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1 Introduction

This paper seeks to delimit the conditions so that market-based probabilities provide
all the information required by the policymaker to arrive at the best decision possible.
While there are several practical considerations regarding how to derive market-based
probabilities from financial prices, the discussion here is confined to a theoretical analysis
that assumes no impediment to obtaining the market-based probabilities.

The starting point of my analysis is a simple model in which policy must be set before 
the state of the world is realized.1 The optimal policy requires knowledge of household 
preferences and the probability distribution across states, as well as the households’ 
endowments and the net benefits of policy in each future state.

Can market-based probabilities provide such information to a policymaker? I allow
households to trade a complete set of contingent claims, whose prices are perfectly ob-
servable. The policymaker then uses the underlying market-based probabilities to weigh
the net benefits of policy across future states. Following Feldman et al. (2015), I provide
sufficient conditions so that the policymaker is guaranteed to attain the optimal policy
using only market-based probabilities—an equivalence result. The conditions are quite
mild being as they are the same as those commonly used to guarantee that optimal policy
can be characterized by the associated program’s first-order conditions.

Unfortunately, the equivalence result is not as robust as it may appear. There are
several instances in which the benchmark model implicitly assumes that the policymaker
has access to additional knowledge that is not revealed by the market-based probabilities.

∗E-mail: roc.armenter@phil.frb.org. I would like to thank Satyajit Chatterjee and Michael Dotsey for
comments. The views expressed in this paper are those of the author and do not necessarily reflect the
views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System. This paper is available
free of charge at www.philadelphiafed.org/research-and-data/publications/working-papers/.

1The model is a slightly simplified version of the framework presented in Feldman, Heinecke, Kocher-
lakota, and Schulhofer-Wohl (2015).
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First, I provide a couple of examples that highlight the possibility that market-based
probabilities may contain incomplete or no information at all. Second, I discuss the
knowledge required to derive a net compensation function when policy has nonpecuniary
effects. Whenever possible, I offer additional conditions to circumvent these problems.

The first concern is that market-based probabilities may not be informative. For
example, an optimal policy may deliver full insurance to the households. Market prices are
then equated across states, revealing no information. The equivalence result still applies:
The only rational expectations equilibrium in which the policymaker relies on market-
based probabilities is the optimal policy. Yet, it is left unspecified how the policymaker
would actually arrive at the optimal policy given that the market-based probabilities are
silent. A similar situation arises whenever the policy’s net benefits are linear. A simple
solution is to require that the policy’s net benefits be strictly concave, though such an
assumption would usually rule out policies that imply net transfers across states. I also
show that the equivalence result does not carry over to the case of a discrete set of policies.
This is perhaps not too surprising since market-based probabilities are informative of
marginal effects, but the optimal policy is based on the average effect.

The second concern arises from nonpecuniary benefits from policy. It is possible to
express the nonpecuniary benefits in terms of consumption using a “compensation” func-
tion. However, the equivalence result requires that the optimal policy is used as a baseline
policy to compute the compensation function. Using another policy as a baseline creates
a mismatch between the marginal utility of consumption as given by the market prices—
evaluated at actual consumption—and the counterfactual marginal utility of consumption
embedded in the compensation function, which includes the net benefits. Therefore, un-
less the optimal policy is known at the start, the policymaker would not be able to use
market-based probabilities to arrive at the optimal policy decision.

This paper follows Kocherlakota (2013) and Feldman et al. (2015) very closely. They
have argued for the use of market-based probabilities to weigh policy options, particularly
those regarding monetary policy. Academics have also relied on market-based probabilities
to inform their work in several fields. To mention a few examples in monetary economics,
Bauer and Rudebusch (2013) and Bauer (2014) rely on market-based expectations of
future short-term interest rates, observed from interest rates on government bonds or
money market futures; Kitsul and Wright (2013) and Hilscher, Raviv, and Reis (2014) use
market-based probabilities to assess inflation expectations. Bauer and Rudebusch (2015)
instead caution against overrelying on market-based probabilities for policymaking, citing
a variety of practical factors (e.g., market incompleteness) that can render financial prices
hard to interpret.

The paper is organized as follows. Section 2 presents the benchmark model and
reproduces the results from Feldman et al. (2015). Section 3 discusses the possibility
that market-based probabilities are not informative; while Section 4 addresses the case of
nonpecuniary benefits. Section 5 concludes.
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2 Benchmark case

I present a simplified version here of the model in Feldman et al. (2015) and reproduce
their main results. There are N possible states of the world, indexed by n, and with
probability distribution πn > 0. The sequence of actions are as follows:

1. Households trade a complete set of contingent claims on consumption;

2. Policymaker decides to take policy action a ∈ A ⊂ <;

3. The state of the world n is revealed; and

4. Payoffs are realized.

The payoff associated with state n and policy decision a is

U (yn +Bn(a))

where U is a utility function with the standard properties, namely differentiable, strictly 
increasing and strictly concave; yn is a strictly positive endowment; and Bn(a) : A → < 
determines the net benefit of policy action a ∈ A in state n. I assume Bn is bounded above 
by some large number and below by −yn to preserve the nonnegativity of consumption. 
Additional properties of Bn(a), together with those of set A, will be discussed later.

2.1 Optimal policy

With full knowledge of all fundamentals in the economy, the policymaker can easily com-
pute the optimal policy by solving

sup
a∈A

∑
n∈N

πnU (yn +Bn(a)) . (1)

Let a∗ denote the optimal policy decision.
Assume A is a closed interval and Bn(a) is differentiable everywhere. Then the fol-

lowing first-order condition∑
n∈N

πnU
′ (yn +Bn(a∗))B′n(a∗) = 0 (2)

is a necessary condition for optimality for interior solutions, which I assume from now
on.2

As is commonly done, I further assume that Bn(a) is weakly concave everywhere for
all n ∈ N , B′′n(a) ≤ 0, which implies that the necessary first-order condition (2) is also
sufficient.

2It is also necessary to assume certain Inada conditions on Bn to guarantee interior solutions.
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2.2 Using market-based probabilities

Consider now a policymaker who has limited knowledge about households’ preferences, the 
probability distribution and the endowments across states. Can the policymaker turn to 
market-based probabilities to make the best policy decision?

To answer this question, we need to set up a game between households and the policy-
maker, following the timing of decisions previously described. It is important to formally
distinguish the households’ belief regarding the policy action to be undertaken by the pol-
icymaker, denoted â, and the policymaker’s strategy, mapping market-based probabilities
into policy actions.

I start with the trading stage. Let q̂n be the price of a claim to one unit of consumption
in state n. Households are identical, so there is no trade in equilibrium and thus q̂n can
be easily priced as

q̂n = πnU
′ (yn +Bn(â)) . (3)

Note that prices depend on the households’ belief regarding policy. The underlying
market-based probabilities can be recovered with a simple normalization,

qn =
q̂n∑

m∈N q̂m

that ensures that the market-based probabilities indeed add up to one. Let Q ⊂ <n
+ be

the set of price vectors spanned by the set of policy actions A.
Turning to the policy decision, I assume that the policymaker has full knowledge of

net benefits function Bn(a) for all n ∈ N , and market-based probabilities are perfectly
observable. The policymaker strategy thus maps the vector of market-based probabilities,
denoted q, into an action a ∈ A. The best response function, denoted α(q), is such that
for all q in the N -simplex, the policy decision maximizes the weighted net benefits as
follows: ∑

n

qnBn(α(q)) ≥
∑
n

qnBn(a) (4)

for all a ∈ A. Note that the game requires a full strategy profile (i.e., a policy action for
every possible vector of market-based probabilities, α : Q→ A).

It is all set for the definition of an equilibrium. An equilibrium is a vector of market-
based probabilities q, a best response function α, and a household policy belief â ∈ A
such that

1. Market-based probabilities q satisfy (3) for each n ∈ N , given â;

2. The best response function α satisfies (4) for all q in the N -simplex; and

3. The households’ policy belief â satisfies rational expectations, â = α(q).

Is the optimal policy an equilibrium? Is it the unique equilibrium? As shown in 
Feldman et al. (2015), it turns out that the response to both questions is yes under 
some mild conditions—more precisely, once we assume A is a closed interval and Bn(a)
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is differentiable and weakly concave for all n ∈ N . To see this, note that a necessary
condition for (4), given the above assumptions, is∑

n

qnB
′
n(α(q)) = 0,

for interior solutions, and the correspondent slacked conditions if α(q) is on the boundary
of A. Thus, a necessary condition for a to be an equilibrium is that∑

n

πnU
′ (yn +Bn(a))B′n(a) = 0. (5)

Clearly, the optimal policy satisfies the necessary condition for equilibrium, for (2) and (5) 
are indeed the same equation. Differentiating (5) with respect to the policy action a, I 
obtain ∑

n

πnU
′′ (yn +Bn(a)) (B′n(a))

2
+
∑
n

πnU
′ (yn +Bn(a))B′′n(a) < 0.

There is thus a single equilibrium that must be then equal to the optimal policy.3

At this point, the equivalence between solving the optimal policy problem and using
market-based probabilities seems very robust, the conditions imposed on the net benefit
function Bn being quite mild—as a matter of fact, being the same properties that guar-
antee that the first-order condition for optimal policy is both necessary and sufficient. In
the next two sections, however, I will argue that the conditions for the equivalence result
are more restrictive than they appear.

3 When are market prices informative?

3.1 Net transfers

Consider the following simple example. There are only two states, N = 2, with y1 < y2.
For simplicity, I assume both states have the same probability. The policy action is a
simple transfer of resources across states, B1(a) = a and B2(a) = −a. The optimal
policy, for any strictly concave utility function, is to deliver full insurance across states,

a∗ =
y2 − y1

2

such that consumption in both states is equated, c1 = c2 = (y1 + y2)/2.
The conditions for the equivalence result are readily met, and indeed the optimal

policy is the unique equilibrium. A closer inspection, though, reveals that market prices

3Assuming the optimal policy is an interior point of A, there is no difficulty extending the reasoning
to slacked first-order conditions for the best response function.
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contain no information whatsoever. As the optimal policy equates the marginal utility of
consumption across states, the prices of a consumption claim to each state are identical,

1

2
U ′
(
y1 + y2

2

)
= q̂1 = q̂2 =

1

2
U ′
(
y1 + y2

2

)
.

Market-based probabilities are also identical across states, thus being uninformative about
either the likelihood or the willingness of the households to trade resources across states.4

Indeed, if the households expect the optimal policy to be in place, â = a∗, the policymaker
is actually indifferent between any policy action a ∈ A, since∑

n

qnBn(a) = 0

for any action a ∈ A.
Any choice other than the optimal policy a∗ is, of course, not an equilibrium since 

it would violate rational expectations. Yet, it is left unspecified how the policymaker 
would arrive at the optimal policy decision at all unless first-hand information is available 
on the endowments or the households’ expected policy, aˆ = a∗.5 In other words, the 
equilibrium conditions implicitly endow the policymaker with a knowledge that is not 
revealed by market-based probabilities and whose absence was the motivation for the use 
of market-based probabilities in the first place. More generally, whenever the net benefit 
function is linear, the policymaker will actually be indifferent between any policy choice 
in equilibrium. It should be noted, though, that this situation can also arise in some 
particular cases for nonlinear net benefit functions because it can be readily checked in the 
previous example by setting B1(a) = a2 and B2(a) = −a2.

It is fair to call this situation unsatisfactory. Ideally, we would like to ensure that the
best response by the policymaker is uniquely pinned down by the market-based probabil-
ities. Perhaps the most straightforward way to do so is to require that

α(q) = arg max
a∈A

∑
n

qnBn(a)

has a unique solution for all q in the N -simplex. This can be accomplished by requiring
that the net benefit function is strictly concave for all n ∈ N , B′′n(a) < 0.

Assuming strict rather than weak concavity for the net benefit function is not such a
minor change as it may appear. Policies that implement net transfers across states do not
easily satisfy strict concavity since, one presumes, there will be an inverse relationship
between the net benefits in each state. For example, if the benefit of a policy in one
state equals the cost of such a policy in another state, i.e., Bn(a) = −Bm(a), then it is

4Note that this is true for any probability distribution or endowment values. Market-based probabil-
ities are thus indeed silent regarding the structural parameters.

5Note that that the best response α is uniquely defined for any market-based probabilities q1 6= q2.
Yet, there is no continuity argument to anchor the equilibrium, since the best response will lie at the
boundary of A for q1 6= q2.
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clearly not possible for the net benefit functions in both states to be strictly concave.
The assumption of strict concavity, though, is not a necessary condition, and it is thus
possible to find alternative conditions that guarantee the equivalence result between the
optimal policy and the use of market-based probabilities.

3.2 Discrete policy choices

The equivalence result does not carry over easily to the case of a discrete set of policy
alternatives. This is perhaps not too surprising, since financial prices capture the marginal
effect of policy on consumption but the optimal policy problem compares instead with
the policy’s average effects.

Consider the classic example of a dam, where a ∈ {0, 1} indexes whether the dam is
built or not, and there are two states, N = 2, rain or shine. For simplicity, the net benefits
of not building the dam, a = 0, are zero in both states, and the net benefit of the dam
satisfies B1 > 0 > B2—that is, the dam is beneficial when it rains but its construction
must be paid anyway even if the sun shines.6 It is optimal to build the dam if

π1 (U (y1 +B1)− U (y1)) + π2 (U (y2 +B2)− U (y2)) > 0.

A policymaker observing the financial claims on the weather would build the dam if

π1U
′ (y1 +B1)B1 + π2U

′ (y2 +B2)B2 ≥ 0.

Unfortunately, it is quite easy to find values such that building the dam is optimal 
but market-based probabilities lead the policymaker to the wrong decision. Assume that 
when it rains, it pours; in the absence of a dam, flooding ensues and households are 
substantially worse off when it rains than when the sun shines, y(1) < y(2). The dam, 
though, provides irrigation and allows high-value crops to grow: Households are then better 
off when it rains than when the sun shines, y(1) + B1 > y(2) + B2. If households expect the 
dam to be built, the financial claim to consumption on a rainy day will be low and, in 
particular, below the financial claim on a sunny day, q1 < q2. Based on the financial prices, 
the policymaker may mistakenly believe that households do not value the dam enough.7 

The problem is that the average effect of the dam is positive, yet the marginal effect is 
negative—and market-based probabilities are informative only about the latter. In such 
cases, there may be no equilibrium in pure strategies, as the policymaker may actually lean 
toward building the dam if households expect the dam not to be built.

4 Nonpecuniary net benefits

The benchmark model assumes that the net benefits of a policy are computed in con-
sumption terms:

cn = yn +Bn(a).

6Notation B1 is a shortcut for B1(1) and so on.
7A numerical example in which this occurs is as follows: y1 = 1, y2 = 5, π1 = .05, B1 = 9.5, B2 = −.5

and U = log.
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Many policies, though, will have nonpecuniary benefits. Consider a simple example of a
policy with nonpecuniary, separable benefit function

U(yn) +Gn(a),

where Gn is assumed to be strictly concave for all n ∈ N . Now, one can always translate
the nonpecuniary benefits into a “compensation function” that captures the net benefits
of the policy in consumption terms. The compensation function is defined as the amount
of consumption an agent would demand to receive (or be willing to give up) for the
implementation of a policy. It does require a baseline policy to compare with, which I
denote ā = A. Then, define Bn(a; ā) for a, ā ∈ A as the solution to

U (yn +Bn(a; ā)) +Gn (ā) = U (yn) +Gn (a) . (6)

That is, Bn(a; ā) is the amount of consumption (positive or negative) that renders an
agent indifferent between policies ā and a.8

Does the equivalence result between the optimal policy and the market-based prob-
abilities approach apply? The equivalence result is obtained only if the baseline policy 
used for the net benefit function is the exact optimal policy, a¯ = a∗. However, this implies 
that the policymaker knows the optimal policy at the start. Without knowing how to set 
a¯, the policymaker would not be able to use market-based probabilities to arrive at the 
optimal policy decision.9

Let us develop the example (6). Assuming an interior solution, a necessary and suffi-
cient condition for the optimal policy is∑

n

πnG
′
n(a∗) = 0. (7)

While the marginal utility of consumption is now irrelevant, the optimal policy still re-
quires knowledge of the probability distribution across future events. Financial prices are
now independent of the expected policy, since the latter has only nonpecuniary benefits,

q̂n = πnU
′(yn).

Market-based probabilities are recovered as before. Note that households will not receive
an actual transfer regarding policy, and thus the market-based probabilities are evaluated
at the endowment value, yn.

Consider a policymaker relying on market-based probabilities to decide policy by solv-
ing

max
a∈A

∑
n

qnBn(a; ā).

8There is no difference if the net benefit function in consumption terms is defined instead as an
“equivalence” rather than compensation function—that is, as a transfer given in the event of policy a
rather than ā.

9Solving for Bn(a; ā) also requires knowledge of U and yn, in addition to the nonpecuniary net benefit
function Gn. It does not require, though, knowledge of the probability distribution πn.
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The first-order condition associated with the previous problem is∑
n

qn
∂Bn(a; ā)

∂a
= 0.

By the implicit function theorem, I differentiate (6) to obtain

∂Bn(a; ā)

∂a
=

G′n(a)

U ′ (yn +Bn(a; ā))
.

Substituting the market-based probabilities, I obtain∑
n

πn
U ′(yn)

U ′ (yn +Bn(a; ā))
G′n(a) = 0. (8)

In general, the optimal policy a∗ will not satisfy the necessary first-order condition for the 
policymaker—that is, (7) and (8) do not coincide.10 It actually does so only if

Bn(a∗; ā) = 0

for all n ∈ N , which requires ā = a∗. In other words, the net benefit function must be
constructed using the optimal policy as the baseline policy.11

As condition (8) makes clear, the problem here is a “mismatch” between the marginal 
utility of consumption as given by the market-based probabilities—evaluated at actual 
consumption—and the counterfactual marginal utility of consumption embedded in the 
net benefit function Bn, which treats the net benefit as actual consumption. The two 
coincide only when the household is not compensated, Bn = 0.

5 Conclusions

I should emphasize that market-based probabilities remain useful for the policy decisions
even if market prices do not provide all the information required. Perhaps the correct
approach is to consider a policymaker who updates the set of priors upon observing
market prices. In some special situations, market prices will be very informative, and
the resulting policy decision will approach the optimal policy. In most cases, prices may
contain only some information, so the policymaker will reach an improved decision but
not necessarily one close to the optimal policy. There may be instances in which market
prices are misleading, but such cases are surely bound to be a minority.

10There is actually no guarantee that Bn will remain strictly concave, but I will assume so to focus on
the information required to compute the net benefit function.

11There may be other, nongeneric instances where (7) and (8) coincide.
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