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Abstract

An analytically tractable city model with external increasing returns is presented. The equi-

librium city structure is either monocentric or decentralized. Regardless of which structure

prevails, intracity variation in endogenous variables displays exponential decay from the city

center, where the decay rates depend only on parameters. Given population, the equilibrium

of the model is generically unique. Tractability permits explicit expressions for when a central 

business district (CBD) will emerge in equilibrium, how external increasing returns affect the 

steepness of downtown rent gradients, and how wages and welfare vary with population. An

application to urban growth boundary is presented.

Keywords: agglomeration economies, central business district, rent gradient, urban growth

boundary
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It seems to me that the force we need to postulate for the central role of cities

in economic life is of exactly the same character as the external human cap-

ital I have postulated as a force to account for certain features of aggregative

development. If so, land rents should provide an indirect measure of this

force . . . What can people be paying Manhattan or downtown Chicago rents

for, if not for being near other people?

—Robert E. Lucas Jr. (1988)

“On the Mechanics of Economic Development,” p. 39

1 Introduction

Increasing returns are a key element in several explanations of economic growth (Arrow

(1962), Romer (1986), Lucas (1988)). Often times, external increasing returns accompany

and sustain the spatial concentration of industries, as famously noted by Alfred Marshall

(1890) long ago.1 Indeed, when placing external human capital at the center of the process

of economic development, Lucas (1988) linked cities and growth. His intent (expressed in the

quote above) was to bring facts regarding the internal structure of cities — in particular, the

concentration of businesses and the generally high value of land in the center of cities — to

both validate the existence of increasing returns and learn about their empirical importance.

Our paper is motivated by this link between cities and growth. It presents a tractable

model of a city in which industry scale improves the efficiency of firms depending on how

close physically firms are to each other. Our model has the same setup as the Lucas and

Rossi-Hansberg (2002) circular city model but alters the way physical proximity between

firms is defined. Specifically, the proximity between two firms located at different points in

the plane is measured as the sum of the lengths of the rays connecting each point to the city

center.2 With this change, we can show that the city either has a “monocentric” structure

1Principles of Economics, Book IV, Chapter 10: “The Concentration of Specialized Industries in Partic-
ular Localities.”

2In most studies, including Lucas and Rossi-Hansberg, proximity is taken to mean Euclidean distance
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with businesses concentrating in the city center, or it has a “decentralized” structure in

which firms locate next to their workers. Regardless of which form prevails, the intracity

variation in all endogenous variables — residential and commercial rents, employment and

residential densities, and wages — displays (over their relevant domains) exponential decay

from the city center, in which the rates of decay depend only on preference and technology

parameters. Furthermore, for a given population size, the equilibrium outcome is generically

unique.

Analytic tractability has several useful consequences. First, we are able to give explicit

conditions on preference and technology parameters under which a business core, or central

business district (CBD), will emerge in equilibrium. Second, the explicit expressions for

the CBD rent gradients reveal how the strength of increasing returns, in conjunction with

other parameters, affects the steepness of downtown rent gradients. Third, we are able to

characterize the equilibrium relationship between downtown rents and wages and population.

Analytic tractability also allows us to characterize the equilibrium relationship between

welfare and population. The shape of this relationship is important for explaining why

modern economies are organized around a finite number of large cities. If city welfare is

monotonically increasing or decreasing in population, we should expect all economic activity

to concentrate in one giant city or be dispersed across an infinity of miniscule locations. The

fact that it is neither suggests that welfare is initially increasing but eventually declining in

population. Visually, the relationship must resemble an inverted-U. Our characterization of

the relationship gives explicit conditions under which the inverted-U shape will emerge for

both the mononcentric and decentralized cities.3

Finally, tractability permits informative comparative static analyses. We study the im-

between two points. It is unclear, however, what measure of proximity is relevant for urban agglomerations.
For instance, if distance between firms matters because of commuting costs, one might need to consider
that most cities have a radial highway network. Our definition is consistent with this and has the benefit of
tractability.

3Studies on the system of cities derive this relationship in a reduced form fashion: It is assumed that
firms locate at the city center to benefit from local increasing returns, and it is (typically) assumed that the
city area grows with population (see the survey by Abdel-Rahman and Anas (2004)).
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pact of an urban growth boundary on equilibrium outcomes in the context of rising demand

for urban land.4 Intuition might suggest that urban growth controls reduce housing afford-

ability by increasing rents. We show that this intuition ignores the local increasing returns

that are central to urban agglomerations. When productivity is increasing in population,

cities that can expand will experience larger increases in rents relative to cities whose ex-

pansion is constrained by a growth boundary. On the other hand, if factors other than land,

such as structures, are also fixed — as they might be in the short run — then productivity

is declining in population and rents are predicted to rise more in the constrained city. Thus,

the model predicts that the effects of urban growth boundaries on housing affordability will

vary with the time horizon under consideration. Empirical evidence on this point is discussed

later in the paper (Section 7).

There are several precursors to the theory presented in this paper. The paper by Fujita

and Ogawa (1982) is an early precursor that examined for a linear city (and mostly numeri-

cally) the conditions under which one or more business districts could emerge in equilibrium.5

Lucas (2001) studied the connection between the magnitude of increasing returns and the

steepness of business rent gradients in a model in which the residential location choice of

workers was suppressed. Thus, the conditions under which a business core would emerge

were not addressed. This question was addressed in Lucas and Rossi-Hansberg (2002) for a

circular city model. They gave an innovative proof of existence of a competitive equilibrium

and numerically explored equilibrium city structures for different parameter values.6 What

sets our paper apart from these studies is that we are able to give an analytic characterization

of equilibrium configurations for the case in which both firms and workers choose locations,

4Constraints on urban development are growing trends in the U.S. and a well-established policy in most of
Western Europe (Pendall, Martin, and Fulton (2002)). In emerging economies, where the rate of urbanization
is expected to increase dramatically in the coming years, urban growth containment policies are of prime
interest.

5There is extensive literature in urban economics that theoretically examines residential land use in a city
(see, for instance, the surveys by Brueckner (1987) and Duranton and Puga (2014)). This literature assumes
that businesses locate in the city center and, therefore, makes no predictions regarding the emergence, size,
or rent gradients of business districts.

6Recently, Dong and Ross (forthcoming) have succeeded in giving a characterization of employment and
rent gradients around the city center for the Lucas and Rossi-Hansberg model.
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and production and utility functions take forms that are standard in aggregative analyses.

The paper is organized as follows. Section 2 describes the environment. Section 3 derives

the condition under which the city features a business core. Section 4 constructs the equi-

librium of such a city for a given population (the case of the city without a business core is

given in Appendix C). Section 5 discusses some of the key implications of the model. Sec-

tion 6 characterizes the relationship between welfare and population. Section 7 contains the

analysis of urban growth boundaries, and Section 8 concludes. Several appendixes contain

supplementary results. To aid the reader, a glossary of terms is provided after the concluding

section.

2 Environment

Space is modeled as a flat plane extending infinitely in all directions, with a point marked off 

as the city center. Each point other than the center is physically indistinguishable from any 

other, so we focus on allocations that are symmetric relative to the center. A location is then 

described fully by its distance r from the center.

2.1 Workers

A population of P workers lives in the city. Workers decide where to live and where to

commute for work within the city. Workers can commute to any firm located on the ray

that connects the worker’s residential location to the city center (since the equilibrium is

symmetric around the city center, this is without loss of generality). We follow Anas, Arnott,

and Small (2000) and Lucas and Rossi-Hansberg (2002) and assume that a worker who resides

in location s and commutes to a firm at location r has exp(−κ|s− r|) unit of time to devote

to production, where κ > 0.7

7This specification is a convenient abstraction (but see Anas, Arnott, and Small (2000) for a substantive
defense of it). Note that when κ is small, the (net) income of a commuter is approximately w(r)[1−κ|s−r|],
which is the commonly used specification.
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Workers take the land rent and wage schedules, q(r) and w(r), respectively, along any

ray from the city center as parametrically given. Then, a worker who resides at location s

solves the following decision problem:

u(s) = max
c≥0, l≥0

cβl1−β, β ∈ (0, 1) (1)

s.t. c+ q(s)l = W (s), where

W (s) = max
r≥0

(w(r) exp(−κ |s− r|).

Here, c denotes consumption of the single numeraire good, l is the consumption of

land, and W (s) is the maximum income a worker can earn when he lives at location s and

optimally chooses where to commute for work. We will refer to W (s) as the earnings

schedule. The solution gives

c(s) = βW (s), l(s) = (1− β)
W (s)

q(s)
and u(s) = ββ (1− β)(1−β) W (s)

q(s)(1−β)
. (2)

2.2 Firms

There is free entry of firms at each location, and firms have constant returns to scale tech-

nology to produce the single numeraire good. The production function of a firm that uses

one unit of land at location s is

Az(s)γn(s)α, A > 0, α ∈ (0, 1), γ ∈ (0, 1].

where n is the number of units of worker time per unit of land, A is a total factor productivity

(TFP) term that is common to all firms, and z(s) is a variable — defined more precisely

below — that captures how many other workers are in close proximity to the firm located at

s. The parameter γ controls how important proximity to other businesses is in production.

Firms also take the rent and wage schedules as parametrically given. A firm that chooses

to set up production in location s solves the following decision problem:
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π(s) = max
n≥0

Az(s)γnα − nw(s)− q(s). (3)

The solution gives

n(s) = (Aαz(s)γ/w(s))1/(1−α) and π(s) =
(
αAz(s)γw(s)−α

) 1
1−α [1/α− 1]− q(s). (4)

Turning to the determination of z(s), we assume that distance between any two firms is

measured by the sum of the distance of the two firms from the city center. In other words,

if one firm is located on a circle of radius r and the other firm is located on a circle of radius

s, the distance of the firms to each other is simply (r + s). This assumption is reasonable if

communication between workers at different firms requires travel to a central meeting place

and the road system is radial. Let N(r) denote the total units of worker time employed at

location r. Then, proximity to other workers enjoyed by a firm at location s is

z(s) =

∫ ∞
0

2πr exp (−δ (s+ r))N(r)dr, δ > 0.

Since z(0) =
∫∞

0
2πr exp (−δr)N(r)dr, we have

z(s) = z(0) exp (−δs) . (5)

For any location s, the measure of proximity to other firms is the measure of proximity at the

city center discounted by its distance from the center. Thus, the distribution of employment

within the city affects z(s) only through its affect on z(0). This property is key for the

tractability of the model.8

8Since workers commute along rays from the center, it might seem more reasonable to require that
proximity to workers on the same ray as the firm is simply Euclidean distance. Given that the measure of
workers on the same ray as the firm is zero, this interpretation is consistent with our definition of z(s).
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2.3 Landowners

Following convention, we assume that all land in the economy is owned by absentee landlords.

These landlords supply land inelastically to the rental market, with a reservation rental price

of d > 0 units of consumption good.

2.4 Competitive Equilibrium

Now, we are ready to give the definition of a competitive equilibrium. To express these

conditions, we let θF (r) and θH(r) denote the fraction of land at location r devoted to

business and residential use, respectively. We use m(s, r) to denote the fraction of workers

living in location s who commute to location r for work.

Definition 1 Given population P > 0 and value of land in nonurban use d > 0, a symmetric

city equilibrium is (i) a wage and earning schedule w∗(·) ≥ 0 and W ∗(·) ≥ 0; (ii) a rent

schedule q∗(·) ≥ d; (iii) an employment density schedule n∗(·) ≥ 0; (iv) an intensity of

residential land use schedule l∗(·) ≥ 0 and consumption c∗(·) ≥ 0; (v) a schedule of the

fraction of land devoted to business use 1 ≥ θ∗F (s) ≥ 0; (vi) a schedule of the fraction of land

devoted to residential use 1 ≥ θ∗H(s) ≥ 0; (vii) for each s for which θ∗H(s) > 0, a schedule of

the fraction of residents commuting to r, 1 ≥ m∗(s, r) ≥ 0; and (viii) a utility level U∗, such

that

1. n∗(s) and π∗(s) solve (3) for w(s) = w∗(s) and q(s) = q∗(s).

2. π∗(s) ≤ 0, and π∗(s)θ∗F (s) = 0.

3. l∗(s), c∗(s), and u∗(s) solve (1) for W (s) = W ∗(s) and q(s) = q∗(s).

4. u∗(s) ≤ U∗ and [u∗(s)− U∗]θ∗H(s) = 0.

5. θ∗F (s) + θ∗H(s) ≤ 1 and [1− θ∗F (s)− θ∗H(s)](q∗(s)− d) = 0.
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6. For θ∗H(s) > 0,
∫∞

0
m∗(s, r)dr = 1, where m∗(s, r) = 0 if w∗(r) exp(−κ |s− r|) <

W ∗(s).

7. For each r ≥ 0,

∫ r

0

θ∗F (k)n∗(k)2πk dk =

∫ ∞
0

∫ r

0

1{θ∗H(s)>0}m
∗(s, k)

θ∗H(s)

l∗(s)
2πs exp (−κ |k − s|) dk ds.

8.

∫ ∞
0

θ∗H(s)
1

l∗(s)
2πsds = P.

9. For each r ≥ 0,

z∗(r) = exp(−δr)
∫ ∞

0

2πsθ∗F (s)n∗(s) exp(−δs)ds.

Conditions (1)–(4) spell out the requirements of optimization. Because of free entry of

firms, profits must be nonnegative in any location and must be exactly zero where some

portion of the land is devoted to business use (condition (2)). Similarly, because of free

mobility of workers within the city, utility available in any location cannot exceed U∗ and

must be exactly U∗ where some portion of the land is devoted to residential use (condition

(4)). Condition (5) requires that, if some portion of the land in a location is devoted to

nonurban use, land rent there must be d.

The specifically spatial aspects of the equilibrium show up in conditions (6)–(9).

Condition (6) requires that no worker commutes to any location that gives earnings less

than W ∗(s).

Condition (7) imposes labor market balance. The l.h.s. gives the total demand for worker

time on the disk (of radius) r. On the r.h.s., the inner integral
∫ r

0
m∗(s, k)[θ∗H(s)/l∗(s)]

exp(−κ|k − s|)2πs dk gives the total worker time supplied to the disk r by workers residing

on the circle s. The outer integral gives the total supply of worker time to the disk r.
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Condition (8) imposes that the total number of city residents must equal the population.

On the l.h.s., 1/l∗(s) is the residential population density at location s and θ∗H(s)/l∗(s)2πs

are all the people living on circle s. The integral over s must equal P .

Finally, condition (9) gives the proximity to businesses enjoyed by a firm at location r

as a function of the distribution of worker time across all locations in the city. Observe that

the external effect depends on distribution of worker time rather than workers and, thus,

the time spent commuting does not contribute to the productivity of workers.

3 Internal Structure

In this section, we characterize the internal structure of a city (existence and uniqueness of

equilibrium, given P , is demonstrated in Section 4). The main result is that, generically, the

structure of the city can take only one of two forms: It has either a CBD with a surrounding

residential ring or firms and workers colocating throughout the city. In preparation, we

state some lemmas and introduce some definitions that come in handy. Proofs of all lemmas

appear in Appendix A; in the text, we give intuition for why each result holds.

Lemma 1 In any equilibrium z∗(0) ≤ P .

The index of proximity at the city center is bounded above by the total amount of time

devoted to production in the city and, since each individual worker can devote at most one

unit of time to production, this quantity is bounded above by the measure of workers P .

This bound applies to all locations in the city, not just the center, and it will apply for any

distance measure, not just the one we are working with.

The next lemma asserts that a city that delivers positive equilibrium utility to its workers

must have a boundary. The lemma follows from the fact that firms farther away from the

center are less productive (z(r) declines exponentially from the city center), commuting to

firms is costly, and land has strictly positive value in nonurban use.
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Lemma 2 In any equilibrium with U∗ > 0, there is S(U∗) > 0 such that for all s > S(U∗),

θ∗F (s) = θ∗H(s) = 0.

Next, we introduce some conceptual tools that will be helpful in deriving our results on

the internal structure of cities. First, we introduce a land rent schedule for which, given the

wage schedule, firms’ profits are exactly 0. Using (3), we obtain

qF (s;w(s)) =
(
αAz(s)γw(s)−α

) 1
1−α (1/α− 1) . (6)

Analogously, there is a land rent schedule for which, given the income schedule, households

get utility level U . Using (1), we obtain

qH(s;W (s), U) = β
β

1−β (1− β)

(
W (s)

U

) 1
1−β

. (7)

It is customary in urban economics to refer to these functions as the bid rent functions of

firms and workers, respectively (Alonso (1964), Fujita (1989)). The former is the maximum

rent a competitive firm can pay for location s and still earn nonnegative profits. The latter

is the maximum rent a worker can pay for location s and still get utility U. To conserve on

notation, we will use q∗F (s) to denote qF (s;w∗(s)) and q∗H(s) to denote qH(s;W ∗(s), U∗).

The following lemma is self-evident:

Lemma 3 If θ∗F (s) > 0 then q∗F (s) ≥ q∗H(s) and if θ∗H(s) > 0 then q∗H(s) ≥ q∗F (s).

The next two lemmas draw out the implications of optimal commuting.

Lemma 4 If θ∗F (s) > 0, then W ∗(s) = w∗(s).

If there are firms in location s, the income that a resident can receive by residing in that 

location must equal wages offered in that location. The fact that it cannot be any less is 

obvious. If it were more, a person working at s would do better by commuting to locations 

that give higher income, contradicting the presence of firms at s.
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Lemma 5 W ∗(s) ≥ W ∗(r) exp (−κ |r − s|) for any r and s.

Income available at any location s cannot be less than what a resident of that location would

earn by first commuting to some other location r and following the commuting pattern from

location r.

We are now ready to prove our key proposition that there is a simple condition on

fundamentals that determines whether workers commute in equilibrium or not. Furthermore,

we can show that if there is commuting in equilibrium, then it must be toward the center.

Proposition 1 (Internal Structure I) If there is commuting in equilibrium, then κ ≤

[δγ(1− β)]/[1− αβ] and commuting is always toward the city center.

Proof. Assume two distinct locations r and s such that m∗(s, r) > 0 (i.e., there is commuting

from s to r). Given that θ∗F (r) > 0, qF (r, w∗(r)) ≥ qH(r;W ∗(r)) = qH(r, w∗(r)), where the

first inequality follows from Lemma 3 and the second equality follows from Lemma 4. Using

the definitions of qF (·), qH(·), and z(r) = z(0) exp(−δ r), we obtain an upper bound on

w∗(r):

w∗(r) ≤ K(z∗(0), U∗) exp

(
−δγ(1− β)

(1− αβ)
r

)
,

where K(z∗(0), U∗) is a constant, given z∗(0) and U∗.

Next, given that θ∗H(s) > 0, we have qF (s;W ∗(s)) ≤ qF (s;w∗(s)) ≤ qH(s,W ∗(s)), where

the first inequality follows from the fact that qF (s;w(s)) is decreasing in w(s) and W ∗(s) ≥

w∗(s) and the second inequality follows from Lemma 3. Since m∗(s, r) > 0, W ∗(s) =

w∗(r) exp(−κ|r − s|). This implies a lower bound on w∗(r):

w∗(r) exp(−κ|r − s|) ≥ K(z∗(0), U∗) exp

(
−δγ(1− β)

(1− αβ)
s

)
.
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The two bounds together imply

exp(−κ|r − s|) ≥ exp

(
−δγ(1− β)

(1− αβ)
(s− r)

)
.

This condition can be satisfied only if commuting is toward the city center; i.e., s > r, and

κ ≤ [δγ(1− β)]/[1− αβ].

Corollary 1 If κ > [δγ(1 − β)]/[1 − αβ], in equilibrium firms colocate with their workers,

since there cannot be any commuting.

The intuition for the proposition and corollary is simple. Because of the exponential

decay in z(·), firms are more productive the closer they are to the center. The inequality

κ ≤ [δγ(1 − β)]/[(1− αβ)] ensures that the rise in productivity toward the city center is

large enough for businesses to be able to compensate for the commuting costs of workers

and be able to pay at least as much for land as workers would be willing to pay to live

there (this point is explained in more detail in Section 5.1). If this inequality is violated,

commuting cannot be supported in equilibrium and leads to a city that has mixed (business

and residential) use of land everywhere; i.e, firms colocate with their workers.

The next proposition shows that if commuting can be supported in equilibrium, the city

will have a central business district and a surrounding residential ring. The proof uses the

fact that the presence of firms in a location puts a cap on equilibrium wages in locations

closer to the city center (so that workers do not strictly prefer to commute further in toward

the center). Given this cap on wages, firms’ capacity to pay for land closer toward the center

increases at a faster rate than workers’ willingness to pay for land closer to the center when

κ < [δγ(1 − β)][(1− αβ)]. So, when a location is used for business purposes, all locations

closer to the center end up in business use as well. From boundedness of the city, we can find

an SF that is the boundary of the business district. Because of commuting costs, income of

workers declines exponentially as one goes further out from SF . Given this, there will be a

solid residential ring between SF and the boundary S of the city.
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Proposition 2 (Internal Structure II: Monocentric City) If κ < [δγ(1−β)][(1− αβ)],

then (i) there is an SF > 0 such that for s < SF , θ∗F (s) = 1 and s > SF , θ∗F (s) = 0 and (ii)

there is an S > SF such that for SF < s < S, θ∗H(s) = 1 and θ∗H(s) = 0 elsewhere (except

possibly at SF and S).

Proof. (i): In any equilibrium with U∗ > 0, there will be some s such that θ∗F (s) > 0. We

now show that for any r < s, θ∗F (r) = 1. We have that W ∗(r) exp(−κ(s − r)) ≤ W ∗(s) =

w∗(s) (the inequality follows from Lemma 5 and the equality follows from Lemma 4). In

addition, qF (s;w∗(s)) ≥ qH(s;W ∗(s)) = qH(s;w∗(s)) (the inequality follows from Lemma 3

and the equality from Lemma 4). Combining these and using the definitions of qF (·), qH(·),

and z(r) = z(0) exp(−δr) yields

K(z∗(0), U∗) exp

(
−δγ(1− β)

(1− αβ)
s

)
exp(κ(s− r)) ≥ W ∗(r).

Next, we want to show that qF (r;W ∗(r)) > qH(r;W ∗(r)), which is equivalent to

K(z∗(0), U∗) exp

(
−δγ(1− β)

(1− αβ)
r

)
> W ∗(r).

Since κ < [δγ(1 − β)]/[1 − αβ], the above inequality follows from the previous one. Since

W ∗(r) ≥ w∗(r), we obtain qF (r;w∗(r)) > qH(r;W ∗(r)). This proves that locations closer to

the city center than s cannot be in residential use.

To prove that the locations will be in business use, we must also establish that qF (r, w∗(r))

is at least as large as d. Since qF (s;w∗(s)) ≥ d (or else θ∗H(s) cannot be positive), it is

sufficient to show that qF (r, w∗(r)) > qF (s, w∗(s)). From the definition of qF (·), q∗F (r) > q∗F (s)

if and only if

w∗(s) > exp

(
−
(
γδ

α

)
(s− r)

)
w∗(r)
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Since κ < [δγ(1 − β)]/[(1− αβ)] implies κ < γδ/α, and w∗(r) exp(−κ(s − r)) ≤ w∗(s), the

above inequality is satisfied and q∗F (r) > q∗F (s) ≥ d. Therefore, for all r < s, θ∗F (r) = 1. Let

F = {r ≥ 0 : θ∗F (r) > 0}. By assumption F is nonempty and by Lemma 2 it is bounded

above. Hence, it possesses a least upper-bound of SF . Then, for all r < SF , θ∗F (r) = 1 and

for r > SF , θ∗F (r) = 0.

(ii): Given the existence of the CBD, w∗(r) = w∗(0) exp (−κr) for r ∈ [0, SF ) and workers are

indifferent between working in any location within the CBD. Therefore, for any s, W ∗(s) =

w∗(0) exp(−κs). The city boundary will be at S such that U∗ = w∗(0) exp(−κS)/d1−β.

Thus, there is an S > SF such that for SF < s < S, θ∗H(s) = 1 and θ∗H(s) = 0 elsewhere

(except possibly at SF and S).

In the body of the paper, we focus on the CBD case as that seems more relevant to the

U.S. The details for the case where κ > [δγ(1− β)]/[1− αβ] (the decentralized employment

case) is given in Appendix C. When κ = [δγ(1− β)]/[1− αβ], the internal structure of the

city is indeterminate, as both forms are consistent with equilibrium. Except for this “razor’s

edge” case, equilibrium internal structure is unique.

4 Existence and Uniqueness of Equilibrium

In this section, we establish the existence of equilibrium for the CBD case shown in Figure

1. The proof is by construction. The construction will show that q∗(s) and U∗ are uniquely

determined, and θ∗F (s) and θ∗H(s) are uniquely determined (except at S∗F and S∗). In addition,

if θ∗F (s) > 0, n∗(s) and w∗(s) are uniquely determined, and if θ∗H(s) > 0, c∗(s) and l∗(s) are

uniquely determined.

Outside of the CBD, there are no transactions for labor and, consequently, wages are

not uniquely pinned down. In what follows, we will assume that w∗(s) = w∗(0) exp(−κs)

for all s > S∗F (for s > S∗F , the wage cannot be any higher as workers would then prefer to
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work at their home location; but the wage could be lower provided firms continue to make

nonpositive profits). This schedule has the advantage that W ∗(s) = w∗(s) for all s and, so,

we can use W ∗(s) and w∗(s) interchangeably.

Given w∗(·), the land rent schedule that is consistent with zero profits is

q∗F (s) = q∗F (0) exp

(
−δγ − κα

1− α
s

)
for s ≥ 0, (8)

where q∗F (0) = (1− α)Az∗(0)γn∗(0)α, and, given W ∗(·), the land rent schedule that gives

the same utility to the household everywhere is given by

q∗H(s) = q∗H(0) exp

(
− κ

1− β
s

)
for all s ≥ 0, (9)

where q∗H(0) = β
β

1−β (1− β) (w∗(0)/U∗)
1

1−β . Observe that when κ < [γδ(1 − β)]/[1 − βα],

q∗F (·) has a steeper (negative) slope than q∗H(·) (as shown in Proposition 2) and they intersect

15



each other at only one point corresponding to S∗F (the boundary of the CBD). This implies

q∗H(0)

q∗F (0)
= exp

(
κ(1− αβ)− δγ(1− β)

(1− α)(1− β)
S∗F

)
. (10)

Now that we have assessed the functional forms for rents, we can derive a compact

expression for the set of labor market clearance conditions given in equilibrium condition (7).

An implication of Proposition 2 is that there isn’t a unique schedule for m∗(·) because workers

are indifferent to commuting anywhere in the CBD. However, for any equilibrium commuting

pattern, the total supply and the total demand for labor hours must be equal to each other at

the border of the business district. The total supply of labor time available at the border of

the CBD, taking into account the time lost in commuting, is
∫ S
SF

[2πr/l(r)] exp(−κ(r−SF ))dr,

where 1/l(r) gives the number of people living per unit land in location r. If the employment

density at a CBD location r is n(r), the labor time needed at the border of the commercial

district to fulfill this demand is exp(κ(SF − r))n(r). Therefore, the total time needed at

the border of the CBD to satisfy the total labor demand inside the commercial district is∫ SF
0

2πrn(r) exp(κ(SF − r))dr. Equality of labor demand and supply then requires

∫ S∗
F

0

2πrn∗(r) exp (κ(S∗F − r)) dr =

∫ S∗

S∗
F

2πr

l∗(r)
exp (−κ(r − S∗F )) dr. (11)

Substituting in the expressions for n∗(r) and l∗(r), given (8) and (9), and using (10), the

above equality can be written as S∗∫
S∗
F

r exp

(
− κ

1− β
r

)
dr

 =

(1− β)

(1− α)
α

 S∗
F∫

0

r exp

(
−γδ − ακ

1− α
r

)
dr

 exp

(
−κ(1− αβ)− δγ(1− β)

(1− α) (1− β)
S∗F

)
. (12)

Then, we have the following proposition:
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Proposition 3 (CBD Boundary) For S∗ > 0, there is a (i) unique S∗F = SF (S∗) ∈

(0, S∗) that satisfies (12), (ii) SF (S∗) is strictly increasing in S∗ and (iii) limS∗→0 SF (S∗)) =

0 and limS∗→∞ SF (S∗) = S̄F > 0.

Proof. (i): Given any S∗ > 0, κ < [δγ(1 − β)]/[1 − αβ] implies that the r.h.s. of (12)

is increasing in S∗F . The l.h.s. of (12) is clearly decreasing in S∗F . Furthermore, the r.h.s.

is 0 for S∗F = 0 while the l.h.s. is strictly positive, and the r.h.s. is strictly positive for

S∗F = S∗ while the l.h.s. is 0. Therefore, for each S∗ > 0, there is a unique S∗F ∈ (0, S∗)

that ensures (12) is satisfied. (ii): As S∗ goes up and S∗F does not change, the integral on

the l.h.s. goes up. Since the r.h.s. is increasing in S∗F , the equilibrium S∗F must be strictly

higher. Thus, SF (S∗) is strictly increasing in S∗. (iii): Since SF (S∗) < S∗ for all S, it follows

that limS∗→0 SF (S∗) = 0. To prove the other limiting result, recall that in any equilibrium

SF is bounded above (Proposition 2). Since SF (S) is strictly increasing, limS→∞ SF (S) must

converge to some number S̄F > 0.

It is intuitive that a more spread-out city will have a more spread-out CBD, i.e., the CBD 

boundary will “chase” the city boundary. However, this effect weakens rapidly, which implies 

an upper bound on the CBD boundary. The reason for this is that workers living at the edge of 

the city consume a lot of land as compensation for their long commute, which means that 

population density at the edge of the city is quite low. Consequently, as the city boundary 

recedes farther from the center, the measure of people moving out to the edge becomes very 

small. Because of the small numbers involved, this movement has virtually no effect on 

equilibrium quantities in the city center. So, in the limit, there is no change in the CBD 

boundary.9

Turning next to the requirement that a population of P needs to live in the city (equi-

9The upper bound on the CBD boundary derived in Lemma 2 depends on d; in contrast, d does not
appear directly in equation (12).
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librium condition (8)), we have that

P =

∫ S∗

S∗
F

2πr

l∗(r)
dr. (13)

From w∗(.), z(·), and equations (10) and (12) we obtain

n∗(r) = n∗(0) exp

(
−δγ − κ

1− α
r

)
for all r ∈ [0, S∗F ).

Next, from the definition of z(0), we have

z∗(0) = n∗(0)

 S∗
F∫

0

2πr exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)
dr

 . (14)

Using these expressions, we find that (13) implies

n∗(0) =
P

2π

1[
SF (S∗)∫

0

r exp
(
−γδ−ακ

1−α r
)
dr

]
[

S∗∫
SF (S∗)

r exp
(
− κ

1−β r
)
dr

]
[

S∗∫
SF (S∗)

r exp
(
− κβ

1−β r
)
dr

] . (15)

Thus, given S∗, both S∗F and n∗(0) are uniquely determined. Hence, the rest of the equilib-

rium values, such as z∗(.), w∗(.), q∗F (.), q∗H(.), l∗(.), and U∗ are also uniquely determined.

The final equilibrium condition is the determination of the city boundary. S∗ is deter-

mined by the condition that land rents at the boundary must be d:

q∗H(S∗) = d. (16)

We have the following proposition:

Proposition 4 (City Boundary) Given P , there is a unique S∗ ∈ (0,∞) that satisfies

q∗H(S∗) = d. Furthermore, S∗ is strictly increasing and unbounded in P .
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Proof. See Appendix B.

The proof is somewhat lengthy and is thus given in the appendix. The proposition itself

has a simple intuition. Given the necessity to host a measure P of people in the city, as S∗

collapses toward zero, the marginal value of land, for both firms and residents, diverges to

infinity, which drives land rents toward infinity as well. As S∗ increases, the marginal value

of land and, so, land rents, decline monotonically. As S∗ diverges to ∞, the CBD boundary

S∗F converges to S̄F (Proposition 3). The proof shows that the CBD land rents converge, and

land rents at the city boundary go to zero due to the costs of commuting. These properties

imply that there is a unique S∗ where prices at the boundary are equal to d. The fact that

S∗ is increasing in P is, of course, intuitive: If there are more people living in the city, land

rents in the city will rise, which will lead to more land being diverted from nonurban to

urban use and, hence, a larger city boundary.

5 Some Implications

In this section, we present some of the key equilibrium implications of the model.

5.1 Emergence and Size of the Business Core

The condition for the emergence of a CBD (Proposition 1) can be written as

ακ+ (1− α)
κ

1− β
< γδ. (17)

The r.h.s. is the percentage increase in business revenue resulting from a unit decrease in the

distance from the city center: Being closer to the center makes firms more productive. The

l.h.s. gives the percentage increase in total costs from moving a unit of distance closer to the 

city center. It is composed of two parts. The first term is the percentage increase in wages

(κ) needed to compensate workers for the longer commute weighted by the share of wages
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in production costs. In the second term, κ/(1 − β) is the minimum percentage increase in

rents needed to outbid workers for land closer to the city center: Worker wages rise by the

percentage κ and, since workers spend only (1 − β) of their income on land consumption,

they are willing to pay κ/(1 − β) more for this land. This term, weighted by the share of

land in production costs, gives the percentage increase in costs due to higher land prices.

Thus, the CBD will emerge only if the percentage increase in revenue is large enough to

outbid workers for land and to pay higher wages.

We would expect a CBD to emerge if industry scale is important to production; namely,

if γ is high, or if the benefits of industry scale decline very rapidly when the firm moves

away from other firms, i.e., if δ is high. This is confirmed by the condition. However, the

condition also highlights the importance of other factors.

First, a business core is more likely to emerge when less important land is in production, 

i.e., the closer α is to 1. In the limit, when α is 1, the condition for a business core boils down to 

κ < γδ. This condition is intuitive: A business core will emerge if the output cost of making 

workers travel to the city center is lower than the output cost of moving production away from 

the city center.

Second, when α is less than 1, workers’ need for land also becomes relevant. Now, κ < γδ

is a necessary condition for a CBD to emerge, but it is not sufficient. If workers care little

about land, i.e., β is sufficiently close to 1, the condition for a CBD would be violated.

Basically, firms would be unable to outbid workers for land closer to the city center.

Given the existence of a business core, an interesting property of the model is that the 

CBD radius depends on parameters and city radius S∗ only. This is evident in equation (12), 

where level variables like A, P , and d do not enter the equation directly. In other words, these 

variables affect the CBD radius only through their affects on S∗. Thus, if we know how these 

level variables affect S∗, we would know how they effect the CBD radius. The effect of changes 

in parameters that do appear in (12) on the CBD size is more complex because such changes 

affect the CBD size directly, given S∗, and through induced equilibrium changes in S* .
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5.2 Increasing Returns and Downtown Rent Gradient

The rent gradients around the city center are informative about the importance of external

increasing returns in production, namely, γ. From (8), the log of the rent gradient in the

business district is given by

ln(q∗F (s)) = ln(q∗F (0))−
[
δγ − κ
1− α

+ κ

]
s, for s ∈ [0, S∗F ). (18)

It is indeed the case that the strength of the external increasing returns in production, γ,

affects the magnitude of the slope positively. However, the expression for the slope coefficient

also indicates the presence of other forces. In particular, if proximity is important to take

advantage of increasing returns, captured in a high δ, firms will pay more to be close to the

city center. Also, the magnitude of the slope is inversely related to 1− α (the condition for

a CBD implies γδ > κ): If firms do not need much land to produce, they can afford high

downtown rents and competition will force them to pay those high rents. A similar force is

at work with regard to κ: When κ is low, wages rise only moderately toward the city center

and firms closer to the center can afford to pay higher rents (they are more productive but

their labor costs are not much higher). The bottom line from (18) is the steep rent gradients

seen around city centers are indeed indicative of γ being strictly positive, but the actual

gradient is also affected by “internal structure” parameters, δ and κ, and by the land share

parameter, 1− α.

The model also makes predictions regarding downtown rents and city population size. It

is of interest to look at these predictions because the behavior of downtown commercial rents

with respect to city population size can be revealing about the strength of the externality

parameter γ. From (4) and (6), q∗F (0) = [(1− α)/α]w∗(0)n∗(0), which, using (14) and (15),
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implies

ln q∗F (0) = K + J(S∗) + lnA+ (γ + α) lnP. (19)

Here, K is a constant that depends on model parameters and J(·) is a nonlinear function

of the city boundary. All else held constant, the elasticity of city center rents with respect

to city population is γ + α. This elasticity is unaffected by “internal structure” parameters

δ and κ. We are not aware of an attempt to infer γ + α from “peak” (downtown) rents

across cities, but wage regressions discussed in the next section give us some idea about

these parameters.

5.3 Increasing Returns and City Wages

A common way of estimating the strength of local increasing returns is by estimating the

elasticity of wages with respect to city population. For city center wages, the model implies

a relationship similar to that seen in (19):

ln w∗(0) = K ′ + J ′(S∗) + lnA+ (γ − [1− α]) lnP. (20)

In this context, a finding of a positive elasticity of wages with respect to population, all else

held constant, would be an indication of local increasing returns.

Many studies have attempted to estimate this elasticity, with average wage or average 

labor productivity in place of w∗(0) and with various proxies to control for A. Such attempts 

often also control for the area of the city (therefore, in effect, for S∗). These studies generally 

find a positive elasticity of wages and labor productivity with respect to city population. In a 

metastudy, Melo, Graham, and Noland (2009) (Table 2, p. 335) report (across various types of 

data sets and methodologies) median estimates of 0.038 and 0.032 for the elasticity of labor 

productivity and the elasticity of wages with respect to population, respectively.

This evidence suggests that γ− [1−α] is positive but does not directly identify γ. To get
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an estimate of γ, we need an estimate for 1−α. One estimate comes from Brinkman (2013)

who uses data on commercial land prices and quantities for Columbus, OH, and estimates

1−α to be 0.015. Ciccone (2002) also suggests 0.015 as a reasonable estimate for (non-farm)

business land share. Finally, Rappaport (2008) uses 0.016, citing unpublished results by

Jorgenson, Ho, and Stiroh (2005). Combining this evidence with the median U.S. estimate

for elasticity of wages with respect to population suggests a value for γ around 0.05.

6 Welfare, Population, and Stability

So far, we have taken population as exogenous. We now turn to the determination of

equilibrium population and start by characterizing how the equilibrium utility level U∗ varies

with P . For this, we first show that U∗ can be expressed as a function of S∗ and parameters

only. Given that equilibrium S∗ is strictly increasing in P , this function can be used to

determine how P and U∗ are related.

To express U∗ in terms of S∗ and parameters only, we will use two equilibrium conditions.

One condition is that land rent at the boundary is d, i.e., d = q∗H(0) exp (−κ/(1− β)S∗) .

From (10), q∗H(0) can be replaced by q∗F (0) exp
(
κ(1−βα)−δγ(1−β)

(1−α)(1−β)
S∗F (S∗)

)
, and the condition

can then be expressed in terms of n∗(0) and S∗. The other condition is that workers living

at S∗ get utility U∗, i.e., U∗ = ββ(1− β)1−βd−(1−β)w∗(0) exp(−κS∗). Again, we can express

this condition in terms of n∗(0) and S∗. These two conditions then can be used to eliminate

n∗(0), which leaves an expression for U∗ that depends on S∗ and parameters only. Taking

ln of U∗ we have

lnU∗ =
γ

α + γ
ln

[∫ SF (S∗)

0

r exp

(
−δ (γ + 1− α)− κ

1− α
r

)
dr

]
+ (21)

−κ 1− β (α + γ)

(1− β) (γ + α)
S∗ +

(
γ + α− 1

γ + α

)
−κ(1− βα) + δγ(1− β)

(1− α) (1− β)
SF (S∗) +K

where K is a constant that depends on parameters.
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Proposition 5 If 1 − β(α + γ) > 0, limP→0 U
∗ = limP→∞ U

∗ = 0. In addition, U∗ is

eventually declining in P .

Proof. We first show that S∗ → 0 implies ln(U∗) diverges to −∞. From Proposition 3,

limS∗→0 SF (S∗) = 0. As S∗ → 0, the first term on the r.h.s. of (21) diverges to −∞,

while the second and third terms approach zero, hence limS∗→0 ln(U∗) = −∞. Next, from

Proposition 3 again, limS∗→∞ SF (S∗) = S̄F . As S∗ → ∞, the first and third terms on the

r.h.s. of (21) will approach a finite number, while the second term will approach −∞ as long

as 1− β(α+ γ) > 0, and so limS∗→∞ ln(U∗) = −∞. When S∗ is large, the behavior of lnU∗

is dominated by the term involving S∗, since S∗F converges to a constant. Hence, lnU∗ is

eventually declining in S∗. Because S∗ is strictly increasing in P , these properties hold with

respect to P as well.

The condition 1 − β(α + γ) > 0 is our analog of what Fujita, Krugman, and Venables

(1999) call the “no-black-hole condition.” If this condition is violated, then, as is evident

from the expression of lnU∗, utility deliverable by the city would be increasing in S∗. Since

S∗ is strictly increasing in P , utility deliverable by the city would be strictly increasing in

P . The model would then imply that the entire population of an economy would tend to

gravitate to one giant city — the “black hole,” so to speak. A necessary condition for this

inequality to be violated is γ > 1−α. As already mentioned, empirical evidence is supportive

of this inequality. Thus, for the economy to not collapse into a black hole, land must be of

sufficient importance in the worker’s utility function, or, equivalently, β must be sufficiently

low.

To understand why this condition ensures that utility is eventually declining in P , con-

sider a city that is large enough that S∗F is close to its upper bound. In this case, with

more population, employment density n∗(0) goes up with almost no expansion of the CBD.

Consequently, wages respond as n∗(0)γ+α−1 (when S∗F does not change, we can express z∗(0)

as a multiple of n∗(0)) and land rents in the CBD respond as n∗(0)γ+α, including at S∗F .
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Hence, utility of workers at S∗F (which could be devoted either to business or residential use)

responds as w∗(0)/q∗F (0)1−β = n∗(0)(γ+α−1)−(γ+α)(1−β) = n∗(0)β(α+γ)−1. Thus, as the city gets

larger and the CBD size increases very slowly, a necessary condition for utility to decline is

β(α + γ) − 1 < 0. Since γ > [1 − α], utility will decline if land is sufficiently important in

utility, i.e., if β is sufficiently low.

To understand why utility is initially increasing in population, consider a small city. For

such a city, we can ignore commuting costs, so a worker at the boundary of the city pays

d for housing and gets utility w∗(0)/d1−β = Kz∗(0)γn∗(0)α−1 (where K is a constant). As

more people move in, the CBD expands to use more land in production and the increase in

population is accompanied by a modest increase in n∗(0). This means that workers benefit

from higher industry scale (a higher z∗(0)) without running into diminishing returns with

respect to labor in production. Although workers at the boundary might commute more

because of the expansion of the city, this negative effect of expansion is small compared

to the positive effect of higher industry scale on wages and, thus, utility is increasing in

population.

The inverted-U shape hinges on the value of β. Davis and Heathcote (2007) estimate

that land accounts for 36 percent of the value of aggregate housing stock. Given that

households spend about 25 percent of their budgets on housing (which includes the services

from structures), a plausible value of (1 − β) is around 0.25 × 0.36 ≈ 0.10 and, hence,

β = 0.90. For this value, the upper bound on (γ + α) for the “no-black-hole” condition to

be satisfied is 1.11. Since the estimates for the γ − [1− α] are generally well below 0.11, we

conclude that the no-black-hole condition is satisfied and U∗(P ) resembles an inverted-U.

The inverted-U has implications for equilibrium population levels for a city. Assume that

workers can obtain utility Ū outside the city. Given the inverted-U shape, there will be

three possible equilibrium population outcomes. One stable equilibrium is at P = 0: There

is no production, utility delivered by the city is 0 and, thus, workers have no incentive to

move there. As shown in Figure 2, if peak utility in the city is higher than Ū , two more

equilibria with positive population levels are possible: the points marked P1 and P2. At
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these population levels, the city delivers Ū to its residents so no resident has an incentive to

leave nor is there any incentive for a nonresident to move in.

Figure 2
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When there are three equilibria, the middle one is unstable in the following sense: If the

population is slightly positively perturbed, utility delivered by the city will exceed Ū and

nonresidents will move in and the city will grow until P reaches P2. On the other hand, if

population is slightly negatively perturbed, utility delivered by the city will be lower than Ū

and, thus, will induce emigration. The city will shrink until population is 0. Such sensitivity

to perturbations is not true for the equilibria at 0 and P2. If population were to be positively

perturbed at P = 0, utility will remain below Ū , the city will lose population, and P will

fall back to zero. Similarly, a positive or negative perturbation around P2 will move utility

in a direction that will induce population growth or population decline back to P2. Thus, 0

and P2 are two stable equilibria for the city.
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7 Urban Growth Boundary and Rents

In this section, we use the model to explore the effects of an increase in the demand for urban

land on city wages and rents when there are constraints on the supply of new urban land. The

standard demand-supply analysis suggests that, all else the same, cities that cannot expand

easily will experience a larger increase in rents as demand for urban land increases. We show

that this intuition needs to be modified when there are increasing returns to industry scale:

A city that can expand easily benefits more from increasing returns and, in the long run,

will see a larger increase in rents.10

In the model presented thus far, land (at varying distances from the city center) is the

only fixed factor of production. In this model, for empirically relevant parameter values,

restrictions on the supply of urban land will be a depressive force for urban rents: Cities

that cannot expand physically will see a smaller rise in rents than cities that can expand

easily. This result flows from the fact that, in the long run, wages and city population are

positively related, as found in the empirical literature cited in Section 5.3. But in the short

run, when productive factors such as buildings and houses are given, there is diminishing

returns to population and cities that physically expand and absorb more workers will see a

smaller rise in real wages and, thus, in residential land rents.

To develop these points, we consider two cities that are in full spatial equilibrium with

land rent at the boundary equal to d. The cities have identical primitives and are identical

in terms of size and population. We assume that both cities are at the stable equilibrium

with positive population, in which utility is declining with respect to population.

We consider a common increase in the TFP in the two cities, which draws in workers

from the rest of the economy. Following this increase in the demand for urban land, we

10There is a small body of theoretical literature on the effects of urban land-use restrictions on city wages 
and rents. Brueckner (1990), Ding, Knaap, and Hopkins (1999), and Brueckner (2007) study the impact of 
urban growth boundaries in the context of the standard monocentric city model with a (negative) congestion 
externality, while Bertaud and Brueckner (2005) examine the impact of building height restrictions, again in 
the standard monocentric city model. However, none of these studies allow for production externalities and, 
therefore, miss the production-side effects of such controls.
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assume that one of these two cities can expand its boundary (the nonurban use-value of the

land is held fixed at some level d), while the other city cannot physically expand at all. We

call the former the Unrestricted City (Un) and the latter the Restricted City (R).

Figure 3
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Figure 3 shows what happens in these two cities. The solid line is the U(P ) curve for the

two cities before the increase in A. The increase in the TFP shifts the utility achievable for

any population in both cities upward. For the Unrestricted City, the new curve is denoted

by the dotted line. The city draws in population until it reaches point B. The Restricted

City also draws in more people but utility falls faster there than in the Unrestricted City and

it grows up to the point C. Proposition 4 implies that following the shock, the Unrestricted

City will be physically larger than the Restricted City. From the figure, it is clear that the

population will increase more in the Unrestricted City. Of course, in the new equilibrium,

both cities will deliver the same utility to workers residing there.

In what follows, we analyze the impact on employment density, wages, and land rents in

the two cities. From the expression for n∗(0) in (15), we see that it is not immediately possible

to tell how n∗(0) compares across restricted and unrestricted cities: The unrestricted city
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has higher P and larger S relative to the restricted city. However, when we use the fact that

both cities deliver the same utility to workers, it becomes possible to compare employment

densities. Specifically, in both the restricted and the unrestricted city, the firm’s bid rent

and the worker’s bid rent coincide at SF . This implies

KAz∗i (0)γn∗i (0)α exp

(
κ(1− αβ)− δγ(1− β)

(1− α)(1− β)
SF (S∗i )

)
= (w∗i (0)/U∗)

1
1−β , i ∈ {Un,R},

where K is a constant and U∗ is the common utility delivered by the two cities. Using the

fact that both w∗i (0) and z∗i (0) can be expressed in terms of n∗i (0), S∗i , and parameters, we

can express n∗i (0) in terms of U∗, S∗i , and parameters:

n∗i (0) = KA
β

1−β(α+γ)U∗
−1

1−β(α+γ) exp

(
−κ(1− αβ)− δγ(1− β)

(1− α)[1− β(α + γ)]
SF (S∗i )

)
×[∫ SF (S∗

i )

0

2πr exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)
dr

] γβ
1−β(α+γ)

i ∈ {Un,R},

where K is a positive number that depends on parameters. By virtue of the no-black-hole

condition 1− β(α+ γ) > 0 and the upper bound on κ, n∗i (0) is increasing in SF , holding U∗

fixed. Since SF is strictly increasing in S∗i , city center employment density in the unrestricted

city must exceed that in the restricted city in the new equilibrium.

At first blush, this result — which is quite general — appears counterintuitive. Why

would employment density in the city-center be higher in the city that can expand? The

key point is that at an unchanged level of employment density, productivity would be higher

in the expanding city because z(0) would be higher: Employment density is the same, but

there is more employment since the CBD is bigger. Since a higher z(0) is similar to a higher

A, the Unrestricted City will have higher employment density.

Now, we consider what happens to wages offered by firms locating at the city center,

namely, w∗i (0). In both cities, w∗i (0) = αAz∗i (0)γn∗i (0)α−1. Using the relationship between
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z∗i (0) and n∗i (0),

w∗i (0) = αA

[
2π

∫ SF (S∗
i )

0

r exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)]γ
n∗i (0)γ−[1−α], i ∈ {Un,R}.

Since the term in square brackets is increasing in SF , higher employment density in the

unrestricted city means that it will have higher wages in the city center than the restricted

city does, provided γ − [1− α] ≥ 0.

Finally, we can turn to the effects on city rents. It is helpful to break up the discussion

in terms of how demand shocks affect business rents and how they affect residential rents.

The bid rent for a firm at the city center is (1 − α)Az∗i (0)γn∗i (0)α. Using the relationship

between z∗i (0) and n∗i (0),

q∗i F (0) = (1− α)A

[
2π

∫ SF (S∗
i )

0

r exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)]γ
n∗i (0)γ+α, i ∈ {Un,R}.

We already know that, in the new equilibrium, the unrestricted city will be larger in size

and that it will have a higher employment density. Therefore, business rents at the center

of the Unrestricted City will be higher.

For residential rents, we can proceed by considering bid rent for residential space at the

center of the two cities. We have

q∗iH(0) = ββ/(1−β)(1− β)wi(0)∗(
1

1−β )U∗(
−1
1−β ), i ∈ {Un,R}. (22)

Since U is the same for both cities, the ordering of workers’ bid rent for space at the center of

the city depends on the ordering of wages at the center of the city. Therefore, the conditions

that govern the ranking of w∗i (0) also govern the ranking of q∗iH(0). If wages at the city

center are higher in the Unrestricted City, workers in the Unrestricted City will be willing to

bid more for land at their city center than workers in the Restricted City. Then, since rent

in any location is max{q∗iF (s), q∗iH(s)}, rents will be higher in every comparable location (in
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terms of distance from the city center) in the Unrestricted City.

We summarize these findings in the following proposition:

Proposition 6 If two cities have the same fundamentals and one of the cities has an urban

growth boundary that is just binding, an increase in the demand for urban land (i) will cause

rents paid by businesses in the Unrestricted City to exceed the rents paid by businesses in the

Restricted City, and (ii) when γ ≥ 1−α, will cause rent paid by workers in the Unrestricted

City to exceed those paid by workers in the Restricted City.

Proposition 6 is a statement about the long-run effects of land supply restrictions. In

the long run, the only fixed factor is the quantity of land at various distances from the city

center. Empirically, the strength of increasing returns, γ, appears large enough to overcome

the diminishing returns in production due to the fixity of land.

In the short run, when productive factors other than land are also fixed, residential rents

will rise less in the expanding city if the combined force of diminishing returns, because of the 

totality of fixed factors, overwhelms γ. To develop this point formally, consider the following 

modification of the production function:

Az(r)γn(r)ηb(r)ψ, γ ∈ [0, 1), η, ψ > 0, and η + ψ ∈ (0, 1). (23)

Here, b(r) is building density and the exponent to land in the production function is now

1−(η+ψ). Correspondingly, let the utility function be redefined to explicitly include housing

such that:

U(r) = c(r)ςh(r)ϑl(r)1−ς , ϑ, ς > 0, (ϑ+ ς) ∈ (0, 1). (24)

Here, h(r) is housing space density (amount of housing space per unit of land) at location

r. The exponent to land in the utility function is, therefore, 1− (ϑ+ ς).

Assume that in the long run, building density can be rented at the flow cost of ωw(r) per

unit density and housing space can be rented at the flow cost of p units of the consumption 
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good (all structures are owned by the same entities that own all the land). Then, the building-

to-employment ratio and the consumption-to-housing space ratio is optimally constant across 

business and residential locations and the production and utility functions reduce to [Aψ/

ηω]ψz(r)γn(r)η+ψ and [ϑ/ςp]ϑc(r)ς+ϑl(r)1−(ς+ϑ), respectively. Aside from ad-justments to 

multiplicative constants, these functions are isomorphic to the production and utility 

functions assumed up to now, where α = η +ψand β = ς + ϑ. Thus, if building and house space 

densities can be varied at will at the given prices, the equilibrium outcomes will follow those 

displayed up to now.

Our interest is in how residential land rents in the two cities respond in the short run to

a common change in the TFP. We take the short run to mean that b(r) and h(r) schedules

are fixed for locations that are built up, but new structures can be built on land that is

currently in nonurban use. We also assume that a structure built for residential purposes

cannot be used for commercial purposes and vice versa, so the fixity of building and housing

space densities implies that SF is fixed in the short run as well. These assumptions reflect

the notion that once a structure is in place, various rigidities make it costly to change its

size or purpose.

Given that both cities are identical to start with, the commercial and residential schedules

are identical and correspond to the initial long-run equilibrium schedules. We will denote

these fixed schedules by b̄(r) and h̄(r), and the common CBD and city boundaries by S̄F

and S̄. Now, consider a common rise in the TFP in the two cities. The increase in the TFP

will result in an increase in utility deliverable by the cities and, thus, create incentives for

people to move to these cities from elsewhere. The city boundary of the Unrestricted City

will expand, so that boundary rents fall back to the nonurban use value of land (all new

housing constructions will occur beyond S̄ in this city). As before, we would expect utility

to decline more rapidly in the Restricted City in response to higher population. Thus, in

the new short-run equilibrium, population will rise more in the Unrestricted City.

In the new short-run equilibrium, firms in both cities can choose to locate at any r ∈

[0, S̄F ]. Each location comes “pre-equipped” with building density b̄(r), which, since it is
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the initial equilibrium building density, declines at a common exponential rate from the city

center. This implies that n∗SRi (r), i ∈ {Un,R} decline exponentially at a common rate from

the city center. Hence,

w∗SRi (0) = K[n∗SRi (0)]γ+η−1, i ∈ {Un,R}, (25)

where K is a common constant. For city center wages to rise with employment density, γ must 

exceed 1 − η, or, equivalently, it must exceed [1 − α] +ψ: Industry increasing returns must be 

strong enough to overcome the force of diminishing returns from both land and structures. 

Empirical evidence suggests, however, that this is unlikely. Valentinyi and Herrendorf (2008) 

report that the cost share of structures in U.S. manufacturing is 0.09, which exceeds the 

estimates of γ − [1 − α] (around 0.036) by a large margin.11 Thus, in the short run, wages are 

negatively related to employment density.

Next, consider workers who choose to reside in some common intermediate location r ∈

(S̄F , S̄) in the two cities. Workers choose c(r), h(r), and l(r), given housing space price

p∗SRi (r), land rents q∗SRi (r), and income W ∗SR
i (r). Then,

p∗SRi (r)h∗SRi (r)l∗SRi (r) = ϑW ∗SR
i and q∗SRi (r)l∗SRi (r) = (1− ς − ϑ)W ∗SR

i , i ∈ {Un,R}.

In equilibrium, housing space density must equal h̄(r), which implies

p∗SRi (r) =

[
ϑ

(1− ϑ− ς)h̄(r)

]
q∗SRi (r), i ∈ {Un,R}.

Substituting these expressions into the utility function, and recognizing that W ∗SR
i (r) =

w∗SRi (0) exp(−κr), gives

q∗SRi (r) = K(r, U∗)w∗SRi (0)
1

1−ς , i ∈ {Un,R}, (26)

11It is likely that the cost share of structures in service industries is even higher, but we do not have
information on service industries. Valentinyi and Herrendorf’s definition of services includes housing services.
Since housing services tend to be more intensive in structures than business services, their estimate of the
share of structures (0.15) is probably too high for our purposes.
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and

l∗SRi (r) = J(r, U∗)n∗SRi (0)
−ς(γ+η−1)

1−ς , i ∈ {Un,R}, (27)

where U∗ is the common equilibrium utility enjoyed by workers in the two cities, and K(r, U∗)

and J(r, U∗) are constant terms that depend on r, U∗, and parameters and, hence, are

common across the two cities.

Given that γ < (1 − η), we can show that n∗SRUn (0) > n∗SRR (0). Suppose n∗SRUn (0) ≤

n∗SRR (0). Then (27) implies l∗ SRUn (r) ≤ l∗SRR (r), which implies that residential density in the

expanding city must be at least as high as in the restricted city. Since there are also people

living beyond S̄ in the expanding city, this is inconsistent with employment density being the

same or lower in the Unrestricted City. If employment density is higher in the Unrestricted

City, wages must rise less in that city and so must residential land rents.

The opposite predictions regarding the long-run and short-run effects of constraints on

the supply of urban land may have support in the data. As mentioned in Section 5.3, there

is strong evidence that current productivity is positively affected by current population,

all else held constant. We interpret this as evidence that, in the long run, cities that can

accommodate more people will be more productive and, therefore, have higher land rents.

In contrast, studies that focus on the recent boom in residential house prices find that

cities with exogenously higher supply restrictions experienced smaller population growth

and bigger house price increases (Glaeser, Gyourko, and Saiz (2008) and Huang and Tang

(2013)). Our model is consistent with both findings: Without any frictions in adjustment

of factors of production, local increasing returns imply that productivity and land rents

are increasing in population. With frictions, productivity of workers and rents could be

decreasing in population.
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8 Conclusion

The concentration of businesses in city centers is a ubiquitous feature of the urban landscape 

and indicates the presence of local increasing returns. In this paper, we presented a tractable 

city model with external increasing returns to industry scale in which the spatial 

concentration of businesses emerges endogenously. We used the model to shed light on several 

empirical phenomena, such as the steep rent gradients seen around the city center, the 

positive elasticity of wages with respect to city population, and the fact that modern 

economies organize themselves into a system of large cities. The model is tractable enough 

to serve as a “laboratory” for analyzing spatial policies with macroeconomic effects. We 

used the model to study the implications of urban growth boundaries in the context of rising 

demand for urban land.
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Glossary

NOTATION

1− α

1− β

κ

γ

δ

A

d

P

SF

S

z(·)

θF (·)

θH(·)

q(·)

W (·)

n(·)

l(·)

m(·, ·)

u(·)

π (·)

qH(·)

qF (·)

ψ

ϑ

PARAMETERS OF MAIN MODEL

Share of land in the production function

Share of land in the utility function

Commuting technology for workers

Importance of proximity to other workers in production

Decay in proximity with distance

TFP term common to all firms

Value of land in nonurban use

Population in the city

Boundary between the CBD and residential ring

Boundary of the city

Index of proximity to other workers

Fraction of land devoted to business use in a location

Fraction of land devoted to residential use in a location

Land rent schedule

Maximum income schedule

Intensity of labor per unit of land hired by firms

Land consumption schedule per worker

Commuting pattern

Utility schedule for workers

Profit schedule of firms

Bid rent curve for land by workers

Bid rent curve for land by firms

ADDITIONAL PARAMETERS FOR MODEL 

WITH STRUCTURES

Share of structures in the production function

Share of structures in the utility function
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Appendix A: Proofs of Lemmas

Lemma 1 In any equilibrium z∗(0) ≤ P .

Proof. From equilibrium condition (9), we get

z∗(0) =

∫ ∞
0

θ∗F (r)n∗(r)2πr exp(−δr)dr

≤
∫ ∞

0

θ∗F (r)n∗(r)2πrdr

≤ P.

Lemma 2 In any equilibrium with U∗ > 0, there is S(U∗) > 0 such that for all s > S(U∗),

θ∗F (s) = θ∗H(s) = 0.

Proof. First we find an upper bound on the wage firms can pay workers at any location.

From (3), π(s) = (αAz(s)γw(s)−α)
1

1−α (1/α− 1) − q(s). Since z∗(s) = z∗(0) exp(−δs) and

q∗(s) ≥ d, Lemma 1 implies that the wage a firm can pay at s and still earn nonnegative

profits is bounded above by

w(s) = [(1/α− 1) /d]
1−α
α (αAP γ exp (−γδs))

1
α .

Second, the minimum wage a firm at location s must pay to attract workers is bounded

below by

w = α−α(1− α)−(1−α)U∗d(1−α).

U∗ > 0 implies w(0) > w, otherwise firms will be unable to afford any workers and utility

obtained by all workers would be 0. This, in turn, implies that there will be some distance

ŝ > 0 beyond which firms will be unable to pay w and, so, there will be no firms beyond ŝ.
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Next, we determine an upper bound on the income of any worker who locates beyond

ŝ. Since such a worker must, at a minimum, commute to ŝ and since the highest wage any

business can pay is w(0), in any equilibrium W ∗(s) is bounded above by

W (s) = w(0) exp (−κ(s− ŝ)) for all s ≥ ŝ.

Since w(0) > w, there exists s̄ > ŝ such that W (s) < w for all s > s̄. Hence, there will be

no workers living beyond s̄. It follows that s̄ = S(U∗).

Lemma 3 If θ∗F (s) > 0, then q∗F (s) ≥ q∗H(s), and if θ∗H(s) > 0, then q∗H(s) ≥ q∗F (s).

Proof. From equilibrium condition (2), π∗(s) = 0, which implies that q∗(s) = q∗F (s). In

equilibrium, u∗(s) ≤ U∗ for all s, which implies that q∗(s) ≥ q∗H(s) for all s. Together, these

inequalities imply that q∗F (s) ≥ q∗H(s). An analogous argument establishes the second part.

Lemma 4 If θ∗F (s) > 0, then W ∗(s) = w∗(s).

Proof. By optimization, W ∗(s) ≥ w∗(s). Suppose that w∗(s) < W ∗(s). Then, there exists

some location o for which W ∗(s) = [w∗(o) exp(−κ |s− o|)] > w∗(s). Consider some other lo-

cation k from which workers commute to s. These workers earn w∗(s) exp(−κ |s− k|). How-

ever, if these workers commuted to location o they can earn more because w∗(o) exp(−κ |k − o|)

≥ w∗(o) exp(−κ |s− o|) exp(−κ |s− k|) = W ∗(s) exp(−κ |s− k|) > w∗(s) exp(−κ |s− k|).

This implies that m∗(k, s) = 0 for all k and hence (by equilibrium condition (7)) implies

θ∗F (s) = 0. Thus, if θ∗F (s) > 0 then w∗(s) = W ∗(s).

Lemma 5 W ∗(s) ≥ W ∗(r) exp (−κ |r − s|) for any r and s.
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Proof. Let o be such that W ∗(r) = w∗(o) exp (−κ |r − o|). If households at s com-

muted to o, they would get w∗(o) exp (−κ |o− s|) ≥ w∗(o) exp (−κ |r − o|) exp (−κ |r − s|) =

W ∗(r) exp (−κ |r − s|). Therefore, W ∗(s) ≥ W ∗(r) exp (−κ |r − s|).

Appendix B: Proof of Proposition 4

Lemma 6 Let 0 ≤ sL < sU . Let Λ(sL, sU) = [
sU∫
sL

sek2sds]/[
sU∫
sL

sek1sds]. Then, Λ(sL, sU) is

increasing (decreasing) in both SU and SL if k1 < (>)k2.

Proof. We will first establish the following two sets of inequalities:

e(k2−k1)sL <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sU , k1 < k2, (28)

and

e(k2−k1)sU <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sL , k2 < k1. (29)

Turning first to the l.h.s. inequality in (28), note that sek1s = sesLk1+(s−sL)k1 . Mul-

tiplying both sides of this equation by e(k2−k1)sL yields e(k2−k1)sLsek1s = sesLk2+(s−sL)k1 ≤

sesLk2+(s−sL)k2 = sek2s, where the inequality follows because k2 > k1 and s − sL ≥ 0. Fur-

thermore, the inequality is strict for all s ∈ (sL, sU ]. Therefore, integrating the first and last

expressions in the chain with respect to s, we have

e(k2−k1)sL

sU∫
sL

sek1sds <

sU∫
sL

sek2sds.

42



Turning to the r.h.s. of the inequality, note that sek1s = sesUk1+(s−sU )k1 . Multiplying both

sides of this equation by e(k2−k1)sU yields e(k2−k1)sUsek1s = sek2sU+(s−sU )k1 ≥ sesUk2+(s−sU )k2 =

sek2s, where the inequality follows since k2 > k1 and s−sU ≤ 0. Furthermore, the inequality

is strict for all s ∈ [sL, sU). Therefore, integrating the first and last terms in the chain with

respect to s, we have

e(k2−k1)sU

sU∫
sL

sek1sds >

sU∫
sL

sek2sds.

The proof of (29) is entirely analogous.

We now turn to the proof of the lemma for k1 < k2. Observe that

sgn

(
∂ ln(Λ(sL, sU))

∂sU

)
= sgn

sU exp (k2sU)
sU∫
sL

sek2sds

− sU exp (k1sU)
sU∫
sL

sek1sds

 .

Suppose, to get a contradiction, that ∂Λ(sL, sU)/∂sU ≤ 0. Then, we must have

sU exp (k2sU)
sU∫
sL

sek2sds

≤ sU exp (k1sU)
sU∫
sL

sek1sds

.

Or, given that all elements are positive, we have

exp ([k2 − k1] sU) =
sU exp (k2sU)

sU exp (k1sU)
≤

sU∫
sL

sek2sds

sU∫
sL

sek1sds

.

But this contradicts the r.h.s. inequality in (28). Therefore, ∂Λ(sL, sU)/∂sU > 0.
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Next,

sgn

(
∂ ln(Λ(sL, sU))

∂sL

)
= sgn

sL exp (k1sL)
sU∫
sL

sek1sds

− sL exp (k2sL)
sU∫
sL

sek2sds

 .

Suppose, to get a contradiction, that ∂Λ(sL, sU)/∂sL ≤ 0. Then, we must have

sL exp (k1sL)
sU∫
sL

sek1sds

≤ sL exp (k2sL)
sU∫
sL

sek2sds

.

Or, given that all elements are positive, we have

sU∫
sL

sek2sds

sU∫
sL

sek1sds

≤ sL exp (k2sL)

sL exp (k1sL)
= exp ([k2 − k1] sL) .

But this contradicts the l.h.s. inequality in (28). Therefore, ∂Λ(sL, sU)/∂sL > 0.

The proof for k2 < k1 is analogous.

Lemma 7 Let I(sU , sL, k) =
sU∫
sL

s exp (−ks) ds. Then, (i) limsU ,sL→∞ I(sU , sL, k) = 0 and

(ii) limsU→∞,sL→s I(sU , sL, k) = Ī > 0.

Proof. Observe that

sU∫
sL

se−ksds =
sUe

−ksU − sLe−ksL
−k

− e−ksU − e−ksL
k2

.

To prove (i), we notice that, as sU and sL go to ∞, the second term goes to 0, and the first term

(on an application of l’Hopital’s rule to s/eks) also goes to 0. To prove (ii), we
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observe that if sU goes to ∞ and sL converges to s, then I(sU , sL, k) converges to

−se−ks

−k
+
e−ks

k2
> 0.

Proof of Proposition

(i) q∗H(S∗) is declining in S∗.

Note that q∗H(S∗) = q∗H(0)e−
κ

(1−β)S
∗
. Since e−

κ
(1−β)S

∗
is decreasing in S∗, it is sufficient to show

that, q∗H(0) is decreasing in S∗.

Using (10) and q∗F (0) = (1− α) (z∗(0))γ (n∗(0))α, we get

q∗H(0) = (1− α) (z∗(0))γ (n∗(0))α exp

(
κ(1− αβ)− δγ(1− β)

(1− α)(1− β)
SF (S∗)

)
.

Since κ < [δγ(1 − β)]/[(1− αβ)] and SF (S∗) is increasing in S∗, the exponential term is

decreasing in S∗.

Next, we will show that z∗(0) and n∗(0) are decreasing in S∗ also, which would imply

that q∗H(0) is declining in S∗. Since SF (S∗) is increasing in S∗, by Lemma 6, the ratio of the

integrals in the expression for n∗(0) in (15) is decreasing in S∗. The remaining fractional

term is clearly decreasing in S∗, and so employment density at the city center is decreasing

in S ∗.

Below is the expression for z∗(0):

z∗(0) = P

[
SF (S∗)∫

0

2πr exp
(
−
[
δγ−κ
1−α + δ

]
r
)
dr

]
[
SF (S∗)∫

0

2πr exp
(
−
[
δγ−κ
1−α + κ

]
r
)
dr

]
[

S∗∫
SF (S∗)

r exp
(
− κ

1−β r
)
dr

]
[

S∗∫
SF (S∗)

r exp
(
− κβ

1−β r
)
dr

] . (30)
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The condition κ < [δγ(1 − β)]/[(1− αβ)] and γ ∈ (0, 1] implies δ > κ. Then, by Lemma 6

again, the first of the two ratios of integrals in (14) is decreasing in S∗. And, since β < 1,

the second ratio of integrals is also decreasing in S∗. Hence, z∗(0) is decreasing in S∗.

Hence, q∗H(0) is decreasing in S∗.

(ii) limS∗→∞ qH(S∗) = 0.

Again, using qH(S∗) = q∗H(0)e−
κ

(1−β)S
∗

and using (10), (15), (12), and (14), one can get an

expression for q∗H(0) as

q∗H(0) = (31)

K(1− α)

 P[
S∗∫

SF (S∗)

r exp
(
− κβ

1−β r
)
dr

]

α+γ  SF (S∗)∫

0

r exp

(
−
[
δγ − κ
1− α

+ δ

]
r

)
dr

γ ×
(

exp
(−κ+ δγ + βκα− βδγ) (γ + α− 1)

(1− α) (1− β)
S∗F

)
,

where K is a positive constant. Given that limS∗→∞ SF (S∗) = S̄F , the last two terms

approach finite numbers. And, by Lemma 7,
S∗∫

SF (S∗)

s
(

exp −κβ
1−β s

)
ds approaches a strictly

positive finite number. Thus, S∗ →∞ implies q∗H(0) approaches a finite number. Therefore,

the limiting behavior of q∗H(S∗) is governed by the limiting behavior of exp (−κS∗).

Hence, limS∗→∞ q
∗
H(S∗) = 0.

(iii) limS∗→0 q
∗
H(S∗) =∞.

Since S∗ > SF (S∗), S∗ → 0 implies SF (S∗) → 0. We will show that n∗(0) diverges to ∞

while z∗(0) approaches a constant, implying q∗H(0)→∞.
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In equation (14), from Lemma 6 and δ > κ, the first of the two ratios is bounded by

e−(δ−κ)SF (S∗) ≤

[
SF (S∗)∫

0

2πr exp
(
−
[
δγ−κ
1−α + δ

]
r
)
dr

]
[
SF (S∗)∫

0

2πr exp
(
−
[
δγ−κ
1−α + κ

]
r
)
dr

] ≤ 1,

and as SF (S∗)→ 0 the ratio inside converges to 1. Similarly, by Lemma 6, the second ratio

is also bounded by

exp (−κS∗) ≤

[
S∗∫

SF (S∗)

r exp
(
− κ

1−β r
)
dr

]
[

S∗∫
SF (S∗)

r exp
(
− κβ

1−β r
)
dr

] ≤ exp (−κSF (S∗)) , (32)

and as S and SF converge to 0 (and so both exp (κSF ) and exp (κS) converge to 1), the ratio

inside also converges to 1. So z∗(0) converges to a finite number.

For n∗(0) in (15), the denominator in the the first ratio,
SF (S∗)∫

0

s exp
(
ακ−γδ

1−α s
)
ds → 0 as

SF → 0 and so the first ratio diverges to ∞. The second ratio in n∗(0) is identical to the

ratio in (32) and so approaches 1 as S∗ → 0. So, n∗(0)→∞ as S∗ → 0.

Hence, q∗H (0)→∞ as S∗ → 0.

Given (i)–(iii), there is a unique value of S∗ that satisfies q∗H(S∗) = d.

(iv) S∗ is strictly increasing in P and limP→∞ S
∗ =∞.

We have

q∗H(0)e−
κ

(1−β)S
∗

= d. (33)

From (31), it follows that q∗H(0) is increasing in P and so the l.h.s. of this equation is

increasing in P . By (i) the l.h.s. is decreasing in S∗. Therefore, S∗ is strictly increasing in

P .
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To prove that S∗ increases unboundedly in P , suppose to the contrary that there exists

S̄ such that S∗ < S̄ for all P . Then, from equation (31), q∗H(0) increases unboundedly in

P . Therefore, there exists P sufficiently large for which q∗(S∗(P )) = q∗H(0)e−
κ

(1−β)S
∗(P ) >

q∗H(0)e−
κ

(1−β) S̄ > d, which contradicts the definition of S∗.

Appendix C: Decentralized City

Proposition 7 (Internal Structure III: Decentralized City) If κ > [δγ(1 − β)]/[1 −

αβ], there is an S > 0 such that for s < S, θ∗F (s) > 0 and θ∗H(s) > 0, and for s > S,

θ∗F (s) = 0 and θ∗H(s) = 0.

Proof. In any equilibrium with U∗ > 0, there will be some s such that θ∗F (s) > 0. By

Proposition 1, there is no commuting. So, by labor market clearance condition θ∗H(s) > 0.

We claim that for r < s, θ∗F (r) > 0 and θ∗H(r) > 0. Suppose, to get a contradiction, that

θ∗F (r) = 0 and θ∗H(r) = 0. By the equilibrium condition (6), q∗(r) = d ≤ q∗(s). Given that

z∗(r) > z∗(s), and π∗(s) = 0 (because θ∗F (s) > 0), w∗(r) > w∗(s) (i.e., if firms at r are more

productive than at s, and land prices at r are not any higher, wages at r must be strictly

higher for profits to be nonpositive). But this contradicts u∗(r) ≤ U∗, since strictly higher

wages at r with q∗(r) ≤ q∗(s) would give strictly higher utility at r than at s. Hence, either

θ∗F (r) or θ∗H(r) must be greater than 0, which means both θ∗F (r) and θ∗H(r) must be greater

than 0. Let F = {r ≥ 0 : θ∗F (r) > 0}. By assumption, F is nonempty and by Proposition

2 it is bounded above. Hence, it possesses a least upper bound S. Hence, for all r < S,

θ∗F (r) > 0 and θ∗H(r) > 0.

Next, we construct the equilibrium. The construction will show that q∗(.), and U∗ are

uniquely determined. θ∗F (.) and θ∗H(.) are uniquely determined (except, possibly, at S∗).

48



In addition, where θ∗F (s) > 0 and θ∗H(s) > 0, n∗(s), w∗(s), c∗(s), and l∗(s) are uniquely

determined.

By Proposition 7, the city is contained within a circle of finite radius S∗. By Lemma 3,

q∗F (s) = q∗H(s), and by Lemma 4, W ∗(s) = w∗(s). Then,

w∗(r) = w∗(0) exp

(
−δγ(1− β)

1− αβ
r

)
, r ≤ S∗, (34)

and

q∗(r) = q∗(0) exp

(
− δγ

1− αβ
r

)
, r ≤ S∗. (35)

Given that there is no commuting in equilibrium, the labor market equilibrium condition

collapses to

n∗(r)θ∗F (r) = θ∗H(r)/l∗(r) and θ∗F (r) + θ∗H(r) = 1, r ≤ S∗ (36)

Given that n∗(r) = [αq∗(r)]/[(1 − α)w∗(r)] (from firm’s maximization problem) and l∗(r) = (1

−β)w∗(r)/q∗(r) (from worker’s maximization problem), we get θ∗F (r) = [1−β]/[1−αβ] and 

θ∗H(r) = β[1 − α]/[1 − αβ] for r ≤ S∗. Thus, the proportion of land devoted to production 

is constant across all locations in the city.

The requirement that population P lives in the city collapses to the condition

P =

∫ S

0

2πrθ∗H(r)/l∗(r)dr. (37)

The final equilibrium condition is the determination of the city boundary S∗. Since q∗(r)

(from equation (35)) is declining at an exponential rate, it will fall to d at some point. Hence,

S∗ is determined by the condition

q∗(S∗) = d. (38)
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Now that we have given all the equilibrium conditions, we can simplify them further to

show that the equilibrium is unique. Using equations (37), 1/l∗(r) = q∗(r)/(1 − β)w∗(r) =

(1−α)n∗(r)/(1− β)α, and θ∗H(r) = β[1−α]/[1−αβ], one can solve for n∗(0) in terms of S∗

and parameters:

n∗(0) =
P [1− αβ]

2π[1− β]
∫ S∗

0
r exp

(
− δγβ

1−αβ r
)
dr
. (39)

Thus, it is clear that for any S∗, n∗(0) is uniquely determined, which then implies that

the rest of the equilibrium values, such as z∗(.), w∗(.), q∗(.), l∗(.), and U∗, are also uniquely

determined. Finally, similar to the CBD case, we have the following proposition that proves

the existence and uniqueness of S∗.

Proposition 8 There is a unique S∗ ∈ (0,∞) that satisfies q∗(S∗) = d. Furthermore, S∗ is

strictly increasing and unbounded in P .

Proof.

(i): q∗(S∗) is decreasing in S∗:

q∗(S∗) = q∗(0) exp

(
− γδ

1− βα
S∗
)
. (40)

Since the exponential term is decreasing in S∗, it is sufficient to show that q∗(0) is decreasing

in S∗. Using equations (39) and q∗(0) = (1 − α)A (z∗(0))γ n∗(0)α and expressing z∗(0) in

terms of n∗(0), we get

q∗(0) = (1− α)AP (α+γ) ×

∫ S∗

0
r exp

(
−
[
δγβ

1−αβ + δ
]
r
)
dr∫ S∗

0
r exp

(
− δγβ

1−αβ r
)
dr

γ × (41)

[
2π[1− β]

[1− αβ]

∫ S∗

0

r exp

(
− δγβ

1− αβ
r

)
dr

]−α
.
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By Lemma 6, the ratio of integrals in the second term is decreasing in S∗, and last term

is also decreasing in S∗. Thus, q∗(S∗) is decreasing in S∗.

(ii) limS∗→∞ q
∗(S∗) = 0.

As S∗ approaches ∞, by Lemma 7, all integrals in (41) approach positive constants, so,

q∗(0) approaches a constant. Hence, limS∗→∞ q
∗(S∗) = 0.

(iii) limS∗→0 q
∗(S∗) =∞.

As S∗ approaches 0, the second term in (41) approaches 1 (this follows from an application

of L’Hospital’s Rule) and the last term approaches ∞. Since exp
(
− γδ

1−βαS
∗
)

approaches 1,

limS∗→0 q
∗(S∗) =∞.

(i)–(iii) imply that there is a unique S∗ ∈ (0,∞), such that q∗(S∗) = d.

(iv) S∗ is strictly increasing and unbounded in P .

From (41), q∗(S∗) is strictly increasing in P . By (i) q∗(S∗) is decreasing in S∗. Hence

S∗ is strictly increasing in P . To prove that S∗ is unbounded in P , assume to the contrary

that there is S̄ such that S∗ < S̄ for all P . Then, equation (41) implies that q∗(0) is

unboundedly increasing in P . Hence, there exists P sufficiently large for which q∗(S∗(P )) =

q∗(0) exp−
γδ

1−αβ > d, which contradicts the definition of S∗(P ).

We now characterize how the equilibirum utility level U∗ varies with population inside

the city. Just like in the CBD case, equilibrium conditions in the previous section can be

used to express U∗ as a function of S∗ and parameters only. We use d = q∗(0)
(
− δγ

1−αβS
∗
)

and U∗ = ββ(1 − β)1−βd−(1−β)w∗(0) exp
(
− δγ(1−β)

1−αβ S∗
)

. One can express these equations in

terms of n∗(0), U∗, S∗ and other parameters. Using these two equations, we can eliminate

n∗(0) and express U∗ in terms of S∗ and parameters. Taking ln of U∗ yields

lnU∗ =
γ

γ + α

{
ln

[∫ S∗

0

r exp

(
−δ (1− βα + γβ)

1− βα
r

)
dr

]
− δ (1− β(α + γ))

(1− βα)
S∗
}

+K
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where K is a constant that depends on parameters. Thus, on the logarithmic scale, lnU∗

has a component that starts at 0 and declines linearly with S∗, provided the no-black-hole

condition 1−β(α+γ) > 0 is satisfied, and a component that starts at −∞ and rises at most

logarithmically with S∗. Since the rate of change of ln(x) is infinite at x = 0, lnU∗ must be

increasing at S∗ = 0. Furthermore, since the derivative of the ln term declines monotonically

to 0 with S∗, there is some Ŝ > 0 at which lnU∗ peaks and then declines monotonically,

asymptoting to −∞. Then U∗ is hump-shaped, with limS∗→0 U
∗ = limS∗→∞ U

∗ = 0. Since

S∗ is strictly increasing and unbounded in P , we have

Proposition 9 Assume 1 − β(α + γ) > 0. Then, limP→0 U
∗ = limP→∞ U

∗ = 0 and U∗ is

single-peaked.
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