount of manufacturing employment in the zip 

                                                 
6 Data for private R&D expenditures are from Table A.39 of National Science Foundation (2000). 
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code. These data were obtained from the 1998 vintage of Zip Code Business Patterns. Given that 

the vast majority of our R&D labs are owned by manufacturing firms, manufacturing 

employment represents a good benchmark. It is possible that owners of R&D labs locate these 

facilities using different factors than they use for locating manufacturing establishments. We 

address this concern by using total employment data at the census block level for 2002 from the 

Longitudinal Employer-Household Dynamics (LEHD) survey to identify feasible lab locations 

within each zip code.7  

Table 1 presents summary statistics for zip codes in the Northeast Corridor and in California for 

1998. The average zip code in the Northeast Corridor had about 29 square miles of land area 

with a radius of about 2.5 miles in 1998. Since there were approximately 6,044 zip codes in the 

Northeast Corridor in 1998, there is, on average, one R&D facility for every six zip codes in this 

part of the country. The average zip code in the Northeast Corridor had about 4,300 jobs in 1998, 

13 percent of which were in manufacturing. In California, the average zip code consisted of 

about 96 square miles of land area with an average radius of slightly less than 4 miles. The 

average zip code in California had almost 6,000 jobs in 1998, 14 percent of which were in 

manufacturing. Table 1 also provides descriptive statistics for those zip codes containing one or 

more R&D labs. These zip codes are physically smaller (with a radius of about 2 miles in each 

region) and contain three to four times more employment. 

2.1 Theory 

How do we account for the geographic concentration of R&D activity observed in this paper? 

Much of the theoretical literature on urban agglomeration economies has focused on externalities 

                                                 
7 In Appendix A, we report results of our analyses using manufacturing establishments as an alternative benchmark. 
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in the production of goods and services rather than on invention itself. Nevertheless, the three 

formal mechanisms primarily explored in the literature — sharing, matching, and knowledge 

spillovers — are also relevant for innovative activity.  

2.1.1 Knowledge Spillovers:  

Spatial concentration of economic activity facilitates the spread of tacit knowledge. More than 

most types of economic activity, R&D depends on knowledge spillovers. A high geographic 

concentration of R&D labs creates an environment in which ideas move quickly from person to 

person and from lab to lab. Locations that are dense in R&D activity encourage knowledge 

spillovers, thus facilitating the exchange of ideas that underlies the creation of new goods and 

new ways of producing existing goods.   

2.1.2 Sharing and Matching  

Thick factor markets can arise when innovative activity clusters locally. These clusters allow 

each of their members to benefit as if they had greater scale through: The development of pools 

of specialized workers — such as of STEM workers; and greater variety of specialized business 

services, such as patent attorneys, commercial labs for product testing, and access to venture 

capital. As Helsley and Strange (2002) have shown, dense networks of input suppliers facilitate 

innovation by lowering the cost needed to bring new ideas to fruition. Thick labor markets also 

can improve the quality of matches in local labor markets (Berliant, Reed, and Wang 2006; Hunt 

2007). Also, specialized workers can readily find new positions without having to change 

locations (job hopping).  

2.1.3 Connection Between Theory and Evidence  
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We impose statistical requirements on our tests for localization to determine whether R&D labs 

are clustered. This approach is based on a test of a simple location model (i.e., R&D locations 

are more clustered than would be expected from random draws from the distribution of overall 

manufacturing employment). 

In Section 6, we provide evidence that the clustering of R&D labs is related to knowledge 

spillovers by studying the relative geographic concentration of citations to patents originating in 

the clusters we identify. It’s possible that technologically related activities may cluster to benefit 

from agglomeration forces other than knowledge spillovers (such as sharing and better matching 

of workers and firms). These other sources of agglomeration could potentially explain some of 

the geographic concentration of technologically related research activity. To address this issue, 

our basic approach (JTH’s approach) is to construct a control sample of patents that have the 

same technological and temporal distribution as the citations to account for these other 

agglomeration forces. Our test for knowledge spillovers is whether the citation matching 

frequency is significantly greater than the control matching frequency. Put differently, our test is 

whether citations are more localized relative to what would be expected given the existing 

distribution of technological related activity.8 

3. GLOBAL CLUSTER ANALYSIS 

A key question is whether the overall patterns of R&D locations in the two regions we examine 

exhibit more clustering than would be expected from the spatial concentration of manufacturing 

in those regions. However, since we are interested in possible clustering of R&D labs at scales 

                                                 
8 In Section 6.5.3, we develop an alternative benchmark or backcloth for analyzing R&D clustering with respect to 
STEM workers to address the concern that we may be mingling knowledge spillovers with labor market pooling. As 
we will see, our main findings are highly robust to the use of alternative backcloths.   
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below the average sizes of zip codes, it is necessary to refine this hypothesis. To address this 

question statistically, we start with the null hypothesis that R&D locations are mainly determined 

by the distribution of manufacturing employment.  

We obtained total employment data at the census block level for 2002 from the LEHD survey9 

and used this to identify feasible lab locations within each zip code area.10 Blocks with zero 

employment are clearly infeasible (such as public areas and residential zones), and blocks with 

higher levels of total employment are hypothesized to offer more location opportunities. It is also 

implicitly hypothesized that accessibility to manufacturing within a given zip code area is 

essentially the same at all locations within that zip code. So, even in blocks where there is no 

manufacturing, locations are regarded as feasible as long as there is some type of employment 

present.11  

In summary, our basic null hypothesis, 0H , is that lab locations are influenced by the distribution 

of manufacturing employment at the zip code level and by the distribution of total employment 

within each zip code area.  

Locations consistent with 0H  are then generated by a three-stage Monte Carlo procedure in 

which (i) zip code locations are randomly selected in proportion to manufacturing employment 

levels, (ii) census block locations within these zip codes are selected in proportion to total 

                                                 
9 More specifically, the LEHD offers publicly available Workplace Area Characteristic (WAC) data at the census 
block level as part of the larger LEHD Origin-Destination Employment Statistics (LODES) database. 
10 There are two exceptions that need to be mentioned. First, the state of Massachusetts currently provides no data to 
LEHD. So, here we substituted 2011 ArcGIS Business Analyst Data for Massachusetts, which provides both 
geocoded locations and employment levels for more than 260,000 establishments in Massachusetts. These samples 
were aggregated to the census block level and used to approximate the LEHD data. While the time lag between 1998 
and 2011 is considerable, we believe that the zoning of commercial activities is reasonably stable over time. Similar 
problems arose with the District of Columbia, where only 2010 WAC data were available. 
11 An additional advantage of using total employment levels at scales as small as census blocks is that they are less 
subject to censoring than finer employment classifications. 



11 

employment levels, and (iii) point locations within blocks are selected randomly. It should be 

mentioned that actual locations are almost always along streets and cannot, of course, be random 

within blocks. But, as discussed in Section 3.2 below, blocks themselves are sufficiently small to 

allow such random effects to be safely ignored at the scales of most relevance for our purposes.  

By repeating this procedure separately for the Northeast Corridor (with a set of 1,035n  location 

choices) and for California (with n = 645 location choices), one generates a pattern, 

( ( , ) : 1,.., )i i iX x r s i n   , of potential R&D locations that is consistent with 0H , where 

( , )i ir s represents the latitude and longitude coordinates (in decimal degrees) at point i. This 

process is repeated many times for each R&D location in the data set. In this way, we can test 

whether the observed point pattern, 0 0 0 0( ( , ) : 1,.., )i i iX x r s i n   , of R&D locations is “more 

clustered” than would be expected if the pattern were generated randomly (i.e., randomly drawn 

from the manufacturing employment distribution).  

3.1 K-Functions  

The most popular measure of clustering for point processes is Ripley’s (1976) K-function, ( )K d , 

which (for any given mean density of points) is essentially the expected number of additional 

points within distance d of any given point.12 In particular, if ( )K d  is higher than would be 

expected under 0H , then this may be taken to imply clustering of R&D locations relative to 

manufacturing at a spatial scale d. For testing purposes, it is sufficient to consider sample 

estimates of ( ).K d  If for any given point i in pattern ( : 1,.., )iX x i n  , we denote the number 

                                                 
12 The term “function” emphasizes the fact that values of ( )K d depend on distance, d. 
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(count) of additional points in X within distance d of i by ( )iC d , then the desired sample 

estimate, ˆ ( )K d , is given simply by the average of these point counts (i.e., by 13)    

 
1

1ˆ ( ) ( )
n

i
i

K d C d
n 

  .  (1)            

As described in Section 3, we draw a set of N point patterns, ( : 1,.., ) , 1,..,s s
iX x i n s N   , for 

each of a selection of radial distances, 1( ,.., )kD d d , and calculate the resulting sample K-

functions, ˆ{ ( ) : }, 1,..,sK d d D s N  . For each spatial scale, d D , these values yield an 

approximate sampling distribution of ( )K d  under our null hypothesis, 0H .  

Hence, if the corresponding value, 0ˆ ( ),K d  for the observed point pattern, 0 ,X  of R&D locations 

is sufficiently large relative to this distribution, then this can be taken to imply significant 

clustering relative to manufacturing. More precisely, if the value 0ˆ ( )K d is treated as one 

additional sample under 0H , and if the number of these 1N   sample values at least as large as 

0ˆ ( )K d  is denoted by 0( )N d , then the fraction 

 
0 ( )( )

1
N d

p d
N




  (2)  

is a (maximum likelihood) estimate of the p-value for a one-sided test of hypothesis 0H .  

For example, if 999N   and 0( )N d  = 10 so that ( ) 0.01P d  , then under 0H , there is estimated 

to be only a one-in-a-hundred chance of observing a value as large as 0ˆ ( )K d . Thus, at spatial 

                                                 
13 These average counts are usually normalized by the estimated mean density of points. But since this estimate is 
constant for all point patterns considered, it has no effect on testing results. 
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scale d, there is significant clustering of R&D locations at the 0.01 level of statistical 

significance.  

 3.2 Test Results for Global Clustering 

Our Monte Carlo test for clustering was carried out with 999N   simulations at radial distances, 

{0.25,0.5,0.75,1,2,...,99,100}d D  , (i.e., at quarter-mile increments up to a mile and at one-

mile increments from 1 to 100 miles). Before discussing these results, it should be noted that 

quarter-mile distances are approximately the smallest scale at which meaningful clustering can 

be detected within our present spatial framework. Recall that since locations consistent with the 

null hypothesis are distributed randomly within each census block, they cannot reflect any 

locational constraints inside such blocks. For example, if all observed lab locations are street 

addresses, then, at scales smaller than typical block sizes, these locations will tend to exhibit 

some degree of spurious clustering relative to random locations. If relevant block sizes are taken 

to be approximated by their associated (circle-equivalent) radii, then since the average radius of 

the LEHD blocks with positive employment is 0.15 miles in the Northeast Corridor (ignoring 

Massachusetts) and 0.13 miles in California, this suggests that 0.25 miles is a reasonable lower 

bound for tests of clustering. In fact, the smallest radius used in most of our subsequent analyses 

is 0.5 miles.14 

Given this range of possible spatial scales, our results show that clustering in the Northeast 

Corridor is so strong (relative to manufacturing employment) that the estimated p-values are 

0.001 for all scales considered. The results are the same for California up to about 60 miles, and 

                                                 
14 Since mean values can sometimes be misleading, it is also worth noting that only 6.2 percent of all the LEHD 
block radii exceed 0.5 miles in the Northeast. This percentage is about 4 percent for California. 
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they remain below 0.05 up to about 90 miles. Thus, our conjecture that private R&D activities 

exhibit significant agglomeration is well supported by this data.15  

3.3 Variations in Global Clustering by Spatial Scale   

Further analysis of these sampling distributions (both in terms of Shapiro-Wilk (1965) tests and 

normal quintile plots (not shown)) showed that they are well approximated by normal 

distributions for all the spatial scales tested. So, to obtain a sharper discrimination between 

results at different spatial scales, we calculated the z-scores for each observed estimate, 0ˆ ( )K d , 

as given by 

 
0ˆ ( )( ) , {0.25,0.5,0.75,1, 2,...,99,100}d

d

K d K
z d d

s


    (3) 

where dK  and ds  are the corresponding sample means and standard deviations for the 1N   

sample K-values.  

The z-scores for the Northeast Corridor are depicted in Figure 2a, and those for California are 

shown in Figure 2b. Significance levels decrease nearly monotonically for California, while in 

the Northeast, we see a hump-shaped pattern. The high z-scores are consistent with the 

significance of the Monte Carlo results noted previously but add more detailed information about 

the patterns of significance.16 Observe that in both figures, clustering is most significant at 

                                                 
15 In addition, it should be noted that since 0.001 is the smallest possible p-value obtainable in our simulations (i.e., 
1 ( 1)N   with 999N  ), these results actually underestimate statistical significance in many cases. While N could, 
of course, be increased, this sample size appears to be sufficiently large to obtain reliable estimates of sampling 
distributions under

0
.H  

16 The benchmark value of 1.65z  , shown as a dashed line in both Figures 2a and 2b, corresponds to a p-value of 
0.05 for the one-sided tests of 0H in expression (2) above. 
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smaller scales but exhibits rapid attenuation as scales increase. This pattern is consistent with 

empirical research on human capital spillovers and agglomeration economies mentioned in the 

Introduction.17  

3.4 Relative Clustering of R&D Labs by Industry   

We believe that the distribution of manufacturing employment provides a reasonably objective 

basis for assessing patterns of clustering by private R&D facilities. Nevertheless, the reasons for 

establishing an R&D lab in a particular location may differ from those that determine the 

location of manufacturing establishments. For example, R&D labs may be drawn to areas with a 

more highly educated labor force than would be typical for most manufacturing establishments. 

Some R&D labs may co-locate not because of the presence of spillovers but rather because of 

subsidies provided by state and local governments (as, for example, when technology parks are 

partially subsidized).  

To explore such differences, we begin by grouping all labs in terms of their primary industrial 

research areas at the two-digit SIC level.18 With respect to this grouping, our null hypothesis is 

simply that there are no relevant differences between the spatial patterns of labs in each group 

(i.e., the spatial distribution of labs in any given industry is statistically indistinguishable from 

the distribution of all labs). The simplest formalization of this hypothesis is to treat each group of 

labs as a typical random sample from the distribution of all labs. More precisely, if n is the total 

number of labs (where 1035n   for the Northeast and 645n   for California) and if jn  denotes 
                                                 
17 See Carlino and Kerr (2015) for a review of the literature on the localization of knowledge spillovers. 
18 We assign labs to an industry based on information contained in the Directory of American Research and 
Technology. In the Northeast Corridor, there are 19 industrial groupings corresponding to SICs 10, 13, 20-23, 26-30, 
32-39, and 73. In California, there are 16 industrial groupings corresponding to SICs 13, 16, 20, 26, 28-30, 32-39, 
and 73. The industry names of these SICs are included in Tables 2a and 2b. 
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the number of these labs associated with industry j , then our null hypothesis, 0
jH , for industry 

j  is that the spatial distribution of R&D labs in industry j  is not statistically distinguishable 

from that of a random sample of size jn  from all n labs. Such random samples are easily 

constructed by randomly permuting (reordering) the lab indices 1,..,n  and choosing the first jn  

of these (as is also done in DO). With respect to clustering, one can then compare ˆ ( )K d  values 

for the observed pattern of labs in industry j  with those for set of N such randomly sampled 

patterns and derive both p-values, ( )jP d  and z-scores, ( )jz d  comparable with those in 

expressions (2) and (3), respectively. If ( )jP d  is sufficiently low [or ( )jz d  is sufficiently high], 

then it can be concluded that there is significantly more clustering at scale d for labs in industry 

j  than would be expected under hypothesis 0
jH . 

This has two benefits. First, it sets a much higher bar in our tests of spatial concentration. 

Second, we can implement these tests with very high precision at even the smallest of spatial 

scales. Using this counterfactual method, we find the strongest evidence for the spatial 

concentration of R&D labs occurring at very small spatial scales (such as within a two- to three-

block area). Before reporting the results of these (random permutation) tests, it must be stressed 

that such results are only meaningful relative to the population of all R&D labs, and, in 

particular, allow us to say nothing about clustering of R&D labs in general. But the benefits of 

this approach are two-fold. First, since the pattern of all R&D labs has already been shown to 

exhibit significant clustering relative to manufacturing employment (at all scales tested), the 

present results help to sharpen these general findings. Moreover, while this sharpening could in 

principle be accomplished by simply repeating the global tests above for each industry, the 

present approach avoids all issues of location feasibility at small scales. In particular, since the 
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exact locations of all labs are known, we can use this information to compare relative clustering 

among industries at all scales.  

Turning now to the test results, the p-values for each of the 19 two-digit SIC industries in the 

Northeast Corridor are reported in Table 2a for selected distances. As stated previously, we are 

able to analyze relative clustering at all scales, regardless of how small. In particular, at the 

quarter-mile scale, we find that seven of these 19 industries (37 percent) are significantly more 

localized (at the 0.05 percent level) than are R&D labs in general.19 Moreover, none are 

significantly more dispersed.20 Table 2b reports the p-values for each of the 16 two-digit SIC 

industries in California for selected distances. We find that, at a distance of a quarter-mile, eight 

of these 16 industries (50 percent) are significantly more localized (at the 0.05 percent level) than 

are R&D labs in general.21 Again, none are significantly more dispersed.  

A graphical representation of these results is presented in Figure 3, where the z-scores for each of 

the seven industries in the Northeast with most significant clustering is shown in Figure 3a, and 

those for the seven (of eight) most significant California industries are shown in Figure 3b.22 

Because we are especially interested in the attenuation of z-scores at small scales, these z-scores 

are calculated in increments of 0.25 miles up to five miles. For all but one of these industries in 

the Northeast, the clustering of R&D labs is by far most significant at very small spatial scales — 

                                                 
19 The seven industries are Textile Mill Products; Stone, Clay and Glass; Fabricated Metals; Chemicals and Allied 
Products (this category includes drugs); Instruments and Related Products; Miscellaneous Manufacturing Industries; 
and Business Services.  
20 With respect to dispersion, two of the 19 industries are found to be significantly more dispersed starting at a 
distance of five miles, and a third industry exhibits some degree of relative dispersion at 50 miles.  
21 The eight industries are Chemicals and Allied Products; Rubber Products; Primary Metal Products; Industrial and 
Commercial Machinery; Electronics; Transportation Equipment; Measuring, Analyzing, and Controlling Equipment; 
and Business Services. 
22 To conserve on space, the graph of the z-scores for the Chemicals and Allied Products is not shown in Figure 3b 
since the labs doing R&D in this industry accounted for less than 1 percent of all labs in California.  
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a quarter mile or less. The lone exception is Miscellaneous Manufacturing Industries (SIC 39), 

where the highest z-score occurs at a distance of just under two miles. In California, the 

clustering of R&D labs is most significant at very small spatial scales for only four of the seven 

industries shown in Table 3b. Two of the other industries, Electronics and Business Services 

have local peaks at one-half mile and at one mile, respectively. 

In addition, Figure 3a shows rapid attenuation of z-scores at small scales for all seven industries 

in the Northeast. Moreover, for most of these industries, there is essentially a monotonic decline 

in z-scores at all scales shown. While degrees of significance at larger scales vary among 

industries, the relative clustering of labs in both the Chemicals and Business Services industries 

continues to be significant at all scales shown. (For Business Services in particular, all but one 

these labs are associated with firms engaged in the computer programming or data processing 

subcategories.) Turning to California, Figure 3b shows rapid attenuation of z-scores at small 

scales for four of these seven industries. The other three industries, Industrial and Commercial 

Machinery, Electronics, and Business Services (mostly in the subcategory, Computers and Data 

Processing) exhibit an opposite trend in which relative clusters becomes more significant at 

larger scales. 

Finally, it is of interest to note that three industries are among the most significantly clustered 

industries in both the Northeast and California, namely Chemicals, Business Services, and the 

Manufacturing, Analyzing, and Controlling Equipment industry. Here, the Chemical industry 

(SIC 28) merits some special attention, if for no other reason than this category includes labs 

engaged in pharmaceutical R&D, a very important segment of the U.S. economy. In our data, 

this category of labs accounts for about 40 percent of all labs in the Northeast, a share more than 

twice as large as any other two-digit SIC industry. In California, the Chemicals industry accounts 
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for about 16 percent of the labs we study. Thus, at least within the geographic area we study, this 

industry is seen to be a major contributor to the overall clustering pattern of R&D shown in 

Figures 2a and 2b. But it should be equally clear from Figures 3a and 3b that significant 

clustering occurs in many other industries as well. So, clustering of R&D labs is by no means 

specific to drugs and chemicals. 

4. LOCAL CLUSTER ANALYSIS  

While the above global analysis can identify spatial scales at which clustering is most 

significant, it does not tell us where clustering occurs. In this section, we use a variation of our 

techniques to identify clustering in the neighborhood of specific R&D labs. The main tool for 

accomplishing this is the local version of sample K-functions for individual pattern points (first 

introduced by Getis, 1984).23 This local version at each point i  in the observed pattern is simply 

the count of all additional pattern points within distance d of i . In terms of the notation in 

expression (1) above, the local K-function, ˆ
iK , at point i  is given for each distance, d, by 

 ˆ ( ) ( )i iK d C d .24 (4)   

Hence, the global K-function, K̂ , in expression (1) is simply the average of these local functions. 

4.1 Local Testing Procedure 

                                                 
23 The interpretation of the population local K-function, ( )

i
K d , for any given point i is simply the expected number 

of additional pattern points within distance d of point i. Hence, ˆ ( )
i

K d is basically a single-sample (maximum 

likelihood) estimate of ( )
i

K d . For a range of alternative measures of local spatial association, see Anselin (1995).  

24 It should be noted that the original form proposed by Getis (1984) involves both an “edge correction” based on 
Ripley (1976) and a normalization based on stationarity assumptions for the underlying point process. However, in 
the present Monte Carlo framework, these refinements have little effect on tests for clustering. Hence, we choose to 
focus on the simpler and more easily interpreted “point count” version above.  
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For the local testing procedure, we use the same null hypothesis employed in Section 3: R&D 

labs are distributed in a manner proportional to manufacturing employment at the zip code level 

and proportional to total employment at the block level.25 The only substantive difference from 

the procedure used in that section is that the location, ix , of point i  is held fixed. The appropriate 

simulated values, ˆ ( ), 1,..,s
iK d s N , under 0H  are obtained by generating point patterns, 

( : 1,.., 1) , 1,..,s s
jX x j n s N    ,  representing all 1n   points other than i . The resulting p-

values for a one-sided test of 0H  with respect to point i  then take the form,  

 
0 ( )( ) , 1,..,

1
i

i

N d
P d i n

N
 


,  (5) 

where 0( )iN d  is again the number of these 1N   draws that produce values at least as large as 

0ˆ ( )iK d .  

An attractive feature of these local tests is that the resulting p-values for each point i  in the 

observed pattern can be mapped. This allows one to check visually for regions of significant 

clustering. In particular, groupings of very low p-values serve to indicate not only the location 

but also the approximate size of possible clusters. Such groupings based on p-values necessarily 

suffer from “multiple testing” problems, which we address in later sections and more 

systematically in Appendix B.   

4.2 Test Results for Local Clustering  

                                                 
25 Later in the paper, we replace manufacturing employment with manufacturing establishments and STEM workers 
as robustness checks. 
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For our local cluster analyses, simulations were again performed using 999N   test patterns of 

size 1n  for each of the n (=1,035 in the Northeast Corridor and 645 in California)  R&D 

locations in the observed pattern, 0X . The set of radial distances (in miles) used for the local 

tests was {0.25,0.5,0.75,1,2,5,10,11,12..,100}D  . But, unlike the global analyses previously in 

which clustering was significant at all scales, there is considerable variation in significance levels 

across labs located at different points in space. For example, it is not surprising to find that many 

isolated R&D locations exhibit no local clustering whatsoever. Moreover, there is also 

considerable variation in significance at different spatial scales. At very large scales (perhaps, 50 

miles), one tends to find a few large clusters associated with those mega regions containing most 

of the labs (within the Washington–Boston corridor or the San Francisco Bay Area). At very 

small scales (say 0.25 miles), one tends to find a wide scattering of small clusters, mostly 

associated with locations containing multiple labs (such as industrial parks). In our present 

setting, the most meaningful patterns of clustering appear to be associated with intermediate 

scales between these two extremes.   

A visual inspection of the p-value maps generated by our test results showed that the clearest 

patterns of distinct clustering can be captured by the three representative distances, {1,5,10}D  . 

Of these three, the single best distance for revealing the overall clustering pattern in the entire 

data set appears to be five miles, as illustrated for the Northeast Corridor and California in 

Figures 4a and 4b, respectively.26 As seen in the legend, those R&D locations, i , exhibiting 

maximally significant clustering [ (5) 0.001iP  ] are shown in black, and those with p-values not 

exceeding 0.005 are shown as dark gray. Here, it is evident that essentially all of the most 

significant locations occur in four distinct groups in the Northeast Corridor, which can be 
                                                 
26 In the Appendix B, we report results for all distances in D as a robustness check.   
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roughly described (from north to south) as the “Boston,” “New York City,” “Philadelphia,” and 

“Washington, D.C.,” agglomerations.27 In California, there are again three distinct groups, 

roughly described (from north to south) as “San Francisco Bay Area,” “Los Angeles area 

(mainly Irvine),” and “San Diego.” While these patterns are visually compelling, it is important 

to establish such results more formally. 

5. IDENTIFYING SPATIAL CLUSTERS  

The global cluster analysis in Section 3 identified the scales at which clustering is most 

significant (relative to manufacturing employment). The local cluster analysis in Section 4.1 

provided information about where clustering is most significant at each spatial scale. But neither 

of these methods formally identifies or defines specific “clusters” of labs. In this section, we 

apply some additional techniques to identify clusters, which we call the multiscale core-cluster 

approach.  

As discussed in Appendix B, a number of cluster-identification techniques have been developed 

to identify sequences of clusters that are individually “most significant” in an appropriate 

sense.28 The present approach is based more directly on the K-function methods previously, and 

in particular, focuses on the multiscale nature of local K-functions. More specifically, this 

clustering procedure starts with the local point-wise clustering results in Section 4.1 and seeks to 

identify subsets of points that can serve as “core” cluster points at a given selection of relevant 

scales, d. Here, we again focus on the three scales, {1,5,10}D  , used in Section 4.1. At each 

scale, d D , we define a core point to be a maximally significant R&D lab, i.e., with a local K-
                                                 
27 Two exceptions are the small but significant agglomerations identified in the analysis — one in Pittsburgh and 
one in Buffalo. 
28 This sequential approach is designed specifically to overcome the problem of “multiple testing,” as discussed 
further in Appendix B. 
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function p-value of 0.001 (using the 999 simulations of K at distance d in Section 5.1). In order 

to exclude “isolated” points that simply happen to be in areas with little or no manufacturing, we 

also require that there be at least four other R&D labs within this d-mile radius. Finally, to 

identify distinct clusters of such points, we create a d-mile-radius buffer around each core point 

(in ArcMap). We designate the set of points (labs) in each connected component of these buffer 

zones as a core cluster of points at scale d. Hence, each such cluster contains a given set of 

“connected” core points along with all other points that contributed to their maximal statistical 

significance at scale d. These concepts are best illustrated by examples. 

We begin with the single most striking example of multiscale clustering in our data set, namely 

the San Francisco Bay Area in California shown in Figure 5. Starting at the 10-mile level, we see 

one large cluster (represented by dashed gray curve), that essentially covers the entire Bay Area. 

At the five-mile level (represented by solid gray curves), the dominant core cluster is seen to be 

perfectly nested in its 10-mile counterpart, corresponding almost exactly to what is typically 

regarded as Silicon Valley. The smaller secondary cluster of labs is approximately centered 

around the Lawrence Livermore National Laboratory complex. Finally, at the one-mile level 

(represented by black curves), the heaviest concentration of core clusters essentially defines the 

traditional “heart” of Silicon Valley, stretching south from the Stanford Research Park area to 

San Jose. In short, this statistical hierarchy of clusters is in strong agreement with the most well-

known R&D concentrations in the San Francisco Bay Area. 

A second example, from the Northeast Corridor, is provided by the hierarchical complex of R&D 

clusters in the Boston area, shown in Figure 6a. Here again, the entire Boston area is itself a 

single 10-mile cluster. Moreover, within this area, there is again a dominant five-mile core 

cluster containing the five major one-mile clusters in the Boston area. The largest of these is 
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concentrated around the university complex in Cambridge, while the others are centered at points 

along Route 128 surrounding Boston. This is seen more clearly in Figure 6b,29 which also shows 

that most R&D labs in the Boston area are located in close proximity to major transportation 

routes, including Interstate Routes 90, 93, 95, and 495.  

Note, finally, that while the clusters in both Figures 5 and 6a tend to be nested by scale, this is 

not always the case. For example, the five-mile “Livermore Lab” cluster in Figure 5 is seen to be 

mostly outside the major 10-mile cluster. Here, there is a concentration of six R&D labs within 

two miles of each other, although Livermore is relatively far from the Bay Area. So, while this 

concentration is picked up at the five-mile scale, it is too small by itself to be picked up at the 10-

mile scale. 

These examples illustrate the attractive features of the multiscale core-cluster approach. First and 

foremost, this approach adds a scale dimension not present in other clustering methods. In 

essence, it extends the multiscale feature of local K-functions from individual points to clusters 

of points. Moreover, this approach helps to overcome the particular limitations of significance-

maximizing approaches mentioned previously. First, the shapes of individual core clusters are 

seen to be more sensitive to the actual configuration of points than those found in significance-

maximizing methods.30 In addition, since all core clusters are determined simultaneously, the 

path-dependency problem of sequential methods does not arise.  

In summary, an overall depiction of core clusters for both the Northeast Corridor and California 

(at scales, 5,  10d  ) is shown in Figures 7a and 7b, respectively. Figure 7a shows the four major 

clusters identified for the Northeast Corridor (one each in Boston, New York/Northern New 
                                                 
29 For visual clarity, only core cluster points (and not their associated buffers) are shown in Figure 6b. 
30 This point is demonstrated in Appendix B. 
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Jersey, Philadelphia/Wilmington, and Washington, D.C.), while Figure 7b shows the three major 

clusters in California (one each in the Bay Area, Los Angeles, and San Diego).  

Finally, it should be stressed that this multiscale approach is not a substitute for more standard 

approaches such as significance-maximizing. While it does yield a meaningful hierarchy of 

statistically significant clusters, it provides no explicit method for rank ordering clusters in terms 

of statistical significance. In particular, this approach by itself cannot be used to gauge the 

relative statistical significance of clusters (such as determining whether clustering in Boston is 

more significant than in New York). Moreover, such representational schemes presently offer no 

formal criteria for choosing the key parameter values by which they are defined (the d-scales to 

be represented, the p-value thresholds and d -neighbor thresholds for core points, and even the 

connected-buffer approach to identifying distinct clusters).31 Thus, the primary objective of this 

more heuristic procedure is to produce explicit representations of clusters that capture both their 

relative shapes and concentrations in a natural way. The ultimate value of such clusters for our 

purposes can only be determined by testing their economic significance — to which we now 

turn.  

6. CLUSTERING OF R&D LABS AND CLUSTERING OF PATENT CITATIONS 

So far, we have established a body of evidence demonstrating that R&D labs are indeed 

clustered, and we have posited a method for identifying specific clusters in space. In this section, 

we test whether these clusters are related to knowledge spillovers that are potentially attenuated 

by distance. To do this, we study the relative geographic concentration of citations to patents 

                                                 
31 It should be noted that certain, more systematic procedures may be possible. For example, the selection of “best 
representative” d-scales could be in principle accomplished by versions of k-means procedures in which the within-
group versus between-group variations in patterns are minimized.  
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originating in our clusters. These citations are a concrete indication of the transmission of 

information from one inventor to another. 

We follow the general approach developed in JTH, but it is modified to reflect the geographic 

clustering of R&D labs we identify in this paper. As described earlier, JTH test for the 

“localization” of knowledge spillovers by constructing measures of geographic concentration of 

citations contained in two groups of patents — a treatment group and a control group. The 

treatment group represents a set of patents that cite a specific, earlier patent obtained by an 

inventor living in a particular geographic area (in the JTH study either a state or a metropolitan 

area). For each treatment patent, JTH use a process to select a potential control patent that is 

similar to the treatment patent but does not cite the earlier patent. For patents in the treatment and 

control groups, JTH calculate the proportion of those patents obtained by an inventor living in 

the same geographic area as the inventor of the earlier patent. The difference of these two 

proportions is a test statistic for the localization of knowledge spillovers. In their study, JTH 

found that, relative to the pattern reflected in the sample of control patents, patent citations were 

two times more likely to come from the same state and about two to six times more likely to 

come from the same metropolitan area. 

We construct a comparable test statistic, with several refinements, and we substitute the R&D 

clusters identified in Section 5 for the state and metropolitan area geography used by JTH. This 

provides us with an alternative way to test for possible localized knowledge spillovers at much 

smaller spatial scales than are found in much of the preceding literature. Recall that the 

boundaries of our clusters are determined by interrelationships among the R&D labs in our 

sample and, therefore, should more accurately reflect the appropriate boundaries in which 

knowledge spillovers are most likely to be at work. In that sense, the geography of our clusters 
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should be better suited for studying knowledge spillovers than states, metropolitan areas, or other 

political or administrative boundaries.   

6.2 Construction of the Citations Data Set 

For this analysis, we use data obtained from the NBER Patent Data Project.32 The data span the 

years 1996–2006. We identify the inventors on a patent using data on inventor codes found in the 

Patent Network Dataverse (Lai, D’Amour, and Fleming, 2009). Patents are assigned to locations 

based on the zip code associated with the residential address of the first inventor on the patent.33 

We do not use the address of the assignee (typically the company that first owned the patent) 

because this may not reflect the location where the research was conducted (e.g., it may be the 

address of the corporate headquarters and not the R&D facility). While it’s possible that an 

inventor’s home lies outside of a cluster while his professional work takes place inside a cluster, 

this type of measurement error would bias our results against finding significant location 

differentials. As a robustness check, we repeated our main analysis using the zip code of the 

second inventor on the patent. While the sample size is smaller because not all patents list two or 

more inventors, the results were virtually the same as we report below. 34  

For our tests, we rely primarily on the boundaries identified by our five-mile and 10-mile core 

clusters located in the Northeast Corridor and in California.35 For each core cluster at a given 

scale, we assemble four sets of patents. The first set, which we call originating patents, represent 

                                                 
32 See https://sites.google.com/site/patentdataproject/. We use the files pat76_06_assg.dta and cite_7606.dta. 
33 We used the location information contained in the file inventors5s_9608.tab downloaded from 
http://dvn.iq.harvard.edu/dvn/dv/patent. Note that this approach implies that our inventors are located at the centroid 
of the zip code where they live. We have zip codes information for almost 99 percent of the patents with a first 
inventor residing in the United States. 
34 Results are available from the authors upon request. 
35 In Section 6.4.1 that follows, we report comparable tests for larger and smaller clusters. 
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those patents granted in the years 1996–1997 by an inventor living in the cluster. We call the 

second set of patents citing patents. These consist of all subsequent patents, including patents 

where the residential address of the first inventor is located outside the U.S., that cite one or 

more of the originating patents, after excluding patents with the same inventor or that were 

initially assigned to the same company as the originating patent. We exclude these self-citations 

because these are unlikely to represent the knowledge spillovers we seek to identify.36  

For every citing patent, we attempt to match it to an appropriate control patent. When we are 

successful, we include the citing patent in a set we call treatment patents and the matched patent 

in a set we call control patents. We select control patents using the following approach. For a 

given citing patent, the set of potential control patents must have an application date after the 

grant date of the originating patent that is cited. Potential control patents also cannot cite the 

originating patent. The application date of potential control patents must be within one year (six 

months on either side) of the application date of the treatment patent. Finally, as was done by 

JTH, potential control patents must have the same three-digit primary patent class as the 

treatment patent.37 In this way, potential controls are drawn from patents in the same 

technological field. 

The set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may 

affect our tests, we randomized the order in which treatment patents were matched to control 

patents, and we randomized the selection of a specific control patent when there was more than 

                                                 
36 We do this using the pdpass variable in the data set pat76_06_assg and the Invnum in the Consolidated Inventor 
Dataset. For details, see Lai, D’Amour, and Fleming (2009). 
37 We match on the variable class in the data set pat76_06_assg. This is the original primary classification of the 
patent. We feel it is important to use a “real time” classification because these are what other researchers might rely 
upon around the time a patent was issued. 
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one potential control patent from which to choose.38 The main results reported below allow for 

the selection of control patents with replacement. In other words, a given control patent may be 

matched to more than one citing patent. As a robustness check (not shown), we repeat the 

analysis by sampling potential controls without replacement.39 In this case, a potential control 

patent can be matched with one citing patent at most. While this reduces the rate at which we can 

match control patents to citing patents, it does not materially affect the test statistics.40 

6.3 The Test Statistics 

For any given cluster scale, d  ( 5,  10 ) , let o denote the number of originating patents indexed 

0{ : 1, , }io i    that were granted to inventors living in one of the core clusters at scale d in the 

years 1996–1997.41 Let i denote the number of subsequent citations { : 1, , }ij ic j    to io  

(after removing self-citations) over the years 1996–2006. For each of these citing patents, ijc , 

designated as treatment patents, we attempted to identify a unique control patent, ijc , with the 

same three-digit patent class and with an application date within one year of the treatment patent 

                                                 
38 Two random numbers are assigned to each citing patent. The first is used to set the order in which citing patents 
are matched. The second is used, in conjunction with a random number assigned to every potential control patent, to 
select a patent associated with the minimum absolute difference between the two random numbers. In JTH, when 
multiple potential control patents exist, they select the one with a grant date that is nearest to the grant date of the 
treatment patent as the control the patent. 
39 Randomization of the order of matching control patents to citing patents should rule out any bias resulting from an 
unknown systematic pattern in the timing of patents being issued for specific technology fields. One concern is that 
our sampling procedure could violate the independence of the control group and the treatment (citing) group. This is 
possible if a control patent also appears in the set of treatment patents — if the control patent for one treatment 
patent is a citing patent for a different originating patent. We find that these two groups are independent since there 
is absolutely no overlap between the citing patents and control patents either in the Northeast Corridor or the 
California samples. 
40 These results are available from the authors upon request. 
41 The following formulation of the proportions used for testing purposes is based largely on Murata et al. (2015). 
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(see previous description). We are not always successful in doing so. Let ( )i i  denote the 

number of treatment patents, ijc , for which a control, ijc , was found.  

Among these i  treatment patents, we count the number of patents, im , for which the residential 

address of the first inventor on the citing patent is located in the same core cluster as the 

originating patent it cites. The fraction of all such patents at scale d, i.e., the treatment 

proportion, is given by42  
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Similarly, let im  denote the number of matched control patents, ijc , in which the residential 

address of the first inventor is located in the same cluster as the originating patent cited by the 

treatment patent. The control proportion is then given by 
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The resulting test statistic is simply the difference between these proportions, i.e., p p  . Under 

the null hypothesis of “no localization of knowledge spillovers,” this difference of independent 

proportions is well known to be asymptotically normal with mean zero and thus provides a well-

defined test statistic.43 

                                                 
42 The dependency of fraction, p (and all other quantities in (6)) is taken to be implicit.  

43 In JTH, the standardized test statistic, ( ) / [ (1 ) (1 )] /p p p p p p n      , is asserted to be t distributed. In fact, 
the t distribution is not strictly accurate. However, for the present large sample size, 50, 000,n  this is of little 
consequence since the t and standard normal distributions are virtually identical. 
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6.4 Main Results 

Table 3a presents the results of our localization or matching rate tests among five-mile clusters in 

the Northeast Corridor, while Table 3b shows the results for the 10-mile clusters. As the last row 

of Table 3a shows, inventors living in the five-mile clusters obtained 8,526 patents in 1996– 

1997 (column A). Those patents subsequently received 76,730 citations from other patents 

during the sample period (column B). Our matching algorithm, with replacement, was able to 

match 85 percent of the citing patents with an appropriate control patent (column H). Among the 

treatment patents, 3.69 percent (column G) had a first inventor living in the same cluster as the 

patent it cited; this is the treatment proportion. Among the control patents, only 0.62 percent 

(column J) had a first inventor living in the same cluster as the patent cited by the treatment 

patent; this is the control proportion. As shown in the next to the last column of the table, on 

average, a given patent citing an earlier patent in a five-mile cluster is a little more than six times 

as likely to have a first inventor living in that cluster than would be expected by chance alone. 

This value is on the higher side of the range reported by JTH for their test of localization at the 

metropolitan area level. As the last row of the table 3a shows, the difference between the 

treatment and control proportions is highly statistically significant (column L). In addition, the 

location differential — defined as the ratio of treatment and control proportions — is at least 

around 3.0.  

Table 3b presents the results of our localization tests among 10-mile clusters in the Northeast 

Corridor. At a somewhat larger spatial scale, we find there are more originating patents, more 

citing patents, and, thus, more treatment and control patents. Both the treatment and control 

proportions (columns G and J) are higher than was found among the five-mile clusters. The t 

statistic associated with the difference in these proportions is even higher than was found for the 
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smaller clusters. At the same time, the location differential is somewhat smaller. On average, a 

given patent citing an earlier patent in a 10-mile cluster is 3.6 times as likely to have a first 

inventor living in that cluster than would be expected by chance alone. This value is on the lower 

side of the range reported by JTH for their test of localization at the metropolitan area level. 

There are a number of specific clusters where this differential is substantially higher. For 

example, the location differential is more than twice the four cluster average in the Washington, 

D.C., and Philadelphia clusters, and a little more than one-third higher in the Boston cluster.  

Tables 4a and 4b present the results of our localization tests among five- and 10-mile clusters, 

respectively, in California. Compared with the Northeast Corridor, we find many more 

originating patents, citing patents, and, therefore, treatment and control patents. The treatment 

proportions (column G) among the California clusters are much higher than those found in the 

Northeast Corridor. However, this is driven almost entirely by the cluster association with 

Silicon Valley. The control proportions (column J) are also larger than we found in the Northeast 

Corridor. The t-statistic for the difference in treatment and control proportions (column L) is 

highly significant for all the five-mile and 10-mile clusters. On average, a given patent citing an 

earlier patent in a five- or 10-mile cluster in California is four to four and a half times as likely to 

have a first inventor living in that cluster than would be expected by chance alone.  

It is worth noting that there is significant cross-cluster variation. For 5-mile clusters in the 

Northeast, the location differentials for Philadelphia and Washington D.C. are more than twice 

the average. The largest location differential among our baseline results is 45.5 for the 5-mile 

Los Angeles cluster; this is ten times the average for 5-mile clusters in California. 



33 

To summarize, the clusters of R&D labs identified using our multicore approach appear to 

coincide with the geographic clustering of patent citations, an often-cited indicator of knowledge 

spillovers. The following section develops these results further and discusses a number of 

robustness checks. 

6.5 Additional Results and Robustness Checks 

6.5.1 The Relationship Between Citation Location Differentials and Spatial Scale 

The statistics in the preceding tables suggest that there may be a systematic relationship between 

the size of clusters we study and the magnitude of location differentials we find. To explore this 

further, we extended our analysis to consider clusters at spatial scales of 20 miles. We 

summarize the results in Tables 5a and 5b.  

A number of patterns are evident from the table. First, the increase in the number of originating 

patents associated with larger core clusters falls off because a number of clusters that are 

significant at smaller spatial scales are not significant at the larger spatial scales. The treatment 

and control proportions tend to increase as we consider larger core clusters. The difference 

between these proportions becomes more and more statistically significant as the sample size 

rises. At the same time, the location differential falls monotonically as the geographic size of the 

clusters increases. These results suggest that the core clusters are picking up knowledge 

spillovers over a variety of spatial scales. Nevertheless, the localization effects appear to be 

largest at spatial scales of five miles and perhaps less. This is also consistent with what we found 

in the results of our Global K analysis described earlier. And as already noted, the attenuation in 
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the localization differential as cluster size increases is a typical finding in studies examining 

localized knowledge spillovers.44 

6.5.2 Are Patents Obtained in Our Clusters More Influential?  

In this section, we investigate whether patents obtained by inventors living within our core 

clusters are somehow more important, or at least better known, than patents obtained outside of 

these clusters. We rely on a common metric of patent quality — the number of citations 

received.45 We develop a “counterfactual” region for each of the 10-mile core clusters identified 

in Section 5. For example, the New York cluster is compared with the region outside of that 

cluster contained in states of New York, Connecticut, and northern New Jersey. The Boston 

cluster is compared with the region outside of the cluster in the states of Massachusetts, New 

Hampshire, and Rhode Island. In Table 6, we report a simple difference in means test for the 

number of citations per patents received by patents located inside or outside our clusters. For all 

our clusters, the average number of citations received by patents is greater inside the cluster 

compared with the average citations received outside the respective cluster; this difference in 

citations is statistically significant in all clusters except one (Philadelphia).  

These results, combined with the results for the localization of citations, suggest there is prima 

facie evidence that the inventions developed within our clusters are more influential than 

inventions developed outside a cluster but within the same region of the country. An alternative 

explanation, which we cannot entirely rule out, is that patents within a cluster receive more 

citations because they are often cited by inventors living nearby. According to this reasoning, the 

                                                 
44 See Carlino and Kerr (2015) for a review of studies documenting attenuation in knowledge spillovers as cluster 
size increases. 
45 Hall, Jaffe, and Trajtenberg (2005) show that a one-citation increase in the number of patents in a firm’s portfolio 
increases its market value by 3 percent. For additional evidence, see Trajtenberg (1990). 
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inventions may not necessarily be better, but they are better known by researchers in the area. 

This interpretation only reinforces the evidence of localized knowledge spillovers in our clusters. 

6.5.3 Alternative Approaches to Identifying Cluster Boundaries 

In addition to clustering to take advantage of knowledge spillovers, it is also possible that R&D 

activity is geographically concentrated to take advantage of labor market pooling. As we have 

shown, one important concentration of R&D labs is found in around Cambridge, MA, and 

another important clustering is found in Silicon Valley. These labs are close to large pools STEM 

graduates and workers, the very workers R&D activity requires. Manufacturing activity tends to 

employ a more general workforce than does innovative activity and may therefore be more 

geographically dispersed compared with innovative activity.   

To address the concern that we may be intermingling knowledge spillovers with labor market 

pooling, we first develop a measure of STEM workers by location.46 For our backcloth, we 

replace the number of manufacturing employees in each zip code area with an estimate of the 

number of STEM workers. This is constructed using the proportion of STEM jobs in each four-

digit NAICs industry multiplied by the number of jobs in each industry reported in the zip code 

business patterns data. We report the results of this alternative test for five- and 10-mile clusters 

in the Northeast Corridor (Tables 7a and 7b) and in California (Tables 8a and 8b). Note that the 

cluster definitions change when the backcloth changes, so the list of clusters in these tables 

differs from those in Tables 3 and 4. With the exception of the five-mile clusters in the Northeast 

Corridor, the average location differentials using the STEM worker backcloth are virtually the 

                                                 
46 We use the taxonomy of STEM occupations found at http://www.bls.gov/oes/stem_list.xlsx. For details, see 
Watson (2014). This taxonomy is mapped to the 2010 vintage of the Standard Occupational Classifications (SOCs). 
We map back to the 2000 vintage of the SOCs so we can use the 2002 job counts from the Occupational 
Employment Statistics to calculate STEM employment “intensity” by industry. 
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same as for the baseline findings. The location differential falls from 6.0 for the five-mile 

clusters in the Northeast Corridor when considering the baseline results to 4.2 for the results 

when the clusters are based on STEM workers. For the most part, the findings reported for the 

location differentials in the baseline (and subsequent analysis) suggest little, if any, upwardly 

bias as a result of labor market pooling. 

6.5.4 Alternative Approaches to Identifying Control Patents 

As discussed in footnote 3, there has been some debate in the literature as to the best way of 

implementing a technological similarity requirement based on patent classifications. JTH 

identify potential control patents within the same three-digit primary patent class as the treatment 

patent. TFK suggest that the potential controls should be drawn more narrowly from patents that 

share the same patent class and subclass as the citing patent. They find that tests using this 

alternative approach reduce the size and significance of the localization ratios, especially at 

smaller geographies. 

The results presented in Section 6.3 are based on the JTH approach of limiting potential control 

patents to ones that share the same three-digit primary class as the citing patent. As a robustness 

check, we implement one version of the matching requirements tested in TFK. We restrict 

potential control patents to ones that share the same primary class and subclass as the citing 

patent.47 Our methodology is otherwise the same as we describe in Section 6.2. We report the 

results of this alternative test for five- and 10-mile clusters in the Northeast Corridor (Tables 9a 

and 9b) and in California (Tables 10a and 10b). Comparing these results with our baseline results 

(Tables 3a and 3b) and (4a and 4b), there are very small differences in the treatment and control 

                                                 
47 This is analogous to the test reported in Table 3 column (6) in TFK. 
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proportions. The t-statistics using the TFK approach are only slightly smaller than they are when 

using the JTH approach, but they are nevertheless very large. We conclude that our results do not 

appear to be sensitive to the choice of technology controls. 

More recently, methods for constructing a matched sample of treatment and control groups has 

evolved. Specifically, Coarsened Exact Matching, CEM, (Iacus, King, and Porro, 2011) can be 

used to improve the balance between the treated group (citing patents) and the control group.48 In 

addition to matching on the application year of the patent and the patents three-digit technology 

classification, we also matched discrete bins on two additional variables: 1) the year the patent 

was granted; and 2) the number of citations a patent received (allcites). We relied upon the CEM 

algorithm in STATA to coarsen the matched bins based on an optimization of an objective 

function rather than arbitrarily assigning cut points to the bins.  

We use the CEM matched controls in several ways. First, we follow the JTH location differential 

approach used in producing Tables 3 and 4, our baseline findings, but use the CEM controls. For 

this approach, we exclude patents with the same inventor or that were initially assigned to the 

same company as the originating patent.49 The results are reported in Tables 11 (for the 

Northeast Corridor) and Table 12 (for California). The location differentials are uniformly 

smaller than we previously reported for the broad cluster in the Northeast Corridor and in 

California. On average, a given patent citing an earlier patent in a five-mile cluster in the 

Northeast Corridor is 4.5 times as likely to have a first inventor living in that cluster than would 

                                                 
48 We thank an anonymous referee for suggesting CEM approach for selecting controls.  
49 For this approach, the set of potential control patents for a given treatment patent may overlap with the set of 
potential controls for other treatment patents. To rule out any possibility that this overlap may affect our tests we 
randomized the order in which treatment patents were matched to control patents, and we randomized the selection 
of a specific control patent when there was more than one potential control patent from which to choose. The results 
reported below allow for the selection of control patents with replacement. 
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be expected by chance alone, compared with a differential of 6.0 reported in our baseline results. 

The location differential in California’s five-mile cluster falls to 2.5 when using the CEM 

matched controls from 4.5 reported for baseline. The location differential in the Northeast 

Corridor 10-mile cluster falls to 2.8 (when using the CEM-matched controls) from 3.6 reported 

for baseline. In the California 10-mile cluster, the location differential falls to 2.5 from 4.2 

reported for baseline.   

In our second approach, we estimate a logistic model of the likelihood that a patent in cluster h  

cites an originating patent in that cluster: 

 0 1h h hT D       

where hT is an indicator variable that equals one for observations corresponding to a treated patent 

(a patent that cites at least one originating patent in cluster h) and zero for the corresponding 

control patent; hD  is an indicator variable that equals one if the patent originates in cluster h, 

zero otherwise; and h  is a random error term. For this approach, we do not exclude patents with 

the same inventor or that were initially assigned to the same company as the originating patent. 

We report robust standard errors. The observations are weighted based on the number of CEM-

matched controls found for each treated observation. The results are reported in Table 13. The 

estimated coefficients, ( )hD


, are positive and significant supporting the findings reported in 

Tables 11 and 12.  

Finally, to facilitate comparison, the main results found for location differentials are summarized 

in Table 14. The table shows the results when R&D clustering is analyzed with respect to 

manufacturing employment (baseline); or STEM workers; and when the controls are 
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alternatively selected to share the same patent class and subclass as the citing patents 

(disaggregated), or when the controls are selected using more stringently matched samples 

(CEM). Regardless of the specification chosen to construct the location differentials, we find that 

citations are at least about 2.5 times more likely to come from the same cluster as earlier patents 

than one would predict using a control sample of otherwise similar patents. 

7. CONCLUDING REMARKS  

In this article, we use a new data set on the location of R&D labs and several distance-based 

point pattern techniques to analyze the spatial concentration of the locations of more than 1,700 

R&D labs in California and in a 10-state area in the Northeast Corridor of the United States. 

Rather than using a fixed spatial scale, we describe the spatial concentration of labs more 

precisely, by examining spatial structure at different scales using Monte Carlo tests based on 

Ripley’s K-function. Geographic clusters at each scale are identified in terms of statistically 

significant departures from random locations reflecting the underlying distribution of economic 

activity. We present robust evidence that private R&D labs are indeed highly concentrated over a 

wide range of spatial scales.  

We introduce a novel way to identify the spatial clustering of labs called the multiscale core-

cluster approach. The analysis identifies four major clusters (one each in Boston, New York-

northern New Jersey, Philadelphia–Wilmington, and Washington, D.C.,) in the Northeast 

Corridor and three major clusters in California (one each in the Bay Area, Los Angeles, and San 

Diego).   

To verify that these local clusters are economically meaningful, we apply tests developed by JTH 

to measure the degree to which patent citations are localized in these clusters — tangible 
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evidence that knowledge spillovers are geographically mediated. For labs in the Northeast 

Corridor, we find, on average, that citations are about three to six times more likely to come from 

the same cluster as earlier patents than one would predict using a (control) sample of otherwise 

similar patents. In California, citations are roughly around three to five times more likely to 

come from the same cluster as earlier patents than one would predict using the control sample.  

These localization ratios are at least as large as those reported by JTH, a conclusion that was in 

no way foregone since the spread of the Internet and patent databases drastically reduced the 

costs of searching patent applications by the early to mid-1990s. We also show that patents 

inside each cluster receive more citations on average than those outside the cluster in a suitably 

defined counterfactual area. In their study, JTH provide estimates of localization of knowledge 

spillovers that are averaged over the metro areas or states used in their study. But much 

information is lost regarding differences in the localization of knowledge spillovers in specific 

geographic areas. In this article, we show that such differences can be quite substantial. The 

results are robust to a number of alternative specifications for selecting control patents.  
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Table 1: Summary Statistics  

Northeast (10-State) 
Variable Mean Std. Dev. Median Minimum Maximum 

  All Zip Codes (6,044) 
Land Area, miles2 29.10 37.61 16.87 0.01 468.16 
Radius* 2.55 1.66 2.32 0.06 12.21 
Total Employment 4,307.22 8,994.78 1,001.00 0.00 194,114.00 
Manufacturing Employment 557.20 1,213.46 76.30 0.00 22,808.31 
Total Establishments 250.36 370.76 97.00 1.00 6,962.00 
Manufacturing Establishments 11.39 16.65 4.00 0.00 132.00 
Labs 0.17 0.74 0.00 0.00 13.00 
  Zip Codes with 1 or More Labs (549) 
Land Area, miles2 20.95 29.46 12.04 0.06 361.79 
Radius* 2.21 1.34 1.96 0.14 10.73 
Total Employment 15,736.22 17,620.83 11,072.00 39.00 194,114.00 
Manufacturing Employment 2,057.08 2,166.38 1,356.30 0.00 22,808.31 
Total Establishments 697.51 574.58 568.50 6.00 6,962.00 
Manufacturing Establishments 32.40 23.49 26.00 0.00 132.00 
Labs 1.89 1.68 1.00 1.00 13.00 

California 
Variable Mean Std. Dev. Median Minimum Maximum 

  All Zip Codes (1,646) 
Land Area, miles2 95.56 256.33 17.34 0.01 3,806.05 
Radius* 3.84 3.96 2.35 0.06 34.81 
Total Employment 5,989.95 9,758.35 1,700.00 0.00 79,766.00 
Manufacturing Employment 858.14 2,394.39 64.50 0.00 27,186.00 
Total Establishments 467.19 555.17 262.50 0.00 3,527.00 
Manufacturing Establishments 30.18 61.83 8.00 0.00 776.00 
Labs 0.39 2.01 0.00 0.00 33.00 
  Zip Codes with 1 or More Labs (204) 
Land Area, miles2 18.78 37.75 8.19 0.07 385.98 
Radius* 2.02 1.38 1.61 0.15 11.08 
Total Employment 19,482.47 17,300.91 15,088.00 0.00 79,766.00 
Manufacturing Employment 3,607.79 5,188.27 1,569.00 0.00 27,186.00 
Total Establishments 1,173.13 677.45 1,065.50 0.00 3,527.00 
Manufacturing Establishments 94.52 96.32 62.00 0.00 636.00 
Labs 3.16 4.90 1.50 1.00 33.00 
Sources: Author’s calculations using the 1998 editions of the Directory of American Research and Technology and Zip 
Code Business Patterns 
* Calculated assuming a zip code of circular shape with an area as reported in the data 
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Table 2a: Concentration of Labs by Industry in Northeast Corridor (P-values)† 

 Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Metal Mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5227 0.1674 0.4149 

Oil and Gas Extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5137 0.0906 0.2286 

Food 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480 

Textile Mill 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446 

Apparel 23 5 0.5036 0.5063 0.5082 0.5101 0.5399 0.7230 0.9088 

Paper 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058 

Printing & Publishing 27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.7040 

Chemicals 28 420 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020 0.0001 

Petroleum Refining 29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358 

Rubber Products 30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965 

Stone, Clay, Glass, and Concrete 
Products 

32 36 0.0002 0.0008 0.0032 0.0011 0.1041 0.7385 0.6886 

Primary Metal Industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881 

Fabricated Metal Products 34 44 0.0004 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571 

Industrial and Commercial Machinery 35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867 

Electronics  36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423 

Transportation Equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744 

Measuring, Analyzing, and Controlling 
Instruments 

38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778 

Miscellaneous Manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093 

Business Services 73 137 0.0004 0.0052 0.0166 0.0055 0.0004 0.0001 0.0022 
†Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated 
than overall labs at the 5 percent level of significance. Light gray indicates significantly more dispersed than overall 
labs at the 5 percent level of significance. 

Source: Author's calculations using the 1998 editions of the Directory of American Research and Technology.
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Table 2b: Concentration of Labs by Industry in California (P-values)† 

 Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Oil and Gas Extraction 13 2 0.5015 0.5025 0.5040 0.5060 0.5455 0.6275 0.7010 

Heavy Construction 16 2 0.5010 0.5015 0.5035 0.5055 0.5330 0.6210 0.1910 

Food 20 3 0.5055 0.5100 0.5150 0.5185 0.5990 0.7700 0.4925 

Paper 26 2 0.5020 0.5035 0.5045 0.5080 0.5340 0.6175 0.1970 

Chemicals 28 129 0.0025 0.0100 0.0170 0.0705 0.9670 0.9920 0.9480 

Petroleum Refining 29 2 0.5005 0.5025 0.5040 0.5065 0.5385 0.6105 0.6875 

Rubber Products 30 8 0.0235 0.0535 0.0980 0.1320 0.4020 0.3660 0.1630 

Stone, Clay, Glass, and Concrete 
Products 32 6 0.5125 0.5290 0.5515 0.5695 0.7950 0.7075 0.4215 

Primary Metal Industries 33 11 0.0435 0.1130 0.1780 0.2455 0.8770 0.7235 0.2865 

Fabricated Metal Products 34 16 0.5925 0.6840 0.7670 0.8235 0.9890 0.4555 0.1765 

Industrial and Commercial Machinery 35 99 0.0140 0.0100 0.0105 0.0120 0.0020 0.0010 0.0205 

Electronics 36 211 0.0450 0.0030 0.0075 0.0030 0.0010 0.0030 0.1040 

Transportation Equipment 37 36 0.0010 0.0030 0.0030 0.0030 0.4635 0.2635 0.1570 

Measuring, Analyzing, and Controlling 
Equipment 38 134 0.0010 0.0480 0.2165 0.4610 0.8845 0.9960 1.0000 

Miscellaneous Manufacturing Industries 39 8 0.5285 0.5620 0.5980 0.6280 0.9000 0.7310 0.7205 

Business Services 73 147 0.0300 0.0150 0.0105 0.0045 0.0020 0.0010 0.0010 
†Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated 
than overall labs at the 5 percent level of significance. Light gray indicates significantly more dispersed than overall 
labs at the 5 percent level of significance. 

Source: Author's calculations using the 1998 editions of the Directory of American Research and Technology.
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Table 3a: Five-Mile Clusters in the Northeast Corridor, Baseline Results 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97% 2,941 87 2.96% 2,941 0 0.00% N/A 9.5 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21% 23,614 1,468 6.22% 23,614 256 1.08% 5.7 30.0 
Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60% 2,843 70 2.46% 2,843 3 0.11% 23.3 7.9 

Trenton–Princeton, NJ 889 9,022 260 2.88% 7,547 224 2.97% 7,547 23 0.30% 9.7 13.0 
Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46% 12,337 314 2.55% 12,337 69 0.56% 4.6 12.7 

Greenwich–Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26% 9,477 115 1.21% 9,477 36 0.38% 3.2 6.5 
Stratford–Milford, CT 235 1,484 12 0.81% 1,280 10 0.78% 1,280 0 0.00% N/A 3.2 

Conshohocken–King of Prussia–West Chester, PA 539 2,352 68 2.89% 2,111 59 2.79% 2,111 4 0.19% 14.8 7.0 
Wilmington–New Castle, DE 624 3,501 72 2.06% 3,055 61 2.00% 3,055 11 0.36% 5.5 5.9 

                
All Five-Mile Clusters 8,526 76,730 2,821 3.68%   65,205 2,408 3.69%   65,205 402 0.62%   6.0 38.5 

                              
                
                                

Table 3b: 10-Mile Clusters in the Northeast Corridor, Baseline Results 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Boston, MA 4,719 48,315 4,263 8.82% 41,082 3,679 8.96% 41,082 747 1.82% 4.9 45.9 

Washington, DC 926 9,741 327 3.36% 8,089 270 3.34% 8,089 31 0.38% 8.7 14.0 
New York, NY 7,768 67,982 4,738 6.97% 57,626 3,997 6.94% 57,626 1,493 2.59% 2.7 34.8 

Philadelphia, PA 1,594 9,028 409 4.53% 7,851 343 4.37% 7,851 35 0.45% 9.8 16.2 
                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%   114,648 8,289 7.23%   114,648 2,306 
2.0
1%   3.6 60.0 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned.    
 
Source: NBER Patent Data Project and authors’ calculations.                                                    
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Table 4a: Five-Mile Clusters in California, Baseline Results 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 444 3,434 77 2.24%  2,914 67 2.30%  2,914 9 0.31%  7.4 6.7 

Los Angeles 454 3,646 104 2.85%  3,143 91 2.90%  3,143 2 0.06%  45.5 9.4 
Palo Alto–San Jose 11,318 145,471 26,684 18.34%  121,455 22,407 18.45%  121,455 4,986 4.11%  4.5 114.7 
Dublin–Pleasanton 283 3,899 127 3.26%  3,257 110 3.38%  3,257 5 0.15%  22.0 10.0 

                
All Five-Mile Clusters 12,499 156,450 26,992 17.25%  130,769 22,675 17.34%  130,769 5,002 3.83%  4.5 115.2 

                              
                
                                

Table 4b: 10-Mile Clusters in California, Baseline Results 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 2,099 20,079 970 4.83%  16,951 844 4.98%  16,951 176 1.04%  4.8 21.4 

Los Angeles 1,266 10,685 609 5.70%  9,264 537 5.80%  9,264 62 0.67%  8.7 19.9 
San Francisco 14,963 188,943 44,215 23.40%  157,997 37,184 23.53%  157,997 8,907 5.64%  4.2 147.3 

                
All 10-Mile Clusters 18,328 219,707 45,794 20.84%  184,212 38,565 20.94%  184,212 9,145 4.96%  4.2 148.6 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling.  We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned.    
 
Source: NBER Patent Data Project and authors’ calculations.                                                   
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Cluster Size # of Clusters 
Originating 

Patents Citing Patents 

Treatment
Proportion

(%)

Control
Proportion  

(%)

Localization 
Differential t -statistic 

5-Mile 9 8,526 76,737 3.69 0.60 6.2 41.8 
10-Mile 4 15,007 135,075 7.23 2.44 3.0 58.0 
20-Mile 3 21,941 191,685 9.82 4.82 2.0 59.4 

Source: NBER Patent Data Project 

Cluster Size # of Clusters 
Originating

Patents Citing Patents 

Treatment
Proportion

(%)

Control
Proportion 

(%)

Localization 
Differential t -statistic 

5-Mile 4 12,499 156,450 17.30 1.48 11.7 156.7 
10-Mile 3 18,328 219,705 20.89 2.12 9.8 202.7 
20-Mile 2 18,523 223,285 22.55 2.52 9.0 210.9 

Source: NBER Patent Data Project and authors’ calculations 

Control Patents are chosen to have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of 
the citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be 
drawn from patents assigned to the same firm to whom the originating patent is assigned.    

 

Table 5a: Citation Location Differentials and Spatial Scale (Northeast Corridor)

Table 5b: Citation Location Differentials and Spatial Scale (California) 
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Area Mean Std. Dev. n Mean Std. Dev. n t- statistic 
Boston 12.888 18.148 4,704 9.949 14.895 2,644 7.491 

New York 11.065 16.338 8,279 9.491 14.410 10,600 6.912 
Philadelphia 8.030 9.657 1,598 7.654 10.515 3,655 1.262 

Washington, D.C. 11.707 17.457 1,273 7.825 10.371 1,741 7.073 
Southern California 11.464 15.734 3,668 9.087 12.074 6,716 7.956 
Northern California 15.532 19.845 15,106 10.811 15.110 2,680 14.155 

Source: NBER Patent Data Project and authors’ calculations 
†: Citations per Patent Granted, 1996–1997
1: Inside Cluster refers to all patents in one or more 10-mile clusters in the region. 
2: Outside Cluster refers to all patents outside of the 10-mile clusters in the regions defined as follows:

Boston (Massachusetts/New Hampshire/Rhode Island), New York (New York/Connecticut/Northern NJ), 
Philadelphia (Delaware/Eastern Pennsylvania/Southern NJ), Washington, D.C. (Maryland/D.C./Virginia), 
Southern California (10 southern counties), and Northern California (remaining counties). 

Table 6: Citation Differentia Between Labs Inside Clusters vs. Labs Outside Clusters (Difference in Means Test)†

Inside Cluster 1 Outside Cluster2
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Table 7a: Five-Mile Clusters in the Northeast Corridor, STEM Worker Clusters 
            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Bethesda–Rockville, MD–Vienna, VA 414 4,291 100 2.33%  3,499 75 2.14%  3,499 9 0.26%  8.3 7.3 

Columbia–Laurel, MD 53 497 3 0.60%  453 3 0.66%  453 0 0.00%  N/A 1.7 
Phoenix–Cockeysville, MD 72 419 0 0.00%  363 0 0.00%  363 0 0.00%  N/A N/A 

Wilmington, DE 539 2,352 68 2.89%  2,093 57 2.72%  2,093 5 0.24%  11.4 6.7 
King of Prussia, PA 974 5,535 242 4.37%  4,848 207 4.27%  4,848 15 0.31%  13.8 13.2 

Philadelphia, PA 81 617 6 0.97%  544 5 0.92%  544 0 0.00%  N/A 2.2 
Princeton, NJ–New York, NY 5,124 46,014 2,323 5.05%  38,804 1,960 5.05%  38,804 684 1.76%  2.9 25.4 

Long Island, NY 270 1,913 18 0.94%  1,692 17 1.00%  1,692 1 0.06%  17.0 3.8 
Danbury, CT 347 4,410 162 3.67%  3,772 126 3.34%  3,772 2 0.05%  63.0 11.1 
Stratford, CT 240 1,501 12 0.80%  1,309 12 0.92%  1,309 1 0.08%  12.0 3.1 

North Haven, CT 105 457 13 2.84%  411 13 3.16%  411 0 0.00%  N/A 3.7 
Hartford, CT 87 503 8 1.59%  452 7 1.55%  452 0 0.00%  N/A 2.7 

Hudson–Westborough, MA 255 2,841 84 2.96%  2,368 77 3.25%  2,368 3 0.13%  25.7 8.4 
Boston–Cambridge, MA 2,958 30,920 2,059 6.66%  26,437 1,780 6.73%  26,437 326 1.23%  5.5 32.7 

Nashua, NH 295 2,966 54 1.82%  2,521 44 1.75%  2,521 1 0.04%  44.0 6.5 
Binghamton, NY 23 332 0 0.00%  300 0 0.00%  300 0 0.00%  N/A N/A 

Syracuse, NY 40 238 15 6.30%  212 12 5.66%  212 0 0.00%  N/A 3.6 
Buffalo, NY 91 410 1 0.24%  377 1 0.27%  377 0 0.00%  N/A 1.0 

Pittsburgh, PA 42 165 2 1.21%  148 2 1.35%  148 0 0.00%  N/A 1.4 
Pittsburgh–Verona, PA 70 426 4 0.94%  381 4 1.05%  381 0 0.00%  N/A 2.0 

All Five-Mile Clusters 12,080 106,807 5,174 4.84%  90,984 4,402 4.84%  90,984 1,047 1.15%  4.2 46.4 
                

Table 7b: 10-Mile Clusters in the Northeast Corridor, STEM Worker Clusters 
            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Richmond, VA 154 668 71 10.63%  604 68 11.26%  604 0 0.00%  N/A 8.8 

Washington, DC–Baltimore, MD 1,376 12,724 538 4.23%  10,655 462 4.34%  10,655 71 0.67%  6.5 17.3 
Hagerstown, MD 17 40 1 2.50%  39 1 2.56%  39 0 0.00%  N/A 1.0 

Lancaster, PA 104 566 8 1.41%  514 7 1.36%  514 0 0.00%  N/A 2.7 
Philadelphia, PA–Wilmington, DE–Cherry Hill, NJ 2,601 14,166 992 7.00%  12,424 870 7.00%  12,424 109 0.88%  8.0 25.1 

Pittsburgh, PA 921 5,804 400 6.89%  5,101 351 6.88%  5,101 17 0.33%  20.6 18.0 
Binghamton, NY 329 3,128 31 0.99%  2,640 29 1.10%  2,640 2 0.08%  14.5 4.9 

Syracuse, NY 130 678 44 6.49%  615 41 6.67%  615 0 0.00%  N/A 6.6 
Rochester, NY 1,571 7,983 391 4.90%  6,853 345 5.03%  6,853 23 0.34%  15.0 17.2 
Buffalo, NY 122 632 3 0.47%  578 3 0.52%  578 0 0.00%  N/A 1.7 
Boston, MA 4,682 47,968 3,901 8.13%  40,735 3,356 8.24%  40,735 737 1.81%  4.6 42.5 

New York, NY–Northern NJ–CT 9,514 80,971 6,239 7.71%  68,831 5,313 7.72%  68,831 2,286 3.32%  2.3 35.9 

All 10-Mile Clusters 21,521 175,328 12,619 7.20%  149,589 10,846 7.25%  149,589 3,245 2.17%  3.3 66.1 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned. 
The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers used in Tables 3 and 4.  
Source: NBER Patent Data Project and authors’ calculations.                                                 
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Table 8a: Five-Mile Clusters in California, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego–La Jolla 563 4,134 119 2.88%  3,518 111 3.16%  3,518 9 0.26%  12.3 9.5 

Carlsbad 261 1,628 43 2.64%  1,443 36 2.49%  1,443 0 0.00%  N/A 6.1 
Irvine 946 7,466 375 5.02%  6,589 325 4.93%  6,589 33 0.50%  9.8 15.8 

Camarillo 199 1,943 39 2.01%  1,704 30 1.76%  1,704 1 0.06%  30.0 5.3 
Santa Barbara 82 1,401 55 3.93%  1,222 52 4.26%  1,222 1 0.08%  52.0 7.2 

San Jose–Santa Clara 14,220 182,445 42,563 23.33%  152,229 35,803 23.52%  152,229 7,956 5.23%  4.5 149.0 
Pleasanton 283 3,899 127 3.26%  3,284 111 3.38%  3,284 8 0.24%  13.9 9.6 
Santa Rosa 127 1,013 29 2.86%  903 27 2.99%  903 0 0.00%  N/A 5.3 

                
All Five-Mile Clusters 16,681 203,929 43,350 21.26%  170,892 36,495 21.36%  170,892 8,008 4.69%  4.6 149.4 

                              
                
                                

Table 8b: Ten-Mile Clusters in California, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 2,146 20,504 1,056 5.15%  17,232 926 5.37%  17,232 171 0.99%  5.4 23.3 

Anaheim–Irvine 1,911 15,353 1,063 6.92%  13,410 929 6.93%  13,410 115 0.86%  8.1 26.0 
Oxnard–Camarillo 76 475 15 3.16%  432 13 3.01%  432 0 0.00%  N/A 3.7 

Santa Barbara 288 3,299 129 3.91%  2,871 118 4.11%  2,871 4 0.14%  29.5 10.5 
San Francisco–Palo Alto–San Jose 14,564 185,644 44,114 23.76%  154,996 37,127 23.95%  154,996 8,314 5.36%  4.5 151.6 

Santa Rosa 144 1,197 54 4.51%  1,061 48 4.52%  1,061 0 0.00%  N/A 7.1 
                

All 10-Mile Clusters 19,129 226,472 46,431 20.50%  190,002 39,161 20.61%  190,002 8,604 4.53%  4.6 154.1 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned. 
The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers used in Tables 3 and 4.  
Source: NBER Patent Data Project and authors’ calculations.                                                  
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Table 9a: Five-Mile Clusters in the Northeast Corridor, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97%  2,915 90 3.09%  2,915 2 0.07%  45.0 9.3 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21%  23,126 1,470 6.36%  23,126 235 1.02%  6.3 30.8 
Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60%  2,765 74 2.68%  2,765 10 0.36%  7.4 7.1 

Trenton–Princeton, NJ 889 9,022 260 2.88%  7,420 226 3.05%  7,420 15 0.20%  15.1 13.8 
Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46%  11,889 303 2.55%  11,889 78 0.66%  3.9 11.7 

Greenwich-Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26%  9,222 104 1.13%  9,222 31 0.34%  3.4 6.3 
Stratford–Milford-CT 235 1,484 12 0.81%  1,262 8 0.63%  1,262 1 0.08%  8.0 2.3 

Conshohocken–King of Prussia-West Chester, PA 539 2,352 68 2.89%  1,929 54 2.80%  1,929 7 0.36%  7.7 6.1 
Wilmington–New Castle, DE 624 3,501 72 2.06%  2,940 61 2.07%  2,940 6 0.20%  10.2 6.8 

                 
All Five-Mile Clusters 8,526 76,730 2,821 3.68%  63,468 2,390 3.77%  63,468 385 0.61%  6.2 38.7 

                              
 
                                

Table 9b: 10-Mile Clusters in the Northeast Corridor, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Boston, MA 4,719 48,315 4,263 8.82%  40,317 3,612 8.96%  40,317 722 1.79%  5.0 45.7 

Washington, DC 926 9,741 327 3.36%  7,849 266 3.39%  7,849 42 0.54%  6.3 13.0 
New York, NY 7,768 67,982 4,738 6.97%  55,955 3,751 6.70%  55,955 1,426 2.55%  2.6 33.3 

Philadelphia, PA 1,594 9,028 409 4.53%  7,497 344 4.59%  7,497 41 0.55%  8.4 15.8 
                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%  111,618 7,973 7.14%  111,618 2,231 2.00%  3.6 58.6 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same six-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned. 
 
Source: NBER Patent Data Project and authors’ calculations.                                              
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Table 10a: Five-Mile Clusters in California, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 444 3,434 77 2.24%  2,887 54 1.87%  2,887 5 0.17%  10.8 6.4 

Los Angeles 454 3,646 104 2.85%  3,005 86 2.86%  3,005 2 0.07%  43.0 9.1 
Palo Alto–San Jose 11,318 145,471 26,684 18.34%  119,907 22,116 18.44%  119,907 4,974 4.15%  4.4 113.5 
Dublin–Pleasanton 283 3,899 127 3.26%  3,269 108 3.30%  3,269 4 0.12%  27.0 10.0 

                 
All 5-Mile Clusters 12,499 156,450 26,992 17.25%  129,068 22,364 17.33%  129,068 4,985 3.86%  4.5 113.9 

                              
                
                                

Table 10b: 10-Mile Clusters in California, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 2,099 20,079 970 4.83%  16,629 819 4.93%  16,629 159 0.96%  5.2 21.6 

Los Angeles 1,266 10,685 609 5.70%  8,897 484 5.44%  8,897 43 0.48%  11.3 19.7 
San Francisco 14,963 188,943 44,215 23.40%  155,861 36,534 23.44%  155,861 8,803 5.65%  4.2 145.6 

                
All 10-Mile Clusters 18,328 219,707 45,794 20.84%  181,387 37,837 20.86%  181,387 9,005 4.96%  4.2 146.9 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same six-digit technology classification as the citing patent and its application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 
replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is assigned. 
 
Source: NBER Patent Data Project and authors’ calculations.                                  
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Table 11a: Five-Mile Clusters in the Northeast Corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97%  2,845 80 2.81%  2,845 9 0.32%  8.9 7.6 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21%  22,937 1,400 6.10%  22,937 284 1.24%  4.9 27.9 
Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60%  2,779 69 2.48%  2,779 15 0.54%  4.6 6.0 

Trenton–Princeton, NJ 889 9,022 260 2.88%  7,453 207 2.78%  7,453 25 0.34%  8.3 12.1 
Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46%  11,912 282 2.37%  11,912 91 0.76%  3.1 10.0 

Greenwich–Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26%  9,277 109 1.17%  9,277 49 0.53%  2.2 4.8 
Stratford–Milford, CT 235 1,484 12 0.81%  1,228 11 0.90%  1,228 2 0.16%  5.5 2.5 

Conshohocken–King of Prussia–West Chester, PA 539 2,352 68 2.89%  1,964 53 2.70%  1,964 13 0.66%  4.1 5.0 
Wilmington–New Castle, DE 624 3,501 72 2.06%  2,940 53 1.80%  2,940 11 0.37%  4.8 5.3 

                 
All 5-Mile Clusters 8,526 76,730 2,821 3.68%  63,335 2,264 3.57%  63,335 499 0.79%  4.5 34.1 

                              
 
                                

Table 11b: 10-Mile Clusters in the Northeast Corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
Boston, MA 4,719 48,315 4,263 8.82%  39,760 3,493 8.79%  39,760 896 2.25%  3.9 40.7 

Washington, DC 926 9,741 327 3.36%  7,851 250 3.18%  7,851 58 0.74%  4.3 11.1 
New York, NY 7,768 67,982 4,738 6.97%  55,989 3,706 6.62%  55,989 1,710 3.05%  2.2 27.9 

Philadelphia, PA 1,594 9,028 409 4.53%  7,603 327 4.30%  7,603 68 0.89%  4.8 13.3 
                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%  111,203 7,776 6.99%  111,203 2,732 2.46%  2.8 50.7 
*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure Control patents must  have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the 
citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is 
assigned. 
Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having the same grant year and the number of citations that the treatment patent receives. 
Source: NBER Patent Data Project and authors’ calculations 
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Table 12a: Five-Mile Clusters in California, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 444 3,434 77 2.24%  2,811 58 2.06%  2,811 14 0.50%  4.1 5.2 

Los Angeles 454 3,646 104 2.85%  3,019 79 2.62%  3,019 5 0.17%  15.8 8.2 
Palo Alto–San Jose 11,318 145,471 26,684 18.34%  118,537 21,223 17.90%  118,537 8,962 7.56%  2.4 76.5 
Dublin–Pleasanton 283 3,899 127 3.26%  3,199 87 2.72%  3,199 9 0.28%  9.7 8.1 

                 
All 5-Mile Clusters 12,499 156,450 26,992 17.25%  127,566 21,447 16.81%  127,566 8,990 7.05%  2.4 77.0 

                              
                
                                

Table 12b: 10-Mile Clusters in California, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D E F G H I J K L 

Cluster 
Originating 

Patents 
Citing 
Patents 

From Same 
Cluster 

Percent 
(C/B) 

Matched 
Citing 

Patents* 

From 
Same 

Cluster* 
Percent 
(F/E) 

Control 
Patents† 

From Same 
Cluster 

Percent 
(I/H) 

Location 
Differential 

(G/J) t Statistic 
San Diego 2,099 20,079 970 4.83%  16,392 801 4.89%  16,392 335 2.04%  2.4 14.1 

Los Angeles 1,266 10,685 609 5.70%  8,915 457 5.13%  8,915 90 1.01%  5.1 16.1 
San Francisco 14,963 188,943 44,215 23.40%  154,195 35,457 22.99%  154,195 14,455 9.37%  2.5 104.5 

                
All 10-Mile Clusters 18,328 219,707 45,794 20.84%  179,502 36,715 20.45%  179,502 14,880 8.29%  2.5 105.5 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure Control patents must  have the same three-digit technology classification as the citing patent and its application date must be within a one-year window of the 
citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to whom the originating patent is 
assigned. 
Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having the same grant year and the number of citations that the treatment patent receives. 
Source: NBER Patent Data Project and authors’ calculations. 
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Table 13† 
Northeast 

Cluster 
Name 

Coefficient on 
Originating Patent 

( )iD


  

Standard 
Errors 

Boston5A 2.82 0.1062* 

Boston5B 1.5 0.0300* 
NY5A 2.17 0.0737* 
NY5B 1.26 0.0603* 
NY5C 0.8 0.0967* 
NY5D 2.26 0.3235* 

Philly5A 3.13 0.1321* 
Philly5B 2.28 0.1335* 
Boston10 1.37 0.0199* 

DC10 1.65 0.0652* 
NY10 0.79 0.0192* 

Philly10 2.13 0.0574* 
 Broad Regions  

NE5 0.77 0.0167* 
NE10 0.68 0.0113* 

California 

Cluster 
Name 

Coefficient on 
Originating Patent 

 ( )iD


  
Standard 

Errors 

SD5 2.34 0.1251*
 

LA5 2.52 0.1137*
 

SF5A 1.06 0.0107*
 

SF5B 2.81 0.1098*
 

SD10 1.56 0.0381*
 

LA10 2.06 0.0493*
 

SF10 1.09 0.0093*
 

Broad Regions 
CA5 1.01 0.0103*

 

CA10 0.99 0.0086*
 

†The California regressions included 1,390,727 observations. 
   The Northeast Corridor regressions included 1,444,272  

observations. Robust standard errors are reported.   
*Indicates significance at the 1 percent level. 
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Table 14: Summary of Location Differentials 
 Northeast  Corridor  California 

 Five-Mile 
Cluster 

10-Mile 
Cluster  Five-Mile Cluster 10-Mile 

Cluster 
      

Baseline 6.0 3.6  4.5 4.2 
      

STEM 4.2 3.3  4.6 4.6 
      

Disaggregated 6.2 3.6  4.5 4.2 
      

CEM 4.5 2.8  2.4 2.5 
†Baseline results from column K in Tables 3 and 4; STEM results from column K in Tables 7 and 8; 
Disaggregated results from column K in Tables 9 and 10; and CEM results from column K in Tables 11 
and 12.
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Source: Directory of American Research and Technology and authors’ calculations 

Each dot on the map represents the location of a single R&D lab. In areas with a dense cluster of 
labs, the dots tend to sit on top of one another, representing a spatial cluster of labs.

Figure 1: Location of R&D Labs 
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Figure 2a: Z-scores for Northeast Corridor 
Dotted line Z = 1.65 

Figure 2b: Z-scores for California 
Dotted line Z = 1.65 
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Figure 3a. Northeast Corridor Industry Z-Scores 
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P-values 

0.001

! 0.001 - 0.005

! 0.005 - 1.000

Figure 4a: Northeast Corridor P-values at d = 5 miles Figure 4b: California P-values at d = 5 miles 
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Figure 5: Multiscale Core Clusters in the San Francisco Bay Area 
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Figure 6b: Proximity to Major Routes in Boston 

Figure 6a: Multiscale Core Clusters in Boston 
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Figure 7a: Northeast Corridor Core Clusters  

d = 5, 10 

Figure 7b: California Core Clusters 
d = 5, 10 

= 5-mile cluster 

= 10-mile cluster 
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For Online Publication 

Appendix A: Robustness of Global K-Cluster Results 

For completeness, we have analyzed R&D clustering with respect to Manufacturing 
Establishments as well as Manufacturing Employment. To do so, the number of manufacturing 
employees in each zip code area was simply replaced with the number of manufacturing 
establishments. In both the Northeast Corridor and California, the only substantive differences in 
global clustering with respect to these two reference distributions was due to certain anomalies 
arising from clusters of small establishments in industries not closely related to R&D activity.  

The single most dramatic example is for the Northeast Corridor, where the Garment District in 
South Manhattan is so strongly concentrated (more than 2,000 establishments in two adjacent zip 
codes: 10018 and 10001) that it far outweighs the clustering of establishments in all other 
Northeast manufacturing industries combined. Figure A1 shows the comparison between a 
typical counterfactual lab patterns in South Manhattan generated by the manufacturing 
establishment distribution on the left, with the manufacturing employment distribution on the 
right (where zip codes 10018 and 10001 are the darkest pair in the left panel). So, while 
manufacturing employment appears to be quite concentrated in this area, it is clear that 
manufacturing establishments are relatively far more concentrated. Because this area constitutes 
such an extreme outlier in our data, we have run the simulation analyses both with and without 
South Manhattan (where the latter excludes the 20 R&D labs in South Manhattan as well), and 
the resulting global Z-scores are shown in Figures A2 and A3, respectively.  

Notice first that the overall shape of the curve in Figure A2 is qualitatively very similar to that 
for manufacturing employment in Figure 4a of the text. But the values of the curve in Figure A2 
are drastically lower and fail to yield significant clustering for essentially all scales less than 20 
miles. But in Figure A3, it is seen that by removing only the small area of South Manhattan in 
Figure A1, the patterns of clustering significance for both manufacturing establishments and 
employment are now qualitatively similar, and indeed clustering at small scales is more 
significant with respect to the distribution of establishments. So, the influence of the garment 
industry is seen to be quite dramatic. Moreover, since it is reasonable to assume that the location 
of manufacturing R&D is relatively insensitive to this particular industry, the removal of this 
outlier seems reasonable.  

Turning next to California, a similar anomaly was found with respect to the Jewelry District in 
Central Los Angeles, which again represents a strong clustering of small manufacturers not 
closely related to R&D. But because the effect of this cluster is much smaller in scope, we 
present only the full set of results for all manufacturing establishments in Figure A4 below. Here 
it is evident that except for small scales up to about three miles, the shape and levels of 
significance for both manufacturing establishments and manufacturing employment in Figure 4b 
of the text are remarkably similar. 

Finally, it should be mentioned that a similar analysis was done using Total Employment as the 
reference distribution. Clustering anomalies for this distribution were even more severe than for 
Manufacturing Establishments, and the anomalies appear to have little relation to manufacturing 
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R&D. So, results for this distribution are deemed to have little relevance for the present analysis 
and are not reported. 

For Online Publication 

Appendix B: Robustness of Core-Cluster Results 

As discussed in Section 6 of the paper, our method of identifying core clusters is, by 
construction, based on the results of local K-function analyses. Because such analyses involve 
separate tests at multiple locations (some nearby) and at multiple scales (some quite large), we 
must address certain aspects of the well-known “multiple testing” problem.50 In this Appendix, 
we first discuss the multiple-testing problem itself, and then compare our core-cluster approach 
with “significance-maximizing” approaches to resolving this problem. 

To motivate the multiple-testing problem in the setting of Section 5 in the text, we start by 
supposing that there is no discernible local clustering of R&D labs (i.e., that the observed pattern 

0X of R&D locations cannot be distinguished statistically from the patterns generated under our 
null hypothesis). In addition, suppose that all local K-function tests were in fact statistically 
independent of one another. Then, by construction, we should expect 5 percent of our resulting 
test statistics to be statistically significant at the 0.05 percent level. So, when many such tests are 
involved (there are 1,035 tests at each scale, d D , in the Northeast Corridor and 645 tests at 
each scale in California), one is bound to find some degree of  “significant clustering” using such 
testing procedures. As is well known, this type of “false positive rate” can be mitigated by 
reducing the p-value threshold level deemed to be “significant.” In fact, that is one reason why 
we focused only on p-values no greater than 0.005 in Figure 6 of the text. 

But such adjustments are by themselves not sufficient in instances in which the assumption of 
statistical independence is violated. This is quite likely when radial neighborhoods around 
different test points are large enough to intersect and thus contain common points (either 
observed or counterfactual). In such cases, the resulting p-values at these test points must 
necessarily exhibit positive spatial autocorrelation, much in the same way that kernel smoothing 
of spatial data induces autocorrelation.51  
 
Several statistical approaches have been developed for resolving such problems. Most prominent 
among these are the Kulldorff (1997) SATSCAN approach and the earlier Besag and Newell 
(1991) approach. Both methods employ sequential testing procedures, in which only single 
“maximally significant” clusters are identified in each step. To describe this sequential procedure 
in the present setting, we now focus on zip code areas (cells) and replace individual locations 
with counts of R&D labs in each area (cell counts). Using centroid distance between cells, 
candidate clusters are then defined as unions of m-nearest neighbors to given “seed” cells, and a 
test statistic is constructed to determine the single most significant cluster. In both of these 
significance-maximizing procedures, the notion of “significance” is defined with respect to tests 
that are based essentially on the original hypothesis, 0H , namely that R&D labs are distributed 

                                                 
50 While global cluster analyses may also suffer from multiple testing over a range of spatial scales, this problem is 
particularly severe when conducting tests of local clustering that spatially overlap. 
51 For a full discussion of these issues in a spatial context, see, for example, Castro and Singer (2006). 
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(at the zip code level) in a manner proportional to manufacturing employment. One key 
difference is that counterfactual locations are implicitly assumed to be randomly distributed 
inside each zip code (i.e., are distributed proportional to area rather than total employment at the 
block level). To determine a second most significant cluster, the zip code areas in the most 
significant cluster are removed, and the same procedure is then applied to the remaining zip code 
areas. This procedure is typically repeated until some significance threshold (such as a p-value 
exceeding 0.05) is reached.  
  
While this repeated series of tests might appear to reintroduce multiple testing, such tests are by 
construction defined over successively smaller spatial domains and hence are not directly 
comparable. Notice also that at each step of this procedure, the cluster identified has an explicit 
form, namely, a seed zip code area together with its current nearest neighbors. So, both the 
multiple-testing and cluster-identification problems raised for K-function analyses noted 
previously are at least partially resolved by this significance-maximizing approach.  

We applied both the Besag-Newell procedure and Kulldorff’s SATSCAN procedure to our data 
and found them to be in remarkable agreement with each other. Thus, we present only the results 
of the (more popular) SATSCAN procedure. In this setting, we ran the maximum of 10 iterations 
allowed by the SATSCAN software, and the results from the union of these 10 clusters are 
plotted in Figure B1 for labs in California, and in Figure B2 for labs in the Northeast Corridor. 
By comparing these results with Figures 6a and 6b in the text, it is evident that both procedures 
are identifying essentially the same areas. These comparisons thus serve as one type of 
robustness check on our core-cluster results. 

However, there are certain differences between these results. Notice first that the SATSCAN 
clusters appear to be more circular in form than the corresponding core clusters. This is 
particularly evident in the Northeast Corridor, where isolated clusters such as Boston, 
Philadelphia and Washington, D.C., appear to be very circular. As mentioned previously, this 
particular SATSCAN procedure only considers circular (nearest-neighbor) clusters when 
identifying a “most significant” one. While it is possible to extend this restriction to certain 
classes of elliptical clusters, the key point is that prior restrictions must be placed on the set of 
“potential clusters” to keep search times within reasonable bounds. By way of contrast, our 
present core-cluster approach involves no prior restrictions on cluster shapes, and in this sense is 
more flexible in nature.  

A second limitation of these significance-maximizing approaches that is less evident by visual 
inspection is the path-dependent nature of cluster formation. As mentioned previously, the zip 
code areas defining clusters created at each step of the procedure are removed before considering 
each new cluster. When clusters are very distinct (such as Boston, Philadelphia, and Washington 
in Figure B2), this removal process creates no difficulties. But when subsequent clusters are in 
the same area as previous clusters (such as the Bay Area in Figure B1 and the New York area in 
Figure B2), the formation of early clusters modifies the neighborhood relations among the 
remaining zip codes at later stages. So, at a minimum, these modifications require careful 
“conditional” interpretations of all clusters beyond the first cluster. Thus, a second advantage of 
the present core-cluster approach is the simultaneous formation of all clusters, which naturally 
avoids any type of sequential constraints. 
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For Online Publication 

Appendix C: Description of the Major Areas of Agglomeration52  

C.1 Northeast Corridor 

Of the 1,035 R&D labs in the Northeast Corridor, 34 percent conduct research in chemicals; 17 
percent conduct research in electronic equipment except computer equipment; 16 percent do 
research in measuring, analyzing, and control equipment; 9 percent conduct research in computer 
programming and data processing; and another 9 percent do research in industrial, commercial 
machinery, and computer equipment.   

The Boston Agglomeration 

There are 182 R&D labs within Boston’s single 10-mile cluster, as shown in Figure 8a.53 Most of 
these labs conduct R&D in five three-digit SIC code industries — computer programming and 
data processing, drugs, lab apparatus and analytical equipment, communications equipment, and 
electronic equipment. The largest five-mile cluster shown in Figure 8a contains 109 labs, which 
account for 60 percent of all labs in the larger 10-mile cluster. At the one-mile scale, Boston has 
five clusters, all of which are centered in the largest five-mile cluster. The largest of these one-
mile clusters contains 27 labs, half of which conduct research on drugs.   

The New York City Agglomeration 
The single largest cluster identified within our 10-state study area is the 10-mile cluster above 
New York City (shown in Figure C1) that stretches from Connecticut to New Jersey. This cluster 
contains a total of 287 R&D labs. There are 134 (47 percent) labs in this cluster that conduct 
research on chemicals and allied products, 62 of which focus on drugs. Labs in this cluster also 
conduct research based on electrical equipment and industrial machinery. Within this highly 
elongated 10-mile cluster, four distinct 5-mile clusters were identified. Most of the concentration 
is seen to occur in the two clusters west of New York City, which, in particular, contain five of 
the nine one-mile clusters identified. Among these one-mile clusters, the largest is the “Central 
Park” cluster shown in Figure A1. About two-thirds of the 17 labs in this cluster are conducting 
research on drugs, perfumes, and cosmetics, or computer programming and data processing. 

The Philadelphia Agglomeration 
As seen in Figure C2, there is a large 10-mile cluster mostly to the west of Philadelphia (the city 
of Philadelphia is shown in darker gray), where there are a total of 44 labs. Of these 44 labs, 16 
conduct research on drugs, and another 15 labs conduct research in the areas of computers, 
electronics, and instruments and related products. This cluster, in turn, contains a five-mile 
cluster centered in the King of Prussia area directly west of Philadelphia and contains 29 labs, 
with 40 percent doing research on drugs. There is a second five-mile cluster, containing 17 labs, 
centered in the city of Wilmington to the southwest. Here, 88 percent of the labs are doing 
research on chemicals and allied products.   
                                                 
52 In addition to the four major areas of agglomeration discussed in what follows, there are two smaller 
agglomerations: one in Pittsburgh and another in Buffalo.  
53 The map legend in Figure 7 in the text applies to all map figures in this section. 
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The Washington, D.C., Agglomeration  
The final area of concentration in the Northeast Corridor is the 10-mile cluster around 
Washington, D.C., which contains 74 R&D labs as shown in Figure C3 (with the city of 
Washington, D.C., in darker gray), where one five-mile cluster can also be seen. About one-
quarter of the labs in the 10-mile cluster do research in the areas of computer programming and 
data processing. Furthermore, another 20 percent of the labs conduct research on 
communications equipment. In turn, this cluster contains two one-mile clusters, the largest of 
which (to the north) contains 16 labs with one-half conducting research on drugs.   

C.2 California 
Turning to California, 27 percent of 645 private R&D labs in the state conduct research in 
electronic equipment except computers; 18 percent do research in computer and data processing 
services; another 18 percent carry out research in chemicals, and 16 percent perform R&D in 
measuring, analyzing, and controlling equipment. 

California’s Bay Area 

Of the 645 labs in California, 340 (slightly more than 50 percent) are located in the single 10-
mile cluster in the Bay Area. This cluster stretches from Novato in the north to San Jose in the 
south and from Dublin–Pleasanton in the east to the Pacific Ocean in the west (Figure 7). 
Research in these labs is concentrated in three SIC industries: electronic equipment except 
computers; computer and data processing services; and chemicals and allied products. The Bay 
Area has two five-mile clusters, the most prominent of which is in the Palo Alto–San Jose area, 
consisting of 282 labs. The 10-mile cluster also contains seven one-mile clusters. The most 
prominent one-mile cluster is in Silicon Valley and consists of 138 labs (accounting for 41 
percent of all labs in the Bay Area), with 30 percent conducting research in computer and data 
processing services. 

San Diego 

The largest five-mile cluster in Southern California consists of 56 labs found in San Diego. Of 
these 56 labs, 20 conduct research on chemicals; 11 perform research in the computer and data 
processing service; and 10 do research in measuring equipment. This cluster, in turn, contains a 
five-mile cluster consisting of 44 labs, and within it is a one-mile cluster consisting of 33 labs.  

The Los Angeles Area 

The most prominent cluster of labs in the Los Angeles area consists of 51 labs located in the 
Irvine–Santa Ana–Newport Beach area. Within this five-mile cluster, there are two separate one-
mile clusters, one comprising 20 labs, and the other consisting of 10 labs. Electronic equipment 
except computers is the main area of research for these labs followed by measuring, analyzing, 
and controlling equipment; and transportation equipment. In addition, there are two separate one-
mile clusters to the north of the 10-mile cluster. One of the clusters is in Torrance with nine labs, 
and the other in Santa Monica has seven labs.  
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Figure A2: Z-scores Relative to Manufacturing Establishments for 
the Northeast Corridor Including South Manhattan 

 

Figure A1. Manufacturing Establishment Counterfactuals (left panel) and 
Manufacturing Employment Counterfactuals (right panel) 
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Figure A3: Z-scores Relative to Manufacturing Establishments for 
the Northeast Corridor Excluding South Manhattan 

Figure A4: Z-scores Relative to Manufacturing 
Establishments for California 
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Figure B2: SATSCAN Clusters for 
California 

Figure B1: SATSCAN Clusters for 
the Northeast Corridor 
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Figure C1: New York Core Clusters 
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Figure C2: Philadelphia Core Clusters 
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Figure C3: Washington, D.C., Core 
Clusters 


