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Abstract

This paper studies the dynamics of a New Keynesian dynamic stochastic general

equilibrium (DSGE) model near the zero lower bound (ZLB) on nominal interest rates.

In addition to the standard targeted-inflation equilibrium, we consider a deflation equi-

librium as well as a Markov sunspot equilibrium that switches between a targeted-

inflation and a deflation regime. We use the particle filter to estimate the state of

the U.S. economy during and after the 2008-09 recession under the assumptions that

the U.S. economy has been in either the targeted-inflation or the sunspot equilibrium.

We consider a combination of fiscal policy (calibrated to the American Recovery and

Reinvestment Act) and monetary policy (that tries to keep interest rates near zero)

and compute government spending multipliers. Ex-ante multipliers (cumulative over

one year) under the targeted-inflation regime are around 0.9. A monetary policy that

keeps interest rates at zero can raise the multiplier to 1.7. The ex-post (conditioning

on the realized shocks in 2009-11) multiplier is estimated to be 1.3. Conditional on

the sunspot equilibrium, the multipliers are generally smaller and the scope for con-

ventional expansionary monetary policy is severely limited. JEL CLASSIFICATION:

C5, E4, E5

KEY WORDS: DSGE models, government spending multiplier, multiple equilibria, nonlinear
filtering, nonlinear solution methods, ZLB
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1 Introduction

Investors’ access to money, which is an asset that in addition to providing transaction ser-

vices yields a zero nominal return, prevents nominal interest rates from falling below zero

and thereby creates a zero lower bound (ZLB) for nominal interest rates. Traditionally, the

ZLB has mostly been ignored in the specification of dynamic stochastic general equilibrium

(DSGE) models that are tailored toward the analysis of U.S. monetary and fiscal policy.

However, since the beginning of 2009, the U.S. Federal Funds rate has been effectively zero,

and the literature on the analysis of DSGE models with an explicit ZLB constraint has been

growing rapidly. Our paper contributes to this literature by solving for multiple equilibria

in a New Keynesian DSGE model with a full set of stochastic shocks using global projec-

tion methods; by fitting the model to U.S. data on output growth, inflation, and interest

rate, and using a filter to estimate the shocks that generated the 2008-09 recession and pro-

vided the initial conditions for the subsequent recovery; and by assessing the effectiveness of

expansionary fiscal and monetary policy during the Great Recession.

Once the ZLB is explicitly included in a monetary model with an interest-rate feedback

rule, there typically are multiple equilibria. The most widely studied equilibrium is the

one in which the economy fluctuates around the steady state where actual inflation coin-

cides with the central bank’s inflation target (targeted-inflation equilibrium). Our paper is

the first to study two additional equilibria in a nonlinear DSGE model with a full set of

structural shocks: a minimal-state-variable equilibrium in which the endogenous variables

fluctuate near a steady state with zero interest rates (deflation equilibrium) and an equilib-

rium in which the economy alternates between a targeted-inflation regime and a deflation

regime according to the realization of a non-fundamental Markov-switching process (sunspot

equilibrium). For the empirical analysis, we focus on the targeted-inflation equilibrium and

the sunspot equilibrium because the U.S. never experienced a prolonged period of deflation

as the deflation equilibrium would predict.

The multiplicity of equilibria and a potential switch to a deflation regime that resembles

the economic experience of Japan since the late 1990s was a real concern to U.S. policymakers

in the beginning of 2009, e.g. Bullard (2010). Thus, since the Great Recession, the question
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of how economic dynamics and the effects of fiscal and monetary policy differ in the deflation

regime has been very important. Our quantitative analysis provides an ex-ante assessment

conditional on the state of the U.S. economy at the end of 2009:Q1. With hindsight, our

empirical analysis reveals that the probability of a switch to a deflation regime is low. This

conclusion crucially relies on our ability to solve for the sunspot equilibrium.

Using data from 1984 to 2007, a period in which the ZLB was non-binding, we estimate

the parameters of our DSGE model based on a second-order perturbation solution, which

turns out be essentially identical to the projection solution of the model for values of the

state variables that were empirically relevant prior to the 2008-09 recession. Conditioning on

the parameter estimates, we then switch to the projection solution and use a nonlinear filter

to extract the exogenous shock processes, which provide the initial conditions for our policy

experiments. We do so for the targeted-inflation equilibrium and the sunspot equilibrium.

Under the sunspot equilibrium, there is a non-zero probability of a switch to the deflation

regime in the beginning of 2009. We study the effects of an increase in government spending

that is calibrated to match the size of the federal contracts, grants, and loans portion of the

American Recovery and Reinvestment Act (ARRA), which was signed into law in 2009:Q1.

We also consider a concurrent expansionary monetary policy that keeps interest rates near

zero for an extended period of time.

We consider two types of policy exercises, which we label as ex ante and ex post. In

the ex-ante analysis, we take the states at the end of 2009:Q1 as given and simulate the

model economy forward, with and without the policy intervention. We find that the ex-ante

cumulative fiscal multiplier both under the targeted-inflation and the sunspot equilibrium

is about 0.9 over a one-year horizon. Under the targeted-inflation equilibrium, the nominal

interest rises quickly and the economy moves away from the ZLB. This creates scope for

expansionary monetary policy that can amplify the effect of the fiscal expansion and raise

the multiplier from 0.9 to 1.7. For the analysis under the sunspot equilibrium, we assume

the economy is initially in the deflation state, which implies, looking forward, that interest

rates are likely to stay close to zero and the scope for conventional monetary stimulus is

much smaller than in the targeted-inflation equilibrium.
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In the ex-post analysis, we condition on the actual filtered shocks from the years 2009 and

2010. Counterfactual outcomes are computed by removing the contribution of expansionary

fiscal and monetary policy actions from the filtered shocks. In the absence of the economic

stimulus, output growth in 2009:Q2 would have been substantially lower, and the economy

would have experienced a prolonged deflationary episode through the end of 2010. The ex-

post policy multiplier for the expansionary fiscal policy is larger than ex ante, around 1.3 over

a one-year horizon. During 2009 and 2010, the realized shocks pushed the economy closer

to the ZLB. Once at the ZLB, the feedback portion of the monetary policy rule is inactive,

and the fiscal stimulus is not accompanied by a rise in nominal interest rates. The resulting

lower real rates stimulate demand and amplify the fiscal policy effect. This mechanism is

emphasized, for instance, by Eggertsson and Woodford (2003) and Christiano, Eichenbaum,

and Rebelo (2011). However, according to our empirical analysis, it is not as strong as these

authors claim.

The ex-post multiplier on a combined fiscal and monetary intervention is identical to the

ex-ante multiplier over a one-quarter horizon but rises from 1.3 to 1.6 over four quarters and

from 1.2 to 2.0 over eight quarters. In other words, at the beginning of 2009, in the logic

of the targeted-inflation equilibrium, the U.S. central bank had no leverage to stimulate

the economy with conventional monetary policy. By the second half of 2010, the actual

monetary policy was expansionary in the sense that the model-implied feedback rule would

have predicted a positive interest rate. This expansionary monetary policy amplified the

effect of the fiscal stimulus. The multipliers for the sunspot equilibrium are quite similar

because the data suggest that the economy quickly reverted back to the targeted-inflation

regime.

Our paper is related to several strands of the literature. It has been well known that

monetary DSGE models with an explicit ZLB constraint deliver multiple equilibria. This

issue has been discussed, for instance, by Benhabib, Schmitt-Grohé, and Uribe (2001a,b) and

more recently in Schmitt-Grohé and Uribe (2012). In a nutshell, the relationship between

nominal interest rates and inflation in a DSGE model is characterized by a consumption

Euler equation and a monetary policy rule. The kink in the monetary policy rule induced
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by the ZLB tends to generate two pairs of steady-state interest and inflation rates that solve

both equations. One can construct equilibria in the neighborhood of the two steady states

as well as sunspot equilibria with a Markov-switching shock that moves the economy from

the vicinity of one steady state to the vicinity of the other steady state. Such a sunspot

equilibrium has been recently analyzed by Mertens and Ravn (2013) but in a model with

a much more restrictive exogenous shock structure. Our paper is the first to compute a

sunspot equilibrium in a New Keynesian DSGE model that is rich enough to track U.S.

macroeconomic time series.

In terms of solution method, our work is most closely related to the papers by Judd,

Maliar, and Maliar (2010), Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-

Ramı́rez (2012), and Gust, Lopez-Salido, and Smith (2012).1 All of these papers use global

projection methods to approximate agents’ decision rules in a New Keynesian DSGE model

with a ZLB constraint. However, these papers solely consider the targeted-inflation equi-

librium, and some details of the implementation of the solution algorithm are different. To

improve the accuracy of the model solution under our three equilibria, we introduce two novel

features. First, we use a piece-wise smooth approximation with two separate functions char-

acterizing the decisions when the ZLB is binding and when it is not. The above-referenced

papers, on other hand, use smooth approximations with a single function covering the whole

state space. This means all our decision rules allow for kinks at points in the state space

where the ZLB becomes binding. Second, when constructing a grid of points in the models’

state space for which the equilibrium conditions are explicitly evaluated by the projection

approach, we combine draws from the ergodic distribution of the DSGE model with values

of the state variables obtained by applying our filtering procedure. Our modification of the

1Most of the other papers that study DSGE models with a ZLB constraint take various shortcuts to

solve the model. In particular, following Eggertsson and Woodford (2003), many authors assume that an

exogenous Markov-switching process pushes the economy to the ZLB. The subsequent exit from the ZLB

is exogenous and occurs with a prespecified probability. The absence of other shocks makes it impossible

to use the model to track actual data. Unfortunately, model properties tend to be very sensitive to the

approximation technique and to implicit or explicit assumptions about the probability of leaving the ZLB,

see Braun, Körber, and Waki (2012) and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-

Ramı́rez (2012).
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ergodic-set method proposed by Judd, Maliar, and Maliar (2010) ensures that the model

solution is accurate in a region of the state space that is unlikely ex ante under the ergodic

distribution of the model, but very important ex post to explain the observed data. Gust,

Lopez-Salido, and Smith (2012) also use a nonlinear filter to extract shocks that allow their

DSGE model to track U.S. data throughout the Great Recession. However, their empirical

analysis focuses on the extent to which the ZLB constrained the ability of monetary policy

to stabilize the economy.

The effect of an increase in government spending when the economy is at the ZLB has

been studied by Braun, Körber, and Waki (2012), Christiano, Eichenbaum, and Rebelo

(2011), Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2012), Eg-

gertsson (2009), and Mertens and Ravn (2013). Christiano, Eichenbaum, and Rebelo (2011)

argue that the fiscal multiplier at the ZLB can be substantially larger than one. In general,

the government spending multiplier crucially depends on whether the expansionary fiscal

policy triggers an exit from the ZLB. The longer the exit from the ZLB is delayed, the

larger the government spending multiplier. We capture this effect through the combination

of expansionary fiscal and monetary policies and in our ex-post analysis. Mertens and Ravn

(2013) emphasize that in what we would call a deflation equilibrium, the effects of expan-

sionary government spending can be substantially smaller from the effects in the standard

targeted-inflation equilibrium.

The remainder of the paper is organized as follows. Section 2 presents a simple two-

equation model that we use to illustrate the multiplicity of equilibria in monetary models

with ZLB constraints. We also highlight the types of equilibria studied in this paper. The

New Keynesian model that is used for the quantitative analysis is presented in Section 3,

and the solution of the model is discussed in Section 4. Section 5 contains the quantitative

analysis, and Section 6 concludes. Detailed derivations, descriptions of algorithms, and

additional quantitative results are summarized in an Online Appendix.
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2 A Two-Equation Example

We begin with a simple two-equation example to illustrate the types of equilibria that arise

if a ZLB constraint is imposed in a monetary DSGE model with an interest-rate feedback

rule. The example is adapted from Benhabib, Schmitt-Grohé, and Uribe (2001a) and Hursey

and Wolman (2010). Suppose that the economy can be described by the Fisher relationship

Rt = rEt[πt+1] (1)

and the monetary policy rule

Rt = max

{
1, rπ∗

(
πt
π∗

)ψ
exp[σεt]

}
, εt ∼ iidN(0, 1), ψ > 1. (2)

Here Rt denotes the gross nominal interest rate, πt is the gross inflation rate, and εt is a

monetary policy shock. The gross nominal interest rate is bounded from below by one.

Throughout this paper we refer to this bound as ZLB because it bounds the net interest

rate from below by zero. Combining (1) and (2) yields a nonlinear expectational difference

equation for inflation

Et[πt+1] = max

{
1

r
, π∗

(
πt
π∗

)ψ
exp[σεt]

}
. (3)

This model has two steady states (σ = 0), which we call the targeted-inflation steady state

and the deflation steady state, respectively. In the targeted-inflation steady state, inflation

equals π∗, and the nominal interest rate is R = rπ∗. In the deflation steady state, inflation

equals πD = 1/r, and the nominal interest is RD = 1.

The presence of two steady states suggests that the nonlinear rational expectation differ-

ence equation (3) has multiple stable stochastic solutions. We find solutions to this equation

using a guess-and-verify approach. A solution that fluctuates around the targeted-inflation

steady state is given by

π
(∗)
t = π∗γ∗ exp

[
− 1

ψ
σεt

]
, γ∗ = exp

[
σ2

2(ψ − 1)ψ2

]
. (4)

We can also obtain a solution that fluctuates around the deflation steady state:

π
(D)
t = π∗γD exp

[
− 1

ψ
σεt

]
, γD =

1

π∗r
exp

[
− σ2

2ψ2

]
. (5)
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Figure 1: Inflation Dynamics in the Two-Equation Model
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Notes: In the top left panel, the blue line shows the targeted-inflation equilibrium, and the red line shows the
deflation equilibrium. In the bottom panels, the shaded areas corresponds to periods in which the system is
in the deflation regime. For the endogenous-sunspot equilibrium, the regime switch is triggered by extreme
shocks εt that exceed the thresholds depicted in the upper right panel by the dashed lines.

This solution differs from (4) only with respect to the constant γD, and has the same dy-

namics. We refer to π
(∗)
t as the targeted-inflation equilibrium and π

(D)
t as the deflation

equilibrium associated with (3).

In addition to the equilibria in (4) and (5), one can consider equilibria in which a two-

state Markov-switching sunspot shock st ∈ {0, 1} triggers moves from a targeted-inflation
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regime to a deflation regime and vice versa:

π
(s)
t = π∗γ(st) exp

[
− 1

ψ
σεt

]
. (6)

The constants γ(0) and γ(1) depend on the transition probabilities of the Markov switching

process and ensure that (3) holds in every period t. The fluctuations of π
(s)
t around π∗γ(st)

are identical to the fluctuations in the above targeted-inflation and deflation equilibria. The

sunspot process could either evolve independently from the fundamental shock, or it could

be correlated with εt.
2 For instance, conditional on st−1 = 1 (targeted-inflation regime),

suppose that st = 0, i.e., the economy transitions to the deflation regime, if a large negative

shock occurs: εt < ε1. Similarly, the economy exits the deflation regime, if a large positive

shock occurs: εt > ε2.

A numerical illustration is provided in Figure 1. The upper-right panel depicts the

evolution of the shock εt. The upper-left panel compares the paths of net inflation under

the targeted-inflation equilibrium and the deflation equilibrium. The difference between the

inflation paths is the level shift due to the constants γ∗ versus γD. The bottom panel shows

two sunspot equilibria with visible shifts from the targeted-inflation regime to the deflation

regime (shaded areas) and back. In the left panel, the sunspot evolves exogenously, whereas

on the right, it is endogenous in the sense that it gets triggered by extreme realizations of

εt, which exceed the thresholds ε1 and ε2, respectively.

There exist many other solutions to (3). The local dynamics around the deflation steady

state, ignoring the ZLB constraint, are indeterminate, and it is possible to find alternative

deflation equilibria. Moreover, Benhabib, Schmitt-Grohé, and Uribe (2001a) studied alter-

native equilibria in which the economy transitions from the targeted-inflation regime to a

deflation regime and remains in the deflation regime permanently in continuous-time perfect

foresight monetary models. Such equilibria can also be constructed in our model, and one

of them is discussed in more detail in the Online Appendix. In the remainder of this paper,

we will restrict our attention to equilibria of a New Keynesian DSGE model that are akin

to π
(∗)
t , π

(D)
t , and π

(s)
t with an exogenously evolving sunspot shock.

2We thank Mike Woodford for the suggestion to explore equilibria in which the sunspot is triggered by

fundamentals.



This Version: July 8, 2013 9

3 A Prototypical New Keynesian DSGE Model

The DSGE model we consider is the New Keynesian model studied in An and Schorfheide

(2007). The model economy consists of perfectly competitive final-goods-producing firms,

a continuum of monopolistically competitive intermediate goods producers, a continuum of

identical households, and a government that engages in active monetary and passive fiscal

policy. This model has been widely studied in the literature, and many of its properties are

discussed in the textbook by Woodford (2003). To keep the dimension of the state space

manageable, we abstract from capital accumulation and wage rigidities. We describe the

preferences and technologies of the agents in Section 3.1, and summarize the equilibrium

conditions in Section 3.2.

3.1 Preferences and Technologies

Households. Households derive utility from consumption Ct relative to an exogenous habit

stock and disutility from hours worked Ht. We assume that the habit stock is given by the

level of technology At, which ensures that the economy evolves along a balanced growth path

despite the quasi-linear preferences. We also assume that the households value transaction

services from real money balances, detrended by At, and include them in the utility function.

The households maximize

Et

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
−Ht+s + χV

(
Mt+s

Pt+sAt+s

))]
, (7)

subject to budget constraint

PtCt + Tt +Mt +Bt = PtWtHt +Mt−1 +Rt−1Bt−1 + PtDt + PtSCt.

Here β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and Pt is

the price of the final good. The households supply labor services to the firms, taking the

real wage Wt as given. At the end of period t, households hold money in the amount of

Mt. They have access to a bond market where nominal government bonds Bt that pay gross

interest Rt are traded. Furthermore, the households receive profits Dt from the firms and
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pay lump-sum taxes Tt. SCt is the net cash inflow from trading a full set of state-contingent

securities.

Real money balances enter the utility function in an additively separable fashion. An

empirical justification of this assumption is provided by Ireland (2004). As a consequence,

the equilibrium has a block diagonal structure under the interest-rate feedback rule that

we will specify below: the level of output, inflation, and interest rates can be determined

independently of the money stock. We assume that the marginal utility V ′(m) is decreasing

in real money balances m and reaches zero for m = m̄, which is the amount of money held

in steady state by households if the net nominal interest rate is zero. Since the return on

holding money is zero, it provides the rationale for the ZLB on nominal rates. The usual

transversality condition on asset accumulation applies.

Firms. The final-goods producers aggregate intermediate goods, indexed by j ∈ [0, 1], using

the technology:

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

.

The firms take input prices Pt(j) and output prices Pt as given. Profit maximization implies

that the demand for inputs is given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν
Yt.

Under the assumption of free entry into the final-goods market, profits are zero in equilibrium,

and the price of the aggregate good is given by

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (8)

We define inflation as πt = Pt/Pt−1.

Intermediate good j is produced by a monopolist who has access to the following pro-

duction technology:

Yt(j) = AtHt(j), (9)

where At is an exogenous productivity process that is common to all firms and Ht(j) is the

firm-specific labor input. Labor is hired in a perfectly competitive factor market at the real
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wage Wt. Intermediate-goods-producing firms face quadratic price adjustment costs of the

form

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

Yt(j),

where φ governs the price stickiness in the economy and π̄ is a baseline rate of price change

that does not require the payment of any adjustment costs. In our quantitative analysis, we

set π̄ = 1, that is, it is costless to keep prices constant. Firm j chooses its labor input Nt(j)

and the price Pt(j) to maximize the present value of future profits

Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sHt+s − ACt+s

)]
. (10)

Here, Qt+s|t is the time t value to the household of a unit of the consumption good in period

t+ s, which is treated as exogenous by the firm.

Government Policies. Monetary policy is described by an interest rate feedback rule of

the form

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (11)

Here r is the steady-state real interest rate, π∗ is the target-inflation rate, and εR,t is a

monetary policy shock. The key departure from much of the New Keynesian DSGE literature

is the use of the max operator to enforce the ZLB. Provided that the ZLB is not binding,

the central bank reacts to deviations of inflation from the target rate π∗ and deviations of

output growth from γ.

The government consumes a stochastic fraction of aggregate output and government

spending evolves according to

Gt =

(
1− 1

gt

)
Yt. (12)

The government levies a lump-sum tax Tt (or provides a subsidy if Tt is negative) to finance

any shortfalls in government revenues (or to rebate any surplus). Its budget constraint is

given by

PtGt +Mt−1 +Rt−1Bt−1 = Tt +Mt +Bt. (13)
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Exogenous shocks. The model economy is perturbed by three exogenous processes. Ag-

gregate productivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + σzεz,t. (14)

Thus, on average, the economy grows at the rate γ, and zt generates exogenous fluctuations

of the technology growth rate. We assume that the government spending shock follows the

AR(1) law of motion

ln gt = (1− ρg) ln g∗ + ρg ln gt−1 + σgεg,t. (15)

While we formally introduce the exogenous process gt as a government spending shock, we

interpret it more broadly as an exogenous demand shock that contributes to fluctuations in

output. The monetary policy shock εR,t is assumed to be serially uncorrelated. We stack the

three innovations into the vector εt = [εz,t, εg,t, εr,t]
′ and assume that εt ∼ iidN(0, I).

Unlike some of the other papers in the ZLB literature, e.g. Christiano, Eichenbaum, and

Rebelo (2011) and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez

(2012), we do not include a discount factor shock in the model. We follow the strand of the

literature that has estimated three-equation DSGE models that are driven by a technology

shock, a demand (government spending), and a monetary policy shock and has documented

that such models fit U.S. data for output growth, inflation, and interest rates reasonably

well before the Great Recession. When we consider the sunspot equilibrium, we introduce

another exogenous variable st, which follows a Markov-switching process

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(16)

3.2 Equilibrium Conditions

Since the exogenous productivity process has a stochastic trend, it is convenient to charac-

terize the equilibrium conditions of the model economy in terms of detrended consumption

and output: ct = Ct/At and yt = Yt/At. The consumption Euler equation is given by

1 = βEt

[(
ct+1

ct

)−τ
1

γzt+1

Rt

πt+1

]
. (17)
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We define

Et = IEt

[
c−τt+1

γzt+1πt+1

]
., (18)

which will be useful in the computational algorithm. In a symmetric equilibrium, in which

all firms set the same price Pt(j), the price-setting decision of the firms leads to the condition

1 =
1

ν
(1− cτt ) + φ(πt − π̄)

[(
1− 1

2ν

)
πt +

π̄

2ν

]
(19)

−φβEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]

The aggregate resource constraint can be expressed as

ct =

[
1

gt
− φ

2
(πt − π̄)2

]
yt. (20)

It reflects both government spending as well as the resource cost (in terms of output) caused

by price changes. Finally, we reproduce the monetary policy rule

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (21)

We do not use a measure of money in our empirical analysis and therefore drop the equilib-

rium condition that determines money demand.

As the two-equation model in Section 2, the New Keynesian model with the ZLB con-

straint has two steady states, which we refer to as the targeted-inflation and the deflation

steady state. In the targeted-inflation steady state, inflation equals π∗ and the gross interest

rate equals rπ∗, while in the deflation steady state, inflation equals 1/r and the interest rate

equals one.

4 Solving the Model Subject to the ZLB Constraint

We now discuss some key features of the algorithm that is used to solve the nonlinear DSGE

model presented in the previous section. Additional details can be found in the Online Ap-

pendix. We compute three of the equilibria that we studied in the context of the two-equation
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model presented in Section 2: a targeted-inflation equilibrium in which the economy fluctu-

ates around the targeted-inflation steady state, a minimal-state-variable deflation equilibrium

with fluctuations near the deflation steady state, and a sunspot equilibrium with a targeted-

inflation and a deflation regime. While the targeted-inflation equilibrium has been computed

by Judd, Maliar, and Maliar (2010), Fernández-Villaverde, Gordon, Guerrón-Quintana, and

Rubio-Ramı́rez (2012) and Gust, Lopez-Salido, and Smith (2012) for similar DSGE models,

to the best of our knowledge, this is the first paper to compute the deflation and the sunspot

equilibria for a discrete-time DSGE model with a full set of stochastic shocks.

The minimum set of state variables associated with our DSGE models is (Rt−1, yt−1, gt, zt, εR,t)

and the sunspot variable st, where applicable, which we collectively label as St. An (approx-

imate) solution of the DSGE model is a set of decision rules

πt = π(St; Θ), Et = E(St; Θ), ct = c(St; Θ), yt = y(St; Θ), and Rt = R(St; Θ)

that solves the nonlinear rational expectations system

ξ (ct, πt, yt) = φβIEt

[
(ct+1)

−τ yt+1(πt+1 − π̄)πt+1

]
(22)

c−τt = βRtEt (23)

yt =

[
1

gt
− φ

2
(πt − π̄)2

]−1
ct (24)

Rt = max

1,

[
r∗π∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

εR,t

 (25)

where Et was defined in (18) and ξ(.) is defined as

ξ (c, π, y) = c−τy

{
1

ν
(1− cτ ) + φ(π − π̄)

[(
1− 1

2ν

)
π +

π̄

2ν

]
− 1

}
. (26)

We utilize a global approximation using fourth-order Chebyshev polynomials following Judd

(1992). The solution algorithm amounts to specifying a grid of points G = {S1, . . . ,SM} in

the model’s state space and solving for the vector Θ such that the sum of squared residuals

associated with (18) and (22) are minimized for St ∈ G. Note that conditional on π(St; Θ) and

E(St; Θ) the Equations (23)-(25) determine c(St; Θ), y(St; Θ), and R(St; Θ), and therefore

these equations hold exactly. There are two non-standard aspects of our solution method
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that we will now discuss in more detail: a piecewise smooth representation of the functions

π(·; Θ) and E(·; Θ) and the iterative procedure of choosing grid points G.

We show in Section B of the Online Appendix that the solution to a simplified linearized

version of our DSGE model entails piece-wise linear decision rules. While Chebyshev poly-

nomials, which are smooth functions of the states, can in principle approximate functions

with a kink, such approximations are quite inaccurate for low-order polynomials. Thus,

unlike Judd, Maliar, and Maliar (2010), Fernández-Villaverde, Gordon, Guerrón-Quintana,

and Rubio-Ramı́rez (2012) and Gust, Lopez-Salido, and Smith (2012), we use a piece-wise

smooth approximation of the functions π(St) and E(St) by postulating

π(St; Θ) = ζtf
1
π(St; Θ) + (1− ζt)f 2

π(St; Θ) (27)

E(St; Θ) = ζtf
1
E (St; Θ) + (1− ζt)f 1

E (St; Θ),

where ζt = I{R(St; Θ) > 1} is an indicator that shows the ZLB is slack. The functions f ij are

linear combinations of a complete set of Chebyshev polynomials up to fourth order, where

the weights are given by a vector Θ. Our method is flexible enough to allow for a kink in all

decision rules and not just Rt, which has a kink by its construction.3

In our experience, the flexibility of the piece-wise smooth approximation yields more

accurate decision rules, especially for inflation. Figure 2 shows a slice of the decision rules

where we set Rt−1 = 1, yt−1 = y∗, z = 0, and εR,t = 0 and vary gt in a wide range. The solid

blue decision rules are based on the piece-wise smooth approximation in (27), whereas the

dashed red decision rules are obtained using a single set of Chebyshev polynomials. When

approximated smoothly, the decision rules fail to capture the kinks that are apparent in

the piece-wise smooth approximation. For instance, the decision rule for output illustrates

that the (marginal) government-spending multiplier is sensitive to the ZLB – it is noticeably

larger in the area of the state space where the ZLB binds – which is not captured by the

smooth approximation.

Projection methods that require the solution to be accurate on a fixed grid, e.g., a tensor

product grid, become exceedingly difficult to implement as the number of state variables

3This method would work well if instead of kinks we had differentiable decision rules whose slopes were

changing rapidly in the neighborhood of where the ZLB becomes slack.
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Figure 2: Sample Decision Rules
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Note: The gray shading show 95% coverage of the ergodic distribution in the targeted-inflation equilibrium.

increases above three. While the Smolyak grid proposed by Krueger and Kubler (2004) can

alleviate the curse of dimensionality to some extent, we build on recent work by Judd, Maliar,

and Maliar (2010) and use stochastic simulations to generate a grid that adapts to the ergodic

distribution of the model. However, unlike Judd, Maliar, and Maliar (2010), we need the

model solution to be accurate not only for high-density points of the model-implied ergodic

distribution of St but also for values of the state variables that can explain the recession

of 2008-09. It turns out that these values are several standard deviations away from the

center of the ergodic distribution. Thus, we combine draws from the ergodic distribution
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with states that are extracted from data on output growth, inflation, and interest rates to

generate the grid G. This ensures that our approximation remains accurate in the area of

the state space that is relevant for the empirical analysis.

The gray shading in Figure 2 shows the 95% coverage of the ergodic distribution. While

values of g to the left of the shaded area are unlikely under the ergodic distribution, they turn

out to be important to explain the observations in 2008-09. The economy reaches the ZLB for

values of g that are smaller than 0.11. The dashed-dotted black decision rules are computed

based on a grid that consists only of points from the ergodic distribution, whereas the solid

blue decision rules are obtained using a grid that mixes points from the ergodic distribution

and the filtered states. Under the ergodic-set grid the solution algorithm essentially does

not evaluate the nonlinear rational expectations system for states that imply a binding

ZLB. Since we use a piece-wise smooth approximation, the decision rules for inflation and

consumption are constant as a function of g for low values, reflecting steady states and the

particular initialization of Θ.

Recall that the model solution is obtained by solving for the vector Θ that minimizes

the sum of squared residuals associated with (18) and (22) for St ∈ G. The multiplicity of

equilibria in our DSGE model implies that this minimization has multiple solutions, i.e., the

objective function is multimodal. To find the targeted-inflation equilibrium, we start from

a log-linear approximation around the targeted-inflation steady state that ignores the ZLB.

This log-linear approximation is used to initialize Θ in the determination of the decision

rules and to generate the first set of draws from the ergodic distribution of St. We then

apply a clustering algorithm to obtain 130 grid points for a solution based on fourth-order

Chebyshev polynomials. Using this solution, we simulate a new set of points from the ergodic

distribution and apply the filtering algorithm described in Section 5.3 to extract 51 state

vectors from observations on output, inflation, and interest rates for 2000:Q1 to 2012:Q3.

We combine these 51 filtered states with grid points from the simulation and re-solve the

model. These steps are repeated five more times until the decision rules stabilize.

To solve for the deflation equilibrium, we initialize Θ using constant decision rules for

πt and Et that capture the deflation steady state. For the initial grid, we generate draws
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from the ergodic distribution using these decision rules. As we did for the targeted-inflation

equilibrium, we proceed iteratively by simulating states from the ergodic distribution to

obtain grid points to construct the next solution. For the deflation equilibrium, the grid is

generated by retaining every Mth state from the simulated sequence, where M is chosen to

obtain 130 grid points. Under the deflation equilibrium, nominal interest rates are zero with

substantial probability. Using this time-separated grid algorithm ensures that the fraction

of grid points associated with a nominal interest rate of zero is accurately captured in our

solution grid. This is important for obtaining decision rules that are accurate near the ZLB

where the system spends a lot of time. We do not use filtered states for the grid because it

is difficult to rationalize U.S. data using the deflation equilibrium (see Section 5.3 for more

details).

For the sunspot equilibrium, we need to compute two sets of decision rules, one for

st = 0 and another one for st = 1. We use the decision rules from the targeted-inflation

equilibrium and the deflation equilibrium to initialize the regime-specific decision rules for

the sunspot equilibrium. The solution is constructed iteratively. As for the targeted-inflation

equilibrium, we use a grid that contains states simulated from the ergodic distribution and

states that are obtained by filtering.

5 Quantitative Analysis

The quantitative analysis consists of four parts. In Section 5.1, we estimate the parameters

of the DSGE model under the assumption that the economy was in the targeted-inflation

equilibrium from 1984 to 2007. These parameter estimates are the starting point for the

subsequent analysis. In Section 5.2, we compare the ergodic distribution of inflation and

interest rates under the three equilibria. In Section 5.3, we use the model to estimate a

sequence of historical states for the period 2000:Q1 to 2012:Q3. Conditional on the estimated

states during the Great Recession of 2008-09, Section 5.4 assesses the effect of fiscal and

monetary policy interventions in the targeted-inflation and the sunspot equilibria.



This Version: July 8, 2013 19

Table 1: DSGE Model Parameters

τ = 1.50 r = 1.0070 γ = 1.0048 ν = 0.1

g∗ = 1/0.85 φ = 75.75 π∗ = 1.0063 π̄ = 1

ψ1 = 1.36 ψ2 = 0.80 ρR = 0.65 σR = 0.0021

ρg = 0.86 σg = 0.0078 ρZ = 0.11 σz = 0.0103

5.1 Estimation Under Targeted-Inflation Equilibrium

The parameter values for the subsequent analysis are obtained by estimating the DSGE

model described in Section 3 under the assumption that the economy is in the targeted-

inflation equilibrium from 1984:Q1 to 2007:Q4 using output growth, inflation, and interest

rate data. Since the ZLB was not binding during this period, we replace the global ap-

proximation discussed in Section 4 by a second-order perturbation approximation. In the

area of the state-space that is empirically relevant for our estimation sample, the decision

rules obtained under these two solution methods are virtually identical. The data for the

estimation was extracted from the FRB St. Louis FRED database (November 2012 vin-

tage). Output growth is defined as real gross domestic product (GDPC96) growth converted

into per capita terms. Our measure of population is Civilian Noninstitutional Population

(CNP16OV). We compute population growth rates as log differences and apply an eight-

quarter backward-looking moving average filter to the growth rates to smooth out abrupt

changes in the population growth series. Inflation is defined as the log difference in the

GDP deflator (GDPDEF) and the interest rate is the average effective federal funds rate

(FEDFUNDS) within each quarter. We use Bayesian techniques described in detail in An

and Schorfheide (2007) and report posterior mean estimates in Table 1. These estimates are

in line with estimates for New Keynesian DSGE models that have been reported elsewhere

in the literature. A detailed description of the prior distribution underlying this estimation

is provided in Appendix D.

For the sunspot equilibrium, we also need to specify values for the transition probabilities

p00 and p11. These parameters determine the expected durations of staying in each regime.
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Since there is no clear empirical observation to identify the transition probabilities, we infor-

mally chose p00 = 0.95 and p11 = 0.99. These values make the deflation regime (st = 0) less

persistent than the targeted-inflation regime (st = 1). Since the agents’ decision rules under

the targeted-inflation regime are influenced by the potential switch to the deflation regime,

it turns out that the average inflation and interest rates conditional on the regime st = 1 do

not coincide with the targeted-inflation steady state. To ensure that the targeted-inflation

regime in the sunspot equilibrium can explain the pre-2007 data as well as the targeted-

inflation equilibrium, we change π∗ from the value reported in Table 1 to π∗ = 1.0071, which

corresponds to an annualized inflation target of 2.85%.

5.2 Equilibrium Dynamics

To evaluate the ergodic distributions associated with the targeted-inflation, the deflation,

and the sunspot equilibria, we simulate a long sequence of draws from each of the equilibria.

The left column of Figure 3 depicts contour plots of the ergodic distributions. The ergodic

distribution of the targeted-inflation equilibrium is approximately centered at the steady-

state values, which are 2.5% inflation and an interest rate of 5.3% annually. The contours for

the deflation equilibrium are concentrated near the ZLB and peak at an inflation rate of about

-1.9%. This inflation rate is larger than the steady-state value of -2.8%. By construction, the

sunspot equilibrium generates a bimodal ergodic distribution of inflation and interest rates.

However, this bimodal distribution is not simply a mixture of the distributions associated

with the target-inflation and the deflation equilibria. Since agents expect regime changes

to occur in the future, the decision rules in the two regimes of the sunspot equilibrium are

different from the decision rules in the pure equilibria.

Given our parameter estimates, the probability of hitting the ZLB under the targeted-

inflation equilibrium is essentially zero. This is not surprising since the estimation sample

ranges from 1984 to 2007, which is a period of above-zero interest rates and low macroeco-

nomic volatility. In the deflation regime, the interest rate frequently hits the ZLB and may

stay at zero for multiple periods. While inflation is mostly positive in the targeted-inflation

regime, it is always negative in the deflation regime.
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Figure 3: Ergodic Distribution and Simulated Paths
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The right column of Figure 3 shows simulated paths of interest rates, inflation rates, and

output growth for the three equilibria using the same shock innovations. The shaded areas

correspond to periods in which the deflation regime is active in the sunspot equilibrium. The

simulated paths from the sunspot equilibrium alternate between periods of low interest rates

coupled with deflation and periods of high interest and inflation rates. The regime switch

induced by the sunspot shock triggers a strong adjustment of the nominal variables. The time

paths of output growth are very similar in the targeted-inflation and deflation equilibrium,
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and it appears to be slightly lower in the sunspot equilibrium.4 The correlation of (detrended)

output and inflation have different signs in different equilibria. In the targeted-inflation

equilibrium and the targeted-inflation regime of the sunspot equilibrium, this correlation is

positive (0.77 and 0.73, respectively), and it is negative in the deflation equilibrium and the

deflationary regime of the sunspot equilibrium (-0.84 and -0.94, respectively). This result is

similar to the findings of Eggertsson (2009) and Mertens and Ravn (2013), who argue that

the aggregate demand curve may become upward sloping in the deflation regime and thus

demand shocks may lead to a negative comovement of prices and output.

The focus of this paper is not normative, but it is worth mentioning that there is nothing

necessarily “bad” about the deflation equilibrium: the distance between actual and desired

inflation (0%) is roughly the same in the deflation and the targeted-inflation equilibria (re-

sulting in similar adjustment costs) and average consumption, and its volatility is roughly

the same. In fact, since the interest rate is closer to the Friedman rule of 0%, the welfare loss

due to holding money is actually smaller in the deflation equilibrium. We leave a full-blown

normative analysis along the lines of Aruoba and Schorfheide (2011) to future work.

5.3 Extracting Historical Shocks

We now use the DSGE model to determine the sequence of shocks that lead to the Great

Recession in 2008-09 and subsequent period when the ZLB continues to bind. The filtered

state variables for 2009:Q1 will provide the initial conditions for the policy experiments in

Section 5.4. We extract two sequences of shocks and states: one sequence is obtained under

the assumption that the U.S. economy was in the targeted-inflation equilibrium, whereas the

other sequence was obtained assuming that the sunspot equilibrium prevailed since 2000:Q1.5

4To provide more details, the ZLB binds 40% of the time in the deflation equilibrium, 10% of the time

in the sunspot equilibrium (always when st = 0 and never in the targeted-inflation equilibrium). Annualized

output growth is 1.93% in both the targeted-inflation equilibrium and the deflation equilibrium and is 1.87%

in the sunspot equilibrium.
5We initialized the filter in 2000:Q1 to make sure that the initialization does not affect inference for the

states in 2009:Q1.
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Because the U.S. has not experienced a prolonged period of deflation since 1960, the deflation

equilibrium is empirically implausible and not considered in the subsequent analysis.

The DSGE model can be represented as a state space model. Let yt be the 3× 1 vector

of observables consisting of output growth, inflation, and nominal interest rates. The vector

xt stacks the continuous state variables, which are given by xt = [Rt, yt, yt−1, zt, gt, At]
′, and

st ∈ {0, 1} is the Markov-switching process.

yt = Ψ(xt) + νt

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(28)

xt = Fst(xt−1, εt)

The first equation in (28) is the measurement equation, where νt ∼ N(0,Σν) is a vector of

measurement errors. The second equation represents law of motion of the Markov-switching

process. The third equation corresponds to the law of motion of the continuous state vari-

ables. The vector εt ∼ N(0, I) stacks the innovations εz,t, εg,t, and εR,t. The functions

F0(·) and F1(·) are generated by the model solution procedure. Under the targeted-inflation

equilibrium, the state-transition equation xt = F (xt−1, εt) is time invariant, and the Markov

switching process st does not affect outcomes. The state vector xt is extracted from the

observables using a particle filter, also known as sequential Monte Carlo filter.6

Figure 4 depicts the data described in Section 5.1 (top row) and the time-path of shocks

extracted conditional on the two equilibria (bottom row) over the period 2000:Q1-2012:Q2.

Interest rates have been essentially zero since 2009, output growth fell considerably in the

second half of 2008, and GDP deflator inflation was below 50bp (annualized) at the beginning

of 2009 as well as in late 2011. Gray shading shows periods when the probability of sunspot

6Gordon and Salmond (1993) and Kitagawa (1996) made early contributions to the development of par-

ticle filters. In the economics literature, the particle filter has been applied to analyze stochastic volatility

models, e.g., Pitt and Shephard (1999), and nonlinear DSGE models following Fernández-Villaverde and

Rubio-Ramı́rez (2007). Surveys of sequential Monte Carlo filtering are provided, e.g., in the engineering

literature by Arulampalam, Maskell, Gordon, and Clapp (2002) and in the econometrics literature by Gior-

dani, Pitt, and Kohn (2011). A detailed description of the particle filter used in the subsequent quantitative

analysis is provided in the Online Appendix.
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Figure 4: Data and Extracted Shocks
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equilibrium being in the deflation regime is greater than zero, where the larger the probability,

the darker the shading.

Before the Great Recession, the sunspot equilibrium is in the targeted-inflation regime

and the two equilibria require essentially identical shocks to explain the data. This period

is characterized by demand shocks that are persistently below their mean between 2001 and

2005 and expansionary monetary policy especially between 2003 and 2006. The demand

shock starts to drop below its mean in 2007 and continues to do so at the beginning of

2009:Q1. At the end of 2009:Q1, our particle filter shows the first indication of a sunspot

switch, with a probability of 28% in 2009:Q2 and 10% in 2009:Q3. The reason for this is

apparent in the ergodic distribution presented in Figure 3. In the targeted-inflation equilib-

rium, having observations where interest rate is zero and inflation is very small or negative

is an extremely rare event, while it is very likely in the sunspot equilibrium as long as the

equilibrium switches to the deflation regime. In fact, the only reason the probability of a

regime switch remain low is because inflation does not go down enough – in 2009:Q2, it fell

to −0.7% only to go up to 0.5% in the next quarter. In 2011:Q4, when inflation suddenly fell
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to 0.2% while growth remained at 3.1%, the particle filter signaled essentially 100% proba-

bility of a switch to the deflation regime because the only way to explain low inflation and

high growth in the targeted-inflation regime is a very large technology shock. What is also

noteworthy about the period after 2008 is the persistent negative monetary policy shocks

from 2009:Q3 onward that average −1.8 standard deviations. Keeping in mind that the

monetary policy shock has an iid stochastic process, this shows a substantial intervention by

the Federal Reserve. From the extracted shocks, it is quite clear that the data prefers the

targeted-inflation equilibrium (or equivalently the targeted-inflation regime of the sunspot

equilibrium) as an explanation for the period 2008-2010. We turn to discussing our justifi-

cation of considering the deflation regime of the sunspot equilibrium in our policy analysis

in Section 5.4.1.

5.4 Policy Experiments

In this section, our main goal is to highlight the differences of the targeted-inflation equilib-

rium and the sunspot equilibrium in terms of the response of the economy to policy inter-

ventions. Recent literature has emphasized that the effects of expansionary fiscal policies on

output may be larger if the economy is at or near the ZLB. In the absence of the ZLB, a typ-

ical interest rate feedback rule implies that the central bank raises nominal interest rates in

response to rising inflation and output caused by an increase in government spending. This

monetary contraction raises the real interest rate, reduces private consumption, and overall

dampens the stimulating effect of the fiscal expansion. If the economy is at the ZLB, the

expansionary fiscal policy is less likely to be accompanied by a rise in interest rates because

the feedback portion of the policy rule tends to predict negative interest rates. Without a

rising nominal interest rate, the increase in inflation that results from the fiscal expansion

reduces the real rate. In turn, current-period demand is stimulated, amplifying the positive

effect on output. In fact, Figure 2 shows that when the ZLB starts to bind, the response of

output to an increase in government spending is larger, and consumption goes up.

Unlike what was mostly the standard practice before the Great Recession, we cannot

simply plot impulse responses due to the highly non-linear nature of our environment; rather,
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we need to specify the initial conditions – where the economy is just before the intervention

– and the size of the intervention.7 We use the Great Recession and the subsequent period

in the U.S. as our laboratory and calibrate our policy intervention to a portion of the ARRA

of February 2009 along with an expansionary monetary policy by the Federal Reserve. This

enables us to also discuss how this particular policy affected the U.S. economy. We do this

from an ex-ante perspective – exactly how an impulse-response analysis would do it – but

also from an ex-post perspective, since we have extracted the historical shocks and are able

to consider counterfactuals.

5.4.1 Empirical Relevance versus Policy Relevance

Before we turn to the results, we want to respond to a question that may arise at this

point. Our results in Section 5.3 show that ex post, the evidence in favor of a shift to the

deflation regime during the period 2009-2010 is weak. As such, the sunspot equilibrium

and any possible differences in policy responses relative to the targeted-inflation equilibrium

may appear not to be empirically relevant. However, this does not mean it is not policy

relevant; the possibility of the U.S. economy being in what we call a sunspot equilibrium

and experiencing a switch to the deflation regime was very much considered in the monetary

policy debates at the time. This is highlighted by the following quote from an article by the

President of the Federal Reserve Bank of St. Louis, James Bullard in Bullard (2010):

During this recovery, the U.S. economy is susceptible to negative shocks that

may dampen inflation expectations. This could push the economy into an unin-

tended, low nominal interest rate steady state. Escape from such an outcome is

problematic. [...] The United States is closer to a Japanese-style outcome today

than at any time in recent history. [...]

7The main source of nonlinearity is the occasionally binding nature of ZLB. Without it, given parameters

estimated using data before the Great Recession, the environment will be only mildly nonlinear, and a linear

approximation would largely suffice. In that case, impulse responses can be obtained analytically given the

linear approximation, are invariant to initial conditions, and scale up and down linearly with the size of

shocks.
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Promising to remain at zero for a long time is a double-edged sword. The policy

is consistent with the idea that inflation and inflation expectations should rise

in response to the promise and that this will eventually lead the economy back

toward the targeted equilibrium. But the policy is also consistent with the idea

that inflation and inflation expectations will instead fall and that the economy

will settle in the neighborhood of the unintended steady state, as Japan has in

recent years.

Here, James Bullard is talking about various shocks, some of which may possibly be

actions or announcements by the Federal Reserve, leading the economy to settle near the

deflation steady state. In our model, these kind of shocks are captured by a switch of the

sunspot process to the deflation regime. This is direct evidence that our deflation regime

was a concern for policymakers.

One of the key characteristics of the deflation regime in the sunspot equilibrium is the

sharp decline in inflation to possibly deflationary levels. As Figure 4 shows, inflation starts

to decline from about 2.5% in the summer of 2008 to 0.5% in 2008:Q4. When asked in

February 2009, the month in which ARRA was signed into law, the participants of the

Survey of Professional Forecasters (SPF) replied that there is a 12% probability for 2009

and a 8% probability for 2010 that annual inflation will be less than zero (deflation). These

numbers are at least an order of magnitude larger than the historical averages8 and consistent

with the anticipation of a switch to a deflation regime.

We use the evidence presented in this section in two ways. First, we think it provides

sufficient justification for considering the sunspot equilibrium as a relevant alternative along-

side the targeted-inflation equilibrium. Second, we set s2009:Q2 = 0 in our policy experiments,

that is, we consider what a policymaker who believes that a sunspot switch has occurred

would see about the consequences of its actions in 2009:Q2.

8The average of first-quarter responses to the same question between 1992 and 2008 is a 0.7% probability

for the current year and 0.9% for the following year.
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5.4.2 Details of the Policy Experiments

Taking the filtered states from 2009:Q1 (t = T∗) and s2009:Q2 = 0 in the sunspot equilibrium as

given, we now study the effects of policy interventions during the Great Recession, starting in

2009:Q2 and lasting for eight quarters. In particular, we consider an increase in government

spending that is potentially combined with an expansionary monetary policy. To make

the experiment more realistic, the fiscal policy intervention is calibrated to a portion of

the ARRA of February 2009. ARRA consisted of a combination of tax cuts and benefits;

entitlement programs; and funding for federal contracts, grants, and loans. We focus on the

third component because it can be interpreted as an increase in gt. We model the ARRA

spending as a one-period shock δARRA to the demand shock process, where δARRA = 0.011,

which is roughly 1.4σg. Since ĝt is serially correlated, the effect of the shock in the h’th

period on the level of ĝt is given by ρh−1g δARRA. In Section F of the Online Appendix, we

describe how we use data on the disbursement of ARRA funds to determine δARRA for our

model. While the actual path of the received funds is not perfectly monotone, the calibrated

intervention in the DSGE model roughly matches the actual intervention both in terms

of magnitude and decay rate. In our empirical analysis, we consider a pure fiscal policy

intervention as well as a combination of expansionary fiscal and monetary policy.

To assess the ex-ante predicted effect of an increase in government spending, we simulate

the model economy forward with and without policy intervention. Along both paths we set

the monetary policy shocks εR.t equal to zero and simulate the technology shocks zt. Along

the baseline path, the demand shock evolves according to

ĝt = ρgĝt−1 + σgεg,t,

whereas along the post-intervention path, the demand shock is given by

ĝIt = ĝt + ρt−T∗−1g δARRA, (29)

and we define the difference XI−X to be the effect of the intervention, where XI is a generic

variable as simulated with the intervention and X is the baseline path of the same variable.

Since a fiscal expansion creates an upward pressure on the nominal interest rates via the

feedback mechanism of the interest rate rule, in principle there is scope for amplifying the
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effect of the fiscal stimulus by a monetary policy that keeps interest rates at or near zero.

Thus, we also consider a combination of expansionary fiscal and monetary policy, where

the central bank intervention is implemented using a sequence of unanticipated monetary

policy shocks εR,t.
9 To avoid implausibly large interventions, we choose these shocks such

that they are no larger than two standard deviations in absolute value, and the interest-rate

intervention is no larger than one percentage point in annualized terms in any quarter. Thus,

we implicitly assume that the FOMC would renege on a policy to keep interest rates near

zero for an extended period of time in states of the world in which output growth and / or

inflation turn out to be high.

For the ex-post policy analysis, we use the particle filter to obtain estimates of the

exogenous shock processes for the period 2009:Q2-2011:Q1.10 Since the actual path of the

demand shock already contains the effect of fiscal expansion due to ARRA, we define the

counterfactual path as

ĝCt|t = ĝt|t − ρt−T∗−1g δARRA, (30)

where ĝt|t denotes the filtered demand shock. To measure the effect of the combined fiscal

and monetary policy, we also set the filtered monetary policy shocks to zero (which turn out

to be negative past 2009:Q2) when computing the counterfactual outcomes. The ex-post

effect of the intervention is defined as Xobserved −XC where Xobserved is the observed value

of a generic variable and XC is the counterfactual path along which the policy intervention

is removed. Details on the algorithms to compute the effects of the policy interventions are

reported in Appendix C.

5.4.3 No Intervention

To understand the effects of the policy intervention, it is instructive to first look at what was

labeled as X in the discussion in the previous section: the expected evolution of the U.S.

9A detailed discussion about the advantages and disadvantages of using unanticipated versus anticipated

monetary policy shocks to generate predictions conditional on an interest rate path is provided in Del Negro

and Schorfheide (2012).
10Since we use s2009:Q2 = 0 in the sunspot equilibrium, we run the particle filter conditional on this. This

yields filtered states that are slightly different from those presented in Figure 4.
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Figure 5: No Intervention
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economy absent a policy intervention. As of 2009:Q1, output growth was at −6%, inflation

was at 0.9%, and the interest rate had hit the ZLB. Conditioning on the states in Figure 4

that deliver these observations and in the case of the sunspot equilibrium, conditional also

on s2009:Q2 = 0, we simulate the model forward for eight quarters. Figure 5 shows the paths

of output growth, inflation, and interest rate from 2009:Q2 through 2011:Q1 along with

the data for the previous four quarters for comparison. The bottom right panel shows the

demand shock as extracted by the particle filter through 2009:Q1 and the simulated paths

conditional on the value on 2009:Q1.
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The demand shock is more than 40% below its steady-state value in 2009:Q1. As a result,

when simulated forward, we see a sustained increase. In the targeted-inflation equilibrium,

this causes a sharp jump in output growth initially and higher-than-average growth for

the rest of the periods. The central bank reacts to this sharp increase by increasing the

interest rate immediately. This also keeps the inflation rate under control – in over 80% of

simulations, it remains under 2% by the end of the simulation. In the sunspot equilibrium,

output growth behaves similarly, but since in 2009:Q2 we assume a switch to the deflation

equilibrium, the inflation rate remains in negative territory for much of the simulations.11 To

reiterate, the scenario James Bullard and the SPF respondents were considering (deflation

for an extended period) is a very real possibility in the sunspot equilibrium (over 80%

probability), but it is only a remote probability in the targeted-inflation equilibrium.

5.4.4 Fiscal Policy Intervention (Ex Ante)

We first look at the effect of a fiscal policy intervention, introduced in 2009:Q2, from an

ex-ante perspective. Figure 6 overlays the effects of the fiscal expansion for the targeted-

inflation equilibrium and the sunspot equilibrium. The figure shows (pointwise) median

responses as well as upper and lower 20% percentiles of the distribution of the intervention

effects XI −X for the sunspot equilibrium. The effects in the targeted-inflation equilibrium

mirror a “standard” response to a government spending shock in a New Keynesian DSGE

model. Both output and inflation increase, and in response, the central bank raises interest

rates. Output increases by 80bp and monotonically reverts back to the no-intervention level,

whereas the response of inflation is hump shaped and peaks at about 30bp.12 It is important

to emphasize that even though the economy is at the ZLB in 2009:Q1, as shown in Figure

5 it is expected to leave it immediately due to the rapid increase in demand, even in the

absence of the intervention. With the intervention, the interest rate increases even faster.

11In the simulations, we also simulate the sunspot variable and allow for a switch from the deflation

regime to the targeted-inflation regime according to its assumed law of motion. The bands for the sunspot

equilibrium are larger since in some paths the economy switches to the latter regime and it behaves differently.
12Since the nonlinearities under the targeted-inflation equilibrium are weak, the bands that characterize

the distribution of responses are very narrow and thus are not shown.
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Figure 6: Fiscal Policy Intervention in Targeted-Inflation and Sunspot Equilibrium
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Notes: Figure compares intervention effects from targeted-inflation equilibrium (blue) and sunspot equi-
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Inflation and the interest rate are expressed in terms of annualized percentage rates.

Since we are conditioning on s2009:Q2 = 0 for the sunspot equilibrium, agents expect the

economy to be in the deflation regime with high probability for the subsequent periods. As

we showed in Section 5.2, inflation and output dynamics change drastically in the deflation

regime. In particular, a demand shock may move output and inflation in opposite directions,

leading to a fall in inflation as a result of the fiscal intervention we consider here. Indeed,

Figure 6 shows that inflation falls by about 30bp on impact. As time passes, the band for

inflation widens substantially because in some paths, the sunspot variable switches to the

targeted-inflation regime, and the inflation response becomes more “standard”.
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Table 2: Multipliers

Intervention Targeted-Inflation Equilibrium Sunspot Equilibrium

1Q 4Q 8Q st Path 1Q 4Q 8Q

Ex Ante Policy Analysis – Conditional on 2009:Q1 States

Fiscal 0.80 0.92 0.97 0xxxxxxx 0.80 0.88 0.93

Fiscal + Monetary 1.24 1.69 2.09 0xxxxxxx 1.06 1.32 1.52

Ex Post Policy Analysis – Conditional on 2009:Q2 - 2011:Q1 Shocks

Fiscal 1.33 1.26 1.22 01111111 1.17 1.20 1.18

00000000 1.17 1.09 1.08

Fiscal + Monetary 1.33 1.62 2.03 01111111 1.17 1.57 1.99

00000000 1.17 1.23 1.34

Interestingly, the output response is about the same as the one in the targeted-inflation

equilibrium. There are three forces at work here. First is the direct effect of government

spending, which increases output. Second, because inflation falls on impact and the economy

is expected to remain at or near the ZLB, the real interest rate goes up and as a result

consumption falls, reducing output. Third, since output growth is above the target γ and

inflation is below the target π∗, the central bank does not increase the interest rate as much

as it does in the targeted-inflation equilibrium, and this gives an additional boost to output.

In net, the total increase ends up being around 80bp on impact.

Based on the simulations, we can calculate government spending multipliers that measure

the effect of the fiscal intervention on output relative to the overall increase in government

spending. We consider a multiplier defined as

µ =

∑H
τ=1(Y

I
τ − Yτ )∑H

τ=1(G
I
τ −Gτ )

.

Our measure is cumulative over the lifetime of the intervention, and the means across sim-

ulations are tabulated for various types of policy interventions in Table 2. The multipliers

for the ex-ante policy exercise underlying Figure 6 are reported in the first row of the ta-

ble, labeled “Fiscal.” Under the targeted-inflation equilibrium the multipliers range from

0.80 (H = 1) to 0.97 (H = 8). For the sunspot equilibrium, the multipliers are slightly
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smaller, ranging from 0.80 to 0.93. These multipliers are substantially smaller than those

reported in the literature for fiscal interventions at the ZLB. This is because the extra private

consumption channel does not kick in as the economy leaves the ZLB instantly.

5.4.5 Combined Fiscal and Monetary Policy Intervention (Ex Ante)

The results for the combined intervention are shown in Figure 7. Since the interest rate tends

to increase rapidly in the targeted-inflation equilibrium, there is a lot of scope for monetary

policy interventions because the ZLB poses hardly a constraint. The monetary policy shock

hits the two-standard-deviation bound we place on the intervention in every period at the

median response. This very large monetary intervention leads to a 1.5% increase in output

and an almost 1% increase in inflation on impact, both of which are substantially larger

than those for just a fiscal intervention. As the intervention continues, inflation and output

continue to increase. The multipliers for this combined policy are 1.24 on impact and 2.09

after eight quarters, which are 55% and 115% respectively larger than the multipliers with

just the fiscal intervention. Thus, we can conclude that monetary policy provides a very

large additional boost to the fiscal intervention under the targeted-inflation equilibrium.

Turning to the sunspot equilibrium, the reduction in the interest rate generated by the

combined policy intervention is even more sizable. As a result, along many paths, the

economy hits the ZLB, and by the sixth period, more than half of the paths have the interest

rate at the ZLB. Despite the large reduction in the interest rate, the output reaction is

smaller relative to the targeted-inflation equilibrium. As explained in Section 5.4.4, a major

difference between the two equilibria is their reaction to demand shocks: in the sunspot

equilibrium, output and inflation move in opposite directions, and the reduction in inflation

as a result of a fiscal expansion would increase the real interest rate if the nominal interest

rate is near zero. In this case, since the economy is pushed to the ZLB by the monetary

policy, this channel becomes quite strong and dampens the output reaction. The multipliers,

reported in Table 2 for this combined policy, are 1.06 on impact and 1.52 after eight quarters,

which are only 33% and 63% respectively larger than the multipliers with just the fiscal
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Figure 7: Both Policies in Targeted-Inflation and Sunspot Equilibrium

Notes: Figure compares intervention effects from targeted-inflation equilibrium (blue) and sunspot equilib-
rium (green): pointwise medians (solid); 20%-80% percentiles (shaded area). Inflation and the interest rate
are expressed in terms of annualized percentage rates.

intervention. This means the additional boost due to monetary policy is only half as large

in the sunspot equilibrium relative to the targeted-inflation equilibrium.

5.4.6 Ex-post Policy Analysis

So far, we took an ex-ante perspective in that we simulated the path of the exogenous shocks

from 2009:Q1 onward. Now we will take an ex-post perspective and condition on the filtered

path of the exogenous processes. This is a straightforward exercise for the targeted-inflation

equilibrium, but we need to take a stand on the path of the sunspot variable in the sunspot

equilibrium. We already assumed s2009:Q2 = 0. We consider two alternatives. First, labeled
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Figure 8: Ex-Post Policy Analysis in Targeted-Inflation and Sunspot Equilibrium
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00000000, we assume that the U.S. economy stays in the deflation regime for the duration

of the exercise. Given that p00 = 0.95, this is a very likely outcome ex ante. Second, labeled

01111111, we assume that economy switches to the targeted-inflation regime in 2009:Q3 and

stays there. We run the particle filter again to extract the states conditional on these paths

of the sunspot variable.

Figure 8 shows the results. The panels on the left depict the extracted filtered shock

innovations, expressed in multiples of their respective standard deviations. Two things are
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noteworthy. First, in 2009:Q2, the first period of the intervention, all three models show

a large negative demand shock, in the order of −2 standard deviations. In the absence of

the ARRA stimulus the shock would have been −3.5 standard deviations or worse. Second,

throughout much of this two-year period, there were large negative monetary policy shocks,

indicating that the Federal Reserve was engaging in active expansionary policy. The panels

on the right side of Figure 8 show the paths of output growth, inflation, and the interest

rate under policy intervention and under three counterfactuals with no policy intervention.13

Two important results emerge from all three counterfactuals. First, output would have

fallen at an annualized rate by over 6% (instead of about 1.5%) in 2009:Q2 had ARRA not

been enacted. Second, there would have been deflation for almost the entire two-year period.

This is partially because absent the monetary intervention, interest rates would have hovered

around 1%, generating downward pressure on prices.

The ex-post multipliers are tabulated in the bottom panel of Table 2. Under the scenario

labeled “Fiscal”, we simply remove the ARRA intervention from the filtered ĝt process. Un-

der the targeted-inflation equilibrium, this leads to ex-post multipliers ranging from 1.33 (1

quarter) to 1.22 (8 quarters). The multipliers for the 01111111 path of the sunspot equilib-

rium are close to these numbers as well, while for the 00000000 path, they are somewhat

smaller. The ex-post multipliers are larger than the ex-ante multipliers because ex post the

economy spends more time than expected at the ZLB due to adverse demand and expansion-

ary monetary policy shocks. However, our multipliers are considerably smaller than those

obtained by Christiano, Eichenbaum, and Rebelo (2011).

Turning to the effect of monetary policy, monetary policy had no extra boost in 2009:Q2

under all of the three scenarios because the economy is taken to the ZLB by an adverse

demand shock. By the end of the two-year period, however, had the Fed not engaged in

the expansionary policy indicated by the filtered states, then things would have been more

dire. In terms of multipliers, the monetary intervention provided a boost of 67%, with a

multiplier of 2.03, which is lower than the 115% expected ex-ante but still sizeable. The

13By construction, our model delivers the data exactly when fed with the extracted filtered shocks with

one exception: the sunspot equilibrium with the path 00000000 cannot deliver the positive inflation values

observed after 2009:Q2.
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numbers are similar, not surprisingly, in the 0111111 path of the sunspot equilibrium, but if

the realization of the sunspot equilibrium was given by the 00000000 path, then the boost

due to monetary policy would have been only 24% with a combined multiplier of just 1.34.

5.4.7 Summary

We motivated the comparison of policy effects under the targeted-inflation and the sunspot

equilibria using a quote from James Bullard that highlights policymakers’ concerns in 2009

about a prolonged switch to a deflation regime. Indeed, based on our empirical analysis,

both the targeted-inflation equilibrium and the sunspot equilibrium with a switch from the

targeted-inflation to the deflation regime were empirically plausible at the beginning of 2009.

We showed that from an ex-ante perspective, the effects of fiscal policy on output under

the two equilibria are quite similar, albeit for different economic reasons. However, we

also found that the scope for expansionary monetary policy in conjunction with the fiscal

stimulus is substantially smaller in the sunspot equilibrium because the economy tends to

spend more time near the ZLB, and the government spending shock tends to lower rather

than raise inflation rates.

Ex post, it turned out that the empirical evidence for an extended deflation regime

under the sunspot equilibrium is very weak and that the targeted-inflation equilibrium or

the sunspot equilibrium with a very short-lived switch to the deflation regime provide more

plausible characterizations of the period from 2009 to 2010. The main conclusion from the

ex-post analysis is that because the economy spent more time at the ZLB than predicted ex

ante, fiscal policy was more effective, and monetary policy was less effective.

6 Conclusion

We solve a New Keynesian DSGE model subject to a ZLB constraint on nominal interest

rates, considering three equilibria: the standard targeted-inflation equilibrium, a minimal-

state-variable deflation equilibrium, and a sunspot equilibrium. These equilibria differ in

terms of their properties, especially near the ZLB and in terms of the effectiveness of policy.
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We motivated the comparison of policy effects under the targeted-inflation and the sunspot

equilibria using a quote from James Bullard that highlights policymakers’ concerns in 2009

about a prolonged switch to a deflation regime.

We showed that from an ex-ante perspective, the effects of fiscal policy on output under

the two equilibria are quite similar, albeit for different economic reasons. However, we also

found that the scope for expansionary monetary policy in conjunction with the fiscal stimulus

is substantially smaller in the sunspot equilibrium because the economy tends to spend more

time near the ZLB, and the government spending shock tends to lower rather than raise

inflation rates. Ex post, it turned out that the empirical evidence for an extended deflation

regime under the sunspot equilibrium is very weak and that the targeted-inflation equilibrium

or the sunspot equilibrium with a very short-lived switch to the deflation regime provide more

plausible characterizations of the period from 2009 to 2010. The main conclusion from the

ex-post analysis is that because the economy spent more time at the ZLB than predicted ex

ante, fiscal policy was more effective, and monetary policy was less effective.
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Appendix to “Macroeconomic Dynamics Near the

ZLB: A Tale of Two Equilibria”

A Solving the Two-Equation Model

The model is characterized by the nonlinear difference equation

Et[πt+1] = max

{
1

r
, π∗

(
πt
π∗

)ψ
exp[εt]

}
. (A.1)

We assume that rπ∗ ≥ 1 and ψ > 1.

The Targeted-Inflation Equilibrium and Deflation Equilibrium. Consider a solution

to (A.1) that takes the following form

πt = π∗γ exp[λεt]. (A.2)

We now determine values of γ and λ such that (A.1) is satisfied. We begin by calculating

the following expectation

Et[πt+1] = π∗γ
1√

2πσ2

∫
exp[λε] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ
1√

2πσ2
exp

[
1

2
λ2σ2

] ∫
exp

[
− 1

2σ2
(ε− λσ2)2

]
dε

= π∗γ exp

[
1

2
λ2σ2

]
.

Combining this expression with (A.1) yields

γ exp[λ2σ2/2] = max

{
1

rπ∗
, γψ exp[(ψλ+ 1)εt]

}
. (A.3)

By choosing λ = −1/ψ, we ensure that the right-hand side of (A.3) is always constant. Thus,

(A.3) reduces to

γ exp[σ2/(2ψ2)] = max

{
1

rπ∗
, γψ

}
(A.4)

Depending on whether the nominal interest rate is at the ZLB (Rt = 1) or not, we obtain

two solutions for γ by equating the left-hand-side of (A.4) with either the first or the second

term in the max operator:

γD =
1

rπ∗
exp

[
− σ2

2ψ2

]
and γ∗ = exp

[
σ2

2(ψ − 1)ψ2

]
. (A.5)
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The derivation is completed by noting that

γψD =
1

rπ∗
exp

[
− σ

2

2ψ

]
≤ 1

rπ∗

γψ∗ = exp

[
σ2

2(ψ − 1)ψ

]
≥ 1 ≥ 1

rπ∗
.

A Sunspot Equilibrium. Let st ∈ {0, 1} denote the Markov-switching sunspot process.

Assume the system is in the targeted-inflation regime if st = 1 and that it is in the deflation

regime if st = 0 (the 0 is used to indicate that the system is near the ZLB). The probabilities

of staying in state 0 and 1, respectively, are denoted by ψ00 and ψ11. We conjecture that the

inflation dynamics follow the process

π
(s)
t = π∗γ(st) exp[−εt/ψ] (A.6)

In this case condition (A.4) turns into

Et[πt+1|st = 0]/π∗ =
(
ψ00γ(0) + (1− ψ00)γ(1)

)
exp[σ2/(2ψ2)] =

1

rπ∗
Et[πt+1|st = 1]/π∗ =

(
ψ11γ(1) + (1− ψ11)γ(0)

)
exp[σ2/(2ψ2)] = [γ(1)]ψ.

This system of two equations can be solved for γ(0) and γ(1) as a function of the Markov-

transition probabilities ψ00 and ψ11. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Sunspot Shock Correlated with Fundamentals. As before, let st ∈ {0, 1} be a Markov-

switching sunspot process. However, now assume that a state transition is triggered by

certain realizations of the monetary policy shock εt. In particular, if st = 0, then suppose

st+1 = 0 whenever εt+1 ≤ ε0, such that

ψ00 = Φ(ε0),

where Φ(·) is the cumulative density function of a N(0, 1). Likewise, if st = 1, then let

st+1 = 0 whenever εt+1 > ε0, such that

ψ11 = 1− Φ(ε1).
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To find the constants γ(0) and γ(1), we need to evaluate

1√
2πσ2

∫ ε

−∞
exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

= P
{
ε+ σ2/ψ

σ
≤ ε+ σ2/ψ

σ

}
= Φ

(
ε+ σ2/ψ

σ

)
.

Thus, condition (A.4) turns into

1

rπ∗
=

[
γ(0)Φ(ε0)Φ

(
ε0 + σ2/ψ

σ

)
+ γ(1)(1− Φ(ε0))

(
1− Φ

(
ε0 + σ2/ψ

σ

))]
exp[σ2/(2ψ2)]

γψ(1) =

[
γ(1)(1− Φ(ε1))

(
1− Φ

(
ε1 + σ2/ψ

σ

))
+ γ(0)Φ(ε1)Φ

(
ε1 + σ2/ψ

σ

)]
exp[σ2/(2ψ2)].

This system of two equations can be solved for γ(0) and γ(1) as a function of the thresholds

ε0 and ε1. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Benhabib, Schmitt-Grohé, and Uribe (2001a) Dynamics. BSGU constructed equilib-

ria in which the economy transitioned from the targeted-inflation equilibrium to the deflation

equilibrium. Consider the following law of motion for inflation

π
(BGSU)
t = π∗γ∗ exp[−εt/ψ] exp

[
− ψt−t0

]
. (A.7)

Here, γ∗ was defined in (A.5) and −t0 can be viewed as the initialization period for the

inflation process. We need to verify that π
(BGSU)
t satisfies (A.1). From the derivations that

lead to (A.4) we deduce that

γ∗Et+1

[
exp[−εt+1/ψ]

]
= γψ∗ .

Since

exp
[
− ψt+1−t0

]
=
(
exp

[
− ψt−t0

])ψ
,

we deduce that the law of motion for π
(BGSU)
t in (A.7) satisfies the relationship

Et[πt+1] = π∗

(
πt
π∗

)ψ
exp[εt].

Moreover, since ψ > 1, the term exp
[
− ψt−t0ψ

]
−→ 0 as t −→ ∞. Thus, the economy will

move away from the targeted-inflation equilibrium and at some suitably defined t∗ reach the
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deflation equilibrium and remain there permanently. Overall the inflation dynamics take the

form

πt = π∗

 γ∗ exp[−εt/ψ] exp
[
− ψt−t0

]
if t ≤ t∗

γD exp[−εt/ψ] otherwise
, (A.8)

where γ∗ and γD were defined in (A.5).

Alternative Deflation Equilibria. Around the deflation steady state, the system is locally

indeterminate. This suggests that we can construct alternative solutions to (A.1). Consider

the following conjecture for inflation

πt = π∗γmin
{

exp[−c/ψ], exp[−ε/ψ]
}
, (A.9)

where c is a cutoff value. The intuition for this solution is the following. Large positive shocks

ε that could push the nominal interest rate above one, are offset by downward movements

in inflation. Negative shocks do not need to be offset because they push the desired gross

interest rate below one, and the max operator in the policy rule keeps the interest rate at

one. Formally, we can compute the expected value of inflation as follows:

Et[πt+1] = π∗γ

[
1√

2πσ2

∫ c

−∞
exp[−c/ψ] exp

[
− 1

2σ2
ε2
]
dε (A.10)

1√
2πσ2

∫ ∞
c

exp[−ε/ψ] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

] ∫ ∞
c

1√
2πσ2

exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

]
= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
Here Φ(·) denotes the cdf of a standard Normal random variable. Now define

f(c, ψ, σ) =

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
.

Then another solution for which interest rates stay at the ZLB is given by

γ̄ =
1

r∗π∗f(c, ψ, σ)

It can be verified that for c small enough, the condition

1

r∗π∗
≥ γ̄ψ min

{
exp[−c+ ε], 1

}
is satisfied.
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B Model Solution

The equilibrium conditions (in terms of detrended variables, i.e., ct = Ct/At and yt = Yt/At)

take the form

1 = βEt

[(
ct+1

ct

)−τ
1

γzt+1

Rt

πt+1

]
(A.11)

1 =
1

ν
(1− cτt ) + φ(πt − π̄)

[(
1− 1

2ν

)
πt +

π̄

2ν

]
(A.12)

−φβEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]

ct =

[
1

gt
− φ

2
(πt − π̄)2

]
yt (A.13)

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (A.14)

B.1 Approximation Near the Targeted-Inflation Steady State

Steady State. Steady-state inflation equals π∗. Let λ = ν(1− β), then

r = γ/β

R∗ = rπ∗

c∗ =

[
1− v − φ

2
(1− 2λ)

(
π∗ −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
y∗ =

c∗[
1
g∗
− φ

2
(π∗ − π̄)2

] .
Log-Linearization. We omit the hats from variables that capture deviations from the

targeted-inflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price setting equation (A.12) takes the form

0 = −τc
τ
∗
ν
ct + φπ∗

[(
1− 1

2ν

)
π∗ +

π̄

2ν

]
πt + φπ∗(π∗ − π̄)

(
1− 1

2ν

)
πt

−φβπ∗(π∗ − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβπ2

∗Et[πt+1].
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Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(π∗ − π̄)2
gt −

φπ∗(π∗ − π̄)

1/g∗ − φ(π∗ − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
− ln(rπ∗), (1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.

Approximate Piecewise-Linear Solution in Special Case. To simplify the exposition,

we impose the following restrictions on the DSGE model parameters: τ = 1, γ = 1, π̄ = π∗,

ψ1 = ψ, ψ2 = 0, ρR = 0, ρz = 0, and ρg = 0. We obtain the system

Rt = max

{
− ln(rπ∗), ψπt + σRεR,t

}
(A.15)

ct = Et[ct+1]− (Rt − Et[πt+1])

πt = βEt[πt+1] + κct.

It is well known that if the shocks are small enough such that the ZLB is non-binding, the

linearized system has a unique stable solution for ψ > 1. Since the exogenous shocks are iid

and the simplified system has no endogenous propagation mechanism, consumption, output,

inflation, and interest rates will also be iid and can be expressed as a function of εR,t. In

turn, the conditional expectations of inflation and consumption equal their unconditional

means, which we denote by µπ and µc, respectively.

The Euler equation in (A.15) simplifies to the static relationship

ct = −Rt + µc + µπ. (A.16)

Similarly, the Phillips curve in (A.15) becomes

πt = κct + βµπ. (A.17)

Combining (A.16) and (A.17) yields

πt = −κRt + (κ+ β)µπ + κµc. (A.18)

We now can use (A.18) to eliminate inflation from the monetary policy rule:

Rt = max

{
− ln(rπ∗), −κψRt + (κ+ β)ψµπ + κψµc + σRεR,t

}
(A.19)
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Define

R
(1)
t = − ln(rπ∗) and R

(2)
t =

1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
.

Let ε̄R,t be the value of the monetary policy shock for which Rt = − ln(rπ∗) and the two

terms in the max operator of (A.19) are equal

σRε̄R,t = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc.

To complete the derivation of the equilibrium interest rate, it is useful to distinguish the

following two cases. Case (i): suppose that εR,t < ε̄R,t. We will verify that Rt = R
(1)
t is

consistent with (A.19). If the monetary policy shock is less than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t < −(1 + κψ) ln(rπ∗).

Thus,

−κψR(1)
t + (κ+ β)ψµπ + κψµc + σRεR,t < −κψR(1)

t − (1 + κψ) ln(rπ∗) = − ln(rπ∗),

which confirms that (A.19) is satisfied.

Case (ii): suppose that εR,t > ε̄R,t. We will verify that Rt = R
(2)
t is consistent with (A.19).

If the monetary policy shock is greater than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t > −(1 + κψ) ln(rπ∗).

In turn,

−κψR(2)
t + (κ+ β)ψµπ + κψµc + σRεR,t

= − κψ

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
+ (κ+ β)ψµπ + κψµc + σRεR,t

=
1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
> − ln(rπ∗),

which confirms that (A.19) is satisfied.

We can now deduce that

Rt(εR,t) = max

{
− ln(rπ∗),

1

1 + κψ

[
ψ(κ+ β)µπ + κψµc + σRεR,t

]}
. (A.20)
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Combining (A.16) and (A.20) yields equilibrium consumption

ct(εR,t) =


1

1+κψ

[
(1− ψβ)µπ + µc − σRεR,t

]
if Rt ≥ − ln(rπ∗)

ln(rπ∗) + µc + µπ otherwise

. (A.21)

Likewise, combining (A.17) and (A.20) delivers equilibrium inflation

πt(εR,t) =


1

1+κψ

[
(κ+ β)µπ + κµc − κσRεR,t

]
if Rt ≥ − ln(rπ∗)

κ ln(rπ∗) + (κ+ β)µπ + κµc otherwise

. (A.22)

If X ∼ N(µ, σ2) and C is a truncation constant, then

E[X|X ≥ C] = µ+
σφN(α)

1− ΦN(α)
,

where α = (C − µ)/σ, φN(x) and ΦN(α) are the probability density function (pdf) and the

cumulative density function (cdf) of a N(0, 1). Define the cutoff value

C = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc. (A.23)

Using the definition of a cdf and the formula for the mean of a truncated normal random

variable, we obtain

P[εR,t ≥ C/σR] = 1− ΦN(Cy/σR)

E[εR,t | εR,t ≥ C/σR] =
σRφN(C/σR)

1− ΦN(C/σR)
.

Thus,

µc =
1− ΦN(Cy/σR)

1 + κψ

[
(1− ψβ)µπ + µc

]
− σRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.24)

+ΦN(Cy/σR)

[
ln(rπ∗) + µc + µπ

]
µπ =

1− ΦN(Cy/σR)

1 + κψ

[
(κ+ β)µπ + κµc

]
− κσRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.25)

+ΦN(Cy/σR)

[
κ ln(rπ∗) + (κ+ β)µπ + κµc

]
The constants C, µc, and µπ can be obtained by solving the system of nonlinear equations

composed of (A.23) to (A.25).
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B.2 Approximation Near the Deflation Steady State

Steady State. As before, let λ = ν(1 − β). The steady-state nominal interest rate is

RD = 1, and provided that β/(γπ∗) < 1 and ψ1 > 1:

r = γ/β

πD = β/γ

cD =

[
1− v − φ

2
(1− 2λ)

(
πD −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
yD =

cD[
1
g∗
− φ

2
(πD − π̄)2

] .
Log-Linearization. We omit the tildes from variables that capture deviations from the

deflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price-setting equation (A.12) takes the form

0 = −τc
τ
D

ν
ct + φβ

[(
1− 1

2ν

)
β +

π̄

2ν

]
πt + φβ(β − π̄)

(
1− 1

2ν

)
πt

−φβ2(β − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβ3Et[πt+1].

Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(β − π̄)2
gt −

φβ(β − π̄)

1/g∗ − φ(β − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
0, −(1− ρR) ln(rπ∗)− (1− ρR)ψ1 ln(π∗/β)

+(1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.

Approximate Piecewise-Linear Solution in Special Case. As for the approximate

analysis of the targeted-inflation equilibrium, we impose the following restrictions on the

DSGE model parameters: τ = 1, γ = 1, π̄ = π∗, ψ1 = ψ, ψ2 = 0, ρR = 0, ρz = 0, and
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ρg = 0. In the deflation equilibrium, the steady-state inflation rate is πD = β. To ease the

expositions, we assume that the terms |πD − π̄| that appear in the log-linearized equations

above are negligible. Denote percentage deviations of a variable xt from its deflation steady

state by x̃t = ln(xt/xD). If we let κD = cD/(νφβ
2) and using the steady-state relationship

r = 1/β

R̃t = max

{
0, −(ψ − 1) ln(rπ∗) + ψπ̃t + σRεR,t

}
c̃t = Et[c̃t+1]− (R̃t − Et[π̃t+1]) (A.26)

π̃t = βEt[π̃t+1] + κDc̃t.

Provided that ψ > 1, the ZLB is binding with high probability if the shock standard deviation

σR is small. In this case, R̃t = 0. An equilibrium in which all variables are iid can be obtained

by adjusting the constants in (A.20) to (A.22):

R̃t(εR,t) = max

{
0,

1

1 + κψ

[
ψ(κ+ β)µDπ + κψµDc − (ψ − 1) ln(rπ∗) + σRεR,t

]}

c̃t(εR,t) =


1

1+κψ

[
(1− ψβ)µDπ + µDc + (ψ − 1) ln(rπ∗)− σRεR,t

]
if R̃t ≥ 0

µDc + µDπ otherwise

(A.27)

π̃t(εR,t) =


1

1+κψ

[
(κ+ β)µDπ + κµDc + κ(ψ − 1) ln(rπ∗)− κσRεR,t

]
if R̃t ≥ 0

(κ+ β)µDπ + κµDc otherwise

.

In this simple model, the decision rules have a kink at the point in the state space where

the two terms in the max operator of the interest rate equation are equal to each other. In

the targeted-inflation equilibrium, this point in the state space is given by

ε̄∗R =
1

σR

[
− (1 + κψ) ln(rπ∗)− (κ+ β)ψµ∗π − κψµ∗c

]
,

whereas in the deflation equilibrium, it is

ε̄DR =
1

σR

[
(ψ − 1) ln(rπ∗)− (κ+ β)ψµDπ − κψµDc

]
,

Once εR,t falls below the threshold value ε̄∗R or ε̄DR , its marginal effect on the endogenous

variables is zero. To the extent that ε̄DR > 0 > ε̄∗R, it takes a positive shock in the deflation

equilibrium to move away from the ZLB, whereas it takes a large negative monetary shock

in the targeted-inflation equilibrium to hit the ZLB.
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C Computational Details

C.1 Model Solution Algorithm

Algorithm 1 (Solution Algorithm) 1. Start with a guess for Θ. For the targeted-

inflation equilibrium, this guess is obtained from a linear approximation around the

inflation target. For the deflation equilibrium, it is obtained by assuming constant

decision rules for inflation and E at the deflation steady state. For the sunspot equilib-

rium, it is obtained by letting the st = 1 decision rules come from the targeted-inflation

equilibrium and the st = 0 decision rules come from the deflation equilibrium.

2. Given this guess, simulate the model for a large number of periods.

3. Given the simulated path, obtain the grid for the state variables over which the approxi-

mation needs to be accurate. Label these grid points as {S1, ...,SM}. For a fourth-order

approximation, we use M = 130. For the targeted-inflation equilibrium, 79 of these

grid points come from the ergodic distribution, obtained using a cluster-grid algorithm

as in Judd, Maliar, and Maliar (2010). The remaining 51 come from the filtered ex-

ogenous state variables from 2000:Q1 to 2012:Q3. For the deflation equilibrium, we

use a time-separated grid algorithm to deliver 130 points, which suits the behavior of

this equilibrium better, since there are many periods when the economy is on the “edge”

of the ergodic distribution at the ZLB. For the sunspot equilibrium, we use the same

time-separated grid algorithm to deliver 156 points each for st = 1 and st = 0, and

312 points come from filtered states using multiple particles per period from the particle

filter and over sampling the period 2009:Q2-2011:Q2.

4. Solve for the Θ by minimizing the sum of squared residuals obtained following the steps

below using a variant of a Newton algorithm.

(a) For a generic grid point Si and the current value for Θ, compute f 1
π(Si; Θ),

f 2
π(Si; Θ), f 1

E (Si; Θ), and f 2
E (Si; Θ).

(b) Assume ζi ≡ I{R(Si,Θ) > 1} = 1 and compute πi, and Ei, as well as yi and ci

using (23) and (24), substituting in (25).
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(c) If Ri that follows from (25) using πi and yi obtained in (b) is greater than unity,

then ζi is indeed equal to one. Otherwise, set ζi = 0 (and thus Ri = 1) and

recompute all other objects.

(d) The final step is to compute the residual functions. There are four residuals,

corresponding to the four functions being approximated. For a given set of state

variables Si, only two of them will be relevant since we either need the constrained

decision rules or the unconstrained ones. The residual functions will be given by

R1(Si) = Ei −
[∫ ∫ ∫

c(S ′)−τ

γz′π(S ′)
dF (z′) dF (g′) dF (ε′R)

]
(A.28)

R2(Si) = f (ci, πi, yi)−φβ
∫ ∫ ∫

c(S ′)−τy(S ′) [π(S ′)− π̄] π(S ′)dF (z′) dF (g′) dF (ε′R)

(A.29)

Note that this step involves computing π(S ′), y(S ′), c(S ′), and R(S ′) which is

done following steps (a)-(c) above for each value of S ′. We use a non product

monomial integration rule to evaluate these integrals.

(e) The objective function to be minimized is the sum of squared residuals obtained in

(d).

5. Repeat steps 2-4 a sufficient number of times so that the ergodic distribution remains

unchanged from one iteration to the next. For the targeted-inflation equilibrium and

the sunspot equilibrium, we also iterate between solution and filtering to make sure the

filtered states used in the solution grid remain unchanged.

We start our solution from a second-order approximation and move to a third- and

fourth-order approximation by using the previous solution. We use analytical derivatives

of the objection function, which speeds up the solution by two orders of magnitude. As a

measure of accuracy, we compute the approximation errors from A.28 and A.29, converted

to consumption units. For the targeted-inflation equilibrium, these are in the order of 10−6.

For the deflation and sunspot equilibria, they are higher at 10−4 and 10−5, respectively, but

still very reasonable given the complexity of the model.
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Figure A-1: Solution Grid for the Targeted-Inflation Equilibrium
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Figure A-1 shows the solution grid for the targeted-inflation equilibrium. For each panel,

we have Rt−1 on the x axis and the other state variables on the y axis. The red dots are the

grid points that represent the ergodic distribution, the green points are the filtered states

from 2000:Q1 to 2008:Q3, and the blue points are the filtered state for the period after

2008:Q3. It is evident that the filtered states lie in the tails of the ergodic distribution of the

targeted-inflation equilibrium, which assigns negligible probability to zero interest rates and

the exogenous states that push interest rates toward the ZLB. By adding these filtered states

to the grid points, we ensure that our approximation will be accurate in these low-probability

regions.
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C.2 Details of Policy Experiments

Algorithm 2 (Effect of Combined Fiscal and Monetary Policy Intervention) For j =

1 to j = nsim, repeat the following steps:

1. Initialize the simulation by setting (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) equal to the mean estimate ob-

tained with the particle filter.

2. Generate baseline trajectories based on the innovation sequence {ε(j)t }Ht=1 by letting

[ε
(j)
z,t , ε

(j)
g,t ]
′ ∼ N(0, I) and setting εR,t = 0.

3. Generate the innovation sequence for the counterfactual trajectories according to

ε
I(j)
g,1 = δARRA + ε

(j)
g,1; ε

I(j)
g,t = ε

(j)
g,t for t = 2, . . . , H;

ε
I(j)
z,t = ε

(j)
z,t for t = 1, . . . , H;

ε
I(j)
R,t = ε

(j)
R,t = 0 for t = 9, . . . , H;

In periods t = 1, . . . , 8, conditional on {εI(j)g,t , ε
I(j)
z,t }4t=1, determine ε

I(j)
R,t by solving for the

smallest ε̃R,t such that it is less than 2σR in absolute value, that yields either

R
I(j)
t (ε

I(j)
R,t = ε̃R,t) = 1 or 400 ln

(
R
I(j)
t (ε

I(j)
R,t = 0)−RI(j)

t (ε
I(j)
R,t = ε̃R,t)

)
= 1.

4. Conditional on (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ), compute {R(j)

t , y
(j)
t , π

(j)
t }Ht=1 and {RI(j)

t , y
I(j)
t , π

I(j)
t }Ht=1

based on {ε(j)t } and {εI(j)t }, respectively, and let

IRF (j)(xt|εg,1, εR,1:8) = (ln x
I(j)
t − lnx

(j)
t ). (A.30)

Compute medians and percentile bands based on IRF (j)(xt|εg,1, εR,1:8), j = 1, . . . , nsim. �

When we consider only a fiscal policy, we set ε
I(j)
R,t = 0 for t = 1, ..., 8 as well.
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D Estimation of Second-Order Approximated DSGE

Model

Table A-1 summarizes the prior and posterior distribution from the Bayesian estimation

of the second-order approximated version of the DSGE model. The estimation sample is

1984:Q1 to 2007:Q4. The parameter φ that is used in the main text is related to the

parameter κ (Phillips curve slope of a linearized version of the DSGE model) according to

φ = τ(1−ν)
(νπ2κ)

. The parameters r∗, π∗, and γ are fixed at the sample means of the ex-post real

rate, the inflation rate, and output growth. We assume that π̄ = 1, meaning that any price

change is costly.
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Table A-1: Posterior Estimates for DSGE Model Parameters

Prior Posterior

Parameter Density Para 1 Para 2 Mean 90% Interval

τ Gamma 2.00 0.25 1.50 [1.14, 1.89]

κ Gamma 0.30 0.10 0.17 [0.05, 0.30]

ψ1 Gamma 1.50 0.10 1.36 [1.27, 1.43]

ρr Beta 0.50 0.20 0.64 [0.55, 0.72]

ρg Beta 0.80 0.10 0.86 [0.82, 0.91]

ρz Beta 0.20 0.10 0.11 [0.03, 0.24]

100σr Inv Gamma 0.30 4.00 0.21 [0.17, 0.26]

100σg Inv Gamma 0.40 4.00 0.78 [0.66, 0.93]

100σz Inv Gamma 0.40 4.00 1.03 [0.83, 1.32]

400(r∗ − 1) Fixed 2.78

400(π∗ − 1) Fixed 2.52

100(γ − 1) Fixed 0.48

π Fixed 1.00

ψ2 Fixed 0.80

ν Fixed 0.10

1
g

Fixed 0.85

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta and Gamma; and s and

ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

. The effective prior is truncated
at the boundary of the determinacy region. Estimation sample is 1984:Q1 to 2007:Q4. As 90% credible
interval, we are reporting the 5th and 95th percentile of the posterior distribution.
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E Particle Filter

The particle filter is used to extract information about the state variables of the model from

data on output growth, inflation, and nominal interest rates over the period 2000:Q1 to

2012:Q3.

E.1 State-Space Representation

Let yt be the 3× 1 vector of observables consisting of output growth, inflation, and nominal

interest rates. The vector xt stacks the continuous state variables, which are given by

xt = [Rt, yt, yt−1, zt, gt, At]
′ and st ∈ {0, 1}, is the Markov-switching process.

yt = Ψ(xt) + νt (A.31)

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(A.32)

xt = Fst(xt−1, εt) (A.33)

The first equation is the measurement equation, where νt ∼ N(0,Σν) is a vector of mea-

surement errors. The second equation represents the law of motion of the Markov-switching

process. The third equation corresponds to the law of motion of the continuous state vari-

ables. The vector εt ∼ N(0, I) stacks the innovations εz,t, εg,t, and εR,t. The functions F0(·)

and F1(·) are generated by the model solution procedure. We subsequently use the densities

p(yt|xt), p(st|st−1), and p(xt|xt−1, st) to summarize the measurement and the state transition

equations. The targeted-inflation equilibrium yields a state-space system that is a special

case: the discrete state st is constant.

E.2 Sequential Importance Sampling Approximation

Let zt = [x′t, st]
′ and Yt0:t1 = {yt0 , . . . , yt1}. Particle filtering relies on sequential importance

sampling approximations. The distribution p(zt−1|Y1:t−1) is approximated by a set of pairs
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{(z(i)t−1, π
(i)
t−1)}Ni=1 in the sense that

1

N

N∑
i=1

f(z
(i)
t−1)π

(i)
t−1

a.s.−→ E[f(zt−1)|Y1:t−1], (A.34)

where z
(i)
t−1 is the i’th particle, π

(i)
t−1 is its weight, and N is the number of particles. An

important step in the filtering algorithm is to draw a new set of particles for period t. In

general, these particles are drawn from a distribution with a density that is proportional

to g(zt|Y1:t, z(i)t−1), which may depend on the particle value in period t − 1 as well as the

observation yt in period t. This procedure leads to an importance sampling approximation

of the form:

E[f(zt)|Y1:t] =

∫
zt

f(zt)
p(yt|zt)p(zt|Y1:t−1)

p(yt|Y1:t−1)
dzt (A.35)

=

∫
zt−1:t

f(zt)
p(yt|zt)p(zt|zt−1)p(zt−1|Y1:t−1)

p(yt|Y1:t−1)
dzt−1:t

≈
1
N

∑N
i=1 f(z

(i)
t )

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

g(z
(i)
t |Y1:t,z

(i)
t−1)

π
(i)
t−1

1
N

∑N
j=1

p(yt|z(j)t )p(z
(j)
t |z

(j)
t−1)

g(z
(j)
t |Y1:T ,z

(i)
t−1)

π
(i)
t−1

=
1

N

N∑
i=1

f(z
(i)
t )

(
π̃
(i)
t

1
N

∑N
j=1 π̃

(j)
t

)
=

1

N

N∑
i=1

f(z
(i)
t )π

(i)
t ,

where the unnormalized and normalized probability weights are given by

π̃
(i)
t =

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

g(z
(i)
t |Y1:T , z

(i)
t−1)

π
(i)
t−1 and π

(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

, (A.36)

respectively. In simple versions of the particle filter, z
(i)
t is often generated by simulating

the model forward, which means that g(z
(i)
t |Y1:T , z

(i)
t−1) ∝ p(z

(i)
t |z

(i)
t−1), and the formula for

the particle weights simplifies considerably. Unfortunately, this approach is quite inefficient

in our application, and we require a more elaborate density g(·|·) described below that

accounts for information in yt. The resulting extension of the particle filter is known as

auxiliary particle filter, e.g. Pitt and Shephard (1999).

E.3 Filtering

Initialization. To generate the initial set of particles {(z(i)0 , π
(i)
0 }Ni=1, for each i, simulate

the DSGE model for T0 periods, starting from the targeted-inflation steady state, and set
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π
(i)
0 = 1.

Sequential Importance Sampling. For t = 1 to T :

1. {z(i)t−1, π
(i)
t−1}Ni=1 is the particle approximation of p(zt−1|Y1:t−1). For i = 1 to N :

(a) Draw z
(i)
t conditional on z

(i)
t−1 from g(zt|Y1:t, z(i)t−1).

(b) Compute the unnormalized particle weights π̃
(i)
t according to (A.36).

2. Compute the normalized particle weights π
(i)
t and the effective sample size ESSt =

N2/
∑N

i=1(π
(i)
t )2.

3. Resample the particles via deterministic resampling (see Kitagawa (1996)). Reset

weights to be π
(i)
t = 1 and approximate p(zt|Y1:t) by {(z(i)t , π

(i)
t )}ni=1.

E.4 Tuning of the Filter

In the empirical analysis, we set T0 = 50 and N = 500, 000. We also fix the measurement

error standard deviations for output growth, inflation, and interest rates at 0.1, respectively.

Since our model has discrete and continuous state variables, we write

p(zt|zt−1) =

 p0(xt|xt−1, st = 0)P{st = 0|st−1} if st = 0

p1(xt|xt−1, st = 1)P{st = 1|st−1} if st = 1

and consider proposal densities of the form

q(zt|zt−1, yt) =

 q0(xt|xt−1, yt, st = 0)λ(zt−1, yt) if st = 0

q1(xt|xt−1, yt, st = 1)(1− λ(zt−1, yt)) if st = 1
,

where λ(xt−1, yt) is the probability that st = 0 under the proposal distribution. We use q(·)

instead of g(·) to indicate that the densities are normalized to integrate to one.

We effectively generate draws from the proposal density through forward iteration of the

state transition equation. To adapt the proposal density to the observation yt, we draw

ε
(i)
t ∼ N(µ(i),Σ(i)) instead of the model-implied εt ∼ N(0, I). In slight abuse of notation

(ignoring that the dimension of xt is larger than the dimension of εt and that its distribution
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is singular), we can apply the change of variable formula to obtain a representation of the

proposal density

q(x
(i)
t |x

(i)
t−1) = qε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
Using the same change-of-variable formula, we can represent

p(x
(i)
t |x

(i)
t−1) = pε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
By construction, the Jacobian terms cancel and the ratio that is needed to calculate the

unnormalized particle weights for period t in (A.36) simplifies to

π̃
(i)
t = p(yt|z(i)t )

exp
{
−1

2
ε
(i)′

t ε
(i)
t

}
|Σ(i)

ε |−1/2 exp
{
−1

2
(ε

(i)
t − µ(i))′[Σ(i)]−1(ε

(i)
t − µ(i))

}π(i)
t−1.

The choice of µ and Σ is described below.

Targeted-Inflation Equilibrium. Since the discrete state st is irrelevant in this equilib-

rium, let zt = xt. We break the sample period into two parts: 2000:Q1 to 2008:Q4 and

2009:Q1 to 2012:Q3. In the second period, the economy was at the ZLB and the filter

requires a different proposal density.

For the first part of the sample, we run the Kalman filter for the log-linearized version

of the DSGE model in parallel with the particle filter and set µ(i) = ε
(i)
t|t and Σ(i) = P

(i)
t|t ,

which are respectively the mean and variance of εt conditional on Y1:t and zt−1 = z
(i)
t−1. For

the second part of the sample, the Kalman-filtered shocks become very inaccurate because

the log-linearized DSGE model misses the ZLB. Instead, we let zt−1|t−1 be a particle filter

approximation of E[zt−1|Y1:t−1] and define

π̄t(εt) = p(yt|F (zt−1|t−1, εt)) exp

{
−1

2
ε′tεt

}
|Σε|1/2π(i)

t−1.

We use a grid search over εt to determine a value ε̄ that maximizes this objective function

and then set µ(i) = ε̄. (Executing the grid search conditional on each z
(i)
t−1, i = 1, . . . , N

turned out to be too time consuming.)

Sunspot Equilibrium. The filter is initialized by simulating the model for T0 = 50 periods

conditional on st = 1. For the period of 2000:Q1 to 2008:Q4, we use the simple grid search
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approach described in the previous paragraph to generate shocks under which we simulate

the state-transition equation forward. Starting in 2008:Q4, we use the information from

the grid search to construct a mixture-of-normals proposal distribution for ε
(i)
t . While more

time consuming, this mixture proposal improves the accuracy of the particle filter. At each

iteration, we conduct separate computations for st = 0 and st = 1. We then compute the

posterior odds of st = 0 and st = 1 and select the regime-conditional particles accordingly.

For the ex-ante policy analysis, we run the filter from 2009:Q1 onward conditional on a

sequence of regimes for the periods from 2009:Q2 to 2011:Q1.

F Calibration of the Policy Experiment

Table A-2 summarizes the award and disbursements of funds for federal contracts, grants,

and loans. We translate the numbers in the table into a one-period location shift of the

distribution of εg,t. In our model, total government spending is a fraction ζt of aggregate

output, where ζt evolves according to an exogenous process:

Gt = ζtYt; ζt = 1− 1

gt
; ln(gt/g∗) = ρg ln(gt−1/g∗) + σgεg,t

For the subsequent calibration of the fiscal intervention, it is convenient to define the per-

centage deviations of gt and ζt from their respective steady states: ĝt = ln(gt/g∗) and

ζ̂t = ln(ζt/ζ∗). According to the parameterization of the DSGE model in Table 1, ζ∗ = 0.15

and g∗ = 1.177. Thus, government spending is approximately 15% of GDP. We assume that

the fiscal expansion approximately shifts ζ̂t to ζ̂It = ζ̂t + ζ̂ARRAt .

We construct ζ̂ARRAt as follows. Let GARRA
t correspond to the additional government

spending stipulated by ARRA. Since we focus on received rather than awarded funds, GARRA
t

corresponds to the third column of Table A-2. The size of the fiscal expansion as a fraction

of GDP is

ζARRAt = GARRA
t /Yt,

where Yt here corresponds to the GDP data reported in the last column of Table A-2. We

then divide by ζ∗ to convert it into deviations from the steady-state level: ζ̂ARRAt = ζARRAt /ζ∗.
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Taking a log-linear approximation of the relationship between gt and ζt leads to

ĝARRAt = 0.177 ·GARRA
t /(ζ∗Yt).

In Figure A-2, we compare ĝARRAt constructed from the data in Table A-2 to (ĝIt − ĝt),

where δARRA = 0.011.14 While the actual path of the received funds is not perfectly mono-

tone, the calibrated intervention in the DSGE model roughly matches the actual intervention

both in terms of magnitude and decay rate.

Table A-2: ARRA Funds for Contracts, Grant, and Loans

Awarded Received Nominal GDP

2009:3 158 36 3488

2009:4 17 18 3533

2010:1 26 8 3568

2010:2 16 24 3603

2010:3 33 26 3644

2010:4 9 21 3684

2011:1 4 19 3704

2011:2 4 20 3751

2011:3 8 17 3791

2011:4 0 12 3830

2012:1 3 9 3870

2012:2 0 8 3899

Notes: Data were obtained from www.recovery.org.

14Recall that σg = 0.0078.
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Figure A-2: Calibration of Fiscal Policy Intervention
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