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Abstract

This paper studies the quantitative properties of a multiple-worker firm matching
model with on-the-job search where heterogeneous firms operate decreasing-returns-to-
scale production technology. We focus on the model’s ability to replicate the business
cycle features of job flows, worker flows between employment and unemployment, and
job-to-job transitions. The calibrated model successfully replicates (i) countercycli-
cal worker flows between employment and unemployment, (ii) procyclical job-to-job
transitions, and (iii) opposite movements of job creation and destruction rates over
the business cycle. The cyclical properties of worker flows between employment and
unemployment differ from those of job flows, partly because of the presence of job-to-
job transitions. We also show, however, that job flows measured by net employment
changes differ significantly from total worker separation and accession rates, because
separations also occur at firms with positive net employment changes, and similarly
firms that are shrinking on net may hire workers to partially offset attritions. The
presence of job-to-job transitions is the key to producing these differences.
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1 Introduction

Worker flows and job flows behave differently over the business cycle. It is well known
that worker flows between employment and unemployment are countercyclical. Separations
into unemployment go up during recessions because the transition rate into unemployment
increases; hires from unemployment also rise because the increases in the separation flow
raise the unemployment pool rapidly, thus increasing hires as well.1 The behavior of job
flows is different. Job destruction is countercyclical, whereas job creation is procyclical.

In this paper, we investigate the sources of the differences in the cyclicality of worker
flows and job flows using a search/matching model in which each firm operates a decreasing
returns-to-scale production technology and is subject to aggregate as well as idiosyncratic
productivity shocks. Each firm hires multiple workers, in contrast to the canonical matching
model of Mortensen and Pissarides (1994) where a worker-firm match is taken to be the unit
of analysis. One apparent reason that job flows behave differently from worker flows (between
employment and unemployment) is the presence of job-to-job transitions.2 Specifically, firms
can hire workers not only from the unemployment pool but also from other employers,
and similarly, workers can separate to other employers as well as into unemployment. The
behavior of job flows is influenced by both types of worker flows. Mortensen (1994) addresses
this issue in a single-worker matching model by adding on-the-job search (henceforth, OJS)
into the Mortensen and Pissarides (1994) model. We introduce OJS and associated job-to-job
transitions into the multiple-worker firm environment.

There are two reasons why we need a multiple-worker firm environment for our research
interest. The first is that job flows are defined by establishment-level net employment changes
within a certain period (say, a quarter). To be consistent with this measurement, we need
a model with a meaningful notion of establishments that can hire many workers. Moreover,
net employment changes over a quarterly period can be quite different from gross separations
and hires that have occurred throughout the period. We address the time aggregation issue
by solving the model at higher frequency and examining the cyclicality of job flow series
constructed in the same way as in the actual data. The second reason is more substantive.
That is, in order for us to distinguish between job flows and total hires/separations, we need
a model with multiple-worker firms. Specifically, worker separations occur at establishments
that are “creating” jobs (positive net employment changes), and similarly hires occur at
establishments that are “destroying” jobs (negative net employment changes). In our model,
when a firm aims to achieve the optimal employment level through laying off existing workers
or hiring new workers, it explicitly takes into account the worker attritions through job-to-job
transitions.3

1The job finding rate from unemployment drops significantly during recessions, thereby lowering hires,
but this effect is dominated by the increase in the inflow.

2Flows between employment and the out-of-the-labor force are another reason, but we do not consider
these flows in the present paper.

3Empirically speaking, net employment changes are indeed different from underlying hires and separations
(see, for example, Burgress et al. (2000) and Davis et al. (2012)). But in a single-worker environment, one
cannot distinguish between worker flows and job flows even after incorporating job-to-job transitions.
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Our model is an extension of Cooper et al. (2007) and Elsby and Michaels (2013), who also
consider the multiple-worker firm environment with random labor matching. Our extension
is to incorporate OJS in a similar environment. In doing so, we follow Mortensen (2010),
who analyzes the steady-state equilibrium of a multiple-worker firm model with OJS. We
adopt his specifications about OJS with several minor changes and examine the quantitative
properties under the presence of aggregate uncertainty. In our model, firms are subject to
idiosyncratic and aggregate productivity shocks. Hiring workers is subject to search frictions
and actively shedding workers (layoffs) requires the firm to pay a firing cost. The economic
significance of job-to-job transitions in the model comes from the fact that, when workers
leave the firm through job-to-job transitions, the firm avoids paying the firing cost. We
abstract away from the employed workers’ job search decision and simply assume that all
employed workers participate in the job search with reduced intensity. Following Mortensen
(2010), wages are determined by Stole and Zwiebel (1996) intra-firm bargaining that splits
the marginal surplus from current-period output. We also assume that workers make their
acceptance decision based on a comparison of the current wage and the offered wage. This is
a shortcut necessary to solve the model. If instead the decision is based on the comparison
of present discounted values (PDVs) of staying and moving, solving the model requires us
to know the distributions of the PDVs of all firms as well as the vacancy posting firms.
Even with our simplifying assumption, we need to keep track of the wage distribution of
all workers and the wage offer distribution of the vacancy-posting firms. Moreover, when
aggregate uncertainty is present, these distributions are time varying. The firm needs to
know the information about the wage distribution because it tells the firm the acceptance
probability of its wage offer (if the firm is hiring). The firm also needs to know (regardless
of whether it is hiring or not) the wage offer distribution because it tells the firm how many
workers will leave through job-to-job transitions for a given level of wage that the firm is
currently paying to its employees. Note also that even without job-to-job transitions, the
joint distribution over idiosyncratic productivity and employment is a state variable in the
decreasing returns scale environment: the firm needs to forecast labor market tightness as a
function of the aggregate states, which include the firm-type distribution. We solve for the
dynamic stochastic equilibrium of this challenging environment by applying the standard
tool developed for heterogeneous agent models (e.g., Krusell and Smith (1998)).

The calibrated model successfully matches key cyclical features of worker flows and tran-
sition rates. First, it matches the procyclicality of the job finding rate of unemployed workers
(UE transition rate) and countercyclicality of the separation rate into unemployment (EU
transition rate).4 Second, the model also matches countercyclical worker flows between
employment and unemployment. Third, the model also generates procyclical job-to-job
transitions, which are consistent with the data by Fallick and Fleischman (2004).

The model is solved and calibrated at monthly frequency. However, as mentioned above,
empirical measures of job flows are constructed from quarterly net employment changes. We
construct job flows in the model using the same measurement procedure. Our model implies

4See, for example, Elsby et al. (2009), Fujita and Ramey (2009), and Shimer (2012) for empirical facts
on the transition rates between employment and unemployment.
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the procyclical job creation rate and countercyclical job destruction rate, with these two
variables being strongly negatively correlated.5

Our key experiment, using the model, is to investigate how similarly or differently job
creation and destruction rates behave compared to the total separation and accession rates.6

Importantly, in our model, job flows are still different from gross separation and accession
rates even at monthly frequency. On top of that, quarterly measurement of job flows intro-
duces time aggregation effects. We find that, even when both worker flows and job flows
are compared without time aggregation effects, the two sets of flows behave differently over
the business cycle. Time aggregation causes additional differences. In particular, the differ-
ence in the cyclicality between the total separation rate and the quarterly job destruction
rate in our model is large: the total separation rate is procyclical and its correlation with
aggregate output is higher than 0.4. The reason for this procyclicality is that even though
the EU transition rate is strongly countercyclical, the job-to-job transition rate is strongly
procyclical, with the average volume of the latter being larger. The quarterly job destruction
rate is countercyclical and its correlation with output is −0.38. The economic reason for
the difference in the cyclicality is that job-to-job transitions (as a part of separations) occur
not jut at firms that are “destroying” jobs but also at the firms that are “creating” jobs.
But, by definition, the job destruction rate includes only the firms that reduced employment
on net. Those establishments are more likely to be the ones that are using layoffs (EU
separations). In other words, the share of layoffs out of total separations goes up as net
employment growth declines. Accordingly, the contribution of the EU separation rate to the
cyclical movement of the job destruction rate is stronger, which pushes its correlation with
output into a negative direction. When time aggregation is taken into account, the negative
correlation reaches a level consistent with the observed data. The discrepancy between the
job creation rate and the accession rate arises in a situation where a firm loses its workers
through job-to-job transitions and decides to offset the attritions only partially. Due to this
effect, the job creation rate becomes less procyclical than the accession rate is. We also
find that time aggregation further reduces the procyclicality of the job creation rate, but it
remains weakly procyclical.

We also conduct several exercises that are useful to further demonstrate the importance
of job-to-job transitions in our model. First, we show that presence of job-to-job transitions
magnifies the business-cycle fluctuations of the EU separation rate. That is, when a firm
needs to reduce employment, achieving it through job-to-job transitions is cheaper. In a
recessionary period, lower aggregate productivity by itself raises aggregate layoffs, as in
the standard model. However, an additional effect exists in a multiple-worker firm model
with OJS: in a recession, the likelihood of needing to use layoffs further increases because
reducing employment through job-to-job transitions becomes more difficult. The opposite is
true during a boom. We also examine the quantitative properties of the model without OJS
and show that the model fails to replicate the key cyclical features of job flows, although

5The procyclicality of the job creation rate is somewhat weaker in the model than in the data, but the
overall cyclical patterns of job flows are consistent with the data.

6The total separation rate is simply a sum of the EU separation rate and the job-to-job transition rate.
The accession rate is calculated as total hires normalized by aggregate employment.
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worker flows and transition rates between employment and unemployment are in line with
the data.

Let us now discuss where our paper stands in relation to the literature. As mentioned
above, this paper is closely related to Cooper et al. (2007) and Elsby and Michaels (2013) who
also analyze and quantitatively evaluate a multiple-worker firm matching model. The key
difference between these papers and our paper is the presence of OJS in our model. In terms
of modeling of OJS, we follow Mortensen (2010), who analyses the steady-state equilibrium
of a similar setup. Wage bargaining in our model also follows Mortensen (2010), who adopts
the bargaining framework developed by Stole and Zwiebel (1996) to his environment. There
are several papers that use the same bargaining framework in the multiple-worker matching
model (e.g., Smith (1999), Cahuc and Wasmer (2001), Krause and Lubik (2007), Cahuc
et al. (2008), and Acemoglu and Hawkins (2011)). These papers consider a much simpler
environment than ours, because in these papers job destruction is exogenous and OJS is not
allowed.

There are several papers that study the directed search environment with decreasing
returns to scale (e.g., Kaas and Kircher (2011) and Schaal (2012)). Kaas and Kircher (2011)
analyze the environment without OJS and Schaal (2012) adds OJS to the model. However,
Schaal (2012) focuses more on the recent Great Recession episode in the presence of the
uncertainty shock. On the other hand, our paper follows more closely the traditional random
matching environment with continuous wage renegotiation and looks more generally at the
model’s cyclical features, paying particular attention to worker flows and job flows.7

In terms of the research interest, Mortensen (1994) attempts to replicate worker flows
and job flows simultaneously, as does our paper. He does so, however, in a single-worker firm
matching model with OJS and thus faces several limitations that we have discussed above.
Veracierto (2009) provides a synthesis of the different strands of the literature (in particular,
Mortensen-Pissarides random-matching framework and Lucas and Prescott (1974) island
framework) and discusses the cyclical properties of worker transition rates and job flows.
However, his model does not allow for OJS and thus no job-to-job transitions exist in his
model. Our analysis on the differences between total separation/accession rates and job
flows is an important part of our paper that is distinct from his paper.8

This paper proceeds as follows. In the following section, we summarize the business cycle
features of worker flows and job flows by looking at standard business cycle statistics. In
Section 3, we present our model. In Section 4, we briefly discuss the solution algorithms
to solve for the steady-state equilibrium and the dynamic stochastic equilibrium. Details of
the algorithms are presented in the Appendix. Section 5 discusses the calibration strategy.
Section 6 is the main section of the paper where we discuss the quantitative results in

7A recent work by Moscarini and Postel-Vinay (forthcoming) analyzes and solves the random-matching,
wage-posting model under the presence of the aggregate shock, but worker transitions into unemployment
are exogenous. In addition, their research interest is different from ours.

8Note, however, that his paper looks at broader statistics that we do not consider in our paper. For
example, his model is a full-fledged RBC model with physical capital and risk aversion. He can therefore
assess the broarder macroeconomic implications of this model. See also Veracierto (2007) who studies
normative aspects of a similar environment without aggregate uncertainty.
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detail. After discussing the overall results under the benchmark calibration, we also present
additional experiments (including some sensitivity analysis) that shed more light on the
importance of job-to-job transitions. Section 7 concludes the paper. We discuss some micro-
level counterfactual properties of the model and potentially useful extensions to overcome
those problems.

2 Cyclicality of Worker Flows and Job Flows

This section reviews the cyclical properties of worker flows and job flows. While one can
find the cyclical properties of worker flows and job flows in literature, the two sets of data
are usually discussed in isolation. We discuss them together and highlight the differences of
their cyclicality. Let us first review the definitions of the series.

2.1 Measurement

Job flows. The job flow series are measured from the Business Employment Dynamics
(BED) data, which are based on the administrative records of the Quarterly Census of Em-
ployment and Wages (QCEW).9 The coverage of the QCEW is very broad, representing 98%
of employment on nonfarm payrolls. The administrative records are linked across quarters to
provide a longitudinal history for each establishment. The linkage process allows the tracking
of net employment changes at the establishment level, which in turn allows calculating net
employment gains at opening and expanding establishments and net employment losses at
closing and contracting establishments. The measures of job flows were originally developed
by Davis et al. (1996): job creation (destruction) is defined as the sum of net employment
gains (losses) over all establishments that expand (contract) or start up (shut down) between
the two sampling dates. Since we are interested in business cycle fluctuations of the series,
we use the series that trace net employment changes over a quarterly period. Normalizing
creation and destruction by aggregate employment yields rates of job creation and destruc-
tion, respectively.10 In this paper, we use the term “job flows” to represent “rates” unless
otherwise explicitly mentioned. The sample period of the job flow series starts at 1992Q3
and ends at 2011Q4.

Worker flows and transition rates. Worker flows between employment and unemploy-
ment can be constructed based on changes in the labor market status of workers. We use
the Current Population Survey (CPS) for the construction of worker flows. The CPS asks
whether the worker is employed and, if nonemployed, whether or not he/she is engaged in
active job search activities (i.e., unemployed) over the preceding month. While the CPS is
designed to provide a snapshot of the U.S. labor market for each month, one can use its

9The BED series are available at www.bls.gov/bdm/.
10More precisely, average employment between the beginning and the end of the quarter is used for

normalization.
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longitudinal component to obtain measures of worker flows. We use the flow series con-
structed by the BLS.11 Worker flows between employment and unemployment come from
the comparison of the labor market status at each monthly survey. To be specific, transition
rates between employment and unemployment are, respectively, measured by:

EUt
Et−1

and
UEt
Ut−1

, (1)

where EUt (UEt) refers to the number of workers who switch their labor market status
from “employed” (“unemployed”) to “unemployed” (“employed”) between month t− 1 and
t. EUt and UEt represent separations into unemployment and hires from unemployment,
respectively. The definition in Equation (1) gives the EU transition rate and UE transition
rate, respectively. The sample period for the BLS data is between Jan. 1990−Dec. 2011.12

We also consider job-to-job transitions. Measuring job-to-job transitions in the CPS
became feasible at the CPS redesign that took place in 1994. Specifically, the dependent
coding, which asks the individual if he/she is employed by the same employer as in the
previous month, made it possible to measure job-to-job transitions. Fallick and Fleischman
(2004) are the first to exploit this data structure to measure job-to-job transitions in the
CPS.13 Denoting the worker flow corresponding to those who are employed at different
employers between t− 1 and t by EEt, we can write the job-to-job transition rate as:

EEt
Et−1

. (2)

The data are updated regularly and the sample period for our analysis is Jan. 1994−Dec.
2011. All monthly worker flows and transition rates are converted into quarterly series by
time averaging.14

2.2 Business-Cycle Statistics

Unimportance of entry and exit. First, consider Figure 1 where we plot the time series
of job flows. In the figure, we show not only the total rates of job creation and destruction
but also their breakdowns into expansion, entry, contraction, and exit. The intention of this
figure is to show unimportance of the extensive margins for the business-cycle fluctuations

11The data are available at www.bls.gov/cps/cps flows.htm. Fujita and Ramey (2006) also construct
worker flow series that are comparable to the BLS series. The cyclicality of the two data sets is very similar.
See Fujita and Ramey (2006) for the data construction details and measurement issues in the CPS.

12In the BLS data, the flow that occurs from t − 1 and t is dated at t. Due to that convention, the BLS
flow data start at Feb. 1990.

13Moscarini and Thompson (2007) explore several measurement issues of CPS-based job-to-job transitions
and correct some measurement issues that existed in Fallick and Fleischman (2004). While their adjustments
alter the overall level of job-to-job transitions somewhat, the time-series behavior is not significantly affected.
We thus use the readily available series by Fallick and Fleischman (2004).

14Our analysis omits the flows into and out of the out-of-the-labor-force state. This is an important
dimension that our analysis is silent about.
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Figure 1: Job Creation and Destruction Rates
Notes: The data are taken from the BLS Business Employment Dynamics and cover
the private business sector.

of job flows. According to the data, roughly 75% of total job flows come from expansion or
contraction of the existing establishments at quarterly frequency. More important, cyclical
fluctuations of job flows are mostly accounted for by expansion or contraction. For instance,
the correlation between the total job creation (destruction) rate and the expansion (contrac-
tion) rate is higher than 0.95. It is important to recognize that these two facts do not imply
the unimportance of entry and exit at lower frequency.15 However, Figure 1 establishes our
point that extensive margins are not important at the quarterly frequency.16 We abstract
away from the extensive margin in the model that we analyze below based on the quarterly
data presented in Figure 1.

Cyclicality. Table 1 characterizes the cyclicality of worker flows and job flows using stan-
dard business-cycle statistics. The original series are logged and then detrended by using
the HP filter with smoothing parameter of 1,600. As mentioned above, original worker flows
and transition rates are monthly series. We render them quarterly by simple averaging, so
that we can examine their cyclicality on an equal footing with job flow series. The real GDP
series is used as a cyclical indicator to gauge each variable’s volatility and cyclicality. We

15The frequency of the measurement is important because at quarterly frequency entrants become incum-
bents after a quarter, but the same entrants measured at annual frequency become incumbents only after
one year. Thus, the share of job flows accounted for entrants and exits becomes larger when measured at
lower frequency. They also become more important cyclicality wise.

16Schaal (2012)’s model includes entry and exit, but the model significantly overpredicts the fluctuations
of these variables, given that those variables do not vary much in the observed data, as seen in the figure.

8



Table 1: Business Cycle Statistics for Worker Flows and Job Flows

Standard Deviation
Relative Correlation With

Standard Deviation Output
Worker flows

E to U 0.065 5.496 −0.800
E to E 0.060 4.950 0.744
U to E 0.046 3.824 −0.687

Transition rates
EU transition rate 0.071 5.966 −0.840
EE transition rate 0.056 4.620 0.698
UE transition rate 0.080 6.731 0.860

Job flows
Creation rate 0.036 3.060 0.447
Destruction rate 0.045 3.838 −0.450

Stocks
Unemployment rate 0.116 9.712 −0.889
Vacancies 0.121 10.153 0.862

Notes: First column: standard deviation of logged and HP filtered series with smoothing parameter
of 1,600. Middle column: standard deviation of each variable relative to that of real GDP. Sample
periods: worker flows and transition rates between unemployment and employment: 1990Q1–2011Q4;
job-to-job flow and transition rate: 1994Q1–2011Q4; job flows: 1992Q3–2011Q4. Unemployment and
vacancies: 1990Q1–2011Q4. Worker flows and transition rates between employment and unemployment
are calculated from the the BLS labor flow series available at www.bls.gov/cps/cps flows.htm. Job-
to-job worker flows and the transition rate are calculated by Fallick and Fleischman (2004). The series
are downloaded from www.federalreserve.gov/pubs/feds/2004/200434/200434abs.html. Worker flows and
transition rates are measured at monthly frequency but converted into quarterly series by time averaging.
The sample period for real GDP is adjusted to match the sample period of each variable.

can summarize the characteristics of the labor market flows as follows.

• The EU transition (separation) rate is countercyclical, while UE (job finding) and EE
(job-to-job) transition rates are procyclical.

• The UE transition rate is somewhat more volatile than the EU transition rate.17

• The EU flow is somewhat more volatile than the other two flows (UE and job-to-job
flows).

• The job destruction rate is countercylical and the job creation rate is procyclical. But
the correlations are weaker in general.

• The job destruction rate is somewhat more volatile than the job creation rate.

17Shimer (2012) and Hall (2005) argue that the separation rate into unemployment is roughly constant
over the business cycle. Fujita and Ramey (2006, 2009), Fujita (2011), Elsby et al. (2009), and Yashiv (2007)
argue otherwise.
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(z, x,m, n) (z′, x′,m′, n′)

Beginning of
the current period

Beginning of
the next period

ProductionBargaining

New (z′, x′) drawnFirms
choose n′

Firms lose
workers through
job-to-job transition

Figure 2: Timing of events

• Worker flows are more volatile than job flows.

Table 1 also shows volatilities of the unemployment rate and vacancies. As is well known
in the literature, these two variables are quite volatile when compared with the volatility
of labor productivity. The same is true with respect to output volatility. Lastly, one can
also see that the model replicates a well-known fact about the cyclicality of unemployment
and vacancies, i.e., the Beveridge curve. This is indicated by each variable’s correlation with
output.

3 Model

Our model is an extension of the models developed by Cooper et al. (2007), Elsby and
Michaels (2013), and Mortensen (2010). Time is discrete. There are two types of agents:
firms and workers. Both are infinitely lived. The total measure of firms is normalized to
one. The total measure of workers is denoted by L.

3.1 Timing

The timing of events is summarized in Figure 2. At the beginning of the period, a firm’s
idiosyncratic states are characterized by (x, n), where x represents idiosyncratic productivity
and n represents the number of its workers. In addition, there is aggregate uncertainty in the
economy in the form of a shock to aggregate productivity z. As will be clear later, each firm’s
decision is also influenced by the economy-wide joint distribution of x and n and is written
as m(x, n). We summarize the aggregate states by s = {z,m}. The stochastic processes for
z and x are, respectively, denoted by Gz(z

′|z) and Gx(x
′|x). Since we formulate the model

recursively, we drop time subscripts from all variables and follow the convention that the
primed variable denotes the variable at the beginning of the next period. Note, however, as
indicated in Figure 2, the firm enters into the current period with the employment level n
and produces with n′, after labor turnover is completed in the current period. It then starts
the next period with n′.
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After the realization of productivities, firms make the separation or hiring decision. The
hiring decision is subject to a search friction, which is discussed below. Hires include those
from other firms (job-to-job transitions) as well as those from unemployment. Similarly,
separations include worker flows to other hiring firms and to unemployment. As described
in Figure 2, worker turnover occurs within a period. For example, vacancies posted at
the beginning of the period after the realizations of productivities can be filled in the same
period before production. After all worker flows are completed, wage negotiation between the
employer and employees takes place and then the firm produces. These timing assumptions
greatly simplify our analysis.

3.2 Wage Bargaining and Production

We first describe wage bargaining and production. The following decreasing-returns-to-scale
production technology is available to all firms:

y = zxn′α. (3)

Again, n′ corresponds to the number of workers who engage in production at the firm, whose
beginning-of-the-period employment level is n. For wage bargaining, we follow Mortensen
(2010) who applies the framework developed by Stole and Zwiebel (1996) to an environment
similar to ours. As in Mortensen (2010), the possibility of a long-term contract between
the firm and workers is excluded. Specifically, the bargaining outcome is such that the
current-period marginal surplus is split between each marginal worker and the employer,
according to each party’s bargaining power. See Stole and Zwiebel (1996) for the explicit
strategic bilateral bargaining game between the employer and the marginal worker. The
default position of the firm is no production and that of the worker is the flow value of home
production b. The outcome is characterized by the following rule:

η

[
αzxn′α−1 − w − ∂w

∂n′

]
= (1− η)

[
w − b

]
,

where η is the bargaining power of the employee. The three terms in the square brackets on
the left-hand side give the marginal surplus that the employer obtains by having one more
worker. The third term captures the firm’s incentive of “overemployment” as pointed out by
Stole and Zwiebel (1996), which comes from the fact that employing more workers reduces
the wage. The solution to the above differential equation is given by:

w = (1− η)b+

(
ηα

1− η + ηα

)
zxn′α−1. (4)

Note that having this simple expression for wage, which depends only on n′ (as well as
exogenous state variables), greatly simplifies our quantitative analysis, particularly because
we allow for on-the-job search.18

18Elsby and Michaels (2013) derive the closed-form expression for wage when the employer and each
marginal worker bargain over the present discounted value of the marginal surplus. Extending their analysis
to the model with on-the-job search is difficult.
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3.3 Search and Matching

Due to the search friction, only a fraction of job openings are filled every period. There is a
flow vacancy posting cost, as in the standard model. However, we assume that the marginal
cost of posting a vacancy is increasing in the number of vacancies posted at the firm level.
We also introduce the firing cost, which applies when the firm decides to shed workers above
and beyond job-to-job transitions. The specific formulation of these features is described
below.

The meeting technology takes the following Cobb-Douglas form:

M = µSψV 1−ψ,

where S is the efficiency-weighted number of job seekers, V is the aggregate number of job
openings, and µ is a scaling parameter. We normalize search efficiency of each unemployed
worker at 1 and assume that each on-the-job seeker searches for a job at a reduced efficiency
of γ ∈ [0, 1]. This specification allows us to abstract away from the search decision of
the employed workers, while giving us the flexibility of matching the volume of job-to-job
transitions in our quantitative exercise.19

Recall that L is the fixed measure of the labor force. Thus S can be written as:

S = γL(1− U) + LU,

where U is the unemployment rate. Given the meeting technology, the contact probability
for each vacancy posted q(θ) is:

q(θ) =
µSψV 1−ψ

V
= µθ−ψ,

where θ = V
S

is labor market tightness in this economy. Similarly for workers, the contact
probability per unit of search f(θ) is written as:

f(θ) =
µSψV 1−ψ

S
= µθ1−ψ.

While unemployed workers meet with a potential employer with this probability each period,
the contact probability of employed workers, denoted by fe(θ), is reduced by a factor of γ,
as in:

fe(θ) = γf(θ).

We consider an equilibrium where the worker’s job acceptance decision is based on the
offered wage. This is another simplification necessary for us to proceed. We will come back
to the discussion on this simplification later in a few paragraphs. Let the CDF of wages of
all employed workers be H(w) with H(w) = 0 and H(w) = 1. Next, let K(w) be the CDF

19Mortensen (2010)’s focus is on theoretical properties of the model. He therefore assumes that employed
workers search at the same intensity as unemployed workers do, which is a natural outcome in his environment
with no search cost.
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of wages offered by hiring (vacancy posting) firms with K(w) = 0 and K(w) = 1. Given
these objects, we can express the vacancy filling rate (also known as the vacancy yield) of a
firm offering the wage w as:

h(w, s) = q(θ)
U + γ(1− U)H(w)

U + (1− U)γ
,

and the quit rate from a firm paying the wage w as:

k(w, s) = fe(θ)(1−K(w)).

When a firm is posting vacancies, each job opening receives an application at rate q(θ). If the
worker is unemployed, the acceptation rate is 1, and if the worker is employed, she accepts
the wage offer with probability H(w), the probability that the worker is currently employed
at a firm paying the wage less than w. The quit rate for a firm can be expressed as a product
of the contact probability fe(θ) and the probability that the wage offered by the poaching
firm is higher than the wage paid by the current employer w.

As mentioned, we adopt the assumption that the worker’s acceptance decision is based on
the current-period wage. In principle, the decision should be based on the values. However,
as is clear from the discussion in the previous paragraph, incorporating this feature into our
analysis entails solving for the distributions of these values. Moreover, in the presence of
aggregate uncertainty, these objects are time varying. Our simplifying assumption allows us
to sidestep this complication. Note also that even in our simplified economy, the wage and
wage offer distributions are endogenous objects and time varying when the aggregate shock
is present.

3.4 Optimal Employment Decision

The firm makes hiring and separation decisions by maximizing the discounted present value
of flow profits:

Π(x, n, s) = max
n′≥0

{
zxn′α − wn′ −max

[
κ0

(
v +

κ1
2
v2
)
, 0

]

− τ max
[
(1− k(w, s))n− n′, 0

]
+ β

∫ ∫
Π(x′, n′, s′)dGx(x

′|x)dGz(z
′|z)

}
, (5)

where v represents the number of vacancies posted by the firm and is written as:

v =
n′ − (1− k(w, s))n

h(w, s)
.

The present discounted value of profits Π(.) is a function of the four state variables, including
the type distribution m(x, n). The first two terms on the right-hand side correspond to the
flow profits to the firm. The wage function takes the form derived earlier, Equation (4). The
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third term captures the fact that expanding employment incurs the cost which is convex in
the number of vacancies posted. Specifically, we assume that this cost is quadratic in the
number of vacancies with κ0 > 0 and κ1 > 0.20

Note that the firm loses k(w, s)n workers through job-to-job transitions. Paying higher
wage has the effect of saving the hiring cost since it reduces attritions. Observe also that
the firm posts 1/h(w, s) vacancies per hire, given that each vacancy is filled with probability
h(w, s). Thus paying higher wage has another effect that the offered wage is more likely to
be accepted by on-the-job seekers at other firms. The last term of (5) gives the expected
value of the next-period PDV of profits, discounted by β. The fourth term captures the
firing cost that is linear in the reduction of the number of employees after quits. The quit
rate k(w, s) also affects the layoff decision because separations through quits allow firms to
avoid paying the firing cost. Moreover, in reducing employment to n′, the firm knows that
it has an offsetting upward effect on wage, thus reducing the quit rate k(w, s). We will come
back to the discussion on this effect.

The optimal employment decision of the firm is characterized by an (s, S) rule, with the
inaction region (n∗, n∗) characterized by the following first-order conditions:

αzxn∗α−1 − w − wnn∗ −
κ0(1 + κ1v)

h(w, s)

[
1 + wn

(
kw(w, s)n− vhw(w, s)

)]
+ β

∫ ∫
Πn(x′, n∗, s′)dGx(x

′|x)dGz(z
′|z) = 0, (6)

αzxn∗α−1−w−wnn∗+ τ [1 +kw(w, s)wnn] +β

∫ ∫
Πn(x′, n∗, s′)dGx(x

′|x)dGz(z
′|z) = 0.

(7)

Note that under the assumptions of no job-to-job transitions (γ = 0), no firing cost (τ = 0),
and the linear vacancy posting cost (κ1 = 0), these two equations reduce to those presented
in Elsby and Michaels (2013), save for some minor differences.

Observe that in (6) and (7), wage and wage offer distributions, K(w, s) and H(w, s)
are endogenous objects that are moving along with the aggregate shock. The first-order
conditions above imply that firms need to know the derivatives of these distributions with
respect to their employment, denoted by kw(w, s) and hw(w, s). In our numerical exercises,
we assume that these derivatives are zero, and avoid significant complications that arise due
to these terms. Intuitively speaking, setting these derivatives to zero means that the firm’s
employment decision ignores the effects discussed above that higher wage reduces the quit
rate and also raises the acceptance rate of job-to-job movers. Making these assumptions

20The presence of the linear portion in the hiring cost implies the nonconvexity of the cost: the marginal
cost jumps to a positive value when the firm decides to hire. In the absence of the quadratic term, it is the
same as the standard linear cost model, where the marginal cost is constant at the positive value κ0.
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allows us to write (6) and (7) as follows:

αzxn∗α−1 − w − wnn∗ −
κ0(1 + κ1v)

h(w, s)
+ β

∫ ∫
Πn(x′, n∗, s′)dGx(x

′|x)dGz(z
′|z) = 0, (8)

αzxn∗α−1 − w − wnn∗ + τ + β

∫ ∫
Πn(x′, n∗, s′)dGx(x

′|x)dGz(z
′|z) = 0. (9)

The envelope condition implies that the derivative of the profit function is written as:

Πn(x, n, s) =


1

h(w,s)
κ0(1 + κ1v)(1− k(w, s)) if ñ < n∗,

(1− k(w, s))[αzxñα−1 − w − wnñ+ β
∫ ∫

Πn(x′, ñ, s′)dGxdGz] if ñ ∈ [n∗, n∗],
−τ(1− k(w, s)) if ñ > n∗,

(10)
where ñ = (1− k(w, s))n.

4 Computation

The details of the computational algorithms are presented in the Appendix. Here we summa-
rize the algorithms used to solve for the steady-state equilibrium and the dynamic stochastic
equilibrium. As mentioned, one complication in solving the model is that the wage and wage
offer distributions are endogenous objects that go into the decision problem. A conceptually
straightforward way of dealing with the situation is to check the convergence on the mass of
workers at all grid points of wage. We propose a more efficient parametric method without
sacrificing the accuracy: we use the beta function to approximate these functions.21

To ease the notation, let us define the expected marginal profit function after the em-
ployment decision is completed in the current period:

D(x, n′, z,m′) =

∫ ∫
Πn(x′, n′, z′,m′)dGx(x

′|x)dGz(z
′|z). (11)

To approximate this function, we replace the type distribution m by the aggregate unem-
ployment rate. The idea is the same as the solution technique used to solve heterogeneous
agent models with the uninsurable income risk, where the information in the wealth dis-
tribution is captured well with its mean. The D function is approximated by a piecewise
linear function of the continuous state variables n′ z and U for each discretized value of
idiosyncratic productivity x.

4.1 Steady-State Equilibrium

In the steady-state equilibrium, the aggregate state variable s is time-invariant and thus can
be dropped. The first stage to solve for the steady-state equilibrium is to iterate on n∗(x, n),

21The beta function is characterized by two parameters over an interval [0, 1]. We transform wage values
into this interval. The bound of the interval in the wage space needs to be determined endogenously, and
thus this procedure requires the convergence on four parameters for each distribution function.
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n∗(x, n), and D(x, n′) for given guesses of H(w) and K(w) (which are parameterized by the
beta function), and market tightness θ, using the first-order conditions (8) and (9).22 The
reason that this step requires the iteration also on n∗ and n∗ is because the firm makes the
employment adjustment decision taking into account its effect on the current-period wage,
which in turn affects the quit rates and the acceptance rate of job-to-job movers, thereby
having a feedback into the employment adjustment decision.

Once we obtain the convergence on the optimal employment adjustment function and
the D(x, n′) function, the second stage of the algorithm simulates the economy to obtain the
invariant distribution of m(x, n). Using the invariant distribution and the wage function, we
can actually compute H(w) and K(w), from which we update the parameters of the beta
functions. The labor market variables such as vacancies posted and the number job seekers
are also obtainable at this point, given that we have the information on the employment
adjustment policy and the invariant distribution of m(x, n). The entire process repeats until
the convergence on (i) the employment policy function, (ii) the expected marginal profit
function D(x, n′), and (iii) the parameters of the beta functions are achieved.

4.2 Dynamic Stochastic Equilibrium

One difficulty of solving the model under the presence of aggregate uncertainty is that
current-period market tightness θ depends not only on realized aggregate productivity z
but also on the type distribution m(x, n). In making the employment adjustment decision,
each firm therefore needs to know the relationship between θ and m(x, n) as well as z.
As mentioned above, it is assumed that the firms use only the mean of the distribution
(aggregate employment and thus equivalently unemployment) to summarize the information
in m(x, n). Further, calculating and updating the D(x, n′, z,m′) function requires the firms
to form the forecast for the next-period distribution. Given our assumption about the
approximate equilibrium, this entails forecasting next-period aggregate unemployment using
current period unemployment and realized aggregate productivity. It is important to also
recognize that calculation of D(x, n′, z, U ′) requires the prediction of H(w, s) and K(w, s)
as well. This process is carried out by postulating the forecasting rule for each parameter of
the two beta functions.

The algorithm starts with guessing a set of coefficient values of the forecasting rules
we just described. Given these rules, we can solve the individual firms’ problem, following
the procedure used to solve for the steady-state equilibrium (except that those functions
now depend on the aggregate state variables). Once we achieve the convergence on the
employment policy function, we simulate a large panel dataset from which we can obtain
a long time series of {z, U, θ,H(w), K(w)}. By using these objects, we can update the
forecasting rules by running regressions. The algorithm stops when the convergence on the
coefficients on those forecasting rules is achieved.

22Strictly speaking, n∗(x, n) actually does not depend on n because the marginal firing cost is constant.
But we are using a more notation here.
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5 Calibration

One period in the model is assumed to be one month. The exogenous productivity processes
follow standard AR(1) processes:

ln z′ = ρz ln z + ε′z,

lnx′ = ρx lnx+ ε′x.

where εx ∼ N(0, σ2
x) and εz ∼ N(0, σ2

z). These processes are then approximated by a finite-
state first-order Markov chain.23

Note that some of the statistics used to calibrate the model are available only at quarterly
frequency or annual frequency. In particular, job flows are measured by taking net employ-
ment changes over a quarterly period. It is important for us to construct the model-based
statistics in the same way as in the observed data. The details will be discussed below.

We partition the model parameters into two groups, the one determined exogenously to
the model without solving the model and the other determined by matching the empirical
moments.

5.1 Parameters Set Exogenously

First, the time discount factor β is set to 0.996, which implies the quarterly discount factor of
0.99, a standard value used in the business cycle literature. The curvature of the production
function α is set to 0.67. This appears to be a value commonly used in the literature, for
example, by Cooper et al. (2007). We will later consider a somewhat higher value to check
the sensitivity of the results with respect to this parameter. Worker bargaining power η and
the elasticity of the matching function with respect to unemployment 1−ψ are set to 0.5. We
consider an alternative value for η later. The persistence parameter of aggregate productivity
is set to 0.983, which implies a quarterly autocorrelation of 0.95, following the convention of
the business cycle literature. The parameter values so far are relatively uncontroversial.

The flow outside option value b is set to 0.4. It is well known that this parameter plays an
important role for the amplification in the standard model with linear production technology
(Shimer (2005),Costain and Reiter (2008), and Hagedorn and Manovskii (2008)). However,
one can no longer use this parameter to control the model’s amplification in the environment
with decreasing returns to scale, because the firm’s employment decision internalizes the level
of this parameter.24 Moreover, we adopt the wage setting mechanism that is based on the
current-period output.

In our calibration procedure, we keep this parameter at 0.4 and adjust other parameters
to match the targeted statistics. In this sense, this value of b is simply a normalization. Intu-

23While we use the finite-state approximation in calculating the conditional expectation with respect to
aggregate uncertainty (when we solve the firm’s problem), we maintain the original AR(1) process in the
simulation stage so that the process has a continuous state space. This enables us to generate smooth impulse
response functions presented below.

24Elsby and Michaels (2013) extensively discuss the role played by this parameter in the decreasing-returns-
to-scale environment.
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Table 2: Model Parameters

Symbol Description
ψ Elasticity of matching function with respect to job seekers
α Curvature of production function
β Time discount factor
η Worker bargaining power
µ Scale parameter of matching function
κ0 Parameter of the vacancy posting cost
κ1 Parameter of the vacancy posting cost
τ Firing cost
γ Search intensity of on-the-job seekers
b Flow outside benefit (normalization)
ρx Persistence of idiosyncratic productivity process
σx Standard deviation of idiosyncratic shock
ρz Persistence of aggregate productivity process
σz Standard deviation of aggregate shock
L Labor force (population) size

itively speaking, for a given level of b, each firm determines its employment level from which
we obtain aggregate employment. We then set the level of the total labor force (equivalently,
population) to match the steady-state EU transition rate in the model. The quantitative
properties of the model are unaffected by the level of b in our calibration procedure.

Lastly, κ1, one of the two parameters that characterize the vacancy posting cost, is set
to 0.1 with no reference to the data. Let us defer the discussion on this parameter to the
next subsection, because it is easier to discuss the choice of this value together with the
determination of κ0.

5.2 Parameters Set Endogenously

First, consider the scale parameter of the matching function µ. We target the steady-state
UE transition rate f(θ) and the job filling rate q(θ) at 0.20 and 0.9 per month, respectively.
The former number is based on the time series data on the unemployment-to-employment
transition rate computed from the CPS labor force status flows data over the period between
Jan. 1990 and Dec. 2011.25

The latter is based on the evidence by Davis et al. (forthcoming) who show that the

25Note that the model includes job-to-job transitions to which a different transition rate applies because
employed workers do not necessarily accept all offers. Because unemployed workers accept all offers in our
model, f(θ) in the model corresponds to the UE transition rate in the data. Also note that the steady-state
UE transition rate of 0.2 is somewhat lower than the time-series average of the observed series. But the
lower target in the steady state is due to the fact that, when aggregate shock is present, the UE transition
rate fluctuates around a somewhat higher value, i.e., 0.23, which is roughly consistent with the data.
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Table 3: Summary of Calibration Strategy and Parameter Values

Parameter Value Source/Target Statistic
Exogenously Chosen

ψ 0.5 Petrongolo and Pissarides (2001)
α 0.67 Cooper et al. (2007)
β 0.996 Quarterly discount factor of 0.95
η 0.5 Often used in the literature; equal to ψ
ρz 0.983 Quarterly autocorrelation of 0.95
κ0 0.1 See text for explanations
b 0.4 Normalization

Endogenously Chosen
µ 0.4243 Labor market tightness
γ 0.1145 Monthly job-to-job transition rate of 2.5%
κ0 0.028 Equilibrium labor market tightness of 0.222
τ 0.125 Volatility of UE transition rate
L 10.3603 EU separation rate of 1.5%
ρx 0.93 Quarterly job-creation persistence of 0.7
σx 0.1011 Standard deviation of annual employment growth rate of 0.60
σz 0.0026 Quarterly output volatility of 1.18%

CPS-based daily job filling rate fluctuates at around 7%, which translates into the monthly
filling rate of 0.9.26 These two targeted transition rates imply that steady-state labor market
tightness of 0.20/0.9 = 0.222. This value, together with the targeted UE transition rate of
0.2 and the elasticity parameter of the matching function, implies µ = 0.424.

To achieve the target level of the EU transition rate, we adjust one of the two parameters
of the vacancy posting cost κ0. This procedure yields the value κ0 = 0.028.27

The search intensity parameter of employed workers γ is selected to match the average
job-to-job transition rate in the Fallick and Fleischman (2004) data that cover the period
between Jan. 1994 and Dec. 2011. The average job-to-job transition rate over this period is
2.5% in the data, and we roughly match this number by setting γ = 0.115.

Next, we calibrate the two parameters of the firm-level productivity process, ρx and σx, by
referring to the following two statistics. First, the persistence parameter is selected to match
the average “one-quarter persistence measure” of the job creation rate. This statistic is pro-
posed by Davis et al. (1996) and measures the percentage of newly created jobs at time t that
remain filled at the next sampling date one quarter later. They report the historical average
of this measure for the manufacturing sector over the period of 1972Q2 through 1988Q4 to
be 0.68.28 Our choice ρx = 0.93 allows us to roughly match this statistic. The standard de-

26Fujita and Ramey (2012) also use the same target based on the evidence by Barron et al. (1997).
27Note that, once we match the target level of tightness and the EU transition rate, the target for the job

filling rate is automatically fulfilled.
28Unfortunately, empirical evidence on this measure is available only for the manufacturing sector. The
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viation σx is assigned to match the dispersion of the employment growth distribution. Davis
et al. (2006) calculate employment-weighted cross-sectional dispersion (standard deviation)
of annual employment growth rates using the Longitudinal Business Database (LBD) over
the period between 1978 through 2001. The standard deviation is roughly around 0.60. The
model generates the value close to this target by setting σx = 0.101. Note that the original
measure is based on net employment changes over an annual interval. We therefore construct
the corresponding model-based statistic, taking net employment changes over a 12-month
period.

Next, the labor-force size L is set to the level that is consistent with the average EU
separation rate of 1.5%. The idea is as follows. Once we solve for the employment decisions
of individual firms, we can obtain aggregate employment and worker flows into and out
of unemployment. Thus we can choose L such that we achieve the target aggregate EU
transition rate.

The size of the aggregate shock σz is set to 0.0026 and selected by matching the standard
deviation of the aggregate output series. Over the sample period 1990-2011, the standard
deviation of the logged and HP-filtered real GDP series is 0.0119.29 σz = 0.0026 allows us
to roughly match this level of volatility. The fact that we can match the output volatility
with such a small standard deviation of the shock (relative to the value usually used in the
RBC literature) highlights the strong amplification mechanism embedded in our model. We
will come back to this issue in the next section.

Let us now discuss how we chose κ1 (parameter determining the slope of the marginal cost
of a vacancy). As mentioned in the previous subsection, κ1 is set to 0.1 with no reference to
the data (we keep this value throughout our calibration procedure). Recall that the marginal
cost of vacancies is κ0 +κ0κ1v. Our parameter values for κ0 and κ1 imply a fairly small slope
(κ0 × κ1 = 0.00028) and thus the calibration makes our model close to the model with a
linear vacancy posting cost. We introduce the curvature for a technical reason that, when
the cost is linear (i.e., κ1 = 0), the wage distribution is too compressed, so that it becomes
difficult to obtain the stable numerical solution to our model featuring OJS, which directly
links the wage distribution to job-to-job transitions.30

Lastly, the firing cost is set to 0.125. We use this parameter to match the volatility of
the UE transition rate. One may think that this parameter is most effective to control the
volatility of the EU transition rate. This is true in the model without OJS. To understand
our calibration procedure, first note that higher τ implies that we need to lower κ0 (the level
parameter of the marginal vacancy posting cost) to match the target level of labor market
tightness. When firing becomes more costly, firms are less willing to post vacancies, and thus
in order to compensate for this effect, we need to lower κ0. In the model without OJS, a

persistence measure of job destruction is defined similarly as the percentage of newly destroyed jobs at time
t that do not reappear at the next sampling date. Davis et al. (1996) report that job destruction persistence
in manufacturing is 0.723 over the same period.

29We use the post-1990 output series simply because the other series we use are available from or shortly
after 1990. See notes to Table 1.

30We also considered a calibration with a higher value of this parameter (e.g., κ1 = 0.15), and the results
are little affected.
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Table 4: First-Moment Properties: Benchmark Calibration

Data collection
Model

Empirical
frequency target

Worker-side data
EU transition rate Monthly 0.018 0.015
EE transition rate Monthly 0.022 0.023
UE transition rate Monthly 0.220 0.250
Unemployment rate Monthly 0.081 −

Establishment-side data
Job flow rates Quarterly 0.090 0.080
Job flow persistence measure Quarterly 0.732 0.700

b/(average labor productivity) − 0.785 −
Notes: See text for the explanation of the job flow persistence measure. To calculate
the model-based moments, we follow the same data-collection procedures as those used
in actual surveys. The unemployment rate is not directly targeted in our calibration.
Instead, the average EU and UE transition rates are used as targets.

higher firing cost and a lower vacancy posting cost would only shift the balance of employment
adjustments to the hiring margin without affecting overall employment volatility. However,
in the presence of OJS, its effect is not that straightforward. When a firm loses workers
through job-to-job transitions, it allows them to save the firing cost when their idiosyncratic
productivity is low, and thus the firm wants to reduce employment. The important thing is
that this margin is time varying. Because job-to-job transitions are procyclical, this saving
of the firing cost is larger (smaller) in the boom (recession) period. Thus, this channel by
itself lowers the EU transition rate in a boom because attritions will take care of the needs
to reduce the workforce (i.e., less needs for costly layoffs for firms) when the firm is facing
a low idiosyncratic productivity while the aggregate economy is in a boom. A symmetric
argument can be made to illustrate the increases in the EU transition rate in a recession. In
the next section, we will discuss this channel more extensively. But the bottom line is that,
by changing τ (also changing κ0 to match the target average level of labor market tightness),
we can control the volatility of the UE transition rate easily and that is what we do.

This parameter τ represents the per-worker resource cost associated with layoffs, and
τ = 0.125 in the our benchmark calibration implies that this resource cost amounts to
roughly 30% of the monthly wage. It is small, as is consistent with the empirical evidence
that firing costs are small in the U.S.

6 Results

This section presents the results of the paper. We first assess the model’s capability of
replicating the basic business cycle properties of the data that we discussed in Section 2.
After making sure the model matches the first moments of the observed data reasonably well,
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we will first focus on the discussion on the cyclicality of worker flows and transition rates.
We then discuss the cyclicality of job flows and investigate the sources of the differences in
the cyclicality of the two sets of flow variables. We consider several quantitative experiments
(including the sensitivity analysis to alternative calibrations) in order to demonstrate the
importance of job-to-job transitions for our results.

6.1 First-Moment Properties

The first-moment properties of the model under the benchmark calibration are summarized
in Table 4. Recall that we calibrate the model to achieve the average levels of the three
worker transition rates and job flow persistence. While we are unable to match the first
moments exactly, the model-based average levels are reasonably close to the targeted level.
The unemployment rate in the model is somewhat higher than the average level used in
the literature (e.g., 6%) but it is because in our calibration, the EU transition rate is on
the high side and the UE transition rate on the low side, both of which raise the average
unemployment rate. These results do not have any material impacts on our results. Job
creation and destruction rates in the model, which are not directly targeted in our calibration,
fluctuate around 9%. Overall, the calibrated model successfully replicates the features of the
observed data in terms of the first moments.

In the last row, we also report the ratio of the flow outside option value to average labor
productivity. We report this number only because of the interest in the literature about
the volatility puzzle of Shimer (2005). Elsby and Michaels (2013) recently show that their
model generates a larger magnification because of curvature of the production function. Our
number (0.785) is somewhat higher than their corresponding number (0.61) but not far from
it. Note, however, that our model differs significantly from theirs due to the presence of OJS
and the different wage setting mechanism. Their model is a natural extension of Mortensen
and Pissarides (1994), and thus the comparison to the literature on the volatility puzzle is
more direct. Our focus is different and we introduce OJS, which is made possible only by
adopting a simpler wage setting. Adopting different wage setting in our paper, on the other
hand, makes the direct comparison difficult. However, we will show below that our model
generates large volatilities.

6.2 Cyclicality of Worker Flows and Transition Rates

Table 5 presents the same second-moment statistics discussed earlier in Table 1. As we
mentioned in the calibration section, we choose τ to match the volatility of the UE transition
rate (often known as the “job finding rate”). In the observed data, its standard deviation
is 6.7 times as large as the output volatility. We roughly match this value in our simulated
data. Other cyclical measures in this table are not directly targeted. First, observe that the
EU transition rate in our model is somewhat too volatile. In the data, the EU separation
rate is less volatile than the UE transition rate is, whereas in our model, it is more volatile.
Intuitively, one may think that we can reduce the volatility of this variable by raising the
firing cost parameter. However, this is not possible in our model because, in our model,
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Table 5: Second-Moment Properties of the Model: Benchmark Calibration

Standard Deviation
Relative Correlation With

Standard Deviation Output
Worker flows

E to U 0.097 8.215 −0.771
E to E 0.088 7.379 0.992
U to E 0.076 6.396 −0.599

Transition rates
EU transition rate 0.104 8.735 −0.821
EE transition rate 0.078 6.576 0.986
UE transition rate 0.081 6.858 0.983

Job flows
Creation rate 0.029 2.464 0.088
Destruction rate 0.031 2.595 −0.375

Stocks
Unemployment rate 0.139 11.677 −0.905
Vacancies 0.123 10.386 0.943

Notes: Based on the simulation panel of 1 million establishments over 1,200 (monthly) periods. Worker
flows, worker transition rates, unemployment rate, and vacancies are converted into quarterly data by
time averaging. Job flows are based on net employment changes over a quarter. All observations are
logged and HP filtered with smoothing parameter of 1,600.

firms’ incentive to laying off workers is directly affected by how many workers leave through
job-to-job transitions and thus the behavior of f(θ).

Note that the large volatility of the EU transition rate makes not only EU worker flow
more volatile but also UE flow more volatile. Large fluctuations in the flow into unemploy-
ment also implies large fluctuations in the flow out of unemployment with a lag (due to
search frictions). The larger volatility of separations into unemployment (together with the
fluctuations in f(θ) comparable to the data) produce the volatility of the unemployment
rate that is somewhat larger than the observed data.

The model replicates very well the correlation patterns with respect to output. We
documented earlier the countercyclicality of the EU separation rate and the procyclicality
of the UE and EE transition rates. The model naturally reproduces this pattern. Next, the
model also replicates the cyclical pattern of worker flows: countercyclicality of flows between
employment and unemployment, and procyclicality of the job-to-job flow. As discussed in
Section 2, hires from unemployment are countercyclical because of the larger unemployment
pool in recessions due to the increases in the EU flow. This effect is counteracted by the
decline in the UE transition rate, and therefore the countercyclicality of the hiring flow is
weaker (although this flow is still strongly countercyclical both in the model and the data).

The model also replicates the Beveridge curve, a strong negative correlation between
unemployment and vacancies, which is indicated by the countercyclicality of unemployment
and procyclicality of vacancies shown in the last rows in the table. We discuss the correlations
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Figure 3: Impulse Responses Functions
Notes: Plotted are responses to one standard deviation negative aggregate shock, expressed as log
deviations from the steady-state levels.

of job flows with output using Table 6. This table is meant to explain the differences in the
cyclicality of worker flows and job flows.

Figure 3 presents impulse response functions to a one standard-deviation negative ag-
gregate productivity shock.31 Panel (a) presents the responses of worker transition rates.
The EU transition rate sharply increases on impact. While a substantial part of the initial
increase is reversed in the following period, it stays at the level higher than the steady-state

31Strictly speaking, impulse responses are not symmetric because the model is nonlinear. We checked if
the model inherits serious asymmetry by comparing the responses to the positive and negative shocks and
found that only minor asymmetry exists in the model.
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Table 6: Job Flows vs. Worker Flows

Standard Deviation
Relative Correlation With

Standard Deviation Output
Creation rate (Q) 0.029 2.464 0.088
Creation rate (M) 0.031 2.588 0.327
Accession rate (M) 0.035 2.953 0.562
Destruction rate (Q) 0.031 2.595 −0.375
Destruction rate (M) 0.023 1.937 −0.078
Separation rate (M) 0.020 1.673 0.414

Notes: The letter in parentheses indicates the data collection frequency (Quarterly or Monthly). Monthly
job flows are constructed by applying the same idea as the quarterly job flows to monthly employment
changes: job creation (destruction) = sum of employment changes at expanding (shrinking) establish-
ments over a monthly period (normalized by employment). Accession rate: all hires (sum of UE and EE
worker flows) as a fraction to employment. Separation rate: all separations (sum of EU and EE worker
flows) as a fraction to employment.

level for an extended period. The UE and the job-to-job transition rates decline on impact
and stay persistently low. Panel (b) presents the responses of worker flows. Not surprisingly,
the behavior of the EU flow is very similar to that of the EU transition rate. The hiring
flow from unemployment declines initially, reflecting the drop in the UE transition rate, but
quickly reverses its course and goes up to the level higher than the steady-state level. The
latter movements are responsible for the UE flow’s negative correlation with output. 32 In
contrast, the job-to-job flow stays below the steady-state level, exhibiting a mild hump-
shaped response followed by the initial sharp drop. This is because the pool that generates
this flow (i.e., employment) shrinks while the transition rate is also declining (observe that
the decline in the job-to-job flow in terms of log deviation is somewhat larger than that in
the job-to-job transition rate).

Panel (c) shows that the model is capable of generating the Beveridge curve. In Panel (d),
we present responses of aggregate output and labor productivity along with the exogenous
driving process. Reflecting the persistent hump-shaped increases in the unemployment rate,
aggregate output also exhibits the hump-shaped response, hitting the lowest level in the
seventh month after the shock. In our model, labor productivity, measured by aggregate
output divided by aggregate employment, is an endogenous variable and is influenced by the
reallocation of workers across establishments. Labor productivity does not decline as much
as the driving process and recovers more quickly, as indicated by the difference between the
pink solid line and the green dashed line in panel (d).
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6.3 Cyclicality of Job Flows

In Table 5, we also report that job creation and destruction rates fluctuate much less than
worker flows do. One can also see that the job creation rate is weakly procyclical and
the destruction rate is countercyclical. To better understand these results, Table 6 reports
the same second-moment statistics for quarterly job flows (as shown in the previous table),
monthly job flows, and rates of total separations and accessions. Note that we can construct
“monthly job flows” using the monthly interval in lieu of the quarterly interval. Even at the
monthly frequency, job creation and destruction rates are not the same as total separation
and accession rates. The differences arise because of the presence of job-to-job transitions.
First, note that hires can occur at the firms that are “destroying” jobs in the sense that net
employment change is negative. Firms lose workers due to job-to-job transitions and their
optimal decision could be to hire workers to only partially offset the attritions.33 Second,
take the firms that are expanding their employment size on net. Job-to-job transitions
occur at those firms, implying that separations are not equal to job destruction.34 In sum,
the comparison presented in Table 6 is meant to capture the time aggregation effect (i.e.,
difference between quarterly and monthly job flows) and the attrition effects (i.e., difference
between monthly job flows and total separation/accession rates).

One can see that job flows fluctuate much less than the three components of worker flows
do, as shown in Table 5. Table 6 indicates that the same is true, when one considers total
separation/accession rates instead of job flows. This result is easily understood by noticing
that the countercyclicality of EU and UE flows is countered by the procyclicality of the
job-to-job flow. In Figure 4, we plot impulse responses of job flows and separation/accession
rates. In panel (b) of the previous figure (Figure 3), we plot responses of three worker flows.
One can clearly see EU and job-to-job flows are offsetting each other’s movements and thus
creating a less volatile total separation flow. On the hiring side, although UE and job-to-job
flows are moving in the same direction in the first few months after the shock, they move in
the opposite directions after that, again offsetting each other’s movements.35

While volatilities are of similar magnitude for all three rows in Table 6, the correlation
with output differs considerably. First, consider the difference between the job destruction
rate and the total separation rate. Surprisingly, the total separation rate is procyclical even
though the job destruction rate is countercyclical. The procyclicality of the separation rate

32Fujita (2011) presents impulse response functions of worker transition rates and flows based on the
identified VARs, and they are similar to those presented in Figure 3.

33In the model, this happens when a firm was in an inactive region at the beginning of the period and loses
its workers through quits, pushing the firm outside the (s, S) band. If the idiosyncratic as well as aggregate
productivity levels are the same as (or close to) the previous levels, then the firm would hire new workers
only to go back to the lower band of the inactive region.

34Note that the logical difference between worker flows and job flows also arises in the model with exogenous
worker attritions. But, in the model where firms’ active shedding of workers is the only source of separations
(such as Elsby and Michaels (2013)), the two concepts are identical at least at the frequency of the model.

35In panel (b) of Figure 4, both separations and accessions are normalized by employment, to be consistent
with job creation and destruction rates, while worker flows in panel (b) of Figure 3 are not normalized by
employment, but this does not have a large impact on the results.
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Figure 4: Impulse Responses Functions: Job Flows vs. Worker Flows
Notes: Plotted are responses to one standard deviation negative aggregate shock, expressed as log
deviations from the steady-state levels.

implies that the procyclicality of job-to-job transitions dominates the countercyclicality of
the EU separation rate on net. Note that the volatility of the EU separation rate is somewhat
larger than that of the job-to-job transition rate (see Table 5) when the two transition rates
are examined separately. However, the average level of the job-to-job transition rate is larger
and thus it carries a larger weight when the total separation rate is concerned. Panel (b) of
Figure 4 shows that the total separation rate initially increases due to the increase in the
EU transition rate, in response to the negative shock. However, from the fourth month on,
the total separation rate stays below the steady-state level for extended periods. This latter
part makes the correlation with output positive.

The procyclicality disappears when the job destruction rate is considered. The large part
of the change comes from the difference between the monthly job destruction rate and the
total separation rate (the correlation coefficient drops from 0.414 to −0.078). The selection
of firms in the job destruction rate plays an important role here. That is, when only the firms
with negative net employment changes are considered, the role of layoffs (EU flow) becomes
more important. Note that separations at expanding firms (positive net growth) will consist
of only job-to-job transitions, which are procyclical. In contrast, when the firms with negative
growth are selected, the share of layoffs gets larger. The comparison of the responses of the
job destruction rate and the total separation rate shows that (i) the initial increase in the
job destruction rate is larger, that (ii) the job destruction rate stays above the steady-state
level for longer periods, and that (iii) the negative deviation from the steady-state level is
smaller for the job destruction rate, after the response turns into negative territory. These
three factors contribute to making the job destruction rate a countercyclical variable. Table
6 also shows that time aggregation plays an important role for the countercyclicality of the
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job destruction rate. This effect comes from the fact that, when the three-month interval is
considered, the selection effect discussed above becomes stronger. That is, the selection of
the firms with negative net employment growth over the longer-run period is more likely to
include those that needed to appeal to layoffs.

Turning to the hiring/job creation side, one can first notice that we do not match the
magnitude of the positive correlation with output: the model generates the correlation 0.09,
while the correlation of the empirical series is higher than 0.4. However, the issue here has
more to do with a timing of the comovement. As we discussed above, the output response
exhibits a clear hump shape, while changes in the job creation rate are concentrated in
the short run. We therefore view that the model’s underlying economic forces are largely
consistent with the empirical evidence.

In terms of correlations with output, the (monthly) job creation rate and the accession
rate behave similarly. The correlation coefficients of the monthly job creation rate and
the accession rate with respect to output are 0.56 and 0.33, respectively. As mentioned
earlier, these two series can differ because hires occur at the firms that are shrinking on net.
However, this occurs only when firms hire workers to partially offset the worker attritions
due to job-to-job transitions. This phenomenon is necessarily concentrated among the firms
that are making only small employment adjustments and therefore its quantitative effect is
relatively minor.36 As can be seen in Figure 4, the impulse response functions of the two
variables look similar to each other. However, time aggregation also makes a difference. At
the quarterly level, even the firms that are laying off workers in one month could end up
increasing employment on net over the three-month period (note, however, that the shock is
very persistent and therefore this possibility cannot be too common). At the quarterly level,
the correlation of the job creation is further reduced to 0.09.

6.4 Effects of Job-to-Job Transitions

Our model differs from Cooper et al. (2007) and Elsby and Michaels (2013) mainly because
our model explicitly incorporates job-to-job transitions. In this subsection, we further inves-
tigate the implications of incorporating job-to-job transitions into the model in two ways.
First, we discuss how the model’s quantitative properties are affected when the firing cost
parameter is set to a lower level. This exercise is useful, because the need for laying off work-
ers is directly influenced by how many workers leave the firm through job-to-job transitions.
Second, we examine the quantitative properties of the model without job-to-job transitions
by setting γ = 0. That model reduces to the model of Elsby and Michaels (2013) except
for the differences in wage setting and the specifications of the shock processes, and the
presence of the firing cost in our model. The second exercise will clearly show that incorpo-
rating job-to-job transitions is crucial to match the cyclicality of worker flows and job flows
simultaneously.

36On the other hand, the wedge between the job destruction rate and the separation rate (i.e., job-to-job
separations occur at expanding firms) applies to all expanding expanding firms except for the firms at the
top of the wage distribution.
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Table 7: Second-Moment Properties: Lower Firing Cost and No OJS

Benchmark Lower τ No OJS
Relative Corr. w/ Relative Corr. w/ Relative Corr. w/

SD Output SD Output SD Output
Worker flows

E to U 8.215 −0.771 8.411 −0.790 6.543 −0.647
E to E 7.379 0.992 6.500 0.995 n.a. n.a.
U to E 6.396 −0.599 6.377 −0.662 4.166 −0.504

Transition rates
EU transition rate 8.735 −0.821 8.929 −0.835 6.873 −0.726
EE transition rate 6.576 0.986 5.708 0.991 n.a. n.a.
UE transition rate 6.858 0.983 5.984 0.987 7.340 0.980

Job flows
Creation rate 2.464 0.088 2.289 −0.122 4.633 −0.588
Destruction rate 2.595 −0.375 2.943 −0.506 6.896 −0.719

Stocks
Unemp. rate 11.677 −0.905 11.111 −0.911 10.390 −0.894
Vacancies 10.386 0.943 8.743 0.941 5.966 0.860

Notes: See notes to Table 5. The model with a low firing cost is recalibrated to satisfy the same
steady-state moment conditions and the output volatility condition as in the benchmark calibration.
Recalibrated parameters are set to the following values: τ = 0.010, κ0 = 0.0478, γ = 0.1144, σx = 0.1021,
σz = 0.0026, and L = 10.2592. The model with no OJS is solved and calibrated by setting γ = 0.
Recalibrated parameters are set to the following values: κ0 = 0.1433, L = 9.7560, and σz = 0.0032.
The first two parameters are used to match average market tightness and the EU separation rate. The
last parameter is used to match the output volatility. Parameters not listed are unchanged from the
benchmark calibration.

6.4.1 Effects of a Lower Firing Cost

The first two columns of Table 7 repeat the results from the benchmark calibration and the
next two columns report the results under the alternative calibration with τ = 0.1 (instead
of 0.125). In the calibration with lower τ , we recalibrate the model by matching all the
moment conditions except for the condition for the volatility of the UE transition rate.
Recall that the benchmark calibration implies the volatility of the EU transition rate that
is too large relative to that of the empirical series. Observe that in the case of τ = 0.1,
the volatility of the UE transition rate becomes smaller, whereas the volatility of the EU
transition rate increases, making the distance from the observed volatility even larger. By
comparing the results between the first and third column, one can see that, for any level of
τ , the model is unable to simultaneously match the volatilities of the EU and UE transition
rates. Although this result is an undesirable feature of the model, it nevertheless reflects an
interesting economic mechanism. To see the underlying cause, note that the boom period is
the time when firms’ need for laying off workers declines on average simply because of higher
productivity. However, the boom is also the time when more workers leave, further reducing
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the likelihood of layoffs. During the recession, in contrast, the pace of job-to-job transitions
slows down, and thus it becomes harder for the firm (which needs to reduce employment) to
use the attrition as a means for its employment adjustment.

Next, as mentioned in the calibration section, with a lower value for τ , we need to raise
the value of κ0 (from 0.028 to 0.048) so that we can maintain the first-moment condition for
labor market tightness. With a higher cost of hiring, the volatility of vacancies is reduced,
which causes the volatilities of UE and job-to-job transition rates to drop. This volatility
effect on the hiring side has an undesirable effect on the correlation pattern of job flows. That
is, both the job creation rate and job destruction rate are now negatively correlated with
output. When τ is lowered, the cyclical adjustments of employment shifts more to layoffs.
We already saw that the EU transition rate becomes more volatile, while the volatilities
of UE and job-to-job transition rates decline. These changes imply that the correlation
of the accession rate with output is influenced more by the UE flow, which is strongly
countercyclical, nudging the cyclicality of the job creation rate into the countercyclical side.
For a similar reason, the countercyclicality of the job destruction rate becomes stronger.

6.4.2 Model Without OJS

The last two columns of Table 7 present the cyclical properties of the model when the search
intensity of employed workers is set to zero. In calibrating the model, we match the average
levels of UE and EU transition rates by using κ0 and L, as in the benchmark calibration.
We also adjust the size of the standard deviation of the aggregate shock so that the model
generates the output volatility of the same magnitude as before. The remaining parameters
remain the same. In particular, we do not adjust the level of τ , and thus the model does not
exactly match the volatility of the EU transition rate or the UE transition rate. However,
their volatilities are within reasonable ranges.

First, note that the model now replicates the fact that the UE transition rate fluctuates
somewhat more than the EU transition rate. Only in this dimension does the model without
OJS perform better. With respect to the correlation patterns concerning transitions be-
tween employment and unemployment, both models with and without OJS do equally well.
Further, the model with OJS generates much larger volatility of vacancies. One important
channel behind this result is that with OJS, the cost of separation (per worker) is effectively
countercyclical. The attrition (job-to-job transition) rate increases (decreases) in the boom
(recession) and thus the cost of laying off workers for a given target level of employment
is lower (higher). This time variation of the effective cost of worker separations, in turn,
magnifies the incentive of posting vacancies.

Without OJS, the model fails to replicate the cyclical patterns in job flows. In the
absence of job-to-job transitions, the job destruction rate is equivalent to the EU transition
rate at monthly frequency. Thus, the difference in the correlation coefficients with output
arises solely due to time aggregation in the measurement of the job destruction rate (−0.726
vs. −0.719). In the model without OJS, the effect of time aggregation is small. The job
creation rate is now strongly negatively correlated with output. This result is quite intuitive
because job creation now needs to happen only through hires from unemployment, which
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Table 8: Second-Moment Properties: Sensitivity Analysis

Benchmark α = 0.72 ψ = 0.6
Relative Corr. w/ Relative Corr. w/ Relative Corr. w/

SD Output SD Output SD Output
Worker flows

E to U 8.215 −0.771 8.694 −0.743 8.427 −0.779
E to E 7.379 0.992 8.972 0.983 6.515 0.996
U to E 6.396 −0.599 7.088 −0.552 6.404 −0.644

Transition rates
EU transition rate 8.735 −0.821 9.257 −0.797 8.934 −0.825
EE transition rate 6.576 0.986 8.111 0.975 5.733 0.991
UE transition rate 6.858 0.983 8.464 0.972 5.988 0.987

Job flows
Creation rate 2.464 0.088 2.922 0.250 2.310 −0.119
Destruction rate 2.595 −0.375 2.385 −0.149 2.908 −0.507

Stocks
Unemp. rate 11.677 −0.905 13.481 −0.900 11.074 −0.906
Vacancies 10.386 0.943 13.252 0.935 11.741 0.958

Notes: See notes to Table 5. The model is recalibrated for both cases to match the steady-state statistics
and output volatility. (τ is kept at the same value and thus the volatility of the UE transition rate is
not targeted in the two alternative calibrations). Recalibrated parameters are set to the following values
(those not listed are set to the same values as in the benchmark calibration). α = 0.72: κ0 = 0.0081,
γ = 0.115, σx = 0.0852, σz = 0.0020, and L = 17.9878. ψ = 0.6: µ = 0.365 and σz = 0.0028

is countercyclical. The correlation between the accession rate (again equivalent of the job
creation rate at monthly frequency) and output is −0.594 (not reported in the table). When
measured by net increases in employment at quarterly frequency, the correlation becomes
somewhat weaker, but not by much (−0.588).

Lastly, the volatility of job flows is too high in this model relative to what the data indi-
cate. Recall that, in the model with OJS, the procyclical movements of job-to-job transitions
are offset by the countercyclicality of worker flows between employment and unemployment,
thereby making the volatility of total worker flows smaller. Even though we showed earlier
that separation and accession rates differ from job flows in terms of their comovements with
output, this offsetting effect clearly is the reason that job flows are much less volatile than
each component of worker flows, and without job-to-job transitions, this effect disappears.

6.5 Sensitivity

In this subsection, we examine the sensitivity of the model’s quantitative properties with
respect to the following two parameters: the curvature parameter of the production function
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α and the elasticity parameter (with respect to job seekers) of the matching function ψ.37

Specifically, we raise α from 0.67 to 0.72. Changing this parameter appears to be a sensible
thing to examine not only because the original value is only loosely chosen but also because it
is a priori conceivable that the change in the marginal product schedule may make significant
differences in our results, for example, through the changes in the wage schedule and the
firm-size distribution. Next, we change ψ from 0.5 to 0.6, given that the literature often
uses different values within a certain range for this parameter.38 For these two changes,
we recalibrate the model by matching all steady-state statistics and the output volatility.
Importantly, we keep the value of the firing cost parameter at the same value as in the
benchmark model. In other words, we do not match the volatility of the UE transition rate
in these calibrations. See notes to Table 8 for the parameter values.

Table 8 presents the results. The model under a higher α performs reasonably well: all
correlation patterns are very close to those under the benchmark calibration. One can notice,
however, that the model is somewhat “too volatile.” In particular, the relative volatility of
the UE transition rate now goes up to 8.5, while in the benchmark calibration, it was 6.9
which is calibrated to match the observed one. Matching the volatility of the UE transition
rate requires lowering τ and raising κ0. In this case, the model’s overall behavior will become
closer to the one under the benchmark calibration.39

The properties of the model with ψ = 0.6 remain relatively close to those under the
benchmark calibration. The main differences lie in the higher volatility of the EU transition
rate and the lower volatility of the UE transition rate (compared to the benchmark case).
These changes make both job creation and destruction rates countercyclical, given that the
effect of the EU transition rate on these variables becomes stronger. However, the correlation
patterns of the remaining variables stay intact and consistent with the empirical evidence.
Also note that raising the value of τ will make the volatilities of the EU and UE transition
rates closer to those under the benchmark calibration. Accordingly, the behavior of job
flows will be closer to the observed data. Overall, the sensitivity analysis here demonstrates
that the model’s overall features are not significantly affected with the alternative parameter
values.

7 Conclusion

In this paper, we studied the quantitative properties of multiple-worker matching model
with on-the-job search. We show that the model is capable of replicating the overall cyclical
patterns of worker flows and job flows simultaneously. Procyclical job-to-job transitions,

37We also considered the effect of changing the worker bargaining power η from 0.5 to 0.6. The basic
conclusion from this exercise is the same as the two cases and thus we focus on the effects of the two
parameters.

38See Brügemann (2008) for the discussion on this issue.
39The combination of a lower τ and higher κ0 results in a lower volatility of the UE and EE transition

rates, which is not surprising, and also a slightly higher volatility of the EU transition rate. The latter result
would make the volatility of the EU transition rate even greater than its empirical counterpart. See the
discussion in section 6.4.
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coupled with countercyclical worker flows between unemployment and employment, are im-
portant for this success. However, this paper also shows that the cyclical features of total
separation and accession rates significantly differ from those of job flows. This is because
job-to-job transitions (as a part of separations) occur at the firms that are “creating” jobs
on net, and similarly, hires occur at firms that are “destroying” jobs on net.

Our results, however, are by no means perfect. We find that the separation rate into
unemployment is too volatile relative to the data. We find that it is not possible to contain
this problem with a higher firing cost because the layoff decision is strongly influenced by the
pace of attritions (i.e., job-to-job transitions). Another issue that is not discussed in the main
text is that the model misses important features of the cross-sectional employment growth
distribution studied by Davis et al. (2012) (our calibration only matches the dispersion of
the annual growth rate distribution). Davis et al. (2012) show that, at quarterly frequency,
roughly 15% of establishments report no net employment change. Our model is simply
unable to capture this pattern because the firm always loses some workers through job-to-
job transitions even when the firm’s idiosyncratic state does not change. More generally
speaking, firm-level employment adjustments in our model are too responsive to the shock.
That is, there are more firms that are making relatively large adjustments than are implied
by the observed data.

Modifying our model to accommodate the more realistic micro-level heterogeneity is a
fruitful future research topic. For example, we abstract away from the employed workers’
search decision by assuming they are looking for a job with a fixed reduced search intensity.
However, it is clearly the case in reality that the search intensity of workers at struggling (and
thus shrinking) firms is higher.40 Another promising dimension could be an integration with
lumpy investment literature. Nonconvex capital adjustment costs could work as a device to
slow down employment adjustments, thus making the model closer to the data.

A Computation

Details of the numerical procedure to solve for the steady-state equilibrium and the dynamic
stochastic equilibrium are as follows.

A.1 Steady-State Equilibrium

1. Guess equilibrium market tightness θ, which immediately gives q(θ) and f(θ). Let ΩH

and ΩK be the parameters of the beta function that characterizes H(w) and K(w),
respectively. Each parameter vector includes four parameters; two of them determine
the upper and lower bound of the distribution.41 By guessing ΩH and ΩK , obtain
approximate H(w) and K(w). Using these pieces of information, compute h(w) and
k(w).

40Davis et al. (2012) call this the “abandon-ship” effect. See also Faberman and Nagypál (2008).
41Note that the beta distribution is defined on [0, 1] and that we map wages into this interval.
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2. Guess D(x, n′), the expected marginal profit function of a firm with type (x, n′). Guess
also the optimal employment adjustment rule n′ = g(x, n). This function is used in
the wage function and thus is used to calculate the quit rate k(w) and the acceptance
rate h(w) if the firm is posting vacancies.

3. Use the first-order conditions (8) and (9) to obtain the (s, S) band, n∗(x, n) and
n∗(x, n), of the firm’s employment adjustment rule. These two functions are used
to update the firm’s optimal employment adjustment rule n′ = g(x, n).

4. Using the updated optimal employment adjustment rule n′ = g(x, n), (10), and (11),
update the firm’s marginal profit function D(x, n′).

5. Check convergence of D(x, n′) and n′ = g(x, n), based on the distance between the old
and updated functions. Otherwise, update D(x, n′) and n′ = g(x, n) and go back to
step 4.

6. Using this optimal employment adjustment rule and the stochastic process for x, sim-
ulate the economy until the invariant type distribution m∗(x, n) is obtained.

7. Using m∗(x, n), update H(w) and K(w) as follows:

H(w̄) =

∫
1[w̄ > w(x, g(x, n))]g(x, n)dm∗∫

g(x, n)dm∗
(12)

K(w̄) =

∫
1[w̄ > w(x, g(x, n))] max[g(x, n)− (1− k(w(x, g(x, n))))n, 0]dm∗∫

max[g(x, n)− (1− k(w(x, g(x, n))))n, 0]dm∗
. (13)

where 1 is an indicator function. These distributions can be used to update ΩH and
ΩK .

8. Compute the total labor force (population) consistent with the stationary distribution
m∗ and the unemployment rate U as:

L =

∫
g(x, n)dm∗

1− U .

Note that U is fixed at a targeted level. Efficiency-weighted number of searchers S,
the total number of vacancies (normalized by the labor force) V , and the labor market
tightness θ are calculated by:

S = γ(1− U) + U, (14)

V =
1

L

∫
max[g(x, n)− (1− k(w(x, n′(x, n))))n, 0]

h(w(x, g(x, n)))
dm∗, (15)

θ =
V

S
. (16)

9. Check convergence of {θ,ΩH ,ΩK}. Update {θ,ΩH ,ΩK} and go back to step 2 if the
distance between the guess and the updated numbers is larger than the pre-specified
value.
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A.2 Dynamic Stochastic Equilibrium

1. Parameterize H(w) and K(w). Note that the type distribution m is replaced by U .
Let ΩH = {ωHi }i=1,...,4 and ΩK = {ωKi }i=1,...,4 be a set of parameters associated with
H(w) and K(w), respectively. {U ′, θ,ΩH ,ΩK} is the list of variables to be forecast
through the following forecasting rules:

logU ′ = φ1
0 + φ1

1 log z + φ1
2 logU (17)

log θ = φ2
0 + φ2

1 log z + φ2
2 logU (18)

logωHi = φ2+i
0 + φ2+i

1 log z + φ2+i
2 logU i = 1, ..., 4 (19)

logωKi = φ6+i
0 + φ6+i

1 log z + φ6+i
2 logU i = 1, ..., 4 (20)

Let Φ be the vector of the parameters {φi0, φi1, φi2}i=1,...,10. With a guess for Φ, and
current z and U , one can compute q, f , H(w), and K(w).

2. Guess the expected marginal profit of the firm with a type (x, n′) under the aggregate
state (z, U ′), D(x, n′, z, U ′).

3. Using the first-order conditions (8) and (9), compute (s, S) band n∗(x, n, z, U) and
n∗(x, n, z, U). These two functions characterize the firm’s optimal employment adjust-
ment rule n′ = g(x, n, z, U).

4. Using the optimal employment adjustment rule n′ = g(x, n, z, U) and the envelope
conditions (10), update the firm’s marginal profit function D(x, n′, z, U ′) from (11).

5. Check convergence of D. It is assumed that convergence is reached if the distance
between the initial and updated functions is smaller than a pre-determined tolerance
level. Otherwise, update D and go back to step 3.

6. Using the optimal employment adjustment rule n′ = g(x, n, z, U) and the stochastic
processes for z and x, simulate the economy for T = T0 + T1 periods. The economy
consists of a panel of one million establishments over 1,320 periods with T0 = 120
and T1 = 1, 200. The simulation starts with the steady-state distribution of m∗(x, n).
The unemployment rate in the initial period can be obtained from the distribution.
In each period, compute H(w) and K(w) following the formulas (12) and (13). The
unemployment rate in each period is calculated as:

U =
L−

∫
g(x, n, z, U)dm(x, n)

L
. (21)

The number of vacancies V , the number of job seekers, and the labor market tightness
in each period are calculated by the formulas (14), (15), and (16).

7. Using the sequence {zt, Ut, θt, Ht(w), Kt(w)}t=T0+1,...,T , run OLS regressions (17) through
(20) and obtain the new set of coefficients Φ.

8. Check convergence of Φ. If the distance between the old and new Φ is smaller than a
pre-determined tolerance level, then stop. Otherwise, update Φ and go back to step 3.
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