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Abstract

In a market in which sellers compete by posting mechanisms, we allow for a general meeting

technology and show that its properties crucially affect the mechanism that sellers select in

equilibrium. In general, it is optimal for sellers to post an auction without a reserve price but

with a fee, paid by all buyers who meet with the seller. However, we define a novel condition

on meeting technologies, which we call invariance, and show that meeting fees are equal to

zero if and only if this condition is satisfied. Finally, we discuss how invariance is related to

other properties of meeting technologies identified in the literature.
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1 Introduction

What trading mechanism should a seller use to sell a good? This is a classic question in economics
and the answer, of course, depends on the details of the environment. We study this question in an
environment with three key ingredients.

First, there are a large number of sellers and a large number of buyers, each seller has one
indivisible good, and sellers compete for buyers by posting the trading mechanism they will use
to sell their good. Then, buyers observe the mechanisms that have been posted and choose the
one that promises the maximal expected payoff, but the process by which buyers and sellers meet
is frictional. In particular, when a buyer chooses to visit a seller, there may be uncertainty about
whether he is actually able to meet with that seller, as well as the number of other buyers who
also meet with that seller; we call the function that governs this process the “meeting technology.”
Finally, once buyers meet with a seller, they learn their idiosyncratic private valuation for the
seller’s good.

In this environment, we provide a complete characterization of the mechanism that sellers
choose in equilibrium. More specifically, we show that sellers can do no better than a second-price
auction with a reserve price equal to their own valuation and a fee (or subsidy) that is paid by (or
to) each buyer that participates. We characterize this fee in closed form. Then, in the same spirit
as Eeckhout & Kircher (2010), we study how this optimal mechanism depends on the properties
of the meeting technology.1

Our results suggest that conclusions drawn in the existing literature may depend quite heavily
on the specific functional form that has typically been chosen for the meeting technology. In par-
ticular, previous studies of this basic environment (e.g., Peters (1997), Peters & Severinov (1997),
Albrecht et al. (2012, 2013a,b) and Kim & Kircher (2013)) have shared three features in com-
mon. First, the equilibrium in these papers is constrained efficient, in the sense that the solution to
the planner’s problem is implemented. Second, the trading mechanism that implements the con-
strained efficient allocation only requires transfers between the two agents that ultimately trade, so
that agents who do not trade are not required to pay a fee nor are they offered a subsidy. Last, all
of the papers cited above assume the same functional form for the meeting technology—what is
often called the “urn-ball” meeting technology.

Taken together, the first two properties are somewhat surprising. After all, constrained effi-
ciency places strict requirements on two distinct margins. First, from ex ante point of view, it

1We view this paper as being complementary to Eeckhout & Kircher (2010), as there are several important dif-
ferences between the two analyses. They provide a partial characterization of the equilibrium in an environment in
which valuations are either high or low and buyers learn their realization before visiting a seller, while we provide
a full characterization of the equilibrium in a world in which buyers draw a valuation from a continuous distribution
after selecting a seller. Perhaps the most important difference is that the property of the meeting technology that they
highlight is not the relevant concept for the results that we derive. We discuss this extensively in Section 4.2.
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requires the proper allocation of buyers to sellers. Second, from an ex post point of view, it re-
quires the proper allocation of the good once buyers arrive at a seller and learn their valuations.
In order to implement an equilibrium that satisfies these two requirements, the payoffs received
by buyers and sellers must inherit certain properties. In particular, to satisfy the first requirement,
each buyer must receive an expected payoff exactly equal to his marginal contribution to the match
surplus.2 However, in order to satisfy the second requirement, payoffs must ensure that buyers
truthfully report their valuation and that the good is allocated to the agent with the highest valu-
ation. In principle, there is no reason to think that the payoffs satisfying the former requirement
should coincide with the payoffs satisfying the latter.

We show that, in fact, these payoffs coincide—or, equivalently, that the meeting fee in the opti-
mal mechanism is equal to zero—if, and only if, the meeting technology satisfies a novel condition
that we call invariance. Loosely speaking, a meeting technology is invariant if the decision by one
buyer to visit a seller does not interfere with the process by which the seller meets with other buy-
ers. When invariance is violated, one buyer’s search decision exerts an externality on the meeting
prospects of the seller with other buyers, and this externality needs to be taxed (or subsidized).

The urn-ball process is one example of a meeting technology that satisfies invariance. Hence,
we learn that this functional form is critical for understanding why the optimal mechanism in
previous studies was so simple, and why it did not require any additional (rarely observed) side
payments. However, the urn-ball meeting technology also satisfies several other properties that
previous studies have conjectured are important for determining the optimal trading mechanism.
We close our analysis by comparing two of these properties with invariance; we show that one of
them is a necessary (but not sufficient) condition for invariance, while the other is neither necessary
nor sufficient.

2 Environment

Agents and Preferences. The economy is populated by a measure µB > 0 of buyers and a
measure µS > 0 of sellers, with Λ = µB

µS
.3 Each seller possesses one, indivisible good and each

buyer has unit demand for this good. All agents are risk neutral.
Sellers value their own good at y, which is common knowledge, while buyers have to visit

a seller in order to learn their valuation. In particular, once a buyer meets a seller, he learns his
private valuation x for that seller’s good, which is drawn from a twice continuously-differentiable

2For detailed discussions of the relationship between the division of surplus and efficiency in search environments,
see, e.g., Mortensen (1982), Hosios (1990) and Moen (1997).

3Though we focus our attention on an environment with an exogenous measure of sellers, our results do not change
if we endogenize the measure of sellers through a free entry condition.
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distribution F (x) with support [x, x] ⊂ R+. An individual buyer’s valuations are i.i.d. across
sellers, as are the valuations of each buyer at an individual seller. We assume that y ∈ [x, x].4

Mechanisms. In order to attract buyers, each seller posts and commits to a direct mechanism.
A mechanism specifies an extensive form game that determines for each buyer i a probability of
trade and an expected payment as a function of: (i) the total number n of buyers to meet with the
seller; (ii) the valuation xi that buyer i reports; and (iii) the valuations x−i reported by the n − 1

other buyers. Formally, a mechanism is summarized by a probability of trade φ(xi, x−i, n) and a
transfer τ(xi, x−i, n) for all n ∈ N1 ≡ {1, 2, 3, . . .} and i ∈ {1, 2, ...n}.

Meeting Technology. After observing all posted mechanisms, each buyer chooses the mecha-
nism at which he will attempt to trade. However, the meeting process between buyers and sellers
is frictional, so that some buyers will not meet a seller and some sellers will not meet with any
buyers.5 As is often done in the literature, we restrict attention to meeting technologies that exhibit
constant returns to scale. More specifically, suppose a measure σ of sellers post the same mecha-
nism and a measure β of buyers choose this mechanism. Then, letting λ = β/σ denote the market
tightness or queue length at that mechanism, a seller meets exactly n ∈ N0 ≡ {0, 1, 2, . . .} buyers
with probability Pn (λ).6 We assume that Pn (λ) is twice continuously-differentiable. We also re-
quire that, for any λ ∈ (0,∞), some sellers meet at least one buyer while other sellers do not, i.e.
0 < P0 (λ) < 1. Since the number of meetings cannot exceed the number of buyers who attempt
to trade at a particular mechanism, the probability distribution must satisfy

∑∞
n=0 nPn (λ) ≤ λ.

We denote the probability for a buyer to meet a seller with exactly n−1 other buyers byQn (λ).
This probability is related to Pn (λ) through the consistency requirement

nPn (λ) = λQn (λ) , (1)

for all n ∈ N1. Intuitively, given market tightness λ = β/σ at some mechanism, the measure of
buyers at those sellers who end up with precisely n buyers, σnPn(λ), must equal the measure of
buyers who face n−1 buyers at their seller, βQn(λ). Finally, we defineQ0 (λ) = 1−

∑∞
n=1 Qn (λ)

as the probability that the buyer fails to meet with a seller.

4Since we do not impose much structure on F (x), this is a fairly weak assumption, as the probability that a buyer’s
valuation x is smaller than y can be driven to zero without any loss of generality.

5Note that our language follows that of Eeckhout & Kircher (2010), who make the distinction between meetings
and matches. All buyers who participate in a seller’s trading mechanism are said to “meet” with the seller, whereas
the buyer who acquires the seller’s single, indivisible good is said to “match” with the seller.

6We follow most of the literature by assuming that the process through which buyers and sellers meet is exogenous.
Only a small number of papers derive the meeting technology as the endogenous outcome of agents’ optimal decisions.
See Lester et al. (2013) for an example.
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Examples. In this section, we briefly introduce two examples of meeting technologies in order
to fix ideas about how meeting technologies are formulated in general, and familiarize the reader
with some of the more specific technologies that have been used in the search literature. Later, in
Section 4, we will introduce a few additional meeting technologies that will be useful in facilitating
a discussion of our results.

1. Urn-Ball. A particularly popular choice in the directed search literature, this specification
arises when a measure β of buyers randomize evenly across a measure σ of sellers who
have posted the same mechanism.7 As a result, the number of buyers that ultimately visit a
particular seller is determined by a Poisson distribution with mean equal to the queue length
λ = β/σ. That is, Pn (λ) = e−λ λ

n

n!
.

2. Bilateral. This specification, often used in the literature that uses search-theoretic models to
study monetary theory, has the following interpretation.8 Suppose there is a mass β and σ of
buyers and sellers, and all agents are randomly matched in pairs. Then, given λ = β/σ, the
probability distribution over the number of buyers that a seller meets is given by:

Pn (λ) =


1

1+λ
for n = 0

λ
1+λ

for n = 1

0 for n ∈ {2, 3, . . .} .

(2)

Probability Generating Function. It will prove useful to define the function

m (z;λ) ≡ E [zn|λ] =
∞∑
n=0

Pn (λ) zn (3)

for z ∈ [0, 1] with, by convention, m (0;λ) = P0 (λ). This function is the probability-generating
function of n and provides an alternative representation of Pn (λ), as Pn (λ) = 1

n!
∂n

∂zn
m (0;λ) .

Notice that, setting z = F (x), m (z;λ) can be interpreted as the probability that the maximum
valuation at a seller with a queue length λ is less than x.

Given the properties of a probability-generating function, the expected number of meetings can
then be expressed as

∞∑
n=0

nPn (λ) = mz (1;λ) , (4)

7This specification was first used by Butters (1977) and Hall (1977). See Burdett et al. (2001) for an explicit
derivation of the micro-foundations of this meeting technology in a directed search model.

8See, e.g., Kiyotaki & Wright (1993) and Trejos & Wright (1995). This technology has also been used more
recently to study trading dynamics in over-the-counter financial markets; see, e.g., Duffie et al. (2007).
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where mz and mλ denote the partial derivative of m (·) with respect to the first and second ar-
guments, respectively. Note that mz (·) > 0, with m (·) ranging from m (0;λ) = P0 (λ) to
m (1;λ) = 1. In addition, we impose that mλ (·) < 0, with m (·) ranging from m (z; 0) = 1

to m (z;∞) = 0 for all z ∈ [0, 1). Again, letting z = F (x), this assumption implies that a longer
queue length reduces the probability that the maximum valuation at a seller is below x.9 Finally,
we assume that mλλ (z;λ) ≡ ∂2

∂λ2
m (z;λ) > 0. This implies that the effect of a marginal increase

in the queue length on the probability that the maximum valuation is below x = F−1(z) is smaller
when the queue length is longer.10 All meeting technologies discussed in this paper share the
properties described above.

3 The Planner’s Problem and Market Equilibrium

In this section, we first characterize the solution to the planner’s problem, and then characterize
the decentralized market equilibrium.

3.1 The Planner’s Problem

Consider the problem of a benevolent social planner whose objective is to maximize net social
surplus, subject to the frictions of the physical environment (e.g., the meeting frictions). The
planner’s decision rule can be broken down into two components. First, the planner has to assign
queue lengths to each seller, subject to the constraint that the sum of these queue lengths across
all sellers cannot exceed the total measure of available buyers. Second, the planner has to specify
a trading rule for agents to follow after buyers arrive at sellers. We solve these stages in reverse
order. As the derivation is standard for each component, we keep the exposition brief.

Trading Rule. Consider a seller who is visited by n buyers. Clearly, the surplus at this seller
is maximized by instructing the seller to trade with the buyer who has the highest valuation x, so
long as this valuation exceeds y. If, instead, the highest valuation among the buyers is below y,
then the seller should keep the good himself. Therefore, the expected net surplus at a seller with
queue length λ is

S (λ) =
∞∑
n=0

Pn (λ)

∫ x

y

(x− y) dF n (x) = x− y −
∫ x

y

m (F (x) ;λ) dx. (5)

9Monotonicity of m (·) in λ is implied if a change in λ causes a first-order stochastic dominance shift in Pn (λ).
10This last assumption is also common in the literature; see, e.g., Eeckhout & Kircher (2010) for a similar assump-

tion.
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Allocation of Buyers. Now consider the allocation of buyers to sellers. At this stage, the objec-
tive of the planner is to choose queue lengths at each seller, i.e., λj for j ∈ [0, µS], to maximize the
sum of S (λj) across all sellers. Hence, he solves max{λj}

∫ µS
0

S (λj) dj subject to the constraint
that

∫ µS
0

λjdj = µB. As S ′′ (λ) = −mλλ (F (x) ;λ) < 0, it follows immediately that the planner
maximizes total surplus by assigning equal queue lengths across all sellers, so that λj = Λ = µB

µS

for all j and total surplus equals
∫ µS

0
S (Λ) dj = µSS (Λ) . The following proposition summarizes.

Proposition 1. A unique solution to the planner’s problem exists. In this solution, each seller is

assigned a queue length Λ. After buyers arrive and learn their valuation, the planner assigns the

good to the agent with the highest valuation.

3.2 Market Equilibrium

To characterize the relevant properties of the mechanism that sellers select in equilibrium, we
proceed in two steps. First, we restrict attention to second-price auctions with a reserve price
r and a meeting fee t that is paid by (or to) each buyer before learning his type. Within this
restricted set of mechanisms, we characterize the profit-maximizing values of r and t. Then, we
establish that sellers can do no better than this second-price auction, even with access to the set of
all direct mechanisms. More specifically, we show that any direct mechanism chosen by a seller in
equilibrium will be payoff-equivalent to the second-price auction we characterize.

Equilibrium with Second-Price Auctions and Meeting Fees. As a first step, we calculate the
expected revenue of a seller who sets r and t and attracts a queue length λ, along with the expected
payoff of each buyer that visits this seller.11

Lemma 1. A seller who posts a second-price auction with reserve price r and meeting fee t who

attracts a queue λ obtains an expected payoff equal to

R (r, t, λ) = x− (r − y)m (F (r) ;λ)−
∫ x

r

m (F (x) ;λ) dx

−
∫ x

r

(1− F (x))mz (F (x) ;λ) dx+ tmz (1;λ) .

The expected payoff for each buyer in the seller’s queue equals

U (r, t, λ) =
1

λ

∫ x

r

(1− F (x))mz (F (x) ;λ) dx− t

λ
mz (1;λ) . (6)

11It is well known that a buyer’s optimal strategy is to bid his true valuation, independent of the number of other
buyers who arrive. Since a seller’s expected revenue and buyers’ expected payoffs are standard calculations when the
number of buyers n is fixed, deriving the results in Lemma 1 only requires taking expectations across n, and hence are
relegated to the Appendix.
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A seller’s objective is to maximize revenue, taking into account that his choice of r and t

affects the queue λ that he attracts. In particular, optimal search behavior implies that buyers must
be indifferent between all sellers who receive a strictly positive queue. Formally, let U denote the
highest level of utility that buyers can obtain in this market, or what is often called the “market
utility.” Then, the equilibrium relationship between r, t, and λ is determined by U (r, t, λ) = U .

Hence, an equilibrium in this environment is formally a distributionG (r, t, λ) of reserve prices,
meeting fees, and queue lengths across sellers, and a market utility U , such that (i) given U ,
each triple (r, t, λ) in the support of G maximizes revenue R (r, t, λ) subject to the constraint
U (r, t, λ) = U ; and (ii) aggregating queue lengths across all sellers yields the total measure of
buyers, µB. However, one can prove that there exists a unique equilibrium in which all sellers post
the same reserve price r∗ and meeting fee t∗, and attract the same queue λ∗ = Λ. Moreover, it
turns out that the optimal reserve price is equal to the sellers’ valuation (r∗ = y), so that the good
is allocated to the agent (one of the buyers or the seller) with the highest valuation. Hence, the
decentralized equilibrium is constrained efficient in the sense that it creates the same amount of
surplus as the planner’s solution. The following proposition summarizes and derives the meeting
fee in closed form.

Proposition 2. A unique equilibrium exists and it is constrained efficient. In equilibrium, the

reservation price equals r∗ = y, the meeting fee equals

t∗ =
Λ

mz (1; Λ)

∫ x

y

[
1

Λ
(1− F (x))mz (F (x) ; Λ) +mλ (F (x) ; Λ)

]
dx, (7)

and the queue length equals λ∗ = Λ at all sellers, with buyers receiving market utility U =

U(r∗, t∗,Λ).

Equilibrium with General Mechanisms. Proposition 2 describes the equilibrium outcome when
sellers have access to a restricted set of mechanisms and shows that the equilibrium coincides with
the solution to the planner’s problem. In Proposition 3 below, we establish that sellers would not
benefit from having access to a larger set of mechanisms; both the expected payoffs and the alloca-
tions will be identical in any other equilibrium. The reasoning is simple: Since buyers’ equilibrium
payoffs are equal to the market utility U , an individual seller is the residual claimant on any ad-
ditional surplus he creates. Hence, he has incentive to select an efficient mechanism in order to
maximize this surplus. The mechanism that we consider—a second-price auction with a reserve
price r and a meeting fee t—is sufficiently flexible that it allows the seller to maximize the “size
of the pie” without placing restrictions on how the pie is divided. Therefore, access to additional
mechanisms is largely irrelevant.
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Proposition 3. A mechanism {φ(xi, x−i, n), τ(xi, x−i, n)} is an equilibrium if, and only if, it is

payoff-equivalent to the equilibrium characterized in Proposition 2.

4 Properties of the Optimal Mechanism

In the previous section, we characterized the equilibrium mechanism that arises in a fairly general
environment. An important feature of the optimal mechanism is a meeting fee, t∗, that allows
sellers to manipulate expected revenue without distorting the efficient allocation. Somewhat sur-
prisingly, this meeting fee does not play a role in the optimal mechanism that has been identified in
the previous literature. Rather, these papers find that the optimal mechanism is simply an auction
with reserve price r∗ = y.

We now reconcile our results with the existing literature by showing that previous studies had
focused on a special class of meeting functions. In particular, we introduce a novel property of
meeting technologies that we call invariance and show that this property is necessary and sufficient
for t∗ = 0. We also review some other properties of meeting technologies that have been identified
in the literature and discuss their relationship to invariance.

4.1 Invariance

In order to formally introduce the invariance property, suppose that each buyer has a certain charac-
teristic with probability γ ∈ [0, 1], which is independent of the realizations of other buyers. Then,
the probability that a seller meets exactly n buyers with this characteristic equals12

P̃n (λ, γ) ≡
∞∑
N=n

PN (λ)

(
N

n

)
γn (1− γ)N−n . (8)

Definition 1. A meeting technology is invariant if, and only if,

P̃n (λ, γ) = Pn (γλ) (9)

for all γ ∈ (0, 1), λ ∈ (0,∞), and all n ∈ N0.

To understand the intuition, consider a sub-market in which the ratio of buyers to sellers is
λ, and suppose that a fraction γ of buyers are red and the remainder are green.13 Equation (9),

12This transformation, introduced by Rényi (1956), is known as “binomial thinning.” See Harremoës et al. (2010).
13For the purpose of this definition, whether the buyer’s color is realized before or after meeting the seller is irrel-

evant, so long as a buyer’s color does not make him more or less able to meet a seller (i.e., red buyers are not faster
or stronger than green buyers). It does, however, slightly change the intuition in some of our explanations below. In
what follows, we find it easiest to convey the intuition by treating a buyer’s color as being realized ex ante, but the

9



then, says that the ratio of red buyers to sellers must be a sufficient statistic for the distribution that
governs the number of red buyers who arrive at a seller. In particular, changing the measure of
green buyers should not change the probability that n red buyers arrive at a seller, for any n ∈ N0.

In other words, a marginal buyer choosing to visit the mechanism a seller has posted does
not interfere with the process by which that seller meets with other buyers. When the invariance
condition is violated, the seller either wants to tax or subsidize buyers for choosing his mechanism,
depending on whether they exert a negative or positive externality on his prospects for meeting
other buyers, respectively. The proposition below formalizes this argument: we establish that
meeting fees are set to zero in equilibrium if, and only if, the meeting technology is invariant, and
we derive a simple condition for verifying invariance for arbitrary technologies.

Proposition 4. Consider a meeting technology Pn (λ). The following statements are equivalent:

1. Meeting fees are not used in equilibrium, i.e., t∗ = 0 for any distribution F (x) with support

[x, x] ⊂ [0,∞), y ∈ [x, x] and Λ ∈ (0,∞);

2. The meeting technology is invariant;

3. The meeting technology satisfies both

Pn (λ) =
(−λ)nM (n) (λ)

n!
(10)

and

m (z;λ) = M (λ (1− z)) ,

where M (n) (·) denotes the nth-order derivative of a smooth function M : [0,∞) → [0, 1]

satisfyingM (0) = 1,M (∞) = 0,M ′ (0) ∈ [−1, 0) and (−λ)nM(n)(λ)
n!

∈ (0, 1) for all n ∈ N0

and λ ∈ (0,∞).

Note that the urn-ball technology introduced earlier in the text satisfies the invariance condition:
when all buyers are randomizing across a group of sellers, the presence of more or fewer green
buyers has no effect on the number of red buyers to arrive at a particular seller. Since the existing
literature has focused primarily on the case of urn-ball matching, it should then come as no surprise
that a simple second-price auction with r∗ = y was identified as the optimal mechanism.

Also note that the bilateral meeting technology is not invariant: since sellers only meet with
one randomly selected buyer under this meeting technology, an increase in the measure of green
buyers will decrease the probability that a seller meets one red buyer (and increase the probability
he meets zero red buyers). Hence, in a competitive environment with this meeting technology,
sellers would optimally employ a meeting fee to tax this congestion externality appropriately.

discussion could easily be adapted to treat the alternative case as well.
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4.2 Relationship to Other Properties

Much of the existing literature on competing mechanisms assumes a specific meeting technology
(often urn-ball) and studies how other features of the environment affect the optimal mechanism.
Notable exceptions include Julien et al. (2000, 2011), who provide some informal speculation
about the properties of the meeting technology that are important for their results, and Eeckhout
& Kircher (2010) and Albrecht et al. (2013b), who provide more systematic analyses of how
the assumed meeting technology affects the optimal mechanism that emerges in equilibrium. In
this section, we formalize two properties of meeting technologies that have been discussed in the
existing literature—either formally or informally—and illustrate how these properties are related
to the invariance property introduced above.

A Few More Meeting Technologies. To facilitate the discussion below, it will be helpful to
define a few additional meeting technologies.

3. Pairwise Urn-Ball. If buyers are first grouped in pairs and then allocated to sellers according
to the urn-ball technology described above, the meeting technology can be described by

Pn (λ) =

0 for n ∈ {1, 3, 5, . . .}

e−λ/2 (λ/2)n/2

(n/2)!
for n ∈ {0, 2, 4, . . .} .

(11)

4. Urn-Ball with Congestion Effects. A second variation on the urn-ball technology is obtained
when a longer queue length reduces each buyers’ chances of meeting a seller. That is,14

Pn (λ) = e−Φ(λ)λ [Φ (λ)λ]n

n!
, (12)

where Φ (λ) : [0,∞) → [0, 1] satisfies Φ (0) = 1 and Φ′ (λ) < 0. To understand this
meeting technology, imagine that buyers and sellers in each sub-market begin on separate
islands. The measure σ of sellers each send a boat to transport the measure β of buyers, so
that each boat carries λ = β/σ buyers to the sellers’ island. However, each boat sinks with
probability 1 − Φ(λ), so that heavier boats are more likely to sink. Then, the buyers that
arrive safely at the sellers’ island randomly select a seller, as in the urn-ball specification.

5. Geometric. The geometric meeting technology specifies that

Pn(λ) =
λn

(1 + λ)n+1
. (13)

14See, e.g., Kaas (2010) or Galenianos & Kircher (2012) for related examples of this class of meeting technologies.
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This is the outcome of a process in which all buyers and sellers in a submarket are randomly
positioned on a circle, after which the buyers walk to the nearest seller on their right-hand
side.

Non-Rivalry. The first property of meeting technologies that we compare to our invariance con-
dition is what Eeckhout & Kircher (2010) call “non-rivalry.” In words, they describe a (purely)
non-rival meeting technology as one in which “the meeting probability for a buyer is not affected
by the presence of other buyers in the market.” That is, 1−Q0 (λ) is independent of λ. Using the
definition of Q0 (λ), it is easy to verify that this condition is equivalent to

∞∑
n=0

nPn (λ) = γλ, (14)

for some constant γ ∈ [0, 1] and all λ.15

Clearly the urn-ball technology described earlier in the text is non-rival because each buyer
meets a seller with probability one. The bilateral meeting technology, however, violates non-
rivalry. Since each seller can meet at most one buyer, an increase in the ratio of buyers to sellers
implies that each buyer is more likely to be crowded out. As a result, the probability that each
buyer meets a seller, 1 − Q0 (λ) = 1−e−λ

λ
, is decreasing in λ. Given these observations, a natural

question is how non-rivalry relates to invariance. The following lemma establishes that non-rivalry
is a necessary, but not sufficient, condition for invariance.

Lemma 2. Invariance implies non-rivalry, but non-rivalry does not imply invariance.

To understand the first statement in the lemma, it is helpful to recall our previous example,
where buyers are either red or green. If the meeting technology does not satisfy non-rivalry, then
increasing the measure of green buyers, while holding constant the measure of red buyers and
sellers, will decrease the probability that each red buyer meets a seller. This implies that increasing
the measure of green buyers will decrease the probability that a seller meets with n ≥ 1 red buyers,
which violates the invariance condition.

The second statement in the lemma follows from considering the pairwise urn-ball technology.
This technology is non-rival since each buyer meets a seller with probability one, regardless of
the ratio of buyers to sellers. It is not invariant, however. Intuitively, when the measure of green
buyers is insignificant, most red buyers are matched in pairs with other red buyers, so that it is
highly likely that a seller is visited by an even number of red buyers. As the measure of green
buyers gets large, however, it becomes increasingly likely that red buyers are paired with green

15Note that
∑∞
n=1Qn (λ) =

1
λ

∑∞
n=0 nPn (λ).
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buyers, which implies greater weights on the probability that a seller is visited by an odd number
of red buyers.

Independence. In the introduction of their paper, Eeckhout & Kircher (2010) describe non-
rivalry in a slightly different way: “Each additional meeting by another buyer does not affect one’s
chances of meeting with the seller.”16 Even though the difference may seem small, the distinction
between meeting with a seller and meeting with the seller is important. In particular, there exist
meeting technologies for which the meeting between a buyer and a seller makes it more difficult
for other buyers to meet that specific seller, but does not affect other buyers’ chances of meeting a

(different) seller in the same sub-market.
To highlight this difference and keep terminology transparent, we will say that a meeting tech-

nology exhibits “independence” when a buyer who meets with a seller has no effect on the dis-
tribution (and thus the expectation) of the number of other buyers at the same seller. Formally,
independence means Qn (λ) = (1−Q0 (λ))Pn−1 (λ) for all λ and n ∈ N1. This property can be
shown to be satisfied if, and only if, the meeting technology is of the following form:17

Pn (λ) = e−(1−Q0(λ))λ [(1−Q0 (λ))λ]n

n!
. (15)

The following lemma establishes that independence is neither a necessary nor a sufficient condition
for invariance.

Lemma 3. Invariance does not imply independence and independence does not imply invariance.

To see why invariance does not imply independence, consider the geometric technology (13).
This meeting technology is invariant: by construction, the presence of green buyers has no effect
whatsoever on the likelihood of a seller meeting n red buyers.18 However, this technology is
not independent, as the fact that an individual buyer meets with a seller changes the probability
distribution over the number of other buyers who meet with the seller. In particular, when a buyer
meets with a seller, he learns that the seller has only met with buyers thus far, which increases the
expected number of other buyers that this seller will ultimately meet; that is, the conditional mean
of the queue length is greater than the unconditional mean.

Finally, to understand why independence does not imply invariance, consider the urn-ball meet-
ing technology with congestion effects. Since the probability of each boat’s safe passage depends

16Albrecht et al. (2013b) use a similar definition: “The fact that one or more buyers choose to visit a particular seller
does not make it more difficult for any other buyer to visit that seller.”

17The definition is equivalent to
∑∞
n=0

λn

n! [1−Q0 (λ)]
n
P0 (λ) = 1. As

∑∞
n=0

qn

n! = e−q , equation (15) follows.
18The geometric technology satisfies condition (10) for M (λ) =

(
θ

θ+λ

)θ
and θ = 1. Other values of θ ∈ N1

correspond with negative-binomial distributions for Pn (λ), which therefore are invariant as well.
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on the ratio of buyers to sellers in the sub-market, this technology does not satisfy the requirements
of non-rivalry, and hence is not invariant. However, once buyers arrive, the meeting process ensues
according to the standard urn-ball technology, so that the arrival of an individual buyer has no effect
on the distribution of other buyers to arrive. Hence, this meeting process satisfies independence.19

5 Conclusion

We consider an environment in which sellers compete by posting mechanisms and buyers direct
their search toward the mechanism offering the maximal expected payoff. We characterize the
trading mechanism that sellers choose in equilibrium, given a fairly general class of meeting tech-
nologies. We show that, in general, sellers can do no better than posting an auction with no reserve
price, but with a meeting fee (or subsidy) that is paid by (or to) all buyers who participate in the
auction. Then, in order to reconcile our results with the existing literature, we completely char-
acterize a subset of meeting technologies for which the meeting fee is set to zero, and show that
the meeting technology that previous studies have used was contained in this subset. We call the
meeting technologies in this subset invariant.

Though this paper establishes the importance of invariance in a particular context, there is good
reason to believe that this is an important property of meeting technologies in other environments as
well. After all, invariance is a statement about whether buyers crowd each other out at a particular
seller, which is a relevant consideration in a variety of different settings. For example, when
buyers know their valuation before selecting a seller, existing results suggest that the degree of
crowding out determines whether different buyer types pool or separate in equilibrium: an urn-
ball technology leads to perfect pooling, while a bilateral technology leads to perfect separation.20

Given our results, a natural conjecture is that the pooling equilibrium without meeting fees extends
to all invariant meeting technologies and that non-invariant technologies give rise to an equilibrium
with meeting fees and at least some separation of types.

Similarly, in a labor market model in which workers send multiple applications, firms are
concerned that applicants who will reject their job offer (because they have a better offer from
a different firm) crowd out applicants who will accept their offer. As a firm’s matching probability
in this environment equals 1 − P̃0 (λ, γ), where γ is the fraction of applicants that will accept
the offer, our results suggest that meeting fees are needed to price this externality if the meeting

19This highlights the difference between non-rivalry and independence. Using our previous analogy, non-rivalry
is primarily a requirement on the probability that “a boat arrives safely” (i.e., it must be independent of λ), while
independence is primarily a condition on the meeting process that occurs “after boats arrive on shore.”

20Peters & Severinov (1997), Virág (2010), Albrecht et al. (2012, 2013b) and Peters (2013) study the urn-ball case,
while Eeckhout & Kircher (2010) analyze both urn-ball and bilateral meeting technologies. Shi (2001) and Shimer
(2005) derive related results in a labor market setting for bilateral and urn-ball meeting technologies, respectively.
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technology is not invariant.21 We leave a detailed investigation of these conjectures for future
research.

Proofs

Proof of Proposition 1. The proof of this result is provided in the main text.

Proof of Lemma 1. From the description of the auction in the main text, it follows immediately
that a buyer’s expected payoff equals

U (r, t, λ) =
∞∑
n=1

Qn (λ)

[∫ x

r

∫ x

x

(x−max {x̃, r}) dF n−1 (x̃) dF (x)− t
]
.

The inner integral simplifies to
∫ x
r
F n−1 (x̃) dx̃ after integration by parts. Changing the order of

integration and substituting equations (1) and (3) then yields equation (6).
To calculate the payoff of a seller, consider the expected valuation V (r, λ) of the agent that

holds the good at the end of the period, given a queue length λ and reserve price r. As the maximum
valuation among n buyers is distributed according to F n (x), V (r, λ) equals

V (r, λ) = P0 (λ) y +
∞∑
n=1

Pn (λ)

[
F n (r) y +

∫ x

r

xdF n (x)

]
= x− (r − y)m (F (r) ;λ)−

∫ x

r

m (F (x) ;λ) dx,

where the second line follows after integration by parts and substitution of (3). As the payoff of a
seller must satisfy R (r, t, λ) = V (r, λ)− λU (r, t, λ), the desired expression follows.

Proof of Proposition 2. The Lagrangian of the seller’s maximization problem equals

L (r, t, λ, ζ) = R (r, t, λ) + ζ
(
U (r, t, λ)− U

)
,

where ζ denotes the multiplier on the market utility constraint. The first-order condition with
respect to t equals (

1− ζ∗

λ∗

)
mz (1;λ∗) = 0.

21This is consistent with the results in this literature that wage posting (without meeting fees) decentralizes the
planner’s solution when the meeting technology is urn-ball (Kircher, 2009), but not when firms are constrained in the
number of applicants that they can meet (Galenianos & Kircher, 2009; Wolthoff, 2012).
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As mz (1;λ) > 0, this implies that ζ∗ = λ∗ in any equilibrium. Substituting this into the first-
order condition with respect to r gives (y − r∗)mz (F (r∗) ;λ∗)F ′ (r∗) = 0. Hence, r∗ = y in
any equilibrium. In combination with these results, the first-order condition with respect to λ

subsequently implies that the optimal meeting fee must satisfy

t∗ =
λ∗

mz (1;λ∗)

∫ x

y

[
1

λ∗
(1− F (x))mz (F (x) ;λ∗) +mλ (F (x) ;λ∗)

]
dx.

In combination with the first-order condition with respect to ζ , this implies that the optimal queue
length λ∗ is determined by

−
∫ x

y

mλ (F (x) ;λ∗) dx = U. (16)

Since m (z;λ) is convex in λ, a unique solution exists for any U . In equilibrium, the market utility
has to be such that λ∗ = Λ, or otherwise the market clearing constraint

∫ µS
0

λ∗dj = µB is violated.
It immediately follows that the equilibrium is efficient.

Proof of Proposition 3. This proof closely resembles the corresponding one in Lester et al.
(2013) and suppresses the arguments of φ and τ to keep notation concise. Suppose there exists
an equilibrium in which one or more sellers post a particular mechanism {φ0, τ0} and attract a
queue length λ0, which yields them a payoff R (φ0, τ0, λ0), yields buyers a market utility U =

U (φ0, τ0, λ0), and creates a surplus S (φ0, λ0) = R (φ0, τ0, λ0)+λ0U (φ0, τ0, λ0)−y.22 A deviant
seller who posts a mechanism {φ, τ} and attracts a queue λ, determined by the market utility
condition U (φ, τ, λ) = U , obtains a payoff

R (φ, τ, λ) = S (φ, λ)− λU + y.

This payoff is maximized when the deviant chooses trading probabilities φ which correspond with
the planner’s solution φ∗, and τ such that

∂

∂λ
S (φ∗, λ) ≡ d

dλ
S (λ) = U. (17)

Note that {φ0, τ0} can be part of an equilibrium if, and only if, it is a solution to the deviant’s
maximization problem, i.e., φ0 = φ∗ and λ0 solves (17). Strict concavity of S (λ) implies that a
unique solution exists to (17) for each level of market utility. Hence, all sellers must attract the
same queue length and this queue length must equal λ = Λ, as any other value is inconsistent with
the aggregate buyer-seller ratio. It is easy to verify that d

dλ
S (λ)

∣∣
λ=Λ

= U (r∗, t∗,Λ), which implies

22Naturally, the amount of surplus created by a seller does not depend on the payments.
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that {φ0, τ0} is an equilibrium strategy if and only if it is pay-off equivalent to the equilibrium
characterized in Proposition 2.

Proof of Proposition 4. First, we show that invariance implies a zero meeting fee (i.e., statement
2 implies statement 1). Note that P̃n (λ, γ) is a compound distribution describing the sum of
N ∼ Pn (λ) independent Bernoulli variables. The probability-generating function of a Bernoulli
variable is 1−γ+γz, so the probability-generating function of P̃n (λ, γ) equalsm (1− γ + γz;λ) .

The invariance condition is then equivalent to

m (1− γ + γz;λ) = m (z; γλ) . (18)

Taking the derivative of this condition with respect to γ and evaluating the result in γ = 1 yields

− (1− z)mz (z;λ) = λmλ (z;λ) , (19)

for all z and λ. If we substitute this expression into (7) for z = F (x) and λ = Λ, then t∗ = 0

follows immediately.
Second, we show that a meeting technology that does not need a meeting fee for all distributions

F (x), y and Λ must be invariant (i.e., statement 1 implies statement 2). Note that since y affects
the lower bound of integration in (7), expression (19) is not only a sufficient condition, but it is also
a necessary condition. This expression is a first-order partial differential equation with solution

m (z;λ) = M (λ (1− z)) , (20)

for arbitrary differentiable M . Clearly, (20) satisfies (18) and the corresponding meeting technol-
ogy must be invariant.

Third, to see that statement 1 implies statement 3, note that interpreting m (·) as a probability-
generating function requires a number of restrictions on M :

(i) Pn (λ) = 1
n!

∂n

∂zn
m (0;λ) for all n and λ requires that M is a smooth function satisfying

(−λ)n

n!
M (n) (λ) ∈ [0, 1] for all n and λ;

(ii) m (1;λ) = 1 for all λ requires M (0) = 1.

(iii) m (z;∞) = 0 for all z requires limλ→∞M (λ) = 0.

(iv) mz (1;λ) ∈ (0, λ] requires M ′ (0) ∈ [−1, 0);

Note that restriction (iii) allows us to tighten restriction (i). To see this, realize that if Pn (λ) = 0 for
some n and arbitrary λ, then M (n) (λ) = 0 such that Pn′ (λ) = 0 for all n′ ∈ {n+ 1, n+ 2, . . .}.
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In that case, it must be true that

n−1∑
i=0

Pi (λ) =
n−1∑
i=0

(−λ)i

i!
M (i) (λ) = 1,

which is a differential equation with solution M (λ) = 1+
∑n−1

i=1 ciλ
i, for some coefficients ci. For

any finite n, this polynomial implies either limλ→∞M (λ) = ∞ or limλ→∞M (λ) = −∞, which
contradicts restriction (iii). Hence, it must be true that (−λ)n

n!
M (n) (λ) ∈ (0, 1) for all n and λ.

Finally, it is straightforward to establish that statement 3 implies statement 2, which completes
the proof.

Proof of Lemma 2. The necessity of non-rivalry follows from combining equation (4) and equa-
tion (20), which reveals that invariant meeting technologies satisfy

∑∞
n=0 nPn (λ) = −M ′ (0)λ,

with M ′ (0) ∈ [−1, 0). Hence, meeting technologies that are invariant are also non-rival.
To prove that non-rivalry is not sufficient, we show that the pairwise urn-ball technology (11)

is a counterexample. Note that by the properties of the Poisson distribution,
∑∞

n=0 nPn (λ) = λ,

which satisfies (14) for γ = 1. Hence, pairwise urn-ball is non-rival. At the same time, pairwise
urn-ball violates invariance, because P̃1 (λ, γ) > 0 for all γ > 0, while P1 (γλ) = 0. Hence,
non-rivalry does not imply invariance.

Proof of Lemma 3. To establish that invariance does not imply independence, consider the geo-
metric technology (13). Its probability-generating function is

m (z;λ) =
1

1 + λ (1− z)
,

which satisfies (18), implying invariance. However, the technology is not independent, as

Qn (λ) =
nλn−1

(1 + λ)n+1 6=
λn−1

(1 + λ)n
= (1−Q0 (λ))Pn−1 (λ) . (21)

To demonstrate that independence does not imply invariance, we use the urn-ball technology
with congestion (12). From (15), it is immediate that this technology satisfies independence. The
technology is however not invariant, as m (z;λ) = e−Φ(λ)λ(1−z), which does not satisfy condition
(18).
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