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Abstract

This paper documents a strong association between total factor productivity (TFP)

growth and the value of U.S. corporations (measured as the value of equities and net

debt for the U.S. corporate sector) throughout the postwar period. Persistent fluctua-

tions in the first two moments of TFP growth predict two-thirds of the medium-term

variation in the value of U.S. corporations relative to gross domestic product (hence-

forth value-output ratio). An increase in the conditional mean of TFP growth by

1% is associated to a 21% increase in the value-output ratio, while this indicator de-

clines by 12% following a 1% increase in the standard deviation of TFP growth. A

possible explanation for these findings is that movements in the first two moments

of aggregate productivity affect the expectations that investors have regarding future

corporate payouts as well as their perceived risk. We develop a dynamic stochastic

general equilibrium model with the aim of verifying how sensible this interpretation

is. The model features recursive preferences for the households, Markov-Switching

regimes in the first two moments of TFP growth, incomplete information and monop-

olistic rents. Under a plausible calibration and including all these features, the model

can account for a sizable fraction of the elasticity of the value-output ratio to the first

two moments of TFP growth.
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1 Introduction

During the postwar period, the U.S. economy experienced large movements in the value of

firms. The market value of U.S. corporations relative to gross domestic product (henceforth,

value-output ratio) went through a slump during the 1970s followed by a large increase

throughout the 1980s and 1990s until the marked decline of the last decade.1 Researchers

have devoted a great effort to understanding the origins of these medium-term fluctuations.2

A widespread view among them is that the value of corporations should be particularly

sensitive to variables that drive expectations of future corporate payouts and that influence

the rate at which investors discount them. Within this context, research pioneered by Barsky

and De Long (1993) and Bansal and Yaron (2004) suggests that economic fundamentals

affecting the long-run growth of corporate payouts and its risk should be responsible for

these large swings in the stock market.

Motivated by this view, recent studies have investigated the links between aggregate pro-

ductivity and asset prices. While Beaudry and Portier (2006) and Croce (2010) have doc-

umented a strong sensitivity of stock prices to the mean of total factor productivity (TFP)

growth, the theories mentioned above also suggest that variation in other moments of aggre-

gate productivity may be relevant. Moreover, the documented empirical correlation between

TFP growth and stock prices does not reveal a direction of causality.3 This latter concern

is strengthened by the finding that productivity driven standard macroeconomic models are

not able to generate the medium-term fluctuations in the value of firms when calibrated

with a realistic TFP process (see Boldrin and Peralta-Alva, 2009).

In this paper, we present new evidence on the relation between the value of U.S. corpo-

rations and aggregate productivity. First of all, we document empirically that changes in

the volatility of TFP growth are important in predicting the medium-term movements in

the value of U.S. corporations. We fit a Markov Switching model to TFP growth, detecting

large and infrequent shifts in the mean and volatility of this series throughout the postwar

period.4 We then show that these shifts explain two-thirds of the medium-run variability

1We define the market value of the U.S. corporate sector to be the sum of outstanding equities and net
debt liabilities. See Appendix A.1 for details in the construction of this series using Flow of Funds data.

2In this paper, we refer to medium-term fluctuations as the movements in the medium frequency com-
ponent of a time series. As in Comin and Gertler (2006), the medium term consists of frequencies between
32 and 200 quarters.

3Changes in asset prices, for example, may feed-back into decisions of economic agents and therefore
influence aggregate productivity. Jermann and Quadrini (2007) study an economy where increases in asset
prices relax firms’ credit constraints and endogenously generate an increase in measured TFP.

4In particular, we estimate that TFP was in a “high growth regime” between 1960Q1-1973Q1 and
1994Q1-2003Q4, while we estimate a “low volatility regime” during the period 1984Q1-2009Q3. These
results are consistent with previous empirical analysis on the behavior of U.S. productivity; see for example
Kahn and Rich (2007) and Benigno, Ricci, and Surico (2011).
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in the value-output ratio measured using a band pass filter. In particular, a 1% increase in

the conditional mean of productivity growth is associated with a 19% increase in the value-

output ratio, while this indicator declines by 4% following a 1% increase in the standard

deviation of TFP growth. The second contribution of this paper is to assess whether these

elasticities can be interpreted as the response of asset prices to exogenous changes in the

first two moments of TFP growth. We develop a stochastic growth model and show that,

for reasonable calibrations, the model is consistent with a large response of the value-output

ratio to shocks in the mean and volatility of TFP growth.

We build a stochastic growth model where households have Epstein-Zin preferences and

where TFP growth is driven by two disturbances: a persistent Markov-Switching shock to

its mean and a purely transitory shock. Consistent with our empirical analysis, we allow the

volatility of the transitory component to vary over time. We assume a particular form of

incomplete information: agents are aware of the underlying structure of the economy, and

in every period they observe realized TFP growth, but they cannot tell whether movements

in TFP growth come from the Markov-Switching mean or the transitory shock. We assume

that they form beliefs about the mean of TFP growth using Bayes’ rule.5 The induced

movements in beliefs about the growth regime influence agents’ views over future corporate

payouts. Beside the standard neoclassical channel, our model features monopolistic rents

in production. This is intended to capture variation in dividends unrelated to the marginal

product of physical capital, e.g., organizational capital, patents, etc.. These are factors that

previous research identifies as important drivers of firms’ valuation (see Hall, 2001). The

interaction between incomplete information, monopolistic rents and Epstein-Zin preferences

generates a strong sensitivity of the value-output ratio to the first two moments of TFP

growth compared to a full information neoclassical benchmark. In the next two paragraphs,

we briefly discuss the intuition underlying this result.

In the model, the behavior of the value of corporations conditional on a growth shock

resembles qualitatively that of related production based asset pricing models, in particular

Croce (2010). Indeed, under a plausible calibration of preferences, the model features a

strong intertemporal substitution effect. A persistent increase in the mean of TFP growth

is associated with expectations of a higher growth in corporate payouts, and households

react to this change in expectations by demanding more assets. A higher demand for assets

pushes up the value of corporations, therefore generating a positive association between

TFP growth and asset prices. Our model, though, is less restrictive than Croce (2010) with

respect to the quantitative association. In fact, and differently from a neoclassical setting,

5The resulting filtering problem implies that the model shifts in the mean of productivity growth are
difficult to detect in real time, a fact that is well documented for the U.S. economy (see Edge, Laubach,
and Williams, 2007).
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the value of corporations in our model is the sum of two components: the market value of the

physical capital stock and the present value of rents that firms are expected to generate. As

we will discuss in the paper, the latter component is an order of magnitude more sensitive

to the mean of TFP growth than the former. This aspect greatly improves the model’s

ability to generate an empirically plausible behavior for prices and quantities relative to its

neoclassical benchmark.6

The model also has implications for the effects of volatility on the value of corporations. As

in other production-based long-run risk models, agents in our economy are strongly averse

to long-run fluctuations in the growth rate of corporate payouts, and they therefore ask

for a sizable compensation when holding shares. An increase in the uncertainty over the

long-run component of firms’ productivity growth would accordingly generate a reduction

in asset prices through its effects on risk premia. In our model, this channel is triggered

by the interactions between incomplete information and volatility. Indeed, an increase in

the volatility of the transitory component of TFP growth adds more noise to the filtering

problem that agents are solving in real time. This makes them more uncertain about the

long-run properties of corporate payouts. Depending on the calibration considered, asset

prices can be very sensitive to the volatility of TFP growth, a feature that a model with

full information would miss.7

We document that, under plausible calibrations, the model generates business cycle statis-

tics for real and financial variables that are in line with postwar U.S. observations. Moreover,

we compute the model implied elasticities of the value-output ratio to the mean and volatil-

ity of TFP growth and compare them with our empirical estimates. We find that a 1%

increase in the mean of TFP growth is associated with a 4% increase in the value-output

ratio. At the same time, this indicator falls by 0.4% after a 1% increase in the standard

deviation of productivity growth. This represents, respectively, 20% and 9% of the mag-

nitude observed in the data. We also show that, for less conservative calibrations of the

TFP process, the growth elasticity can be reconciled with our empirical estimates, while the

model accounts for 60% of the sensitivity of the value-output ratio to the volatility of TFP

growth.

Related Literature. The idea that variations in risk and economic growth influence

asset prices has a long tradition in economics, see for example Malkiel (1979), Pindyck

(1984), Barsky (1989), Barsky and De Long (1993), Bansal and Yaron (2004) and references

6Indeed, absent monopolistic rents, strong frictions in the production of capital would be required by
the model in order to generate a large elasticity of the value-output ratio to the mean of TFP growth. These
frictions, while making asset prices more volatile, would reduce the relative volatility of investment to an
empirical implausible level.

7See for example Naik (1994).
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therein. In a recent paper, Lettau, Ludvigson, and Wachter (2008) present an endowment

economy where shifts in the mean and volatility of consumption growth influence stock

prices. Their model accounts for the 1990s “boom” in the U.S. stock market via a decline

in the volatility of consumption growth, while they estimate that changes in the mean of

consumption growth have small effects on stock prices. To the best of our knowledge, we

are the first to look at more fundamental sources of variation in a general equilibrium model

with production.

Our paper contributes to the production-based asset pricing literature (Jermann, 1998;

Tallarini, 2000; Boldrin, Christiano, and Fisher, 2001; Gourio, 2012). Within this literature,

our work is closely related to that of Croce (2010). He studies a neoclassical growth model

with recursive preferences, adjustment costs and persistent variation in the mean of TFP

growth. His model is consistent with the cyclical behavior of standard real and financial

indicators of the U.S. economy. The analysis, though, is silent about the performance of

the model regarding the elasticity of asset prices to the mean and volatility of TFP growth.

One of our contributions is to show that two plausible mechanisms dramatically improve the

model’s ability to capture this conditional behavior of asset prices: incomplete information

and monopolistic rents.

Incomplete information is important in our model to generate a quantitatively meaningful

association between volatility and asset prices. The friction we consider is not new in the

literature, see for example Kydland and Prescott (1982) and Edge, Laubach, and Williams

(2007). Relative to the existing literature, we point out an interesting interaction between

learning and time-varying volatility. An increase in the volatility of the transitory component

of TFP growth dampens the ability of agents to learn about the persistent component

of TFP growth.8 In a model with Epstein-Zin preferences, this endogenous variation in

uncertainty over long-run growth has strong asset pricing implications. We find in addition

that monopolistic rents greatly enhance the performance of standard exogenous growth

models regarding the volatility of asset prices without impairing their ability to account for

variations in quantities. A similar point has been made recently by Comin, Gertler, and

Santacreu (2009) and Iraola and Santos (2009) in a class of endogenous growth models.

We consider our empirical findings particularly relevant for the literature studying move-

ments in asset prices over longer horizons. Several attempts have been put forth to ex-

plain the behavior of the U.S. stock market. Plausible explanations for the medium-term

8Bullard and Singh (2012) discuss a setting in which the opposite happens. They consider an RBC
model with a similar signal extraction problem to ours, but they model an increase in the volatility of TFP
growth by permanently increasing the gap between the two means of the TFP growth process. This change,
while increasing the unconditional volatility of TFP growth, makes the signal extraction problem easier as
agents can better distinguish between the two different growth regimes.
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movements in the value of corporations include technological revolutions (Greenwood and

Jovanovic, 1999; Laitner and Stolyarov, 2003; Pastor and Veronesi, 2009), variation in taxes

and subsidies (McGrattan and Prescott, 2005), intangible investments (Hall, 2001) and the

saving behavior of baby boomers (Abel, 2003). Our paper suggests that a successful theory

should account for the joint evolution of productivity growth and asset prices, since these

two series share common cycles in the medium run. This would help the profession with

the task of measuring the contribution of each of these mechanisms.

Layout. The rest of the paper is organized as follows. In section 2 we document the

medium-term association between productivity growth and the value-output ratio. Section

3 presents the model. In section 4 we calibrate the model, study its business cycle properties

and analyze the behavior of the value-output ratio conditional on a persistent change in the

mean and volatility of TFP growth. Section 5 concludes.

2 Productivity Growth and the Market Value of U.S.

Corporations: Empirical Evidence

We begin by looking at simple indicators of time variation in the mean and volatility of

productivity growth. We construct a quarterly series for total factor productivity (TFP) in

the U.S. business sector using BLS and NIPA data. Our data cover the period from the

first quarter of 1952 to the last quarter of 2010. In Figure 1, we plot 10 years centered

rolling window estimates for the annualized mean (top-right panel) and standard deviation

(bottom-right panel) of productivity growth. The left panel of the figure plots the TFP

growth series.

The data show substantial time variation in the mean and volatility of TFP growth. In

the top-right panel of Figure 1, we can observe the slowdown in growth during the late

1960s/early 1970s and the subsequent resurgence during the 1990s, facts that have been

extensively discussed in narrative and econometric studies on the U.S. economy.9 Regarding

volatility, the bottom-right panel of Figure 1 shows the drastic decline during the 1980s,

consistent with the “great moderation” in macroeconomic aggregates after 1984 (see Kim

and Nelson, 1999; McConnell and Quiros, 2000). It is also important to notice that shifts in

these two series are large and infrequent. For instance, the standard deviation of productivity

9One issue of the Journal of Economic Perspectives is devoted to the productivity growth slowdown of
the 1970s (Volume 2, Number 4 ) and another issue to the resurgence in productivity growth of the 1990s
(Volume 14, Number 4 ). Econometric studies that have recently analyzed shifts in the trend growth rate
of productivity include Roberts (2000), French (2001), Kahn and Rich (2007), Croce (2010) and Benigno,
Ricci, and Surico (2011).
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growth fluctuates very little during the period 1960-1980, and it experienced a sudden

reduction of about 50% in the early 1980s. Similarly, productivity growth fell by 2% within

a few years in the late 1960s and then fluctuated very little around a value of 1.5% for about

20 years.

Figure 1: Growth and Volatility: Rolling Windows Estimates
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Note: The figure reports 10 years centered rolling windows estimates for the mean and volatility of TFP growth (right
panel). For example, the mean of TFP growth in 1980 is calculated as the arithmetic mean of productivity growth within the
period 1977.II-1983.II. The left panel reports the TFP growth series (blue line), along with the rolling windows estimates for
the mean (red line). The TFP growth series is annualized.

2.1 Identifying Shifts in Growth and Volatility: A Markov-Switching

Approach

We now describe a parametric model that we use to fit the shifts in the mean and volatility

of TFP growth documented in the previous section. We model the growth rate of TFP as

follows:

∆Zt = µt + φ [∆Zt−1 − µt−1] + σtεt

µt = µ0 + µ1s1,t µ1 > 0 (1)

σt = σ0 + σ1s2,t σ1 > 0

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)
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The variable µt captures the different “growth regimes” characterizing the postwar be-

havior of aggregate productivity. In particular, we assume that µt alternates between two

regimes driven by the Markov process s1,t ∈ {0, 1} whose law of motion is governed by

the transition matrix Pµ. Since µ1 > 0, we interpret s1,t = 1 as the “high growth” regime

during which productivity grows on average at the rate µ0 + µ1, while s1,t = 0 implies that

TFP grows at the rate µ0 (“low growth”). Transitory fluctuations around µt are modeled

via the white noise εt and an autoregressive component. The volatility of εt is allowed to

fluctuate between a “high volatility” regime and a “low volatility” regime driven by the

Markov process s2,t ∈ {0, 1}.10

Markov-Switching models are commonly used in the literature to fit large and infrequent

changes of the type observed in Figure 1, and they have already been used to fit changes

in the trend growth rate of productivity (see French, 2001; Kahn and Rich, 2007).11 Our

approach is different from existing ones in that we do not model transitory fluctuations in

the level of TFP. This is done mainly because the process in equation (1) makes the general

equilibrium model of Section 3 more tractable.

We estimate the model’s parameters using Bayesian methods. Appendix A.2 describes in

detail the selection of the prior as well as the sampler adopted to conduct inference. Table 1

reports posterior statistics for the model’s parameters under the header Univariate Model,

while the top panel of Figure 2 plots posterior estimates of µt and σt.

The model clearly identifies movements in the volatility of productivity growth. From the

top right panel of Figure 2, we can observe a decline in σt of 44% in the mid-1980s, with

little uncertainty regarding this event. The model also identifies a slight increase in the

volatility of TFP growth toward the end of the sample, although credible sets are large. On

the contrary, shifts in the mean are poorly identified with this approach, as shown by the

large credible sets on µt and on the parameters governing its behavior.

2.2 Identifying Shifts in Growth and Volatility: Multivariate Anal-

ysis

High uncertainty in our estimates for µt reflects the difficulties in detecting changes in the

trend growth rate of TFP. As the left panel of Figure 1 shows, transitory fluctuations in

10Our choice regarding the number of regimes is suggested by the nonparametric analysis in the previous
section and is confirmed by formal posterior odds comparisons.

11An equally plausible specification would be that of a random coefficients model in which variations in
µt and σt are represented by continuous stochastic processes. This approach has been followed in a similar
context by Cogley (2005). We have formally compared our specification with one in which µt follows an
AR(1) process, and the marginal data density slightly favors our model. Results are available upon request.
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Table 1: Markov-Switching Model: Prior Choices and Posterior Distribution

Univariate Model Multivariate Model
Parameter Prior Median 90% Credible Set Median 90% Credible Set

µ0 N (1.5, 1) 1.68 [0.30,2.67] 1.12 [0.59,2.67]
µ1 1(x > 0)N (1, 1) 1.19 [0.29,2.48] 1.75 [0.32,2.57]
σ0 IG(5, 2) 3.63 [3.40,3.83] 3.30 [2.60,3.99]
σ1 IG(5, 2) 2.51 [2.02,2.79] 2.92 [2.00,3.84]
φ N (0, 1) 0.10 [-0.01,0.20] 0.04 [-0.06,0.12]

P1,1,µ 1(|x| < 1)N (0.98, 0.3) 0.953 [0.543,0.998] 0.971 [0.861,0.997]
P2,2,µ 1(|x| < 1)N (0.98, 0.3) 0.975 [0.570,0.998] 0.969 [0.890,0.996]
P1,1,σ 1(|x| < 1)N (0.98, 0.3) 0.995 [0.965,0.999] 0.990 [0.901,0.999]
P2,2,σ 1(|x| < 1)N (0.98, 0.3) 0.992 [0.971,0.998] 0.990 [0.954,0.998]

Note: The column “Univariate Model” reports posterior statistics for the parameters of the model in equation (1). The
column “Multivariate Model” reports posterior statistics for selected parameters of the model in equation (2). Posterior
statistics are based on 80,000 draws from the posterior distribution. See Appendix A.2 and A.3 for details concerning the
estimation procedure.

Figure 2: Growth and Volatility: Markov-Switching Model
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Note: In the left panels, we report smoothed posterior estimates of µt. In particular, the solid line represents the posterior
mean E[µt|IT], while the shaded area denotes a 60% pointwise credible set. The right panels report the same information for
σt.
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TFP growth are large compared to the changes in the conditional mean that we wish to

isolate, and this complicates the filtering problem significantly. A remedy suggested in the

literature consists of introducing additional variables that carry information on µt. We

follow this insight and augment the model in equation (1) as follows:

[
∆Zt

∆Yt

]
=

[
µt

µt

]
+ Φ

[
∆Zt−1 − µt−1

∆Yt−1 − µt−1

]
+ Σtet

µt = µ0 + µ1s1,t (2)

Σt = Σ0 + Σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

This specification introduces a set of variables ∆Yt that share the same growth rate

as TFP. This formulation is rooted in economic theory. Indeed, under balanced growth

restrictions, equilibrium models predict that several economic ratios share a common trend

with TFP. This justifies the introduction of ∆Yt into the analysis, as one can pool these

time series with TFP growth in order to obtain a sharper estimate of µt. Following Kahn

and Rich (2007), we include the growth rate of consumption per hour and compensation

per hour in ∆Yt.
12

The law of motion for µt and Σt has the same Markov-Switching structure described in the

previous section. For tractability and parsimony, we allow the variance of the innovations

to have common switches while keeping their correlation structure constant over time.13

The model is estimated via Bayesian techniques as discussed in Appendix A.3, and the

results are reported under the header Multivariate Model in Table 1 and in the bottom

panel of Figure 2. These estimates are consistent with the univariate analysis presented

in the previous section. The multivariate approach allows us to identify the shifts in the

mean of productivity growth more precisely. Credible sets on the parameters governing

µt are considerably tighter and this is reflected in increased precision of our estimates for

µt. As Figure 2 shows, we estimate that the trend growth rate of TFP was about 3%

in the periods 1960Q1:1973Q1 and 1997Q3:2004Q1, while growth was around 1.3% in the

remaining periods.

12Consumption and wages are scaled by total hours in order to account for the unit root behavior of
hours worked that, under preferences consistent with balanced growth, is unrelated to TFP dynamics. See
Chang, Doh, and Schorfheide (2007) for a discussion of this issue.

13This is accomplished by reparametrizing Σt, see Appendix A.3 for details.
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2.3 Productivity Growth and the Market Value of U.S. Corpora-

tions

We now consider the relation between productivity growth and the market value of U.S.

firms. Following Hall (2001), Wright (2004) and McGrattan and Prescott (2005), we use

Flow of Funds data and define the market value of the U.S. corporate sector to be the

sum of outstanding equities and net debt liabilities.14 This indicator has the advantage

of including the market value of closely held firms, thus being a more reliable measure for

trends in the value of firms relative to standard indicators that are based only on publicly

held corporations.

We summarize the relation between the value-output ratio and our estimates of µt and σt

via linear projections. Our benchmark specification is the following:

MVt = a + bµ̂t + cσ̂t + et (3)

Table 2 reports the results. From Column 3, we can observe a positive relation between

trend growth and the value-output ratio. An increase of 1% in the trend growth rate of

TFP is associated with an increase in the value-output ratio of 21%. Volatility, on the other

hand, is negatively associated with the value of U.S. corporations. An increase of 1% in the

standard deviation of TFP growth is associated with a reduction in the value-output ratio

of 12%.

The linear projection also shows that the association between productivity growth and the

value-output ratio is sizable. Indeed, fluctuations in the first two moments of productivity

jointly predict more than half of the variation in the value-output ratio at quarterly frequen-

cies. In order to gain more insights into this association, we plot in Figure 3 the value-output

ratio along with the fitted values of the linear projection. We can verify that the decline in

growth in the early 1970s is closely followed by a sharp decline in the value-output ratio and

that the growth resurgence is associated with a boom in this indicator, while the subsequent

decline in productivity growth is associated with a fall in the valuation of U.S. corporations.

The great moderation occurred during a period of a rising value-output ratio, while the

surge in aggregate volatility observed toward the end of the sample is associated with a

decline in this indicator. Moreover, from the figure we can see that most of the association

between productivity growth and the value-output ratio occurs over horizons longer than

the business cycle. The fitted values of equation (3) closely track the medium term com-

ponent of the value-output ratio constructed using the band-pass filter (32-200 quarters).

14See Appendix A.1 for details on the calculation of this indicator.
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Table 2: Growth, Volatility and the Value of U.S. Corporations

[1] [2] [3] [4]

Constant -0.34 0.36 0.17 -0.13
(0.04) (0.07) (0.05) (0.03)

µ̂t 0.19 0.21 0.19
(0.02) (0.02) (0.01)

σ̂t -0.07 -0.12 -0.04
(0.01) (0.01) (0.005)

R2 0.23 0.13 0.56 0.68

Note: Column [1] reports the results of a linear projection of E[µt|IT ] on the value-output ratio. Column [2] reports the
results of a linear projection of E[σt|IT ] on the value-output ratio. Column [3] reports the results from the estimation of
equation (3). Column [4] reports the results of a linear projection of E[µt|IT ] and E[σt|IT ] on the medium frequency
component of the the value-output ratio isolated using the band-pass filter between 32 and 200 quarters. The value-output
ratio is demeaned prior to running the projections. Robust standard errors are in parentheses.

This point is confirmed by column [4] of Table 2, where we project the medium frequency

component of the value-output ratio on µ̂t and σ̂t. Relative to column [3], the R2 increases

substantially, suggesting that the movements in TFP growth and volatility that we identify

are mainly relevant for predicting the medium-term fluctuations in the value-output ratio.

3 Model

So far, we have documented a strong relationship between persistent innovations to the mean

and standard deviation of TFP growth and medium-term fluctuations in the value-output

ratio. As mentioned in the Introduction, this reduced form association may have several

interpretations. In what follows, we set up a quantitative model with the aim of measuring

the fraction of this association that can be explained by exogenous variation in the mean

and volatility of TFP growth. We consider a fairly standard growth model with four major

ingredients:

1. Markov-Switching regimes in the mean and volatility of technological growth

2. Recursive preferences

12



Figure 3: Growth, Volatility and the Value of U.S. Corporations
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Note: The blue solid line plots the value of corporations scaled by gross domestic product. The red solid line reports the
fitted values of Equation (3). The black dotted line reports the medium frequency component of the value-output ratio
isolated using the band-pass filter between 32 and 200 quarters.

3. Capital adjustment costs and monopolistic rents

4. Incomplete information about the drivers of technological growth

In the model, infinitely lived households supply labor inelastically to firms and own shares

of the corporate sector. They use their dividend and labor income to consume the final

good and accumulate shares of the corporate sector. The final good is sold in a competitive

market by firms that aggregate a set of imperfectly substitutable intermediate goods. Each

variety is produced by an intermediate good firm using capital and labor. Those firms rent

the capital stock and labor in competitive markets. They are monopolists in producing their

variety. Capital services are supplied by capital producers in a competitive market. These

firms own the capital stock and make optimal capital accumulation plans by maximizing

the present discounted value of profits.

Below we describe the major ingredients of our model, while Appendix B contains a

detailed account of the agents’ decision problems and of the equilibrium concept adopted.

In terms of notation, the level of variable X at time t is denoted by Xt. Even though every

endogenous variable depends on the history of shocks, we keep the notation simple and omit

this explicit dependence.
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3.1 Preferences

Households have Epstein-Zin preferences over streams of consumption. Given a continuation

value Ut+1 and consumption ct today, the agent’s utility is given by:

Ut = ((1− β)c
1−γ
η

t + βEt[((Ut+1)1−γ)]
1
η )

η
1−γ .

γ controls the degree of risk aversion, η is equal to 1−γ
1− 1

Ψ

and Ψ parametrizes the elastic-

ity of intertemporal substitution in consumption. The operator Et[.] is interpreted as the

expectation conditional on all the observations made by the agents up to period t.

3.2 Production

A fixed variety of intermediate goods is produced in the economy. Intermediate goods are

indexed by j ∈ [0, 1], and each variety is produced by an intermediate good producer. He

uses capital services kj,t and labor services lj,t to produce yj,t units of the good according to

the production function:

yj,t = (eZtlj,t)
1−αkαj,t.

Zt is the log of TFP common to all firms. Intermediate goods are aggregated by final good

producers into units of a final good using the production function

yt =

(∫ 1

0

y
ν−1
ν

j,t dj

) ν
ν−1

.

The final output is consumed by households or purchased by capital producers to invest

in capital. In particular, if a capital producer with kt units of capital invests it, his stock

of capital in period t + 1 will increase by G
(
it
kt

)
kt. For the quantitative analysis, we

parametrize G(.) as15

G (.) = a (.)1−τ + b.

15This functional form is quite standard in the literature. Jermann (1998) points out that the inverse of
τ is equal to the elasticity of the investment-capital ratio to Tobin’s Q in a wide class of models.
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Capital depreciates every period at the rate δ. Therefore, the stock of capital for a producer

evolves according to the following law of motion:

kt = (1− δ)kt +G

(
it
kt

)
kt

3.3 Total Factor Productivity and Information Structure

We model the logarithm of TFP as a random walk with time varying drift and volatility:16

∆Zt = µt + σtεt εt ∼ N (0, 1),

where the drift and the volatility follow the Markov processes:

µt = µ0 + µ1s1,t µ1 > 0

σt = σ0 + σ1s2,t σ1 > 0.

The variable sj,t ∈ {0, 1} is a state whose probabilistic law of motion is governed by the

transition matrix Pj.
Household and firms know the parameters governing the stochastic process and use it to

form expectations about future periods. They are, however, imperfectly informed about the

drivers of technological progress. In particular, we assume that they learn, at every point

in time, the realization of TFP growth ∆Zt while not observing its components µt and εt

separately. Therefore, the information that agents can use to update their beliefs about the

current state of the stochastic process is given by the history of TFP growth realizations, the

state governing volatility and an unbiased Gaussian signal gt = µt + σget that they receive

in every period. They are fully rational and form their beliefs about s1,t via Bayes’ rule. We

denote the probability that any agent assigns to being in growth regime s1,t in period t by

pt(s1,t). Similarly, we label the likelihood that he attaches to being in state s1,t+1 in period

t+ 1 by pt+1|t(s1,t+1) . Bayes’ rule implies the following updating equations:

pt+1|t(s1,t+1) =

∑2
i=1 pt−1(i)P1(s1,t|i)∑2

j=1

∑2
i=1 pt−1(i)P1(j|i)

;

and

pt(s1,t) =
pt|t−1(s1,t)pN(∆Zt, gt|s1,t, s2,t)∑2
i=1 pt|t−1(i)pN(∆Zt, gt|i, s2,t)

16This is different from Section 2 in that we do not include a autoregressive component, as we did not
find a strong contribution of this component in the estimation and as the omission simplifies the numerical
solution of the model.
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pN(.|j, ĵ) is the pdf of a two dimensional normal random variable with mean µ0 + µ1j

and standard deviation σ0 + σ1ĵ for the first component and mean µ0 + µ1j and standard

deviation σg for the second one. Both components are assumed to be independent. The

first equation updates the beliefs about the state today into beliefs over the expected state

tomorrow using the known probabilities of a state transition. The second equation captures

how those probabilities are updated after observing the realizations of the growth rate and

the signal. As we see, given the structure of the stochastic process considered, (∆Zt, s2,t, gt)

are sufficient to update the beliefs of the household about the underlying state in the last

period to the beliefs in the current period.

3.4 Equilibrium and Numerical Solution

We focus on a symmetric equilibrium in which all capital good producers initially own the

same amount of capital. This assumption implies that capital good producers make the same

investment choices and that intermediate good producers charge the same price and sell the

same quantity to the final good producers. In appendix B, we argue that the equilibrium

law of motion for aggregate variables can be derived from a planner’s problem, which we

describe below.

The planner maximizes lifetime utility of the representative household by selecting a se-

quence for investment, consumption, the capital stock and the value function (it, ct, kt+1, Vt+1)∞t=0,
17

subject to the same information restriction as the households, initial conditions and a func-

tion that maps the observed realizations of shocks into an aggregate capital stock (kt)
∞
t=0:18

max
(it,ct,kt+1,Vt+1)∞t=0

V0

s.t. ct + it =
ν − 1

ν
Ztk

α
t +

1

ν
Ztk

α

t

Vt = [(1− β)c
1−γ
η

t + βEt[V 1−γ
t+1 ]

1
η ]

η
1−γ

kt+1 = (1− δ)kt +G

(
it
kt

)
kt.

17These are functions of the realization of the stochastic process subject to the measurability restrictions
implied by the information structure.

18The aggregate capital is therefore measurable with respect to the households’ information set and does
not add new information to the signal extraction problem.
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In addition, the choice of Vt has to be finite for all t. An equilibrium is fully character-

ized when kt = kt. We solve the model numerically using global methods as described in

Appendix C.

3.5 Asset Prices

We can express the market value of firms as the present discounted value of corporate

payouts to households. In our economy, there are two types of firms making nonzero profits:

the capital good producers and the intermediate good producers. The per period profits of

a capital good producer are given by:

dcpt = rkt kt − it,

where rkt stands for the return to capital. The per period profits of an intermediate good

producer are given in equilibrium by:

dipt =
1

ν
yt.

Profits are a fixed fraction of the revenues of an intermediate good producing firm. Both

types of producers distribute these profits to households in every period. As a result, one

can express the market value of these two types of firms as follows:

pst = Et

[
∞∑
j=1

Λt,t+jd
s
t+j

]
s = {cp, ip}.

Here we denote by Λt,t+s the stochastic discount factor of the household between period

t and period t + s . The market value of the corporate sector is then the sum of these two

components. For future reference, it is convenient to further characterize this object. Based

on Hayashi (1982) it is easy to show that the equilibrium value of the corporate sector is

given by

pt =
1

(1− τ)a

(
it
kt

)τ
kt+1 +

1

ν
Et

[
∞∑
j=1

Λt,t+jyt+j

]
. (4)

Indeed, one can easily verify that in our model the equilibrium value of capital good

producers can be expressed as the product of marginal Q and the capital stock. The de-

composition of equation (4) has an intuitive interpretation. It tells us that, in equilibrium,

the value of the corporate sector is the sum of two components: the value of the capital

17



stock and the present discounted value of monopolistic rents.19 In the next section, we will

calibrate the model and study how these two components respond to fluctuations in µt and

σt.

4 Risk, Economic Growth and the Value of Corpora-

tions

4.1 Calibration

We set a model period to be a quarter. The parameters of our model are:

θ = [δ, a, b, τ, β,Ψ, γ, µ0, µ1, P
µ
0|0, P

µ
1|1, σ0, σ1, P

σ
0|0, P

σ
1|1, α, ν, σg]

The depreciation parameter δ is set to 0.025, leading to an annual depreciation rate of

roughly 10%. We follow the literature in calibrating a and b so that the deterministic bal-

anced growth path of our model coincides with that of an economy without adjustment costs

(Van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez, 2010).20 The param-

eter controlling the capital adjustment (τ) is set to 0.5, in the range of values considered

in the literature. The discount factor β is set to 0.994, a value that implies an average

annualized risk free-rate of 2.07%.21 Following Croce (2010), we set Ψ to 2 and γ to 10.22

We use the empirical results in Section 2 to calibrate the parameters of the shock process

Zt.
23 In accordance with our estimates, we set µ0 = 0.003, µ1 = 0.0045, σ0 = 0.0082

and σ1 = 0.0073. As a benchmark, we restrict the transition matrices of the two Markov

processes to be symmetric, and we assume that Pµj|j = Pσj|j. Thus, the two transition

matrices can be represented by a single parameter, denoted by ρ. We set ρ = 0.99, a value

that implies an average state duration of 25 years. The unbiased signal in our model stands

for all additional information that agents use to infer shifts in the mean of productivity

growth. We calibrate its precision so that the average speed of learning is 16 quarters.24

19Indeed, in our decentralization, the price of capital equals 1
(1−τ)a

(
it
kt

)τ
.

20We construct a deterministic balanced growth path around the average growth rate of TFP, which we
denote by µ.

21We solve the model repeatedly for different values of β until the average risk-free rate computed on
simulated data matches the target value. See Table 3 for additional details.

22A value of 2 for the IES and a coefficient of relative risk aversion of 10 are, for example, consistent
with the estimates obtained by Attanasio and Vissing-Jorgensen (2003).

23In order to be consistent, we reestimate the model in Section 2 restricting the autoregressive component
of TFP growth to be equal to zero.

24We simulate the signal extraction problem 100,000 times. We keep the mean growth rate fixed in the
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This number is consistent with the results in Edge, Laubach, and Williams (2007) and

Jorgenson, Ho, and Stiroh (2008).

We calibrate ν to 10, implying a markup of 10%. This value is in the range typically

considered in the business cycle literature for the whole U.S. economy.25 The remaining

parameter to be calibrated is α. In our model, the labor income share is given by

wtlt
yt

=
(ν − 1)

ν
(1− α), (5)

Because pure economic profits are treated as a reward to capital in U.S. national accounts,

we can calibrate α by matching a labor income share of 70% in line with U.S. data. This

strategy results in α = 0.22.

4.2 Unconditional Moments

Table 3 reports a set of model implied statistics for selected real and financial variables along

with their data counterparts. For comparison, we also report the results for two natural

benchmarks. We consider a version of our model in which agents have perfect information

over the TFP process (Full Info) and a version in which intermediate firms operate in

a competitive environment (No Rents).26 Under the calibration considered, our model

generates business cycle fluctuations for consumption, output and investment that are not

too far from the data. In particular, we obtain that consumption growth is less volatile than

output growth, while investment growth is more volatile, with relative magnitudes in line

with data observations. The model predicts a high degree of comovement of consumption

and investment growth with output growth. However it differs from the standard Real

Business Cycle model in that we obtain a relatively small correlation between consumption

and investment growth. This happens because changes in the beliefs over the trend growth

rate of TFP induce differential movements in aggregate investment and consumption.27

Finally, the model implies a small autocorrelation for the variables in growth rates, which

high regime for 100 periods. We then switch the regime to the low state and count the number of periods
it takes the filter to attach a probability of 0.9 to the low regime for the first time. We keep changing σg
until the average time it takes over the simulations is 16. The resulting value for σg is 0.0074.

25See for example Altig, Christiano, Eichenbaum, and Linde (2011) and their references.
26We recalibrate β in each case to keep the risk-free rate at 2.07 in order to make it easier to contrast

the three examples with regard to their asset pricing behavior.
27Indeed, a shock to the growth rate of TFP induces offsetting wealth and substitution effects on the

part of households. On the one hand, higher growth signals households’ higher income in the future, which
makes them more willing to reduce their savings and increase their consumption level today. On the other
hand, higher TFP growth implies a higher reward to savings today, which motivates households to save
more. Irrespective of which of these two effects prevails in equilibrium, consumption and investment growth
move in opposite directions conditional on a TFP “growth” shock.
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Table 3: Model Implied Moments for Selected Variables

σ(∆y) σ(∆c)
σ(∆y)

σ(∆i)
σ(∆y) ρ(∆y,∆c) ρ(∆y,∆i) ρ(∆i,∆c) ρ−1(∆y) ρ−1(∆c) ρ−1(∆i)

Data 1.00 0.79 2.69 0.70 0.69 0.60 0.34 0.23 0.50

Model 1.00 0.90 1.96 0.96 0.80 0.60 0.05 0.05 -0.04

Full Info 0.97 0.91 1.47 0.99 0.94 0.90 0.05 0.07 0.02

No Rents 0.90 0.89 1.94 0.89 0.82 0.47 0.06 0.05 -0.03

E[Re −Rf ] σ[Re −Rf ] ρ−1[Re −Rf ] E[Rf − 1] σ[Rf − 1] ρ−1[Rf − 1]

Data 4.49 15.89 0.02 2.07 2.6 0.61

Model 3.34 8.28 -0.06 2.07 1.63 0.87

Full Info 1.70 5.06 0.04 2.07 0.25 0.96

No Rents 3.52 5.00 0.43 2.07 2.12 0.87

Note: ∆Xt stands for the quarterly growth rate of variable X. Re is the annualized gross return on equity, while Rf is the
annualized gross return on a risk-free bond. We assume that equity is leveraged using a debt-to-equity ratio of 1. The data
figure for the volatility of the value-output ratio stands for the standard deviation of the fitted values in equation (3). Means
and standard deviations are reported in percentage terms. Model statistics are based on a long simulation (T=1000000). The
data column is based on quarterly observations (1960Q1-2010Q4). Statistics on the equity premium and on the risk-free rate
are calculated using annual data from 1948 to 2010, which we downloaded from Robert Shiller’s website
http://www.econ.yale.edu/∼shiller/data.htm.

is not surprising given its lack of a strong internal propagation mechanism.28

The model is also consistent with the first two moments of the equity premium in postwar

U.S. data. However, the mechanism through which we achieve a large and volatile equity

premium differs from that of other production-based versions of the long-run risk model.

Croce (2010), for example, generates a sizable equity premium by introducing a persistent

random component into the growth rate of productivity. This leads to covariation at low

frequencies between consumption growth and corporate payouts, therefore triggering the

long run-risk channel discussed in Bansal and Yaron (2004). In our model, this channel is

triggered by incomplete information. The Markov-Switching structure, in fact, imposes a

trade-off between the persistence and the volatility of µt. Under complete information, the

changes in the growth rate of corporate payouts would be too rare for agents to require

large premia on stocks.29 With incomplete information, though, what matters for the eq-

28This problem is shared by many simple business cycle models as discussed in Cogley and Nason (1995).
29As we use realized postwar growth rates in output to discipline our calibration, the model cannot

generate a high risk premium by triggering the rare disaster risk channel as in Gourio (2012).
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uity premium are the beliefs of agents regarding µt. In our model, these beliefs are more

volatile than µt because the learning process is influenced by high frequency variations in

TFP growth, in its volatility and in the signal. This generates additional risk from the

perspective of investors. The resulting effect on prices stands out clearly when comparing

the performance of our model to its full information benchmark since the latter generates a

sensibly lower equity premium (1.70% versus 3.34% implied by our model).

While still falling short on the volatility of the equity premium in the data, the calibrated

model substantially improves relative to the Full Information and the No Rents model. As

will be argued in more depth in the next section, incomplete information raises the sensitivity

of asset prices to σt, while monopolistic rents make them more sensitive to µt. A stronger

response of asset prices to economic fundamentals contribute to raising the unconditional

volatility of the equity premium. Finally, the model is able to generate the low volatility

and high persistence of the risk-free rate observed in U.S. postwar data. The mechanisms

through which this happens are well understood in the literature on the production-based

long-run risk model, see for example Croce (2010).

4.3 Growth, Volatility and the Value of Corporations

In the previous section, we discussed the performance of the model in reproducing key

unconditional moments. We now study the sensitivity of the value-output ratio to the first

two moments of TFP growth. For this purpose, and in view of the analysis of Section 2, it

is natural to study the model implied elasticities of the value-output ratio to the mean and

volatility of TFP growth. In what follows, we analyze the economic mechanisms through

which µt and σt influence the value-output ratio by means of impulse response functions

(IRFs) and through extensive sensitivity analysis. In Section 4.5, we will ask how far the

model goes in matching quantitatively these elasticities.

Figure 4 shows IRFs of selected variables to a positive change in µt. The top panel reports

the dynamics of TFP growth and the value-output ratio, while the bottom panel plots the

response of the expected stochastic discount factor and the expected average 5-year growth

rate of corporate payouts. The annualized growth rate of TFP increases by 1.5% and reverts

back to trend thereafter. After the switch, agents slowly learn about the transition to the

high-growth regime. Agents’ beliefs about µt, represented by the dotted line in the top-

left panel of the figure, steadily increase from quarter 1 to quarter 20, after which agents

become almost sure that a change in regime has occurred. During this period, we observe

a protracted increase in the value-output ratio. From a quantitative point of view, a 1.5%

increase in TFP growth is associated, at peak, with an 8% increase in the value-output

ratio.
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The bottom panel of Figure 4 captures the mechanism through which higher economic

growth induces an increase in the value-output ratio. As households learn about the switch

to the high-growth regime, they anticipate higher consumption growth for an extended

period of time. This positive wealth effect lowers the rate at which households discount

corporate payouts, as the bottom-left panel of the figure shows. Ceteris paribus, the decline

in the stochastic discount factor has a depressive effect on the value of corporations. How-

ever, higher TFP growth changes the expectations that households have regarding future

corporate payouts. Indeed, the bottom-right panel of the figure shows that long-run expec-

tations regarding the growth rate of corporate payouts slowly increase after the switch to

the high-growth regime. Households have thus an incentive to substitute from current to

future consumption by acquiring more securities, generating upward pressures on the value

of firms. Since under our calibration agents are not too averse to intertemporal substitution,

the latter effect dominates and the value-output ratio rises after a switch to the high-growth

regime.

Figure 4: IRFs to a Growth Switch
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Note: IRFs are calculated via simulation techniques. We simulate M = 25000 different realization of length T = 500. Each
simulation has the characteristic that the trend growth rate of TFP is in the low state between period 1 and period 400 and
switches to the high regime in period 401. After that, the simulations are not restricted with regard to the mean. The
volatility state is fixed to its low state throughout the simulations. The above figure report the mean across the Monte Carlo
replications as percentages with respect to period 400 for the expected discount factor and the value output ratio. The
growth rate of TFP and corporate payouts is reported in annualized terms. The average expected growth of corporate
payouts over 20 periods is shown relative to the average dividends in period 400. The black dotted lines report the IRFs for a
model with perfect competition in the markets for intermediate goods (ν =∞).

We can also observe that imperfect competition significantly raises the sensitivity of asset

prices to µt. As we can see from the dotted line in Figure 4, the No Rents model implies a
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response of the value-output ratio of only 1% at peak, sensibly smaller with respect to that

in our benchmark model. We can rationalize this difference across models by looking at the

behavior of expected corporate payouts growth in the bottom-right panel of the figure. In

our model, corporate payout growth is more responsive to µt relative to what happens in

the No Rents model. This result is best understood in terms of the decentralization of the

economy discussed in Section 3. In the No Rents model, the value of corporations equals

the value of capital good firms, while in our model the value of corporations also includes

the market value of intermediate good producers. These two sectors of the economy differ

in terms of their competitiveness. Capital good producers are identical to each other, while

intermediate good firms have traits that partly shield them from competitive pressures.

Once the growth rate of TFP increases, capital good producers have an incentive to invest.

As more producers invest, the marginal product of existing capital for every firms declines,

therefore eroding part of the profits induced by higher TFP growth. Firms operating in the

intermediate good sector, instead, are not affected by these competitive pressures. Thus,

their payouts growth is more responsive to changes in µt.

Figure 5 reports the response of the value-output ratio when the economy transits from

the low to the high volatility regime. Higher volatility of TFP growth is associated with

declining asset prices. In particular, the value-output ratio in our model falls by 3.5%. The

bottom panel of Figure 5 captures the major trade-off that higher volatility brings. An in-

crease in σt is associated by agents with more aggregate risk. As individuals are risk averse,

they have stronger incentives to demand shares in order to insure consumption fluctuations.

The expected stochastic discount factor, therefore, increases. However, households also re-

alize that corporate shares are now riskier securities. Indeed, as the bottom-right panel of

Figure 5 shows, the covariance between the stochastic discount factor and equity returns

declines.Therefore, households have an incentive to substitute corporate shares with current

consumption, and this puts downward pressure on share prices. Since the IES is sufficiently

large in our economy, this latter effect dominates, resulting in a negative association between

volatility and asset prices. It is also clear from the figure that incomplete information is

the key model element governing the sensitivity of asset prices to σt. Indeed, in the full

information model, the switch to the high volatility regime is associated with a 1% decline in

the value-output ratio, 3.5 times smaller with respect to our benchmark specification. This

happens because a change in the volatility is perceived differently by the agents in the two

models. In the full information set-up, the increase in the volatility of the transitory com-

ponent of TFP growth has almost no influence on risk, since the stochastic discount factor

is hardly affected by transitory TFP growth shocks. In our model, instead, an increase in σt

makes learning over µt more difficult and raises agents’ uncertainty over long-run growth.
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As a result, households demand a higher compensation to hold assets whose expected dis-

counted payouts are strongly influenced by µt. This variation in risk premia, absent in the

full information model, is the major driver of the response of the value-output ratio to σt.

Figure 5: IRFs to a Volatility Switch
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Note: IRFs are calculated via simulation techniques. We simulate M = 25000 different realization of length T = 500. Each
simulation has the characteristic that the volatility of TFP is in the low state between period 1 and period 400 and switches
to the high regime in period 401. After that, the simulations are not restricted with regard to the volatility. The mean
growth rate is fixed to its high state throughout the simulations. The above figure reports the mean across the Monte Carlo
replications as percentages with respect to period 400 for all series but the volatility. The black dotted lines report the IRFs
for a model with perfect information (σg = 0).

4.4 Sensitivity Analysis

We now briefly discuss the sensitivity of the results presented in the previous section to

our calibration. In order to do so, we construct the model implied elasticities of the value-

output ratio to µt and σt and study how these elasticities are affected when changing some

key parameters of the model. Let θ′ be a given value for our parameter vector. Conditional

on θ′, we simulate realizations of length T for µt, σt and for the value-output ratio. Given

these simulated series, we run the following linear projection:

pt
yt

= a + bµ̂t + cσ̂t + et.
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The coefficients of these linear projections, {b(θ′), c(θ′)}θ′ , are the model counterparts of

the elasticities computed in Section 2 using U.S. data.30 Moreover, they are an interesting

object to base our sensitivity analysis on since they give information on the sign and size

of the association between the value-output ratio, economic growth and volatility.

We organize our discussion around four key parameters: i) the elasticity of intertemporal

substitution (Ψ); ii) the elasticity of marginal Q with respect to the investment-capital

ratio (τ); iii) the elasticity of substitution between intermediate goods (ν); and iv) the

persistence of the Markov processes (ρ). Figure 6 reports the value of b when varying these

four parameters one at a time, with the red dotted line marking our benchmark calibration.

Figure 6: Sensitivity Analysis: Elasticity of Value-Output Ratio to µt
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Note: For each point in the parameter space, the elasticity of the value output ratio to µt is calculated according to the
procedure in Section 4.4. In the simulation, T is set to 25000000. The red dotted line marks the benchmark calibration.

The top-left panel shows that b is increasing in Ψ. This is in line with our discussion in the

previous section. Indeed, we have seen how a switch from the low- to the high-growth regime

brings in offsetting wealth and substitution effects on households. As agents become less

averse to intertemporal substitution (Ψ increases), the substitution effect becomes stronger,

and their demand of corporate shares becomes more sensitive to fluctuations in µt. As a

30In our simulations, µ̂t and σ̂t are the retrospective estimates of households. These differ, in principle,
from what an econometrician would obtain by estimating the system in (2) using data simulated from our
model. We have verified, though, that in practice the two produce almost identical quantitative results.
We have therefore decided to use households’ retrospective estimates when calculating the model implied
elasticities, since it substantially reduces the computational burden of the procedure.
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result, a 1% increase in the trend growth rate of TFP is associated with a stronger increase

in the value-output ratio. Notice that when Ψ is sufficiently small, b becomes negative. In

these situations, the wealth effect dominates the substitution effect, leading to a negative

association between economic growth and the value of corporations.

The next two panels of Figure 6 report the sensitivity of b with respect to τ and ν. We

can see that a higher τ is associated with a stronger response of asset prices to fluctuations

in µt, while a higher ν is associated with a smaller b. When τ is large, adjusting capital is

more costly from the perspective of capital good producers, who then have less incentives

to invest. Thus, after a shift in µt, their profits on existing capital are eroded less from the

process of capital accumulation. This implies that the value of capital good firms is more

sensitive to µt: when τ equals 2.5, a 1% increase in the trend growth rate of the economy is

associated with a 7% increase in the value-output ratio, almost double with respect to what

we obtain in our benchmark calibration. A similar phenomenon occurs when decreasing

ν. Indeed, we have seen that the present value of rents is the most volatile component of

asset prices in our model. As ν declines, the share of this component on the total value of

corporation increases, thus raising the sensitivity of the value-output ratio to µt.

The last panel of the Figure shows the sensitivity of b with respect to ρ. This is by

far the most important parameter in determining quantitatively the response of the value-

output ratio to fluctuations in economic growth. When the switch from the low to the

high TFP growth regime is perceived to be almost permanent (ρ = 0.999), a 1% increase

in µt is associated with a 12% increase in the value-output ratio. On the contrary, b is

almost 0 when ρ is equal to 0.95. This is in line with our previous discussion. When ρ is

high, households expect the growth rate of corporate payouts to be high for a long period

of time. Since households are forward looking, they have now stronger incentives to buy

corporate shares, and this raises the response of the value-output ratio. Notice also that

b is highly nonlinear in ρ around our benchmark parametrization. Even a small increase

in this parameter results in the elasticity of the value-output ratio to double or triple with

respect to our benchmark calibration.

Figure 7 reports the same experiment for the elasticity of the value-output ratio to σt.

The Figure confirms the above discussion. Higher Ψ is associated with a decline in c. Asset

prices are marginally more sensitive to volatility fluctuations when the supply of capital is

less elastic (τ is large) or when monopolistic rents are more relevant (ν small). Again, ρ is

the most important parameter governing the elasticity of the value-output ratio to σt. As ρ

passes from 0.99 to 0.999, the absolute value of c increases by almost 10 times.
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Figure 7: Sensitivity Analysis: Elasticity of Value-Output Ratio to σt
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4.5 Posterior Predictive Analysis

After having analyzed the economic mechanisms governing the relation between growth,

volatility and asset prices, we now assess the model’s quantitative performance along this di-

mension. For this purpose, we will ask how far the model implied elasticities b and c are from

the ones we estimated for the U.S. economy (Column 3 of Table 2). Because of the extreme

sensitivity of these elasticities to the value chosen for the persistence of µt and σt, we will

rely on posterior predictive analysis. In particular, let θ1 = [µ0, µ1, P
µ
0|0, P

µ
1|1, σ0, σ1, P

σ
0|0, P

σ
1|1]

and let θ−1 be the vector collecting the remaining structural parameters of our model, fixed

at their calibration values. Given a series of posterior draws for the TFP process parame-

ters, {θm1 }Mm=1, one can calculate {bmodel(θm1 , θ−1), cmodel(θm1 , θ−1)}Mm=1 and use those values

to characterize the posterior distribution of the model implied value-output ratio elastic-

ities. Because of the high computational burden involved when solving our equilibrium

model repeatedly, we evaluate the model implied elasticities at {θm1 }Mm=1 using the following

procedure:31

Posterior Draws for Model Implied Elasticities Let {θm1 }Mm=1 be a set of posterior

draws for the TFP growth process.

1. Given {θm1 }Mm=1 we obtain bounds on each parameter so that all elements of the se-

31In order to reduce the dimensionality of the problem, we estimate the system in (2) by imposing
symmetry on the transition matrices and by fixing µ0 + 1

2µ1 and σ0 + 1
2σ1 to their sample means. Thus, θ1

is a 4-dimensional object.
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quence lie in the set defined by those bounds. We denote this set by Θ1.

2. We compute the Smolyak collocation points for Θ1 as described in Krueger and Kuebler

(2003). We denote these collocation points by {θs1}Ss=1.

3. For each element in {θs1}Ss=1, we compute the model implied elasticities b(θs1, θ−1) and

c(θs1, θ−1) using the simulation procedure described in Section 4.4.

4. We fit a polynomial through the computed {bmodel(θs1, θ−1), cmodel(θs1, θ−1)}Ss=1. We

then use this polynomial to evaluate the model implied elasticities at the sequence

{θm1 }Mm=1.

Our exercise consists of assessing how far the coefficients of the linear projection in Table

2, obtained from actual U.S. data, lie in the tails of the model implied distributions for the

same objects.

Figure 8: Growth, Volatility and the Value of U.S. Corporations: Model vs. Data
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Note: The histogram reports the model implied elasticities of the value-output ratio to the mean and volatility of TFP
growth relative to their data counterparts. The red dotted lines report the posterior mean of these statistics. The figures are
constructed using 50000 draws from the posterior distribution of θ1.

The left panel of Figure 8 reports the posterior distribution of bmodel

bdata × 100. A value of

this statistic equal to 100 tells us that the model predicts the same elasticity estimated in

the data, while values smaller than 100 would imply a weaker association between economic

growth and the value-output ratio with respect to what we have estimated in the data.

We verify from the figure that the model is broadly consistent with the data along this
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dimension. Indeed, on average the model captures 20% of the relation between economic

growth and the value-output ratio (red vertical line in the Figure). Moreover, we can also

see that for reasonable parametrizations of the TFP process,32 the model is able to deliver

elasticities of the value-output ratio to the trend growth rate of TFP that are consistent

with the estimates in Table 2.

The right panel of Figure 8 plots the posterior distribution of cmodel

cdata × 100. The graph

shows that the model is less successful in accounting for the association between the value-

output ratio and the volatility of TFP growth. On average, in fact, it predicts that the

value-output ratio falls by 0.4% following a 1% increase in the standard deviation of TFP

growth, roughly 10% of what we have estimated in the data. Moreover, the histogram shows

that the model can account for at most 60% of the association between the value-output

ratio and the volatility of TFP growth.

5 Conclusion

In this paper we have uncovered a striking association between the first two moments of

TFP growth and the value of corporations in postwar U.S. data. Persistent fluctuations in

the mean and volatility of TFP growth predict two-thirds of the medium-term variation in

the value-output ratio. This indicator rises strongly after an increase in the trend growth

rate of TFP, while it declines substantially following an increase in the volatility of TFP

growth. A possible explanation for this association, suggested elsewhere in the literature,

is that movements in aggregate productivity influence investors’ expectations of future cor-

porate payouts as well as the rate at which they discount them. This explanation is put

under scrutiny by us. We developed a general equilibrium model with production featur-

ing Markov-Switching fluctuations in the mean and volatility of TFP growth, incomplete

information, capital adjustment costs, monopolistic competition and recursive preferences.

Under plausible calibrations, the model is consistent with the behavior of several U.S. real

and financial indicators during the postwar period. It accounts on average for roughly 20%

(9%) of the association between the mean (volatility) of TFP growth and the value-output

ratio. For reasonable parametrizations of the TFP process, the model predicts an elasticity

of the value-output ratio to economic growth that is in line with the data, while it predicts

an elasticity of the value-output ratio to the volatility of TFP growth that is 60% of the

data observation.

It is important to stress the ex-post nature of our analysis. This has at least two important

32By reasonable parametrization, we mean regions of the parameter space that have positive mass in the
posterior distribution.

29



implications. First of all, our estimates for the TFP process are retrospective and this may

contribute to muting some of the channels analyzed in this paper. This is surely the case

for the implications of incomplete information. Indeed, while a two-state process for the

mean of TFP growth fits postwar U.S. data well, agents may still consider states that never

occurred during this period when forming their expectations. If that was the case, a model

restricted to two states necessarily bounds the amount of perceived risk over long-run growth,

which dampens the response of risk premia to a change in the volatility of TFP growth.

This particular aspect may explain why the model does not generate a strong sensitivity

of the value-output ratio to second moments. Secondly, agents in our model have perfect

knowledge of the parameters governing the growth and volatility regimes. This assumption

rules out important sources of history dependence. With uncertainty on the persistence

of the Markov processes, for example, agents’ perception about these parameters depends

on previous realizations of the process. Our approach may thus misrepresent how agents

interpreted these fluctuations when solving their decision problem in real time. This may

severely affect our results, since the sensitivity of asset prices to shifts in the first two

moments of TFP growth depends crucially on their perceived duration.

While difficult to discipline empirically, we believe that an analysis that relaxes these

two types of restrictions would further enhance our understanding of the medium-term

movements in the value of corporations.
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Online Appendix

A Empirical Analysis

A.1 Data Definition and Sources

A.1.1 TFP Growth

Quarterly data on output growth and hours growth for the U.S. Business Sector are from

the BLS, respectively Series id PRS85006042 and PRS85006032. We construct an annual

series for the growth rate of the U.S. Business Sector capital stock using NIPA Tables. In

particular, from Table 6.2, we calculate the growth rate of real private fixed assets for the

following sectors:

• Corporate

• Sole Proprietorships

• Partnerships

We use Table 7.2A and 7.2B from NIPA to construct the growth rate of real fixed assets of

government sponsored enterprises (GSE). We construct the growth rate of real fixed assets

for the Business Sector as follows:

∆kbus = θcorp∆kcorp + θpropr∆kpropr + θpart∆kpart + θgse∆kgse,

where θj is the share of subsector j in total fixed assets of the Business Sector.33

Next, we use the following formula to calculate TFP growth for the Business Sector:34

∆zt =
∆yt − α∆kt − (1− α)∆lt

1− α

We choose a value of α equal to 0.30, as it is customary in the macroeconomic literature.35

33That is, we take fixed assets measured at current cost in sector j, divide by the same figure for the
entire Business Sector, and average over the time period considered.

34In order to reconcile the frequency of output and hours with those of capital, we linearly interpolate
the growth rate of capital and convert it at quarterly frequencies.

35We also considered a version of TFP growth with time-varying factor shares. Data on labor shares
for the Business Sector are from BLS, Series id PRS85006173. Our results did not change, both from a
qualitative and quantitative standpoint.
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A.1.2 Market Value of U.S. Corporations

Our indicator of value is the sum of two components, the value of equities and the value

of net debt for the U.S. corporate sector. We use data from the Federal Reserve’s Flow of

Funds Accounts to obtain these two time series. In particular:

• Market value of Corporate Equities: We take the data from Table L.213 of the Flow

of Funds (“Market Value of Domestic Corporations”).

• Net Debt: We construct a net debt series for all domestic sectors issuing corporate

equities. The sectors issuing corporate equities can be obtained from Table F.213 of

the Flow of Funds. These are:

– Non Financial Corporate Business (Table L.201).

– Domestic Financial Corporations (Tables L.110, L.114, L.115, L.121, L.126, L.122,

L.127, L.128, L.129).36

We define net debt as the difference between total debt liabilities and total debt assets,

where “debt” includes any financial instrument that is not corporate equity, mutual

funds holdings that are equity and the equity component of “miscellaneous claims.”37

We then aggregate to obtain the net debt series. Notice that the net debt series

computed consists of instruments that are recorded mainly at book value in the Flow

of Funds.38

36Domestic financial corporations issuing equities are, in order: i) U.S. chartered depository institutions;
ii) property-casualty insurance companies; iii) life insurance companies; iv) close-end funds and exchange
traded funds; v) REITS; vi) government-sponsored enterprises; vii) brokers and dealers; viii) holding com-
panies; and ix) funding companies.

37We follow the procedure described in the online appendix of McGrattan and Prescott (2005) in order
to deduce the equity component of mutual funds holdings and miscellaneous claims. For this purpose, we
use Flow of Funds Tables L.229, L.230, L.231.

38Hall (2001) proposes a procedure to correct for this issue. McGrattan and Prescott (2005) show that
correcting for this issue results in only minor changes to the sample 1960-2001 (see Figure A.3 in their online
appendix).
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A.2 Univariate model

We model TFP growth as follows:

∆Zt = µt + φ [∆Zt−1 − µt−1] + σtεt

µt = µ0 + µ1s1,t

σt = σ0 + σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

We collect in θ = [µ0, µ1, σ0, σ1, φ, P1,1,µ, P2,2,µ, P1,1,σ, P2,2,σ] the parameters to be esti-

mated. We use Bayesian methods to conduct inference over θ. Given prior information

on the parameters, represented by the distribution p(θ), and given the likelihood function

p({∆Zt}Tt=2|θ,∆Z1), the posterior distribution of θ is found using Bayes’ rule:

p(θ|{∆Zt}Tt=1) =
p(θ)p({∆Zt}Tt=1|θ)
p({∆Zt}Tt=1)

The parametrization of the prior distribution is given in Table 1. Functional forms are

chosen for tractability. We center the prior on µ0 and µ1 so that, on average, the growth

rate of TFP is 2% at an annual level. In the low-growth regime, TFP growth is 60% of the

high-growth regime. We center the prior on σ0 and σ1 so that the the standard deviation of

TFP growth is on average 4%. In the low volatility regime, the standard deviation of TFP

growth is on average 60% that of the high volatility regime. We center the prior of φ at zero,

reflecting beliefs of low autocorrelation of TFP growth. Finally, the prior on the transition

probabilities is centered so that the expected duration of a regime is approximately 15 years.

A better way of interpreting our prior is to look at Table 4, which reports prior predictive

checks. Essentially, our prior is that TFP growth has very low autocorrelation, with small

and very persistent time variation in the mean. Moreover, we can verify from the table that

our prior is quite diffused, as the standard deviations of the statistics show.

We use a Random Walk Metropolis Hastings (RWMH) algorithm to sample from the

posterior of θ. We follow common practice in choosing the following proposal density:

θproposal ∼ N (θi, cH−1),
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where θi is the state of the Markov Chain at iteration i and H−1 is the inverse Hessian of

the log-posterior density evaluated at the posterior mode. The scaling factor c is chosen

so that our RWMH algorithm has an acceptance rate of approximately 30%. We generate

N = 100000 draws and discard the first 20000 when computing posterior statistics.39

Table 4: Prior Predictive Checks

Statistic MS-Model

Mean(∆Zt)
2.00
(1.10)

Stdev(∆Zt)
4.42
(4.50)

Acorr(∆Zt)
0.05
(0.53)

Expected Duration of Regimes
10

(80)

Note: Prior Predictive Checks are calculated as follows: 1) generate a random draw of the model’s parameters θm from p(θ);
2) given θm, use the Markov-Switching model to compute a realization (T = 10000) for ∆Zt; 3) compute statistics on the
generated sample; 4) repeat this procedure M = 10000 times and report mean and standard deviation (in parenthesis) of
each statistic computed in 3). Expected duration of a regime is reported in years.

39We perform several tests confirming that our choice of N yields an accurate posterior approximation.
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A.3 Multivariate Model

The multivariate analysis is based on the following model:

[
∆Zt

∆Yt

]
=

[
µt

µt

]
+ Φ

([
∆Zt−1 − µt−1

∆Yt−1 − µt−1

])
+ Σtet

µt = µ0 + µ1s1,t

Σt = Σ0 + Σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

We include in ∆Yt the growth rate of aggregate consumption per hour and the growth

rate of real compensation per hour in the Non Farm Business Sector. We follow Cogley and

Sargent (2005) in parametrizing the matrix Σt as follows:

Σt = BΣ̂(s2,t)

with B being a lower triangular matrix with ones on the main diagonal and Σ̂(s2,t) a

diagonal matrix whose (j, j) element evolves as follows:

σj,t = σj,0 + σj,1s2,t

Given these restrictions, the parameters to be estimated are 25. As in the previous section,

we use Bayesian methods to estimate the above model. In particular, we sample from the

posterior distribution of the model’s parameter using a Metropolis-within-Gibbs algorithm.

Our posterior simulator has four main steps:

1. Sample {s1,t, s2,t}Tt=1 given the data and the model’s parameters using the Kim-Hamilton

smoother (Kim and Nelson, 1999);

2. Sample Φ conditional on {s1,t, s2,t}Tt=1 and the other model’s parameters from a stan-

dard linear Bayesian regression with conjugate priors;

3. Sample the lower diagonal elements of B conditional on {s1,t, s2,t}Tt=1 and the other

model’s parameters from a system of unrelated regressions with conjugate priors, see

Cogley and Sargent (2005);

4. Sample the parameters [µ0, µ1, {σj,0, σj,1}3
j=1, P1,1,µ, P2,2,µ, P1,1,σ, P2,2,σ] using a Metropo-

lis step, with proposal density constructed in the same way as in Appendix A.2
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The prior for the parameters governing µt and σj,t is the same as the one described in

the previous section, while the priors on the remaining parameters are fairly diffuse. We

generate 100000 draws from the posterior and discard the first 20000 when computing

posterior statistics.
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B Equilibrium and Auxiliary Planner’s Problem

In this appendix, we are going to

• formally define an equilibrium for our model;

• characterize some of its properties that are useful for the computation;

• describe the Auxiliary Planner’s Problem utilized in the numerical solution;

• explain how we choose the state variables during computation to minimize the com-

putational burden.

B.1 Equilibrium

An equilibrium of our economy are sequences (depending on realizations of the stochastic

process) of quantities 40

(kt, (kj,t)j∈[0,1], it, (lj,t)j∈[0,1], (dj,t)j∈[0,1], (yj,t)j∈[0,1], (ŷj,t)j∈[0,1], (ωj,t)j∈[0,1], yt, ct, ωt)
∞
t=0,

prices (rt, wt, (Pj,t)j∈[0,1], (pj,t)j∈[0,1], p̄t, p
k
t , dt)

∞
t=0, value functions (Vt)

∞
t=0 and discount factors

(Λ0,t)
∞
t=0 such that

• (Vt)
∞
t=0, ((ωj,t)j∈[0,1], ωt)

∞
t=0, (ct)

∞
t=0 solves the household’s problem given

(wt, (dj,t)j∈[0,1], (Pj,t)j∈[0,1], p
k
t , dt)

∞
t=0:

max
(Ṽt)∞t=0,((ω̃j,t)j∈[0,1])

∞
t=0,(c̃t)

∞
t=0,(d̃t)

∞
t=0

Ṽ0

s.t. Ṽt = [(1− β)c̃
1−γ
η

t + βEt[Ṽ
1−γ
t+1 ]

1
η ]

η
1−γ

c̃t +

∫
Pj,tω̃j,t+1dj + ωt+1p

k
t = wt +

∫
(Pj,t + dj,t)ω̃j,tdj + ωt(dt + pkt )

and a no Ponzi condition for ω and finiteness for Ṽt;

• ∀j (dj,t, kj,t, lj,t, pj,t)
∞
t=0 solve intermediate good producer j’s problem given

(rt, wt, pi,t)i∈[0,1]\{j}, p̄t)
∞
t=0, (Λ0,t)

∞
t=0 and (ŷj,t)j∈[0,1]:

max
(d̃j,t,k̃j,t,l̃j,t,p̃j,t)∞t=0

E0

∞∑
t=0

Λ0,td̃j,t

40ŷj,t is the demand function for good j and not a number.
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s.t. d̃j,t = ŷj,t(p̃j,t)
p̃j,t
p̄t
− wtl̃j,t − rtk̃j,t

• (kt+1, it)
∞
t=0 solves the capital good producers problem given rt:

max
(̃it,k̃t+1)∞t=0

E0

∞∑
t=0

Λ0,trtk̃t − ĩt

k̃t+1 = (1− δ)k̃t +G

(
ĩt

k̃t

)
• ∀t (yt, yj,t)j∈[0,1] given p̄t, (pj,t)j∈[0,1] solve the final good producers problem

max
ỹt,(ỹj,t)j∈[0,1]

p̄tỹt −
∫
pj,tỹj,tdj

ỹt ≤
[∫

y
ν−1
ν

j,t dj

] ν
ν−1

and

(ŷj,t)j∈[0,1]

are consistent with pointwise maximization of the final good producer given any chosen

price p ∈ Rt by intermediate producer j given p̄t, (pj,t)j∈[0,1]\{j}

• markets clear: ∀t, h ∫
lj,tdj = 1∫
ωj,tdj = 1

ωt = 1

ŷj,t(pj,t) = yj,t

ct +

∫
ij,tdj = yt

kt =

∫
kj,tdj

• The discount factor of the firm fulfills Λ0,t = Πt−1
s=0Λs,s+1 where Λt,t+1 = β

(
ct+1

ct

)− 1
ψ V

(1−γ)(1− 1
η )

t+1

Et[V
1−γ
t+1 ]

1− 1
η

.41

41This condition could be easily derived from assuming there is a full set of Arrow securities in zero net
supply. In order not to further expend the notation, we directly impose the condition on the discount factor.
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We will focus on a symmetric equilibrium in the following. It then implies that prices and

capital service choices are the same for all intermediate good producers.

B.2 Partial Characterization and Auxiliary Planner’s Problem

It is well known in the literature and easy to check that the final good producer problem

results in the following demand for intermediate good i in equilibrium:
pj,t
p̄t

(
pj,t
p̄t

)−ν
Ȳt, where

Ȳt is demand and equal to output in equilibrium and p̄t =
[∫ 1

0
p1−ν
j,t dj

] 1
1−ν

. Imposing this

in any intermediate good producing firm’s problem and combining it with the problem of a

capital good producer,42 we get as a representative firm’s problem

max
kj,t,ij,t,lj,t,Pj,t

E0

∑
t=0

Λ0,t[
pj,t
p̄t

(
pj,t
p̄t

)−ν
ȳ − ij,t − wtlj,t]

s.t.

(
pj,t
p̄t

)−ν
ȳt = F (kj,t, Ztlj,t)

kj,t+1 = (1− δ)kj,t +G(
ij,t
kj,t

)kj,t.

We continue by taking first-order conditions (We drop the j index for now.). Let λt be the

multiplier on the first constraint and µt on the second.

FOC:

(pt) Et[Λ0,t(1− ν)

(
pt
p̄t

)−ν
ȳt
p̄t
− λt(−νpt

(
pt
p̄t

)−ν
ȳt)] = 0

(it) Et[−Λ0,t + µtG
′(
it
kt

)] = 0

(kt) Et−1[−{µt−1}] + Et−1[λtFK,t + µt(1− δ +G(
it
kt

)−G′( it
kt

))
it
kt

] = 0

(lt) Et[Λ0,t{−wt}+ λtFL,t] = 0

FK,t and FL,t denote the derivatives of F with respect to K and L given period t inputs.

Imposing a symmetric equilibrium (all intermediate prices are the same) and using qt = 1
G′t

:

(pt) Et[−
(1− ν)

ν
Λ0,t] = Et[λt]

(it) Et[−Λ0,t +
µt
qt

] = 0

42A intermediate good producer’s problem is static and the market for capital services is competitive. In
addition, we assume a symmetric equilibrium so that the capital stock and capital and labor services are the
same across firms. Therefore, we can combine the two problems without changing equilibrium allocations.
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(kt) Et−1[−{µt−1}] + Et−1[λtFK,t + µt(1− δ +G(
it
kt

)−
it
kt

qt
] = 0

(lt) Et[{−wt} −
(1− ν)

ν
FL,t] = 0

Combining further and dropping the expectation operators where not necessary:

wt =
(ν − 1)

ν
FL,t

Λ0,tqt = µt

−(1− ν)

ν
Λ0,t = λt

qt−1 = Et−1[Λt−1,t[
ν − 1

ν
FK,t + qt(1− δ +G(

it
kt

))− it
kt

]]

The last equation is the Euler equation for capital accumulation which we will target

in the computation. The reader should notice the distortion terms ν−1
ν

for capital and

labor compared to the ”‘standard”’ Euler equation in a competitive model. The price of

the final good in each period is set to one for simplicity. The total profits of the two

types of firms combined can be seen to be (assuming a Cobb-Douglas production function)

F (kt, Ztlt) ∗ (α+ 1−α
ν

)− It. It is easy to see that 1−α
ν
F (kt, Ztlt)− It is the share of the profit

collected by the capital good producers while the remaining part of the 1
ν
F (kt, Ztlt) is the

profit of each intermediate good producer.

After these derivations it is easy to see now that the auxiliary planner’s problem defined in

the main text leads to the same Euler equation as the one of the firm if we impose symmetry.

Given that also the resource constraints are the same we see that the symmetric equilibrium

and the planner’s problem result in the same allocations. If we solve the latter we can as

usual use first order conditions to obtain prices.

B.3 State Space Selection for the Computation

In order to solve the model numerically using the planner’s problem, we normalize all quan-

tities that grow over time - consumption, investment and capital - and the value function

in period t by Zt. To be more specific, if Xt is the value of X ∈ {c, i, k̄, k} in period t,

we define X̃t = Xt
Zt
. Normalizing this way we get the following first-order conditions for the
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planner’s problem, where we also normalize the multipliers accordingly.43

wt =
(ν − 1)

ν
FL(K̃t, Lt)

Λ0,tqt = µt

−(1− ν)

ν
Λ̃0,t = λ̃t

qt−1 = Et−1Λ̃t−1,t[
ν − 1

ν
FK + qt(1− δ +G(

ĩt

k̃t
))− ĩt

k̃t
]

Λ̃t,t+1 = β

(
Zt+1

Zt
c̃t+1

c̃t

)− 1
ψ
Ṽ

(1−γ)(1− 1
η

)

t+1

Et[Ṽ
1−γ
t+1 ]1−

1
η

k̃t+1
Zt+1

Zt
= (1− δ)k̃t +G(

ĩt

k̃t
)

ỹt =
1

ν
˜̄kαt +

ν − 1

ν
k̃αt

Ṽt = [(1− β)c̃
1−γ
η

t + βEt[
Zt+1

Zt
Ṽ 1−γ
t+1 ]

1
η ]

η
1−γ .

It should be noted that Zt drops out everywhere beside in the ratio ∆Zt+1 = Zt+1

Zt
. Further-

more, ∆Zt+1 factors out in the discount factor and the value function. It follows that Zt does

not influence the value of the normalized variables solving the equations beyond the effect it

might have on the expectation for ∆Zt+1. We therefore use the beliefs after updating using

Zt, gt and s2,t as a state variable. This allows us to drop Zt and gt as states when solving

the model in its normalized form. We have to incorporate the possible realizations of the

shocks and beliefs into the transition probabilities only when taking expectations. We are

left with both capital stocks ˜̄kt, k̃t, updated beliefs µ̂t and the state of the volatility shock

s2,t. But once the Euler equation for capital was derived while correctly distinguishing the

two capital stocks, we can impose K̃t = k̃t without changing the results. This allows us to

drop one capital stock in computing the solution, leaving us with two continuous and one

discrete state variable for the purpose of numerically solving the normalized problem of the

planner.

43Assuming F is Cobb-Douglas and of degree 1, FL, FK are of degree 0. It is also the case that ĩt
k̃t

= it
kt

,

which takes care of normalizing q.
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C Computation - Projection

We follow Krueger and Kuebler (2003) by applying a Smolyak collocation method. Our sys-

tem of state variables contain the capital stock in the beginning of a period and the belief

about the state of the long run component of technology growth after observing the shock

and the signal. In addition, we have a state variable taking two values for the variance,

and we therefore use two sets of polynomials, one for the high and one for the low volatility

regime, to approximate policy and value functions.44 We outline the applied procedure in

the following with references to more detailed descriptions. To solve for the coefficients of

the polynomials, we use a time iteration procedure for the investment decision and the value

function.

• Step 0: Define a tolerance (we used 10−5 but checked for the benchmark calibration

that the results do not change significantly, if we use 10−6 instead). Select an upper

and lower bound for capital and the belief to define the intervals the approximation

should focus on. Compute the collocation points as described in Krueger and Kuebler

(2003). For the baseline problem, we need to fit the investment policy function and

the value function. As an initial guess, we use constant functions at the deterministic

steady-state levels of these variables (we later used the approximations obtained from

previous solutions as an initial guess). Denote this initial guess by V 0
p,i and I0

p,i for

i = 1, 2, where i = 1 is the low variance state and i = 2 the high variance state. Set

n=1, Norm=10. Go to Step 1.

• Step 1: Enter iteration n. Calculate Inp,i(x) by using the normalized Euler equation

for capital of the planner imposing equilibrium conditions (especially k = K) in each

point x of the grid and using In−1
p,i to determine policy choices in the next period. For

the computation of the expectation, see below. Go to step 2.

• Step 2: Use Inp,i(x) to obtain V n
p,i(x) using the budget constraint and the definition of

V and V n−1
p,i for the values in the next period. Go to step 3.

• Step 3: Use the interpolation rule as described in Krueger and Kuebler (2003) to

obtain the approximation polynomials V n
p,i and Inp,i for i = 1, 2. Go to step 4.

• Step 4: Compute Norm as the maximum norm of the difference of the values in

the collocation for this and the previous approximation normalizing by the previous

44We refer the reader to the model appendix for the arguments on why these states suffice.
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approximation. If the Norm is smaller than the tolerance end, otherwise set n=n+1

and go to Step 1.

After solving for the investment policy function, the value function and the law of motion

for K, we compute Euler equation errors on a grid different from the one used to solve

the model to check the quality of the approximation. For taking the expectation, we used

that conditional on the beliefs and the realization of the volatility state the distribution of

productivity growth shocks is normal and applied a five point Gauss Hermite Quadrature

formula ((Judd, 1998) pages 261-263). We also checked with more points resulting only in

very mild changes in the results. To obtain the full approximation, we use the transition

matrix for the stochastic volatility and Bayes’ rule to update beliefs given technology growth

shocks and signals. In practice we use an accelerator method as described in Judd (1998)

to speed up the computation.

Finally, we also need to compute asset pricing functions. In order to do this, we follow the

same procedure as before for investment and value functions. We fix those solutions and

then iterate on the price using the Euler equations for the specific asset we want to value

until convergence.
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