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Abstract

A monetary authority can be committed to pursuing an inflation, price-level,
or nominal output target yet systematically fail to achieve the specified goal. Con-
strained by the zero lower bound on the policy rate, the monetary authority is
unable to implement its objectives when private-sector expectations stray from the
target in the first place. Low-inflation expectations become self-fulfilling, resulting
in an additional Markov equilibrium in which both nominal and real variables are
typically below target. Introducing a stabilization goal for long-term nominal rates
anchors private-sector expectations on a unique Markov equilibrium without fully
compromising the policy responses to shocks.

∗This paper owes a great deal to conversations I had with Stefano Eusepi. I also thank Pablo Guerron,
Michael Dotsey, Ben Lester, and Andrew Postlewaite for comments and suggestions. The views expressed
here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia or the Federal
Reserve System. This paper is available free of charge at http://www.philadelphiafed.org/research-and-
data/publications/working-papers/.
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1 Introduction

What is the right framework for the conduct of monetary policy? Academic and policy
debates on this decades-old question have increasingly been centered on nominal targets
in one form or another. The prime example is inflation targeting, which enjoys the rare
distinction of having a proven record in both theory and practice. The darling of theory is
actually price-level targeting, since it introduces the right amount of history dependence
needed to approximate the optimal stabilization policy—especially when the policy rate
is close to its zero lower bound (ZLB). Nominal GDP targeting is also a safe bet to surface
whenever the design of the monetary policy is called into question. All of these monetary
frameworks have been praised, to varying degrees, for their ability to enhance the central
bank’s credibility, transparency, and overall policy decisions.

It is widely recognized that nominal targets require a firm commitment by the mon-
etary authority to pursue the specified target. A starting assumption in Svensson (1997)
is that society “can commit to targets for the central bank.”1 Eggertsson and Woodford
(2003) write that it is necessary “for the central bank to be committed (and be understood
to be committed).”2 In practice, adopters of inflation targeting have written legislation
detailing the monetary authority’s objectives and putting in place procedures to ensure
compliance.

In this paper I argue that, unfortunately, a monetary authority cannot commit to
achieve an inflation, price-level, or nominal GDP target any more than the Philadelphia
Eagles can commit to winning the Super Bowl; there remains a question of ability. At-
taining the target may simply be unfeasible when private-sector expectations depart from
the target in the first place: The monetary authority, constrained by the ZLB on the
policy rate, cannot disprove the expectations and steer the inflation or price-level back to
target—no matter how willing the central bank is to do so. The main results in this paper
show that multiple equilibria are pervasive, typically including a low-inflation equilibrium
in which the policy rate spends long spells at the ZLB and the monetary authority system-
atically fails to achieve its targets. Thus, I conclude that an irrevocable commitment by
the monetary authority is a necessary, but not sufficient, condition to achieve the desired
target.

The setting for my analysis is a simple New Keynesian model that observes the ZLB
for the policy rate. In the spirit of Rogoff (1985) and Walsh (1995), society designs
the monetary authority’s loss function to include the nominal target of choice, typically
combined with a weight on output stabilization, and the central bank retains discretion
in setting the policy rate.3 There is no chance for society to revisit the central bank’s
goals: Thus, the monetary authority’s willingness to pursue the specified goals is beyond

1Page 99.
2Page 181.
3Svensson (1997) puts it succinctly: “The government delegates monetary policy to an instrument

independent central bank that is assigned a particular loss function.”
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any doubt. Policy is the outcome of the game between the monetary authority and the
private sector and is thus time consistent in equilibrium.4 The question I pose then is
whether the monetary authority’s commitment to pursuing the given targets ensures it
will achieve them. The answer is negative.

The key to my analysis is how private-sector expectations constrain the feasibility set
of the monetary authority. Because of the ZLB, inflation expectations limit the range
of real interest rates that the monetary authority can engineer, which in turn cap the
inflation and output levels that are feasible. If inflation expectations are low enough
to start with, the monetary authority finds that it can only disprove the inflation and
output expectations on the downside—and thus driving them both further away from
their respective targets—by raising the policy rate above the ZLB. The least damaging
option is to validate the private-sector expectations, and thus multiple equilibria arise.

The most complete set of results belong to inflation targeting. I show that an equi-
librium is, generically, not unique for any stochastic process for cost-push and real-rate
shocks. I complement the analytic results with a numerical exploration of the simple
model presented here. A typical case has two Markov equilibria: 1) a “stabilization”
equilibrium, where inflation and output fluctuate around their targets and the ZLB binds
only occasionally; and 2) a “low-inflation” equilibrium, where inflation is consistently far
below the target and the policy rate is often at the ZLB—though not necessarily all the
time.5 It is, though, possible to have no or more than two equilibria as well.

An additional, technical contribution of this paper is to provide an algorithm that
computes all Markov equilibria. The algorithm is built upon the well-known problem
of vertex enumeration in convex geometry and, while computationally demanding, can
handle any general shock process with a finite support. Alternative approaches, like
adaptive expectations, often fail to converge even if equilibria exist and are thus ill-
equipped to establish equilibrium uniqueness or nonexistence.

Price-level targeting does not resolve the equilibrium multiplicity despite introducing
an endogenous state variable, namely, the price level (or its deviation from a predeter-
mined path). There are always two equilibria in a nonstochastic economy. In one equi-
librium, the monetary authority perfectly stabilizes the price level at the desired target
(or targeted path). In the other equilibrium, the price level falls by an ever-increasing
distance from the target. I also show that there are convergent dynamics to the falling
price-level equilibrium. The same set of results applies to nominal output targeting.

Not all hope is lost for nominal targets, as a relatively minor modification to the cen-
tral bank’s objectives can effectively anchor expectations on a single Markov equilibrium.
I show that if the monetary authority is given a strong goal for interest-rate stabilization,
then there is a unique Markov equilibrium. Once the penalty term is large enough, the

4My analysis considers only Markov equilibria, abstracting from the possibility of history-dependent
or sunspot equilibria.

5Indeed, the departures from the ZLB are long-lived enough that I hesitate to label the equilibrium a
“liquidity trap.”
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monetary authority will increase the policy rate—even though doing so will send both
output and inflation further below target—when faced with deflationary expectations,
disproving them and effectively ruling out a low-inflation Markov equilibrium. Interest-
rate stabilization, though, comes with its costs. In particular, stabilization policy strays
further from optimal, and inflation often overshoots the target. Targeting a long-term
nominal rate ameliorates the cost, since the long-term rate is mainly determined by infla-
tion expectations—what the monetary authority needs to respond aggressively to anchor
private-sector beliefs—and does not move much with short-term variation—leaving the
monetary authority free to respond properly to shocks.

I should also note that committing to keep the policy rate low for a long period neither
lifts the economy from the ZLB nor sets the inflation rate (or the price level) on a path to
the target. The reason is that a persistently low policy rate is already the expected path in
the low-inflation equilibrium, so this form of forward guidance does little but validate the
private-sector expectations. This is in sharp contrast with the result in Eggertsson and
Woodford (2003), where forward guidance is effective: The difference is that in Eggertsson
and Woodford (2003) the economy finds itself against the ZLB due to a real interest shock
rather than private-sector expectations.

If we are free to design the monetary authority’s objectives as we wish, why not take it
one step further and specify a loss function in terms of a state-contingent, or even history-
contingent, plan for the policy rate? Nothing prevents us from doing so in the context
of the model analyzed here—yet it is hard to see this possibility as a practical option.6

First, monetary economists widely agree that simple targets or rules are preferable: They
are easier to communicate to the public and possibly more robust given the uncertainty
regarding the actual economy. Second, a complex target criterion may strain the legal
and political mechanisms available to ensure a credible commitment by the monetary
authority. And third, we have yet to see a central bank let its policy instrument be
completely set by a rule, simple or otherwise.

There is no choice but to start the literature review with the paper whose title this
paper pays homage to. Benhabib et al. (2000) show how expectations are not anchored
by a standard Taylor rule when the ZLB is taken into account. In short, this paper
shows that inflation and price-level targeting share the same perils as Taylor rules. The
conclusions are similar, though, despite some very important conceptual differences on
how policy is specified. While in Benhabib et al. (2000) the policy rate is simply given by
an exogenous rule, here the monetary framework determines the central bank’s objectives,
and the policy rate is then determined by the monetary authority’s best response function.
In this setting, the key distinction between a commitment to pursue a goal and the ability
to do so arises: The equilibrium multiplicity is triggered because the monetary authority’s
goals become unfeasible. I should also note that it is not possible to summarize policy with

6Svensson (1997), again succinctly, simply states that “it is taken for granted that commitment to a
complicated state-contingent rule for the central bank’s instrument is infeasible.”
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a Taylor rule in my analysis: Even a linear approximation typically sees the coefficients on
output and inflation change across equilibria.7 My analysis also shows that introducing
history dependence through a price-level target fails to anchor expectations. It is instead
a stabilization goal for the interest rate that does it. As far as I know, neither result has
been documented in the context of Taylor rules.

There is abundant work on New Keynesian models regarding policy when the nominal
interest rate is at or close to the ZLB. However, most of the literature has ignored the
possibility that expectations are not anchored. An early exception is Eggertsson (2006)
who also emphasizes the role that policy constraints play in the face of a large demand
shock. More recently, Aruoba and Schorfheide (2013) estimate a rich New Keynesian
model to see whether the data favor expectations-driven dynamics to explain U.S. data
(they do). See also Mertens and Ravn (2013). These papers assume a Taylor rule, subject
to the perils highlighted in Benhabib et al. (2000), and share a focus on the implications
for fiscal policy.

This paper is also closely related to the work on “expectations traps,” as branded by
Chari et al. (1998). The standard setup is a game between the private sector and the
monetary authority, which is assumed to maximize social welfare. Most of the literature
has typically ignored the ZLB, yet multiple Markov equilibria arise in several settings,
as shown in Albanesi et al. (2003), Armenter and Bodenstein (2008), and Siu (2008),
among others.8 Armenter (2008) finds that very weak conditions are sufficient for multiple
Markov equilibria to arise. The two key points of departure here from the literature are
the focus on the design of the monetary authority’s objectives as well as the role of the
ZLB—if the latter were to be dropped, the model presented here would be linear with a
unique equilibrium.

The paper is organized as follows. The next section details the model and equilib-
rium. Section 3 provides some insight on the key results by deriving the correspondence
between inflation expectations and the monetary authority’s feasibility set under some
simplifying assumptions. The subsequent three sections tackle inflation targeting, price-
level targeting, and interest-rate stabilization, respectively. The conclusions include a
brief discussion of possible arguments to dismiss the perils. All proofs as well as some
additional definitions are included in the appendix.

7It is also possible, if unfortunate, that no Markov equilibria exist under some parameters, while
Taylor rules do not fail to produce an equilibrium.

8These papers posit the nominal interest rate as the sole monetary policy instrument, abstracting from
money growth. This is not without loss of generality, as the set of equilibria may change depending on
the instrument choice of the monetary authority, as the results in King and Wolman (2004) and Dotsey
and Hornstein (2011) exemplify.
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2 Model

2.1 The economy

The economy is given by a simple New Keynesian model that observes the ZLB for the
policy rate. The log-linearized equations are taken to be the primitives of the model,
sidestepping the possibility that additional equilibria arise in the nonlinear specification.9

Time is discrete and infinite, t = 0, 1, . . . . Let πt and yt denote the log-deviations in
the inflation rate and output (or, simply, output gap). The first equation is the standard
New Keynesian Phillips curve (NKPC)

πt = κyt + βπet+1 + ut, (1)

where πet+1 denotes private-sector expectations for inflation at period t+1, formed at date
t, and ut is a cost-push shock. The slope of the NKPC and the intertemporal discount
rate satisfy κ > 0 and β ∈ (0, 1), respectively.10

The second equation in the model is the intertemporal first-order condition, the Euler
equation,

Rt = σ
(
yet+1 − yt

)
+ πet+1 + vt, (2)

where Rt is the one-period nominal rate, or policy rate; yet+1 denotes private-sector expec-
tations for the output gap at period t + 1, formed at date t; and vt is a real-rate shock.
The intertemporal elasticity of substitution satisfies σ > 0.

The ZLB for the nominal interest rate is given by

Rt ≥ −Z, (3)

where Z > 0 is the distance to the zero rate in logs from whatever long-run level for the
nominal interest rate is assumed to arise under the efficient allocation.

Finally, society evaluates inflation and output gap deviations according to a quadratic
loss function,

lt = π2
t + λy2t , (4)

where the weight on output gap satisfies λ > 0. It is possible to relate λ to the other
parameters of the model using its micro-foundations.11 Total welfare is given by the loss
function Lt = Et

∑∞
j=t β

j−tlj.

9See Braun et al. (2012). Variables are expressed as log-deviations from their efficient levels or, for
nominal variables, from their steady-state values. See Woodford (2003) for the micro-foundations of the
model.

10The specification of the NKPC assumes prices are indexed to a steady-state level of inflation that
would prevail in the efficient allocation. This ensures that the efficient allocation is always an equilibrium
in a nonstochastic economy for all the monetary frameworks considered here.

11Note that social welfare loss is minimized at π = 0, y = 0, the efficient allocation. This assumes there
are no permanent differences between the efficient and natural levels of output, which in turn means there
will be no inflationary bias when we consider policy discretion.
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The description of the economy is closed by the shock specification. Let st = {ut, vt}.
The exogenous state is governed by a first-order Markov process F (s′|s) over finite support
S, with cardinality n. I assume that F (s′|s) > 0 for all pairs {s, s′} ∈ S2 and that there is
a unique ergodic distribution such that the unconditional mean of both shocks is zero. Let
F j (s′|s) be the conditional distribution j steps ahead. The realization of st is observed
by all agents—including the monetary authority—at the beginning of period t.

2.2 The monetary authority

I model the monetary framework as one of delegation. Society determines the central
bank’s objectives by designing its loss function, lp (π, y), which needs not coincide with
society’s welfare function, lt. The monetary authority is instrument independent, that is,
it retains discretion to set the nominal interest rate, Rt, or policy rate. This approach
traces back to Rogoff (1985) and has been prevalent in the literature on nominal targets.12

I assume the monetary authority has the same discounting as society, and thus total
welfare loss is simply given by Lpt =

∑∞
j=t β

j−tlpj .
A key assumption is that society is perfectly committed to the central bank’s objec-

tives, that is, the loss function lp (π, y) is not revised at any date. In this sense, the
monetary authority’s pursuit of the objectives prescribed by society is beyond any doubt,
that is, there is no question of the central bank’s willingness at all dates and states of the
world to set the policy rate in the manner most congruent with the prescribed targets.

2.3 Markov equilibrium

All is set for the equilibrium definition. Formally, the model can be viewed as a game
between a strategic player, the monetary authority, and a nonstrategic player, the private
sector. Since the economy is infinitely lived, it is well known that history-dependent
equilibria arise, based on trigger strategies. I choose to restrict the set of equilibria under
analysis to Markov equilibria, that is, allocations and policy are a function of the state of
the economy only.13

Definition 1. A Markov equilibrium is a set of vectors in <n,

{R, π, y, πe, ye} ,

such that for all s ∈ S:

1. Equilibrium equations (1)-(3) are satisfied,

12See Walsh (1995) for a careful formalization of the delegation problem. It is also possible to state
instead a policy rule designed to implement the desired target: see Svensson (2002) for a discussion.

13When studying price-level targeting it will be necessary to restate the equilibrium definition, as the
state of the economy will then include the price level.
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2. Rational expectations hold, π (s) = πe (s) , y (s) = ye (s),

3. The nominal interest rate solves
min
R
Lpt

subject to (1)-(3) and taken as given private-sector expectations, πe, ye.

Markov equilibria are usually the equilibrium definition of choice in the literature
on expectation traps; see Albanesi et al. (2003) and Armenter (2008), for example. An
exception is Chari et al. (1998).

2.4 Generic economies

Let ξ be a vector collecting all the structural parameters in the model

ξ = {κ, β, σ, Z, F, S} ,

and Ξ the corresponding set of admissible parameter vectors constructed from the param-
eter restrictions given in the description of the model.14 A property of an economy ξ ∈ Ξ
is “generic” if it holds in a neighborhood of ξ; that is, there exists δ > 0 such that for any
ξ′ ∈ Ξ with ||ξ− ξ′|| < δ the property is also satisfied. Conversely, a property of economy
ξ is not generic if there is an arbitrarily close economy ξ′ ∈ Ξ that does not satisfy it.

For all purposes here, whether a property is generic or not is settled on the basis of the
number of solutions a linear equation system has. A system of n distinct linear equations
will generically have exactly one solution. If n equations are combined with an additional
condition, then generically the system will have no solution. Intuitively, a system of n+ 1
equations with n unknowns that has a solution implies that the system has rank n and
thus implies an exact relationship between coefficients—that is, parameters in the model.
It is thus a measure-zero case.

3 Willing, ready, but unable

The key to this paper’s results is how private-sector expectations, together with the ZLB,
constrain the range of inflation and output the monetary authority can achieve. Under
some simplifying assumptions, the correspondence between the private-sector expectations
and the monetary authority’s feasibility set is easily derived. I show how low-inflation
expectations render the inflation or price-level target unfeasible and how the central bank,
despite being committed to pursuing its targets, systematically fails to achieve them. I
also include a brief discussion on how interest-rate stabilization can anchor expectations.

14From these restrictions it is also immediate that Ξ is a convex set.
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Abstract from shocks and assume the private sector believes inflation to be constant
at πe from period t + 1 onward. The private-sector expectation for the output gap must
be consistent with the inflation expectations, so it satisfies (1):

xe =
1− β
κ

πe

and is also constant over time from period t + 1 onward. Let us now characterize the
set of present-period inflation rates and output levels πt, xt that the monetary authority
can engineer given private-sector expectations. The ZLB (3) constrains the policy rate.
Substituting the Euler equation (2), we obtain

Rt = σ (xe − xt) + πe ≥ −Z.

Inflation expectations are given, so the real rate will move with the policy rate one-to-one,
which in turn will induce the output gap to adjust in the present period. However, the real
rate inherits the ZLB, with its exact lower bound pinned down by inflation expectations.
If the inflation expectations are high, the real rate can go very low. But if they are low,
then the real rate may not decrease much:

σ (xe − xt) ≥ −Z − πe.

Since the expectation for the next-period output gap is also given, we also have an upper
bound on the output gap that can be achieved:

xt ≤
1

σ
(Z + πe) + xe

≤ 1

σ
Z +

(
1

σ
+

1− β
κ

)
πe,

where in the second line I substituted for the output expectation solved before. The upper
bound in the output gap at period t, in turn, implies an upper bound on inflation at date
t, as given by (1):

πt ≤
κ

σ
Z +

(κ
σ

+ 1
)
πe.

Thus, the ZLB imposes an upper bound both on the inflation and on the output gap that
the monetary authority can engineer. The bound is tighter the lower inflation expectations
are—as the real interest rate cannot drop below the ZLB minus inflation expectations.

Consider two hand-picked levels of inflation expectations, πe = 0 and πe = −Z. In
the former case, the private sector expects inflation and output to be fully stabilized from
the next period onward. It is straightforward to check that the monetary authority could
stabilize inflation and output in the present period as well, πt = xt = 0, simply by setting
Rt = 0. As long as the monetary authority’s objectives value full stabilization—and it
would be extravagant not to—this will be the basis for the “good” Markov equilibrium.
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Now consider the possibility that inflation expectations are quite low, πe = −Z. The
monetary authority finds that it cannot implement an inflation rate that is higher than
what the private sector expected, πt ≤ πe. Similarly, its options regarding the output
gap are also bounded above by the private-sector expectations, xt ≤ xe. Regardless of
the monetary authority’s policy rate decision, inflation and output will both be below
their efficient levels. If it validates the private-sector expectations, the nominal interest
rate will be right at the ZLB. In other words, the central bank’s only chance to disavow
expectations is on the downside, that is, further away from full stabilization, by setting a
policy rate above expectations.

It is finally time to introduce the monetary authority’s objectives. Consider first
inflation targeting, loosely defined here as a joint goal of output and inflation stabilization,
with an arbitrary weight on one goal over the other. If the private sector expects full
stabilization, πe = 0, the central bank has no trouble achieving its objectives.15 However,
if inflation expectations are sufficiently low, the monetary authority will simply be unable
to achieve its goals—no matter how committed it is to pursuing the specified targets. It is
also irrelevant how output and inflation deviations are weighted, since both will fall short
of their targets. The monetary authority will then do its best to minimize the deviations,
which is to set the nominal rate at zero and validate the private-sector expectations.

In a stochastic economy the feasibility set of the monetary authority is not so tightly
characterized, as shocks can give the central bank some space to maneuver the policy rate.
In Section 4, I show that equilibrium multiplicity arises under any shock process.16 The
dynamics of the policy rate are also somewhat more complex. The policy rate may be at
the ZLB in the stabilization equilibrium, though typically only briefly. In the low-inflation
equilibrium the economy spends long spells at the liquidity trap, though the policy rate
may also rise above the ZLB for substantial periods.

What does it take to rule out the low-inflation equilibrium? To disprove low-inflation
expectations, the monetary authority should be willing to decrease inflation and output
further. Such a response can be induced if we include a stabilization goal for the policy
rate—i.e., a penalty term for policy rate deviations. If the weight on the rate deviations is
large enough in policy loss function, the monetary authority will increase the policy rate
despite depressing output and inflation further in doing so. The same logic applies if any
nominal rate, medium or long term, is used. In Section 6, I provide a threshold condition
on the weight on interest-rate stabilization that it is sufficient to anchor expectations;
that is, the Markov equilibrium is unique. I also argue that the stabilization goal is best
set on the long-term nominal rate, which allows the monetary authority to target inflation
expectations without fully compromising stabilization policy.

Turning to price-level targeting, it is clear that if the price level is at or below target,

15If there are cost-push shocks, the monetary authority will need to trade off output and inflation
deviations, but both will fluctuate around their efficient levels.

16Unfortunately, it is also possible to have no equilibria or to have more than two.
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the situation is essentially identical to inflation targeting: Faced with low-inflation expec-
tations, the monetary authority will fall short of both the output and price-level targets.
However, if the price level is above target, the monetary authority may actually want to
lower inflation below the private-sector expectations. Does this rule out the low-inflation
equilibrium? Unfortunately, it does not. I show in Section 5 that there is an equilibrium
such that, for any price level, the economy eventually converges to the ZLB. Along the
path, output also stays below target.

4 Inflation targeting

Inflation targeting was introduced in New Zealand in 1990. Close to 25 years later, it is
still the monetary framework of choice in many developed economies. Researchers have
found strong theoretical foundations to back up inflation targeting’s success. Bernanke
and Mishkin (1997) described inflation targeting as “constrained discretion,” where the
monetary authority operates with well-defined goals under a high degree of transparency
and accountability. In this context, inflation targeting has been repeatedly shown to be
preferable to “full” discretion.17

The literature is unanimous that an institutional commitment is a necessary condi-
tion for inflation targeting. Svensson (2002) goes as far as to consider commitment as
“essential for inflation targeting to have much meaning.”18 The results below show that,
unfortunately, such a commitment is not sufficient to ensure that an inflation-targeting
central bank achieves its goals.

4.1 The monetary authority’s objectives

I adopt the standard specification for a flexible inflation-targeting central bank,

lpt = π2
t + ψy2t , (5)

where ψ ≥ 0. The case ψ = λ corresponds to a central bank pursuing exactly society’s
welfare, while the case ψ = 0 is what has been termed an “inflation nutter.” Because
of the underlying assumptions in the economy, there is no “inflationary bias” problem
as in Barro and Gordon (1983). There is, however, a “stabilization bias,” as defined in
Svensson (1997) and Clarida et al. (1999), which provides a rationale for why society
would like to set ψ < λ.

The necessary and sufficient first-order condition associated with the monetary au-
thority’s problem is simply

κπ (s) + ψy (s) ≤ 0 (6)

17Svensson (1997) is credited as a keystone in the literature, yet research on inflation targeting remains
active on several fronts: see Bernanke and Woodford, eds (2005) for an overview.

18Page 772.
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with strict equality if R (s) > −Z. Equation (6) summarizes what the monetary authority
intends to achieve and describes what it will actually achieve. Ignore first the possibility
that the ZLB is binding and thus the first-order condition will hold with strict equality.
Real-interest rate shocks pose no obstacle to fully stabilizing output and inflation. Cost-
push shocks, though, will force the monetary authority to trade off inflation deviations
for output deviations: It will do so at rate ψ/κ, where κ is the marginal rate of “trans-
formation” of inflation to output deviations and ψ is the corresponding marginal rate of
substitution as dictated by the policy loss function. The monetary authority will end up
missing both targets, but never on the same side. That is, whenever inflation is above
target, output will be below, and vice versa.

The monetary authority may also miss its targets because of the ZLB. Now both cost-
push and real-interest rate shocks can create inflation and output deviations. Moreover,
it is possible that both inflation and output are simultaneously below target; that is, (6)
is slacked. These possibilities and their resulting dynamics have been extensively studied
elsewhere, most recently in medium- to large-scale macroeconomic models.19 The ZLB,
though, also opens the possibility that the private-sector expectations, by themselves,
render the monetary authority unable to achieve its prescribed goals.

4.2 Equilibrium characterization

The main challenge here is that we do not know ex-ante which states have the nominal
rate binding at the ZLB. In principle, one can proceed by guessing the states such that
the ZLB is binding, solve for the nominal rate at every state using the corresponding
equilibrium equation as given by the guess, and then verify whether the ZLB (3) is indeed
binding at the states conjectured to do so—and none more. This approach is obviously
ill-suited for analytic results.

Instead I express the model exclusively in terms of actual and expected inflation dy-
namics, recasting the ZLB condition as a simple nonlinear equation that can be solved
simultaneously. From the first-order condition of the monetary authority (6) and the
Euler equation (2), combined with the ZLB, I derive two equilibrium inequalities for
inflation. To close the equilibrium I only need to make sure that at each state one of
the inequalities is holding with strict equality. The latter equilibrium condition is easily
implemented by taking the intersection of the two inequalities, which also automatically
determines whether the ZLB is binding or not.

First I solve for the output gap. From (1), the output gap can be expressed as

κy (s) = π (s)− βE1 (π|s)− u,

where
E1 (π|s) =

∑
S

π (s′)F (s′|s)

19See Fernandez-Villaverde et al. (2012) and Lopez-Salido et al. (2010), among many others.
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is the one-step-ahead inflation expectation.
In the ZLB condition (3) I substitute using the Euler equation (2) as well as the above

expression for the output gap to obtain

σ (E1 (y|s)− y (s)) + E1 (π|s) + v ≥ −Z,

where E1 (y|s) follows the same shorthand notation as E1 (π|s). Let ν = κσ−1. Substi-
tuting for actual and expected output, we arrive at

π (s) ≤ πb (s) ≡ (1 + ν + β)E1 (π|s)− βE2 (π|s) + A (s) , (7)

where A (s) = u− E1 (u|s) + νv + νZ, and

E2 (π|s) =
∑
S

E1 (π|s′)F (s′|s)

is the two-steps-ahead inflation expectation. I have thus translated the ZLB on the
nominal rate into an inequality stating an upper bound for the inflation rate, (7). If the
ZLB is indeed binding, then (7) will hold with strict equality, π (s) = πb (s).

The first-order condition of the monetary authority, (6), provides the other key equi-
librium condition. Note that the first-order condition is indeed an inequality, to hold
with strict equality whenever the ZLB is not binding—that is, precisely when (7) is slack.
Substituting again for the output gap, I obtain

π (s) ≤ πu (s) ≡ ψ

κ2 + ψ
(βE1 (π|s) + u) . (8)

At every state, either (7) or (8) must hold with strict equality. Since both conditions
are effectively an upper bound on the present inflation rate, whether the ZLB is binding
or not is resolved by taking the minimum of both inequalities,

π (s) = min
{
πu (s) , πb (s)

}
. (9)

The equilibrium inflation vector π is thus characterized by a system of n piece-wise linear
equations from a total of 2n linear functions. The condition that is in effect at each state
given the equilibrium solution determines whether the ZLB is binding or not. There is
also no difficulty in retrieving the equilibrium values for the interest rate and the output
gap.

4.3 Analytic results

For the centerpiece result of this paper, I show that there is, generically, no unique equi-
librium under inflation targeting. The result is surprisingly broad, as it does not require
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any further restriction on parameters and encompasses any shock process we wish to im-
pose. It also applies to all inflation-targeting regimes, from a central bank with very high
output weight to an inflation nutter, that is, any policy loss function ψ ≥ 0.

An analytic result is particularly useful because the system of nonlinear equations
described by (9) poses some challenges. There may be no equilibrium at all for some
economies. If they exist, equilibria can be characterized as fixed points of a vector-valued
function, yet the accompanying mapping is not well behaved. Numerical methods inherit
these difficulties: Iteration by adaptive expectations, for example, may fail to converge
even if an equilibrium does exist.

Proposition 4.1. Let π∗ ∈ <n be a Markov equilibrium. Then, generically, there exists
at least an additional distinct Markov equilibrium, π̃ 6= π∗.

Proof. In the appendix

The proof takes a novel approach that exploits the piece-wise linear structure of the
equilibrium equations. For each state, the two equilibrium conditions (7) and (8) can be
viewed as describing two half-spaces in <n, namely,

Hu (s) = {x ∈ <n : x ≥ (1 + ν + β)E1 (x|s)− βE2 (x|s) + A (s)}

and

Hb (s) =

{
x ∈ <n : x ≥ ψ

κ2 + ψ
(βE1 (x|s) + u)

}
.

Note that their intersection naturally satisfies (9). I show that the 2n half-spaces describe
a solid polytope in <n: A Markov equilibrium must be a vertex, as it is a point where the
boundaries of n of those half-spaces intersect.20 Not all vertexes are equilibria, though.
There are “kinks” defined by the intersection of the boundary of two half-spaces corre-
sponding to the same equilibrium equation. The final step of the proof shows that it is
not possible that all vertexes but one are “kinks,” and thus there are at least two Markov
equilibria.

One shortcoming of Proposition 4.1 is that while it rules out a unique equilibrium,
it does not establish the actual number of equilibria—no equilibria being an open possi-
bility. Fortunately, the proof of Proposition 4.1 shows that characterizing the full set of
equilibria is a vertex enumeration problem, for which readily available algorithms already
exist. While computationally expensive, these algorithms guarantee that no Markov equi-
libria will be missed and thus that can be used to establish equilibrium nonexistence or
uniqueness as well.

While it may not be immediately apparent, Proposition 4.1 does not apply to economies
with i.i.d. shocks, as such restriction is “not generic” from the point of view of the general
set of possible shock processes. This is no major problem as an equivalent result exists
for i.i.d. economies, with a much simpler proof.

20Incidentally, this proves that each Markov equilibrium is locally unique.
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Proposition 4.2. Let F (s′|s) = F (s′) for all s, s′ ∈ S. Then if there exists a Markov
equilibrium, there is, generically, another distinct equilibrium.

Proof. In the appendix

4.4 Numerical results

The analytic results are admittedly limited, as they are silent regarding the welfare and
properties of each of the Markov equilibria. I explore here numerically an economy based
on standard parameter values in the literature.

The model is evaluated at the quarterly frequency. I assume log-preferences, so σ = 1,
and set the intertemporal discount rate β at .994 such that the annual real interest rate
is 2.5 percent. The slope of the NKPC, κ, is .024. This is the value used in Rotemberg
and Woodford (1997) and followed countless times for small-scale New Keynesian models.
I assume a target inflation of 2 percent annually and set the ZLB accordingly. The
weight on the output gap in the social welfare function, λ, is given by the structural
parameters, assuming an elasticity of substitution across goods of 5.21 Regarding the
shock processes, I approximate an independent Gaussian auto-regressive process for each
shock, with standard deviations σu and σv set at .07 and .6, respectively, and auto-
correlation coefficients at ρu = .8 and ρv = .9.22 These values roughly approximate the
volatility and auto-correlation of the output gap and inflation in the U.S., as given by
the CBO output gap and core PCE, when the model is evaluated under discretion, i.e.,
ψ = λ, and ignoring the ZLB.

The two columns in Table 1 correspond to an economy without the ZLB. In the first
column I compute the optimal policy, from a timeless perspective, as given by the equation
πt = λ/κ (yt − yt−1). The first row reports the welfare loss, according to society. All
inflation moments are given in annualized percentages—output moments, in percentage
deviations from the efficient level (output gap). There is not much to report on the optimal
policy except in contrast to inflation targeting, which is reported in the second column.
Since there is no ZLB, there is a unique Markov equilibrium. Despite setting the output
weight arbitrarily at just half the weight in the social welfare loss function, ψ = .5λ,
inflation targeting approximates quite well the optimal policy outcome, with only slightly
more output volatility and a more sizable, yet still modest, increase in inflation volatility.
Since there is no ZLB, real-rate shocks are perfectly stabilized, and the only variation
comes from cost-push shocks, which send inflation and output in opposite directions.

Upon reintroducing the ZLB, I find there are two Markov equilibria, reported in the
two columns of Table 2.23 There is no mistaking which equilibrium is the stabilization or

21That is, λ = κ/5 = .005. See Woodford (2003) for details on the derivation.
22I use the Rouwenhorst method 16 grid points for the state space. See Kopecky and Suen (2010) for

a description and discussion of the Rouwenhorst method.
23The algorithm described above allows a comprehensive equilibrium search. I explored a range of
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Optimal policy Inflation Targeting

Social loss
Lt 0.023 0.045

Inflation and output
Eπt 2.00 2.00
Eyt 0.00 0.00
σy 1.34 1.35
σπ 0.287 0.542
ρ(πt, yt) -0.134 -1

Auto-correlations
ρ(yt, yt−1) 0.964 0.804
ρ(πt, πt−1) 0.541 0.804

Table 1: Optimal policy and inflation targeting, without the ZLB

Inflation Targeting
Equilibrium 1 Equilibrium 2

Social loss
Lt 0.047 0.82

Inflation and output
Eπt 1.96 0.38
Eyt -0.01 -0.10
σy 1.32 3.07
σπ 0.569 2.13
ρ(πt, yt) -0.954 0.746

Auto-correlations
ρ(yt, yt−1) 0.796 0.822
ρ(πt, πt−1) 0.799 0.857

Zero lower bound
Pr(Rt = −Z) 0.0625 0.453
EτZ 3.95 11.6

Table 2: Markov equilibria under inflation targeting, with the ZLB
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“good” equilibrium. There is indeed little difference between inflation targeting without
the ZLB, reported in Table 1, and Equilibrium 1. The ZLB binds only rarely and for
short spells—about 6 percent of the time and for an average of four quarters, respectively.
It is thus not a great impediment to stabilization policy. In contrast, Equilibrium 2 in
the second column of Table 2 features quite large volatility of both output and inflation,
as well as a low inflation rate average—though not quite outright deflation. The economy
spends close to half of the time at the ZLB, with spells at the ZLB averaging close to
three years.

Once the ZLB is observed, the economy is not linear, and thus the first and second
moments reported in Table 2 do not tell the whole story. I simulate the economy for
100 periods and plot the results in Figure 1 for both Markov equilibria: the stabilization
equilibrium in blue and the low-inflation equilibrium in green. Clockwise, from the top
left, Figure 1 displays the output gap, the inflation rate, the real rate, and the nominal
rate. All variables but the output gap are in annualized percentage rates; the output gap
is in percentage deviations from its efficient level.
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Figure 1: Simulations for inflation targeting Markov equilibria

parameters and pervasively found only two Markov equilibria. For very persistent shock processes there
were occasionally no equilibria.
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It is immediately apparent from Figure 1 that what sets both equilibria apart are
infrequent yet steep deflation episodes in the low-inflation equilibrium. Output and infla-
tion collapse as the real rate shoots up, since the policy rate is already at the ZLB. In the
stabilization equilibrium, these episodes are much milder, as the monetary authority has
room to maneuver and can decrease the policy rate aggressively, bringing the real rate
down.

With the exception of these deflation episodes, both equilibria look strikingly similar.
The difference in average inflation is noticeable, but there is substantial overlap across
equilibria. The output gap, similarly, fluctuates on a narrow range around its efficient level
most of the time in both equilibria. Also note how the nominal rate in the low-inflation
equilibrium has long spells far away from the ZLB, occasionally spiking at pretty high
rates. Conversely, the policy rate does touch on the ZLB in the stabilization equilibrium,
though only rarely.

5 Price-level targeting

Inflation targeting does not anchor private-sector expectations. Perhaps price-level tar-
geting fares better, as it pins down policy to a state variable? Unfortunately, it does
not.

Svensson (1999) was among the first to analyze price-level targeting at par with in-
flation targeting. In a key contribution, Vestin (2006) shows that a monetary authority
committed to pursuing a price-level target would actually mimic the optimal policy. His
analysis ignored the ZLB on the policy rate: It turns out that what really sets apart
price-level targeting is its ability to approximate the optimal policy at the ZLB, as first
pointed out by Eggertsson and Woodford (2003).24

5.1 The monetary authority

The price level, in terms of deviations from some steady-state underlying trend, is given
by

pt = πt + pt−1. (10)

Note the timing regarding the definition of the price level: pt is the end-of-period t price
level. The price-level target is implemented by endowing the monetary authority with an
objective function

lpt = p2t + ψy2t , (11)

24See also Wolman (2005), Jung et al. (2005), Adam and Billi (2006), and Nakov (2008). There is very
limited empirical evidence on price-level targeting because it has rarely been implemented. An exception
is Berg and Jonung (1999), who provide an account of Sweden’s experience with price-level targeting in
the 1930s.
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where ψ ≥ 0 allows for flexible price-level targeting, i.e., the monetary authority also
has a stabilization goal for output. The initial value for the price level, p0, is taken as
given. The specification (11) for the price-level targeting nests nominal GDP targeting as
a special case with ψ = 1.

The price level is now an endogenous state variable in this economy.25 As a result, the
monetary authority’s decision has an explicit intertemporal dimension: When setting the
nominal interest rate in the present period, the monetary authority realizes that it will
impact the price level, which will, in turn, shape future rate decisions. The analysis is
further complicated because one should not expect the continuation value function to be
differentiable with respect to the price level. In order to be able to characterize the law of
motion for the price level, I have no choice but to restrict the analysis to perfect-foresight
economies.

5.2 Results

Here I show that there is a Markov equilibrium such that, for any initial price level, p0, the
nominal interest rate converges to the ZLB in finite time, with output and the price level
falling permanently below target after that. There is, of course, a more benign Markov
equilibrium in which inflation, output, and the price level converge to full stabilization—
see Vestin (2006) and Eggertsson and Woodford (2003) for details.

Proposition 5.1. Consider a perfect-foresight economy, F ({0, 0}) = 1. There exists a
Markov equilibrium and a finite time t∗ (p0) such that, for all t ≥ t∗ (p0), the nominal
interest rate is at the ZLB, Rt = −Z, and both inflation and output are below target,
πt, yt < 0.

Proof. In the appendix

As discussed in Section 3, the steady-state inflation and output levels are the same
as in the low-inflation equilibrium under inflation targeting. The key contribution of
Proposition 5.1 is to show that there is global convergence to the low-inflation steady
state. The proof proceeds by construction, conjecturing an upper bound on the law of
motion for the price level as well as the aforementioned steady-state level for inflation and
output. Note that since inflation is systematically below target, the price level is drifting
further and further away from its target. Since the policy loss function is unbounded, the
proof must also show that the monetary authority’s value function remains well defined.

The result in Proposition 5.1 stands in contrast to some well-known results in the
literature. Eggertsson and Woodford (2003) write that “eventually it [the central bank]
will be able to hit the target” when discussing price-level targeting.26 What is behind such
contradicting conclusions? In Eggertsson and Woodford (2003), the economy finds itself

25The appendix contains an updated definition of a Markov equilibrium.
26Page 184.
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against the ZLB due to a real-interest rate shock. Once the shock unwinds, the economy
lifts from the ZLB and the monetary authority has no trouble returning the price level to
the desired target. In my analysis, though, the culprit of the economy’s dire situation is
private-sector expectations that do not unwind, and thus the monetary authority never
has a chance to return the price level (or inflation) to target.27

6 Interest-rate stabilization

In this section I show that private-sector expectations can be anchored into a unique
Markov equilibrium by introducing a stabilization goal for nominal rates in the monetary
authority’s objective function. In doing so, the monetary authority is then prompted to
raise the policy rate when confronted with low inflation expectations, despite that both
output and inflation will end up below target. The stabilization goal for nominal rates
comes with a cost, as the monetary authority’s responses to shocks stray further away
from their optimal values. Fortunately, these costs can be mitigated substantially by
targeting long-term nominal rates.

6.1 The monetary authority’s objectives

Let Rj
t be the nominal rate return paid at maturity after j ≥ 1 periods, in annualized

rate. The policy rate, Rt, is simply j = 1. For longer maturities, the return must satisfy
the arbitrage condition

Rj
t =

1

j
Et

(
j−1∑
i=0

Rt+i

)
. (12)

The monetary authority’s inflation target is now combined with a penalty term for
deviations in the nominal rate, at some horizon j, from its steady-state level—in other
words, the stabilization of the nominal interest rate is made an explicit goal of the central
bank. The monetary authority’s loss function is specified as

lpt = π2
t + ψy2t + ρ

(
Rj
t

√
j
)2
, (13)

where ψ, ρ ≥ 0 and the term
√
j is a convenient normalization. I should emphasize that

the nominal rate stabilization goal is taken to be a deviation from the social welfare, which
remains given by (4). However, there are foundations for such a term to be included in a
micro-founded social welfare loss function if, for example, there are transaction frictions.28

27While already noted, it is perhaps worth repeating that a commitment to keep policy rates low for an
extended period does not return the economy to the target: Policy rates are expected to remain extremely
low anyway in the low-inflation equilibrium.

28See Woodford (2003) and Rudebusch (2006) for a discussion.

20



It should also be noted that the stabilization goal is in terms of the level of the nominal
rate, not its changes from period to period.

Before stating the necessary and sufficient first-order condition associated with the
monetary authority’s problem, I solve for the nominal rate using (12) and (2) for the
whole horizon, to obtain

Rj (s) =
1

j

(
σ (Ej (y|s)− y (s)) +

j∑
i=1

(Ei (π|s) + Ei−1 (v|s))

)
. (14)

There is no term premium in this model, though real-interest rate shocks v do introduce
deviations from the usual linear term structure.

The necessary and sufficient first-order condition associated with the monetary au-
thority’s problem is

κπ (s) + ψy (s) ≤ ρσRj (s) (15)

with strict equality if R (s) > −Z.29 The comparison with the first-order condition in the
case of inflation targeting (6) is straightforward: The monetary authority is balancing the
stabilization of output and inflation—the terms in the left-hand side of equation (15)—
with the stabilization of the nominal rate of choice. Note that, if evaluated at j = 1, the
resulting expression is reminiscent of a simple Taylor rule without persistence.

6.2 Equilibrium characterization

The steps to characterizing an equilibrium are very similar to those in Section 4. Whenever
the ZLB is binding, there is no policy decision, and thus the equilibrium condition is given
by the Euler equation, or equation (7) once the output gap has been substituted for. When
the ZLB is not binding, the first-order condition (15) dictates policy. After some algebra,
the equilibrium condition is

π (s) ≤ b1E1 (π|s) + b2Ej (π|s) + b3Ej+1 (π|s) + b4

j∑
i=1

Ei (π|s) +B (s) (16)

29The square term in the duration,
√
j, ensures that the targeted nominal rate still responds one-to-one

with the policy rate at all horizons.
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where

b1 =
βσ2ρj−1 + βψ

κ2 + ψ + σ2ρj−1
,

b2 =
σ2ρj−1

κ2 + ψ + σ2ρj−1
,

b3 =
−βσ2ρj−1

κ2 + ψ + σ2ρj−1
,

b4 =
σρj−1κ

κ2 + ψ + σ2ρj−1
,

B (s) =
(σ2ρj−1 + ψ)u− σ2ρj−1Ej (u|s) + σρj−1κ

∑j
i=1Ei−1 (v|s)

κ2 + ψ + σ2ρj−1
.

The two equations (7) and (16) are combined in (9), automatically determining whether
the ZLB is binding or not.

6.3 Anchoring expectations on a single Markov equilibrium

The main result in this section is a sufficient condition to anchor private-sector expecta-
tions: Proposition 6.1 states that if the weight on interest-rate stabilization is larger than
a threshold, then there is a unique Markov equilibrium. Unfortunately, an analytic result
is available only for i.i.d. shocks, and I have to resort to numerical methods to explore
the case of persistent shocks.

Proposition 6.1. Let F (s′|s) = F (s′) for all s, s′ ∈ S. If ρ > κ2+ψ(1−β)
σκ

, then there is,
generically, a unique Markov equilibrium.

Proof. In the appendix

Emphasizing interest-rate stability ensures that the monetary authority does not ac-
commodate any permanent shift in inflation expectations. Say the private sector expects
inflation to be below the target, pushing output and future rates to drop well below target
as well. If the weight on interest-rate stabilization is large enough, the monetary authority
will choose to keep nominal interest rates close to the steady state—in particular, setting
the policy rate above the ZLB. This implies that the private-sector inflation expectations
will not be validated, negating any Markov equilibrium far from full stabilization.

The threshold in Proposition 6.1 depends on the parameters governing the monetary
policy transmission, κ, σ, β, as well as the relative weight given to output in the policy loss
function. Conspicuously absent are any terms regarding the volatility of the shock process
or, more surprisingly, the distance to the ZLB, Z. The reason is that the threshold is not
designed to avoid the ZLB at all costs. As the numerical examples below show, the ZLB
can be binding in response to shocks.
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Unfortunately, there is no guarantee that policy-rate stabilization allows the monetary
authority to achieve its output and inflation targets and, more worryingly, that it actually
improves welfare upon any of the Markov equilibria that arise under inflation targeting.
By construction, the monetary authority’s response to cost-push shocks will be muted
and thus further away from optimal. Moreover, now the monetary authority will not fully
accommodate real-interest rate shocks, which can typically be stabilized completely if the
ZLB is not binding.30

Stating the stabilization goal in terms of long-term nominal rates ameliorates the
costs associated with this framework. The simple reason is that longer rates are mainly
determined by inflation expectations, which is exactly what the policy rate should be
reacting strongly in order to rule out the additional Markov equilibrium. The real rate,
in contrast, has little weight and thus does not interfere with short- to medium-term
stabilization policy.

6.4 Numerical results

I resort again to numerical methods to complete my analysis.31 First, I ask whether
interest-rate stabilization can anchor expectations to a unique equilibrium if shocks are
persistent. If so, then I am interested in the costs of doing so, that is, how much the
interest-rate stabilization goal disrupts stabilization policy.

Regarding the very first question, I find that the threshold presented in Proposition 6.1
remains effective for economies with persistent shocks: I found a unique Markov equilib-
rium whenever the weight for interest-rate stabilization was set above the aforementioned
threshold, across a wide range of structural and policy parameters. Here the algorithm
provided in Section 4 again proves very useful, since it allows us to establish equilibrium
uniqueness.

Next I explore the equilibrium properties across different rate maturities: 3 months
(policy rate) and the five and 10 years (nominal rates). In the first exercise, the weight
on the output gap in the monetary authority objective function is set equal to its value
in the social welfare loss function, ψ = λ. The weight on the interest rate is set just
above the threshold implied by Proposition 6.1: As discussed above, this is sufficient to
anchor private-sector expectations on a single Markov equilibrium and does not need to
vary across maturities.

Table 3 documents the results. The first column corresponds to the case of policy-rate
stabilization: The results are not very encouraging. The social loss is just below that of
the low-inflation equilibrium. Inflation is way above its target; both output and inflation

30Proposition 6.1 proves the uniqueness of Markov equilibria, but it is likely that other rational-
expectations equilibria exist. The latter is a likely possibility when j = 1, since the interest-stabilization
goal leads the nominal interest rate to react less than one-to-one with inflation, thus violating the Taylor
principle.

31The structural parameters are the same as described previously in Section 4.
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Policy parameters
Output weight ψ λ λ λ .5λ
Maturity j 3 months 5 years 10 years 10 years
Rate weight ρ .026 .026 .026 .027

Social loss
Lt 0.76 0.18 0.12 0.10

Inflation and output
Eπt 3.36 2.66 2.49 2.30
Eyt 0.08 0.04 0.03 0.02
σy 2.13 1.02 0.88 1.25
σπ 2.25 1.13 0.90 0.89
ρ(πt, yt) 0.848 -0.021 -0.584 -0.29

Auto-correlations
ρ(yt, yt−1) 0.899 0.857 0.82 0.822
ρ(πt, πt−1) 0.874 0.834 0.818 0.842

Zero lower bound
Pr(Rt = −Z) 0.0625 0.0625 0.0625 0.0625
EτZ 3.95 3.95 3.95 3.95

Table 3: Markov equilibria under nominal rate stabilization, different maturities, and
output weights
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are very volatile and positively correlated. While we were expecting stabilization policy
to fare poorly, the high inflation mean comes as a surprise. To understand this, assume
that there are only i.i.d. real-rate shocks. Equation (16), which determines inflation when
the ZLB is not binding, simplifies to

πt = φEπ,

where φ > 1 if the condition for uniqueness in Proposition 6.1 is satisfied. In short, the
policy rate is such that if the private sector were to expect inflation far from the target,
the realized inflation would be even further. So far, this is compatible with inflation
expectations being anchored at the target. Now suppose the ZLB is binding for some
shock, with (7) simplifying

πt = (1 + ν)Eπ + A (s) ,

where A (s) < 0 is whatever value of the real-rate shock sends the economy to the ZLB.
If inflation expectations were at or below target, Eπ ≤ 0, then realized inflation would
come strictly under expectations whenever the ZLB is binding and equal to or below
expectations when the ZLB is not binding. Clearly, this does not constitute a Markov
equilibrium. Instead, when inflation expectations overshoot the target, Eπ > 0, then
realized inflation is above expectations when the ZLB is not binding but below when it
is.

Fortunately, interest-rate stabilization performs much better when the monetary au-
thority’s objective function targets medium- and long-term nominal rates instead of the
policy rate. The second and third columns in Table 3 report the equilibrium properties
of a stabilization goal in terms of the 5- and 10-year nominal rates, respectively. In both
cases, welfare is substantially higher than it is in the low-inflation equilibrium under in-
flation targeting. The unconditional mean of inflation remains above target, but only
by about half a percentage point. Both inflation and output volatility are back within
agreeable values. Indeed, using the 10-year nominal rate approximates quite well the
stabilization equilibrium, with output and inflation moving in opposite directions—the
telltale sign that monetary policy is properly responding to shocks.

Now there is no good reason to introduce an interest-rate stabilization goal in isolation.
The last column in Table 3 computes the equilibrium that results from combining inflation
targeting—arbitrarily setting the output weight to half the social welfare’s, as in Section
4—with a stabilization goal for the 10-year nominal rate. Welfare improves by reducing the
inflation mean, but actual stabilization policy worsens. Indeed, the welfare loss increases
if the output weight is reduced in the case of the policy rate and the 5-year nominal
rate (not reported). It is possible to tweak the policy parameters—both the output and
interest-rate weight—to further reduce welfare loss, bringing interest-rate stabilization
within earshot of matching the welfare properties of the stabilization equilibrium under
inflation targeting.
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7 Conclusions

In this paper I have argued that nominal targets present some perils along with their
many virtues—the latter being numerous enough to wish the former could be safely dis-
missed. After all, the experience with inflation targeting has been very successful. Several
inflation-targeting central banks have kept their policy rates virtually at zero for extended
periods, yet inflation expectations have remained anchored. The one country that appears
perennially mired on a liquidity trap, Japan, has no nominal target. I briefly ask here
whether there is a valid basis to conclude that expectations are anchored after all.32

One possibility is that the ZLB is not such a constraint on policy as I made it out to
be. Several central banks embarked on asset purchase programs as an additional policy
tool when the nominal rate hit the ZLB. Were we to find these policies as effective as
the policy rate, the central bank’s hands would not be tied in the face of low-inflation
expectations. However, the logic of the rational expectations is quite demanding: The
effect of the asset purchases must be unbounded to ensure a unique equilibrium. Note
that my results did not hinge on the particular value of the lower bound on the policy
rate, Z. We could conceivably set Z far below zero, capturing a policy-rate equivalent
impact of asset purchases, and we would yet face the same perils.

Another hypothesis is that, implicitly, central banks around the world are already
committed to a target for long-term rates, perhaps as part of their objective of price or
even financial stability. Per my results in Section 6, this would effectively anchor inflation
expectations without interfering much with stabilization policy.

More broadly, we can also question the model used here. This poses a conundrum,
since it is the very same framework universally used to argue for the merits of inflation
targeting. A criticism of the equilibrium concept may fare better. While Markov equi-
libria are a narrow subset of all rational expectations equilibria, there is a question of
whether all the equilibria are stable under some form of learning by the private sector.
If the literature on Benhabib et al. (2000) is any indication, all steady states may have
some converging learning dynamics associated.33 Bullard (2010) also points out that the
Japanese experience suggests a liquidity trap is a real possibility.

In my opinion, the most appealing argument is that a nominal target may bring co-
ordination beyond the underlying commitment—which, as I have shown, is not sufficient.
Private-sector agents may simply pencil in the central bank’s targets and forgo developing
their own forecast. And, as the central bank is then enabled to achieve its targets, these
same agents find no reason to revise their trust. This, though, brings more questions than
answers. How is such a concept of credibility acquired? How may it be lost? I must then
close my paper with the ever-exasperating conclusion that further research on the subject
is needed.

32See Bullard (2010) for a similar discussion in the context of U.S. monetary policy and the results in
Benhabib et al. (2000).

33See Eusepi (2007) and Evans et al. (2008).
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A Appendix

A.1 Section 4

Proof of Proposition 4.1. Assume economy ξ has one equilibrium. I will show that, gener-
ically, there is at least another equilibrium.

Consider the vector-valued function Γ : <n → <n given by

Γi (g; ξ) = min
{
πui (g; ξ) , πbi (g; ξ)

}
(17)

for each i = 1, 2, . . . , n, where, in a slight abuse of notation,

πbi (g; ξ) = (1 + ν + β)E1 (g|si)− βE2 (g|si) + A(si),

πui (g; ξ) =
ψ

κ2 + ψ
(βE1 (g|si) + u(si)) .

Each vector-valued function can be written concisely in matrix form as

πb (g; ξ) = Cbg + A,

πu (g; ξ) = Cug + u.

Clearly g is an equilibrium if and only if Γ(g; ξ) = g. Let g∗ be an equilibrium whose
existence is the premise of the proof. Let h(g; ξ) = Γ(g; ξ)− g and

H = {g ∈ <n : h(g; ξ) ≥ 0} .

The set H is nonempty, since it includes g∗. It is also closed, since h is continuous. It is
also convex, since Γ is the minimum of an ensemble of linear functions and thus weakly
concave. In the next two lemmas I prove that H has a nonempty interior in a generic
economy and is bounded.

Lemma A.1. The set H has, generically, a nonempty interior.

Proof. Let e ∈ {0, 1}n with ei = 1 if πbi (g∗; ξ) ≤ πui (g∗; ξ), ei = 0 otherwise, for all
i = 1, 2, . . . , n. Since Γ(g∗; ξ) = g∗, the equilibrium satisfies

e ◦
(
Cbg∗ + A

)
+ (1− e) ◦ (Cug∗ + u) = g∗. (18)

Generically, πbi (g∗; ξ) < πui (g∗; ξ) for all i such that ei = 1: otherwise, adding πbi (g∗; ξ) =
gi to (18) delivers a system of n+1 linear equations and n unknowns, which has generically
no solution. Thus, there exists δ > 0 such that for all g ∈ Bδ(g

∗) = {g ∈ <n : ||g−g|| < δ,
Γ(g; ξ) = e◦

(
Cbg∗ + A

)
+(1−e)◦(Cug∗ + u). Thus, h is linear in Bδ(g

∗) with DΓ(g; ξ) =
e ◦ Cb + (1 − e) ◦ Cu. Generically DΓ(g∗; ξ) has an inverse and thus for any δ > 0 there
exists x ∈ <n, ||x|| < δ such that DΓ(g∗; ξ)x > 1, and hence h(g + x; ξ) > 0. Hence, the
interior of H is nonempty
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Lemma A.2. The set H is, generically, bounded.

Proof. By Lemma A.1 there exists, generically, a point g′ such that h(g′; ξ) > 0. Consider
the subset X ∈ <n of normalized vectors x ∈ <n of length 1 such that max{x} ≥ 0. For

any x ∈ X, pick j ∈ arg maxi

{
xi − βψ

κ2+ψ
E1 (x|si)

}
and let δ : X → < be

δ (x) =
πuj (g′; ξ)

xj − βψ
κ2+ψ

E1 (x|sj)
.

To show that δ(x) is finite and strictly positive for all x ∈ X, note first that if xi = α for
all i then α > 0 by x ∈ X and

xj −
βψ

κ2 + ψ
E1 (x|sj) =

(
1− βψ

κ2 + ψ

)
α > 0.

If xi 6= xk for some pair in x, then max{x} > E1 (x|sj) since F (si|sj) > 0 for all pairs.
Thus

xj −
βψ

κ2 + ψ
E1 (x|sj) > max{x} − βψ

κ2+ψ
max{x} ≥ 0.

Thus xj− βψ
κ2+ψ

E1 (x|sj) > 0, which implies both that δ(x) > 0 since πu(g′; ξ) ≥ h(g′; ξ) > 0

and δ(x) is bounded above. Since X is a compact space, δ(x) achieves its maximum in
X, δ̄ = maxx∈X δ(x). By construction, for any ε > 0 and any x ∈ X,

πuj
(
g′ + x

(
δ̄ + ε

)
; ξ
)
−
(
g′ + x

(
δ̄ + ε

))
< 0

and thus g′+x
(
δ̄ + ε

)
6∈ H since h(g; ξ) ≤ πu(g; ξ)−g. This proves the set H is bounded

in all quadrants of Rn except the strictly negative, i.e., x < 0. For this last step, note
that for any g and scalar τ ,

h(g − τ ; ξ) ≤ πb(g − τ ; ξ)− (g − τ) = πb(g; ξ)− g − ντ.

Consider the hyperplane Z = {g ∈ <n :
∑
gi =

∑
g′i}. By construction, g′ ∈ Z so Z ∩H

is nonempty. In addition, Z ∩H is also compact since any g ∈ Z ∩H can be expressed
as g = g′ + x||g − g′|| for some x ∈ X. Thus, each component of πb achieves a maximum
in Z ∩H and

τ̄ =
1

ν
min
i

max
g∈Z∩H

πbi (g; ξ)

is well defined. Then for any ε > 0, g ∈ {Z − (τ̄ + ε)} implies g 6∈ H as πbj(g; ξ)− gj < 0
for some j. Thus, for any g ∈ H with g < g′, ||g− g′|| ≤ τ̄ . Thus H is contained in a ball
of radius max{δ̄, τ̄} centered at g′
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The set H is the intersection of the collection of the 2n half-spaces given by the
n equilibrium equations, each evaluated with the ZLB or not. Let K be an index set
over {1, 2, . . . , n} × {u, b} with functions i : K → {1, 2, . . . , n} denoting the state and
j : K → {u, b} whether the ZLB binds or not. Define the half-space Hk,

Hk =
{
g ∈ <n : π

j(k)
i(k) (g)− g ≥ 0

}
.

Formally, H =
⋂
K Hk and thus H is a polytope. By the previous two Lemmas, H

is also nonempty and compact, and therefore H is a solid (or proper) polytope in <n.
Every equilibrium is a vertex, yet not every vertex is an equilibrium: There are “kinks”
defined by the intersection of the boundary of the two half-spaces of the same equilibrium
equation. The proof proceeds by induction, eventually ruling out the possibility that all
vertexes but one are kinks.

For any X ⊂ <n, let Υ (X) = {k ∈ K : ∂Hk ∩X 6= ∅}. A point g ∈ <n is an equilib-
rium if and only if Υ(g) has n elements and for any two distinct elements k, k′ ∈ Υ(g),
i(k) 6= i(k′).

Consider first the case in which Υ(H) has 2n elements. Generically, this implies H
has 2n (n − 1)-facets. Let A be the convex hull from {Hi ∩ ∂H : i ∈ Υ(g∗)}. There
exists a point g ∈ int(H), g 6∈ A—otherwise, H = A and Υ (H) would have only n + 1
elements. By the separating hyperplane theorem, there exists a half-space C such that
g ∈ C,C ∩ A = ∅. The intersection C ∩ H is a polytope and thus contains at least one
vertex g̃ 6∈ ∂C. By construction, Υ (C ∩H)∩Υ (g∗) = ∅; that is, none of the (n−1)-facets
of C ∩H belong to the supporting hyperplane of the (n − 1)-facets of A. Thus, Υ (g̃) is
equal to K/Υ (g∗) and is an equilibrium. Hence, g∗ is not a unique equilibrium.

Consider the case that Υ(H) has strictly less than 2n elements. Then there exists
k ∈ Υ(H) such that for any k′ 6= k, k′ ∈ Υ(H), i(k) 6= i(k′). Since H is a proper polytope
in <n, then Hk ∩ ∂H is a proper polytope in <n−1 and obviously g∗ ∈ Hk. By considering
the subspace containing Hk ∩ ∂H, the previous steps can be repeated, substituting n by
m = n − 1 and considering only the remaining half-spaces with i 6= i(k). Then either
there exists another equilibrium or proceed with m = n − 2 and so on. If m = 1, then
there are two vertexes that are both an equilibrium

Proof of Proposition 4.2. Clearly E1 (π|s) = E2 (π|s) = Eπ. Equation (7) can then be
simplified to

πb (s) = (1 + ν)Eπ + A (s) .

Define the function Γ(x) as

Γ(x) =
∑
S

F (s) min

{
ψ

κ2 + ψ
(βx+ u) , (1 + ν)x+ A (s)

}
.
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Eπ = x∗ is an equilibrium, with

π(s) = min

{
ψ

κ2 + ψ
(βx∗ + u) , (1 + ν)x∗ + A (s)

}
for all s ∈ S, if and only if it is a fixed point of Γ (x∗) = x∗.

Lemma A.3. If Γ(x) ≤ x for all x, then, generically, no equilibrium exists.

Proof. The function Γ is differentiable almost everywhere. More precisely, it is only not
differentiable at the points such that, for some state, both (7) and (8) hold with strict
equality. Let xi, i = 1, . . . , n solve

ψ

κ2 + ψ
(βxi + ui) = (1 + ν)xi + A(si).

Assume there exists a fixed point Γ (x∗) = x∗. If x∗ = xi for any i = 1, . . . , n, then
the single unknown x∗ satisfies two distinct linear equations. Thus, generically, Γ is
differentiable at x∗. If Γ(x) ≤ x for all x, the derivative at x∗ must be exactly zero, which
is an additional equation and thus can be ruled out as a not generic case

Let α0 = ν−1
∑

S F (s)A (s). For x < α0, Γ(x) < x since Γ(x) ≤
∑

S F (s) ((1 + ν)x+ A (s)).

Let α1 =
(

1− ψβ
κ2+ψ

)−1∑
S F (s)u. For x > α1, Γ(x) < x since Γ(x) ≤

∑
s F (s) ψ

κ2+ψ
(βx+ u).

By the previous lemma, the only case left to be characterized is that there exists x̃
such that Γ(x̃) > x̃. It must be that x̃ ∈ [α0, α1] and, by continuity of Γ, x̃ ∈ (α0, α1)
without loss of generality. Then, by the intermediate value theorem, there must be at
least one fixed point between α0 and x̃ and at least one fixed point between x̃ and α1.
Therefore, there are generically at least two distinct equilibria

A.2 Section 5

Definition 2. A Markov equilibrium given ψ consists of:

• A policy function R(p) : < → <,

• A value function V (p) : < → <,

• Allocation functions fπ(p), fy(p), fp(p) : < → <, and

• Private-sector expectations functions gπ(p), gy(p) : < → <,

such that for all p−1 ∈ <,
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• Policy and value R(p−1), V (p−1) solve

V (p−1) = max
R≥−Z

−p2 − ψy2 + βV (p)

subject to

p = p−1 + π,

π = κy + βgπ(p),

R = σ (gy(p)− y) + gπ(p).

• Allocation functions fπ(p−1), fy(p−1), fp(p−1) satisfy the equilibrium conditions,

fp(p−1) = p−1 + fπ(p−1),

fπ(p−1) = κfy(p−1) + βgπ (fp(p−1)) ,

R(p−1) = σ (gy (fp(p−1))− fy(p−1)) + gπ (fp(p−1)) .

• Private-sector expectations gπ(p−1), gy(p−1) satisfy the rational expectations hypoth-
esis,

gπ(p−1) = fπ(p−1),

gy(p−1) = fy(p−1).

Proof of Proposition 5.1. We start with a partial conjecture regarding the equilibrium
functions. For some p∗ > 0, let

R (p−1) = −Z
fp (p−1) = p−1 − Z
fπ (p−1) = −Z
f y (p−1) = −(1− β)Z

for all p−1 ≤ p∗. For the conjectured law of motion of the price level, clearly if p−1 ≤ p∗

then fp (p−1) < p−1 ≤ p∗. Thus, the set {p ≤ p∗} is absorbing. Since the price level is
ever decreasing according to fp (p−1), I need to show that the loss function (11) is still
well defined. Given p0 ≤ p∗, the price level in t ≥ 1 periods will be pt = p0 − tZ. Thus,
the loss function will be

L(p0) =
∞∑
t=1

βt−1
{

(p0 − tZ)2 +
ψ

κ2
(1− β)2Z2

}
for p0 ≤ p∗. Expanding the price-level term inside the sum, I obtain

∞∑
t=1

βt−1(p0 − tZ)2 =
p20

1− β
+ β−1

∞∑
t=1

βt(t2Z2 − 2tZp0).
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The sum
∑∞

t=1 β
t−1ta converges for all a. Using the appropriate formulas,

∞∑
t=1

βt−1(p0 − tZ)2 =
p20

1− β
+ Z2 1 + β

(1− β)3
− 2Zp0

(1− β)2
.

Thus L(p0) is finite. For later use, the derivative of L is

L′(p0) =
2p0

1− β
− 2Z

(1− β)2
.

Note L′ < 0 for all p0 ≤ 0.
Next I check that fp, fπ, and f y satisfy the Euler equation (2) with Rt = −Z and the

NKPC (1). The Euler equation is used to solve for the output gap

κyt = −σ−1κRt + κyt+1 + σ−1κπt+1. (19)

If p0 ≤ p∗, then fp (p−1) < p−1 ≤ p∗ and Rt = −Z. Thus

κyt = σ−1κZ − (1− β)Z − σ−1κZ = −(1− β)Z

as conjectured. The NKPC (1) quite trivially confirms the inflation function,

πt = κyt + βπt+1 = −Z.

The key step is to show that R(p−1) = −Z is indeed the choice of the monetary
authority. If Rt > −Z, then p < p−1 − Z ≤ p∗. The monetary authority problem can
then be written as

min
p≤p−1−Z

p2 +
ψ

κ2
(p− p−1 + βZ)2 + βL(p),

where L(p) is as given earlier. The first-order condition evaluated at p = p−1 − Z must
satisfy

p−1 − Z − Z(1− β)
ψ

κ2
+ β

(
p−1 − Z
1− β

− Z

(1− β)2

)
≤ 0.

This is true if

p−1 ≤ (1− β)Z

(
1 + (1− β)

ψ

κ2
+

β2

(1− β)2

)
≡ p∗.

Clearly, p∗ > 0.
To complete the proof, conjecture that

fp (p−1) ≤ p−1 − Z
fπ (p−1) ≤ −Z
f y (p−1) ≤ −(1− β)Z,
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for all p−1 > p∗. Note that this is only a partial characterization of the equilibrium
functions. To check the conjecture, note that from (19) we have

κyt = −σ−1κRt + κyt+1 + σ−1κπt+1

< σ−1κZ + κyt+1 + σ−1κπt+1

≤ σ−1κZ − (1− β)Z − σ−1κZ = −(1− β)Z,

where I have first used Rt ≥ −Z and then the conjecture regarding fπ, f y. Similarly, from
the NKPC

πt = κyt + βπt+1 ≤ −Z.

It follows that the price level pt is always below pt−1−Z and, after a finite time, pt+d < p∗

A.3 Section 6

Proof of Proposition 6.1. Clearly E1 (π|s) = E2 (π|s) = Eπ. Equation (7) can then be
simplified to

πb (s) = (1 + ν)Eπ + A (s) .

Equation (16) becomes
πu (s) = b3Eπ +B (s) ,

where

Φ = b1 + b2 + b3 + b4 =
βψ + ρ(σ2j−1 + σκ)

κ2 + ψ + σ2ρj−1
.

Define Γ(x) as

Γ(x) =
∑
S

F (s) min {b3x+B (s) , (1 + ν)x+ A (s)} .

Eπ = x∗ is an equilibrium, with

π(s) = min {b3x∗ +B (s) , (1 + ν)x∗ + A (s)}

for all s ∈ S, if and only if it is a fixed point of Γ (x∗) = x∗.

If ρ > κ2+ψ(1−β)
σκj

then b3 > 1. Since ν > 0, the function h(x) = Γ(x) − x is strictly

increasing. Thus, it has a single zero and there is a unique fixed point Γ (x∗) = x∗. Thus,
there is a unique equilibrium
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