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Abstract

We study a search and bargaining model of an asset market, where investors’ heterogeneous 
valuations for the asset are drawn from an arbitrary distribution. Our solution technique renders 
the analysis fully tractable and allows us to provide a full characterization of the equilibrium, 
in closed-form, both in and out of steady-state. We use this characterization for two purposes. 
First, we establish that the model can naturally account for a number of stylized facts that 
have been documented in empirical studies of over-the-counter asset markets. In particular, we 
show that heterogeneity among market participants implies that assets are reallocated through 
“intermediation chains,” ultimately producing a core-periphery trading network and non-trivial 
distributions of prices and trading times. Second, we show that the model generates a number 
of novel results that underscore the importance of heterogeneity in decentralized markets. We 
highlight two: First, heterogeneity magnifies the price impact of search frictions; and 
second, search frictions have larger effects on price levels than on price dispersion. Hence, 
quantifying the price discount or premium created by search frictions based on observed 
price dispersion can be misleading.
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1 Introduction

Many assets trade in decentralized or “over-the-counter” (OTC) markets.1 To study these markets,

we construct a search and bargaining model in which investors with heterogeneous valuations

for an asset are periodically and randomly matched in pairs and given the opportunity to trade.

Importantly, we allow investors’ valuations to be drawn from an arbitrary distribution, whereas

the existing literature, starting with Duffie, Gârleanu, and Pedersen (2005) (henceforth DGP), has

primarily focused on the special case of only two valuations. Despite the potential complexities

introduced by this generalization, we show that the model remains fully tractable and provide a

full characterization of the equilibrium, in closed-form, both in and out of steady-state.

We use this characterization for two purposes. First, we establish that our environment—

with both search frictions and many types of investors—can naturally account for a number of 

stylized facts that have been documented in empirical studies of OTC markets. For example, we 

show how the assets in our model are reallocated from investors with low valuations to those with 

high valuations through “intermediation chains,” with each successive trade occurring, on average, 

less quickly and at higher prices. Importantly, these patterns of trade endogenously generate a 

core-periphery trading network, along with a non-trivial distribution of prices. Second, we derive 

several new results that underscore the importance of heterogeneity in decentralized asset markets. 

We highlight two. First, we show that heterogeneity magnifies the price impact of search frictions. 

Second, we show that search frictions have larger effects on price levels than on price dispersion. 

Hence, using observed price dispersion to quantify the effect of search frictions on price discounts 

or premiums can be misleading: Price dispersion can essentially vanish while price levels are still 

far from their frictionless counterpart.

Our model, which we describe formally in Section 2, starts with the basic building blocks of

DGP. We assume that there is a fixed measure of investors in the economy and a fixed measure

of indivisible shares of an asset. Investors have heterogeneous valuations for this asset, which

can change over time, and they are allowed to hold either zero or one share. Each investor is

1Examples of assets that trade in decentralized markets include corporate and government bonds, emerging market
debt, mortgage-backed securities, and foreign exchange swaps, to name a few. More generally, our analysis applies to
a variety of other decentralized markets in which the object being traded is durable, such as capital or real estate.
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periodically and randomly matched with another investor, and a transaction ensues if there are

gains from trade, with prices being determined by Nash bargaining.

Our main point of departure from the existing literature is that we allow agents’ valuations to be

drawn from an arbitrary distribution. In a model with only two types, an individual investor faces

no ex ante uncertainty about who he will meet and the price at which he will trade. This is not the

case in our model with many types, as the relevant state variable for calculating an individual’s

expected future payoffs is now a (potentially) infinite-dimensional object: the distributions of

valuations among investors that hold zero and one asset, respectively, over time. However, in

Section 3, we show that, using the proper methodology, the solution remains fully tractable,

yielding a closed-form characterization of the unique equilibrium, both in and out of steady-state.

Then, in Section 4, we exploit our characterization of equilibrium to explore the basic, positive

predictions that emerge from our model, and we argue that many of these predictions are consistent

with the patterns of trade observed in actual OTC markets. A simple, yet crucial insight that

emerges from the analysis is that assets are passed from investors with low valuations to those

with high valuations through chains of inframarginal trades. In equilibrium, an investor who owns

an asset and has a low valuation tends to sell very quickly and then remains asset-less for a long

duration. For similar reasons, an investor who does not own an asset and has a high valuation

tends to buy very quickly and then holds on to his asset for a long duration. Finally, investors with

moderate, “near-marginal” valuations engage in both purchases and sales with similar frequencies.

Hence, the behavior of these investors resembles that of intermediaries.

These patterns of trade have important implications for both individual investors and aggregate

outcomes. At the individual level, the model implies a tight relationship between an individual’s

valuation for the asset, his expected duration of search, the expected valuation of his ultimate

counterparty, and thus the expected price he pays or receives. In particular, not only does an asset

owner with a low valuation tend to trade quickly, but he tends to trade with a counterparty who

also has a relatively low valuation, and hence the transaction price tends to be low. As the asset

is passed to investors with higher valuations, each investor holds the asset for a longer period

of time, on average, before selling at a higher price. These patterns of trade are consistent with
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observations from certain OTC markets—such as the markets for corporate and municipal bonds, 

and the federal funds market for excess reserves—but they would be difficult to generate in more 

traditional models with either centralized exchange or only two valuations. More specifically, in 

a model with a frictionless, centralized market and many types of investors, or in a model with 

a decentralized market and only two types of investors, all sellers (and buyers) trade at the same 

frequency, and all trades occur at the same price.2

At the aggregate level, the above trading patterns imply that, even though the network of

meetings is fully random in our model, the network of trades that emerge in equilibrium is not.

In particular, since investors with “near-marginal” valuations tend to specialize in intermediation,

a “core-periphery” trading network emerges endogenously, with transactions occurring at different

prices at each node. The tendency for OTC markets to exhibit both a core-periphery network

structure and substantial price dispersion has been established in a number of recent empirical

studies. We discuss these empirical studies and compare their findings with the implications of our

theoretical model in Section 4.3.

Finally, in Section 5, we ask how search frictions affect prices, paying particular attention to

understanding how the answer depends on the degree of heterogeneity in valuations. To obtain

closed-form comparative statics, we focus on the case where frictions are small and trade occurs

very quickly, which is the relevant region of the parameter space for many financial markets. We

highlight two novel results.

First, we show that heterogeneity magnifies the price impact of search frictions: the price 

impact is much larger in an environment with a continuum of types than in environments with 

only a few types of investors. The reason is that, in a model with few types of investors, there 

is generically an atom of investors at the marginal type. This translates into an infinite demand 

elasticity: In response to a small increase in price, demand drops to zero for the entire atom of 

marginal investors. In contrast, with a continuum of types, we can obtain an arbitrary elasticity by 

varying the density of investors at the marginal type. Our asset pricing formula shows that a lower

2Even in a model of decentralized trade with many types of investors, trading times are constant across investors,
and prices are independent of the counterparties’ type if trade is organized through dealers who have access to a
frictionless interdealer market, as is the case in Duffie et al. (2005), Weill (2007), and Lagos and Rocheteau (2009).

3



elasticity of demand magnifies the bilateral monopoly effects at play in our search-and-matching 

model, resulting in much larger price premiums/discounts than in previous work. Our second main 

result in Section 5 shows that the effect of search frictions on price levels and price dispersion 

are of different magnitudes: Price levels can be far from their Walrasian counterpart when price 

dispersion has nearly vanished. Hence, using price dispersion to quantify frictions may lead one to 

underestimate the true effect of search frictions on price levels.

1.1 Related literature

Our paper builds on recent literature that uses search models to study asset prices and allocations 

in OTC markets.3 Many of these papers are based on the framework developed by Duffie et al.

(2005), who assume that investors alternate between having a “high” and “low” valuation for an 

asset and that they receive infrequent opportunities to trade in either one of two ways: They can 

trade in a pure decentralized market, i.e., in bilateral random matches with other investors; or they 

can trade in a pure dealer market, i.e., with an exogenously designated set of marketmakers who 

have access to a competitive interdealer market. Most of the subsequent literature has extended 

this basic framework in one of two directions.

One strand has dropped the possibility of trading in a pure decentralized market, but has

incorporated additional features—including more than two types—into a model where all trades

are executed through a pure dealer market. See, for instance, Weill (2007), Lagos and Rocheteau

(2009), Gârleanu (2009), Lagos et al. (2011), Feldhütter (2012), Pagnotta and Philippon (2011),

and Lester et al. (2014). Although abstracting from decentralized trade is beneficial for maintaining

tractability, it also implies that these models are less helpful in addressing certain markets and

issues. For instance, many OTC markets do not have active dealers, so that finding another

investor and bargaining over the price is a central feature of these markets.4 Moreover, even in

markets with active intermediaries, the interdealer market itself is often best characterized by a

3Earlier work that used search theory to analyze decentralized asset markets include Gehrig (1993), Spulber (1996),
Hall and Rust (2003).

4For example, Ashcraft and Duffie (2007) report that only about one quarter of trades in the federal funds market
are brokered. Hall and Rust (2003) highlight a lack of intermediation in certain OTC commodity markets, such as
steel coil and plate. The absence of marketmakers is also notable in certain markets for real assets, such as houses.
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frictional, bilateral matching market as documented by Li and Schürhoff (2012) in their study of 

the interdealer market for municipal bonds. Hence, models with only pure dealer markets cannot 

account for price dispersion and trading times between dealers. Finally, by assuming a priori 

that some agents intermediate all trades, these models cannot help us understand why reallocation 

seems to occur through chains of investors, and why some investors find themselves in the midst 

of these chains more than other investors.

A second strand of literature that extends the basic model of DGP focuses exclusively on

the pure decentralized market—i.e., one without any dealers—but maintains the assumption of

only two valuations. See, for instance, Duffie et al. (2007), Vayanos and Wang (2007); Vayanos

and Weill (2008), Weill (2008); Afonso (2011), Gavazza (2011a, 2013), and Praz (2013). While

this strand of the literature has been useful in addressing a number of important issues related to

liquidity and asset prices, the restriction to two valuations prevents these models from addressing

many of the substantive issues analyzed in our paper, such as the frequency with which different

types of investors trade, the subsequent network of trade that emerges, and the ultimate effect of

heterogeneity on price levels and dispersion.

There are very few papers that consider purely decentralized asset markets with more than

two types of investors. Perhaps the paper closest to our work is Afonso and Lagos (2012b), who

develop a model of purely decentralized exchange to study trading dynamics in the federal funds

market. In their model, agents have heterogeneous valuations because they have different levels

of asset holdings. Several insights from Afonso and Lagos feature prominently in our analysis.

Most importantly, they highlight the fact that agents with moderate asset holdings play the role of

“endogenous intermediaries,” buying from agents with excess reserves and selling to agents with

few. As we discuss at length below, similar agents specializing in intermediation emerge in our

environment, and have important effects on equilibrium outcomes. However, our work is quite

different from that of Afonso and Lagos in a number of important ways, too. For one, since our

focus is not exclusively on a market in which payoffs are defined at a predetermined stopping

time, we characterize equilibrium both in and out of steady-state when the time horizon is infinite.

Moreover, while Afonso and Lagos establish many of their results via numerical methods, we can
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characterize the equilibrium in closed-form for an arbitrary distribution of investor types. This

tractability allows us to perform analytical comparative statics and, in particular, derive a number

of new results about the patterns of trade, volume, prices, and allocations.5

Our paper is also related to an important, growing literature that studies equilibrium asset

pricing and exchange in exogenously specified trading networks. Recent work includes Gofman

(2010), Babus and Kondor (2012), Malamud and Rostek (2012), and Alvarez and Barlevy (2014).

Atkeson, Eisfeldt, and Weill (2012) and Colliard and Demange (2014) develop hybrid frameworks,

which blend influences from both the search and the network literatures. In these models, interme-

diation chains arise somewhat mechanically; indeed, when investors are exogenously separated by

network links, the only feasible way to reallocate assets toward investors who value them most is to

use an intermediation chain. In our dynamic search model, by contrast, intermediation chains arise

by choice. In particular, all investors have the option to search long enough in order to trade directly

with their best counterparty. In equilibrium, however, they find it optimal to trade indirectly,

through intermediation chains. Hence, even though all contacts are random, the endogenous

network of actual trades is not random, but rather exhibits a core-periphery-like structure that

is typical of many OTC markets in practice.6

Finally, our paper is also related to the literatures that use search-theoretic models to study

monetary theory and labor economics. For example, a focal point in the former literature is un-

5Several other papers also deserve mention here. Neklyudov (2012) considers an environment with two valuations
but introduces heterogeneity in trading speed to study the terms of trade that emerge in a given core-periphery trading
network. In our model, a core-periphery network arises endogenously even though trading speed is constant across
investors. In an online Appendix, Gavazza (2011a) proposes a model of purely decentralized trade with a continuum of
types in which agents have to pay a search cost, c, in order to meet others. The optimal strategy is then for an agent with
zero (one) asset to search only if his valuation is above (below) a certain threshold Rb (Rs). He focuses on a steady-
state equilibrium when c is large, so that Rb > Rs. Focusing on this case simplifies the analysis considerably, since
all investors with the same asset holdings trade at the same frequency, and they trade only once between preference
shocks. However, this special case also abstracts from many of the interesting dynamics that emerge from our analysis
about trading patterns, the network structure, misallocation, and prices (both in and out of steady-state). Second, many
of the results presented below were derived independently in two working papers—Hugonnier (2012) and Lester and
Weill (2013)—which were later combined to form the current paper. Finally, in a recent working paper, Shen and
Yan (2014) exploit a methodology related to ours in an environment with two assets to study the relationship between
liquid assets (that trade in frictionless markets) and less liquid assets (that trade in OTC markets).

6For another example of endogenous network formation through search, in a model of production chains, see Ober-
field (2013). In a recent paper, Glode and Opp (2014) also examine why certain trading patterns arise endogenously
but their approach is different as they postulate that intermediation chains help to moderate the inefficiencies induced
by asymmetric information.
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derstanding how the price of one particular asset—fiat money—depends on its value or “liquidity” 

in future transactions; for a seminal contribution, see Kiyotaki and Wright (1993).7 Naturally, 

understanding such liquidity premia is central to our analysis as well. In the latter literature, such 

as Burdett and Mortensen (1998) and Postel-Vinay and Robin (2002), workers move along a “job 

ladder” from low- to high-productivity firms, which is intuitively similar to the process by which 

assets in our model are reallocated from low- to high-valuation investors. The dynamics differ, 

however, because firms in on-the-job search models can grow without bound, subject to a 

flow constraint: They hire or lose only one worker at a time. In models of decentralized asset 

markets, by contrast, investors are typically assumed to hold at most a finite number of assets, but 

they face no flow constraints: They are free to trade any number of assets in a single 

transaction. Another important difference has to do with focus: Our asset pricing results simply 

have no counterpart in the labor literature.8

2 The model

2.1 Preference, endowments, and matching technology

We consider a continuous-time, infinite-horizon model in which time is indexed by t ≥ 0. The

economy is populated by a unit measure of infinitely lived and risk-neutral investors who discount

the future at the same rate r > 0. There is one indivisible, durable asset in fixed supply, s ∈ (0, 1),

and one perishable good that we treat as the numéraire.

Investors can hold either zero or one unit of the asset.9 The utility flow an investor receives

at time t from holding a unit of the asset, which we denote by δt, differs across investors and,

for each investor, changes over time. In particular, each investor receives i.i.d. preference shocks

7This literature has recently incorporated assets into the workhorse model of Lagos and Wright (2005) to study
issues related to financial markets, liquidity, and asset pricing; see, e.g., Lagos (2010), Geromichalos, Licari, and
Suárez-Lledó (2007), Lester, Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012). Trejos and Wright
(2014) provide a unified framework that nests the models of Trejos and Wright (1995) and Duffie et al. (2005).

8In particular, given dramatic increases in trading speed, it is natural for us to study equilibrium outcomes as
contact rates tend to infinity, while such analysis has no obvious counterpart in a labor market setting.

9For the purpose of analyzing steady states, we could equivalently assume that investors can trade any quantity but
are constrained to hold a maximum quantity normalized to one share: given linear utility, they would find optimal to
trade and hold either zero or one shares.
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that arrive according to a Poisson process with intensity γ, whereupon the investor draws a new 

utility flow δ′ from some cumulative distribution function F (δ′). We assume that the support of 

this distribution is a compact interval and make it sufficiently large so that F (δ) has no mass 

points at its boundaries. For simplicity, we normalize this interval to [0, 1]. Thus, at this point, we 

place very few restrictions on the distribution of utility types. In particular, our solution method 

applies equally well to discrete distributions (such as the two point distribution of Duffie, 

Gˆarleanu, and Pedersen, 2005), continuous distributions, and mixtures of the two.

Investors interact in a purely decentralized market in which each investor initiates contact with

another randomly selected investor according to a Poisson process with intensity λ/2.10 If two

investors are matched and there are gains from trade, they bargain over the price of the asset. The

outcome of the bargaining game is taken to be the Nash bargaining solution, in which the investor

with asset holdings q ∈ {0, 1} has bargaining power θq ∈ (0, 1), with θ0 + θ1 = 1.

An important object of interest throughout our analysis will be the joint distribution of utility

types and asset holdings. It turns out that the model becomes very tractable when we represent

these distributions in terms of their cumulative functions. Thus, in what follows, we let Φq,t(δ)

denote the measure of investors at time t ≥ 0 with asset holdings q ∈ {0, 1} and utility type less

than δ. Assuming that initial types are randomly drawn from the cumulative distribution F (δ), the

following accounting identities must hold for all t ≥ 0:

Φ0,t(δ) + Φ1,t(δ) = F (δ) (1)

Φ1,t(1) = s. (2)

Equation (1) highlights that the cross-sectional distribution of utility types in the population is

constantly equal to F (δ), which is due to the fact that initial utility types are drawn from F (δ)

and that an investor’s new type is independent from his previous type.11 Equation (2) is a market

clearing condition: The total measure of investors who own the asset must equal the total measure

10We focus on the purely decentralized market for simplicity of exposition. We show in Appendix D that our main
results are upheld if we assume, as in Duffie et al. (2005), that investors can trade in two ways: in a purely decentralized
market with other investors, or in a centralized market periodically via intermediaries.

11Most of our results extend to the case in which the initial distribution is not drawn from F (δ), though the analysis
is slightly more complicated; see Appendix C.
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of assets in the economy. Given our previous assumptions, this condition implies Φ0,t(1) = 1− s

for all t ≥ 0.

2.2 The frictionless benchmark: centralized exchange

Consider a frictionless environment in which there is a competitive, centralized market where

investors can buy or sell the asset instantly at some price pt. Since the cross-sectional distribution

of types in the population is time-independent, this price will be constant in equilibrium, i.e., pt = p

for all t ≥ 0.

In this environment, the objective of an investor is to choose an asset-holding process qt ∈

{0, 1} that is of finite variation and progressively measurable with respect to the filtration generated

by his utility-type process, δt, that maximizes

E0,δ

[∫ ∞
0

e−rtδtqtdt−
∫ ∞

0

e−rtpdqt

]
= pq0 + E0,δ

[∫ ∞
0

e−rt(δt − rp)qtdt
]
,

after integration by parts. This representation of an investor’s objective makes it clear that, at each

time t, optimal holdings satisfy

q?t =


0 if δt < rp

0 or 1 if δt = rp

1 if δt > rp.

This immediately implies that, in equilibrium, the asset is allocated at each time to the investors

who value it most. As a result, the distribution of types among investors who own one unit of the

asset is time invariant and given by

Φ?
1(δ) = (F (δ)− (1− s))+

with x+ ≡ max{0, x}. It now follows from (1) that the distribution of types among investors who

do not own the asset is given by Φ?
0(δ) = min{F (δ), 1− s}.

The “marginal” type—i.e., the utility type of the investor who has the lowest valuation among

all owners of the asset—is then defined by

δ? = inf{δ ∈ [0, 1] : 1− F (δ) ≤ s}, (3)
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and the equilibrium price of the asset has to equal p? = δ?/r,12 the present value of utility flow

from the asset to a hypothetical investor whose utility type is constantly equal to the marginal type.

3 Equilibrium with search frictions

In this section, we turn to the economy with search frictions. Our solution method goes beyond

previous work by characterizing the equilibrium both in and out of steady-state, for an arbitrary

distribution of types, in closed-form.

Our characterization proceeds in three steps. First, we derive the reservation value of an

investor with asset holdings q ∈ {0, 1} and utility type δ ∈ [0, 1] at any time t ≥ 0, taking

as given the evolution of the joint distribution of asset holdings and utility types of potential

trading partners that such an investor might meet. Importantly, we establish that, given any such

distributions satisfying (1) and (2), reservation values are strictly increasing in utility type, so that

an asset owner of type δ′ and a non-owner of type δ have positive gains from trade if and only if

δ′ ≤ δ. Then, using the patterns of exchange implied by strictly increasing reservation values, we

completely characterize the joint distribution of asset holdings and utility types that must prevail in

equilibrium. Finally, given explicit solutions for reservation values and distributions, we construct

the unique equilibrium and show that it converges to a steady-state from any initial allocation.

3.1 Reservation values

Let Vq,t(δ) denote the maximum attainable utility of an investor with q ∈ {0, 1} units of the asset

and utility type δ ∈ [0, 1] at time t ≥ 0, and denote by

∆Vt(δ) ≡ V1,t(δ)− V0,t(δ)

the reservation value of an investor of utility type δ at time t ≥ 0. Note that this reservation value

is well defined for all utility types δ ∈ [0, 1], and not only for utility types in the support of F (·).

12For simplicity, we will ignore throughout the paper the non-generic case where F (δ) is flat at the level 1 − s
because, in such cases, the frictionless equilibrium price is not uniquely defined.
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An application of Bellman’s principle of optimality shows that

V1,t(δ) = Et
[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(

1{τ=τ1}V1,τ (δ) (4)

+ 1{τ=τγ}

∫ 1

0

V1,τ (δ
′)dF (δ′)

+ 1{τ=τ0}

∫ 1

0

max{V1,τ (δ), V0,τ (δ
′) + Pτ (δ, δ

′)}dΦ0,τ (δ
′)

1− s

)]
,

where τγ is an exponentially distributed random variable with parameter γ that represents the

arrival of a preference shock, τq is an exponentially distributed random variable with parameter λs

if q = 1 and λ(1−s) if q = 0 that represents the arrival of a meeting with another randomly selected

investor who owns q units of the asset, the expectation Et[·] is conditional on τ ≡ min{τ0, τ1, τγ} >

t, and

Pτ (δ, δ
′) ≡ θ0∆Vτ (δ) + θ1∆Vτ (δ

′) (5)

denotes the Nash solution to the bargaining problem at time τ between an asset owner of utility

type δ and a non-owner of utility type δ′. Substituting the price (5) into (4) and simplifying shows

that the maximum attainable utility of an asset owner satisfies

V1,t(δ) = Et
[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(
V1,τ (δ) + 1{τ=τγ}

∫ 1

0

(V1,τ (δ
′)− V1,τ (δ))dF (δ′)

+ 1{τ=τ0}

∫ 1

0

θ1 (∆Vτ (δ
′)−∆Vτ (δ))

+ dΦ0,τ (δ
′)

1− s

)]
. (6)

The first term on the right-hand side of (4) accounts for the fact that an asset owner enjoys a

constant flow of utility at rate δ until time τ . The remaining terms capture the fact that there are

three possible events for the investor at the stopping time τ : he can receive a preference shock (τ =

τγ), in which case a new preference type is drawn from the distribution F (δ′); he can meet another

asset owner (τ = τ1), in which case there are no gains from trade and his continuation payoff is

V1,τ (δ); or he can meet a non-owner (τ = τ0), who is of type δ′ with probability dΦ0,τ (δ
′)/(1− s),

in which case he sells the asset if the payoff from doing so exceeds the payoff from keeping the

asset and continuing to search.
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Proceeding in a similar way for q = 0 shows that the maximum attainable utility of an investor

who does not own an asset satisfies

V0,t(δ) = Et
[
e−r(τ−t)

(
V0,τ (δ) + 1{τ=τγ}

∫ 1

0

(V0,τ (δ
′)− V0,τ (δ))dF (δ′)

+ 1{τ=τ1}

∫ 1

0

θ0 (∆Vτ (δ)−∆Vτ (δ
′))

+ dΦ1,τ (δ
′)

s

)]
, (7)

and subtracting (7) from (6) shows that the reservation value function satisfies the autonomous

dynamic programming equation

∆Vt(δ) = Et
[∫ τ

t

e−r(u−t)δdu+ e−r(τ−t)
(

∆Vτ (δ) + 1{τ=τγ}

∫ 1

0

(∆Vτ (δ
′)−∆Vτ (δ))dF (δ′)

+ 1{τ=τ0}

∫ 1

0

θ1 (∆Vτ (δ
′)−∆Vτ (δ))

+ dΦ0,τ (δ
′)

1− s

− 1{τ=τ1}

∫ 1

0

θ0 (∆Vτ (δ)−∆Vτ (δ
′))

+ dΦ1,τ (δ
′)

s

)]
. (8)

This equation reveals that an investor’s reservation value is influenced by two distinct option values,

which have opposing effects. On the one hand, an investor who owns an asset has the option to

search and find a non-owner who will pay even more for the asset; as shown on the second line,

this option increases her reservation value. On the other hand, an investor who does not own an

asset has the option to search and find an owner who will sell at an even lower price; as shown on

the third line, this option decreases her willingness to pay and, hence, her reservation value.

To guarantee the optimality of the trading decisions induced by (6) and (7) over the whole

infinite horizon, we further require that the maximum attainable utilities of owners and non-owners,

and hence the reservation values, satisfy the transversality conditions

lim
t→∞

e−rtV0,t(δ) = lim
t→∞

e−rtV1,t(δ) = lim
t→∞

e−rt∆Vt(δ) = 0, (9)

for all δ ∈ [0, 1]. The next proposition establishes the existence, uniqueness, and some basic

properties of solutions to (6), (7), and (8) that satisfy (9).

Proposition 1 There exists a unique function ∆V : R+×[0, 1]→ R that satisfies (8) subject to (9).

Moreover, this function is uniformly bounded, absolutely continuous in (t, δ) ∈ R+ × [0, 1], and

strictly increasing in δ ∈ [0, 1] with a uniformly bounded space derivative. Given the reservation

value function, there are unique functions V0,t(δ) and V1,t(δ) that satisfy (6), (7), and (9).
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The fact that reservation values are strictly increasing in δ implies that, when an asset owner 

of type δ meets a non-owner of type δ′ > δ, they will always agree to trade. Indeed, these two 

investors face the same distribution of future trading opportunities and the same distribution of 

future utility types. Thus, the only relevant difference between them is the difference in utility 

flow enjoyed from the asset, which implies that the reservation value of an investor of type δ ′ is 

strictly larger than that of an investor of type δ < δ′. This monotonicity holds regardless of the 

distributions Φq,t(δ) that investors take as given and will greatly simplify the derivation of closed-

form solutions for both reservation values and the equilibrium distribution of asset holdings and 

types.

Integrating both sides of (8) against the distribution of the random time τ and using the fact that 

reservation values are strictly increasing in δ to simplify the positive parts, we find that the 

reservation value function satisfies the integral equation

∆Vt(δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)
(
δ + λ∆Vu(δ) + γ

∫ 1

0

∆Vu(δ
′)dF (δ′) (10)

+ λ

∫ 1

δ

θ1 (∆Vu(δ
′)−∆Vu(δ)) dΦ0,u(δ

′)

− λ
∫ δ

0

θ0 (∆Vu(δ)−∆Vu(δ
′)) dΦ1,u(δ

′)

)
du.

In addition, because Proposition 1 establishes that the reservation value function is absolutely

continuous in (t, δ) ∈ R+ × [0, 1] with a bounded space derivative, we know that

∆Vt(δ) = ∆Vt(0) +

∫ δ

0

σt(δ
′)dδ′ (11)

for some nonnegative and uniformly bounded function σt(δ) that is itself absolutely continuous

in time for almost every δ ∈ [0, 1]. We naturally interpret this function as a measure of the local

surplus at type δ in the decentralized market, since the gains from trade between a seller of type δ

and a buyer of type δ + dδ are approximately given by σt(δ)dδ.

Substituting the representation (11) into the integral equation (10), changing the order of

integration, and differentiating both sides of the resulting equation with respect to t and δ reveals

that the local surplus satisfies the ordinary differential equation

(r + γ + λθ1(1− s− Φ0,t(δ)) + λθ0Φ1,t(δ))σt(δ) = 1 + σ̇t(δ) (12)
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at almost every point of R+ × [0, 1]. A calculation provided in the Appendix shows that, together

with the requirements of boundedness and absolute continuity in time, this ordinary differential

equation uniquely pins down the local surplus as the present value of a perpetuity using an appro-

priate effective discount rate:

σt(δ) =

∫ ∞
t

e−
∫ u
t (r+γ+λθ1(1−s−Φ0,ξ(δ))+λθ0Φ1,ξ(δ))dξdu. (13)

Finally, combining this explicit solution for the local surplus with equations (10) and (11) allows

us to derive the reservation value function in closed-form.

Proposition 2 For any distributions Φ0,t(δ) and Φ1,t(δ) satisfying (1) and (2), the unique solution

to (8) and (9) is explicitly given by

∆Vt(δ) =

∫ ∞
t

e−r(u−t)
(
δ −

∫ δ

0

σu(δ
′) (γF (δ′) + λθ0Φ1,u(δ

′)) dδ′ (14)

+

∫ 1

δ

σu(δ
′) (γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ

′))) dδ′
)
du,

where the local surplus σt(δ) is defined by (13).

We close this subsection with several intuitive comparative static results for reservation values.

Corollary 1 For any (t, δ) ∈ R+ × [0, 1], the reservation value ∆Vt(δ) increases if an investor

can bargain higher selling prices (larger θ1), if he expects to have higher future valuations (FOSD

shift in F (δ′)), or if he expects to trade with higher-valuation counterparts (FOSD shift in the path

of either Φ0,t′(δ
′) or Φ1,t′(δ

′)).

To complement these results, note that an increase in the search intensity, λ, can either increase or 

decrease reservation values. This is because of the two option values discussed above: An increase 

in λ increases an owner’s option value of searching for a buyer who will pay a higher price, which 

drives the reservation value up, but it also increases a non-owner’s option value of searching for a 

seller who will offer a lower price, which has the opposite effect. As we will see below, the net 

effect is ambiguous and depends on all the parameters of the model.
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Remark 1 Differentiating with respect to time on both sides of (10) shows that the reservation

value function can be characterized as the unique bounded and absolutely continuous solution to

the Hamilton-Jacobi-Bellman equation

r∆Vt(δ) = δ + γ

∫ 1

0

(∆Vt(δ
′)−∆Vt(δ)) dF (δ′) + ∆V̇t(δ) (15)

+ λ

∫ 1

δ

θ1 (∆Vt(δ
′)−∆Vt(δ)) dΦ0,t(δ

′)− λ
∫ δ

0

θ0 (∆Vt(δ)−∆Vt(δ
′)) dΦ1,t(δ

′).

This alternative characterization is not directly exploited in our derivation, but it is nonetheless

quite useful. In particular, in Section 5, we show that it implies a sequential representation of an

investor’s reservation values of the form

∆Vt(δ) = Et,δ
[∫ ∞

t

e−r(u−t)δ̂udu

]
,

where δ̂t is a market-adjusted valuation process that accounts not only for the investor’s changes of

type but also for his trading opportunities. This representation allows us to analyze and interpret

the price impact of search frictions.

3.2 The joint distribution of asset holdings and types

In this section, we provide a closed-form characterization of the joint distribution of asset holdings

and utility types that prevail in equilibrium. We then establish that this distribution converges

strongly to the steady-state distribution from any initial conditions satisfying (1) and (2). Finally,

we discuss several properties of the steady-state distribution and explain how its shape depends on

the arrival rates of preference shocks and trading opportunities.

Since reservation values are increasing in utility type, trade occurs between two investors if and

only if one of them is an asset owner with utility type δ′ and the other is a non-owner with utility

type δ′ ≥ δ′. Investors with the same type are indifferent between trading or not, but whether they

trade is irrelevant for the distribution since the owner and the non-owner effectively exchange type.

As a result, the rate of change in the measure of asset owners with utility type less than or equal to

δ satisfies

Φ̇1,t(δ) = γ (s− Φ1,t(δ))F (δ)− γΦ1,t(δ) (1− F (δ))− λΦ1,t(δ) (1− s− Φ0,t(δ)) . (16)
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The first term in equation (16) is the inflow due to type-switching: at each instant, a measure

γ (s− Φ1,t(δ)) of owners with utility type greater than δ draw a new utility type, which is less

than or equal to δ with probability F (δ). Similar logic can be used to understand the second

term, which is the outflow due to type-switching. The third term is the outflow due to trade. In

particular, a measure (λ/2)Φ1,t(δ) of investors who own the asset and have utility type less than δ

initiate contact with another investor, and with probability 1 − s − Φ0,t(δ) that investor is a non-

owner with utility type greater than δ, so that trade ensues. The same measure of trades occur when

non-owners with utility type greater than δ initiate trade with owners with utility type less than δ,

so that the sum equals the third term in (16).13

Using condition (1), we can rewrite equation (16) as a first-order ordinary differential equation:

Φ̇1,t(δ) = −λΦ1,t(δ)
2 − Φ1,t(δ) (γ + λ(1− s− F (δ))) + γsF (δ). (17)

Importantly, this Riccati equation holds for every δ ∈ [0, 1] without imposing any regularity

conditions on the distribution of utility types. Proposition 3 below provides an explicit expression

for the unique solution to this equation and shows that it converges to a unique, globally stable

steady-state. To state the result, let

Λ(δ) ≡
√

(1− s+ γ/λ− F (δ))2 + 4s(γ/λ)F (δ),

and denote by

Φ1(δ) = F (δ)− Φ0(δ) ≡ −1

2
(1− s+ γ/λ− F (δ)) +

1

2
Λ(δ) (18)

the steady-state distribution of owners with utility type less than or equal to δ, i.e., the unique,

strictly positive solution to Φ̇1,t(δ) = 0.

Proposition 3 At any time t ≥ 0 the measure of owners with utility type less than or equal to

δ ∈ [0, 1] is explicitly given by

Φ1,t(δ) = Φ1(δ) +
(Φ1,0(δ)− Φ1(δ)) Λ(δ)

Λ(δ) + (Φ1,0(δ)− Φ1(δ) + Λ(δ)) (eλΛ(δ)t − 1)
(19)

13Note that trading generates no net inflow into the set of owners with type less than δ. Indeed, such inflow requires
that a non-owner with type δ′ ≤ δ meets an owner with an even lower type δ′′ < δ′. By trading, the previous owner of
type δ′′ leaves the set, but the new owner of type δ′ enters the same set, resulting in no net inflow.
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and converges pointwise monotonically to the steady-state measure Φ1(δ) from any initial condi-

tion satisfying equations (1) and (2).

To illustrate the convergence of the equilibrium distributions to the steady-state, we introduce a

simple numerical example, which we will continue to use throughout the text. In this example, the

discount rate is r = 0.05; the asset supply is s = 0.5; the meeting rate is λ = 12, so that a given

investor meets others on average once a month; the arrival rate of preference shocks is γ = 1, so

that agents change type on average once a year; the initial distribution of utility types among asset

owners is given by Φ1,0(δ) = sF (δ); and the underlying distribution of utility types is F (δ) = δα,

with α = 1.5, so that the marginal type is given by δ? = 0.6299.

Using this parameterization, the left panel of Figure 1 plots the equilibrium distributions among

owners and non-owners at t = 0, after one month, after six months, and in the limiting steady-state.

As time passes, one can see that the assets are gradually allocated toward investors with higher

valuations: the distribution of utility types among owners improves in the FOSD sense. Similarly,

the distribution of utility types among non-owners deteriorates, in the FOSD sense, indicating that

investors with low valuations are less and less likely to hold the asset over time.

Focusing on the steady-state, equation (18) offers several natural comparative statics that we

summarize in Corollary 2 below. Intuitively, as preference shocks become less frequent (i.e., γ

decreases) or trading opportunities become more frequent (i.e., λ increases), the asset is allocated

to investors with higher valuations more efficiently, which implies an FOSD shift in the distribution

of types among owners. In the limit, where types are permanent (γ → 0) or trading opportunities

are constantly available (λ → ∞), the steady-state distributions converge to their frictionless

counterparts, as illustrated by the right panel of Figure 1, and the allocation is efficient. We return

to this frictionless limit in Section 5, when we study the asymptotic price impact of search frictions.

Corollary 2 For any δ ∈ [0, 1], the steady-state measure Φ1(δ) of asset owners with utility type

less than or equal to δ is increasing in γ and decreasing in λ.
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FIGURE 1: Equilibrium distributions
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Notes: The left panel plots the cumulative distribution of types among non-owners (upper curves) and owners (lower 
curves) at different points in time. The right panel plots these distributions in the steady state, for different levels of 
search frictions, indexed by the average inter-contact time, 1/λ.

3.3 Equilibrium

Definition 1 An equilibrium is a reservation value function ∆Vt(δ) and a pair of distributions 

Φ0,t(δ) and Φ1,t(δ) such that the distributions satisfy (1), (2), and (19), and the reservation value 

function satisfies (8) subject to (9) given the distributions.

Given the analysis above, a full characterization of the unique equilibrium is immediate. Note

that uniqueness follows from the fact that we proved reservation values were strictly increasing

directly, given arbitrary time paths for the distributions Φ0,t(δ) and Φ1,t(δ), rather than guessing

and verifying that such an equilibrium exists as is often the case in the literature.

Theorem 1 There exists a unique equilibrium. Moreover, given any initial conditions satisfying
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equations(1) and (2), this equilibrium converges to the steady-state given by

r∆V (δ) = δ −
∫ δ

0

σ(δ′)(γF (δ′) + λθ0Φ1(δ′))dδ′ (20)

+

∫ 1

δ

σ(δ′)(γ(1− F (δ′)) + λθ1(1− s− Φ0(δ′)))dδ′

with the time-invariant local surplus

σ(δ) =
1

r + γ + λθ1 (1− s− Φ0(δ)) + λθ0Φ1(δ)
,

and the steady-state distributions defined in equation (18).

4 Trading patterns

In this section, we flesh out the basic predictions that emerge from our model. We structure the

discussion by first focusing on the implications of our equilibrium characterization for the trading

experience of an individual investor—in particular, the expected amount of time it will take him

to trade, and the expected price at which this trade will take place. We then examine how these

experiences at the individual level shape (and are shaped by) aggregate outcomes—in particular,

the nature and extent of misallocation, the volume of trade, the structure of the network through

which these trades are executed, and the distribution of bilateral prices.

After laying out the model’s implications at both the individual and aggregate levels, we argue

that a number of these implications find support in the empirical literature on OTC markets. Given

the tractability of the model, the fact that it is also able to replicate several salient features of these

markets suggests that it might be a useful structural framework for quantifying the size and impact

of trading frictions in decentralized markets. Finally, in addition to arguing that the model can

account for many existing observations, we also highlight several novel predictions that have not

yet been tested empirically.

4.1 Time to trade, prices, and an individual’s utility type

In this section, we characterize the expected amount of time it takes to trade in the steady-state

and the expected price at which this trade will occur for an individual investor. Of particular
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importance, in Lemma 1, we establish that investors with the most to gain from trade tend to 

trade relatively quickly, and in Lemma 2, we establish that expected trading prices are increasing 

in the valuations of both the buyer and the seller.

While these results are fairly intuitive, their implications are far-reaching. For example, not 

only does Lemma 1 tell us that an asset owner with a low valuation will trade quickly, but it is 

also informative about his likely counterparty: Since non-owners with high valuations also trade 

quickly, there will be few of them in equilibrium and, as a result, a non-owner with a low valuation 

is most likely to trade with an owner whose valuation is also relatively low. From Lemma 2, then, 

we anticipate that an owner with a low valuation will trade at a relatively low price, on average. 

More generally, these trading patterns imply that assets in a decentralized market are reallocated to 

investors with higher valuations through chains of inframarginal trades. Absent preference shocks, 

each trade in this chain will be executed, on average, at slower and slower speeds but higher and 

higher prices. We establish these results formally below.

Time to trade. The steady-state arrival rate of profitable trading opportunities for an owner with 

utility type δ is given by λ1(δ) ≡ λ(1 − s − Φ0(δ)), which is the product of the arrival rate of a 

meeting and the probability that the investor meets a non-owner with a utility type greater than or 

equal to his own type, δ. Since the latter probability is decreasing in δ, while the arrival rate of 

preference shocks is constant, we naturally expect that the average time it takes an owner to trade 

is increasing in his utility type. Similarly, we have that the steady-state arrival rate of profitable 

trading opportunities for a non-owner with utility type δ is given by λ0(δ) ≡ λΦ1(δ); again, since 

the probability Φ1(δ) is increasing in δ, we expect that the average time it takes a non-owner to 

trade is decreasing in his utility type.

To formalize this intuition, let ηq(δ) denote the expected amount of time that elapses before a

trade occurs for an investor who currently has utility type δ ∈ [0, 1] and holds q ∈ {0, 1} units of

the asset. Our next result characterizes this expected waiting time in closed-form for an arbitrary

distribution of utility types and offers several natural comparative statics.

20



Lemma 1 The steady-state expected time to trade is given by

ηq(δ) =

(
1−

∫ 1

0

γdF (δ′)

γ + λq(δ′)

)−1
1

γ + λq(δ)
.

The steady-state expected time to trade is decreasing in δ for non-owners, increasing in δ for

owners, and decreasing in λ for both owners and non-owners.

Figure 2 plots η0(δ) and η1(δ) for various values of the meeting intensity λ. Note that, as λ gets 

large, trading times fall (rise) sharply for non-owners (owners) with utility types very close to δ?, 

which is the marginal type in the Walrasian equilibrium, as defined in equation ( 3). Intuitively, as 

λ gets large, the allocation of the asset becomes closer to the frictionless allocation, especially at 

extreme values of δ (see Figure 1B). Hence, a non-owner with utility type δ � δ? has essentially 

no willing counterparties for trade, and his expected waiting time remains high. A non-owner with 

a utility type just above δ?, on the other hand, has a much easier time finding a willing seller, and 

hence has a significantly shorter waiting time between trades.

Expected prices. Let pq(δ) denote the price at which an investor with utility type δ ∈ [0, 1]

holding q ∈ {0, 1} units assets expects to trade, conditional on the arrival of a profitable trading

opportunity. Because a non-owner with utility type δ ∈ [0, 1] only buys the asset from owners with

utility types δ′ ≤ δ, we have that the expected buying price is given by

p0(δ) = θ1∆V (δ) + θ0

∫ δ

0

∆V (δ′)
dΦ1(δ′)

Φ1(δ)
. (21)

Similarly, because an asset owner with utility type δ only sells the asset to non-owners with utility

types δ′ ≥ δ, we have that the expected selling price is given by

p1(δ) = θ0∆V (δ) + θ1

∫ 1

δ−

∆V (δ′)
dΦ0(δ′)

1− s− Φ0(δ−)
. (22)

Our next result establishes formally that the expected buying and selling prices are both increasing

in utility type, while the effect of increasing the meeting rate is ambiguous.

Lemma 2 The expected trading price pq(δ) is increasing in δ ∈ [0, 1] for q ∈ {0, 1} but can be non-

monotonic in λ.
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FIGURE 2: Expected time to trade
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Notes. This figure plots the expected time to trade for non-owners (Panel A) and owners (Panel B) as functions of the
investor’s utility type when meetings happen, on average, every month (dotted), every week (dashed), and every hour
(solid). The parameters we use in this figure are otherwise the same as in Figure 1.

Expected trading prices are increasing in utility types for two reasons. First, investors with

higher utility types have higher reservations values, so that buyers with high δ are willing to pay

more and sellers with high δ are unwilling to accept less. This effect is captured by the first terms

in equations (21) and (22), which are both increasing in utility type by Proposition 1. Second,

investors with higher utility types tend to trade with other investors who have high utility types,

which further increases the expected transaction price. This effect is captured by the integrals in

the expressions of the expected trading prices, and we establish in the Appendix that these integrals

are also increasing in utility type.
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4.2 Implications for aggregate outcomes

In this section, we examine how the patterns discussed above determine the nature and extent of

misallocation in the market, the volume of trade, the structure of the network through which these

trades occur, and the distribution of prices at which they are executed.

Misallocation. Since trade is decentralized and takes time, the asset cannot be efficiently al-

located. Instead, there will be misallocation: Some investors who would own the asset in a 

frictionless environment will not own it in the presence of search frictions, while some investors 

who would not own the asset in a frictionless environment will own it in the presence of search 

frictions. However, even though search is random, the pattern of misallocation is not. In particular, 

we show that misallocation is most common among investors near the marginal type, δ?.

To see this, note that misallocation has two symptoms: Some assets are owned by the “wrong” 

investors (with type δ < δ?), and some of the “right” investors (with type δ > δ?) do not own an 

asset. In the steady-state equilibrium, these two symptoms are captured by the following measure 

of cumulative misallocation:

M(δ) =

∫ δ

0

1{δ′<δ?}dΦ1(δ′) +

∫ δ

0

1{δ′≥δ?}dΦ0(δ′).

To measure misallocation at a specific type, one can simply calculate the Radon-Nikodym density
dM
dF

(δ) of the measure M(dδ) with respect to the measure F (dδ) induced by the distribution of

utility types (see equation (48) in the Appendix for an explicit expression). Intuitively, the value

of this density at a given point δ ∈ [0, 1] represents the fraction of type-δ investors whose asset

holdings in the environment with search frictions differs from their holdings in the frictionless

benchmark.

Lemma 3 The misallocation density dM
dF

(δ) achieves a global maximum at either δ?− or δ?.

While the slopes of the expected waiting times η0(δ) and η1(δ), shown in Figure 2, are sufficient

to understand why misallocation peaks at the marginal type, the shape of these functions tells
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FIGURE 3: Misallocation and search frictions
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Notes. This figure plots the misallocation density as a function of the investor’s utility type when meetings happen, on
average, once every month (dotted), once every week (dashed), and once every hour (solid). The parameters we use in
this figure are otherwise the same as in Figure 1.

us even more about the patterns of misallocation.14 In particular, we noted in the discussion of

Figure 2 that the expected time to trade is very small for owners with valuations below δ?, and

increases rapidly for owners in a neighborhood of δ? (the opposite is true for non-owners). As

Figure 3 illustrates, this implies that misallocation is concentrated in a cluster around the marginal

type. Importantly, this pattern of misallocation arises because trade is decentralized, and would not

arise in a model in which investors trade through centralized markets, or in a model in which all

trades are executed by dealers who have access to centralized markets. Indeed, in either of these

alternative environments, all investors would trade with the same intensity, so that the measure of

misallocation described above would be constant across types.

14To understand why our measure of misallocation can be discontinuous at the marginal type note that dM
dF is equal

to dΦ1

dF for δ ∈ [0, δ?), and equal to dΦ0

dF = 1− dΦ1

dF for δ ∈ [δ?, 1]; the former is an increasing function that achieves a
maximum at the marginal type, while the latter is a decreasing function that achieves a generally different maximum
at the same point. Hence, dM

dF will typically be discontinuous at δ?, with a maximum at either δ?− or δ?.
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Trading volume. The discussion above highlights the fact that, in a purely decentralized mar-

ket, assets are reallocated over time through chains of bilateral and infra-marginal trades, a phe-

nomenon that has been pointed out before in both the search and the network literature. Our 

closed-form characterization allows us to derive an explicit expression for the trading volume, 

which reveals the contribution of these inframarginal trades to aggregate volume.

To compute the trading volume generated in equilibrium, we need to specify a tie-breaking

rule that determines the outcome of meetings between buyers and sellers with the same utility

type. Assume for simplicity that, in the steady-state equilibrium, such a meeting results in trade

with some constant probability π ∈ [0, 1]. Under this convention, we can express trading volume

as

ϑ(π) = λ

∫
[0,1]2

1{δ0>δ1}dΦ0(δ0)dΦ1(δ1) + πλ
∑
δ∈[0,1]

∆Φ0(δ)∆Φ1(δ),

where ∆Φq(δ) = Φq(δ)− Φq(δ−) ≥ 0 denotes the discrete mass of investors who hold q ∈ {0, 1}

units of the asset and have a utility type exactly equal to δ. Using the integration by parts formula

for functions with jumps allows us to decompose the trading volume as

ϑ(π) = λΦ1(δ?)(1− s− Φ0(δ?)) + πλ∆Φ0(δ?)∆Φ1(δ?) (23)

+ λ

∫ δ?

0

(Φ1(δ−) + 1{δ<δ?}π∆Φ1(δ))dΦ0(δ)

+ λ

∫ 1

δ?
(1− s− Φ0(δ) + 1{δ>δ?}π∆Φ0(δ))dΦ1(δ).

The terms on the first l ine capture t he volume t hat i s generated by t rades between owners with 

types in [0, δ?] and non-owners with types in [δ?, 1]. These would be the only trades taking place in 

the equilibrium of a model with a frictionless exchange: The price would be set by the marginal 

type, so investors below δ? would only find it optimal to sell, while investors above δ? would only 

find it optimal to buy. With search frictions, however, there are additional trades because any 

investor may end up buying or selling, depending on who she meets. These inframarginal trades 

are captured by the integrals on the second and third lines of (23): the second line measures the 

trading  volume  generated  by  meetings in which a non-owner with type δ0 ∈ [0, δ?] buys the asset
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from an owner with types δ1 ≤ δ0, while the third line measures the trading volume generated by

meetings in which an owner with type δ1 ∈ [δ?, 1] sells to a non-owner with type δ0 ≥ δ1.

Our next result provides an explicit expression for the equilibrium trading volume when the

distribution of utility types is continuous.

Lemma 4 If the distribution of utility types is continuous then the steady-state trading volume is

explicitly given by

ϑ(π) = ϑc ≡ γs(1− s)
[
(1 + γ/λ) log

(
1 +

λ

γ

)
− 1

]
for all π ∈ [0, 1] and is strictly increasing in both the meeting rate λ and the arrival rate of

preference shocks γ. Otherwise, if the distribution of utility types has atoms, then the steady-state

trading volume is strictly increasing in π ∈ [0, 1] with ϑ(0) < ϑc < ϑ(1).

The results in Lemma 4 have several interesting implications. First, note that ϑc is independent 

of F (δ): In a decentralized market with random matching, total trading volume depends on neither 

the support nor the dispersion of private valuations in the market when F (δ) is continuous. This 

is because, in our environment, whether or not a trade occurs depends only on the ordinal ranking 

of the two investors. The lemma also shows that, under the same continuity assumption, trading 

volume increases when investors find counterparties more quickly and when they change utility 

type more frequently, and it is a dome-shaped function of the asset supply with a maximum at the 

point s = 1/2. This last result is intuitive and well known in this literature: Trading volume peaks 

when the asset supply equates the number of potential buyers and sellers. Finally, when the 

distribution of utility types is continuous, the equilibrium trading volume satisfies limλ→∞ ϑc = ∞. 

By contrast, the equilibrium trading volume is finite in the frictionless benchmark (see Lemma A.1 

in the Appendix). Therefore, our fully decentralized market can generate arbitrarily large excess 

volume relative to the frictionless benchmark, as long as search frictions are sufficiently small.

Structure of the trading network. Motivated by the emergence of several important OTC mar-

kets, a recent literature studies how the structure of the trading network in a decentralized market
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affects the efficiency with which assets and information are transferred, as well as the vulnerability

of the market to negative shocks and contagion.15

In many of these studies, the trading network itself is taken as exogenous. In our model, even 

though meetings between investors are random, the topology of the trading network that emerges 

in equilibrium is not. In particular, as we noted above, misallocation is less prevalent at extreme 

types and tends to cluster around the marginal type, δ?, as the meeting rate increases. Therefore, 

since investors outside of this cluster rarely have an occasion to trade, the share of trading volume 

accounted for by investors within this cluster grows. Hence, a core-periphery network structure 

emerges endogenously: Over any time interval, if one created a connection between every pair 

of investors who trade, the network would exhibit what Jackson (2010, p. 67) describes as a “core 

of highly connected and interconnected nodes and a periphery of less-connected nodes.”

To illustrate this phenomenon, Figure 4 plots the contribution of each owner-nonowner pair to

the equilibrium trading volume as measured by the Radon-Nikodym density

κ(δ0, δ1; π) ≡ λ
(
1{δ1<δ0} + π1{δ1=δ0}

) dΦ0

dF
(δ0)

dΦ1

dF
(δ1).

As can be seen from the figure, agents with extreme utility types account for a very small fraction

of total trades. For example, owners with low utility types may trade quickly, but there are very few

such owners in equilibrium; hence, we do not observe these owners trading very frequently. On

the other hand, there are many owners with high utility types, but these investors trade very slowly,

which is why they do not account for many trades in equilibrium. Only in the cluster of investors

with near-marginal utility types do we find a sufficiently large fraction of individuals who are both

holding the “wrong” portfolio and able to meet suitable trading partners at a reasonably high rate.

In fact, our next result shows that, when frictions are small, most of the volume is accounted for

by the infra-marginal trades of investors in the cluster around the marginal type.

15For models of information transmission in decentralized markets, see Duffie et al. (2009), Golosov et al. (2014),
and Babus and Kondor (2012). For models of contagion and fragility see, among many others, Eisenberg and Noe
(2001); Zawadowski (2013); Elliott, Golub, and Jackson (2014); Farboodi (2013); and Atkeson, Eisfeldt, and Weill
(2014).
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FIGURE 4: Contribution to trading volume
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Notes. This figure plots the volume density κ(δ0, δ1;π) as a function of the owner’s and non-owner’s type when
meetings occur, on average, once a week. The parameters we use in this figure are otherwise the same as in Figure 1.

Lemma 5 If the distribution of utility types is continuous, then

lim
λ→∞

λ

ϑc

(∫ δ?

δ?−ε
Φ1(δ)dΦ0(δ) +

∫ δ?+ε

δ?
(1− s− Φ0(δ))dΦ1(δ)

)
= 1

for any constant ε > 0 such that δ? ± ε ∈ [0, 1].

Finally, we note that the trades executed by investors in the cluster around the marginal type

resemble intermediation activity. Indeed, when the distribution of utility types is continuous,

investors of type δ? have identical buying and selling intensities:

λ0(δ∗) = λΦ1(δ?) = λ (F (δ?)− Φ0(δ?)) = λ (1− s− Φ0(δ?)) = λ1(δ).

Hence, investors in the cluster around the marginal type are approximately equally likely to buy or

sell the asset in equilibrium.
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The distribution of realized prices. In contrast to models of frictionless exchange, or models

of decentralized exchange with only two types of agents, our model with more than two types

generates price dispersion. In particular, each transaction in the network described above occurs at

a price

P (δ, δ′) = θ0∆V (δ) + θ1∆V (δ′),

in which the utility types δ ≤ δ′ of the two counterparties are random variables on [0, 1] drawn

from the joint distribution described by

P [{δ′ ≤ δ0} ∩ {δ ≤ δ1}] =
G(δ0, δ1)

ϑ(1)
,

where the denominator is the steady-state equilibrium trading volume defined in equation (23) and

the numerator is given by

G(δ0, δ1) =

∫
[0,1]2

1{δ′≤δ0}1{δ≤δ′∧δ1}λdΦ0(δ′)dΦ1(δ).

In other words, function G(δ0, δ1) gives the probability that a non-owner with valuation less than 

δ0 meets an owner with valuation less than δ1 with whom a mutually beneficial trade can be agreed 

upon. When the distribution of types is continuous, the integrals above can be computed explicitly. 

However, even with this simplification, it remains quite difficult to characterize the properties of 

the distribution of prices analytically. Hence, we postpone studying the relationship between 

realized prices and trading speed to Section 5—where we study a region of the parameter space 

that admits analytical results—and focus here on the support of the distribution of realized prices.

Lemma 6 The spread between the highest and lowest realized price is

∆V (δ)−∆V (δ) =

∫ δ

δ

dδ

r + γ + λθ1 (1− s− Φ0(δ)) + λθ0Φ1(δ)
.

where the constants 0 < δ ≤ δ < 1 denote the endpoints of the support of the distribution of utility

types. The spread between the highest and lowest realized price is decreasing in both the meeting

rate, λ, and the arrival rate of preference shocks, γ.
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Intuitively, as the arrival rate of preference shocks γ becomes large, the difference between 

the reservation values of any two utility types shrinks, as both investors are not likely to remain in 

their current state for very long. An increase in the meeting rate λ has a similar effect: The spread 

between the reservation values of any two investors narrows when they have access to other 

counterparties with greater frequencies.

4.3 Assessing the implications of the model

Reliable data from OTC markets has traditionally been difficult to find since quantities and prices 

tend to be negotiated privately in these markets. However, several recent studies have documented 

some basic facts about the patterns of trade and prices in certain OTC markets. In this section, we 

argue that our model can naturally account for a number of these facts, and we draw attention to 

a few predictions that have not been tested in these data. This suggests that our model can be a 

useful structural framework to study these types of markets, both theoretically and quantitatively.

Predictions and stylized facts. In our model, agents with a stronger need to trade find willing 

counterparties more quickly but trade at less favorable terms. These two predictions are consistent 

with observations made by Ashcraft and Duffie (2007) in the federal funds market, where banks 

borrow and lend reserves in bilateral meetings throughout the day in an attempt to achieve a certain 

end-of-day balance. They proxy a bank’s need to trade by its excess balances—in the language of 

our model, large excess balances correspond to a low utility type. In accordance with the results 

in Lemma 1, they find that a  bank’s probability of making a  loan at a  particular moment in time 

is increasing in its balances, while the probability that a bank borrows funds at any point in time 

is decreasing in its balances. Moreover, consistent with the results in Lemma 2, they find that the 

interest rate on a loan (the inverse of the price) is decreasing in the balances of both the borrower 

and the lender.

Another important prediction of our model is that assets are endogenously reallocated via

chains of infra-marginal trades. This, too, is a feature of many OTC markets. For example, Li

and Schürhoff (2012) document such intermediation chains in the interdealer market for municipal
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bonds: When an asset is purchased by a dealer from a customer, it is bought and sold by a 

sequence of dealers until it reaches its final holder. Viswanathan and Wang (2004) find similar 

patterns of sequential trades among dealers in the foreign exchange markets. In the federal 

funds market, Afonso and Lagos (2012a) find that 40 percent of trades are “intermediated” 

during the day, i.e., lent from one bank to another, only to be lent again to a third bank.

Lemma 5 establishes that the process of asset reallocation gives rise to a trading network

in which a small measure of agents who engage in intermediation activity account for a large

proportion of the overall trading volume. This prediction resembles the observed tendency of OTC

markets to exhibit a core-periphery trading structure. See Bech and Atalay (2010) for evidence

for the federal funds market; Li and Schürhoff (2012) for the interdealer municipal bonds market;

Soramäki et al. (2007) for interbank flows across Fedwire, the large value transfer system operated

by the Federal Reserve; Craig and von Peter (2014), Boss et al. (2004), and Chang et al. (2008) for

foreign interbank markets; and Peltonen et al. (2014) for the credit default swap market.

Lastly, price dispersion is also a well-known feature of OTC markets. Afonso and Lagos

(2012a) find significant dispersion in the fed funds market, especially during times of distress,

while Jankowitsch et al. (2011) use data from the Trade Reporting and Compliance Engine (TRACE)

to document substantial price dispersion in the US corporate bond market (see also Feldhütter,

2012). Measures of price dispersion are typically even higher in less liquid markets; see, for

example, the transaction prices in the decentralized market for used commercial aircraft in Gavazza

(2011b).

Additional testable predictions. Given the tractability of our analysis, and hence the availability

of a variety of comparative statics, our model also generates a number of predictions that have not

yet been tested in the data. For example, the results of Lemmas 1 and 2 jointly imply that investors

who purchase an asset at a relatively high price are more likely to have a relatively high valuation,

and thus they are more likely to own the asset for a longer period of time than an investor who paid

a relatively low price. By the same reasoning, an investor who sold an asset at a high price is likely

to buy a new asset more quickly than an investor who sold an asset at a low price. To the best of
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our knowledge, these predictions have not been studied empirically in the context of an OTC asset

market, but are highly relevant in some contexts. For example, in the housing market, the realized

payoff from a mortgage depends on the tenure of the homeowner. Hence, even though mortgage

lenders are typically wary when a buyer pays a relatively high price for a house (because of resale

considerations), our model provides a reason why such a mortgage could be a relatively profitable

loan (because of a longer expected tenure in the house).

5 The price impact of search frictions

In this section, we ask how search frictions affect realized prices, paying particular attention to

understanding how the answer depends on the degree of heterogeneity among market participants.

To obtain analytic comparative statics, we focus on the case of small frictions, λ ' ∞. We obtain

two main findings. First, heterogeneity magnifies the price impact of search frictions. Second,

search frictions have larger effects on price levels than on their dispersion. Therefore, quantifying

the level of frictions based on observed price dispersion may be misleading, since frictions can

have substantial effects on price levels even when dispersion appears very small.

5.1 A sequential representation of reservation values

To derive and interpret the asymptotic behavior of realized prices as frictions vanish, we rely on

a sequential representation of the investors’ reservation values that we obtain by exploiting the

Hamilton-Jacobi-Bellman equation (15).16

Proposition 4 The reservation value function can be represented as

∆Vt(δ) = Et,δ
[∫ ∞

t

e−r(s−t)δ̂sds

]
, (24)

where the market valuation process, δ̂t, is a pure jump Markov process on [0, 1] with infinitesimal

generator defined by

At[v](δ) ≡
∫ 1

0

(v(δ′)− v(δ))
(
γdF (δ′) + 1{δ′≤δ}λθ0dΦ1,t(δ

′) + 1{δ′>δ}λθ1dΦ0,t(δ
′)
)

16 Related representations of equilibrium reservation values have also been derived by Hugonnier (2012) and Kiefer
(2012) in alternative models of decentralized exchanges.
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for any uniformly bounded function v : [0, 1]→ R.

We refer to the process δˆt as the market valuation process because it takes into account not 

only investors’ physical changes of types but also their future trading opportunities. To describe 

this process, suppose that an investor’s valuation is δˆt = δ ∈ [0, 1] at time t ≥ 0. Then, during the 

time interval [t, t + dt], the market valuation process can change for three reasons. First, there is a 

preference shock that arrives with intensity γ, in which case a new valuation is drawn according to 

F (δ′). Second, there is a purchase opportunity that arrives with intensity λθ0Φ1,t(δ), in which case 

a new valuation is drawn from the truncated support [0, δ] according to the conditional distribution 

Φ1,t(δ
′)/Φ1,t(δ). Note that the market valuation process creates transitions toward lower types to 

account for the option value of searching for sellers and buying at a lower price. Symmetrically, the 

market valuation process creates transitions towards higher types to account for the option value of 

searching for buyers and selling at a higher price; therefore, the third reason the market valuation 

process can change is that sale opportunities arise with intensity λθ1(1−s−Φ0,t(δ)), in which case 

a new valuation is drawn from the truncated support (δ, 1] according to the conditional distribution 

(Φ0,t(δ
′) − Φ0,t(δ))/(1 − s − Φ0,t(δ)).

In the frictionless benchmark, the market valuation process is constant and given by δ̂t = δ?;

since investors can trade instantly at the constant price δ?/r, the market valuation process must

equal the valuation of the marginal investor at all times and for all investors. In a decentralized

market, the market valuation process differs from δ? for two reasons. First, because meetings are

not instantaneous, an owner must enjoy his private utility flow until he finds a trading partner.

Second, conditional on finding a trading partner, investors do not always trade with the marginal

type. Instead, the terms of trade are random and depend on the equilibrium distributions of utility

types among potential trading partners. Note that this second channel is only active if there are

more than two types, because otherwise a single price gets realized in bilateral meetings.

To relate the explicit solution for reservation values given in Proposition 2 to the sequential

representation of Proposition 4, we rewrite (24) as

∆Vt(δ) =

∫ 1

0

(δ′/r)dΨt(δ
′|δ) (25)
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with the integrator defined by

Ψt(δ
′|δ) ≡ Et,δ

[∫ ∞
t

re−r(u−t)1{δ̂u≤δ′}du
]
.

Comparing this expression with equation (14), we conclude that

Ψt(δ
′|δ) =

∫ ∞
t

re−r(u−t)σu(δ
′) (γF (δ′) + λθ0Φ1,u(δ

′)) du

if δ′ ≤ δ, and

Ψt(δ
′|δ) =

∫ ∞
t

re−r(u−t) (1− σu(δ′) (γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ
′)))) du

otherwise. The interpretation of this function is clear: Ψt(δ
′|δ) ∈ [0, 1] measures the discounted

expected amount of time that the market valuation process spends in the interval [0, δ′] given that

it started from δ ∈ [0, 1] at time t ≥ 0. In accordance with this interpretation, we will refer to this

function as the discounted occupation measure of the market valuation process.

5.2 The frictionless limit

As a first step in our study of the asymptotic price impact of search frictions, we establish two

intuitive, but important, results about the economy as λ → ∞. First, we show that the allocation

becomes approximately frictionless. Second, we show that, as a result of this increasingly efficient

allocation process, the reservation value of all investors in the market converges to the frictionless

equilibrium price, δ?/r.

Proposition 5 As λ→∞, the equilibrium allocation and the reservation value function converge

to their frictionless counterparts in that limλ→∞Φ0(δ) = Φ?
0(δ), limλ→∞Φ1(δ) = Φ?

1(δ), and

limλ→∞∆V (δ) = δ?/r = p? for every δ ∈ [0, 1].

To understand why reservation values converge to the frictionless price, consider the market 

valuation process. By Proposition 5, we know that the equilibrium allocation becomes approxi-

mately efficient as λ → ∞,  which  implies that it  becomes  very  easy for  an investor  with  utility
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type δ < δ? to sell his asset but a lot more difficult for this investor to buy. Accordingly, we show 

in Appendix A.4 that the trading intensities of such an investor satisfy

lim
λ→∞

λ1(δ) =∞ and lim
λ→∞

λ0(δ) <∞.

Thus, it follows from Proposition 4 that, starting from below the marginal type, the market

valuation process moves up very quickly as the meeting frequency increases. Similarly, we show

in the Appendix that the trading intensities of an investor with utility type δ > δ? satisfy

lim
λ→∞

λ0(δ) =∞ and lim
λ→∞

λ1(δ) <∞

This time, as λ → ∞, it becomes very easy for an investor with utility type δ > δ? to buy

an asset but a lot more difficult to sell; hence, beginning above the marginal type, the market

valuation process moves down very quickly as the meeting frequency increases. Taken together,

these observations imply that the market valuation process converges to δ? as λ → ∞, and it

now follows from the sequential representation (24) that all reservation values converge to the

frictionless equilibrium price p? = δ?/r.

5.3 Price levels near the frictionless limit

By the same logic, in order to analyze the behavior of reservation values and prices near the

frictionless limit, we study the behavior of the market valuation process near the marginal type.

Doing so yields the following result.

Proposition 6 Assume that the distribution of utility types is twice continuously differentiable with

a strictly positive derivative. Then,

∆V (δ) = p? +
π/r

F ′(δ?)

(
1

2
− θ0

)(
γs(1− s)
θ0θ1

) 1
2 1√

λ
+ o

(
1√
λ

)
, (26)

for all δ ∈ [0, 1] where the remainder satisfies limλ→∞
√
λo(1/

√
λ) = 0.

The idea of the proof consists in centering the market valuation process around its frictionless

limit δ? and scaling the result by its convergence rate, which turns out to be
√
λ. This delivers
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an auxiliary process x̂t ≡
√
λ(δ̂t − δ?) whose nondegenerate limit distribution determines the

correction term in the expansion of the reservation values, because

√
λ (∆V (δ)− p?) = Eδ

[∫ ∞
0

e−rtx̂tdt

]
for all δ ∈ [0, 1] as a result of Proposition 4. To understand why the convergence rate of the market

valuation process is equal to
√
λ, recall that the asset is almost perfectly allocated as λ → ∞ , so

that buyers become very scarce below the marginal type while sellers become very scarce above

the marginal type. Consistent with this observation, we show in Appendix A.4 that, when the

distribution of utility types is continuous, the trading intensities

λ0(δ?) = λΦ1(δ?) = λ(F (δ?)− Φ1(δ?)) = λ(1− s− Φ0(δ?)) = λ1(δ?)

of investors in a neighborhood of δ? converge to infinity at rate
√
λ. This rate is much slower than

the rate λ that prevails away from the marginal type, and pins down the convergence rate of the

market valuation process in a neighborhood of the marginal type.

The first term in the expansion follows directly from Proposition 5, since all reservation values

converge to the frictionless equilibrium price p? = δ?/r. The second term is a correction term that

determines how reservation values deviate from the frictionless equilibrium price, and we argue

that this term depends on three key features of our decentralized market model. The first key feature

is the average time it takes investors with near-marginal valuations to find counterparties, which we

have just argued is in order 1/
√
λ. The second key feature of the market is the relative bargaining

powers of buyers and sellers, which determine whether the asset is traded at a discount or at a

premium: if θ0 > 1/2, the asset is traded at a discount relative to the frictionless equilibrium

price in all bilateral meetings, and vice versa if θ0 < 1/2. When buyers and sellers have equal

bargaining powers, the correction term vanishes and all reservation values are well approximated

by the frictionless equilibrium price, irrespective of the other features of the market.

The third feature of the market that matters for reservation values is the amount of heterogeneity

that exists among investors in a neighborhood of the marginal type, as measured by the derivative

F ′(δ?) of the distribution at the marginal type. If the derivative, F ′(δ?), is small, then valuations

are dispersed around the marginal type, gains from trade are large, and bilateral bargaining induces
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significant deviations from the frictionless equilibrium price. On the contrary, if the derivative,

F ′(δ?) is large, then valuations are highly concentrated around the marginal type, gains from trade

are small, and prices remain closer to their frictionless limit.

Interestingly, a direct calculation shows that the derivative, F ′(δ?), is proportional to the elas-

ticity of the Walrasian demand

ε(p?) =
p?

F (rp?)− 1

d(1− F (rp))

dp

∣∣∣∣
p=p?

= δ?F ′(δ?)/s

at the frictionless equilibrium price δ?/r, keeping in mind that 1 − F (δ?) = s. Hence, holding

the marginal investor and the supply the same, if the Walrasian asset demand is less elastic, price

effects in the decentralized market will be larger. It is intuitive that a less elastic demand magnifies

the bilateral monopoly effects at play in our search-and-matching market.

To further emphasize the role of heterogeneity, consider heuristically what happens when the

continuous distribution of utility types is taken to approximate a discrete distribution. In such a

case, the cumulative distribution function F (δ) will approach a step function that is vertical at the

marginal type and the demand is perfectly elastic. As a result, we will have that the derivative

F ′(δ?) will approach infinity, and it follows from (26) that the corresponding deviation from the

frictionless equilibrium price will be very small. This informal argument can be made precise by

working out the asymptotic expansion of reservation values with a discrete distribution of utility

types.

Proposition 7 When the distribution of utility types is discrete, the convergence rate of reservation

values to the frictionless equilibrium price is generically equal to 1/λ.

Taken together, Propositions 6 and 7 show that existing results based on search models with

a discrete distribution of types can substantially underestimate the price impact of frictions (see,

e.g., Vayanos and Weill (2008), Weill (2008), and Praz (2013) for asymptotic expansions in such

models). We illustrate this finding in the left panel of Figure 5, where we compare the price

deviation p?−∆V (δ?) implied by the continuous distribution of our baseline model with the price

deviation implied by a discrete distribution that delivers identical marginal and average investors.

The figure shows that when investors find counterparties twice a day, on average (i.e., λ = 500),
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FIGURE 5: Continuous vs. discrete distribution
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Notes. This figures plots the price deviation relative to the frictionless equilibrium (left panel) and the price dispersion
(right panel) as functions of the meeting rate for the base case model of Figure 1 with bargaining power θ0 = 0.75,
and a model with a two point distribution of types constructed to have the same mean and to induce the same marginal
investor as the continuous distribution of the base case model.

the price discount is 60 percent with a continuous distribution, and only about 2 percent with

the corresponding discrete distribution. When investors find counterparties 20 times per day, on

average (i.e., λ = 10000), the discount is approximately 15 percent with a continuous distribution,

but it is now indistinguishable from zero with a discrete distribution.

5.4 Price dispersion near the frictionless limit

An important implication of Proposition 6 is that, to a first-order approximation, there is no price

dispersion. This can be seen by noting that the correction term in equation (26) does not depend on

the investor’s utility type. Hence, in order to obtain results about the impact of frictions on price

dispersion, it is necessary to work out higher order terms. This is the content of our next result.
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Proposition 8 Assume that the distribution of utility types is twice continuously differentiable with

a strictly positive derivative. Then

∆V (δ)−∆V (δ) =
1

2θ0θ1F ′(δ?)

log(λ)

λ
+O

(
1

λ

)
,

where the constants 0 < δ ≤ δ < 1 denote the endpoints of the support of the distribution of

utility types and the remainder satisfies limλ→∞ |λO(1/λ)| < ∞. By contrast, with a discrete

distribution of utility types, the convergence rate is generically equal to 1/λ.

Comparing the results of Propositions 6 and 8 shows that, with a continuous distribution of

utility types, the price dispersion induced by search frictions vanishes at a rate log(λ)/λ, which is

much faster than the rate 1/
√
λ at which reservation values converge to the frictionless equilibrium

price. This finding has important implications for empirical analysis of decentralized markets as it

implies that inferring the impact of search frictions based on the observable level of price dispersion

can be misleading. In particular, search frictions can have a very small impact on price dispersion

and, yet, have a large impact on the price level.

This finding is illustrated in Figure 5. Comparing the left and right panels, one sees clearly

that the price dispersion induced by search frictions converges to zero much faster than the price

deviation. For instance, when investors meet counterparties twice a day on average (i.e., λ =

500), the price discount implied by our baseline model is about 60 percent, but the corresponding

price dispersion is 20 times smaller (about 3 percent). One can also see from the figure that, in

accordance with the result of Proposition 8, price dispersion is larger with a continuous distribution

of utility types than with a discrete distribution.17

6 Conclusion

In this paper, we develop a search and bargaining model of asset markets that allows investors’

utility types to be drawn from an arbitrary distribution. We show that this generalization entails
17In Appendix B, we study the asymptotic welfare cost of misallocation. In line with our results about prices, we

show that misallocation has a larger welfare cost when the distribution is continuous than when it is discrete. We also
show that the welfare cost of frictions may be accurately measured by the observed amount of price dispersion because
these two equilibrium outcomes share the same convergence rate as frictions vanish.
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no loss of tractability and has substantial benefits. In particular, the model is able to account for

many of the key empirical facts recently reported in studies of OTC markets, which suggests that

it could provide a unified structural framework to study a number of important issues related to

these markets.18 Moreover, the model generates a number of new results, which underscore the

importance of heterogeneity in decentralized markets.

18These issues include, but are not limited to, the effect of trading speed on prices, allocations, and trading volume;
the effect of regulation that forces assets trading in an OTC market to trade on a centralized exchange instead; and the
propagation of large shocks (such as a liquidity shock) in an decentralized market.
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A Proofs

A.1 Volume in the frictionless benchmark
In this section, we briefly study the volume of trade ϑ? that occurs at each instant in the frictionless
benchmark equilibrium of Section 2.2. Note that this variable is not uniquely defined. For instance, one
can always assume that some investors engage in instantaneous round-trip trades, even if they do not have
strict incentives to do so. This leads us to focus on the minimum trading volume necessary to accommodate
all investors who have strict incentives to trade.

Lemma A.1 In the frictionless equilibrium, the minimum volume necessary to accommodate all investors
who have strict incentives to trade is given by ϑ? ≡ γmax{sF (δ?−), (1− s)(1− F (δ?))}.

Proof. Consider first the case when there is a point mass at the marginal type, so that F (δ?) >  F ( δ?−). In 
equilibrium, the flow of non-owners who strictly prefer to buy is equal to the set of investors with zero asset 
holdings who draw a preference shock δ′ > δ?. Similarly, the flow investors who own the asset and strictly 
prefer to sell are those who draw a preference shock δ′ < δ?. To implement the equilibrium allocation, the 
volume has to be at least as large as the maximum of these two flows, and the result follows.

In the continuous case, or more generally when the distribution is continuous at the marginal type, we
have 1− F (δ?) = s, so that the the minimum volume reduces to ϑ? = γs(1− s). �
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A.2 Proofs omitted in Section 3
We start by showing that imposing the transversality condition (9) on the reservation value function is 
equivalent to seemingly stronger requirement of uniform boundedness and that any such solution to the 
reservation value equation must be strictly increasing in utility types.

Lemma A.2 Any solution to (8) that satisfies (9) is uniformly bounded and strictly increasing in δ ∈ [0, 1].

Proof. To facilitate the presentation we define the operator

Ot[f ](δ) =

∫ 1

0

(
ft(δ

′)− ft(δ)
) (
γdF (δ′) + λθ11{ft(δ′)≥ft(δ)}dΦ0,t(δ

′)

+ λθ01{ft(δ′)≤ft(δ)}dΦ1,t(δ
′)
)
.

Integrating with respect to the conditional distribution of the stopping time τ shows that a solution to the
reservation value equation (8) is a fixed point of the operator

Tt[f ](δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)(δ + (γ + λ)fu(δ) +Ou[f ](δ))du. (27)

Assume that ∆Vt(δ) = Tt[∆V ](δ) is a fixed point that satisfies (9). Since the right-hand side of (27)
is absolutely continuous in time, we have that ∆Vt(δ) inherits this property, and it thus follows from
Lebesgue’s differentiation theorem that

∆̇Vt(δ) = r∆Vt(δ)− δ −Ot[∆V ](δ)

for every δ ∈ [0, 1] and almost every t ≥ 0. Using this equation together with an integration by parts then
shows that the given solution satisfies

∆Vt(δ) = e−r(H−t)∆VH(δ) +

∫ H

t
e−r(u−t)(δ +Ou[∆V ](δ))du (28)

= lim
H→∞

∫ H

t
e−r(u−t)(δ +Ou[∆V ](δ))du (29)

for all (δ, t) ∈ S ≡ R+ × [0, 1] and any constant horizon t ≤ H < ∞ where the second equality follows
from the transversality condition. Now assume towards a contradiction that the given solution fails to be
nondecreasing in space so that ∆Vt(δ) > ∆Vt(δ

′) for some (t, δ) ∈ S and 1 ≥ δ′ > δ. Because the
right-hand side of (27) is absolutely continuous in time, this assumption implies that

H? ≡ inf
{
u ≥ t : ∆Vu(δ) ≤ ∆Vu(δ′)

}
> t.

By definition we have that

∆Vu(δ) ≥ ∆Vu(δ′), t ≤ u ≤ H? (30)

and, because the continuous functions x 7→ (y−x)+ and x 7→ −(x−y)+ are both non-increasing for every
fixed y ∈ R, it follows that

Ou[∆V ](δ) ≤ Ou[∆V ](δ′), t ≤ u ≤ H?. (31)
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To proceed further, we distinguish two cases depending on whether the constant H? is finite or not. Assume 
first that it is finite. In this case, it follows from (28) that we have

∆Vt(δ) =

∫ H?

t
e−r(u−t)(δ +Ou[∆V ](δ))du+ e−r(H

?−t)∆VH?(δ),

and combining this identity with (31) then gives

∆Vt(δ) ≤
∫ H?

t
e−r(u−t)(δ +Ou[∆V ](δ′))du+ e−r(H

?−t)∆VH?(δ)

=

∫ H?

t
e−r(u−t)(δ +Ou[∆V ](δ′))du+ e−r(H

?−t)∆VH?(δ′) < ∆Vt(δ
′), (32)

where the equality follows by continuity, and the second inequality follows from the fact that δ < δ′. Now
assume that H? =∞ so that (30) and (31) hold for all u ≥ t. In this case, (29) implies that

∆Vt(δ) ≤ lim
H→∞

∫ H

t
e−r(u−t)(δ +Ou[∆V ](δ′))du < ∆Vt(δ

′).

Combining this inequality with (32) delivers the required contradiction and establishes that ∆Vt(δ) is non-
decreasing. To see that it is strictly increasing, rewrite (27) as

Tt[f ](δ) =

∫ ∞
t

e−ρ(u−t) (δ +Mu[f ](δ)) du. (33)

with the operator

Mu[f ](δ) = ληfu(δ) + γ

∫ 1

0
fu(δ′)dF (δ′) + λθ0

∫ 1

0
min

{
fu(δ′), fu(δ)

}
dΦ1,u(δ′)

+ λθ1

∫ 1

0
max

{
fu(δ′), fu(δ)

}
dΦ0,u(δ′),

and the constants ρ ≡ r + γ + λ and η ≡ 1 − sθ0 − (1 − s)θ1. BecauseMu[f ](δ) is increasing in fu(δ)
and the given solution is non-decreasing in space, we have that

∆Vt(δ
′)−∆Vt(δ) =

∫ ∞
t

e−ρ(u−t)(δ′ − δ +Mu[∆V ](δ′)−Mu[∆V ](δ)
)
du ≥ δ′ − δ

ρ

for any 0 ≤ δ ≤ δ′ ≤ 1, and the required strict monotonicity follows. To conclude the proof, it remains to
establish boundedness. Because the given solution is increasing, we have

sup
t≥0
Ot[∆V ](1) ≤ 0 ≤ inf

t≥0
Ot[∆V ](0)

and it now follows from (29) that 0 ≤ ∆Vt(0) ≤ ∆Vt(δ) ≤ ∆Vt(1) ≤ 1/r for all (t, δ) ∈ S. �

Proof of Proposition 1. By Lemma A.2, we have that the existence, uniqueness, and strict (positive) mono-
tonicity of a solution to (8) such that (9) holds is equivalent to the existence and uniqueness of a fixed point
of the operator T in the space X of uniformly bounded, measurable functions from S to R equipped with
the sup norm. As is easily seen from (33) we have that T maps X into itself. On the other hand, using the
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definition of η together with the fact that the functions x 7→ min{a;x} and x 7→ max{a;x} are Lipschitz
continuous with constant one for any a ∈ R we obtain that

sup
(t,δ)∈S

|Mt[f ](δ)−Mt[g](δ)| ≤ (γ + λ) sup
(t,δ)∈S

|ft(δ)− gt(δ)|

Combining this bound with (33) then shows that

sup
(t,δ)∈S

|Tt[f ](δ)− Tt[g](δ)| ≤
(

γ + λ

r + γ + λ

)
sup

(t,δ)∈S
|ft(δ)− gt(δ)|

and the existence of a unique fixed point in the space X now follows from the contraction mapping theorem
because r > 0 by assumption. To establish the second part, let Xk denote the subset of functions f ∈ X that
are nonnegative and non-decreasing in space with

0 ≤ ft(δ′)− ft(δ) ≤
δ′ − δ
r + γ

≡ k(δ′ − δ) (34)

for all 0 ≤ δ ≤ δ′ ≤ 1 and t ≥ 0. Let further X ?k denote the set of functions f ∈ Xk that are strictly
increasing in space and absolutely continuous with respect to time and space and observe that, because the
set Xk is closed in X , it suffices to prove that T maps Xk into X ?k . Fix an arbitrary f ∈ Xk. Since this
function is nonnegative, it follows from (33) that Tt[f ](δ) is nonnegative. On the other hand, using the
inequalities in (34) in conjunction with the definition of the constant η, the increase of ft(δ) and the fact
that the functions x 7→ min{a;x} and x 7→ max{a;x} are non-decreasing and Lipschitz continuous with
constant one, we deduce that

0 ≤Mt[f ](δ′′)−Mt[f ](δ) ≤ λk(δ′′ − δ)

for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0. Combining these inequalities with (33) and the definition of k then shows
that we have

δ′′ − δ
r + γ + λ

≤ Tt[f ](δ′′)− Tt[f ](δ) ≤ (1 + λk)(δ′′ − δ)
r + γ + λ

= k(δ′′ − δ)

for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0. Taken together, these bounds imply that the function Tt[f ](δ) is strictly
increasing in space and belongs to Xk, so it now only remains to establish absolute continuity. By definition
of the set Xk we have that

ft(δ) = ft(δ
′) +

∫ δ

δ′
φt(x)dx

for all t ≥ 0, almost every δ, δ′ ∈ [0, 1]2, and some 0 ≤ φt(x) ≤ k. Substituting this identity into (27) and
changing the order of integration shows that

Tt[f ](δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)
(
δ + (λ+ γ)fu(δ)−

∫ δ

0
φu(δ′)(γF (δ′) + λθ0Φ1,u(δ′))dδ′ (35)

+

∫ 1

δ
φu(δ′)(γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ′)))dδ′

)
du

and the required absolute continuity now follows from Sremr (2010, Theorem 3.1). �
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Lemma A.3 Given the reservation value function there exists a unique pair of functions V1,t(δ) and V0,t(δ)
that satisfy (4) and (7) subject to (9).

Proof. Assume that V1,t(δ) and V0,t(δ) satisfy (4) and (7) subject to (9). Integrating on both sides of (4)
and (7) with respect to the conditional distribution of the stopping time τ shows that

Vq,t(δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)(λVq,u(δ) + Cq,u(δ) + γ

∫ 1

0
Vq,u(δ′)dF (δ′))du. (36)

with the uniformly bounded functions defined by

Cq,t(δ) = qδ +

∫ 1

0
λθq

(
(2q − 1)(∆Vt(δ

′)−∆Vt(δ))
)+
dΦ1−q,t(δ

′). (37)

Because the right-hand side of (36) is absolutely continuous in time, we have that the functions Vq,t(δ)
inherit this property, and it thus follows from Lebesgue’s differentiation theorem that

V̇q,t(δ) = rVq,t(δ)− Cq,t(δ)− γ
∫ 1

0
(Vq,t(δ

′)− Vq,t(δ))dF (δ′) (38)

for all δ ∈ [0, 1] and almost every t ≥ 0. Combining this differential equation with the assumed transversal-
ity condition then implies that

Vq,t(δ) = e−r(H−t)Vq,H(δ) +

∫ H

t
e−r(u−t)(Cq,u(δ) + γ

∫ 1

0
(Vq,u(δ′)− Vq,u(δ))dF (δ′))du

= lim
H→∞

∫ H

t
e−r(u−t)(Cq,u(δ) + γ

∫ 1

0
(Vq,u(δ′)− Vq,u(δ))dF (δ′))du

for any finite horizon and, because the functions Cq,t(δ) are increasing in space by Lemma A.5 below, the
same arguments as in the proof of Lemma A.2 show that the functions Vq,t(δ) are increasing in space and
are uniformly bounded. Combining these properties with (38) then shows that the process

e−rtVq,t(δt) +

∫ t

0
e−ruCq,u(δu)du

is a uniformly bounded martingale in the filtration generated by the investor’s utility type process, and it
follows that we have

Vq,t(δ) = Et,δ
[∫ ∞

t
e−r(u−t)Cq,u(δu)du

]
. (39)

This establishes the uniqueness of the solutions to (4) and (7) subject to (9) and it now only remains to show
that these solutions are consistent with the given reservation value function. Applying the law of iterated
expectations to (39) at the stopping time τ shows that the function V1,t(δ)− V0,t(δ) is a uniformly bounded
fixed point of the operator

Ut[f ](δ) =

∫ ∞
t

e−(r+γ+λ)(u−t)(λfu(δ) + C1,u(δ)− C0,u(δ) + γ

∫ 1

0
fu(δ′)dF (δ′))du.
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A direct calculation shows that this operator is a contraction on X and, therefore, admits a unique fixed point 
in X . Because the reservation value function is increasing, we have

C1,t(δ)− C0,t(δ) + γ

∫ 1

0
∆Vt(δ

′)dF (δ′) = δ + γ∆Vt(δ) +Ot[∆V ](δ)

and it follows that this fixed point coincides with the reservation value function. �

Lemma A.4 For any fixed δ ∈ [0, 1], the unique solution to (12) that is both absolutely continuous in time
and uniformly bounded is explicitly given by

σt(δ) =

∫ ∞
t

e−
∫ u
t Rξ(δ)dξdu, (40)

with the effective discount rate Rt(δ) = r + γ + λθ1(1− s− Φ0,t(δ)) + λθ0Φ1,t(δ).

Proof. Fix an arbitrary δ ∈ [0, 1] and assume that σt(δ) is a uniformly bounded solution to (12) that is
absolutely continuous in time. Using integration by parts, we easily obtain that

σt(δ) = e−
∫ T
t Rξ(δ)dξσT (δ) +

∫ T

t
e−

∫ u
t Rξ(δ)dξdu, 0 ≤ t ≤ T <∞.

Since σ ∈ X and Rt(δ) ≥ γ > 0, we have that

lim
T→∞

e−
∫ T
t Rξ(δ)dξσT (δ) = 0

and therefore

σt(δ) = lim
T→∞

(
e−

∫ T
t Rξ(δ)dξσT (δ) +

∫ T

t
e−

∫ u
t Rξ(δ)dξdu

)
=

∫ ∞
t

e−
∫ s
t Ru(δ)duds

by monotone convergence. �

Lemma A.5 The functions Cq,t(δ) are increasing in δ ∈ [0, 1].

Proof For q = 0 the result follows immediately from (37) and the fact that the reservation value function is 
increasing in δ ∈ [0, 1]. Assume now that q = 1. Using the fact that the reservation value function is 
increasing and integrating by parts on the right-hand side of equation (37) gives

C1,t(δ) = δ +

∫ 1

δ
λθ1σt(δ

′)(1− s− Φ1,t(δ
′))dδ′,

and differentiating this expression shows that

C′1,t(δ) = 1− λσt(δ)θ1(1− s− Φ1,t(δ)) ≥ 1− λθ1(1− s)
r + γ + λ(θ0s+ θ1(1− s))

> 0,

where the first inequality follows from (40) and the definition of Rt(δ), and the last inequality follows from
the strict positive of the interest rate. �
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Proof of Proposition 2. Let the local surplus σt(δ) be as above and consider the absolutely continuous
function defined by

ft(δ) =

∫ ∞
t

e−r(u−t)
(
δ −

∫ δ

0
σu(δ′)

(
γF (δ′) + λθ0Φ1,u(δ′)

)
dδ′

+

∫ 1

δ
σu(δ′)

(
γ(1− F (δ′)) + λθ1(1− s− Φ0,u(δ′))

)
dδ′
)
du.

Using the uniform boundedness of the functions σt(δ), F (δ), and Φq,t(δ), we deduce that f ∈ X . On the
other hand, Lebesgue’s differentiation theorem implies that this function is almost everywhere differentiable
in both the time and the space variable with

ḟt(δ) = rft(δ)− δ +

∫ δ

0
σt(δ

′)(γF (δ′) + λθ0Φ1,t(δ
′))dδ′ (41)

−
∫ 1

δ
σt(δ

′)(γ(1− F (δ′)) + λθ1(1− s− Φ0,t(δ
′)))dδ′

for all δ ∈ [0, 1] and almost every t ≥ 0, and

f ′t(δ) =

∫ ∞
t

e−r(u−t) (1− σu(δ)(γ + λθ1(1− s− Φ0,u(δ)) + λθ0Φ1,u(δ))) du

=

∫ ∞
t

e−r(u−t) (rσu(δ)− σ̇u(δ)) du = σt(δ)

for all t ≥ 0 and almost every δ ∈ [0, 1], where the second equality follows from (12) and the third follows
from integration by parts and the boundedness of the local surplus. In particular, the fundamental theorem
of calculus implies

ft(δ
′)− ft(δ) =

∫ δ′

δ
σt(δ

′′)dδ′′, (δ, δ′) ∈ [0, 1]2, (42)

and it follows that ft(δ) is strictly increasing in space. Using this monotonicity in conjunction with (42) and
integrating by parts on the right-hand side of (41) shows that

ḟt(δ) = rft(δ)− δ −Ot[f ](δ)

for all δ ∈ [0, 1] and almost every t ≥ 0. Writing this differential equation as

(r + γ + λ)ft(δ)− ḟt(δ) = δ + (γ + λ)ft(δ) +Ot[f ](δ)

and integrating by parts then shows that

ft(δ) = e−(r+γ+λ)(H−t)fH(δ) +

∫ H

t
e−(r+γ+λ)(u−t) (δ + (γ + λ)fu(δ) +Ou[f ](δ)) du

for any t ≤ H < ∞, and it now follows from the dominated convergence theorem and the uniform
boundedness of the function ft(δ) that

ft(δ) =

∫ ∞
t

e−(r+γ+λ)(u−t) (δ + (γ + λ)fu(δ) +Ou[f ](δ)) du.

Comparing this expression with (27), we conclude that ft(δ) = Tt[f ](δ) ∈ X , and the desired result now
follows from the uniqueness established in the proof of Proposition 1. �
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Proof of Corollary 1. As shown in the proof of Proposition 1, we have that ∆Vt(δ) is the unique fixed
point of the contraction T : Xk → Xk defined by (33) and, by inspection, this mapping is increasing in ft(δ)
and decreasing in r. Furthermore, it follows from equation (35) that T is increasing θ1 and decreasing in θ0,
F (δ) and Φq,t(δ) and the desired monotonicity now follows from Lemma A.6 below. �

Lemma A.6 Let C ⊆ X be closed and assume that A[·;α] : C → C is a contraction that is increasing in f
and increasing (resp. decreasing) in α. Then its fixed point is increasing (resp. decreasing) in α.

Proof. Assume that At[f ;α](δ) is a contraction on C ⊂ X that is increasing in (α, f) and denote its fixed
point by ft(δ;α). Combining the assumed monotonicity with the fixed-point property shows that

ft(δ;α) = At[f(·;α);α](δ) ≤ At[f(·;α);β](δ), (t, δ) ∈ S.

Iterating this relation gives

ft(δ;α) ≤ Ant [f ;β](δ), (t, δ, n) ∈ S × {1, 2, . . .}

and the desired result now follows by taking limits on both sides as n → ∞ and using the fact that the
mapping A[·;β] is a contraction. �

Proof of Proposition 3. For a fixed δ ∈ [0, 1] ,the differential equation

−Φ̇1,t(δ) = λΦ1,t(δ)
2 + λΦ1,t(δ)(1− s+ γ/λ− F (δ))− γsF (δ)

is a Riccati equation with constant coefficients whose unique solution can be found in any textbook on
ordinary differential equations; see, for example, Reid (1972). Let us now turn to the convergence part.
Using (1) and (2) together with the definition of Λ(δ) and Φq(δ) shows that the term

Φ1,0(δ)− Φ1(δ) + Λ(δ) = Φ1,0(δ) +
1

2
(1− s+ γ/λ− F (δ) + Λ(δ))

= Φ1,0(δ) + Φ1(δ) + (1− s+ γ/λ− F (δ)) = γ/λ+ Φ1(δ) + (1− s− Φ0,0(δ))

that appears in the denominator of (19) is nonnegative for all δ ∈ [0, 1]. Since λΛ(δ) > 0, this implies that
the nonnegative function

|Φ1,t(δ)− Φ1(δ)| = |Φ1,0(δ)− Φ1(δ)|Λ(δ)

Λ(δ) + (Φ1,0(δ)− Φ1(δ) + Λ(δ))(eλΛ(δ)t − 1)

is monotone decreasing in time and converges to zero as t→∞. �

Lemma A.7 The steady-state cumulative distribution of types among owners Φ1(δ) is increasing in the
asset supply, and increasing and concave in φ = γ/λ, with

lim
φ→0

Φ1(δ) = sF (δ), and

lim
φ→∞

Φ1(δ) = (F (δ)− 1 + s)+.

In particular, the steady-state cumulative distributions functions Φq(δ) converge to their frictionless coun-
terparts as λ→∞.
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Proof of Lemma A.7. A direct calculation shows that

∂Φ1(δ)

∂s
=

Φ1(δ) + φF (δ)

Λ(δ)
, (43)

and the desired monotonicity in s follows. On the other hand, using the definition of the steady-state
distribution, it can be shown that

∂Φ1(δ)

∂φ
=
sF (δ)− Φ1(δ)

Λ(δ)
=

s(1− s)F (δ)(1− F (δ))

(φ+ Φ1(δ) + (1− s)(1− F (δ)))Λ(δ)
(44)

and the desired monotonicity follows by observing that all the terms on the right-hand side are nonnegative.
Knowing that Φ1(δ) is increasing in φ, we deduce that

Λ(δ) = 2Φ1(δ) + 1− s+ φ− F (δ)

is also increasing in φ, and it now follows from the first equality in (44) that

∂2Φ1(δ)

∂φ2
= − 1

Λ(δ)

∂Φ1(δ)

∂φ

(
1 +

∂Λ(δ)

∂φ

)
≤ 0.

The expressions for the limiting values follow by sending φ to zero and∞ in the definition of the steady-state
distribution. �

Proof of Corollary 2. The result follows directly from Lemma A.7. �

Proof of Theorem 1. The result follows directly from the definition, Proposition 1, and Proposition 3. We
omit the details. �

A.3 Proofs omitted in Section 4
To simplify the notation, let φ ≡ γ/λ. The following lemma follows immediately from the equation defining
the steady-state distribution of utility types among asset owners.

Lemma A.8 The steady-state distributions of types satisfy Φ1(δ) = F (δ) − Φ0(δ) = `(F (δ)), where the
bounded function

`(x) ≡ −1

2
(1− s+ φ− x) +

1

2

√
(1− s+ φ− x)2 + 4sφx (45)

is the unique positive solution to `2 + (1− s + φ− x)`− sφx = 0. Moreover, the function `(x) is strictly
increasing and convex, and strictly so if s ∈ (0, 1).

Proof of Lemma A.8. It is obvious that `(x) is the unique positive solution of the second-order polynomial
shown above. The function `(x) is strictly increasing by an application of the implicit function theorem:
when x > 0, `(x) > 0, so that the second-order polynomial must be strictly increasing in ` and strictly
decreasing in x. Convexity follows from a direct calculation:

`′′(x) =
2s(1− s)φ (1 + φ)

3
√

4sφx+ (1− s+ φ− x)2
≥ 0,

with a strict inequality if s ∈ (0, 1). �
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Proof of Lemma 1. Consider an agent of ownership type q and denote his utility type process by δt. The
next time this agent trades is the first time %q at which he meets an agent of ownership type 1 − q whose
utility type is such that

(2q − 1)(δ′ − δτ ) ≥ 0.

In the steady state, the arrival rate of this event is

λq(δt) = λq(1− s− Φ0(δt)) + λ(1− q)Φ1(δt),

and it follows that

ηq(δ) = E[%q] = E
[∫ ∞

0
td
(

1− e−
∫ t
0 λq(δs)ds

)]
= E

[∫ ∞
0

e−
∫ t
0 λq(δs)dsdt

]
.

Let σ denote the first time that the agent’s utility type changes. Combining the above expression with the
law of iterated expectations gives

ηq(δ) = E
[∫ σ

0
e−

∫ t
0 λq(δs)dsdt+ e−

∫ σ
0 λq(δs)dsηq(δσ)

]
(46)

= E
[∫ σ

0
e−λq(δ)tdt+ e−λq(δ)σηq(δσ)

]
=

1

γ + λq(δ)

(
1 + γ

∫ 1

0
ηq(δ

′)dF (δ′)

)
,

where the second equality follows from the fact that the agent’s utility type rate is constant over [[0, σ]], and
the third equality follows from the fact that

P
(
{σ ∈ dt} ∪ {δσ ≤ δ′}

)
= γe−γtF (δ′)dt.

Integrating both sides of (46) against the cumulative distribution function F (δ) and solving the resulting
equation gives

1 + γ

∫ 1

0
ηq(δ

′)dF (δ′) =

(
1− γ

∫ 1

0

dF (δ′)

γ + λq(δ′)

)−1

,

and substituting back into (46) gives

ηq(δ) =
1

γ + λq(δ)

(
1− γ

∫ 1

0

dF (δ′)

γ + λq(δ′)

)−1

. (47)

Now assume that the cumulative distribution function F (δ) is continuous. Combining Proposition 3 with
Lemma A.8 and the change of variable formula for Stieltjes integrals shows that the integral on the right-
hand side can be calculated as

γ

∫ 1

0

dF (δ′)

γ + λq(δ′)
=

∫ 1

0

γdx

γ + λq(1− s− x) + λ`(x)
= κ(γ/λ,Φq(1)),

where the function `(x) is in (45) and we have set

κ(a, x) = 1 + a log

(
1 + a

a

)
+

(
1− 1 + a

x

)
log

(
1 + a

1 + a− x

)
.
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Substituting this expression back into (47) and simplifying the result gives the explicit formula for the
waiting time reported in the statement.

The comparative statics with respect to δ follow from (47) and the fact that λq(δ) is increasing in δ for
owners and decreasing for non-owners. On the other hand, a direct calculation shows that

λ
∂2λq(δ)

∂λ2
= φ2∂

2Φ1(δ)

∂φ2
,

where we have set φ = γ/λ. Since Φ1(δ) is concave in φ (see the proof of Lemma A.7 below), this shows
that λq(δ) is concave in the meeting rate, and it follows that

∂λq(δ)

∂λ
≥ lim

λ→∞

∂λq(δ)

∂λ
= lim

λ→∞
q(1− s− Φ0(δ)) + lim

λ→∞
(1− q)Φ1(δ) + lim

λ→∞
λ
∂Φ1(δ)

∂λ

= q(1− s− F (m))+ + (1− q)(1− s− F (m))− ≥ 0,

where the second equality results from Lemma A.7 and the fact that

lim
λ→∞

λ
∂Φ1(δ)

∂λ
= − lim

φ→0
φ
∂Φ1(δ)

∂φ

= − lim
φ→0

φs(1− s)F (δ)(1− F (δ))

(φ+ Φ1(δ) + (1− s)(1− F (δ)))Λ(δ)
= 0

due to (44). This shows that λq(δ) is an increasing function of λ, and the desired result now follows from
(47) by noting that the distribution function F (δ) does not depend on the meeting intensity.

To complete the proof, it remains to establish the comparative statics with respect to the asset supply.
An immediate calculation shows that

∂λq(δ)

∂s
= λ

(
∂Φ1(δ)

∂s
− q
)

and the result for non-owners follows from Lemma A.7 below. Now consider asset owners. Since

∂2λ1(δ)

∂s2
=
∂2Φ1(δ)

∂s2
=

2γ(1 + φ)F (δ)(1− F (δ))

Λ(m)3
≥ 0,

we have that λ1(δ) is convex in s, and it now follows from (43) that

∂λ1(δ)

∂s
≤ ∂λ1(δ)

∂s

∣∣∣∣
s=1

= λ

(
(1 + φ)F (δ)

φ+ F (δ)
− 1

)
≤ 0.

This shows that λ1(δ) is decreasing in s, and the desired result now follows from (47) by noting that the
function F (δ) does not depend on s. �

Proof of Lemma 2. Because the reservation value function

∆V (δ) = ∆V (0) +

∫ δ

0
σ(δ′)dδ′
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is absolutely continuous in δ ∈ [0, 1], it follows from an integration by parts that the expected buyer price
can be written as

p0(δ) = θ1∆V (δ) + θ0

(
∆V (0) +

∫ δ

0
σ(δ′)

(
1− Φ1(δ′)

Φ1(δ)

)
dδ′
)

= ∆V (δ)− θ0

∫ δ

0
σ(δ′)

Φ1(δ′)

Φ1(δ)
dδ′ = ∆V (0) +

∫ δ

0
σ(δ′)

(
1− θ0

Φ1(δ′)

Φ1(δ)

)
dδ′.

The required monotonicity now follows by observing that the local surplus σ(δ′) is nonnegative and that the
function in the bracket under the integral sign is increasing in δ. Similarly, the expected seller price can be
written as

p1(δ) = ∆V (1)−
∫ 1

δ
σ(δ′)

(
1− θ1

1− s− Φ0(δ′)

1− s− Φ0(δ−)

)
dδ′,

and the required monotonicity follows by observing that the function in the bracket under the integral sign
is decreasing in δ. �

Proof of Lemma 3. Let A denote the set of atoms of the distribution F (δ). With this definition, we have
that the Radon-Nikodym density is given by

m(δ) =
dM

dF
(δ) ≡

1{δ /∈A}`′(F (δ)) + 1{δ∈A}
∆`(F (δ))

∆F (δ) , if δ < δ?,

1{δ /∈A}(1− `′(F (δ))) + 1{δ∈A}
(

1− ∆`(F (δ))
∆F (δ)

)
, otherwise.

(48)

To establish the result, we need to show thatm(δ) is increasing on [0, δ?) and decreasing on [δ?, 1]. As shown
in the proof of Lemma A.8, we have that the function `(x) is strictly convex on [0, 1]. This immediately
implies that the functions `′(x) and (`(x) − `(y))/(x − y) are, respectively, increasing in x ∈ [0, 1] and
increasing in x ∈ [0, 1] and y ∈ [0, 1], and the desired result now follows from (48). �

Lemma A.9 Let H(x) be a cumulative probability distribution function on [0, 1]. If the random variable
U is uniformly distributed on [0, 1], then the random variable inf{x ∈ [0, 1] : H(x) ≥ U} is distributed
according to H(x).

Proof. Let X (q) ≡ {x′ ∈ [0, 1] : H(x′) ≥ q} and X(q) ≡ inf X (q). We show that X(q) ≤ x if and
only if H(x) ≥ q. For the “if” part, suppose that H(x) ≥ q, then x belongs to X (q) and is therefore larger
than its infimum, which is X(q) ≤ x. For the “only if” part, let (xn)∞n=1 ⊆ X (q) be a decreasing sequence
converging toward X(q). For each n, we have that H(xn) ≥ q. Going to the limit and using the fact that
H(x) is right continuous, we obtain that H(X(q)) ≥ q, which implies H(x) ≥ q since H(x) is increasing
and X(q) ≤ x for all x ∈ X (q). �

Proof of Lemma 4. Consider the continuous functions defined by

G1(x) =
`(x)

s
and G0(x) =

x− `(x)

1− s
.

Rearranging the quadratic equation for `(x) shown in Lemma A.8, one obtains that the functions G1(x) and
G0(x) satisfy the identity

G1(x) =
φG0(x)

1 + φ−G0(x)
, (49)
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where φ = γ/λ. Since the functions Gq(x) are continuous, strictly increasing, and map [0, 1] onto itself, we
have that they each admit a continuous and strictly increasing inverse G−1

q (y), and it follows that identity
(49) can be written equivalently as

G1(G−1
0 (y)) =

φy

1 + φ− y
. (50)

Consider the class of tie-breaking rules whereby a fraction π ∈ [0, 1] of the meetings between an owner and
a non-owner of the same utility type lead to a trade. By definition, the trading volume associated with such
a tie breaking rule can be computed as

ϑ(π) = λs(1− s) (P[δ0 > δ1] + πP[δ0 = δ1]) ,

where the random variables (δ0, δ1) ∈ [0, 1]2 are distributed according to Φ0(δ)/(1 − s) = G0(F (δ)) and
Φ1(δ)/s = G1(F (δ)) independently of each other. A direct calculation shows that the quantile functions of
these random variables are given by

inf{x ∈ [0, 1] : Gq(F (x)) ≥ u} = inf{x ∈ [0, 1] : F (x) ≥ G−1
q (u)} = ∆(G−1

q (u))

where ∆(y) denotes the quantile function of the underlying distribution of utility types, and it thus follows
from Lemma A.9 that the trading volume satisfies

ϑ(π)

λs(1− s)
= P

[
∆(G−1

0 (u0)) > ∆(G−1
1 (u1))

]
+ πP

[
∆(G−1

0 (u0)) = ∆(G−1
1 (u1))

]
,

where u0 and u1 denote a pair of iid uniform random variables. If the distribution is continuous, then its
quantile function is strictly increasing, and the above identity simplifies to

ϑ(π)

λs(1− s)
= P

[
G−1

0 (u0) > G−1
1 (u1)

]
= P

[
u1 < G1(G−1

0 (u0))
]

= E
[
G1(G−1

0 (u0))
]

=

∫ 1

0
G1(G−1

0 (x))dx =

∫ 1

0

φx

1 + φ− x
dx =

ϑ?

λs(1− s)
,

where we used formula (50) for G1(G−1
0 (y)), and the last equality follows from the calculation of the inte-

gral. If the distribution fails to be continuous, then its quantile function will have flat spots that correspond
to the levels across which the distribution jumps, but it will nonetheless be weakly increasing. As a result,
we have the strict inclusions{

∆(G−1
0 (u0)) > ∆(G−1

1 (u1))
}
⊂
{
G−1

0 (u0) > G−1
1 (u1)

}
⊂
{

∆(G−1
0 (u0)) ≥ ∆(G−1

1 (u1))
}
,

and it follows that

ϑ(0)

λs(1− s)
= P

[
∆(G−1

0 (u0)) > ∆(G−1
1 (u1))

]
< P

[
G−1

0 (u0) > G−1
1 (u1)

]
=

ϑ?

λs(1− s)

= P
[
G−1

0 (u0) ≥ G−1
1 (u1)

]
< P

[
∆(G−1

0 (u0)) ≥ ∆(G−1
1 (u1))

]
=

ϑ(1)

λs(1− s)
.

Since the function ϑ(π) is continuous and strictly increasing in π, this further implies that there exists a
unique tie-breaking probability π? such that ϑ? = ϑ(π?) and the proof is complete. �
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Proof of Lemma 5. When the distribution of types F (δ) is continuous, there are no atoms and, hence, we
obtain from (23) that

ϑc = λΦ1(δ?)(1− s− Φ0(δ?)) + λ

∫ δ?−ε

0
Φ1(δ)dΦ0(δ) + λ

∫ 1

δ?+ε
(1− s− Φ0(δ))dΦ1(δ)

+ λ

∫ δ?

δ?−ε
Φ1(δ)dΦ0(δ) + λ

∫ δ?+ε

δ?
(1− s− Φ0(δ)) dΦ1(δ). (51)

We show that all the terms on the first line remain bounded as λ → ∞. We note that the first term is equal
to λΦ1(δ?) (1− s− F (δ?) + Φ1(δ?)) = λΦ1(δ?)2 since F (δ?) = 1 − s when the distribution of type is
continuous. From Lemma A.8, the measure of owners below the marginal type Φ1(δ?) solves

λΦ1(δ?)2 + γΦ1(δ?)− γs(1− s) = 0.

This immediately implies that

λΦ1(δ?)2 ≤ γs(1− s)

and it follows that the first term on the first line of (51) remains bounded as λ→∞. Turning to the second
term, we note that

λ

∫ δ?−ε

0
Φ1(δ)dΦ0(δ) ≤ λΦ1(δ? − ε)F (δ? − ε), (52)

where the inequality follows (1) and the increases of Φ1(δ). From Lemma A.8, we have that the steady-state
measure of owners with valuations below δ? − ε solves

λΦ1(δ? − ε)2 +
(

1− s− F (δ? − ε) +
γ

λ

)
λΦ1(δ? − ε)− γsF (δ? − ε) = 0.

This immediately implies that

λΦ1(δ? − ε) ≤ γsF (δ? − ε)
1− s− F (δ? − ε)

.

and combining this inequality with (52) shows that the second term on the first line of (51) remains bounded
as λ→∞. Proceeding similarly, one can show that the third term also remains bounded as frictions vanish,
and the desired result now follows by observing that limλ→∞ ϑc =∞. �

Proof of Lemma 6. The expression for the spread follows directly from the explicit expression for the 
steady state reservation values in (20). To establish the second part, we write

1

σ(δ)
= r + γ + λ(1− s− F (δ)) + λΦ1(δ) = r + γ + θ1λ0(δ) + θ0λ1(δ)

and observe that the steady state distribution Φ1(δ) is increasing in γ by Corollary 2, and that λq(δ) is
increasing in λ as shown in the proof of Lemma 1. �
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A.4 Proofs omitted in Section 5
Proof of Proposition 4. Using Remark 1 together with the notation of the statement shows that the reser-
vation value function is the unique bounded and absolutely continuous solution to

r∆Vt(δ) = ∆̇Vt(δ) + δ +At[∆V ](δ).

Therefore, it follows from an application of Itō’s lemma that the process

e−rt∆Vt(δ̂t) +

∫ t

0
e−ruδ̂udu

is a local martingale, and this implies that we have

∆Vt(δ) = Et,δ
[
e−r(τn−t)∆Vτn(δ̂τn)

]
+ Et,δ

[∫ τn

0
e−r(u−t)δ̂udu

]
for a non-decreasing sequence of stopping times that converges to infinity. Since the reservation value
function is uniformly bounded, we have that the first term on the right-hand side converges to zero as
n→∞, and the desired result now follows by monotone convergence. �

Proof of Equation (25). Using equation (24) in conjunction with Fubini’s theorem and the well-known
expectation identity

Et,δ[δ̂u] =

∫ 1

0
Pt,δ[δ̂u > x]dx = 1−

∫ 1

0
Pt,δ[δ̂u ≤ x]dx,

we obtain that

r∆Vt(δ) = 1−
∫ ∞
t

re−r(u−t)
(∫ 1

0
Pt,δ[δ̂u ≤ x]dx

)
du

= 1−
∫ 1

0

(∫ ∞
t

re−r(u−t)Pt,δ[δ̂u ≤ x]du

)
dx = 1−

∫ 1

0
Ψt(x|δ)dx,

and equation (25) now follows from an integration by parts. �

Proof of Proposition 5. From equation (18), it follows that we have

lim
λ→∞

Φ1(δ) =
|1− s− F (δ)|

2
− 1− s− F (δ)

2
= (1− s− F (δ))− = Φ?

1(δ)

for all δ ∈ [0, 1] and therefore limλ→∞Φ0(δ) = Φ?
0(δ) for all δ ∈ [0, 1]. Now consider the reservation value

function. By Theorem 1, we have that

r∆V (δ) = δ −
∫ δ

0
k0(δ′)dδ′ +

∫ 1

δ
k1(δ′)dδ′

with the uniformly bounded functions defined by

k0(δ′) =
γF (δ′) + λθ0Φ1(δ′)

r + γ + λθ1(1− s− Φ0(δ′)) + λθ0Φ1(δ′)

k1(δ′) =
γ(1− F (δ′)) + λθ1(1− s− Φ0(δ′))

r + γ + λθ1(1− s− Φ0(δ′)) + λθ0Φ1(δ′)
.
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Using the first part of the proof and the assumption that θq > 0, we obtain

lim
λ→∞

kq(δ
′) =

θqΦ
?
1−q(δ

′)

θ0Φ?
1(δ′) + θ1Φ?

0(δ′)
= 1{q=0}1{δ≥δ?} + 1{q=1}1{δ<δ?},

and the required result now follows from an application of the dominated convergence theorem because the
functions kq(δ′) take values in [0, 1]. �

Convergence rates of the distributions. To derive the rates at which the equilibrium distributions con-
verge to their frictionless counterparts, recall the inflow-outflow equation that characterizes the steady-state
equilibrium distributions:

γF (δ) (s− Φ1(δ)) = γΦ1(δ) (1− F (δ)) + λΦ1(δ) (1− s− Φ0(δ)) . (53)

By Proposition 5, we have that Φ1(δ) → 0 and Φ0(δ) → F (δ) < 1 − s for all utility types δ < δ? as the 
meeting frequency becomes infinite, and it thus follows from (53) that for δ  <  δ ? the distribution of utility 
types among asset owners admits the approximation

Φ1(δ) =
γF (δ)s

1− s− F (δ)

(
1

λ

)
+ o

(
1

λ

)
. (54)

Similarly, by Proposition 5, we have that Φ1(δ) → F (δ) − 1 + s > 0 and Φ0(δ) → 1 − s for all utility types 
δ > δ? as the meeting frequency becomes infinite, and it thus follows from (53) that for δ > δ? the 
distribution of utility types among non-owners admits the approximation

1− s− Φ0(δ) =
γ(1− s)(1− F (δ))

F (δ)− (1− s)

(
1

λ

)
+ o

(
1

λ

)
. (55)

To derive the convergence rate at the point δ = δ?, assume first that the distribution of utility types crosses
the level 1− s continuously and observe that in this case we have

1− s− Φ0(δ?) = 1− s− F (δ?) + Φ1(δ?) = Φ1(δ?).

Substituting these identities into (53) evaluated at the marginal type and letting λ→∞ on both sides shows
that the equilibrium distributions admit the approximation given by

Φ1(δ?) = 1− s− Φ0(δ?) =
√
γs(1− s)

(
1√
λ

)
+ o

(
1√
λ

)
. (56)

If the distribution of utility types crosses 1 − s by a jump, we have F (δ?) > 1 − s, and it follows that the
approximation (55) also holds at the marginal type. �

Proof of Proposition 6. Assume without loss of generality that the support of the distribution of utility
types is the interval [0, 1]. Evaluating (20) at δ? and making the change of variable x =

√
λ(δ′ − δ?) in the

two integrals shows that

r
√
λ(∆V (δ?)− p?) = P (λ)−D(λ), (57)
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where the functions on the right-hand side are defined by

D(λ) ≡
∫ 0

−∞
1{x+δ?

√
λ≥0}

γF (δ? + x/
√
λ) + θ0

√
λg1(x)

r + γ + θ0

√
λg1(x) + θ1

√
λg0(x)

dx

P (λ) ≡
∫ ∞

0
1{x+δ?

√
λ≤1}

γ(1− F (δ? + x/
√
λ)) + θ1

√
λg0(x)

r + γ + θ0

√
λg1(x) + θ1

√
λg0(x)

dx

with

gq(x) ≡ λq(δ
? + x/

√
λ)√

λ
=
√
λ(1− q)(1− s− F (δ? + x/

√
λ)) +

√
λΦq(δ

? + x/
√
λ).

Letting the meeting rate λ→∞ on both sides of equation (57) and using the convergence result established
by Lemma A.12 below we obtain that

lim
λ→∞

r
√
λ(∆V (δ?)− p?) =

∫ ∞
0

θ1g(−x)dx

θ0g(x) + θ1g(−x)
−
∫ 0

−∞

θ0g(z)dz

θ0g(z) + θ1g(−z)

=

∫ ∞
0

(1− 2θ0)g(x)g(−x)dx

(θ0g(x) + θ1g(−x))(θ0g(−x) + θ1g(x))
dx

=

∫ ∞
0

γs(1− s)(1− 2θ0)dx

γs(1− s) + θ0θ1(xF ′(δ?))2
=

π

F ′(δ?)

(
1

2
− θ0

)(
γs(1− s)
θ0θ1

) 1
2

,

where the function

g(x) =
1

2
xF ′(δ?) +

1

2

√
(xF ′(δ?))2 + 4γs(1− s)

is the unique positive solution to (58), the second equality follows by making the change of variable−z = x
in the second integral, the third equality follows from the definition of the function g(x), and the last equality
follows from the fact that∫ ∞

0

dx

a+ x2
=

[
arctan (x/

√
a)√

a

]∞
0

=
π

2
√
a
, a > 0.

This shows that the asymptotic expansion of the statement holds at the marginal type and the desired result
now follows from the fact that ∆V (δ) = ∆V (δ?) + o(1/

√
λ) by Proposition 8. �

Lemma A.10 Assume that the conditions of Proposition 6 hold and denote by g(x) the positive solution to
the quadratic equation

g2 − gF ′(δ?)x− γs(1− s) = 0. (58)

Then we have that g1(x)→ g(x) and g0(x)→ g(−x) for all x ∈ R as λ→∞.

Proof. Evaluating (17) at the steady-state shows that the function g1(x) is the unique positive solution to
the quadratic equation given by

g2 +

[
γ√
λ

+
√
λ
(
F (δ?)− F (δ? + x/

√
λ)
)]
g − γsF (δ? + x/

√
λ) = 0. (59)
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Because the left hand side of this quadratic equation is negative at the origin and positive at g = 1 we have
that g1(x) ∈ [0, 1]. This implies that g1(x) has a well-defined limit as λ→∞, and it now follows from (59)
that this limit is given by the positive solution to (58). Next, we note that

g0(x) = g1(x) +
√
λ
(
F (δ?)− F (δ? + x/

√
λ)
)
.

Substituting this expression into equation (59) then shows that the function g0(x) is the unique positive
solution to the quadratic equation given by

g2 +

[
γ√
λ
−
√
λ
(
F (δ?)− F (δ? + x/

√
λ)
)]
g − γ(1− s)

(
1− F (δ? + x/

√
λ)
)
,

and the desired result follows from the same arguments as above. �

Lemma A.11 Assume that the conditions of Proposition 6 hold. Then

(a) There exists a finite K ≥ 0 such that

g1(x) ≤ K/|x|, x ∈ Iλ− ≡ [−δ?
√
λ, 0], (60)

g0(x) ≤ K/|x|, x ∈ Iλ+ ≡ [0, (1− δ?)
√
λ].

(b) For any given x̄ ∈ Iλ+ ∩ (−Iλ−), there exists a strictly positive k such that

g1(x) ≥ k|x|, x ∈ Iλ+ ∩ [x̄,∞), (61)

g0(x) ≥ k|x|, x ∈ Iλ− ∩ (−∞,−x̄]

for all sufficiently large λ.

Proof. Because g1(x) is the positive root of (59) we have that (60) holds if and only if

min
x∈Iλ−

{
K2

x2
+
K

|x|

(
γ√
λ

+
√
λ
[
F (δ?)− F (δ? + x/

√
λ)
])
− γsF (δ? + x/

√
λ)

}
≥ 0,

and a sufficient condition for this to be the case is that

min
x∈Iλ−

{
K

|x|
√
λ
[
F (δ?)− F (δ? + x/

√
λ)
]
− γs(1− s)

}
≥ 0. (62)

By the mean value theorem, we have that for any x ∈ Iλ− ∪ Iλ+ there exists δ̂(x) ∈ [0, 1] such that

F (δ?)− F (δ? + x/
√
λ) = −xF

′(δ̂(x))√
λ

, (63)

and substituting this expression into (62) shows that a sufficient condition for the validity of equation (60)
is that we have

K ≥ K? ≡ max
δ∈[0,1]

γs(1− s)
F ′(δ)

.
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Because the derivative of the distribution of utility types is assumed to be strictly positive on the whole
interval [0, 1], we have that K? is finite and equation (60) follows. One obtains the same constant when
applying the same calculations to the function g0(x) over the interval Iλ+.

Now let us turn to the second part of the statement and fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ−). Because the
function g1(x) is the positive root of (59) we have that (61) holds if and only if

max
x∈Iλ+∩[x̄,∞)

{
k2x2 + kx

(
γ√
λ

+
√
λ
[
F (δ?)− F (δ? + x/

√
λ)
])
− γsF (δ? + x/

√
λ)

}
≤ 0.

Combining this inequality with equation (63) then shows that a sufficient condition for the validity of
equation (61) is given by

k ≤ k? ≡ inf
δ∈[0,1]

(
F ′(δ)− γ

x̄
√
λ

)
,

and the desired result now follows by noting that, because the derivative of the distribution of utility types is
assumed to be strictly positive on the whole interval [0, 1], we can pick the meeting rate λ large enough for
the constant k? to be strictly positive. One obtains the same constant when applying the same calculations
to the function g0(x) over the interval Iλ− ∩ (−∞,−x̄]. �

Lemma A.12 Assume that the conditions of Proposition 6 hold. Then

lim
λ→∞

D(λ) =

∫ 0

−∞

θ0g(x) dx

θ0g(x) + θ1g(−x)
and lim

λ→∞
P (λ) =

∫ ∞
0

θ1g(−x) dx

θ0g(x) + θ1g(−x)
,

where the function g(x) is defined as in Lemma A.10.

Proof. By Lemma A.10 we have that the integrand

H(x;λ) ≡ 1{x∈Iλ−}

(
γF (δ? + x/

√
λ) + θ0

√
λg1(x)

r + γ + θ0

√
λg1(x) + θ1

√
λg0(x)

)

in the definition of D(λ) satisfies

lim
λ→∞

H(x;λ) =
θ0g(x)

θ0g(x) + θ1g(−x)
. (64)

Now fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ−) and let the meeting rate λ be large enough. On the interval [−x̄, 0],
we can bound the integrand above by 1 and below by zero, while on the interval Iλ−\[−x̄, 0] we can use the
bounds provided by Lemma A.11 to show that

0 ≤ H(x;λ) ≤ γ|x|+ θ0

√
λK√

λ(θ0K + θ1k|x|2)
≤ γδ? + θ0K

θ0K + θ1k|x|2
,

where the inequality follows from the definition of Iλ−. Combining these bounds shows that the integrand
is bounded by a function that is integrable on R− and does not depend on λ. This allows us to apply the
dominated convergence theorem, and the result for D(λ) now follows from (64). The result for the other
integral follows from identical calculations. We omit the details. �
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Proof of Proposition 7. Assume that there are I ≥ 2 utility types δ1 < δ2 < . . . < δI , identify the marginal
type with the index m ∈ {1, . . . , I} such that:

1− F (δm) ≤ s < 1− F (δm−1)

and set δ0 ≡ 0 and δI+1 ≡ 1. Assume further that 1 − F (δm) < s, which occurs generically when
the distribution of utility types is restricted to be discrete. Under these assumptions, the same algebraic
manipulations that we used to establish (54) and (55) show that we have

Φ1(δ) = Φ1(δi) =

{
1
λ

γsF (δi)
1−s−F (δi)

+ o
(

1
λ

)
if i < m

F (δi)− (1− s) + 1
λ
γ(1−F (δi))(1−s)
F (δi)−(1−s) + o

(
1
λ

)
if i ≥ m,

(65)

for all δ ∈ [δi, δi+1) and i ∈ {1, . . . , I}. Likewise, we have that the local surplus satisfies

σ(δ) = σ(δi) =

{
1

λθ1(1−s−F (δi))
+ o

(
1
λ

)
if i < m

1
λθ0(F (δi)−(1−s)) + o

(
1
λ

)
if i ≥ m

for all δ ∈ [δi, δi+1) and i ∈ {1, . . . , I}, and it follows that the steady-state reservation values satisfy

∆V (δm)−∆V (δi) =
m−1∑
j=i

(δj+1 − δj)σ(δj) =

m−1∑
j=i

δj+1 − δj
θ1 (1− s− F (δj))

+ o

(
1

λ

)
.

for every i < m, and

∆V (δi)−∆V (δm) =
i−1∑
j=m

(δj+1 − δj)σ(δj) =
i−1∑
j=m

δj+1 − δj
θ0 (F (δj)− (1− s))

+ o

(
1

λ

)
.

for every i > m. To complete the proof, we calculate the steady-state reservation value ∆V (δm) of the 
marginal investor using formula (14). This gives

r∆V (δm) = δm +

I∑
i=m

(δi+1 − δi)
γ (1− F (δi)) + λθ1 (1− s− Φ0(δi))

r + γ + λθ0Φ1(δi) + λθ1 (1− s− Φ0(δi))

−
m−1∑
i=0

(δi+1 − δi)
γF (δi) + λθ0Φ1(δi)

r + γ + λθ0Φ1(δi) + λθ1 (1− s− Φ0(δi))

= δm +
1

λ

I∑
i=m

(δi+1 − δi)
γ (1− F (δi)) (F (δi)− (1− s)(1− θ1))

(F (δi)− (1− s))2

− 1

λ

m−1∑
i=0

(δi+1 − δi)
γF (δi) (1− F (δi)− s(1− θ0))

(F (δi)− (1− s))2 + o

(
1

λ

)
where the second equality follows from condition (1) and the asymptotic expansion of Φ1(δ) given in
equation (65). �

Proof of Proposition 8 The result follows from Lemmas A.13, A.14, and A.15. To simplify the presenta-
tion we assume without loss of generality in these lemmas that the endpoints of the support of the distribution 
of utility types are given by δ = 0 and δ = 1. �
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Lemma A.13 Assume that the conditions of Proposition 8 hold true. Then

A(λ) ≡ λ
∫ δ?

0
σ(δ) dδ −

∫ δ?

0

dδ
r+γ
λ + θ1F ′(δ?)(δ? − δ) + Φ1(δ)

= O(1) (66)

B(λ) ≡ λ
∫ 1

δ?
σ(δ) dδ −

∫ 1

δ?

dδ
r+γ
λ + θ0F ′(δ?)(δ? − δ) + 1− s− Φ0(δ)

= O(1). (67)

as the meeting rate λ→∞.

Proof. To establish (66) we start by noting that

λσ(δ) =
λ

r + γ + λθ1 (1− s− Φ0(δ)) + λθ0Φ1(δ)
=

1
r+γ
λ + θ1 (F (δ?)− F (δ)) + Φ1(δ)

, (68)

where we used that Φ0(δ) = F (δ) − Φ1(δ), and F (δ?) = 1 − s due to the assumed continuity of the
distribution. Substituting this identity into (66), we obtain:

|A(λ)| ≤
∫ δ?

0

|F ′(δ?)(δ? − δ)− (F (δ?)− F (δ))|
θ1F ′(δ?) (δ? − δ) (F (δ?)− F (δ))

dδ.

Under our assumption that the distribution of utility types is is twice continuously differentiable, we can use
Taylor’s Theorem to extend the integrand by continuity at δ?, with value

lim
δ→δ?

|F ′(δ?)(δ? − δ)− (F (δ?)− F (δ))|
θ1F ′(δ?) (δ? − δ) (F (δ?)− F (δ))

=
|F ′′(δ?)|

2θ1(F ′(δ?))2

This shows that the integrand is bounded and (66) follows. Turning to equation (67) we start by observing
that because of (1) and the assumed continuity of the distribution of we have

Φ1(δ) = F (δ)− F (δ?) + F (δ?)− Φ0(δ) = F (δ)− F (δ?) + 1− s− Φ0(δ).

Substituting this identity into (68) shows that

λσ(δ) =
1

r+γ
λ + θ0 (F (δ)− F (δ?)) + 1− s− Φ0(δ)

,

and the desired result now follows from the same argument as above. �

Lemma A.14 Assume that the conditions of Proposition 8 hold true. Then

A0(λ) ≡
∫ δ?

0

dδ
r+γ
λ + θ1F ′(δ?)(δ? − δ) + Φ1(δ)

=
log(λ)

2θ1F ′(δ?)
+O(1).

as the meeting rate λ→∞.

Proof To establish a lower bound we start by noting that Φ1(δ) ≤ Φ1(δ
?) for all δ ≤ δ?. Substituting this

into the definition of A0(λ) and integrating we find that

A0(λ) ≥
∫ δ?

0

dδ
r+γ
λ + θ1F ′(δ?)(δ? − δ) + Φ1(δ?)

=

[
−1

θ1F ′(δ?)
log

(
r + γ

λ
+ θ1F

′(δ?) (δ? − δ) + Φ1(δ?)

)]δ?
0

=
−1

θ1F ′(δ?)
log

(√
(γ/λ)s(1− s) + o

(
1√
λ

))
+O(1) =

log(λ)

2θ1F ′(δ?)
+O(1),
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where the second equality follows from the asymptotic expansion of Φ1(δ?) given in equation (56) above. To
establish the reverse inequality let us break down the integral into an integral over the interval [0, δ?−1/

√
λ],

and an integral over the interval [δ? − 1/
√
λ, δ?]. A direct calculation shows that the first integral can be

bounded above by:∫ δ?−1/
√
λ

0

dδ

θ1F ′(δ?)(δ? − δ)
=

1

θ1F ′(δ?)
log
(
δ?
√
λ
)

=
log(λ)

2θ1F ′(δ?)
+O(1).

On the other hand, noting that

inf
δ∈[δ?−1/

√
λ,δ?]

Φ1(δ) ≥ Φ1

(
δ? − 1√

λ

)
=
g1(−1)√

λ

and integrating we find that the second integral can be bounded from above by∫ δ?

δ?−1/
√
λ

dδ

θ1F ′(δ?)(δ? − δ) + g1(−1)/
√
λ

=
1

θ1F ′(δ?)
log

(
1 +

θ1F
′(δ?)

g1(−1)

)
= O(1)

where the last equality follows Lemma A.10. �

Lemma A.15 Assume that the conditions of Proposition 8 hold true. Then

B0(λ) ≡
∫ 1

δ?

dδ
r+γ
λ + θ0F ′(δ?)(δ − δ?) + 1− s− Φ0(δ)

=
log(λ)

2θ0F ′(δ?)
+O(1)

as the meeting rate λ→∞.

Proof. The proof is similar to that of Lemma A.14. We omit the details. �

B The welfare cost of frictions
In this Appendix, we briefly study the asymptotic impact of frictions on welfare. To this end we start 
by noting that in the context of our model the welfare cost of misallocation can be defined as

C(λ) ≡ −
∫ δ?

0
δdΦ1(δ) +

∫ 1

δ?
δdΦ0(δ) =

∫ δ?

0
Φ1(δ)dδ +

∫ 1

δ?
(1− s− Φ0(δ))dδ

where the second equality follows from an integration by parts. The two terms on the right-hand side of this
definition capture the two types of misallocation arising in our model. The first term accounts for the utility
derived by investors who hold an asset when they should not, and the second term account for the utility not
derived by investors who should hold an asset.

Proposition B.1 Assume that the distribution of utility types is twice continuously differentiable with a
strictly positive derivative. Then

C(λ) =
γs(1− s)
F ′(δ?)

log(λ)

λ
+O

(
1

λ

)
,

where the remainder satisfies limλ→∞ |λO(1/λ)| < ∞. By contrast, with a discrete distribution of utility
types, the convergence rate of the welfare cost to zero is generically equal to 1/λ.
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Proof The quadratic equation for the equilibrium distribution and the assumed continuity of the distribution 
of utility types jointly imply that

λΦ1(δ) =
γsF (δ)

γ/λ+ Φ1(δ) + F (δ?)− F (δ)
,

and combining this identity with arguments similar to those we used in the proof of Lemma A.13 shows that
the first integral in the definition of the welfare cost satisfies∣∣∣∣∣

∫ δ?

0

(
λΦ1(δ)− γsF (δ?)

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)

)
dδ

∣∣∣∣∣ = O(1). (69)

On the other hand, the same arguments as in the proof of Lemma A.14 imply that∫ δ?

δ?−1/
√
λ

γsF (δ?)dδ

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)
≤ γsF (δ?)

F ′(δ?)
log

(
1 +

F ′(δ?)

g1(−1)

)
= O(1)

and combining this inequality with (69) gives∫ δ?

0
λΦ1(δ)dδ =

∫ δ?−1/
√
λ

0

γsF (δ?)

γ/λ+ Φ1(δ) + F ′(δ?) (δ? − δ)
dδ +O(1).

To obtain a lower bound for the integral, we can bound Φ1(δ) above by Φ1(δ? − 1/
√
λ), and to obtain an

upper bound, we can bound Φ1(δ) below by zero. In both cases, we can compute the resulting integral
explicitly and we find that the upper and the lower bound can both be written as

γsF (δ?)

2F ′(δ?)
log(λ) +O(1) =

γs(1− s)
2F ′(δ?)

log(λ) +O(1).

Going through the same steps shows that the second integral satisfies∫ 1

δ?
λ (1− s− Φ0(δ)) dδ =

γs(1− s)
2F ′(δ?)

log(λ) +O(1)

and the desired result now follows by adding up the asymptotic expansions of the two integrals. In order to
complete the proof assume that the distribution of utility types is discrete. Using the same notation as in the
proof of Proposition 7 we find that

C(λ) =

m−1∑
i=0

(δi+1 − δi)Φ1(δi) +

I∑
i=m

(δi+1 − δi)(1− s− F (δi) + Φ1(δi))

and the desired conclusion follows from the expansion of Φ1(δi) given in equation (65). �

The proposition shows that, as was the case for price levels and price dispersion, search frictions have a larger
welfare impact when the distribution of utility types is continuous, than when it is discrete. It also shows
that the welfare cost of frictions may be accurately measured by the observed amount of price dispersion
because the two quantities converge to their frictionless counterparts at the same speed.
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C Non-stationary initial conditions
Assume that the initial distribution of utility types in the population is given by an arbitrary cumulative
distribution function F0(δ), which need not even be absolutely continuous with respect to F (δ). Since the
reservation values of Proposition 2 are valid for any joint distribution of types and asset holdings, we need
only to determine the evolution of the equilibrium distributions in order to derive the unique equilibrium.

Consider first the distribution of utility types in the whole population. Since upon a preference shock
each agent draws a new utility type from F (δ) with intensity γ, we have that

Ḟt(δ) = γ(F (δ)− Ft(δ)).

Solving this ordinary differential equation shows that the cumulative distribution of utility types in the whole
population is explicitly given by

Ft(δ) = F (δ) + e−γt (F0(δ)− F (δ))

and converges to the long-run distribution F (δ) in infinite time. On the other hand, the same arguments as
in Section 3.2 show that in equilibrium the distributions of perceived growth rate among the population of
asset owners solves the differential equation

Φ̇1,t(δ) = −λΦ1,t(δ)
2 − λ(1− s− Ft(m) + Φ1,t(δ)) + γ(sF (δ)− Φ1,t(δ)).

Given an initial condition satisfying the accounting identity

Φ0,0(δ) + Φ1,0(δ) = F0(δ)

this Riccati equation admits a unique solution that can be expressed in terms of the confluent hypergeometric
function of the first kind M1(a, b;x) (see Abramowitz and Stegun (1964)) as

λΦ1,t(δ) = λ(Ft(m)− Φ0,t(δ)) =
Ẏ+,t(δ)−A(δ)Ẏ−,t(δ)

Y+,t(δ)−A(δ)Y−,t(δ)
(70)

with

Y±,t(δ) = e−λZ±(δ)tW±,t(δ)

Z±(δ) =
1

2
(1− s+ γ/λ− F (δ))± 1

2
Λ(δ) (71)

W±,t(δ) = M1

(
λ

γ
Z±(δ), 1± λ

γ
Λ(m); e−γt

λ

γ
(F (δ)− F0(δ))

)
and

A(δ) =
Ẏ+,0(δ)− λΦ1,0(δ)Y+,0(δ)

Ẏ−,0(δ)− λΦ1,0(δ)Y−,0(δ)
.

The following lemma relies on standard properties of confluent hypergeometric functions to show that the
above cumulative distribution function converges to the same steady-state distribution as in the case with
stationary initial condition.
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Lemma C.1 The equilibrium distributions defined by (70) satisfy limt→∞Φq,t(δ) = Φq(δ) for any initial
distributions F0(δ) and F1,0(δ).

Proof Straightforward algebra shows that (70) can be rewritten as

λΦ1,t(δ) =
λZ+(δ)W+,t(δ)− Ẇ−,t(δ) + eλΛ(δ)tA(δ)(Ẇ+,t(δ)− λZ−(δ)W−,t(δ))

eλΛ(δ)tA(δ)W−,t(δ)−W+,t(δ)
.

On the other hand, using standard properties of the confluent hypergeometric function of the first kind it can
be shown that we have

lim
δ→∞

Ẇ±,t(δ) = lim
δ→∞

(1−W±,t(δ)) = 0

and combining these identities we deduce that

lim
δ→∞

λΦ1,t(δ) = −λZ−(δ) + lim
δ→∞

Ẇ+,t(δ)

W−,t(δ)
= −λZ−(δ) = λΦ1(δ),

where the last equality follows from (71) and the definition of the steady-state distribution Φ1(δ). �

Given the joint distribution of types and asset holdings the equilibrium can be computed by substituting the
equilibrium distributions into (13) and (14), and the same arguments as in the stationary case show that this
equilibrium converges to the same steady-state equilibrium as in Theorem 1.

D Marketmakers
Assume that in addition to a continuum of agents, the market also includes a unit mass of competitive 
marketmakers who have access to a frictionless interdealer market and keep no inventory. An agent contacts 
marketmakers with intensity α ≥ 0. When agents meet a marketmaker, they bargain over the terms of a 
potential trade, and we assume that the result of this negotiation is given by the Nash bargaining solution 
with bargaining power 1 − z ∈ [0, 1] for the marketmaker.

D.1 Pricing in the interdealer market
Let Πt denote the asset price on the interdealer market and consider a meeting between a marketmaker and 
an investor of type δ ∈ [0, 1] who owns q ∈ {0, 1} units of the asset. Such a meeting results in a trade if and 
only if the trade surplus

Sq,t(δt) = (2q − 1)(Πt −∆Vt(δ)) = (2q − 1)(Πt − V1,t(δ) + V0,t(δ))

is nonnegative, in which case the assumption of Nash bargaining implies that the realized price is

P̂t(δ) = (1− z)∆Vt(δ) + zΠt.

If reservation values are increasing in type, which we show is the case below, then there must be a cutoff
wt ∈ [0, 1] such that only owners of type δ ≤ wt are willing to sell, while only those non-owners of type

68



δ ≥ wt are willing to buy. Since marketmakers must be indifferent to trading with marginal agents this, in
turn, implies that the price on the interdealer market is Πt = ∆Vt(wt)

To determine the cutoff we use the fact that the positions of marketmakers must net out to zero because
they keep no inventory. The total mass of owners who contact marketmakers to sell is αΦ1,t(wt). On the
other hand, the total mass of non-owners who contact marketmakers to buy is

α(1− s− Φ0,t(wt) + ∆Φ0,t(wt)).

Because the distribution of utility types can have atoms, some randomization may be required at the margin.
Taking this into account shows that the interdealer market clearing condition is

Φ1,t(wt)− (1− π1,t)∆Φ1,t(wt) = 1− s− Φ0,t(wt) + π0,t∆Φ0,t(wt) (72)

where πq,t ∈ [0, 1] denotes the probability with which marketmakers execute orders from marginal agents.
Since the distribution is by assumption not flat at the supply level, this condition implies that the cutoff
is uniquely given by wt ≡ δ? for all t ≥ 0, and it now remains to determine the execution probabilities.
Two cases may arise depending on the properties of the distribution. If F (δ?) = 1 − s, then the execution
probabilities are uniquely defined by πq,t = q, and only marginal buyers get rationed in equilibrium. On the
contrary, if the cutoff is an atom, then the execution probabilities are not uniquely defined. In this case, one
may, for example, take

π0,t = 1− π1,t =
F (δ?)− (1− s)

∆F (δ?)

so that a fraction of both marginal buyers and marginal sellers get rationed in equilibrium, but many
other choices are also compatible with market clearing. By construction, this choice has no influence on
the welfare of agents, and we verify below but it also does not have any impact on the evolution of the
equilibrium distribution of utility types.

D.2 Equilibrium value functions
Taking as given the evolution of the joint distribution of types and asset holdings, and proceeding as in
Section 3.1 shows that the reservation value function solves

∆Vt(δ) = Et
[∫ σ

t
e−r(u−t)δdu+ e−r(σ−t)

(
∆Vσ(δ) + 1{σ=τα}z (∆Vσ(δ?)−∆Vσ(δ)) (73)

+ 1{σ=τγ}

∫ 1

0
(∆Vσ(δ′)−∆Vσ(δ))dF (δ′)

+ 1{σ=τ0}θ1

∫ 1

0

(
∆Vσ(δ′)−∆Vσ(δ)

)+ dΦ0,σ(δ′)

1− s

− 1{σ=τ1}θ0

∫ 1

0

(
∆Vσ(δ)−∆Vσ(δ′)

)+ dΦ1,σ(δ′)

s

)]
subject to (9), where τα is an exponentially distributed random variable with parameter α that represents a
meeting with a market maker, and σ = min{τ0, τ1, τγ , τα}. Comparing this equation with (8) shows that the
reservation value function in an environment with marketmakers is isomorphic to that which would prevail
in an environment where there are no marketmakers, the distribution of types is

F̂ (δ) ≡ γ

γ + αz
F (δ) +

(
1− γ

γ + αz

)
1{δ≥δ?}, δ ∈ [0, 1],
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and the arrival rate of type changes is γ̂ = γ + αz. Combining this observation with Proposition 1 delivers
the following characterization of reservation values in the model with marketmakers.

Lemma D.1 There exists a unique function that satisfies (73) subject to (9). This function is uniformly
bounded, strictly increasing in space, and given by

∆Vt(δ) =

∫ ∞
t

e−r(u−t)
(
δ −

∫ δ

0
σ̂u(δ′)

(
γ̂F̂ (δ′) + λθ0Φ1,u(δ′)

)
dδ′

+

∫ 1

δ
σ̂u(δ′)

(
γ̂(1− F̂ (δ′)) + λθ1(1− s− Φ0,u(δ′))

)
dδ′
)
du,

where the local surplus σ̂t(δ) is defined as in (13) albeit with γ̂ in place of γ.

D.3 Equilibrium distribution of types
Because agents can trade both among themselves and with marketmakers, the evolution of the equilibrium
distributions must include additional terms to reflect the new trading opportunities.

Consider the group of asset owners with utility type δ′ ≤ δ. In addition to the entry channels of the
benchmark model, an agent may enter this group because he is a non-owner with δ′′ ≤ δ who buys one unit
of the asset from a market maker. The contribution of such entries is

Et(δ) = α
(
(Φ0,t(δ)− Φ0,t(δ

?))+ + 1{δ?≤δ}π0,t∆Φ0,t(δ
?)
)

where the last term takes into account the fact that not all meetings with marginal buyers result in a trade.
On the other hand, an agent may exit this group because he is an asset owner with δ′′ ≤ δ who sells to a
market maker. The contribution of such exits is

Xt(δ) = α
(
Φ1,t(δ ∧ δ?)− 1{δ?≤δ}(1− π1,t)∆Φ1,t(δ

?)
)
.

Gathering these contributions and using (72) shows that the total contribution of intermediated trades is
explicitly given by

Et(δ)−Xt(δ) = −αΦ1,t(δ) + α(1− s− F (δ))−.

Finally, combining this with (17) shows that the rate of change is given by

Φ̇1,t(δ) = −λΦ1,t(δ)
2 − Φ1,t(δ) (γ + λ(1− s− F (δ)))

− αΦ1,t(m) + γsF (δ) + α(1− s− F (m))−

and does not depends on the choice of the probabilities π0,t and π1,t with which marketmakers execute
orders from marginal agents. To solve this Riccati differential equation, let

Φ1(δ) = −1

2
(1− s+ γ/λ+ α/λ− F (δ)) +

1

2
Ψ(δ) (74)

with

Ψ(δ) =

√
(1− s+ γ/λ+ α/λ− F (δ))2 + 4s(γ/λ)F (δ) + 4(α/λ)(1− s− F (δ))−

denote the steady-state distribution of owners with utility type less than δ, i.e., the unique strictly positive
solution to Φ̇1,t(δ) = 0. The following results are the direct counterparts of Proposition 3 and Corollary 2
for the model with marketmakers.

70



Proposition D.2 At any time t ≥ 0 the measure of the set asset owners with utility type less than or equal
to δ ∈ [0, 1] is explicitly given by

Φ1,t(δ) = Φ1(δ) +
(Φ1,0(δ)− Φ1(δ)) Ψ(δ)

Ψ(δ) + (Φ1,0(δ)− Φ1(δ) + Ψ(δ))
(
eλΨ(δ)t − 1

) (75)

and converges pointwise monotonically to Φ1(δ) from any initial condition satisfying (1) and (2).

Proof. The proof is analogous to that of Proposition 3. �

Corollary D.3 The steady-state measure Φ1(δ) is increasing in γ and decreasing in λ, and it converges to
the frictionless measure Φ?

1(δ) as γ/λ→ 0.

Proof. The proof is analogous to that of Corollary 2 and Proposition 5. �

D.4 Equilibrium
Definition 2 An equilibrium is a reservation value function ∆Vt(δ) and a pair of distributions Φ0,t(δ) and
Φ1,t(δ)) such that: the distributions satisfy (1), (2) and (75), and the reservation value function satisfies (8)
subject to (9) given the distributions.

As in the benchmark model without marketmakers, a full characterization of the unique equilibrium follows
immediately from our explicit characterization of the reservation value function and the joint distribution of
types and asset holdings.

Theorem D.4 There exists a unique equilibrium with marketmakers. Moreover, given any initial conditions
satisfying (1) and (2), this equilibrium converges to the steady-state distributions of equation (74) and the
reservation value function of equation (20) albeit with (γ̂, F̂ (δ)) in place of (γ, F (δ)).

Relying on Theorem D.4, it is possible to derive the counterparts of our results regarding the expected
time to trade, the equilibrium trading volume, the equilibrium misallocation, and the asymptotic price impact
of search frictions for the model with marketmakers, and verify that the corresponding predictions are
qualitatively similar to those of the benchmark model.
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