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Abstract

We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dy-

namic stochastic general equilibrium (DSGE) models, wherein a particle approximation

to the posterior is built iteratively through tempering the likelihood. Using three ex-

amples consisting of an artificial state-space model, the Smets and Wouters (2007)

model, and Schmitt-Grohé and Uribe’s (2012) news shock model we show that the

SMC algorithm is better suited for multi-modal and irregular posterior distributions

than the widely-used random walk Metropolis-Hastings algorithm. Unlike standard

Markov chain Monte Carlo (MCMC) techniques, the SMC algorithm is well suited for

parallel computing.

JEL CLASSIFICATION: C11, C15, E10

KEY WORDS: Bayesian Analysis, DSGE Models, Monte Carlo Methods, Parallel Comput-

ing
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1 Introduction

Bayesian methods are now widely used to estimate dynamic stochastic general equilibrium

(DSGE) models. Bayesian methods combine the likelihood distribution embodied in a DSGE

model with a prior distribution for the parameters to yield a posterior distribution that can

then be used for inference. Since it is typically infeasible to compute moments of the poste-

rior distribution analytically, simulation methods must be used for posterior inference and

decision making. Since Schorfheide (2000) and Otrok (2001), the random walk Metropolis-

Hastings (RWMH) algorithm – an iterative simulation technique belonging to the class of al-

gorithms known as Markov chain Monte Carlo (MCMC) algorithms – has been the workhorse

simulator for DSGE models. Herbst (2011) reports that 95% of papers published from 2005

- 2010 in eight top economics journals use the RWMH algorithm to facilitate Bayesian esti-

mation of DSGE models.

As the complexity of DSGE models that are being analyzed with Bayesian methods has

increased over time, the efficacy of the RWMH algorithm has declined. For instance, it is

well documented for DSGE models, e.g., Chib and Ramamurthy (2010) and Herbst (2011),

that the sequences of DSGE model parameter draws generated by the RWMH algorithm can

be very slow to converge to the posterior distribution. This problem is not limited to DSGE

model applications; it is important for many areas of applied Bayesian research. Parameter

draws may exhibit high serial correlation such that averages of these draws converge very

slowly to moments of posterior distributions, or the algorithm may get stuck near local mode

and fail to explore the posterior distribution in its entirety (see, for instance, Neal (2003)).

The contribution of this paper is to explore an alternative class of algorithms, namely,

so-called sequential Monte Carlo (SMC) algorithms, to generate draws from posterior distri-

butions associated with DSGE models. SMC techniques are usually associated with solving

intractable integration problems (such as filtering nonlinear state space systems); however,

they can be used to estimate static model parameters – a point raised by Chopin (2004). The

SMC method employed here amounts to recursively constructing importance samplers for a

sequence of distributions that begin at an easy-to-sample initial distribution and end at the

posterior, supplemented by a series of intermediate “bridge” distributions. The draws from
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these distributions are called particles and each particle is associated with an importance

weight. The particles that represent bridge distribution n − 1 are “mutated” into particles

for bridge distribution n using a Metropolis-Hastings step.

We tailor the SMC algorithm toward DSGE model applications and illustrate its per-

formance in three applications: the estimation of a stylized small-scale state-space model

with cross-coefficient restrictions that generate an identification problem; the estimation of

the widely used Smets and Wouters (2007) model (hereafter SW model); and the estimation

of a DSGE model with anticipated technology (news) shocks developed by Schmitt-Grohé

and Uribe (2012) (hereafter SGU model). We find that the SMC algorithm is more stable

than the RWMH algorithm if applied repeatedly to generate draws from the same poste-

rior distribution, providing a better approximation of multi-modal posterior distributions,

in particular. This is important in complex DSGE models, such as the SGU model and the

SW model (under relatively uninformative prior distributions).

Ours is not the first paper to explore alternatives to the version of the RWMH algorithm

that has become standard in DSGE model applications. Several papers have tried to address

the problematic aspects of the RWMH, including Chib and Ramamurthy (2010), Curdia and

Reis (2010), Kohn, Giordani, and Strid (2010), and Herbst (2011). These papers propose al-

ternative MCMC algorithms that improve upon the standard single-block RWMH algorithm

by grouping parameters into blocks and cycling over conditional posterior distributions (the

so-called Metropolis-within-Gibbs algorithm) and by changing the proposal distribution that

is used to generate proposed draws in the Metropolis steps. Each of these algorithms, how-

ever, is an MCMC technique and remains to some extent susceptible to the above criticism

of highly correlated draws. Moreover, since MCMC algorithms are inherently sequential,

the evaluation of the likelihood function becomes a bottleneck in the estimation of DSGE

models as the model complexity increases.

On the computational front, multiple processor and core environments are becoming

more readily available. While likelihood evaluation routines and MCMC algorithms can be

written to take advantage of this,1 neither is “embarrassingly parallelizable,” that is, neither

1For instance, one can run separate Markov chains on each processor and subsequently merge the draws.
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naturally exploits the parallel computing framework. This computational challenge might

bias researchers to simulate too few draws in their MCMC chains, exacerbating the statistical

problem discussed above. SMC algorithms, on the other hand, can easily take advantage of a

parallel processing environment. In the extreme case, each draw (or particle) from the initial

distribution can be assigned to a separate processor and then converted into a sequence of

draws from the “bridge” distributions. True, some communication between the processors is

necessary to normalize the particle weights and to potentially eliminate particle degeneracy

by a re-sampling step. But the most time-consuming task, namely the evaluation of the

likelihood function, can be executed in parallel.

An extensive survey of the theory and applications of SMC methods is provided by Creal

(2012). So far as we know, ours is the second paper that uses SMC to implement Bayesian

inference in DSGE models. Creal (2007) presents a basic algorithm, which he applies to the

small-scale DSGE model of Rabanal and Rubio-Ramı́rez (2005). We extend his algorithm in

two important ways. First, our algorithm offers more flexibility during the particle mutation

phase, which is crucial to be able to explore the complicated posterior surfaces that arise

in large-scale DSGE models such as the SW and the SGU model. By grouping parameters

into blocks and generating proposal draws from mixture distributions, we are building on

insights from the literature on MCMC methods for DSGE models. Second, we make explicit

the use of a large parallel framework, which is necessary for the practical implementation of

this algorithm on modern DSGE models.

Durham and Geweke (2012) employ a graphical processing unit (GPU) to implement

an SMC algorithm using the predictive likelihood distribution as the bridge distribution.

The authors propose a version of the SMC algorithm that divides particles into groups and

carries out independent computations for each group. The variation across groups provides

a measure of numerical accuracy. Durham and Geweke (2012) also propose an adaptive

tuning scheme for the sequence of the bridge distributions and the proposal distributions

used in the particle mutation step. They apply their SMC algorithm to an EGARCH model

as well as several other small-scale reduced-form time series models, but not to large-scale

DSGE models. In our experience, the DSGE model application necessitates a more tailored
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mutation step than the one included in Durham and Geweke’s (2012) generic version of the

SMC algorithm.

The remainder of this paper is organized as follows. To motivate the use of SMC algo-

rithms, we provide a stylized example of a state-space model with cross-coefficient restrictions

in Section 2. This model generates a complicated posterior density that is difficult to explore

with MCMC methods. In Section 3 we review the basic insights underlying SMC methods.

The SMC algorithm tailored to DSGE model applications is presented in Section 4. Section 5

contains three numerical illustrations, one pertaining to the stylized model of Section 2 and

two based on DSGE model posteriors obtained from actual U.S. data. Section 6 concludes.

2 Why Is Sampling from DSGE Model Posteriors Dif-

ficult?

The term DSGE model is typically used to refer to a broad class of dynamic macroeconomic

models that spans the standard neoclassical growth model discussed in King, Plosser, and

Rebelo (1988) as well as the monetary model with numerous real and nominal frictions

developed by Christiano, Eichenbaum, and Evans (2005). A common feature of these models

is that decision rules of economic agents are derived from assumptions about preferences and

technologies by solving intertemporal optimization problems. Moreover, agents potentially

face uncertainty with respect to total factor productivity, for instance, or the nominal interest

rate set by a central bank. This uncertainty is generated by exogenous stochastic processes

that shift technology, for example, or generate unanticipated deviations from a central bank’s

interest-rate feedback rule.

Conditional on distributional assumptions for the exogenous shocks, the DSGE model

generates a joint probability distribution for the endogenous model variables such as output,

consumption, inflation, and interest rates. From an econometric perspective the DSGE model

solution takes the form of a state-space model with cross-coefficient restrictions. While, in

general, this state-space model may be nonlinear, in our illustrations we focus on the case
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in which the DSGE model has been solved using a linear approximation technique. The

state-transition equation of the resulting state-space system can be written as

st = Φ1(θ)st−1 + Φε(θ)εt (1)

and the measurement equation is

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st. (2)

Here, yt denotes the observables and st is a vector of (unobserved) state variables whose law

of motion is described by (1). The vector εt represents innovations to the exogenous shock

processes. Most importantly, the system matrices Φi(·) and Ψj(·) are complicated nonlinear

functions of the underlying DSGE model parameters θ. If the vector of innovations εt has

a normal distribution, then the likelihood function, which we denote by p(Y |θ), can be

evaluated with the Kalman filter.2 For Bayesian inference the likelihood function p(Y |θ) is

combined with a prior density, which we denote by p(θ). The main object of interest is the

posterior density, which is given by

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, where p(Y ) =

∫
p(Y |θ)p(θdθ. (3)

To illustrate the difficulties that can arise when generating draws from the posterior

density p(θ|Y ), consider the following stylized state-space model discussed in Schorfheide

(2010):

yt = [1 1]st, st =

 φ1 0

φ3 φ2

 st−1 +

 1

0

 εt, εt ∼ iidN(0, 1) (4)

The mapping between the structural parameters θ = [θ1, θ2]′ and the reduced-form parame-

ters φ = [φ1, φ2, φ3]′ is given by

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2. (5)

2Detailed treatments of the Bayesian estimation of DSGE models can be found in the survey by An and
Schorfheide (2007) or in the handbook chapter by Del Negro and Schorfheide (2011).
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The first state, s1,t, looks like a typical exogenous driving force of a DSGE model, while the

transition equation s2,t acts as an endogenous variable, driven by the exogenous process and

past realizations of itself. This example embodies the standard structure of DSGE models,

while the mapping from structural to reduced form parameters is chosen to highlight the

identification problems endemic to DSGE models.

Insert Figure 1 about here.

In order to understand the identification problems that arise in this example, it is helpful

to rewrite the state-space model as an ARMA(2,1) process for yt:

(1− φ1L)(1− φ2L)yt = (1− (φ2 − φ3)L)εt. (6)

As discussed in Schorfheide (2010), this specification suffers from two identification problems.

First, θ2 is not identifiable when θ1 is close to 0, since it only enters the model multiplicatively.

Second, there is a global identification problem. Root cancellation in the AR and MA

lag polynomials for yt in (6) causes a bimodality in the likelihood function. To illustrate

this, we simulate T = 200 observations given θ = [0.45, 0.45]′. This parameterization is

observationally equivalent to θ = [0.89, 0.22]′. Figure 1 plots the contours of the likelihood

function, which can be easily evaluated with the Kalman filter. In order to fully explore the

posterior distribution with an MCMC algorithm, the Markov chain has to travel through the

(potentially very deep) valley between the two modes, which, in more complicated models,

may be prohibitively difficult. In the remainder of this paper we examine the extent to which

SMC algorithms can be helpful in accomplishing this task.

3 Sequential Monte Carlo Methods

The object of interest is the posterior density p(θ|Y ) given in (3) with support Θ. To

economize on notation, we abbreviate this density by π(θ) = p(θ|Y ). Moreover, we denote

the numerator in (3) by f(θ) = p(Y |θ)p(θ). For linearized DSGE models with Gaussian
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innovations and a regular prior density the function f(θ) can be evaluated numerically.

Finally, we denote the denominator in (3) by Z, which does not depend on θ. Using this

more compact notation

π(θ) =
f(θ)

Z
. (7)

As mentioned above, for DSGE models the posterior density π(θ) is intractable in the sense

that it is not possible to characterize its moments analytically. Thus, the posterior moments

of θ and transformations h(θ) are typically computed with Monte Carlo (MC) simulation

methods. Most of the Bayesian DSGE literature focuses on using Markov chain Monte Carlo

(MCMC) simulations. As we will argue later, the increasing complexity of DSGE models

combined with the emerging parallel framework for scientific computing makes MCMC less

attractive for sampling. Instead, sequential Monte Carlo (SMC) methods, we will argue, are

an appealing alternative simulation technique. We describe the basics of SMC below. More

elaborate explications can be found in Chopin (2004), Del Moral, Doucet, and Jasra (2006),

and Creal (2012).

The keystone of all SMC algorithms is importance sampling: we might try to approximate

π(·) by using a different, tractable density that is easy to sample from. Let g(θ) be a positive

density with respect to dθ on the same parameter space Θ. Importance sampling is based

on the identity

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

1

Z

∫
Θ

h(θ)w(θ)g(θ)dθ, where w(θ) =
f(θ)

g(θ)
, (8)

This identity holds for any (measurable) function h. If the support of g(·) contains the

support of f(·), for any independent sample {θi}Nparti=1 from the distribution with density g(·)
the Monte Carlo estimate

h̄ =

Npart∑
i=1

h(θi)ŵ(θi), where ŵ(θi) =
w(θi)∑Npart

j=1 w(θj)
, (9)

converges to Eπ[h(θ)] as Npart −→ ∞ under some mild regularity conditions; see Geweke

(1989).
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If one chooses h(θ) = I{θ ≤ τ}, where I is the indicator function indexed by τ , then (9)

implies that we have constructed a “particle” approximation to the distribution associated

with π(·), which is given by the set of pairs {(θi, ŵi)}Ni=1. The ŵ’s are the (normalized)

importance weights assigned to each particle. The suitability of the approximation is driven

by the “closeness” of g(·) to f(·) and is reflected in the behavior of the weights. If g(·) is

very different from f(·), in particular if f(·) has fatter tails than g(·), the distribution of the

weights will be highly skewed, with only a few particles receiving substantive weights. In this

case, the approximation will be poor. The estimate h̄ will depend only on a few particles,

inducing substantial Monte Carlo variance. On the other hand, if g(·) = f(·), that is, we are

perfectly sampling from π(·), the distribution of the weights is uniform.

In practice, importance sampling from the posterior of a DSGE model is extremely

difficult because the shape of f(·) can only be explored numerically and the approximations

through tractable densities g(·) tend to be quite poor. This task is even more challenging

if the posterior has a non-normal shape containing several peaks and valleys, in which case

a suitable density g(·) tends to be elusive. The essence of the SMC methods employed in

this paper is to construct sequential particle approximations to intermediate distributions,

indexed by n:3

πn(θ) =
fn(θ)

Zn
=

[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ , n = 1, . . . , φNφ (10)

where

φ1 = 0 and φNφ = 1.

Note that πn(θ) = p(θ) for n = 1. Since priors in DSGE models are typically specified such

that draws can either be generated by direct sampling or with an efficient acceptance sampler,

the initialization of the SMC algorithm is straightforward. Thus, provided it is possible to

use the approximation of πn(·) to assist in the construction of a particle approximation for

πn+1(·), one can use iterative approximations to estimate πNφ = π(θ). We call a function

(here the likelihood) raised to a power less than one, a tempered function. The process of

estimating the parameters of a function through a sequence of tempered functions is known

3Using the notation that Yt1:t2 = {yt1 , . . . , yt2} and Y = Y1:T one could set Nφ = T and define fn(θ) =
p(Y1:n|θ). This approach is attractive for real-time applications in which the model needs to be re-estimated
every period.
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as simulated tempering. We refer to the sequence tempering parameters as the tempering

schedule (or heating schedule, due to its connection to simulated annealing.)

Suppose we have an importance sample of πn(·) and we want to use this sample to inform

our particle approximation of πn+1(·). To avoid confusion as to whether θ is drawn from

πn(·) or πn+1(·), we equip the parameter vector by a subscript n. Thus, θn is associated with

the density πn(·). SMC algorithms propagate the particles i = 1, . . . , Npart forward using a

Markov transition kernel

θin+1 ∼ Kn+1(θn+1|θin), (11)

which leads to an importance distribution,

gn+1(θn+1) =

∫
Kn+1(θn+1|θn)gn(θn)dθn−1. (12)

Unfortunately, the integral in (12) is extremely complex to compute (O(N2
part)), and hence

the computation of the importance weights wn+1(θ) = fn+1(θ)/gn+1(θ) is essentially infeasi-

ble.

Del Moral, Doucet, and Jasra (2006) show that one can augment the target distribution

πn(·) to simplify the calculation of the importance weights considerably. Define the backward

transition kernels

Ln−k(θn−k|θn−k+1), k = 1, . . . , n− 1

which represent properly normalized conditional densities of θn−k given θn−k+1. Moreover,

define the augmented target distributions as

π̃n(θ1:n) =
f̃n(θ1:n)

Zn
, where f̃n(θ1:n) = fn(θ)

n−1∏
k=1

Ln−k(θn−k|θn−k+1), (13)
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where θ1:n = [θ1, . . . , θn]. The sequential importance sampler is based on the relationship

Eπn [h(θn)] =
1

Zn

∫
h(θn)

f̃n(θ1:n)

g̃n(θ1:n)
g̃n(θ1:n)dθ1:n

=

[
1

Zn

∫
h(θn)fn(θn)dθn

] ∫ n−1∏
k=1

Ln−k(θn−k|θn−k+1)dθ1:n−1

=
1

Zn

∫
h(θn)fn(θn)dθn.

Here g̃n(·) is the proposal distribution of the importance sampler which we describe below.

The second equality holds because the g̃n(·) terms cancel and the transition kernels Ln−k(·|·)
are normalized to integrate to one. Thus, by construction of f̃n(θ1:n) the density of interest

πn(·) arises as a marginal density from π̃n(·).

The sequence of augmented proposal distributions is defined as the product of the tran-

sition kernels introduced in (11):

g̃n(θ1:n) = g1(θ1)
n−1∏
k=1

Kn−k+1(θn−k+1|θn−k). (14)

The resulting important weights have a convenient recursive representation

f̃n(θ1:n)

g̃n(θ1:n)
= w̃1(θ1)

n−1∏
k=1

w̃n−k+1(θn−k+1|θn−k) (15)

with incremental weights

w̃n(θn|θn−1) =
fn(θn)Ln−1(θn−1|θn)

fn−1(θn−1)Kn(θn|θn−1)
. (16)

If the backwards kernel is chosen to be

Ln−1(θn−1|θn) =
πn(θn−1)Kn(θn|θn−1)

πn(θn)
,
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the incremental weights have the form,

w̃n(θn|θn−1) =
fn(θn−1)

fn−1(θn−1)
. (17)

Overall, this leaves us with the representation

Eπn [h(θn)] =
1

Zn

∫
h(θn)

f̃n(θ1:n)

g̃n(θ1:n)
g̃n(θ1:n)dθ1:n

=
1

Zn

∫
h(θn)

[
w̃1(θ1)

n∏
k=2

fk(θk−1)

fk−1(θk−1)

](
g1(θ1)

n∏
k=2

Kk(θk|θk−1)

)
dθ1:n.

The term in square brackets corresponds to the importance weights, which are obtained

by combining (15) and (17), and the term in parentheses is the proposal distribution given

by (12). By setting φ1 = 0, φNφ = 1, drawing the first set of particles from the prior density,

that is g1(θ) = p(θ), and using the definition of fn(θ) in (10) we obtain

Eπ[h(θ)] =
1

Z

∫
h(θNφ)

Nφ∏
k=2

[p(Y |θk−1)]φk−φk−1

p(θ1)

Nφ∏
k=2

Kk(θk|θk−1)

 dθ1:Nφ . (18)

Our choice of g1(·) implies that w̃1(θ1) = 1. The integral in (18) can be evaluated recursively

by setting W1(θ1) = p(θ1) and

Wn(θn) =

∫
[p(Y |θn−1)]φn−φn−1Wn−1(θn−1)Kn(θn|θn−1)dθn−1, n = 2, . . . , Nφ. (19)

The normalization constant Z can be obtained by setting h(·) = 1 and exploiting the fact

that Eπ[1] =
∫
π(θ)dθ = 1. Overall, we obtain

Eπ[h(θ)] =

∫
h(θNφ)WNφ(θNφ)dθNφ∫

WNφ(θNφ)dθNφ
, (20)

where the term in the denominator corresponds to the normalization constant (marginal

data density)

Z =

∫
p(Y |θ)p(θ)dθ.

The algorithms presented in the following section generate Monte Carlo approximations
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of (19) and (20).

4 An SMC Algorithm for DSGE Models

The SMC algorithm consists of three steps, using Chopin’s (2004) terminology: correction,

that is, reweighting the particles to reflect the density in iteration n; selection, that is,

eliminating any particle degeneracy; and mutation, that is, propagating the particles forward

to adapt to the next bridge density.

Algorithm 1 (Simulated Tempering SMC)

1. Initialization: (φ1 = 0). Draw the initial particles from the prior:

θi1
iid∼ p(θ), W i

1 =
1

Npart

, i = 1, . . . , Npart.

2. Recursion: For n = 2, . . . , Nφ,

(a) Correction. Reweight the particles from stage n − 1 by first computing the in-

cremental weights,

w̃in = [p(Y |θin−1)]φn−φn−1 , i = 1, . . . , Npart.

The total (unnormalized) weights are given by,

W̃ i
n = w̃niW

i
n−1, i = 1, . . . , Npart.

Finally, the normalized weights are

W i
n =

W̃ i
n∑Npart

i=1 W̃ i
n

.
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(b) Selection. First, compute the effective sample size, ESS:

ESS =
1∑Npart

i=1 (W n
i )2

.

If ESS < Npart/2, resample the particles via systematic resampling (see, for

example, Robert and Casella (2004) for details). Reset the weights to be uniformly

1/Npart.

(c) Mutation. Propagate the particles {θin−1}Nparti=1 −→ {θin}Nparti=1 via M steps of a

Metropolis-Hastings algorithm (see below).

3. At n = Nφ (φNφ = 1) compute the importance sampling approximation of Eπ[h(θ)]:

̂Eπ[h(θ)] =

Npart∑
i=1

h(θiNφ)W i
Nφ
.

As is typical in importance samplers, the normalization of the importance weights in

Step 2(a) ensures the computation of the normalization constant Z in (18). The recursive

calculation of the weightsW i
n in Step 2(a) mimics the recursion in (19). The particle mutation

in Step 2(c) amounts to generating draws from the transition kernel Kn(θn|θn−1) that appears

in (19).

Algorithm 1 requires the specification of several tuning parameters. The number of

particles Nparticle ultimately scales the precision of the Monte Carlo approximations. All

other things equal, increasing the number of cooling stages, Nφ, will decrease the “distance”

between bridge distribution and thus make it easier to maintain particle weights that are

close to being uniform. The cost to increasing Nφ is that, for every additional stage, there

must be Npart × Nblocks ×M additional likelihood evaluations. To control the shape of the

sequence φn we introduce a parameter λ:

φn =

(
n− 1

Nφ − 1

)λ
.
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A large value of λ implies that the bridge distributions will be very similar (and close to the

prior) for small values of n and very different at a later stage when n is large. In the DSGE

model applications we found a value of λ = 2 to be very useful because for smaller values the

information from the likelihood function will dominate the priors too quickly and only a few

particles will survive the correction and selection steps. Conversely, if λ is much larger than

2, it makes some of the bridge distributions essentially redundant and leads to unnecessary

computations. The choice of λ does not affect the overall number of likelihood evaluations.

The transition kernel Kn(θn|θn−1) is generated through a sequence of M Metropolis-

Hastings steps. The parameter M increases the likelihood that the mutation stage will be

successful, in the sense that the new particle set resembles the posterior. In practice, the

effect of M turned out to be similar to the effect of a change in Nφ and we set it equal to

M = 1 in the applications in Section 5. The Metropolis-Hastings steps are summarized in

the following algorithm.

Algorithm 2 (Particle Mutation) In Step 2(c) at iteration n of Algorithm 1:

1. Based on (θin−1,W
i
n) compute an importance sampling estimate of Eπn [θ], denoted by

θ̂, and of Vπn [θ], denoted by Σ̂.

2. Randomly partition4 the parameter vector θn into Nblocks equally sized blocks, denoted

by θn,b, b = 1, . . . , Nblocks. Moreover, let θ̂b and Σ̂b be the partitions of θ̂ and Σ̂ that

correspond to the subvector θn,b.

3. For each particle i, run M steps of the following Metropolis-Hastings algorithm. Let

θin,b,m be the parameter value for θin,b in the m-th iteration with the initialization θin,b,0 =

θin−1,b. In slight abuse of notation, let

θin,−b,m =
[
θin,1,m, . . . , θ

i
n,b−1,m, θ

i
n,b+1,m−1, . . . , θ

i
n,Nblocks,m−1

]
.

For m = 1 to M and b = 1 to Nblocks:

4We assign iid U [0, 1] draws to each parameter, sort the parameters according to the assigned random
numbers, and then let the i-th block consist of parameters (i− 1)Nblocks, . . . , iNblocks.
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(a) Generate a proposal draw ϑb from the mixture distribution

ϑb|(θin,b,m−1, θ
i
n,−b,m, θ̂b, Σ̂b)

∼ αN

(
θin,b,m−1, c

2
1Σ̂b

)
+

1− α
2

N

(
θin,b,m−1, c

2
2diag(Σ̂b)

)
+

1− α
2

N

(
θ̂b, c

2
3Σ̂b

)

and denote the density of the proposal distribution by q(ϑb|θin,b,m−1, θ
i
n,−b,m, θ̂b, Σ̂b).

(b) Define the acceptance probability

α(ϑb|θin,b,m−1, θ
i
n,−b,m, θ̂b, Σ̂b)

= min

{
1,

pφn(Y |ϑb, θin,−b,m)p(ϑb, θ
i
n,−b,m)

/
q(ϑb|θin,b,m−1, θ

i
n,−b,m, θ̂b, Σ̂b)

pφn(Y |θin,b,m−1, θ
i
n,−b,m)p(θin,b,m−1, θ

i
n,−b,m)

/
q(θin,b,m−1|ϑb, θin,−b,m, θ̂b, Σ̂b)

}

and let

θin,b,m =

 ϑb with probability α(ϑb|θin,b,m−1, θ
i
n,−b, θ̂b, Σ̂b)

θin,b,m−1 otherwise

4. Let θin,b = θin,b,M for b = 1, . . . , Nblocks.

Algorithm 2 also contains several tuning parameters. Chib and Ramamurthy (2010) and

Herbst (2011) have documented that in DSGE model applications blocking of parameters

can drastically reduce the persistence in Markov chains generated by the Metropolis-Hastings

algorithm. Nblocks determines the number of partitions of the parameter vector. For simple

models with elliptical posteriors, blocking the parameter vector is unnecessary. When the

posterior becomes complex or the dimensionality of the parameter vector is large, however,

moving all the parameters in a single block precludes all but the smallest moves. This could

hamper the mutation step. α ∈ [0, 1] controls the shape of the proposal distribution. For

α = 1 the Metropolis-Hastings step turns into a pure random walk Metropolis step. For

α < 1 there is some probability that the covariance matrix Σ̂b is replaced by a diagonal

matrix and some probability that the mean is replaced by θ̂b, which is the Monte Carlo
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estimate of Eπn−1 [θ]. The scaling factors c1, c2, and c3 are chosen adaptively to ensure

that the acceptance rate is reasonable, along the lines of Durham and Geweke (2012). The

behavior of the scaling factors is used as a guide for whether the initial choice of Nblocks was

reasonable.

Our implementation of the SMC Algorithm 1 differs from that in Creal (2007) in two

important dimensions. First, our mutation step is more elaborate. The mixture proposal

distribution proved to be important for adapting the algorithm to large-scale DSGE models

with complicated multi-modal posterior surfaces. Moreover, the random blocking scheme

is important for avoiding bad blocks as the correlation structure of the tempered posterior

changes. Finally, the introduction of the tempering parameter, λ is crucial. Creal (2007)

uses a linear cooling schedule (i.e., λ = 1). Even for a large number of stages (nφ) at n = 1,

the information contained in [p(Y |θ)]φ1 dominates the information contained in the prior.

This means that initializing the algorithm from the prior is impratical, as sample impover-

ishment occurs immediately. In light of this, Creal (2007) initializes the simulator from a t

distribution centered at the posterior mode. For one, this presumes prior knowledge of the

mode(s) of the posterior. This approach is not well suited to cases where there are many

modes or the posterior is not well characterized by a student-t distribution, as in some of

our examples. Instead, by using a λ > 1, we are able to add information from the likelihood

to the prior slowly. This allows us to initialize the algorithm from the prior, working with-

out presupposition about the shape of the posterior. Collectively, these additional tuning

parameters yield a degree of flexibility that is crucial for the implementation of a sequential

Monte Carlo algorithm on large-scale DSGE models.

Second, our implementation exploits advances in parallel computing. For any likelihood-

based estimation of DSGE models, the principal computational bottleneck is the evaluation

of the likelihood itself.5 The total number of likelihood evaluations in the SMC algorithm is

equal to

Npart ×Nblocks ×Nφ ×M.

5We speed up the evaluation of the likelihood of the DSGE model by using the Chandrasekhar recursions
to compute the predictive decomposition of the likelhood. See Herbst (2012) for details.
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For some of the examples considered in this paper, that number can be in the tens of millions.

In our experience, the standard number of draws in an MCMC estimation of a DSGE model

is rarely more than one million. So it would appear that the SMC algorithm would take

a prohibitively long time to run. However, unlike MCMC, the likelihoods do not have to

be evaluated in order – indeed they can be evaluated simultaneously. The key here is that

Algorithm 2 can run independently for each particle i and thus the computational burden

can easily be distributed across multiple processors. In computational terms, the evaluation

of a likelihood function is well suited for single instruction, multiple data (SIMD) processing.

That is, the bulk of the algorithm is spent evaluating the same function (the likelihood)

under different data (the particles).

Finally, a discussion about performance measures is necessary. Essentially, SMC is itera-

tive importance sampling, so the major driver of performance is the behavior of the particle

weights. The optimal behavior is for the weights to be distributed evenly at every step of

the algorithm. When only a few particles have substantial weight, the Monte Carlo variance

is high and the performance of the algorithm is erratic. Creal, Koopman, and Shephard

(2009), henceforth CKS, suggest various visual indicators of weight performance. First, they

consider a scatter plot of the top 100 weights. The figure should be free of outliers. Next,

CKS examine a histogram of the remaining weights. A sharply skewed histogram indicates

that many of the particles have very little weight, which is problematic. Finally, CKS suggest

inspecting recursive estimates of the variance of the weights. If the estimate is erratic, it

indicates that a few particles are substantially different in terms of weight. Another effective

visualization is the behavior of the effective sample size ESS throughout the simulation. The

online Appendix reports some of these statistics for the applications presented in Section 5.

In the main text we focus on the stability of the algorithm when it is being run multiple

times.
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5 Applications

We now consider three applications of the proposed SMC algorithm. Section 5.1 evaluates

the posterior distribution of the small state-space model introduced in Section 2 based on

simulated data. In Section 5.2 we consider the SW model. Typically, the SW model is

estimated under a fairly informative prior distribution that leads to a well-behaved posterior

distribution when combined with U.S. data. However, under less informative priors the

posterior distribution becomes more irregular and provides an interesting application for our

algorithm. Finally, in Section 5.3 we apply the algorithm to a real business cycle model with

anticipated technology shocks proposed by Schmitt-Grohé and Uribe (2012). In addition to

standard technology shocks, the model has a large number of anticipated shocks, i.e., news

about future changes in technology, that make parameter identification more difficult. The

SW model and the SGU model are estimated based on actual U.S. data.

In each of these applications we apply the proposed SMC Algorithm 1 as well as the

widely used (in the DSGE model literature) RWMH algorithm. To assess the stability of

the algorithm, we run each procedure five times and examine the variation in the simula-

tion output across the repetitions. For our large applications, we make use of a parallel

programming environment. We exploit the natural parallelism of the SMC by running it

on four twelve-core Intel Xeon X5670 CPUs. The code is written in Fortran 95 and uses

the distributed-memory communication interface MPI. On the other hand, we execute the

RWMH algorithm on only one processor. In principle, we could instead run the 48 copies of

the RWMH on separate processor cores and merge the results. This may reduce sampling

variance if each of the RWMH chains has reliably converged to the posterior distribution.

However, if there is a bias in the chains – because of, say, the failure to mix on a mode

in a multi-modal posterior or simply a slowly converging chain–then merging chains will

not eliminate that bias. Moreover, choosing the length of the “burn-in” phase may become

an issue – see, for example, Rosenthal (2000). Finally, a single run of the RWMH is more

reflective of the way practitioners use it.
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5.1 A Stylized State-Space Model

We begin by re-visiting the state-space model defined through the state-space representa-

tion (4) and the cross-coefficient restrictions (5). As described in Section 2, we simulate

T = 200 observations setting θ = [0.45, 0.45]′. Moreover, we use a prior distribution that is

uniform on the unit square defined by the constraints 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1.

Tuning of Algorithms. The SMC algorithm is configured as follows. We set Nφ = 100,

Npart = 1024, and λ = 1. Since this is a very simple (and correctly specified) model, we

use only 1 block and set α = 0.10. The SMC algorithm works extremely well for this small

problem, so changing the hyperparameters does not change the results or running time very

much. The proposal for the RWMH algorithm is a bivariate independent normal scaled to

achieve a 25% acceptance rate. Changing this proposal variance did not materially affect

the results.

Insert Figure 2 about here.

Insert Figure 3 about here.

Results. Figure 2 plots the contours of the posterior density overlayed with draws from the

SMC algorithm (black) and the RWMH (red). It is clear that the RWMH algorithm fails

to mix on both modes, while the SMC does a good job of capturing the structure of the

posterior. To understand the evolution of the particles in the SMC algorithm, in Figure 3

we show density plots of θ1 as functions of n, which determines the weight placed on the

likelihood. To be clear, we are showing estimates of the sequence of (marginal) densities

∫
pn(θ1, θ2|Y )dθ2 ∝

∫ [
p(Y |θ1, θ2)

]φn
p(θ1, θ2)dθ2, φn =

n− 1

99
, n = 1, . . . 100.

The density for θ1 starts out very flat, reflecting the fact that at low n, the uniform prior

dominates the scaled likelihood. As n increases, the bimodal structure quickly emerges and

becomes very pronounced as n approaches 1. This plot highlights some of the crucial features

of SMC. The general characteristics of the posterior are established relatively quickly in the



20

algorithm. For larger DSGE models, this feature will guide our choice set λ > 1, as the early

approximations are crucial for the success of the algorithm. As the algorithm proceeds, the

approximation at step n provides a good importance sample for the distribution at step n+1.

5.2 The Smets-Wouters Model

The SW model is a medium-scale macroeconomic model that has become an important

benchmark in the DSGE model literature. The model is typically estimated with data on

output, consumption, investment, hours, wages, inflation, and interest rates. The details

of the model, which we take exactly as presented in SW, are summarized in the online

Appendix. In our subsequent analysis we consider two prior distributions. The first prior,

which we refer to as the standard prior, is the one used by SW and by many of the authors

that build on their work. Our second prior is less informative than SW’s prior and we will

refer to it as diffuse prior. However, the second prior is still proper.

Tuning of Algorithms. The hyperparameters of the SMC algorithm are λ = 2.1, Npart =

12, 000, Nφ = 500, and Nblocks = 3. The total product of the number of particles, stages,

and blocks was chosen by the desired run time of the algorithm. The choice of Nφ at

500 was somewhat arbitrary, but it ensured that the bridge distributions were never too

“different.” The parameter λ was calibrated by examining the correction step at n = 1.

Essentially, we increased λ until the effective sample size after adding the first piece of

information from the likelihood was at least 10, 000; roughly speaking, 80% of the initial

particles retained substantial weight. We settled on the number of blocks by examining

the behavior of the adaptive scaling parameter c in a preliminary run. Setting Nblocks = 3

ensured that the proposal variances were never scaled down too small for sufficient mutation.

For the estimation under the diffuse prior we increase the number of blocks to Nblocks = 6.

For the RWMH algorithm, we scale the proposal covariance to achieve an acceptance rate

of approximately 30% over 500,000 draws. For each algorithm, we run 5 simulations to

assess stability. In terms of time, both algorithms run for about 20 minutes. For the SMC

algorithm we use 48 processor cores for the likelihood evaluation.
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Results from the Standard Prior. It turns out that the results for the RWMH algorithm

and the SMC algorithm are nearly identical, both for the posterior means and for the 5%

and 95% quantiles of the posterior distribution. The online Appendix contains a table with

posterior means as well as 90% equal-tail-probability credible intervals obtained from the two

algorithms. Across the five runs of the posterior simulators, the mean estimates are fairly

stable, indicating there is little noise due to Monte Carlo variation across the five simulations.

It seems that both algorithms have converged to the same posterior distribution. This is

unsurprising, given the amount of attention paid to the SW model over the past five years.

If anything, our results are contradictory to the the results of Chib and Ramamurthy (2010).

They find that using an alternative simulator on the SW model results in larger credible sets

for some parameters, in particular the steady-state labor supply l̄. The credible sets from

the SMC algorithm are (very slightly) smaller than those from the RWMH algorithm.

Insert Table 1 about here.

In addition to the posterior distribution of the parameters, the so-called marginal data

density (MDD) p(Y ) =
∫
p(Y |θ)p(θ)dθ plays an important role in DSGE model applications,

because it determines the posterior model probability. The MDD is the normalization con-

stant that appears in the denominator of (3). The MDD also appears as constant Z in (18).

Table 1 shows estimates of the marginal data densities (MDD) associated with the posterior

simulators. While the SMC algorithm delivers an estimate of the MDD as a by-product of

the simulation, for the RWMH an auxiliary estimator must be used. We use the modified

harmonic mean estimator of Geweke (1999). Since this only requires draws from the poste-

rior, we also use it on the SMC algorithm. The estimates in Table 1 are all extremely close,

consistent with the posterior results. While the numerical standard error is bigger for the

SMC estimate, it still indicates that the MDD is estimated with reasonable precision.

The Diffuse Prior. Some researchers argue that the prior distributions used by SW are

implausibly tight, in the sense that they seem hard to rationalize based on information

independent of the information in the estimation sample. For instance, the tight prior on

the steady-state inflation rate is unlikely to reflect a priori beliefs of someone who has seen
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macroeconomic data only from the 1950s and 1960s. At the same time, this prior has

a strong influence on the empirical performance of the model, as discussed in Del Negro

and Schorfheide (2013). Closely related, Müller (2011) derives an analytical approximation

for the sensitivity of posterior means to shifts in prior means and finds evidence that the

stickiness of prices and wages is driven substantially by the priors.

One side benefit of tight prior distributions is that they tend to smooth out the poste-

rior surface by down-weighting areas of the parameter space that exhibit local peaks in the

likelihood function but are deemed unlikely under the prior distribution. Moreover, if the

likelihood function contains hardly any information about certain parameters and is essen-

tially flat with respect to these parameters, tight priors induce curvature in the posterior. In

both cases the prior information stabilizes the posterior computations. For simulators such

as the RWMH this is crucial, as they work best when the posterior is well-behaved. And so,

it is no surprise that the RWMH performs well on the standard SW model. Yet the SMC

algorithm does not rely quite so heavily on a unimodal posterior, as shown in Section 5.1.

Insert Figure 4 about here.

With a view toward comparing the effectiveness of the different posterior simulators, we

relax the priors on the SW model substantially. More specifically, parameters which have

previously had beta distributions now have uniform distributions. The other parameters

have had their variances scaled up by (roughly) a factor of three, except that the standard

deviations of the shocks have their priors unchanged. In general, the priors are much less

informative than the standard SW priors, although importantly they are still proper. Fig-

ure 4 shows the difference in the priors of the two models for four selected parameters. Most

noticeably, parameters restricted to the unit interval now have a uniform prior over that

region. A table with the full specification of the prior is available in the online Appendix.

Insert Table 2 about here.

Results from the Diffuse Prior. Table 2 summarizes the output of the posterior simula-

tors under the diffuse prior, focusing on parameters for which the standard deviation of the
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posterior mean approximation under the RWMH algorithm is greater than 0.02 (the results

for the remaining parameters are reproduced in the online Appendix). In general, the Monte

Carlo variance across simulations is substantially lower under the SMC algorithm. In partic-

ular, the parameters associated with the wage and price markup processes seem to behave

quite differently across the two algorithms. Under the SMC algorithm, the posterior 90%

credible set associated with ρw, the persistence of the wage markup, is [0.18, 0.99] while it is

much smaller [0.62, 0.92] for the RWMH algorithm. Moreover, the Monte Carlo variance is

quite large for the RWMH algorithm. The standard deviation of the mean of ρw across the

five runs of RWMH is 0.23, yielding serious doubts about convergence of the algorithm. On

the other hand, the Monte Carlo variance associated with the SMC runs suggests that the

algorithm has reliably converged.

Insert Figure 5 about here.

A visual comparison of the RWMH and SMC algorithm under the different priors is

provided in Figure 5. For eight selected parameters, Figure 5 presents the estimates of the

mean, 5th, and 95th percentile of the posterior distribution. The shaded region covers plus

and minus two standard deviations (across runs) around the point estimates for each of the

three statistics. The RWMH estimates are shown in red, while the SMC estimates are in

black. Under the standard prior, the behavior of the algorithms is roughly the same and

reasonably precise. Under the diffuse prior, stark differences between the algorithms emerge.

First, the precision of the estimates is much lower for the RWMH simulations than for the

SMC simulations, as the size of the red boxes is generally much greater than the size of the

black boxes. In fact, for the RWMH algorithm is so poor that for the parameters restricted to

the unit intervals, the boxes overlap substantially, meaning that there is sufficient noise in the

RWMH algorithm to tangle the, say, 5th and 95th percentile of the posterior distribution for

ιw. Moreover, it is clear that some of the worst performing aspects of the RWMH algorithm

are associated with the parameters controlling the movements of wages and prices.

Insert Figure 6 about here.
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To shed light on this discrepancy, we plot density estimates from each run for the following

parameters associated with the dynamics of wage and price markups: ρw, µw, ρp, and µp.

Figure 6 displays the densities. There are five estimated densities for each algorithm, each

associated with a different run of the algorithm. The high Monte Carlo variance of the

RWMH algorithm is reflected in the wide variation of the black lines. It is clear that the

results from the RWMH do not reflect convergence to an ergodic distribution. On the other

hand, the SMC posteriors look nearly identical, almost appearing as one solid red line for

each of the four parameters. Upon closer inspection, it is clear why this is the case. Both

the wage markup autoregressive and moving average coefficients have a distinct bimodal

structure. There is a mode near one with a sharp peak, while there is second mode in the

middle of the long left tail of the distribution. This feature of the posterior is highly irregular,

and one key reason that the RWMH algorithm has severe difficulty in approximating the

posterior.

Insert Table 3 about here.

Insert Figure 7 about here.

To further explore the multi-modal shape of the posterior under the diffuse prior, Table 3

lists the values of the key wage and price parameters at the two modes, as suggested by the

SMC algorithm. With respect to wages, the modes identify two different drivers of fit. At

Mode 1, the values of the wage Calvo parameter, ξw, and wage indexation parameter, ιw,

are relatively low, while the parameters governing the exogenous wage mark-up process, ρw

and µw are high. That is, model dynamics for wages near this mode are driven by the

exogenous persistence of the shock. At Mode 2, the relative importance of the parameters is

reversed. The persistence of wages is driven by the parameters that control the strength of

the endogenous propagation. The exogenous wage markup process is much less persistent.

Figure 7 shows a contour map of the joint posterior of the autoregressive coefficient for the

exogenous wage markup, ρw, and the wage Calvo parameter, ξw. Here the bimodal structure

is visually apparent. At Mode 1, ρw is extremely close to one and the wage Calvo parameter,

ξw, is around 0.85. At Mode 2, the wage Calvo parameter is close to one, while the posterior
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for ρw is much flatter, indicating that as the endogenous price stickiness goes to one, the

exogenous markup is more or less unidentified. Using the SMC algorithm to facilitate an

otherwise impractical exercise – estimating the SW model under loose priors – we see that the

data support both endogenous and exogenous persistence mechanisms. Thus, a researcher’s

priors can heavily influence the assessment of the importance of nominal rigidities, echoing

a conclusion reached by Del Negro and Schorfheide (2008).

Insert Table 4 about here.

A final measure of the effectiveness of the algorithms in provided in Table 4. The SMC

algorithm provides roughly the same estimate for the MDD using both the modified harmonic

mean estimate and the natural estimate out of the sequential algorithm. However, the SMC

estimate is much more precise, which is unsurprising, given the difficulties of using the

modified harmonic mean estimator on a bimodal distribution. On the other hand, the

RWMH gives a different point estimate with a much higher standard deviation, echoing the

above concerns about convergence.

5.3 The Schmitt-Grohe and Uribe News Model

The final application is SGU’s “news” model, which has been used to examine the extent

to which anticipated shocks (i.e., news) to technology, government spending, wage markups,

and preferences explain movements in major macroeconomic time series at business cycle

frequencies. The equilibrium conditions for this model are summarized in the online Ap-

pendix.

Important Model Features. We focus on two key features of the SGU model. First,

the model has seven processes in total: stationary and nonstationary technology, stationary

and nonstationary investment specific technology, government spending, wage markup, and

preference shocks. Each of the seven processes is driven by three (independent) innovations,

one of which is realized contemporaneously, and two of which are realized four and eight
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quarters ahead. So, the determination of a given exogenous process x looks like:

xt = ρxxt−1 + εx,0t + εx,4t−4 + εx,8t−8.

Each innovation εx,h is scaled by its own variance, σx,h, for horizons h = 0, 4, 8. Given

the model’s seven exogenous processes, there are 21 total shocks, plus a measurement error

for output. Second, households in the SGU model have preferences that were proposed by

Jaimovich and Rebelo (2009), wherein a parameter, γ, controls the wealth elasticity of the

labor supply. The model is estimated on seven economic time series: real GDP growth, real

consumption growth, real investment growth, real government spending growth, hours, TFP

growth and the relative price of investment. The estimation period is 1955:Q1 to 2006:Q4.

This model is an interesting application for the SMC algorithm for several reasons. First,

the scale of the model is quite large. There are almost 100 states and 35 estimated param-

eters. Second, the model contains many parameters for which the priors are quite diffuse,

relative to standard priors used in macroeconometrics. In particular, this is true for the

variances of the shocks. Also, the prior for the Jaimovich-Rebelo parameter, γ, is uniform

across [0, 1]. Given what we have seen happening to the SW posterior when we relaxed the

prior, a diffuse prior here might yield an irregular posterior surface.

Tuning of Algorithms. We run the same comparison as in previous sections. For each

posterior simulator, we compute five runs of the algorithm. For the SMC runs, we use 30, 048

particles, 500 stages, 6 blocks, and λ = 2.1. We choose the hyperparameters in a way similar

to that for the SW model. We use many more particles because the parameter space is much

bigger in terms of prior support with meaningful weight. Given a large parameter vector,

we increase the number of blocks to ensure that mutation still can occur. For the RWMH,

we simulate chains of length 1, 000, 000, considering only the final 500, 000 draws. For the

proposal density we use a covariance matrix computed from an earlier run, scaled so that

the acceptance rate was roughly 27%. We estimate the SGU model under the prior specified

by SGU (tabulated in the online Appendix) and a modified version of this prior in which we

change the distribution of the preference parameter γ.
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Insert Table 5 about here.

Results from the SGU Prior. Table 5 displays the posteriors under the various simula-

tors. While the results are broadly similar, some important differences emerge. First, the

Monte Carlo variance for the estimates of the mean is substantially reduced. One reason

for this is that the RWMH moves quite slowly across the parameter space. One way to see

this is by looking at the integrated autocorrelation for the chain. For a given parameter, θi,

the inefficiency factor, κi, is a measure of the inefficiency of the Markov chain relative to

independent draws from the posterior.

κi = 1 + 2
∞∑
l=1

corr(θi,t, θi,t−l).

We approximate it by

κ̂i = 1 + 2
L∑
l=1

(
1− l

L

)
ˆcorr(θi,t, θi,t−1),

where ˆcorr(·) is the sample autocorrelation of the parameter draws and we choose the number

of included lags to be L = 5, 000. We apply this to each parameter for a single run of

the RWMH.6 Using the last 500,000 draws of the chain, we find that the median (across

parameters) inefficiency factor is 1, 943.9. This means that, from our chain of 500,000,

we have about 257 effectively independent draws from the posterior. Using the maximum

inefficiency factor, 4, 138.1, we have only 120 draws.7 Even if both algorithms reach the same

posterior, estimates from the RWMH algorithm will be less precise given the huge discrepancy

in the effective sample size. Recall that the SMC algorithm uses over 30, 000 particles. While

resampling introduces a dependence, recall that we resample once the effective sample size is

less than Nsim/2, which, very roughly speaking, puts a lower bound of about 15, 000 on the

ESS. This number dwarfs the number of draws from the RWMH corrected by the inefficiency

factors κi and translates into more precise estimates, which is borne out by Table 5.

6Using the other chains yields very similar results.
7Interestingly, the parameter with by far the lowest inefficiency factor is γ, the Jaimovich-Rebelo param-

eter. Given that the RWMH misses the small second mode, this lends caution to leaning too heavily on
looking at inefficiency factors to assess algorithmic performance.
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Insert Figure 8 about here.

Moreover, it is clear from Figure 8, which displays the parameters associated with the

wage markup process, that the RWMH has the most trouble with the multimodalities and

irregularities associated with the variances of the news shocks. For instance, σ4
µ, the size of

the four-quarters-ahead news about wage markups has two sharp peaks, one roughly at 0.35,

and another at 4.9. The reason for the two peaks is an identification problem. When ρµ

is very close to one, it is difficult to distinguish between the four-quarters-ahead news from

the eight-quarters-ahead, as both have nearly permanent effects. This is borne out by the

density of σ8
µ, which is nearly a mirror image of σ4

µ.8 Indeed, in the posterior they have a

correlation of −0.9.

Insert Figure 9 about here.

Figure 9 displays contours for a nonparametric estimate of the joint posterior of σ4
µ and

σ8
µ, conditional on γ < 0.01. The negative relationship is clear. Moreover, the joint posterior

displays the clear bimodal structure, which is also evident from the marginals in Figure 8.

The RWMH fails to hit this second mode on two of five runs and generally cannot mix on

both in reliable proportions. This is reflected in the large differences of the fifth percentile

of the various posteriors. In this particular instance, the economic effects of anticipated

shocks are unchanged by the failure of the RWMH to mix properly, precisely because of the

identification problem: the effects of an eight- and four-periods-ahead shock are very similar.

On the other hand, fine parsings of the structural results are incorrect under the RWMH.

For instance, Table 6 of SGU reports that eight-periods-ahead shocks are responsible for

about five percent of the variation in hours worked. Our RWMH runs that do not mix on

the second σ8
µ are consistent with that result. The SMC algorithm, which properly reflects

the bimodal structure of the shock variances, puts that number close to 20% and, in general,

places more importance on longer run news about wages.

8To examine whether the bi-modality is specific to the U.S. data that are used to estimate the SGU
model, we re-estimated the model based on simulated data. The posterior obtained from simulated data
exhibits a similar bimodal shape as the posterior given the actual data.



29

Insert Figure 10 about here.

With respect to the Jaimovich-Rebelo parameter, γ, the posteriors generated by the RWMH

and the SMC algorithm yield small but interesting differences. Figure 10 displays the poste-

riors for γ. The RWMH algorithm finds basically a degeneracy very close to zero. The SMC

algorithm also finds this degeneracy, but it also finds a small mode, comprising about 4% of

the total posterior around γ = 0.6. On this mode, the wealth effect associated with an in-

crease in income is nonzero, which creates some problems for news models, in the sense that

positive news about the future can decrease labor supplied today, as consumers anticipate

higher income in the future. On this second mode, the importance of anticipated shocks

about wages is substantially diminished. Instead, the persistence of the process comes very

close to a unit root, and the mean of the unanticipated shock increases from about 1 to 4. At

this mode, then, movements in hours are not principally driven by news. Indeed, a long-run

variance decomposition suggests that unanticipated movements in the markup account for

about half the movement in hours, compared with just 10% of the movement when γ ≈ 0.

In this case, inference based on the central tendency of the distribution gives roughly

correct results. This is because the RWMH performs poorly in 1) the tails of the distribution

(as with γ) or in regions where its errors offset (mixing poorly on σ4
µ and σ8

µ). The SMC

algorithm provides a much better characterization of the distribution. It is clear that for

models of similar scale, the RWMH is inadequate in certain dimensions.

Results from a Modified Prior. To highlight this potential pitfall more clearly, we

re-estimate the news model under a different prior for γ, namely,

γ ∼ Beta(2, 1).

Relative to the uniform prior, this prior places more mass on the region near 1. Its pdf is

a 45-degree line. A possible justification for this prior is that it places more weight on the

“standard” utility functions used in the macroeconomics literature.

Insert Figure 11 about here.
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Mechanically, this prior causes the small second mode in the original SGU model to

become more important. Indeed, now most of the mass resides in this region, although the

peak at γ ≈ 0 is still important, with the heights of the two modes approximately equal.

Figure 11 displays the marginal posterior densities for γ under the new prior for five runs

each of the RWMH (black) and the SMC (red) algorithms. The bimodality clearly poses a

problem for the RWMH. Only one of five runs even mixes on the second larger mode. The

reason for this is that the peak around γ ≈ 0 is extremely sharp and the valley around it

very deep. If the RWMH gets to this region, it is extremely unlikely to ever leave it. On the

other hand, the SMC algorithm mixes on both modes easily.

Insert Figure 12 about here.

To see how this translates into problems for inference, Figure 12 plots the share of the

long-run variance in hours accounted for by anticipated shocks under both priors. Under

the standard prior, both simulators generate roughly the same posteriors, although the SMC

has a slightly longer left tail due to the small second mode. Once the prior for γ is changed

to a Beta(2, 1), the results from the simulators diverge. All but one of the RWMH runs

attribute about 70% to 90% of the variance in hours to anticipated shocks. This is because

the simulator gets stuck on the γ ≈ 0 mode. On the other hand, the output of the SMC

algorithm ascribes most of the movement in hours to unanticipated shocks.

6 Conclusion

This paper has presented an alternative simulation technique for estimating Bayesian DSGE

models. We showed that, when properly tailored to DSGE models, a sequential Monte Carlo

technique can be more effective than the random walk Metropolis Hastings algorithm. The

RWMH is poorly suited to dealing with complex and large posteriors, while SMC algorithms,

by slowly building a particle approximation of the posterior, can overcome the problems

inherent in multimodality. This is important for DSGE models, where the parameters enter

the likelihood in a highly nonlinear fashion and identification problems may be present. We
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have seen in the both the SW model and the SGU model, that when priors are not very

informative, the posterior can possess multimodalities. It is difficult to correctly characterize

the posterior with the RWMH in this case.

Moreover, the SMC algorithm has an embarrassingly parallelizable structure. Within

each tempering iteration, likelihoods can be evaluated simultaneously. In most programming

languages, this kind of parallelism can be employed easily, for example, MATLAB’s parfor

command. Finally, we have shown that the sequential Monte Carlo methods can be used for

very large DSGE models. Indeed, it is on large complex distributions that returns to using

an SMC algorithm over an MCMC algorithm are highest.
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Tables

Table 1: SW Model with Standard Prior: Log MDD Estimates for Smets-
Wouters Model, Standard Prior

Algorithm, Method MDD Estimate Standard Deviation
RWMH, Harmonic Mean -901.97 0.04
SMC, Harmonic Mean -901.86 0.06
SMC, Particle Estimate -901.68 0.19

Notes: The RWMH algorithm uses 500,000 draws with the first 250,000 discarded. The
average acceptance rate was 30%. The SMC algorithms use 12,000 particles, 500 stages,
λ = 2.1, a mixture proposal and 3 blocks in each Metropolis-Hastings step.

Table 2: SW Model with Diffuse Prior: Posterior Comparison

RWMH SMC
Parameter Mean [0.05, 0.95] STD(Mean) Mean [0.05, 0.95] STD(Mean)
φ 7.54 [ 4.31, 11.25] 0.30 7.27 [ 4.03, 11.02] 0.12
µw 0.74 [ 0.54, 0.90] 0.26 0.60 [ 0.08, 0.98] 0.04
l -0.06 [-2.34, 2.26] 0.23 -0.07 [-2.33, 2.29] 0.05
ρw 0.79 [ 0.62, 0.92] 0.23 0.66 [ 0.19, 0.99] 0.04
rπ 2.81 [ 2.19, 3.55] 0.10 2.77 [ 2.13, 3.49] 0.03
ιw 0.71 [ 0.41, 0.95] 0.09 0.74 [ 0.39, 0.97] 0.01
µp 0.73 [ 0.45, 0.91] 0.07 0.79 [ 0.50, 0.98] 0.01
ξw 0.91 [ 0.81, 0.97] 0.05 0.93 [ 0.80, 0.99] 0.01
σl 2.81 [ 1.35, 4.66] 0.05 2.84 [ 1.37, 4.68] 0.03
π 0.86 [ 0.43, 1.23] 0.05 0.86 [ 0.42, 1.23] 0.01
ξp 0.71 [ 0.60, 0.81] 0.03 0.72 [ 0.60, 0.82] 0.01

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithms use 500,000 draws with the first 250,000 discarded. The average acceptance rate
was roughly 28%. The SMC algorithms use 12,000 particles, 500 stages, λ = 2.1, a mixture
proposal and 3 blocks in each Metropolis-Hastings step.
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Table 3: SW Model with Diffuse Prior: Two Modes

Parameter Mode 1 Mode 2
ξw 0.834 0.968
ιw 0.842 0.897
ρw 0.980 0.533
µw 0.958 0.482
σw 0.262 0.256
Log Posterior -802.70 -802.39

Table 4: SW Model with Diffuse Prior: Log MDD Estimates

Algorithm, Method MDD Estimate Standard Deviation
RWMH, Harmonic Mean -875.93 1.49
SMC, Harmonic Mean -872.63 0.47
SMC, Particle Estimate -872.39 0.18

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithm uses 500,000 draws with the first 250,000 discarded. The average acceptance rate
was 30%. The SMC algorithms use 12,000 particles, 500 stages, λ = 2.1, a mixture proposal
and 3 blocks in each Metropolis-Hastings step.



36

Table 5: Posterior Comparison for News Model

RWMH SMC
Parameter Mean [0.05, 0.95] STD(Mean) Mean [0.05, 0.95] STD(Mean)
σ4
µ 4.40 [ 1.04, 5.93] 0.46 4.27 [ 0.27, 5.91] 0.18
σ8
µ 1.29 [ 0.04, 4.69] 0.46 1.37 [ 0.03, 5.17] 0.17
σ8
zi 5.78 [ 0.94, 10.60] 0.29 5.66 [ 0.80, 10.66] 0.11
σ4
zi 3.14 [ 0.22, 7.98] 0.26 3.15 [ 0.21, 8.01] 0.03
σ0
ζ 3.87 [ 0.59, 6.75] 0.22 3.80 [ 0.48, 6.76] 0.06
σ8
ζ 2.61 [ 0.18, 6.02] 0.20 2.67 [ 0.17, 6.23] 0.07
κ 9.32 [ 7.48, 11.43] 0.09 9.33 [ 7.47, 11.35] 0.08
σ0
zi 12.36 [ 9.06, 16.16] 0.09 12.29 [ 9.07, 15.90] 0.14
σ0
µ 0.91 [ 0.06, 2.37] 0.05 1.02 [ 0.06, 2.69] 0.01
σ4
ζ 2.44 [ 0.15, 6.01] 0.05 2.43 [ 0.15, 5.97] 0.11
θ 4.12 [ 3.20, 5.18] 0.04 4.13 [ 3.19, 5.19] 0.02
σ0
g 0.61 [ 0.07, 1.07] 0.03 0.62 [ 0.06, 1.08] 0.01
σ8
g 0.41 [ 0.03, 0.96] 0.03 0.40 [ 0.03, 0.98] 0.01
ρxg 0.64 [ 0.37, 0.83] 0.01 0.64 [ 0.38, 0.83] 0.00
ρzi 0.42 [ 0.21, 0.63] 0.01 0.43 [ 0.21, 0.63] 0.00
σ0
µa 0.21 [ 0.02, 0.35] 0.01 0.21 [ 0.02, 0.35] 0.01
σ4
µa 0.16 [ 0.01, 0.34] 0.01 0.16 [ 0.01, 0.34] 0.00
σ8
µa 0.15 [ 0.01, 0.33] 0.01 0.16 [ 0.01, 0.33] 0.01
σ0
µx 0.36 [ 0.18, 0.52] 0.01 0.36 [ 0.18, 0.52] 0.00
σ4
µx 0.10 [ 0.01, 0.26] 0.01 0.10 [ 0.01, 0.27] 0.00
σ8
µx 0.12 [ 0.01, 0.28] 0.01 0.12 [ 0.01, 0.29] 0.00
σ0
z 0.66 [ 0.56, 0.74] 0.01 0.66 [ 0.55, 0.74] 0.00
σ4
z 0.13 [ 0.01, 0.31] 0.01 0.13 [ 0.01, 0.32] 0.00
σ4
g 0.57 [ 0.04, 1.06] 0.01 0.56 [ 0.04, 1.06] 0.02
γ 0.00 [ 0.00, 0.00] 0.00 0.01 [ 0.00, 0.01] 0.00
δ2/δ1 0.42 [ 0.31, 0.55] 0.00 0.42 [ 0.31, 0.56] 0.00
b 0.92 [ 0.89, 0.94] 0.00 0.92 [ 0.89, 0.94] 0.00
ρz 0.91 [ 0.85, 0.96] 0.00 0.91 [ 0.84, 0.96] 0.00
ρa 0.48 [ 0.39, 0.57] 0.00 0.48 [ 0.38, 0.57] 0.00
ρg 0.96 [ 0.92, 0.99] 0.00 0.96 [ 0.92, 0.99] 0.00
ρx 0.87 [ 0.68, 0.99] 0.00 0.87 [ 0.67, 0.99] 0.00
ρµ 0.98 [ 0.95, 1.00] 0.00 0.98 [ 0.95, 1.00] 0.00
ρζ 0.18 [ 0.07, 0.31] 0.00 0.19 [ 0.08, 0.32] 0.00
σ8
z 0.12 [ 0.01, 0.29] 0.00 0.12 [ 0.01, 0.29] 0.00
σmeygr 0.30 [ 0.30, 0.30] 0.00 0.30 [ 0.30, 0.30] 0.00

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithms use 1,000,000 draws with the first 500,000 discarded. The average acceptance
rate was roughly 27%. The SMC algorithms use 30,048 particles, 500 stages, λ = 2.1, a
mixture proposal and 6 blocks in each Metropolis-Hastings step.



37

Table 6: Log MDD Estimates for New Models

Algorithm, Method MDD Estimate Standard Deviation
RWMH, Harmonic Mean -1800.9 0.32
SMC, Harmonic Mean -1798.0 1.54
SMC, Particle Estimate -1802.3 0.23

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithms use 1,000,000 draws with the first 500,000 discarded. The average acceptance
rate was roughly 27%. The SMC algorithms use 30,048 particles, 500 stages, λ = 2.1, a
mixture proposal and 6 blocks in each Metropolis-Hastings step.
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Figures

Figure 1: Stylized State-Space Model: Log Likelihood Function
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Figure 2: Stylized State-Space Model: Log Likelihood Function and Poste-
rior Draws
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Figure 3: Stylized State-Space Model: Density Estimates for θ1 as Function
of n
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Figure 4: SW Model: Standard Priors
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Figure 5: SW Model: Estimates of Mean, 5th and 95th Percentile for Se-
lected Parameters

Standard Prior

l ιw µp µw ρw ξw rπ φ−2

−1
0

1

2

3

4

5

6

7

8

Diffuse Prior

l ιw µp µw ρw ξw rπ φ
−4

−2

0

2

4

6

8

10

12

14
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Figure 6: SW Model with Diffuse Prior: RWMH and SMC Posteriors for
Markup Parameters
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Notes: RWMH (Black) and SMC (Red). RWMH: 5 runs, 500,000 draws per run; SMC: 5
runs, 12,000 particles, 500 stages, 6 blocks.

Figure 7: SW Model with Diffuse Prior: Joint Posterior for Wage Markup
Persistence and Wage Calvo Parameter
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Figure 8: News Model: RWMH and SMC Posteriors of Wage Markup Process
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Notes: RWMH (Black) and SMC (Red). RWMH: 5 runs, 1,000,000 draws per run; SMC: 5
runs, 30,028 particles, 500 stages, 6 blocks.
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Figure 9: News Model: Joint Posterior for Variances of Anticipated Shocks
to Wage Markup
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Figure 10: News Model: RWMH and SMC Posteriors of γ
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Notes: RWMH (Black) and SMC (Red). RWMH: 5 runs, 1,000,000 draws per run; SMC: 5
runs, 30,028 particles, 500 stages, 6 blocks.

Figure 11: News Model: RWMH and SMC Posteriors of γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
gam      

Notes: RWMH (Black) and SMC (Red). RWMH: 5 runs, 1,000,000 draws per run; SMC: 5
runs, 30,028 particles, 500 stages, 6 blocks
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Figure 12: News Model: Anticipated Shocks’ Variance Shares for Hours
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A The Smets-Wouters Model

The equilibrium conditions of the Smets and Wouters (2007) model take the following form:

ŷt = cy ĉt + iy ît + zyẑt + εgt (A-1)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Etl̂t+1) (A-2)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 +

1

ϕγ2(1 + βγ(1−σc))
q̂t + εit (A-3)

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂kt+1 − εbt (A-4)

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A-5)

k̂st = k̂t−1 + ẑt (A-6)

ẑt =
1− ψ
ψ

r̂kt (A-7)

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A-8)

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A-9)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A-10)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp

µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂st (A-11)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ (ĉt − h/γĉt−1) (A-12)
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ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 + Etπ̂t+1) +

1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1) (A-13)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t −
(1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (A-14)

+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .

The exogenous shocks evolve according to

εat = ρaε
a
t−1 + ηat (A-15)

εbt = ρbε
b
t−1 + ηbt (A-16)

εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt (A-17)

εit = ρiε
i
t−1 + ηit (A-18)

εrt = ρrε
r
t−1 + ηrt (A-19)

εpt = ρrε
p
t−1 + ηpt − µpηpt−1 (A-20)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A-21)

The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (A-22)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ

∗
t+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Etl̂∗t+1) (A-23)

− 1− h/γ
(1 + h/γ)σc

r∗t −
1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî
∗
t+1 +

1

ϕγ2(1 + βγ(1−σc))
q̂∗t + εit (A-24)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t + (1− β(1− δ)γ−σc)Etrk∗t+1 − εbt (A-25)

ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A-26)

k̂s∗t = k∗t−1 + z∗t (A-27)
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ẑ∗t =
1− ψ
ψ

r̂k∗t (A-28)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A-29)

ŵ∗t = α(k̂s∗t − l̂∗t ) + εat (A-30)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A-31)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ (ĉ∗t + h/γĉ∗t−1). (A-32)

The steady state (ratios) that appear in the measurement equation or the log-linearized

equilibrium conditions are given by

γ = γ̄/100 + 1 (A-33)

π∗ = π̄/100 + 1 (A-34)

r̄ = 100(β−1γσcπ∗ − 1) (A-35)

rkss = γσc/β − (1− δ) (A-36)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(A-37)

ik = (1− (1− δ)/γ)γ (A-38)

lk =
1− α
α

rkss
wss

(A-39)

ky = Φl
(α−1)
k (A-40)

iy = (γ − 1 + δ)ky (A-41)

cy = 1− gy − iy (A-42)

zy = rkssky (A-43)

wlc =
1

λw

1− α
α

rkssky
cy

. (A-44)
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The prior distribution for the SW model is summarized in Table A-1.

Table A-1: SW Model: Standard Prior

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)
φ Normal 4.00 1.50 α Normal 0.30 0.05
σc Normal 1.50 0.37 ρa Beta 0.50 0.20
h Beta 0.70 0.10 ρb Beta 0.50 0.20
ξw Beta 0.50 0.10 ρg Beta 0.50 0.20
σl Normal 2.00 0.75 ρi Beta 0.50 0.20
ξp Beta 0.50 0.10 ρr Beta 0.50 0.20
ιp Beta 0.50 0.15 ρp Beta 0.50 0.20
ιw Beta 0.50 0.15 ρw Beta 0.50 0.20
ψ Beta 0.50 0.15 µp Beta 0.50 0.20
Φ Normal 1.25 0.12 µw Beta 0.50 0.20
rπ Normal 1.50 0.25 ρga Beta 0.50 0.20
ρ Beta 0.75 0.10 σa Inv. Gamma 0.10 2.00
ry Normal 0.12 0.05 σb Inv. Gamma 0.10 2.00
r∆y Normal 0.12 0.05 σg Inv. Gamma 0.10 2.00
π Gamma 0.62 0.10 σi Inv. Gamma 0.10 2.00
β−1 Gamma 0.25 0.10 σr Inv. Gamma 0.10 2.00
l Normal 0.00 2.00 σp Inv. Gamma 0.10 2.00
γ Normal 0.40 0.10 σw Inv. Gamma 0.10 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,
Gamma, and Normal distributions and to the upper and lower bounds of the support for
the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to
s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.
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Table A-2 shows the posterior means as well as 90% equal-tail-probability credible intervals.

We also report the standard deviation of posterior mean across the five repetitions of the

posterior simulation.

Table A-3 shows the diffuse prior for the SW model.
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Table A-2: SW Model with Standard Prior: Posterior Comparison

RWMH SMC
Parameter Mean [0.05, 0.95] STD(Mean) Mean [0.05, 0.95] STD(Mean)
φ 5.71 [ 4.12, 7.49] 0.02 5.69 [ 4.12, 7.43] 0.02
σc 1.32 [ 1.13, 1.54] 0.01 1.32 [ 1.13, 1.54] 0.00
h 0.72 [ 0.65, 0.79] 0.00 0.72 [ 0.65, 0.79] 0.00
λw 1.50 [ 1.50, 1.50] 0.00 1.50 [ 1.50, 1.50] 0.00
ξw 0.70 [ 0.59, 0.80] 0.00 0.70 [ 0.59, 0.80] 0.00
σl 1.88 [ 1.01, 2.86] 0.02 1.87 [ 1.01, 2.85] 0.01
ξp 0.64 [ 0.55, 0.73] 0.00 0.64 [ 0.54, 0.73] 0.00
ιp 0.58 [ 0.36, 0.78] 0.00 0.57 [ 0.36, 0.78] 0.00
ιw 0.25 [ 0.12, 0.41] 0.00 0.25 [ 0.12, 0.41] 0.00
ψ 0.55 [ 0.37, 0.74] 0.00 0.55 [ 0.37, 0.74] 0.00
Φ 1.58 [ 1.46, 1.71] 0.00 1.58 [ 1.46, 1.71] 0.00
rπ 2.05 [ 1.77, 2.34] 0.00 2.04 [ 1.77, 2.34] 0.00
ρ 0.80 [ 0.76, 0.84] 0.00 0.80 [ 0.76, 0.84] 0.00
ry 0.09 [ 0.05, 0.13] 0.00 0.09 [ 0.05, 0.12] 0.00
r∆y 0.22 [ 0.18, 0.27] 0.00 0.22 [ 0.18, 0.27] 0.00
π 0.69 [ 0.52, 0.87] 0.00 0.69 [ 0.52, 0.87] 0.00
β−1 0.17 [ 0.08, 0.27] 0.00 0.17 [ 0.08, 0.27] 0.00
l 0.74 [-1.20, 2.69] 0.02 0.74 [-1.20, 2.65] 0.02
γ 0.42 [ 0.39, 0.45] 0.00 0.42 [ 0.39, 0.45] 0.00
α 0.19 [ 0.16, 0.22] 0.00 0.19 [ 0.16, 0.22] 0.00
ρa 0.96 [ 0.94, 0.98] 0.00 0.96 [ 0.94, 0.97] 0.00
ρb 0.21 [ 0.08, 0.37] 0.00 0.21 [ 0.08, 0.37] 0.00
ρg 0.98 [ 0.96, 0.99] 0.00 0.98 [ 0.96, 0.99] 0.00
ρi 0.73 [ 0.63, 0.82] 0.00 0.73 [ 0.63, 0.82] 0.00
ρr 0.15 [ 0.06, 0.26] 0.00 0.15 [ 0.06, 0.27] 0.00
ρp 0.90 [ 0.80, 0.97] 0.00 0.90 [ 0.80, 0.96] 0.00
ρw 0.97 [ 0.95, 0.99] 0.00 0.97 [ 0.95, 0.99] 0.00
µp 0.69 [ 0.49, 0.84] 0.00 0.69 [ 0.49, 0.84] 0.00
µw 0.85 [ 0.73, 0.93] 0.00 0.84 [ 0.73, 0.93] 0.00
ρga 0.50 [ 0.35, 0.65] 0.00 0.50 [ 0.35, 0.65] 0.00
σa 0.47 [ 0.42, 0.52] 0.00 0.47 [ 0.42, 0.52] 0.00
σb 0.24 [ 0.20, 0.28] 0.00 0.24 [ 0.20, 0.28] 0.00
σg 0.54 [ 0.49, 0.59] 0.00 0.54 [ 0.49, 0.59] 0.00
σi 0.45 [ 0.38, 0.54] 0.00 0.45 [ 0.38, 0.54] 0.00
σr 0.25 [ 0.22, 0.28] 0.00 0.25 [ 0.22, 0.28] 0.00
σp 0.14 [ 0.11, 0.17] 0.00 0.14 [ 0.11, 0.17] 0.00
σw 0.25 [ 0.21, 0.29] 0.00 0.25 [ 0.21, 0.29] 0.00

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithms use 500,000 draws with the first 250,000 discarded. The average acceptance rate
was roughly 30%. The SMC algorithms use 12,000 particles, 500 stages, λ = 2.1, a mixture
proposal and 3 blocks in each Metropolis-Hastings step.
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Table A-3: SW Model: Diffuse Prior

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)
φ Normal 4.00 3.50 α Normal 0.30 0.12
σc Normal 1.50 0.90 ρa Uniform 0.00 1.00
h Uniform 0.00 1.00 ρb Uniform 0.00 1.00
ξw Uniform 0.00 1.00 ρg Uniform 0.00 1.00
σl Normal 2.00 1.75 ρi Uniform 0.00 1.00
ξp Uniform 0.00 1.00 ρr Uniform 0.00 1.00
ιp Uniform 0.00 1.00 ρp Uniform 0.00 1.00
ιw Uniform 0.00 1.00 ρw Uniform 0.00 1.00
ψ Uniform 0.00 1.00 µp Uniform 0.00 1.00
Φ Normal 1.25 0.36 µw Uniform 0.00 1.00
rπ Normal 1.50 0.75 ρga Uniform 0.00 1.00
ρ Uniform 0.00 1.00 σa Inv. Gamma 0.10 2.00
ry Normal 0.12 0.15 σb Inv. Gamma 0.10 2.00
r∆y Normal 0.12 0.15 σg Inv. Gamma 0.10 2.00
π Gamma 0.62 0.40 σi Inv. Gamma 0.10 2.00
β1 Gamma 0.25 0.30 σr Inv. Gamma 0.10 2.00
l Normal 0.00 2.00 σp Inv. Gamma 0.10 2.00
γ Normal 0.40 0.30 σw Inv. Gamma 0.10 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,
Gamma, and Normal distributions and to the upper and lower bounds of the support for
the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to
s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.
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Table A-4: SW Model with Diffuse Prior: Posterior Comparison

RWMH SMC
Parameter Mean [0.05, 0.95] STD(Mean) Mean [0.05, 0.95] STD(Mean)
φ 7.54 [ 4.31, 11.25] 0.30 7.27 [ 4.03, 11.02] 0.12
µw 0.74 [ 0.54, 0.90] 0.26 0.60 [ 0.08, 0.98] 0.04
l -0.06 [-2.34, 2.26] 0.23 -0.07 [-2.33, 2.29] 0.05
ρw 0.79 [ 0.62, 0.92] 0.23 0.66 [ 0.19, 0.99] 0.04
rπ 2.81 [ 2.19, 3.55] 0.10 2.77 [ 2.13, 3.49] 0.03
ιw 0.71 [ 0.41, 0.95] 0.09 0.74 [ 0.39, 0.97] 0.01
µp 0.73 [ 0.45, 0.91] 0.07 0.79 [ 0.50, 0.98] 0.01
ξw 0.91 [ 0.81, 0.97] 0.05 0.93 [ 0.80, 0.99] 0.01
σl 2.81 [ 1.35, 4.66] 0.05 2.84 [ 1.37, 4.68] 0.03
π 0.86 [ 0.43, 1.23] 0.05 0.86 [ 0.42, 1.23] 0.01
ξp 0.71 [ 0.60, 0.81] 0.03 0.72 [ 0.60, 0.82] 0.01
σc 1.65 [ 1.34, 2.06] 0.02 1.66 [ 1.34, 2.02] 0.01
Φ 1.72 [ 1.53, 1.93] 0.02 1.73 [ 1.51, 1.95] 0.01
ρp 0.91 [ 0.81, 0.99] 0.02 0.92 [ 0.82, 1.00] 0.00
ιp 0.10 [ 0.01, 0.27] 0.01 0.11 [ 0.01, 0.28] 0.00
ψ 0.75 [ 0.51, 0.96] 0.01 0.76 [ 0.51, 0.96] 0.01
ry 0.15 [ 0.09, 0.24] 0.01 0.15 [ 0.08, 0.23] 0.00
γ 0.41 [ 0.37, 0.44] 0.01 0.41 [ 0.37, 0.44] 0.00
ρb 0.19 [ 0.03, 0.43] 0.01 0.20 [ 0.03, 0.46] 0.01
ρi 0.72 [ 0.62, 0.83] 0.01 0.74 [ 0.63, 0.84] 0.00
ρga 0.44 [ 0.26, 0.61] 0.01 0.44 [ 0.26, 0.61] 0.00
h 0.69 [ 0.59, 0.78] 0.00 0.69 [ 0.58, 0.77] 0.00
λw 1.50 [ 1.50, 1.50] 0.00 1.50 [ 1.50, 1.50] 0.00
ρ 0.88 [ 0.84, 0.91] 0.00 0.88 [ 0.84, 0.92] 0.00
r∆y 0.28 [ 0.22, 0.35] 0.00 0.28 [ 0.22, 0.35] 0.00
β−1 0.06 [ 0.00, 0.18] 0.00 0.06 [ 0.00, 0.19] 0.00
α 0.17 [ 0.14, 0.21] 0.00 0.17 [ 0.14, 0.21] 0.00
ρa 0.97 [ 0.96, 0.98] 0.00 0.97 [ 0.96, 0.98] 0.00
ρg 0.98 [ 0.97, 1.00] 0.00 0.98 [ 0.97, 1.00] 0.00
ρr 0.06 [ 0.00, 0.15] 0.00 0.05 [ 0.00, 0.14] 0.00
σa 0.46 [ 0.41, 0.51] 0.00 0.46 [ 0.41, 0.51] 0.00
σb 0.24 [ 0.19, 0.28] 0.00 0.24 [ 0.18, 0.28] 0.00
σg 0.55 [ 0.50, 0.60] 0.00 0.55 [ 0.50, 0.60] 0.00
σi 0.47 [ 0.39, 0.56] 0.00 0.46 [ 0.39, 0.55] 0.00
σr 0.24 [ 0.22, 0.27] 0.00 0.24 [ 0.22, 0.27] 0.00
σp 0.13 [ 0.09, 0.16] 0.00 0.14 [ 0.09, 0.22] 0.00
σw 0.26 [ 0.22, 0.29] 0.00 0.26 [ 0.22, 0.30] 0.00

Notes: Means and standard deviations are over 5 runs for each algorithm. The RWMH
algorithms use 500,000 draws with the first 250,000 discarded. The average acceptance rate
was roughly 28%. The SMC algorithms use 12,000 particles, 500 stages, λ = 2.1, a mixture
proposal and 3 blocks in each Metropolis-Hastings step.
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Figure A-1 shows scatter plots of the top-100 particle weights (Column 1); histograms for

the remaining weights (Column 2); and recursive estimates of the variance of the weights.

The rows correspond to n = 100, n = 200, and n = 500, respectively.

Figure A-1: Visual Diagnostics for SW Model at n = 100, 200,and 500
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B Schmitt-Grohé and Uribe (2010) Model

B.1 Steady State

µyss = µa,ss
αk
αk−1 µx,ss (A-45)

µkss = µx,ss µa,ss
1

αk−1 (A-46)

xgss =

(
1

µyss

) 1
1−ρxg

(A-47)

(
g

y

)
ss

=
0.20

xgss
(A-48)

(y
k

)
ss

=

1

µa,ss β µy
(−σ)
ss

− (1− δ0)

αk µkss
(A-49)(

i

k

)
ss

= 1− 1− δ0

µkss
(A-50)

(
i

y

)
ss

=

(
i

k

)
ss

/
(y
k

)
ss

(A-51)

(
c

y

)
ss

= 1− xgss
(
g

y

)
ss

−
(
i

y

)
ss

(A-52)

ψ =

(
1−µy(−σ)ss β b

)
αh

1+µss

(
y
c

)
ss

hθss

(
1

µyss

) 1−γ
γ

(
θ
(

1− b
µyss

)
+
(

1− µy(−σ)
ss β b

) (
y
c

)
ss

αh
γ

1−β (1−γ)µy1−σss

1+µss

) (A-53)

kss =

(
y kt

l1−αk−αh h
αh
ss

µk
(−αk)
ss

) 1
αk−1

(A-54)

δ1 = µkss αk y kt (A-55)
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B.2 Detrended Equilibrium

B.2.1 Optimality and Market Clearing Conditions

Investment Equation:

kt =

(
1−

(
δ0 + δ1 (ut − 1) +

δ2

2
(ut − 1)2

))
kt−1

µkt
+ zit it

(
1− κ

2

(
itµkt
it−1

− µkss
)2
)

(A-56)

Resource Constraint:

yt = gt xgt + it + ct (A-57)

Production Function:

yt = zt (utkt−1/µkt)
αk hαht l

1−αh−αk (A-58)

Value of Consumption Bundle:

vt = ct − b
ct−1

µyt
− ψhθt st (A-59)

Geometric Average of past habit-adjusted consumption:

st =

(
ct − b

ct−1

µyt

)γ (
st−1

µyt

)1−γ

(A-60)

Consumption Decision:

λt = ζt v
−σ
t −

γstpt
ct − b ct−1

µyt

− β bµy−σt+1

(
ζt+1 v

−σ
t+1 −

γst+1pt+1

ct+1 − b ct
µyt+1

)
(A-61)

Hours Decision:

θ ψst v
−σ
t ζt h

θ−1
t = λt

αhyt/ht
1 + µt

(A-62)

Dynamics for the shadow price of past consumption:

pt = ψζtv
−σ
t hθt + β (1− γ) µy

1−σ
t+1 pt+1

st+1

st
(A-63)
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Euler Equation:

λt qt = β λt+1 µat+1µy
−σ
t+1

(
αk ut+1

yt+1

kt ut+1/µkt+1

+

(
1−

(
δ0 + δ1 (ut+1 − 1) +

δ2

2
(ut+1 − 1)2

))
qt+1

)
(A-64)

Capacity Utilization:

qt (δ1 + δ2 (ut − 1)) = αk
yt

ut kt−1/µkt
(A-65)

Dynamics of qt:

λt = qtλt z
i
t

(
1− κ

2

(
itµkt
it−1

− µkss
)2

− κ itµkt
it−1

(
itµkt
it−1

− µkss
))

+ βµat+1µy
−σ
t+1 qt+1λt+1z

i
t+1

(
it+1 µkt+1

it

)2

κ

(
it+1 µkt+1

it
− µkss

)
(A-66)

B.2.2 Exogenous Processes and Trends

Stochastic trend in output:

µyt = µxt µa

αk
αk−1

t (A-67)

Stochastic trend in capital and investment:

µkt = µxt µa
1

αk−1

t (A-68)

Government Spending Trend:

xgt =
xg

ρxg
t−1

µyt
(A-69)

Capital-specific technology trend shock:

log

(
µat
µa,ss

)
= ρa log

(
µat−1

µa,ss

)
+ ε0a,t + ε4a,t−4 + ε8a,t−8 (A-70)

Neutral technology trend shock:

log

(
µxt
µx,ss

)
= (ρx − 0.5) log

(
µxt−1

µx,ss

)
+ ε0x,t + ε4x,t−4 + ε8x,t−8 (A-71)
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Neutral technology shock:

log (zt) = ρz log (zt−1) + ε0z,t + ε4z,t−4 + ε8z,t−8 (A-72)

Investment-specific technology shock:

log
(
zit
)

= ρzi log
(
zit−1

)
+ ε0zi,t + ε4zi,t−4 + ε8zi,t−8 (A-73)

Government Spending Shock

log

(
gt
gsst

)
= ρg log

(
gt−1

gsst

)
+ ε0g,t + ε4g,t−4 + ε4g,t−8 (A-74)

Preference shock:

log (ζt) = ρζ log (ζt−1) + ε0ζ,t + ε4ζ,t−4 + ε8ζ,t−8 (A-75)

Wage markup:

log

(
µt
µss

)
= ρµ log

(
µt−1

µss

)
+ ε0µ,t + ε4µ,t−4 + ε8µ,t−8 (A-76)

B.2.3 Observation Equations

ygrt = 100 log

(
ytµyt
yt−1

)
+ εmey,t (A-77)

cgrt = 100 log

(
ctµyt
ct−1

)
(A-78)

igrt = 100 log

(
itµatµkt
it−1

)
(A-79)

hgrt = 100 log

(
ht
ht−1

)
(A-80)

ggrt = 100 log

(
gt xgtµyt
gt−1 xgt−1

)
(A-81)

zgrt = 100 log

(
ztµx

1−αk
t

zt−1

)
(A-82)

agrt = 100 log (µat) (A-83)
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B.3 Replicating the Results in Schmitt-Grohé and Uribe (2012)

The description of the model in the previous subsections corresponds to the model presented

in the text of Schmitt-Grohé and Uribe (2012). Their implementation is slightly different.

Wage Markup: The process for the wage markup shock actually operates on the gross

markup,

1 + µ.

Prior Normalizations: As noted in the text and Table 2 of SGU, the prior for θ is actually

on θ − 1. That is,

θ ∼ 1 +Gamma(4.00, 1.00).

Similarly, support for ρx is [−0.5, 0.5], or

ρx ∼ Beta(0.7, 0.2)− 0.5.

Finally, as noted in early drafts of SGU, the parameters [b, ρxg, ρz, ρa, ρg, ρµ, ρζ , ρzi ] are

rescaled by 0.99, presumably to help identify the news innovations.
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Table A-5: News Model: Prior Distribution

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)
θ − 1 Gamma 4.00 1.00 σ0

zi Gamma 17.15 17.15
γ Beta 0.50 0.29 σ4

zi Gamma 7.00 7.00
κ Gamma 4.00 1.00 σ8

zi Gamma 7.00 7.00
δ2/δ1 Inv. Gamma 0.68 2.59 σ0

z Gamma 1.50 1.50
b Beta 0.50 0.20 σ4

z Gamma 0.61 0.61
ρxg Beta 0.70 0.20 σ8

z Gamma 0.61 0.61
ρz/0.99 Beta 0.70 0.20 σ0

µ Gamma 1.19 1.19
ρa/0.99 Beta 0.50 0.20 σ4

µ Gamma 0.49 0.49
ρg/0.99 Beta 0.70 0.20 σ8

µ Gamma 0.49 0.49
ρx + 0.5 Beta 0.70 0.20 σ0

g Gamma 1.05 1.05
ρµ/0.99 Beta 0.70 0.20 σ4

g Gamma 0.43 0.43
ρζ/0.99 Beta 0.50 0.20 σ8

g Gamma 0.43 0.43
ρzi/0.99 Beta 0.50 0.20 σ0

ζ Gamma 6.30 6.30
σ0
µa Gamma 0.31 0.31 σ4

ζ Gamma 2.57 2.57
σ4
µa Gamma 0.13 0.13 σ8

ζ Gamma 2.57 2.57
σ8
µa Gamma 0.13 0.13 σmeygr Uniform 0.00 0.30
σ0
µx Gamma 0.45 0.45
σ4
µx Gamma 0.19 0.19
σ8
µx Gamma 0.19 0.19

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,
Gamma, and Normal distributions and to the upper and lower bounds of the support for
the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to
s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.
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Figure A-2 plots the evolution of the effective sample size as a function of n (whereNφ = 500).

As is apparent from the figure, there are about 15 resampling steps out of a total 500 stages,

or about 3% of the time. We view this as a reasonable performance for the algorithm.

Figure A-2: The Evolution of the Effective Sample Size for the News Model
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