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Abstract

We develop a model of a two-sided asset market in which trades are intermediated by dealers
and are bilateral. Dealers compete to attract order flow by posting the terms at which they
execute trades, which can include prices, quantities, and execution times, and investors direct
their orders toward dealers that offer the most attractive terms of trade. Equilibrium outcomes
have the following properties. First, investors face a trade-off between trading costs and speeds
of execution. Second, the asset market is endogenously segmented in the sense that investors
with different asset valuations and different asset holdings will trade at different speeds and
different costs. For example, under a Leontief technology to match investors and dealers, per
unit trading costs decrease with the size of the trade, in accordance with the evidence from
the market for corporate bonds. Third, dealers’ implicit bargaining powers are endogenous
and typically vary across sub-markets. Finally, we obtain a rich set of comparative statics both
analytically, by studying a limiting economy where trading frictions are small, and numerically.
For instance, we find that the relationship between trading costs and dealers’ bargaining power
can be hump-shaped.
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1 Introduction

Many assets are traded in over-the-counter (OTC) markets, including government, municipal, and
corporate bonds, asset-backed securities, derivatives, and currencies, to name a few. These markets
have been growing in size and economic importance, e.g., they play a key role in the implemen-
tation of monetary policy (the market for federal funds), the provision of liquidity (markets for
repurchase agreements), and the provision of insurance services (markets for derivatives). A dis-
tinguishing feature of OTC markets is that there is no centralized exchange: trades are bilateral and
agents are free to trade at any mutually agreeable terms.1 Moreover, trades in OTC markets are
typically intermediated by dealers who maintain a two-sided market, simultaneously buying and
selling securities on behalf of investors (see, e.g., Duffie, 2012; Li and Schürhoff, 2012).

A recent literature, building off of the framework developed by Duffie, Gârleanu, and Pedersen
(2005, henceforth DGP), has developed theoretical models that capture several important features
of OTC markets, and has used these models to gain a better understanding of the factors that deter-
mine prices, liquidity (e.g., bid-ask spreads, execution times), the volume of trade, and allocations.
These models typically formalize OTC markets as highly decentralized trading venues in which
bilateral meetings between investors and dealers occur at random time intervals, and the terms
of trade are determined according to ex post bargaining. While this formalization has generated
a number of novel insights, many OTC markets are not as opaque as these models suggest. In
particular, in many OTC markets dealers post (and commit) to certain terms of trade, and more
importantly these terms of trade play an important allocative role. As Duffie (2012, pg. 4) writes:

In some dealer-based OTC markets, especially those with active brokers, a selec-
tion of recently quoted or negotiated prices is revealed to a wide range of market partic-
ipants, often through electronic media such as Reuters, Bloomberg, or MarkitPartners.
For other OTC markets, such as those for U.S. corporate and municipal bonds, regula-
tors have mandated post-trade price transparency through the publication of an almost
complete record of transactions shortly after they occur. (...)

In some active OTC derivatives markets, such as the market for credit default
swaps, clients of dealers can request “dealer runs,” which are essentially lists of deal-
ers’ prospective bid and offer prices on a menu of potential trades. Dealers risk a loss
of reputation if they frequently decline the opportunity to trade near these indicative
prices when contacted soon after providing quotes for a dealer run.

1The failure of the law of one price in OTC markets is well documented; see, e.g., Green, Hollifield, and Schürhoff
(2007).
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Motivated by these observations, our objective is to describe an asset market with the following
characteristics: (i) Trades between investors and dealers are bilateral and time consuming; (ii)
dealers compete to attract order flows by posting publicly (and committing to) the terms at which
they execute trades, which can include prices, quantities, and execution times; and (iii) investors
strategically direct their orders toward dealers that offer the most attractive terms of trade. By
developing a model of intermediation and trade with these characteristics, our framework provides
novel predictions about the prices and fees that different types of investors pay, the quantities they
trade, and the frequency with which they readjust their portfolios.

The starting point of our analysis is a model of decentralized exchange in which investors hold
endogeneous asset positions and receive periodic idiosyncratic shocks that affect their private valu-
ations for the asset. In order to rebalance their asset holdings, investors have to contact dealers who
have access to a competitive inter-dealer asset market. The description so far is similar to the one
in Lagos and Rocheteau (2009, henceforth LR) that generalizes DGP. The crucial departure from
the previous literature is the manner in which we model price formation: we take our equilibrium
concept to be that of “competitive search,” as first introduced by Moen (1997) in the context of the
labor market.

In this setup there is free entry of dealers who post contracts specifying a quantity that they
will buy or sell on the inter-dealer market, along with a fee for doing so. Investors with private

valuations for the asset observe these contracts and direct their order flow to the contract of their
choosing.2 Then, orders take time to be executed, with an expected execution time that is decreas-
ing in the dealer-to-investor ratio for this particular contract.

We provide a general characterization of steady-state equilibria and we establish existence. In
equilibrium, dealers design contracts to respond to investors’ trading needs, and investors subse-
quently sort themselves across posted contracts according to their private valuations and current
asset holdings. Therefore, more heterogeneity across investors leads to a larger number of sub-
markets, where dealers offer a given contract and average execution time. We show that dealers
posting higher intermediation fees tend to fill orders more rapidly, so that investors face a trade-off
between intermediation fees and execution times. Investors who enjoy large gains from readjust-
ing their asset holdings trade faster but pay larger intermediation fees. This result is in accordance
with a variety of evidence on execution quality in asset markets. For instance, Boehmer (2005)
finds that “high execution costs are systematically associated with fast execution speed, and low
costs are associated with slow execution speed. This relationship holds both across markets and

2As we discuss later in the text, a technical advantage of modeling trade according to competitive search with
posting is that the analysis can easily accommodate private information. This is not the case when trade is modeled
according to random search with ex post bargaining, as it is well known that characterizing the outcome of a bargaining
game with private information can be quite cumbersome.
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across order sizes.” Similarly, Battalio, Hatch, and Jennings (2003) find that orders obtain better
trade prices on the NYSE but faster executions at Trimark Securities, a Nasdaq dealer. Boehmer,
Jennings, and Li (2007) establish that brokers’ routing decisions take into account the disclosure
of quality execution across trading centers: markets with low trading costs and fast fills were able
to attract more orders.

In order to gain additional insights and to compare our model more squarely with the existing
literature, we analyze two special cases in detail. First, we consider an environment in which agents
have one of two private valuations (high and low) and their asset holdings lie in the set {0, 1}.
These restrictions make each investor’s choice of asset holdings trivial and allow us to focus on the
execution speeds that prevail in equilibrium. This version of the model is also directly comparable
to DGP. Second, we return to our general model with asset holdings in R+ and an arbitrary number
of preference shocks, but we adopt a Leontief specification for the expected execution time. This
trading technology generates average execution delays that are constant across active sub-markets.
As a result we can focus on the implications of our equilibrium concept for investors’ endogeneous
asset holdings, and we can compare allocations and prices to those of the LR economy that also
has constant contact rates between investors and dealers.

In the first special case, with restricted asset holdings and two utility types, we characterize
the asset price, trading fees, and execution times that prevail in the unique equilibrium. As in
Vayanos and Weill (2008) and Weill (2008), this equilibrium can be solved in closed form when
search frictions are small, allowing for a large set of comparative statics. In the random matching
model with ex post bargaining of DGP, buyers and sellers contact dealers at the same speed and
the excess order flow fails to get executed. In our competitive search model, by contrast, dealers
can be allocated unevenly across the two sides of the market so that buyers and sellers trade at
different speeds. The asset price adjusts so as to equalize order flows on both sides of the market
and all orders are executed. Our model also has different implications for the bid-ask spread than
the ones obtained under random matching. For instance, bid-ask spreads increase with the dealers’
exogenous bargaining power in DGP, while in our model the relationship between intermediation
fees and the sellers’ share of the surplus (or implicit bargaining power) is hump-shaped. Similarly,
the price discount, which indicates the rate at which the asset price falls relative to the Walrasian
benchmark due to search frictions, is non-monotonic with the dealers’ bargaining power.

The second special case we consider is when asset holdings are unrestricted and the matching
technology is of the Leontief form, i.e., there is strict complementarity between the measure of
dealers and the measure of orders to be executed. We characterize the equilibrium when the deal-
ers’ entry cost is small, which serves two purposes. First, the analysis is tractable in this region
of the parameter space, and hence we can study how asset demand, bid-ask spreads, and trading
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volume respond to changes in the economic environment. Second, the equilibrium asset holdings
and the inter-dealer prices are the same as in LR when, in their model, the exogenous bargaining
power of dealers is equal to zero. Therefore, this class of equilibria is amenable to a direct compar-
ison with the existing literature. Our analysis reveals that the predictions of the competitive search
model differ markedly from the earlier literature in one dimension: the relationship between trad-
ing costs and trade sizes. In earlier models with random matching and ex post bargaining, such as
that of LR, the trading cost per unit traded increases with the size of the trade. In contrast, under
competitive search, per-unit trading costs decrease with trade sizes.3 This prediction of our model
is in line with the evidence documented by Schultz (2001), Edwards, Harris, and Piwowar (2007),
and Green, Hollifield, and Schürhoff (2007) for over-the-counter markets. Therefore, the structure
of the market helps explain the empirical relationship between trading costs and trade sizes.4

Related literature. Our paper is part of a long tradition in the market micro-structure literature,
starting at least with Ho and Stoll (1983), studying competition between dealers who serve out-
side customers. The description of the asset market that involves search and pairwise meetings
between dealers and investors, where dealers have access to a competitive inter-dealer market, is
based on DGP and LR. Other papers in this literature include Weill (2007), Gavazza (2011), and
Lagos, Rocheteau, and Weill (2011), to name a few. There are also other search-theoretic models
of financial intermediation with price-posting. Spulber (1996) describes an environment with com-
peting price-setting dealers. However, in contrast to our analysis, the contract posted by dealers
(bid and ask prices) can be observed only after a time-consuming search.5 For a more thorough
literature review of the search-theoretic approach to over-the-counter markets, see Rocheteau and
Weill (2011).

Search-and-matching models offer a natural platform to study the interactions of investors trad-
ing at different speed. Some papers in the literature study asset pricing when speed differences are
exogenously given, e.g., Feldhütter (2012) and Neklyudov (2012). Others are explicit about the
trade-off between execution speed and trading costs. An early contribution is the sequential search
model of block trading by Burdett and O’hara (1987). More recent work includes the models of
Melin (2012) and Praz (2012), in which investors can trade simultaneously in a Walrasian and an
OTC market, or that of Pagnotta and Philippon (2011), in which investors can choose between
competing trading platforms that offer different execution speeds. We study the choice of exe-

3The reason is that dealers reap a constant fraction of the surplus in LR, and the surplus is convex in trade size. In
our competitive search model with Leontief technology, by contrast, the price-setting mechanism implies that investors
pay a fixed trading cost to trade any quantity.

4See Zhang (2012) for a different explanation in a model with ex post bargaining under asymmetric information.
5Hall and Rust (2003) extend Spulber (1996) by introducing a second type of middlemen called market makers.

Each market maker posts publicly observable prices while posted prices of middlemen are not observable.
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cution speed using a different approach, based on the the notion of competitive search, initially
developed by Moen (1997). Mortensen and Wright (2002) and Sattinger (2003) interpret this equi-
librium notion as one where competing brokers or market makers set up markets and charge entry
fees to participants. However, in contrast to our model, the brokers in these models do not con-
tribute to the matching of orders on both sides of the market and do not intermediate trades. Weill
(2007, Appendix IV) offers some preliminary analysis of a competitive search equilibrium without
free entry of dealers; instead, he assumes that the matching technology is concave in the measure
of investors and does not depend on the measure of dealers. Rocheteau and Weill (2011, p. 272)
apply competitive search to a simple model of an over-the-counter market where trades are not
intermediated by dealers and asset holdings are restricted to {0, 1}.

Competitive search has also been recently applied to asset markets by Guerrieri and Shimer
(2012, 2013) and Chang (2012), in order to study the impact of multidimensional asymmetric
information (about common and private values) on liquidity in OTC markets. To do so, these
authors build on Guerrieri et al. (2010) and consider “one-sided” competitive search models with
{0, 1} asset holdings, in which buyers post contracts to attract privately informed sellers. See, also,
Inderst and Müller (2002) for the study of a market with durable goods under adverse selection and
competitive search. While we deal only with asymmetric information about private values (see,
also, Faig and Jerez, 2006), we explicitly characterize an equilibrium in a two-sided market, where
prices are posted by dealers who simultaneously buy and sell assets from investors, and we are able
to remove asset-holding restrictions.6 Finally, competitive search has been applied to markets for
real assets, such as housing, by Albrecht et al. (2013), Diaz and Jerez (2013), Lester et al. (2013),
and Stacey (2012). These models do not have dealers making two-sided markets.

2 Environment

Time is continuous and goes on forever. The economy is populated with two types of infinitely-
lived agents: a unit measure of investors and a large measure of dealers. Both types of agents
discount the future at rate r > 0. There is one long-lived asset in fixed supply A ∈ R+. There is
also a perishable good, the numéraire, which is produced and consumed by all agents.

6Watanabe (2013) also utilizes a model of competitive search to analyze the role of middlemen in asset markets.
In his model, middlemen are assumed to have a greater capacity to store inventory than ordinary sellers. In contrast to
our assumption of a two-sided asset market, he assumes that middlemen can acquire these inventories—that is, they
can purchase assets from sellers—in a frictionless market, before posting prices and selling to buyers in a market with
search frictions.
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Preferences. The instantaneous utility function of an investor is ui(a)+c, where a ∈ R+ denotes
the investor’s asset holdings, c ∈ R denotes the net consumption of the numéraire good (with c < 0

if the investor produces more than he consumes), and i ∈ {1, ..., I} ≡ I indexes an investor’s type,
where 1 < I <∞. We assume that ui(a) is continuously differentiable, with u′i(a) > 0, u′′i (a) < 0,
u′i(0) = ∞ and u′i(∞) = 0 for all i ∈ I. We also assume that u′i(a) < u′i+1(a) for all a > 0 and
i < I − 1, so that investors with higher i have higher demand for the asset.7 Hence, investors of
different types value the services (or dividends) provided by an asset differently.8

An investor’s preferences change over time according to a Poisson process with arrival rate δ.
Conditional on receiving a preference shock, an investor of type i draws a new type j ∈ I with
probability πij , where

∑
j∈I πij = 1 for all i ∈ I. These type-switching processes are assumed in-

dependent across investors. Unlike investors, dealers receive no utility flow from holding an asset,
nor can they hold asset inventories.9 Their instantaneous utility is simply c, the net consumption
of the numéraire good.

Trade. All trades are bilateral and are intermediated by dealers, i.e., they involve one dealer and
one investor. Dealers have continuous access to a competitive inter-dealer market in which they
can trade on behalf of investors. In order to attract orders from investors, dealers post (and commit
to) a publicly observable contract σ = (q, φ) specifying that the dealer will trade a quantity q at
the prevailing inter-dealer market price p in exchange for an intermediation fee φ. If q > 0, the
dealer buys the specified amount and delivers it to the investor. If q < 0, the dealer acquires the
asset from the investor and immediately resells it on the inter-dealer market. There is free entry
into the dealer market: dealers can choose to enter by posting a contract at a flow cost γ > 0,
which captures the ongoing costs of advertising their services to investors, maintaining access to
the inter-dealer market, and so on.

On the other side of the market, investors observe the contracts that have been posted and
submit an order to (at most) one contract. Orders, however, take time to execute. In particular,

7This condition holds, for example, if different preference types are generated by multiplicative utility shocks:
ui(a) ≡ εiv(a) for ε1 < ε2 . . . < εI .

8This can arise for a multitude of reasons. For example, one could think of the asset as a durable good, such as
a house, in which case it is natural that agents might be heterogeneous with respect to their valuation of the services
provided by a house. There are also a number of reasons why agents might be heterogeneous with respect to their
valuation of a financial asset: they can have different levels of risk aversion, financing costs, regulatory requirements,
or hedging needs. In addition, the correlation of endowments with asset returns may differ across agents. The current
formulation is a reduced-form representation of such differences. For more discussion and examples in which these
differences arise endogenously, see, e.g., Duffie, Gârleanu, and Pedersen (2007), Vayanos and Weill (2008), Gârleanu
(2009), and Geramichalos and Herrenbrueck (2013).

9The assumption that dealers cannot hold assets is of no consequence when analyzing steady-state equilibria, as
we do in this paper. See Weill (2007) and Lagos, Rocheteau, and Weill (2011) for dynamic equilibria where dealers
hold positions.
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if we let θ denote the ratio of dealers to orders at a particular contract, then an investor is served
according to a Poisson process with arrival rate α(θ). Conversely, a dealer who has posted this
contract executes orders at rate α(θ)/θ.10 We assume that α(·) is continuous, strictly increasing,
strictly concave, and satisfies α(0) = 0, α(∞) = ∞, and α(∞)/∞ = 0. Note that the strict
concavity of α(·) implies that α(θ)/θ is strictly decreasing in θ. Finally, we allow investors to
withdraw an order at no cost before it has been executed.

3 Equilibrium

In this section we derive conditions for a steady-state equilibrium. This requires describing the
optimal entry and posting behavior of dealers, taking as given the order flow they receive from
posting any contract and the inter-dealer price; the optimal order submission strategy of investors,
taking as given prices and the set of contracts that are available to them; and, finally, a set of
conditions ensuring that the market tightness in each active sub-market is consistent with both a
stationary distribution across investor types and market clearing.

3.1 Definition

Let Σ denote the set of all possible contracts and Σ? the set of contracts offered in equilibrium. We
assume that an investor can always choose not to send any order, so that 0 = (0, 0) ∈ Σ?. The
dealer-to-investor ratio, or market tightness, prevailing in a sub-market for contract σ ∈ Σ is de-
noted by Θ(σ). The function Θ(σ) will be defined for all possible contracts, not only those offered
in equilibrium. The set of all possible investors’ types, (i, a), is N ≡ I × A. For simplicity we
let A = R+ but our formulation and proofs remain identical if there are asset-holding restrictions.
We denote the support of the equilibrium stationary distribution of investors’ types by N ? ⊆ N .

Dealers. The profits of a dealer who posts a contract σ ∈ Σ are denoted by Π(σ) and solve:

rΠ(σ) = −γ +
α [Θ (σ)]

Θ (σ)
φ.

The first term on the right side is the flow cost of posting a contract, while the second term is
the expected fee received by a dealer, i.e., the Poisson rate at which a dealer receives the order,
α [Θ(σ)] /Θ(σ), times the fee paid by the investor upon execution of the order, φ. Therefore, the

10One can think of α as derived from a standard constant-return-to-scale matching function, m(d, o), that specifies
the number of matches between d dealers and o orders. In that case, α(θ) ≡ m(d, o)/o = m(θ, 1) where θ ≡ d/o.
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zero-profit condition of dealers can be written

Π(σ) ≤ 0, with equality if σ ∈ Σ? and σ 6= 0. (1)

The expected profits of a dealer are zero in any active sub-market, σ ∈ Σ?, and they are non-
positive in inactive sub-markets, σ ∈ Σ\Σ?, since otherwise posting a contract in that sub-market
would be profitable.

Investors. Let Vi(a, σ, θ) denote the expected lifetime payoff of an investor of type (i, a) ∈ N ?

who sends an order for contract σ = (q, φ) given market tightness θ:

Vi(a, σ, θ) =

ui(a) + δ
∑
j∈I

πijV
?
j (a) + α(θ) [V ?

i (a+ q)− pq − φ]

r + δ + α(θ)
. (2)

The first term in the numerator is the investor’s utility flow; the second term is the investor’s
expected continuation payoff, conditional on switching types, which occurs with Poisson intensity
δ; and the third term is the continuation payoff when his order is executed, which occurs with
Poisson intensity α(θ). The denominator is the effective discount rate. This investor’s maximum
attainable utility, which we denote by V ?

i (a), can be written

V ?
i (a) = sup

σ∈Σ?
Vi [a, σ,Θ(σ)] .

Market tightness. We adopt the convention that Θ(0) = 0. For σ 6= 0, we assume that:

Θ(σ) = inf {θ ≥ 0 : Vi(a, σ, θ) > V ?
i (a) for some (i, a) ∈ N ?} , (3)

and Θ(σ) = ∞ if this set is empty. This definition captures the idea that, if a dealer posts a
contract σ, then the investors who value it most will direct their order flow to this contract until
they are indifferent between this contract and their best alternative. Put differently, if the market
tightness for contract σ were greater than Θ(σ), then there would be a positive measure of investors
who would benefit strictly from this contract. Orders sent by these investors would further reduce
tightness until it is equal to Θ(σ).11

11Note that we are taking the infimum over all θ that create a strict utility improvement. This is important because
otherwise Θ(σ) = 0 for all σ: those investors who have no gains from trade, V ?

i (a) = Vi(a,0, 0), would flow into the
sub-market in the expectation that they won’t be able to trade anyway, and thus θ = 0.
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Market clearing and the distribution of investors’ states. Let ni(da) denote the steady-state
measure of investors over the set of types, N . The measure ni(da) must satisfy the following two
identities: ∑

i∈I

∫
A
ni(da) = 1 (4)

∑
i∈I

∫
A
ani(da) = A. (5)

Equation (4) imposes that the measures of investors add up to one. Equation (5) ensures that
investors hold the entire asset supply and that the inter-dealer market clears.

The order submission strategy of an investor of type (i, a) can be represented by a probability
measure, λ(dσ | i, a), over some support

Σ?
i (a) ⊆ arg max

σ∈Σ?
Vi [a, σ,Θ(σ)] .

Then, in a steady-state equilibrium, ni(da) must satisfy

δ
∑
j∈I

nj(da)πji +

∫
A

∫
Σ?i (a′)

λ(dσ | i, a′)α[Θ(σ)]I{a′+q=a}

= δni(da) + ni(da)

∫
Σ?i (a)

λ(dσ | i, a)α[Θ(σ)]. (6)

The first line of (6) represents the inflow of investors, while the second line represents the outflow.
On both lines the first term represents the flow due to type switching, and the second term is the
flow due to trade.

Definition 1. A competitive search equilibrium is a list composed of an inter-dealer market price,

p, a set of open sub-markets, Σ?, a market tightness function, Θ(σ), a collection of value functions,

V ?
i (a), an order submission strategy λ(dσ | i, a) with support Σ?

i (a), and a measure on the set of

investors’ types, ni(da), with support N ? ⊆ A× I, satisfying (1)-(6).

3.2 Characterization

As is typically true in competitive search models, there is a dual formulation of the problem accord-
ing to which an investor’s expected utility is maximized with respect to trade size, q, intermediation
fee, φ, and market tightness, θ, subject to dealers’ zero-profit condition, [α(θ)/θ]φ = γ. This dual
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problem can be represented conveniently by the following flow Bellman equation:

rV ?
i (a, p) = ui(a) + δ

∑
j∈I

πij
[
V ?
j (a, p)− V ?

i (a, p)
]

+ max
q≥−a,θ,φ

{
α(θ) [V ?

i (a+ q, p)− pq − φ− V ?
i (a, p)]

}
subject to

α(θ)

θ
φ = γ.

If a utility-maximizing contract, (q, φ, θ), was not offered in a candidate equilibrium, a dealer
would have a profitable deviation by offering the same contract with a slightly higher fee, thereby
attracting the type of investors for whom this contract is optimal. Substituting the zero profits into
the Bellman equation, we obtain

Proposition 1. In any equilibrium, for all (i, a) ∈ N ?, investors’ value functions solve

V ?
i (a, p) = max

(q≥−a,θ)∈Q×R+

ui(a) + δ
∑

j∈I πijV
?
j (a, p) + α(θ) [V ?

i (a+ q, p)− pq]− γθ
r + δ + α(θ)

. (7)

Moreover, there exists a unique collection {V ?
i (a, p)}i∈I , defined over S = I × A × (0,∞), that

satisfy (7). Each V ?
i (a, p) is continuous in (a, p) and strictly increasing in a.

The proposition offers an alternative representation of the Bellman equations, which is useful
for at least two reasons. First, it allows us to solve for investors’ values at each point in the support
of the distribution of investors’ types, N ?, without having to characterize Σ?, the set of contracts
offered in equilibrium. Second, it shows that our model is observationally equivalent to one in
which investors directly choose their order-execution intensity, µ ≡ α(θ), but have to incur a
convex cost γα−1(µ). Put differently, the outcome of competition and free entry is that dealers
act “as if” they knew investors’ private utility type and were making an optimal search intensity
decision on their behalf. 12

Next, we proceed to establish the existence of an equilibrium. First, note that the asset hold-
ings maximizing (7) all belong to arg maxa′ {Vi(a′, p)− pa′}, so they are independent of a, the
investor’s current asset holdings.13 For simplicity, let us assume for now that this program has a

12Note, however, that the present competitive search model is not equivalent to a random search model with endo-
geneous search intensities and bargaining. Indeed, under ex post bargaining, the choice of search intensities generates
externalities that are not internalized by the pricing mechanism. In contrast, the outcome of a model with endogeneous
search intensities but competitive price posting would typically be constrained efficient. For a model with endogeneous
search intensities under ex post bargaining and competitive price posting, see Lagos and Rocheteau (2007).

13If zero is an optimal market tightness in (7), then optimal asset holdings can take any value on the real line, so
they don’t depend on a either.
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unique maximizer, which we denote by ai.14 We look for a stationary equilibrium in which the sup-
port of the distribution of types is I × {a1, . . . , aI}. This is intuitive since, at his first opportunity
to trade, an investor chooses asset holdings in the support {a1, . . . , aI}, and then continues to keep
his holdings in this support forever after. Let θi(aj) be the maximizer of the Bellman equation, (7),
when the investor’s type is (i, aj). The inflow-outflow equations for the steady-state distribution,
ni(aj), are

0 = δ
∑
k∈I

nk(aj)πki − δni(aj)− α[θi(aj)]ni(aj), if i 6= j; (8)

0 = δ
∑
k∈I

nk(ai)πki − δni(aj) +
∑
k∈I

α[θi(ak)]ni(ak), if i = j; (9)

1 =
∑

(i,j)∈∈I2
ni(aj). (10)

Since finite-state Markov chains have at least one ergodic distribution, it follows that this system of
equations has at least one solution (see Lemma 4 in the Appendix). Given any solution, we define
the aggregate demand as D(p) =

∑
i,j ni(aj)aj .

Proposition 2. There exists some p ∈ R+ such that the A ∈ D(p).

The inter-dealer price identified in Proposition 2 is the basis of a competitive search equilib-
rium. The first part of the proposition is proved using the Intermediate Value Theorem. Having
found a candidate market-clearing price, the second part of the proposition requires constructing
the rest of the equilibrium objects in such a way that all conditions of Definition 1 are satisfied.
The construction goes as follows. Proposition 2 delivers the equilibrium price, investors’ optimal
asset holdings and market tightnesses, {ai}i∈I and {θi(aj)}(i,j)∈I2 , and the distribution of types
{ni(aj)}. From these conditions, along with the free-entry condition, (1), we define trade sizes
and intermediation fees:

qi(aj) = ai − aj (11)

φi(aj) = γ
θi(aj)

α[θi(aj)]
. (12)

The order submission strategy of an investor in state (i, aj) is to direct his order flow toward the
sub-market σi(aj).15 The set Σ? is then made up of all σi(aj). The value functions are defined as

14Our proof in the appendix deals with the general case in which there may be multiple maximizers.
15Note that the equilibrium price equates aggregate demand and supply, but does not explicitly equate “buy” and

“sell” order flows in the inter-dealer market. As we show in Appendix A.3, this latter condition is actually implied by
the steady-state conditions (8) and (9).
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the solution of the Bellman equation:

V ?
i (a) = max

k,` ∈ I2
Vi [a, σk(a`), θk(a`)] ,

where Vi(a, σ, θ) is defined as in (2). Note that, by construction, for (i, aj) ∈ N ?, V ?
i (aj) coincides

with the solution of our auxiliary Bellman equation (7) evaluated at (i, aj). Finally, we let the
market tightness associated with any contract σ 6= 0 be defined as in equation (3).

To conclude this section we recapitulate some key properties of the competitive search equilib-
rium of an OTC market. First, from the free-entry condition of dealers, in any active sub-market

α (θ)

θ
φ = γ.

From the dual formulation of a competitive search equilibrium, this condition implies that investors
face a trade-off between the cost at which they can readjust their asset holdings, φ, and the order
execution time, 1/α(θ). As suggested by Boehmer (2005) and others, this trade-off seems relevant
in practice across trading venues. Second, from the first-order condition of the dual problem and
the free-entry condition of dealers,

θi(aj)α
′[θi(aj)]

α[θi(aj)]
[V ?
i (ai, p)− p(ai − aj)− V ?

i (aj, p)] =
γθi(aj)

α[θi(aj)]
= φi(aj).

The dealer’s fee is a fraction θα′ (θ) /α (θ) of the match surplus, where this fraction is equal to
the elasticity of the matching function. This corresponds to the Hosios (1990) condition for effi-
ciency in markets with search frictions. Relative to models with ex post bargaining, such as those
of DGP and LR, where dealers’ bargaining power is exogeneous, here the dealers’ share of the
match surplus is endogeneous and equal to the contribution of dealers to the matching process.
This means that the externalities associated with dealers’ entry decision are internalized through
the pricing mechanism. An additional consequence of the competitive search formulation is that
investors are not subject to a holdup problem when choosing asset holdings; in particular, for a
given θ, competition between dealers makes it “as if” investors have an un-intermediated access
to the market. Third, the number of active sub-markets will reflect the endogeneous heterogeneity
across investors since, according to the dual formulation, each investor opens a sub-market that
is optimal given his state (i, aj) with j 6= i. Hence, our model offers a rationalization for a high
degree of market segmentation.16

16Pagnotta and Philippon (2011) argue that “a major feature of the new trading landscape is fragmentation,” where
market fragmentation corresponds to the phenomenon according to which securities are now traded in multiple markets
with different characteristics in terms of quality of execution and trading costs.
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Table 1: Parameter Values
Parameter Value
Asset supply A 0.75
Discount rate r 0.05
Elasticity of utility function σ 0.6
Utility types {ω1, ω2, ω3} {0.35, 0.5, 0.65}
Type switching intensity δ 5.5
Transition probabilities {π1, π2, π3} {0.0455, 0.9092, 0.0455}
Matching intensity λ 500
Elasticity of matching function ε 0.9

To illustrate some of the main features of a steady-state equilibrium, we parameterize and solve
the model for the simple case of I = 3. We adopt isoelastic specifications for the utility and the
matching functions, ui(a) = ωi

a1−σ

1−σ and α(θ) = λθε. Given the purpose of this exercise, the
parameter values (reported in Table 1) are not calibrated to any particular moments, but instead are
chosen to yield implications relatively similar to those of Duffie, Gârleanu, and Pedersen (2007)
for trading speeds, prices, fees, and allocations.

Table 2 reports some statistics related to the joint distribution of preference types and asset
holdings, execution speeds, and fees. More specifically, the first row reports the fraction of in-
vestors with preference shock i who have asset holdings a1, a2, and a3, for i ∈ {1, 2, 3}; the
second row reports the average amount of time it takes each of these types of agents to trade; and
the third and fourth rows, respectively, report the total fee and the fee per unit traded (both as a
fraction of the equilibrium price) that each type of agent pays. Consider, for example, agents of
type i = 1. Those with asset holdings a3 have larger gains from contacting a dealer, relative to
those with asset holdings a2, and hence trade in a sub-market in which trades are executed faster.
This affects the steady-state joint distribution of preferences and asset holdings: since they trade
more quickly, on average, there are fewer agents in state i = 1 with asset holdings a3 than there are
with asset holdings a2. Notice that this effect on the steady-state distribution—and its subsequent
effects on asset prices, trading volume, misallocation, and turnover–is absent in a framework in
which meetings between a randomly selected investor and a dealer occur at a constant rate. In
addition to creating dispersion in execution times, heterogeneity in the desire to trade also pro-
duces dispersion in trading fees. In particular, those agents with more incentive to trade pay higher
fees in order to trade more quickly. However, taking into account that these agents trade a larger
quantity of the asset, the fee per unit is actually falling with the quantity traded in this example, as
in the data. We discuss this last point in Section 4.2 and contrast it with the predictions of existing
models.
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Table 2: Statistics
(Type i, Asset holding aj) (1, a1) (1, a2) (1, a3) (2, a1) (2, a2) (2, a3) (3, a1) (3, a2) (3, a3)

Fraction of type i holding aj 0.942 0.057 0.001 0.001 0.997 0.002 0.000 0.06 0.94

Trading time (days) ∞ 3 0.5 1.5 ∞ 1.72 0.5 3 ∞

Total trading fee (bp) 0 1.3 1.7 1.48 0 1.43 1.7 1.4 0

Trading fee per unit (bp) 0 3.1 1.7 3.2 0 2.7 1.7 2.7 0

4 Liquidity and prices in two special cases

In the remainder of the paper we focus on two special cases: (i) The case where asset holdings are
restricted toA = {0, 1} and the set of investors’ private valuations is I = {`, h}, but the matching
function is general; and (ii) the case where asset holdings are unrestricted in A = R+ and the set
of private valuations is I ⊂ N, but the matching function is Leontief. The first case will allow us to
focus on order flows, speeds of execution, and trading costs across markets, taking as given asset
positions. The second case will generate speeds of execution that are constant across sub-markets,
allowing us to focus on the endogeneous distribution of asset holdings.

4.1 Order flows, speeds of execution, and trading costs

In this section we consider a setting with restricted asset holdings, A = {0, 1}, and two utility
types, I = {`, h}, with respective utility flows for the asset, u` < uh.17 Without loss of generality,
we assume that π`,h = π` and πh,` = πh. First, we will provide a characterization of equilibrium
objects and show existence and uniqueness. Then, we derive analytical comparative statics for the
limit economy with small search frictions. Finally, for large frictions, we offer comparative statics
by way of a numerical example.

Bellman equations. Let ∆Vi ≡ Vi(1) − Vi(0) denote the reservation value of the asset by an
investor of type i ∈ {`, h}, i.e., the expected utility of owning the asset minus the expected utility

17In order to extend our existence proof to the case with restricted asset holdings, we make two additional as-
sumptions on the finite grid A ⊂ R+. First, to ensure that investors can hold all the asset supply, we assume that
maxA > A. Second, to keep prices bounded we assume that u1(minA) is bounded away from −∞.
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of being without the asset. From Proposition 1, ∆Vh solves the following flow Bellman equation:

r∆Vh = uh + δπ` (∆V` −∆Vh) + max
θ≥0
{α(θ) (p−∆Vh)− γθ}

− max
θ≥0
{α(θ) (∆Vh − p)− γθ} . (13)

The right side of (13) decomposes the flow reservation value into four terms. The first term, uh,
is the flow value of owning the asset. The second term captures the fact that, with intensity δπ`,
a high-valuation investor switches to a low type, in which case his reservation value drops from
∆Vh to ∆V`. The third and fourth terms are, respectively, the flow values of searching to sell and
buy. The flow value of searching to sell enters the Bellman equation with a positive sign because
this option is available to the investor only if he already owns the asset. Therefore, it raises the net
utility of owning an asset. By contrast, the flow value of searching to buy enters with a negative
sign because this option is only available to investors who do not own the asset.

Similarly, the Bellman equation for ∆V` is

r∆V` = u` + δπh (∆Vh −∆V`) + max
θ
{α(θ) (p−∆V`)− γθ}

− max
θ
{α(θ) (∆V` − p)− γθ} . (14)

Lemma 1. In any equilibrium ∆Vh > ∆V` and p ∈ (∆V`,∆Vh).

The first result of Lemma 1 states that high-valuation investors have strictly higher reserva-
tion values than low-valuation investors, which follows from the assumption that their utility flow
from holding the asset is strictly larger. The second result states that the equilibrium price must
lie between the reservation value of high and low types, since otherwise the market would not
clear. A consequence of these two results is that, in equilibrium, low-valuation investors have
strict incentives to sell and high-valuation investors have strict incentives to buy.

The properties reported in Lemma 1 also hold in DGP, except for one key difference. In DGP,
the inter-dealer market price is, generically, at a corner, p ∈ {∆V`,∆Vh}. This result arises because
buyers and sellers contact dealers at the same rate, so that p must adjust to make investors on the
long side of the market indifferent between trading and not. If πh > A, then buyers are on the
long side and p = ∆Vh. Conversely, if πh < A, then sellers are on the long side and p = ∆V`.
Such prices, {∆V`,∆Vh}, cannot be the basis of an equilibrium under competition for order flows:
indeed, if investors on one side of the market were indifferent between trading or not at the inter-
dealer price, i.e., p = ∆Vi for some i ∈ {`, h}, then these investors would not be willing to pay
any intermediation fee and dealers would have no incentives to make a market for such investors.
Therefore, under competitive search the price has to lie strictly between ∆V` and ∆Vh, so that
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dealers can break even with both types and the market can clear.18

With this result in mind, we define Sh ≡ ∆Vh− p as the total surplus generated by a purchase,
i.e., the difference between the reservation value of a buyer, ∆Vh, and the reservation value of
a dealer, p. The intermediation fee is set so as to share the total surplus between the buyer, who
receives Sh−φh, and the dealer, who receives φh. Symmetrically, let S` ≡ p−∆V` denote the total
surplus generated by a sale. The purchase and sale surpluses solve the following pair of Bellman
equations:

rSh = uh − rp− δπ` (Sh + S`)−max
θ
{α(θ)Sh − γθ} (15)

rS` = rp− u` − δπh (Sh + S`)−max
θ
{α(θ)S` − γθ} . (16)

To solve this system of equations for a given p, we define:

Γ(S) = (r + δ)S + max
θ
{α(θ)S − γθ} .

The function, Γ(S), is twice continuously differentiable, strictly increasing, strictly convex, and
satisfies Γ(0) = 0 and Γ(∞) = 0. Using the function Γ(S), the system (15)-(16) can be written

Γ(Sh) + Γ(S`) = uh − u` (17)

Γ(Sh) = uh − rp+ (1− δπ`)Sh − δπ`S`. (18)

Equations (17) and (18) implicitly define two strictly decreasing, strictly concave, and contin-
uously differentiable functions Sh = F (S`) and Sh = G(S`), respectively. The slopes of these
functions are

F ′(S`) = − r + δ + α(θ`)

r + δ + α(θh)
< G′(S`) = − δπ`

r + δπ` + α(θh)
,

where θ` and θh are the maximizers of the programs defining Γ(S`) and Γ(Sh), i.e.,

α′(θi)Si = γ for i ∈ {`, h}. (19)

The ranking of these derivatives implies that if a solution to F (S`) = G(S`) exists, then it must be
unique. It also implies that F (S`) crosses G(S`) from above at any intersection, as illustrated in
Figure 1. Using these results, we now address the issue of existence.

18A related result occurs in the model of Gavazza (2011). There is a continuous distribution of private valuations
of the asset across investors, and participation in the market is costly. As a result, there are two thresholds for private
valuations: one above which agents participate as buyers and one below which they participate as sellers. Participation
requires that agents get a positive surplus from a trade. So if trades were intermediated by dealers, as in DGP, the
inter-dealer market price would satisfy the same condition as in our model.
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Figure 1: The determination of S` and Sh given p.

Lemma 2. There exist p` < ph such that the system (15)-(16) has a strictly positive solution,

[S`(p), Sh(p)], if and only if p ∈ (p`, ph). This solution is unique. Moreover, S`(p) is strictly

increasing in p, Sh(p) is strictly decreasing in p, and S`(p`) = Sh(ph) = 0.

According to Lemma 2, for a solution to exist the price must be neither too high nor too low,
so that both buy orders and sell orders generate strictly positive surpluses. Moreover, the surplus
from selling the asset is increasing in the price p ∈ (p`, ph) while the surplus from buying the asset
is decreasing in p. Recall, from (19), that there is less entry of dealers on a given side of the market
if the corresponding trading surplus is lower. Thus, θh decreases with p while θ` increases with p.

Market clearing. We now solve for the distribution of investors across types and ensure that
the asset market clears. First, since p ∈ (∆V`,∆Vh) from Lemma 1, the equilibrium buy- and
sell-order flows must be equal:

α(θh)nh(0) = α(θ`)n`(1). (20)

The left side is the buy-order flow originating from (h, 0)-type investors—investors with a high
valuation for the asset but who do not own it—and the right side is the sell-order flow originating
from (`, 1)-type investors—investors who own the asset but have a low valuation for it. We derive
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the measure of buyers, nh(0), from the following steady-state condition:

δπhn`(0) = δπ`nh(0) + α(θh)nh(0). (21)

The left side is the inflow coming from (`, 0)-investors who change type. The first and second terms
on the right side are the outflows of type (h, 0)-investors who switch to low type with intensity δπ`
or who trade with intensity α(θh), respectively. Similarly, the steady-state equation for the measure
of (`, 0)-type investors is

δπ`nh(0) + α(θ`)n`(1) = δπhn`(0),

which, from (20), can be rewritten

δπ`nh(0) + α(θh)nh(0) = δπhn`(0). (22)

Equations (21)-(22) can be interpreted as defining the ergodic distribution of a two-state Markov
chain, for which (h, 0)-type investors transition to type (`, 0) at Poisson rate δπ` + α(θh), and
(`, 0)-type investors transition to type (h, 0) at Poisson rate δπh. Together with the market-clearing
condition, nh(0) + n`(0) = 1− A, these steady-state conditions imply that

nh(0) = (1− A)
δπh

δ + α(θh)
. (23)

By symmetry,

n`(1) = A
δπ`

δ + α(θ`)
. (24)

Thus, the equality of order flows, (20), can be rewritten as

(1− A)
δπhα(θh)

δ + α(θh)
= A

δπ`α(θ`)

δ + α(θ`)
. (25)

Recall from Lemma 2 that θh decreases with p while θ` increases with p. Therefore, one easily
sees that the left side of (25) is strictly decreasing and equal to zero at p = ph, while the right
side is strictly increasing and equal to zero at p = p`. Consequently, there exists a unique price
p ∈ (p`, ph) equating buy- and sell-order flows. Combining these observations with Lemma 1 we
obtain the following result.

Proposition 3. There exists a unique competitive search equilibrium.

The remaining equilibrium objects can be found using the same steps as in Section 3.2. In
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particular, the trading fees are

φh =
θhα

′(θh)

α(θh)
Sh

φ` =
θ`α
′(θ`)

α(θ`)
S`.

One recognizes here the Hosios (1990) condition for efficiency in economies with search frictions.
The trading fee that a dealer charges for a buy-order, φh, is equal to the dealer’s contribution to the
sale surplus, as defined by the elasticity of the matching function. This elasticity determines the
share of the trade surplus that a dealer appropriates, and hence it measures the implicit bargaining
power of dealers when they trade. Note that, unless the matching function has constant elasticity
(such as in the Cobb-Douglas matching function) or unless θ` = θh, the implicit bargaining power
of dealers will differ depending on whether they trade with buyers or sellers. This asymmetry arises
because intermediation on both sides of the market implies that there are two separate matching
processes: one between dealers and buyers, and one between dealers and sellers. As a result the
Hosios condition must apply separately to each one of them.

Comparative statics near the Walrasian limit. In order to derive analytical comparative statics,
it is useful to study the limiting equilibrium as search frictions vanish. To do this, we first assume
that investors contact dealers at intensity λα(θ), and then we drive the search efficiency parameter,
λ, to +∞. We focus on the case πh > A, so that high-valuation investors are on the long side
of the market (a similar analysis applies to πh < A). In this case, there are more high-valuation
agents than assets. Hence, in the frictionless benchmark, the price adjusts so that high-valuation
investors are indifferent between buying or not, and the price and allocations are

p? =
uh
r
, n?h(0) = πh − A, and n?`(1) = 0.

The intermediation fees are implicitly equal to zero. Our main proposition characterizes equilib-
rium objects near this Walrasian limit.

Proposition 4. Let the matching technology be λα(θ) and assume that πh > A. As λ → ∞, the

price, intermediation fees, and the measures of buyers and sellers admit the following first-order
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approximation:

p = p? − δπ`s
?
`

λr
+ o

(
1

λ

)
(26)

φh = o

(
1

λ

)
(27)

φ` =
θ?`α

′(θ?` )

α(θ?` )

s?`
λ

+ o

(
1

λ

)
(28)

nh(0) = n?h(0) +
Aδπ`
λα(θ?` )

+ o

(
1

λ

)
(29)

n`(1) = n?`(1) +
Aδπ`
λα(θ?` )

+ o

(
1

λ

)
, (30)

where o(1/λ) is such that limλ→∞ λo(1/λ) = 0, while s?` = limλ→∞ λS` and θ?` = limλ→∞ θ`

jointly solve maxθ {α(θ)s?` − γθ} = uh−u`. The market tightness for buyers satisfies limλ→∞ θh =

0, and the purchase surplus satisfies limλ→∞ λSh = 0.

As λ → ∞, the different components of the competitive search equilibrium converge toward
their Walrasian counterparts. Sellers, who are on the short side of the market, trade almost in-
stantly: market tightness converges to some strictly positive limit, θ?` , so that the average execution
time, 1/λα(θ`), converges to zero. Buyers, who are on the long side, trade with a non-zero asymp-
totic execution time. This sharp asymmetry in execution times is necessary to keep the buy- and
sell-order flows balanced in the limit.

Proposition 4 allows for analytical comparative statics of various equilibrium objects of inter-
est. For example, an increase in the gains from trade, uh − u`, causes the asymptotic sale surplus,
s?` , to increase. As a result, the asymptotic price discount, limλ(p? − p)/p?, increases because
buyers expect that they will lose more utility upon switching to a low type. The increase in the
sale surplus represents a profit opportunity for dealers. By free entry, the supply of intermediation
services, θ?` , increases, which implies that investors can trade faster. As a result, the asymptotic
measures of buyers and sellers, nh(0) and n`(1), decrease. By the same token, when θ?` increases,
intermediaries receive fewer trading opportunities on average, so the zero-profit condition requires
that intermediation fees, φ?` = limλφ`, go up.

An increase in the flow entry cost of dealers, γ, makes dealers more reluctant to post contracts
and hence the asymptotic tightness, θ?` , decreases. As a result, the measures of buyers and sellers
increase, the asymptotic sale surplus s?` increases, and so does the price discount. If the elasticity
of the matching function is constant—e.g., the Cobb-Douglas case—intermediation fees increase.

In response to an increase in the intensity of switching to the low valuation, δπ`, buyers an-
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ticipate that they may switch type soon after purchasing the asset. This lowers their willingness
to pay for the asset, so the inter-dealer price decreases. Moreover, when investors switch to the
low valuation more quickly after purchasing the asset, the asymptotic measure of sellers, n`(1),
increases.19

Next, we consider the relationship between the price discount and the elasticity of the matching
function. For this we focus on the special case of a Cobb-Douglas matching function.

Corollary 1. Suppose α(θ) = θη. Then,

θ?` =
η

1− η
∆u

γ
and s?` =

(
γ

η

)η (
uh − u`
1− η

)1−η

.

Thus, the asymptotic market tightness for sellers, θ?` , is an increasing function of η and the asymp-

totic seller’s surplus, s?` , is a hump-shaped function of η. As a consequence, the seller’s asymptotic

trading fee and the asymptotic price discount are both hump-shaped functions of the matching

elasticity, η.

To gain intuition for the effect of the elasticity, η, note that the equation defining s?` can be
written as

u` + max
θ
{−γθ + α(θ)s} = uh = rp?.

This equation is an asymptotic indifference condition. It states that the asymptotic sale surplus, s?` ,
must adjust so that a seller with a trading opportunity is indifferent between continuing search (on
the left side) and selling his asset (on the right side).

One sees that, when η → 0, then α(θ) = θη converges to 1 if θ > 0 and to zero if θ = 0. That
is, an arbitrarily small market tightness, θ, is sufficient to attain the maximum search intensity of
1. It is thus intuitive that, in equilibrium, market tightness is approximately zero and dealers incur
almost no contract posting cost, α(θ) is approximately one, and the sale surplus is approximately
equal to uh − u`.

When η → 1, then the search technology becomes approximately linear. The seller’s surplus
must then converge to the search cost γ: if it were larger, the utility of continuing search would be
unbounded, and if it were smaller it would be zero. Note that, to keep the utility of continuing to
search strictly positive, the market tightness must go to infinity.

We can now discuss comparative statics with respect to η. By the envelope condition, the
derivative of the utility of continuing to search with respect to η is equal to s?` log(θ?` ) (θ?` )

η , which

19One may have the impression that Proposition 4 implies the counterintuitive result that nh(0) increases with π`.
This, in fact, is not the case because π` also enters the leading term in the expansion: n?h(0) = πh −A = 1− π` −A.
This leading term dictates that an increase in π` decreases nh(0), as intuition suggests.
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Figure 2: Numerical comparative statics for the market tightness.

is negative for small θ?` and positive for large θ?` . Graphically, an increase in elasticity “rotates” the
search technology around the point (1, 1). It makes it less efficient for small θ and more efficient
for large θ.

Now assume that η is small. Then in equilibrium θ is small, implying that an increase in η
will reduce search efficiency and, by the indifference condition, increase the sale surplus, s?` . Vice
versa, when η is large, then in equilibrium θ is very large, implying that an increase in elasticity, η,
will increase search efficiency and hence reduce the sale surplus, s?` .

Comparative statics when frictions are large: A numerical example. We investigate equi-
libria when search frictions are large through a numerical example. We adopt a Cobb-Douglas
matching function, α(θ) = λθη, normalize uh = 1, and set u` = 1 − κ. We take the following
parameter values: r = 0.01, δ = 1, πh = 0.52, γ = 0.015, λ = 1, η = 0.5, κ = 0.1, and A = 0.5.
The six panels of Figures 2, 3, and 4 illustrate how market tightness, dealers’ intermediation fees,
and the composition of buyers and sellers in the market, respectively, respond to changes in funda-
mentals. The plain curves in each panel plot the variables associated with the buyers’ sub-market,
θh, φh, and nh(0), while the dashed curves plot variables associated with the sellers’ sub-market,
θ`, φ`, and n`(0).
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Figure 3: Numerical comparative statics for the intermediation fees.

For given market tightness, as πh increases, the number of buyers in the market, nh(0) =

(1−A)δπh/[r+δ+λ(θh)
η], increases while the number of sellers, n`(1) = Aδπ`/[r+δ+λ(θ`)

η],
decreases. In order for buyers’ and sellers’ order flows to be equal, i.e., α(θh)nh(0) = α(θ`)n`(1),
θh must decrease and θ` must increase. This means that the speed of execution of a buy-order will
fall while the speed of execution of a sell-order will increase. When πh = A = 1/2, the market
is symmetric and hence θh = θ`, i.e., execution delays are the same on both sides of the market.
Intermediation fees, φh = γ(θ`)

1−η/λ and φ` = γ(θh)
1−η/λ, follow a similar pattern as market

tightness.
The parameter η represents both the contribution of dealers in the matching process and the

share of the match surplus received by dealers, φh = ηSh and φ` = ηS`. As η increases dealers
have a higher contribution in the matching process and hence it is optimal to raise market tightness
in both sub-markets. Intermediation fees are determined by the free-entry condition α(θ)

θ
φ = γ.

For given α, the fact that θ increases implies that dealers’ order flow, α(θ)/θ, decreases. In order
to cover their entry cost, dealers must receive higher fees. But for given θ, a higher η means that
congestion effects are smaller (e.g., when η = 1 there is no congestion effect for dealers, i.e.,
α(θ)/θ is independent of θ). As a result of these two opposite effects, intermediation fees can vary
in a non-monotonic fashion with η.
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Figure 4: Numerical comparative statics for the measures of buyers and sellers.

The parameter δ in the left panel of the second row represents the frequency of the preference
shocks that lead investors to reallocate their portfolios. If δ is very large, investors are likely to
receive preference shocks before they can get access to dealers. As a result, there is a low demand
for intermediation services, and both market tightness and intermediation fees are low. At the other
extreme, for a given market tightness, if δ is very low then most investors have time to meet a dealer
before being hit by their next preference shock. Given that πh = 0.52 > A = 0.5, nh(0) remains
positive while n`(1) goes to 0. For the order flows to be equal, θh must become small and θ` must
become large. The intermediation fees follow a similar pattern as market tightness. In particular,
the intermediation fee in the buyers’ sub-market, φh, is a hump-shaped function of δ.

From the right panel in the second row, we see that market tightness and fees are increasing
with the size of the gains from trade, uh−u`. The bottom panels allow us to determine how reduced
frictions, more efficient matching, or lower entry costs for dealers affect market outcomes. As γ
decreases, or as λ increases, market tightness increases and intermediation fees decrease.

Finally, in Figure 5 we plot the price discount of the asset, defined as (p∗−p)/p∗ = 1−rp. The
findings are consistent with the ones obtained in Proposition 4. In particular, the price discount is
a hump-shaped function of the dealer’s contribution to the matching process, η. It goes to 0 as γ
tends to 0 or as λ goes to infinity.
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Figure 5: Numerical comparative statics for the price discount of the asset.

4.2 Asset holdings, market fragmentation, and trading costs

In the previous section, we restricted investors’ asset holdings in order to focus on investors’
choices of trading speeds and trading costs. In this section we adopt a special matching tech-
nology so that market tightness and average execution speeds are equal across active sub-markets,
and we focus on the equilibrium distribution of asset holdings.

More specifically, we adopt the same environment as the one described in Section 2 but we
suppose that α(θ) = µmin{1, θ}, with µ > 0, so that there is a strict complementarity between
the number of dealers and the number of orders processed. One interpretation of this technological
assumption is that, if θ > 1, each order must be matched to an individual dealer, and the average
time for a dealer to process an order is 1/µ. If θ < 1, there are not enough dealers to handle all of
the orders. In this case, orders are randomly assigned to dealers, so that each order is matched to
a dealer with probability θ.20 For simplicity, we also assume that πi,j ≡ πj for all i, j ∈ I2, with∑

j∈I πj = 1, so that preference shocks are i.i.d. across investors.

20It should be noted that this matching technology does not satisfy the assumptions imposed earlier: it is not
everywhere strictly increasing and continuously differentiable, and α′(0) = µ < ∞. In Appendix A.9, we verify
that the properties of equilibrium reported in Section 3 remain true under this specification.

26



Active sub-markets. When an investor of type i with asset holdings a contacts a dealer and
chooses a new portfolio a′, the utility gain is

Λi(a
′, a) = V ?

i (a′)− V ?
i (a)− p(a′ − a),

less any fee charged by the dealer. Therefore, as in the benchmark model, an investor of type i
with asset holdings a chooses a sub-market that solves

max
θ,a′,φ
{µmin{1, θ} [Λi(a

′, a)− φ]}

subject to the free-entry condition of dealers

µmin

{
1,

1

θ

}
φ ≤ γ, with equality if θ > 0.

Substituting the constraint into the objective, the optimal choice of θ for a type i investor with asset
holdings a is

θi(a) =


0

[0, 1]

1

if max
a′

Λi(a
′, a)

<

=

>

γ/µ. (31)

In words, given the prevailing asset price p, an investor of type i with asset holdings a will rebal-
ance his portfolio in equilibrium if the (maximized) gain from doing so exceeds the expected cost
incurred by a dealer to process the transaction, which is simply the flow cost γ multiplied by the
average time to execute the order 1/µ. Note that dealers’ entry generates no congestion on other
dealers—their matching rate is µ—as long as θ ≤ 1. As a result, active sub-markets will typically
have θi(a) = 1. In each of these active sub-markets, a contract is posted with a fee,

φi = φ ≡ γ

µ
, (32)

which ensures that dealers earn zero profits, along with a quantity qi(a) = a′i − a, where

ai = arg max
a′≥0

Λi(a
′, a). (33)

Taken together, the results above imply that the Bellman equation for an investor of type i with
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asset holdings a can be rewritten as

rV ?
i (a) = ui(a) + δ

∑
k

πk[V
?
k (a)− V ?

i (a)] + µmax

{
0,max

a′

[
Λi(a

′, a)− γ

µ

]}
.

From the viewpoint of an investor, it is as if trading opportunities arrive at rate µ, and they can
choose whether or not to trade at a cost φ = γ/µ. In this sense, our model is formally equivalent to
a model of trade with fixed adjustment costs, as in Lo et al. (2004), though the costs of rebalancing
one’s portfolio arise endogenously in our model.

As in most models with adjustment costs, the equilibrium in our environment could involve
“inaction regions,” where an investor of type i who holds aj for j 6= i chooses not to submit a trade
order because the fee required to compensate a dealer for executing this order exceeds the expected
gains to the investor. In what follows, we will focus on equilibria in which investors who hold their
optimal portfolio always rebalance their asset holdings after receiving a preference shock. As we
establish below, this allows us to sidestep the calculation of value functions for all a ∈ R+, and
instead characterize equilibrium asset holdings using a simple variational argument.

Optimal asset holdings. Before characterizing the asset demand functions in our candidate equi-
librium, we sketch the logic of our approach (formal proofs are in Appendix A.9). Let Ni ⊂ R+

denote the inaction region for an investor of type i, i.e., the set of values of a such that an investor
of type i with asset holdings in this set would choose not to trade. Given γ/µ sufficiently small,
we can establish that

⋂
i∈I Ni = ∅, so that an investor of type i with a ∈ Ni will surely trade

if he receives a preference shock j 6= i. Given this behavior, there exists a unique ai ∈ Ni that
maximizes the payoffs of a type i investor.

To characterize these optimal asset holdings, note that ai is a solution to (33), for each i ∈ I,
where

rV ?
i (a) = ui(a) + δ

∑
k

πk[V
?
k (a)− V ?

i (a)] (34)

if a ∈ Ni and

rV ?
i (a) = ui(a) + δ

∑
k

πk[V
?
k (a)− V ?

i (a)] + µmax
a′

[
Λi(a

′, a)− γ

µ

]
(35)

otherwise. One can manipulate (34) and (35) to see that, for all a in the inaction region Ni, the net
benefit to a type i investor from acquiring portfolio a, Vi(a)−pa, is a positive affine transformation
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of
(r + µ) [ui(a)− rpai] + δ

∑
πk [uk(a)− rpa]

(r + µ) (r + δ)− δµπj
. (36)

Since any optimal asset holding must belong to the inaction region Ni, it follows that ai must
satisfy the first-order condition for Vi(a)− pa to be maximized:

(r + µ)u′i(ai) + δ
∑
πku

′
k(ai)

r + µ+ δ
= rp. (37)

Note that this equation uniquely determines the optimal asset holding for an investor of type i,
ai. Studying the left side of (37), we see that the demand of an investor of type i depends on his
current marginal utility and his expected future marginal utility, weighted by the parameters r, µ,
and δ. In particular, an investor places more weight on his current value of marginal utility when
he is impatient, when orders are executed quickly, and when he expects to stay in his current state
for a long time.21

Moreover, if u′i(ai) >
∑

k πku
′
k(ai), then ∂ai/∂µ > 0; that is, the investor’s demand for the

asset increases as trading frictions are reduced. Intuitively, when an investor’s current marginal
utility is relatively high, an increase in trading speed will cause him to take a larger position now
since it will be easier for him to unwind this position in the event of an adverse preference shock.
Conversely, if u′i(ai) <

∑
k πku

′
k(ai), i.e., if the investor’s marginal utility in the current state is

below average, then ∂ai/∂µ < 0. More generally, as in Lagos and Rocheteau (2009), faster trading
causes investors to take more extreme positions, while slower trading gives agents incentives to
choose a more moderate portfolio that will not be too far from the optimal after any preference
shock. Finally, as µ goes to infinity, the optimal portfolio tends to the value of ai that solves
u′i(ai) = rp, which is the portfolio choice that would prevail in a competitive market where all
trades can be executed instantaneously.

The steady-state distribution and market-clearing conditions. Given the results above, asset
holdings in the candidate equilibrium can be described by a list {ai}Ii=1. Letting nij denote the

21The asset demand functions characterized in (37) are closely related to the asset demand functions derived in LR,
where investors must bargain with dealers over the quantity to be traded and the corresponding intermediation fee. In
particular, our asset demand functions correspond to those of LR when dealers have zero bargaining power. Inter-
estingly, LR show that investors’ portfolio decisions are socially inefficient whenever dealers have positive bargaining
power. Hence, the competitive search mechanism studied in this paper corrects the inefficiencies that arise from an
environment with random search and bargaining; intuitively, competition between dealers for order flow ensures that
investors receive exactly their marginal gain from readjusting their portfolio.
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measure of agents of type i with asset holdings aj , the steady-state distribution must satisfy

δπi
∑
k∈I

nkj − δnij − µnij = 0, for i 6= j (38)

δπi
∑
k∈I

nki + µ
∑
k 6=i

nik − δnii = 0, for i = j (39)∑
(i,j)∈I2

nij = 1. (40)

The first term in equation (38) represents the inflow of agents into state ij, with i 6= j, which only
occurs because of type-switching. The second two terms in equation (38) represent the outflow
from state ij, which occurs because of both type-switching (the second term) and trade (the third
term). Equation (39) is the steady-state condition for investors holding the optimal portfolio. In
this case, inflow can occur either when investors successfully rebalance their portfolio or when
they (luckily) receive a preference shock that corresponds to their current asset holdings. Outflow,
of course, occurs because of type-switching.

Solving, we find that
∑

j nij =
∑

j nji = πi, so that

nij =
δπiπj
µ+ δ

, for j 6= i, (41)

nii =
δπ2

i + µπi
µ+ δ

for j 6= i. (42)

Note that the distribution of probabilities across states is symmetric, nij = nji. Also, ∂nij/∂µ < 0

and ∂nij/∂δ > 0 if j 6= i, while ∂nii/∂µ > 0 and ∂nii/∂δ < 0: the measure of investors who
are matched to their desired portfolio increases with the speed of execution and decreases with the
arrival rate of preference shocks.

Turning now to the determination of the asset price in the competitive inter-dealer market, we
note that market clearing requires

∑
i,j nijai = A. Using the fact that

∑
j nij = πi, this condition

reduces to ∑
i

πiai = A. (43)

Equilibrium and comparative statics. An equilibrium such that θi(aj) = 1 for all i 6= j can
thus be defined as a list {ai}, {nij}, φ, and p that satisfy (32), (37), and (41)-(43). The individual
portfolio choices (aj) in (37) depend on p, the equilibrium price in the inter-dealer market. The
distribution of investors over portfolios and preference types is given by (41) and (42). Given these
individual demands, the market-clearing condition (43) determines a unique price. Finally, the
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choice of θi(aj) described in (32) is optimal provided that γ/µ is sufficiently small.
Using these equilibrium conditions, we can explore the model’s implications for prices, trading

activity, and allocations. For example, although we have disentangled the asset price from the
intermediation fee, one can still compute the effective price that an investor pays (or receives) per
unit of the asset he buys (or sells). Investors with asset position ai who trade quantity aj − ai

through a dealer, pay (or receive, if aj − ai is negative)

p̂ij = p+
φ

aj − ai

per unit of the asset. The difference between the prices at which investors buy and sell is sometimes
treated as a measure of market liquidity. Notice that if aj − ai > 0, then

p̂ij − p̂ji =
2φ

aj − ai
=

2γ

µ (aj − ai)
> 0. (44)

So for this typical “round trip” transaction, investors trade at a higher effective price when they
buy than when they sell. One can notice from (44) that the effective spread decreases with the size
of the order, which is in accordance with the evidence documented by Schultz (2001) and Edwards
et al. (2007) for over-the-counter markets.22

A decrease in γ, the operating costs for dealers, also causes a decrease in the bid-ask spread.
The effects of a change in µ are less obvious. On the one hand, an increase in µ has a direct effect
in reducing φ = γ/µ. On the other hand, a change in µ also affects equilibrium asset holdings and
hence the quantity traded, aj − ai. However, since the distribution of asset holdings spreads out
as µ increases, the quantity of assets traded in many individual trades tends to increase (see Lagos
and Rocheteau (2009)); in the case of I = 2, for example, it can also be checked that |a2 − a1|
increases with µ, so the bid-ask spread unambiguously decreases with µ.

The model also has implications for trading volume, which is defined as follows. The flow of
investors who can readjust their portfolios per unit of time is µ. A fraction nij of these investors
readjust their portfolio from ai to aj so that the quantity they trade is |aj − ai|. Thus, the total
volume of trade is

V =
µ

2

∑
i,j

nij |aj − ai| . (45)

An increase in µ has three distinct effects on trade volume. First, the measure of investors in any
individual state (i, j) ∈ I2 who can readjust their portfolios increases, which tends to increase trade

22Similarly, Green, Hollifield, and Schürhoff (2007) document that dealers earn lower average markups on larger
trades in the market for municipal bonds. By estimating a bargaining model they find that dealer’s bargaining power
is substantial and it decreases in trade size.
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volume. Second, the proportion 1−
∑

i nii of agents who are mismatched to their portfolio—and
hence the fraction of agents who wish to trade—decreases, which tends to reduce trade volume.
Finally, as discussed above, the distribution of asset holdings spreads out, which tends to increase
the quantity of assets traded in many individual trades, and hence increase volume. Given (41) and
(45), it is easy to check that the first two effects combined lead to an increase in V . Therefore,
when the third effect is also positive the total volume of trade unambiguously increases with µ.

We can also study some limiting cases. First, as µ → ∞, so that trades are executed instan-
taneously, we see from (32) that intermediation fees go to 0. Moreover, from (37), the individual
demand for the asset converges to the Walrasian demand, u′j(aj) = rp, and from (41)-(42) all in-
vestors hold their desired portfolios. The same is true as δ → 0, since type never changes. Finally,
as γ → 0, the intermediation fee φ→ 0. However, a decrease in γ will only have an effect on asset
prices and allocations if it causes a change in the set of active sub-markets; if the initial value of
γ was sufficiently small, so that θi(aj) = 1 for all i 6= j, then a decrease in γ has no effect on the
allocation of assets across agents or on asset prices.

5 Conclusion

We have developed a model of a two-sided asset market where trades are intermediated by dealers
and involve a time-consuming matching process. In contrast to the description of OTC markets
by DGP and LR, prices are not determined by ex post bargaining but are posted by dealers who
compete to attract order flows. This description fits some OTC markets where prices, trading
costs (e.g., bid-ask spreads), and execution times are made public, allowing dealers to achieve
commitment through reputation.

We have shown existence of equilibrium, and uniqueness for some special cases, and we have
characterized some key properties of equilibrium outcomes. First, under competitive search, in-
vestors face a trade-off between trading costs and speeds of execution. Investors who would gain
the most from readjusting their asset holdings will trade faster and at a higher cost. Second, the
asset market is endogenously segmented in the sense that investors in different states will trade at
different speeds and different costs. In the simple case where buyers and sellers are homogeneous
(see, e.g., DGP) speeds of execution of buy and sell orders as well as trading fees can be asym-
metric. Third, dealers’ bargaining power is endogenous and is linked to the contribution of dealers
to the matching process. As a result, dealers’ bargaining powers can vary across sub-markets. For
instance, under a specification for the matching function where investors’ orders and dealers are
strict complements, we found that dealers’ market power is smaller when trades are larger, in the
sense that intermediation fees per unit of asset traded decrease with the size of the trade.
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We have illustrated the tractability of the model by generating a rich set of comparative statics.
So far we have only considered the case of private information regarding investors’ private valu-
ations for the asset. The use of competitive search as an equilibrium concept should also allow
for introducing other forms of private information problems, such as adverse selection (Guerrieri,
Shimer, and Wright, 2010) or moral hazard (Li, Rocheteau, and Weill, 2012). It should also make
the analysis of aggregate shocks tractable, e.g., due to the block-recursivity property documented
by Menzio and Shi (2011) in a different context. We leave these extensions for future research.
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A Proof

A.1 Proof of Proposition 1

We start by noting that Vi(a, σ, θ) can be written

Vi(a, σ, θ) = Vi(a,0, 0) +
α(θ)

r + δ + α(θ)
[V ?
i (a+ q)− pq − φ− Vi(a,0, 0)] , (46)

where

Vi(a,0, 0) =
ui(a) + δ

∑I
j=1 πijV

?
j (a)

r + δ
.

Equation (46) shows that the value of submitting an order for contract σ when the market tightness is θ is

the sum of two terms: the first term is the no-trade utility, Vi(a,0, 0), and the second term is proportional to

the trading surplus, Vi(a+q)−pq−φ−Vi(a,0, 0). The constant of proportionality, α(θ)
r+δ+α(θ) ≤ 1, captures

the time discounting of trading delays associated with tightness θ. The next result is then immediate.

Lemma 3. In any equilibrium, V ?
i (a) ≥ Vi(a,0, 0). Moreover the function θ 7→ Vi(a, σ, θ) has the follow-

ing properties:

1. If V ?
i (a+ q)− pq − φ ≤ Vi(a,0, 0), then Vi(a, σ, θ) is decreasing in θ.

2. If V ?
i (a+ q)− pq − φ > Vi(a,0, 0), then Vi(a, σ, θ) is strictly increasing in θ.

The first part of the lemma is clear: since investors can always choose 0, their maximum attainable

utility must be at least equal to Vi(a,0, 0). The second part of the lemma simply asserts that, if there are

strict gains from trading σ, V ?
i (a + q) − pq − φ > Vi(a,0, 0), then investors have a strict preference for

higher tightness, because it leads to smaller trading delays. Otherwise, they prefer not to send orders for σ.

Now turning to the proof of Proposition 1, we first show that the right-hand side of (7) is an upper bound

for V ?
i (a). Indeed, for σ = 0, Vi(a,0, 0) is equal to the right-hand side of (7) evaluated at θ = 0. For

σ ∈ Σ? but different from 0, the dealer’s zero-profit condition writes α [Θ(σ)]φ = γΘ(σ). Thus:

Vi(a, σ,Θ(σ)) =
ui(a) + δ

∑
j∈I πijV

?
j (a) + α[Θ(σ)] [V ?

i (a+ q)− pq]− γΘ(σ)

r + δ + α[Θ(σ)]
,

which is clearly less than the right-hand side of (7). Thus, taking the sup over all σ ∈ Σ?, we find V ?
i (a) is

less than the right-hand side of (7).

Toward a contradiction, suppose that V ?
i (a) is strictly less than the right-hand side of (7). Then, there
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must be some (θ̂, q̂) such that

V ?
i (a) <

ui(a)+δ
∑
j∈I πijV

?
j (a)+α(θ̂)[V ?i (a+q̂)−pq̂]−γθ̂
r+δ+α(θ̂)

⇐⇒ V ?
i (a) <

ui(a)+δ
∑
j∈I πijV

?
j (a)+α(θ̂)[V ?i (a+q̂)−pq̂−V ?i (a)]−γθ̂

r+δ . (47)

Note, using the lower bound Vi(a, σ, θ) ≥ Vi(a,0, 0) in inequality (47), that θ̂ > 0. Consider, then, the

contract σ̂ = (q̂, φ̂), where φ̂ = γθ̂

α(θ̂)
+ ε, for some ε small enough so that Vi(a, σ̂, θ̂) > V ?

i (a). Using again

the lower bound in inequality (47), one sees that V ?
i (a + q̂) − pq̂ − φ̂ > V ?

i (a) ≥ Vi(a,0, 0). Thus, by

Lemma 3, Vi(a, σ̂, θ) is strictly increasing in θ. Since it is also continuous, it then follows that Θ(σ̂) < θ̂.

Given that α(θ)/θ is decreasing, we find that Π(σ̂) > 0, which contradicts dealers’ zero-profit condition.

Finally, for the second part of the proposition, we apply the contraction mapping to the auxiliary Bellman

equation (7). Consider some arbitrary lower and upper bounds for the price, 0 < p < p. If asset holdings are

unrestricted, let a and a be the solutions to u′I(a) = rp and u′1(a) = rp, respectively. Since u′i(a) ≤ rp for

all a ≥ a and all i, and u′i(a)(p) ≥ rp for all a ≤ a and all i and all p ∈ [p, p], one can show that an investor

will always find it optimal to choose holdings a ∈ [a, a]. If asset holdings are restricted, we let a = minA
and a = maxA: by assumption, asset holdings always lie in the interval [a, a]. To derive bounds on the

choice of θ, note that, up to a positive constant of proportionality, the left derivative with respect to θ of the

equation to be maximized on the right-hand side of (7) is equal to

−(r + δ)γ +
[
α′(θ−)θ − α(θ)

]
γ + α′(θ−)(r + δ)

[
V ?
i (a+ q)− pq −

ui(a) +
∑
πijV

?
j (a)

r + δ

]
.

The first term is strictly negative and independent of θ. The second term is negative because α(θ) is concave.

In the third term, the square bracket is bounded independently of θ and p ∈ [p, p].23 Given than α′(∞) = 0,

this implies that there exists some θ such that, for all θ > θ, all p ∈ [p, p], and all (i, a) ∈ I × [a, a], the

left-derivative of equation (7) is strictly negative. Therefore, an investor will always find it optimal to choose

a market tightness θ ∈ [0, θ].

Let S = I × [a, ā] × [p, p] when assets are unrestricted, and let S = I × A × [p, p] when assets are

restricted. Let C (S) be the space of bounded, continuous functions f : S → R equipped with the sup norm.

23Indeed Vi(a) ≤ maxi∈I
ui(a)

r + pa, so that the maximum attainable utility is less than the present value of the
maximum utility flow from holding the maximum quantity of assets, plus the time-zero value of selling the maximum
quantity of assets at the maximum price. To see this, note that the inter-temporal value of an investor has two terms.
The first term is the expected present value of utility flows, ui[a(t)], net of search cost, −γθ(t), which is clearly less
than uI(ā)

r . The second term is the expected present value of the benefits of selling minus the costs of buying assets at
the random contact times 0 < T1 < T2 < . . .. For given realization of contact times, this present value can be written
a(0)pe−rT1 +

∑∞
n=1 pa(Tn)

[
e−rTn+1 − e−rTn

]
. Indeed, the investor resells a(Tn) at time Tn+1 after buying it at

time Tn. Clearly, the first term is less than pā, and all terms in the infinite sum are negative.
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Notice that C (S) is a complete normed vector space. The right-hand side of (7) defines an operator T :

T (Vi)(a, p) = max
(a′,θ)∈[a,a]×[0,θ]

[
ui(a) + δ

∑
j∈I πijVj(a) + α(θ)[Vi(a

′)− p(a′ − a)]− γθ
r + δ + α(θ)

]
. (48)

If V ∈ C (S), then, from the Theorem of the Maximum T (V ) ∈ C (S). See Theorem 3.6 in Stokey and

Lucas (1989). Furthermore, T is monotonic and T (f + k)(a, i) ≤ T (f)(a, i) + δ+α(θ)

r+δ+α(θ)
k for all k ≥ 0

and all f ∈ C (S). Therefore, from Blackwell’s Theorem, T is a contraction on C (S) and it has a unique

fixed point in C (S). See Theorem 3.3 in Stokey and Lucas (1989). Finally, if Vi(a, p) is a strictly increasing

function then T (Vi)(a, p) is also strictly increasing so that the unique fixed point of T is increasing. But since

ui(a) is strictly increasing, the Bellman equation (7) implies that Vi(a) is the sum of a strictly increasing

function and an increasing function, and so is strictly increasing as well. Finally, since we considered

arbitrary lower and upper bounds, p and p, and since a→∞ as p→ 0, and a→ 0 as p→∞, the properties

extend by continuity to the domain S = I × A× (0,∞).

A.2 Proof of Proposition 2

We first note that, by Theorem of the Maximum, the correspondence (ai(a, p), θi(a, p)) maximizing (48) is

compact valued and upper hemi continuous. Moreover, one sees that ai(a, p) is independent on a: it is equal

to arg maxa′∈[a,a] Vi(a
′, p)− pa′ if 0 /∈ θi(a, p) and to [a, a] otherwise. With this in mind, let

M(p) ≡
{

(ai(p), θj(ai(p), p)), (i, j) ∈ I2
}
.

The correspondenceM(p) contains the collection of candidate equilibrium asset holdings if the price is p.

It is clearly compact valued and is easily shown to be upper hemi continuous. As explained in the text,

we look for an equilibrium in which the distribution of types has a finite support. To deal with potential

non-convexity arising if the Bellman equation has more than one maximizer, we partition the population of

investors into G ≥ 2 groups of size µg, for some µg in the G-dimensional simplex, ∆G. We assume that

each investor in group g optimally keeps its asset holdings in the support {ag1, a
g
2, . . . , a

g
I} where, for all i

and g, agi is maximizing (7). If the investor has utility type i but asset holding agj , j 6= i, then he sends its

order for a contract with a market tightness θi(a
g
j ) maximizing (7). Therefore, the inflow-outflow equations

for the steady-state distribution, ngi (aj), of group g write:

if i 6= j : 0 = δ
∑
k∈I

nk(a
g
j )πki − δn

g
i (a

g
j )− α[θi(a

g
j )]ni(a

g
j ) (49)

if i = j : 0 = δ
∑
k∈I

nk(a
g
i )πki − δni(a

g
j ) +

∑
k∈I

α[θi(a
g
k)]nk(a

g
i ) (50)

µg =
∑

(i,j)∈∈I2
ni(a

g
j ). (51)
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The first step is to establish the following result.

Lemma 4. The system of steady-state equations (49)-(51) has at least one solution.

Proof. The argument is standard. The system (8)-(9) characterizes the ergodic distributions of the continu-

ous time Markov chain induced by the type switching and trading process. Denote the transition intensities

by λk,`, and let λk ≡
∑

` λk,`. The steady-state equations can be rewritten:

∀` : λ`n` =
∑
k

nkλk,` ⇐⇒ ∀` : λ`n` =
∑
k

λknk
λk,`
λk

⇐⇒ π = πQ,

where πk ≡ λknk and Q`,k =
λ`,k
λ`

. Thus, a steady-state distribution can be found by solving for an ergodic

distribution, π, of the discrete time Markov chain with transition probabilities Q. Since this discrete time

Markov chain has a finite state space, it follows from Theorem 11.1 of Stokey and Lucas (1989) that such

an ergodic distribution exists. �

Equipped with this result, we can define the aggregate demand correspondence as follows. In matrix

form, the system of steady-state equations of group g, (49)-(51), can be written as Γ(mg)ng = b, where the

entries of Γ(mg) are continuous in agi and θi(a
g
j ). Then, we let

D(p) ≡

∑
g,i,j

µgni(a
g
j )a

g
j , for µg ∈ ∆G,mg = (ai, θi(aj)) ∈M(p), and ng s.t. Γ(mg)ng = b

 .

Now let us turn to the proof of Proposition 2. By Lemma 4, the aggregate demand correspondence is non-

empty. It is convex by construction. To see that it is compact-valued, consider any sequence of elements of

D(p) generated by some sequences µgk, mg
k, and ngk. Because group measures, asset holdings, and steady-

state measures are all bounded, we can extract convergence subsequences µgk` , m
g
k`

, and ngk` . Since the

simplex and M(p) are compact, it follows that limµgk` ∈ ∆G and limmg
k`
∈ M(p). Since Γ(m) is

continuous, it follows that Γ(limmg
k`

) limngk` = b. Therefore, the aggregate excess demand generated by

limµgk` , limmg
k`

, and limngk` belongs to D(p), and we are done proving compactness. Finally, a similar

reasoning establishes that D(p) is upper hemi continuous. Now, we note that the aggregate demand goes to

zero as p goes to infinity, and to infinity as p goes to zero. An application of the Intermediate Value Theorem

(easily extended for upper hemi continuous, compact, and convex-valued correspondences) establishes the

claim of the proposition.

The last step is to verify the equilibrium condition for the candidate equilibrium objects shown in the text

after Proposition 2. Without loss of generality at this stage of the analysis, let us assume that G = 1 so that

we can simplify notations and drop the “g” subscript everywhere. We first show that Θ[σi(aj)] = θi(aj).

First, we prove that

Vi(aj , σi(aj), θi(aj)) > Vi(aj ,0, 0).
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By construction, we have a weak inequality. Suppose, toward a contradiction, that Vi(aj , σi(aj), θi(aj)) =

Vi(aj ,0, 0). Expressing this equality using (46) and the dealer’s zero-profit condition, we have

α[θi(aj)]

θi(aj)
[Vi(a+ qi(aj))− pqi(aj)− Vi(a,0, 0)] = γ.

Now the right-derivative at θ = 0 of the right-hand side of (48) is equal to

α′(0) [Vi(a+ qi(aj))− pqi(aj)− Vi(a, 0)]− γ
r + δ

> 0

using the equality we derived just above and noting that α′(0) > α(θ)/θ by strict concavity. Hence, the

right-hand side of the auxiliary Bellman equation (48) cannot be maximized at θ = 0, which is a contradic-

tion. Thus, we are in case 2 of Lemma 3, Vi(aj , σi(aj), θi(aj)) is strictly increasing, θi(aj) = inf{θ ≥ 0 :

Vi(aj , σi(aj), θ) > V ?
i (aj)} and so is greater than Θ(σi(aj)).

Suppose, toward a contradiction, that the inequality is strict. Then, by definition of Θ(σ), there ex-

ists some θ ∈ (0, θi(aj)) and some (k, `) such that Vk(a`, σi(aj), θ) > V ?
k (a`). Using the definition of

Vk(a, σ, θ), we obtain that

uk(a`) + δ
∑

m∈I πkmV
?
m(a`) + α(θ) [V ?

k (a` + qi(aj))− pqi(aj)]− γθα(θ)
θ

θi(aj)
α(θi(aj))

r + δ + α(θ)
> V ?

k (a`).

Since α(θ)/θ is decreasing, it follows that the above inequality remains strict when we subtract γθ instead

of γθα(θ)
θ

θi(aj)
α[θi(aj)]

, which contradicts that V ?
k (a) solves the auxiliary Bellman equation (48).

Finally, we verify the zero-profit conditions of dealers. Suppose there is σ = (q, φ) such that −γ +
α[Θ(σ)]

Θ(σ) φ > 0. Then Θ(σ) <∞ and there is some type (i, aj) and some tightness θ such that Vi(aj , σ, θ) >

V ?
i (aj) and −γ + α(θ)

θ φ > 0. Consider then the contract σ̂, with q̂ = q and φ̂ chosen such that γ = α(θ)
θ φ̂.

Because φ̂ < φ, we have that Vi(aj , σ̂, θ) > V ?
i (aj), which can be written

ui(aj) + δ
∑
πikV

?
k (ak) + α(θ) [V ?

i (aj + q̂)− pq̂]− γθ
r + δ + α(θ)

> V ?
i (aj),

contradicting that V ?
i (a) solves the Bellman equation (48).

A.3 Market clearing in the inter-dealer market

In this section, we confirm that the equilibrium conditions described in Definition 1 ensure that the inter-

dealer market clears, i.e., that ∑
i,j

α [θi(aj)]ni(aj)(ai − aj) = 0. (52)
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To start, summing across all i ∈ I and j 6= i, we can use (8) to get

∑
i∈I

∑
j 6=i

α [θi(aj)]ni(aj)aj = δ
∑
i∈I

∑
j 6=i

aj

[∑
k∈I

πkink(aj)− ni(aj)

]
. (53)

Adopting the convention that θi(ai) = 0, the left-hand side of (53) is equal to∑
i,j

α [θi(aj)]ni(aj)aj . (54)

Meanwhile, the right-hand side of (53) can be written

δ
∑
k∈I

∑
j∈I

nk(aj)aj
∑
i∈I

πki − δ
∑
i∈I

∑
j∈I

ni(aj)aj −
∑
i∈I

{
δ

[∑
k∈I

nk(ai)πki − ni(ai)

]}
ai

= −
∑
i∈I

{
δ

[∑
k∈I

nk(ai)πki − ni(ai)

]}
ai (55)

=
∑
i,j

α [θi(aj)]ni(aj)ai, (56)

where the first equality follows from
∑

i πki = 1, while the second equality follows from (9). Hence, (54)

is equal to (56), which ensures that (52) is satisfied.

A.4 Proof of Lemma 1

Let, for i ∈ {`, h}, θi(0) ≡ arg maxθ {α(θ) (∆Vi − p)− γθ} and θi(1) ≡ arg maxθ {α(θ) (p−∆Vi)− γθ}.
We obtain the inequalities:

r∆Vh ≥ uh + δπ` (∆V` −∆Vh) + α[θ`(1)] (p−∆Vh)− γθ`(1)− α[θh(0)] (∆Vh − p)− γθh(0)

r∆V` ≤ u` + δπh (∆Vh −∆V`) + α[θ`(1)] (p−∆V`)− γθ`(1)− α[θh(0)] (∆V` − p)− γθh(0).

Taking the difference between the two, all the search costs cancel out and we obtain

∆Vh −∆V` ≥
uh − u`

r + δ + α [θh(0)] + α [θ`(1)]
> 0,

which establishes the first part of the claim.

For the second part, assume toward a contradiction that p ≥ ∆Vh, so that p > ∆V`. Then, it must be the

case that θh(1) ≥ 0, θ`(1) > 0, and θh(0) = θ`(0) = 0. The inflow-outflow equations for nh(1) and n`(1)
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become

δπhn`(1) = δπ`nh(1) + α[θh(1)]nh(1)

δπ`nh(1) = δπhn`(1) + α[θ`(1)]n`(1),

implying, after some manipulations, that

δπ`
δπ` + α[θh(1)]

δπh
δπh + α[θ`(1)]

n`(1) = n`(1),

so that n`(1) = nh(1) = 0. Thus, the market cannot clear, which is a contradiction. Symmetrically, if

p ≤ ∆V`, one finds that n`(0) = nh(0) = 0 so that n`(1) + nh(1) = 1 > A, which also contradicts market

clearing.

A.5 Proof of Lemma 2

The function F (S`) is defined over [0,Γ−1(uh − u`)] and the function G(S`) is defined over
[
0, uh−rpδπ`

]
.

Both functions are zero at the upper bound of their domain. Thus, solving the system of equations (15)-(16)

boils down to solving the one-equation-in-one-unknown problem F (S`) = G(S`). We have shown in the

text that, if a solution exists, then the function F (S`) must cross the function G(S`) from above. Therefore,

for a strictly positive solution to exist, it is necessary and sufficient that F (S`) is above G(S`) at zero, and

is eventually below G(S`) for S` large enough in the intersection of their domains. The first condition can

be written

F (0) > G(0) ⇐⇒ Γ[F (0)] > uh − rp and Γ[F (0)] = uh − u`
⇐⇒ δπhF (0) < rp− u` and Γ[F (0)] = uh − u`

⇐⇒ uh − u` < Γ

(
rp− u`
δπh

)
⇐⇒ p > p` s.t. uh − u` = Γ

(
rp` − u`
δπh

)
. (57)

The equivalence on the first line follows from the fact that, in equation (18), the function Γ(S) is strictly

increasing. The equivalence on the second line follows from simple manipulations, using the definition of

Γ(S). The equivalence on the third and fourth lines follow from the fact that Γ(S) is strictly increasing in

S. One sees easily using equations (15)-(16) that the price p` is such that S` = 0: in other words, it is the

lowest price at which a low-valuation investor is willing to sell his asset, knowing that he’ll be able to buy

at this price later when he’ll turn into a high type.

Next we note that, by definition, F (S`) and G(S`) are zero at the upper bound of their respective

domains. Thus, in order for G(S`) to be below F (S`) for S` large enough in the intersection of their

domains, it is necessary and sufficient that the upper bound of the domain of G(S`) is below the upper
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bound of the domain of F (S`). This can be written as

Γ−1(uh − u`) >
uh − rp
δπ`

⇐⇒ uh − u` > Γ

(
uh − rp
δπ`

)
⇐⇒ p < ph s.t. uh − u` = Γ

(
uh − rph
δπ`

)
. (58)

As before, one sees easily that the price ph is such that Sh = 0: it is the highest price at which a high type

is willing to buy.

Finally, we observe that p` < ph. Indeed, from their definitions we have that:

uh − rph
δπ`

=
rp` − u`
δπh

⇒ rphπh + rp`π` = πhuh + π`u`.

It thus follows that

ph > p` > 0 ⇐⇒ rπ`(ph − p`) > 0⇐⇒ rph > πhuh + π`u`

⇐⇒ Γ

(
uh − πhuh − π`u`

δπ`

)
> uh − u`

⇐⇒ Γ

(
uh − u`

δ

)
> uh − u`.

One easily verifies that Γ(S/δ) > S, so this inequality holds.

A.6 Proof of Proposition 3

The only thing to show is that the buy-order flow, on the left-hand side of (25), is strictly decreasing in the

price, and that the sell-order flow, on the right-hand side of (25), is strictly increasing in the price. For this we

first note that, since α(θ) is increasing, it follows that the left-hand side is an increasing function of θh and

the right-hand side is a decreasing function of θ`. Now the first-order condition α′(θh)Sh = γ implies that

θh is an increasing function of Sh, and thus a decreasing function of p, with θh = 0 when p = ph. Likewise,

the first-order condition for θ` implies that θ` is an increasing function of S` and thus an increasing function

of p with θ` = 0 when p = p`.

A.7 Proof of Proposition 4

Asymptotic expansion for the price. Let si ≡ λSi for i ∈ {`, h}. With this notation, the surplus

equation (17) can be written as

r + δ

λ
sh + f(sh) +

r + δ

λ
s` + f(s`) = uh − u`,
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where f(s) ≡ maxθ{α(θ)s − γθ}. Note that f(s) is strictly increasing, with f(0) = 0 and f(∞) = ∞.

It thus follows that sh and s` are both bounded by the solution of f(s) = uh − u`. Therefore, as λ goes

to infinity, (sh, s`) must have at least one accumulation point, (s?h, s
?
` ). Since πh > A, it follows from the

market-clearing condition that θh < θ` and so from the first-order condition that sh < s`. Thus s?h ≤ s?` .

Suppose that s?h > 0. Then the market tightness solving α′(θ)s?h = γ is strictly positive, and going to the

λ → ∞ limit in the market-clearing condition leads to πh = A, which contradicts our assumption that

πh > A. Therefore s?h and s?` satisfy

s?h = 0

f(s?` ) = uh − u`.

Thus, (sh, s`) has a unique accumulation point, which must be its limit. To obtain a first-order approximation

for p we use the second equation (18) to get that

r + δπ`
λ

sh + f(sh) = uh − rp− δπ`
s`
λ
. (59)

Since sh → 0 as λ→∞, the first term on the left-hand side is o
(

1
λ

)
. To analyze the second term, note from

the market-clearing condition that λα(θh) must have a positive limit, equating order flows when sellers can

contact the market infinitely fast. Letting this limit be λh we can write

f(sh) =

[
λh
λ

+ o

(
1

λ

)]
sh − γα−1

[
λh
λ

+ o

(
1

λ

)]
.

The first term on the left-hand side is o
(

1
λ

)
since sh → 0 when λ → ∞. Because α−1(x) is convex, the

second term can be bounded by

α−1

[
λh
λ

+ o

(
1

λ

)]
≤

[
λh
λ

+ o

(
1

λ

)] [
α−1

]′ [λh
λ

+ o

(
1

λ

)]
=

[
λh
λ

+ o

(
1

λ

)]
1

α′ ◦ α−1
[
λh
λ + o

(
1
λ

)] .
Clearly, because of the Inada condition α′(0) = ∞, the upper bound is o

(
1
λ

)
. We conclude that f(sh) is

o
(

1
λ

)
. Finally,we note that s`λ =

s?`
λ + o

(
1
λ

)
.

Asymptotic expansion of the intermediation fee. Consider first the intermediation fee for a seller:

λφ` =
θ`α
′(θ`)

α(θ`)
λS` →

θ?`α
′(θ?` )

α(θ?` )
s?` ,
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as claimed in the proposition. Let us turn next to the intermediation fee for buyers:

λφh =
θhα

′(θh)

α(θh)
λSh → 0

since the elasticity is bounded above by one and limλ→∞ λSh = 0.

Asymptotic expansion of the distribution of types. From equation (24), given that θ` → θ?` , we

have that

lim
λ→∞

λn`(1) =
Aδπ`
α(θ?` )

as claimed. To obtain an asymptotic expansion of nh(0), plug the equality of order flows, (20), into the

equation for nh(0), (23). In doing so, keep in mind that, for the asymptotic expansion, all the α(θ) are

multiplied by the search efficiency parameter λ. We then obtain

nh(0) =
δπh(1−A)

δ + λα(θ`)n`(1)
nh(0)

⇐⇒ δnh(0) + λα(θ`)n`(1) = (1−A)δπh

⇐⇒ δ [nh(0)− (πh −A)] = −λα(θ`)n`(1) + (1−A)δπh − δ(πh −A)

⇐⇒ nh(0)− (πh −A) =
δAπ`
λα(θ`)

=
δAπ`
λα(θ?` )

+ o

(
1

λ

)
,

where the last line follows after substituting in expression (24) for n`(1). This establishes the claim.

A.8 Proof of Corollary 1

With a Cobb-Douglas matching function, the asymptotic seller surplus, s?` , and the asymptotic search inten-

sity, θ?` , solve the system of equations:

θηs− γθ = uh − u`
ηθη−1s = γ.

The second equation implies that ηθηs?` = γθ. Together with the first equation, this implies that (1 −
η)θηs = uh−u`. Dividing through by the second equation, the “s” cancel out and we obtain the expression

for θ?` . The expression for s?` follows. Clearly, θ?` is increasing in η. As for s?` we have:

log (s?` ) = η log

(
γ

η

)
+ (1− η) log

(
uh − u`
1− η

)
=⇒

d log(s?` )

dη
= log

(
γ(1− η)

η(uh − u`)

)
,

which is strictly decreasing, goes to plus infinity when η → 0 and to minus infinity when η → 1.
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A.9 Formal proofs of the statements in Section 4.2

In this section we characterize an equilibrium for the economy described in Section 4.2, when the posting

cost, γ, is small.

Equilibrium price. We guess and verify that, in this case, the equilibrium price in LR is an equilibrium

price in our environment as well.

Let V ?
i (a, γ) be the solution of the Bellman equation (7) when the contract posting cost is γ and the

price is equal to the equilibrium price in LR. By an application of the contraction mapping theorem, this

function is continuous in (a, γ). In particular, V ?
i (a, 0) coincides with the value function in LR. We know

the following result from their paper.

Lemma 5. In LR, the value net of purchasing cost, V ?
i (a, 0)−pa, is an increasing and affine transformation

of

Ki(a) =
(r + µ)ui(a) + δ

∑
j∈I πjuj(a)

r + µ+ δ
− rpa. (60)

Note that Ki(a) is strictly concave and it achieves its unique maximum at the asset holding prevailing

in LR’s equilibrium.

Ni(γ1, γ2) ≡
{
a : max

a′

{
V ?
i (a′, γ1)− pa′

}
− γ2

µ
< V ?

i (a, γ1)− pa
}
.

Lemma 6. The inaction regions Ni(γ, γ) are disjoint for all γ small enough.

Proof. Note that LR’s net values, V ?
i (a, 0)− pa, are strictly concave so that the inaction regions Ni(0, γ2)

are open intervals around the optimal asset holding, arg maxa′ V
?
i (a′, 0) − pa′, shrinking monotonically

to LR’s optimal asset holding when γ2 → 0. Consider then some γ2 and ε small enough so that all the

Ni (0, γ2 + µε) are disjoint. Noting that maxa′ {V ?
i (a′, γ)− pa′} − V ?

i (a, γ) + pa is continuous in (a, γ),

there exists some γ1 such that for all γ′1 ≤ γ1 and all a ∈ [a, a]:

max
a′

{
V ?
i (a′, γ′1)− pa′

}
− V ?

i (a, γ′1) + pa > max
a′

{
V ?
i (a′, 0)− pa′

}
− V ?

i (a, 0) + pa− ε.

In particular, for a /∈ Ni(0, γ2 +µε), we have maxa′ {V ?
i (a′, 0)− pa′}− γ2

µ −ε ≤ V
?
i (a, 0)−pa. Plugging

this into the right-hand side of the above inequality and rearranging, we obtain

max
a′

{
Vi(a

′, γ′1)− pa′
}
− γ2

µ
≥ Vi(a, γ′)− pa.

Hence, a /∈ Ni(γ
′
1, γ2). By contrapositive, for all γ′1 ≤ γ1, we have that Ni(γ

′
1, γ2) ⊆ Ni(0, γ2 +µε). Since

the sets Ni(0, γ2 + µε) are disjoint by construction, and since the sets Ni(γ
′
1, γ
′
2) are decreasing in γ′2, it

47



follows that Ni(γ
′
1, γ
′
2) are disjoint for all γ′1 ≤ γ1 and γ′2 ≤ γ2. Letting γ = min{γ1, γ2} we obtain that

the sets Ni(γ, γ) are disjoint for all γ′ ≤ γ. �

Next, following the argument in the text, we find that when γ is small enough, the net value Vi(a)− pa
is an increasing affine transformation of Ki(a). Since the optimal asset holding must belong to the interior

of the inaction region, it must satisfy K ′i(a) = 0, which implies in turn that it must coincide with LR’s

optimal asset holdings. Since the distribution of type must also coincide with that of LR, which satisfies

market clearing by construction, it follows that LR’s price is an equilibrium price in our economy as long as

γ is small enough.

Constructing a competitive search equilibrium. The last thing to do is to verify that the LR price,

which we already know clears the market, is the basis of a competitive search equilibrium. We note that, for

γ small enough, there are always strict gains from trade when i 6= j and so θi(aj) = 1. The equilibrium

objects are then defined in a manner similar to the paragraph following Proposition 3:

qi(aj) = ai − aj , φi(aj) =
γ

µ
, and θi(aj) = 1.

We let

V ?
i (a) = max

k,`
Vi [a, σk(a`), θk(a`)] ,

where Vi(a, σ, θ) is defined as in equation (2). We will adopt a slightly different definition for market

tightness:

Θ (σ) = inf {θ ≥ 0 : Vi(a, σ, θ) ≥ V ?
i (a) and V ?

i (a) > Vi(a,0, 0) for some i ∈ I} .

In the case when α(θ) is strictly increasing and strictly concave, this definition is equivalent to the one we

used before. It is stronger in the present Leontief case.

We proceed to verify that these candidate equilibrium objects form a competitive search equilibrium.

We first show that Θ[σi(aj)] = θi(aj). First, we note that there are strict gains from trade in LR so, by the

continuity arguments already used above, there must be strict gains from trade in our setup when γ is small

enough. That is,

Vi(aj , σi(aj), θi(aj)) > Vi(aj ,0, 0).

Given that Vi(aj , σi(aj), θi(aj)) = V ?
i (aj), the definition of Θ(σ) implies that Θ [σi(aj)] ≤ θi(aj). Sup-

pose, toward a contradiction, that the inequality is strict. Then, by definition of Θ(σ), there exists some θ ∈
(0, θi(aj)) and some (k, `) such that Vk(a`, σi(aj), θ) ≥ V ?

k (a`) > Vi(a`,0, 0). Since Vk(a`, σi(aj), θ) >

Vi(a`,0, 0), one sees easily that θ 7→ Vk(a`, σi(aj), θ) is strictly increasing in θ ∈ (0, θi(aj)). This im-

plies that Vk(a`, σi(aj), θi(aj)) > V ?
k (a`), which is a contradiction since V ?

k (a`) is the maximum attainable
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utility for this investor.

Finally, we verify the zero-profit conditions of dealers. For this, we first note that, in the Leontief case,

the alternative representation of Proposition 1 continues to hold (one can verify that proof goes through

almost identically), and so V ?
i (aj) solves the Bellman equation (48). Now suppose that there is σ = (q, φ)

such that −γ + α[Θ(σ)]
Θ(σ) φ > 0. Then Θ(σ) < ∞ and there is some type (i, aj) and some tightness θ such

that Vi(aj , σ, θ) ≥ V ?
i (aj) > Vi(a,0, 0) and −γ+ α(θ)

θ φ > 0. Consider then the contract σ̂, with q̂ = q and

φ̂ chosen such that γ = α(θ)
θ φ̂. Because φ̂ < φ, we have that Vi(aj , σ̂, θ) > V ?

i (aj), which can be written

ui(aj) + δ
∑
πikV

?
k (ak) + α(θ) [V ?

i (aj + q̂)− pq̂]− γθ
r + δ + α(θ)

> V ?
i (aj),

contradicting that V ?
i (aj) solves the Bellman equation (48).

49


	ADP178F.tmp
	WORKING PAPER NO. 14-9


