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1 Introduction

Estimated dynamic stochastic equilibrium (DSGE) models are now widely used for empirical

research in macroeconomics as well as quantitative policy analysis and forecasting at central

banks around the world. This paper summarizes recent advances in the econometric analysis

of DSGE models, discusses current challenges, and highlights avenues for future research.

To illustrate the advances of the past decade, a prototypical empirical analysis based on a

small-scale New Keynesian DSGE model is presented. In this application, Bayesian inference

is used to measure the welfare effect of changing the central bank’s target inflation rate. The

Bayesian inference is implemented through Markov-Chain Monte Carlo (MCMC) methods,

which deliver draws from the posterior distribution of DSGE model parameters. These

draws can be converted into impulse response functions, welfare effects of policy changes, or

other quantities of interest. Moreover, it is straightforward to obtain point estimates, e.g.,

posterior means or medians, or credible sets that reflect the posterior uncertainty.

Despite the advances of the DSGE model literature, many important challenges remain.

This paper considers five of them in detail. First, while reported credible (or confidence) sets

for DSGE model parameters are often narrow, from a meta perspective, estimates of many

important parameters tend to be fragile across empirical studies. Second, macroeconomic

fluctuations in DSGE models are generated by exogenous disturbances. The estimated shock

processes are often highly persistent, and their path closely mirrors the path of one of the

observables. This raises concerns as to whether these shocks capture aggregate uncertainty

or misspecification. Third, many time series exhibit low frequency behavior that is difficult,

if not impossible, to reconcile with the model being estimated. This low frequency misspec-

ification contaminates the estimation of shocks and thereby inference about the sources of

business cycle fluctuations. Fourth, in view of more densely parameterized empirical models

such as vector autoregressions (VARs), DSGE models often appear to be misspecified in the

sense that VARs are favored by statistical criteria that trade off goodness of in-sample fit

against model dimensionality. Fifth, the predictions of the effects of rare policy changes often

rely exclusively on extrapolation by theory, which makes it difficult to provide measures of

uncertainty.
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This paper is organized as follows. The above-mentioned advances and challenges are

illustrated in Section 2. The remaining sections discuss recent research that addresses some

of these problems, including work on identification of DSGE models (Section 3), the gener-

alization of exogenous shock processes (Section 4), methods to construct hybrid models that

correct DSGE model misspecification (Section 5), and methods to conduct policy analysis

(Section 6). Finally, Section 7 concludes. Details of the empirical illustrations and exam-

ples that are presented in this paper are relegated to a Technical Appendix that is available

electronically.

2 A Prototypical Application

A central element of New Keynesian DSGE models is that firms face a cost of adjusting

nominal prices. In turn, firms tend to economize on price adjustments if inflation is nonzero.

This leads to a distortion of relative prices and an inefficient use of intermediate inputs, and

ultimately to output and welfare loss. At the same time, nonzero nominal interest rates

constitute a tax on money holdings and depress transactions that require the use of money

or highly liquid, non-interest-bearing funds. These two mechanisms create a trade-off for

policymakers. The New Keynesian friction is eliminated by targeting a zero inflation rate,

which equates nominal and real interest rate. The monetary friction, on the other hand,

is eliminated if the nominal interest rate is zero. A DSGE model can be used to estimate

the relative strength of the two frictions and to determine a long-run inflation rate that

trades off the opposing mechanisms. The following illustration is based on recent work by

Aruoba and Schorfheide (2011), henceforth AS. Section 2.1 provides a description of the

model economy. Section 2.2 discusses estimation results that highlight some of the recent

advances in the econometric analysis of DSGE models. Finally, Section 2.3 points toward a

number of problems and challenges that need to be addressed in future research.
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2.1 A Small-Scale DSGE Model

The model economy consists of households, final good producers, intermediate goods pro-

ducers, a central bank, and a fiscal authority. It is a simplified version of the widely cited

Smets and Wouters (2003, 2007) model because it abstracts from habit formation in con-

sumption and wage rigidity. I will subsequently provide a brief description of the agents’

decision problems, the aggregate resource constraint, and the exogenous shock processes.

Households. The economy is populated by a continuum of identical households. These

households take as given the aggregate price level Pt, the gross nominal interest rate Rt on

one-period bonds, the wage Wt, the rental rate of capital, Rk
t , and the set of aggregate shocks

St, along with their laws of motion. The households maximize

Eτ

[
∞∑
t=τ

β(t−τ)

{
U(Ct)− AHt +

χt
1− ν

(
Mt

Pt

A

Z
1/1−α
∗

)1−ν
}]

(1)

subject to the constraints:

PtCt + PtIt +Bt+1 +Mt+1 ≤ PtWtHt + PtR
k
tKt + Πt +Rt−1bt +Mt − Tt + Ωt (2)

Kt+1 = (1− δ)Kt +

[
1− S

(
It
It−1

)]
It. (3)

U(Ct) is the instantaneous utility from consuming Ct units of the final good, A is the disutility

associated with one unit of labor, Ht is hours worked, and Mt denotes the households’ money

holdings at the beginning of period t. The assumption of quasilinear preferences can be

motivated by the indivisible labor setup of Rogerson (1988) and is used for convenience in

many of the New Keynesian models discussed in Woodford (2003). Money balances enter

the utility function to capture the benefits of transaction services. The shock χt captures

time-varying preferences for money, and the parameter ν controls the interest-rate elasticity

of money demand.1

1AS develop an estimable search-based monetary DSGE model, in which money is essential to facilitate

bilateral exchanges in a decentralized market. The reduced-form specification considered in this paper serves

as a reference model in AS to assess the fit of the search-based DSGE model. The factor A/Z
1/(1−α)
∗ in the

utility function can be viewed as a re-parameterization of the steady-state level of χt that keeps steady-state

velocity constant as one changes the preference parameter A and the steady-state level of technology Z∗

(introduced below).
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Equation (2) represents the households’ budget constraint. Final goods are purchased

at the price Pt and used for consumption and investment It. The household receives labor

income, rental income from lending capital Kt to firms, interest income from bond holdings

Bt, and dividends Πt from intermediate goods producers. Tt is a nominal lump-sum tax and

Ωt is the household’s net cash-in-flow from trading state-contingent securities. Equation (3)

determines the capital accumulation. The adjustment cost function S(.) satisfies the prop-

erties S(1) = 0, S ′(1) = 0 and S ′′(1) > 0. I adopt the timing convention that Kt+1 (and

also Mt+1) denote capital and money holdings at the end of period t and do not depend on

period t+ 1 shocks.

Final Good Production. The final good Yt is a composite made of a continuum of intermediate

goods Yt(i):

Yt =

[∫ 1

0

Yt(i)
1

1+λdi

]1+λ

(4)

with elasticity of substitution (1 + λ)/λ, where λ ∈ [0,∞). The final good producers buy

the intermediate goods on the market, package them into Yt units of the composite good,

and resell them to consumers. These firms maximize profits in a perfectly competitive

environment taking Pt(i) as given, which yields the demand for good i

Yt(i) =

(
Pt(i)

Pt

)− 1+λ
λ

Yt. (5)

Combining this demand function with the zero profit condition, one obtains the following

expression for the price of the composite good

Pt =

[∫ 1

0

Pt(i)
− 1
λdi

]−λ
. (6)

Aggregate inflation is defined as πt = Pt/Pt−1.

Intermediate Goods Production. Intermediate goods producers, indexed by i, face the de-

mand function (5) and use a Cobb-Douglas technology with fixed costs F and stochastic

total factor productivity Zt:

Yt(i) = max

{
ZtKt(i)

αHt(i)
1−α −F , 0

}
. (7)

As in Calvo (1983), it is assumed that firms are only able with probability 1−ζ to re-optimize

their price in the current period. A random fraction ι of the firms that are not allowed to
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choose Pt(i) optimally update their price Pt−1(i) according to last period’s inflation rate

πt−1, whereas the remaining 1− ι firms keep their price constant. For a firm that is allowed

to re-optimize its price, the problem is to choose a price level P o
t (i) that maximizes the

expected present discounted value of profits in all future states in which the firm is unable

to re-optimize its price. This firm discounts future using the time t value of a dollar in

period t+ s for the consumers. The solution of this problem leads to a dynamic relationship

between inflation and marginal costs, the so-called New Keynesian Phillips Curve (NKPC).

Government Spending. In period t, the government collects a nominal lump-sum tax Tt,

spends Gt on final good purchases, issues one-period nominal bonds Bt+1 that pay Rt gross

interest tomorrow, and supplies the money to maintain the interest rate rule. It satisfies the

following budget constraint every period

PtGt +Rt−1Bt +Mt = Tt +Bt+1 +Mt+1. (8)

Government spending Gt is assumed to evolve exogenously.

Aggregate Resource Constraint. Adding the households’ budget constraints, the government

budget constraint and the profits of intermediate goods producers yields the aggregate re-

source constraint

Ct + It +Gt = Yt. (9)

The quantity of final goods is related to the total inputs used by the intermediate goods

firms according to

Yt =
1

Dt

[
ZtK

α
t H

1−α
t −F

]
, Dt =

∫ (
Pt(i)

Pt

)− 1+λ
λ

di, (10)

where Dt measures the extent of price dispersion. Unless Pt(i) = Pt for all firms, Dt is greater

than unity, which in turn implies the economy produces inside its production-possibility

frontier. Dt captures the output loss due to the New Keynesian friction.

Monetary Policy. Following authors like Sargent (1999) and Lucas (2000), I assume that

low frequency movements of inflation, such as the rise of inflation in the 1970s and the

subsequent disinflation episode in the early 1980s, can be attributed to monetary policy

changes. Unlike in the learning models considered by Sargent, Zha, and Williams (2006) or
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Primiceri (2006), in this paper the DSGE model offers no explanation why monetary policy

shifts occur over time and simply assumes a time-varying target inflation rate π∗,t. The

central bank supplies money to control the nominal interest rate and reacts to inflation and

output growth according to the rule

Rt = R1−ρR
∗,t RρR

t−1 exp[σRεR,t], R∗,t = (r∗π∗,t)

(
πt
π∗,t

)ψ1
(

Yt
γYt−1

)ψ2

, (11)

where r∗ is the steady-state real interest rate, γ is the gross steady-state growth rate of the

economy, and εR,t is a monetary policy shock.

Exogenous Shocks. The model economy is subjected to five aggregate disturbances. Zt is the

stochastic total factor productivity process. gt is a shock that shifts government spending

according to

Gt = (1− 1/gt)Yt. (12)

The money demand shock χt shifts preferences for real money balances. Finally, the model

has two monetary policy shocks: εR,t is assumed to be serially uncorrelated and captures

short-run shifts in monetary policy, whereas the time-varying inflation target π∗,t captures

long-run policy changes. Let Z̃t = ln (Zt/Z∗), χ̃t = ln (χt/χ∗) and g̃t = ln (gt/g∗), where Z∗,

χ∗ and g∗ are steady-state values of the respective exogenous disturbances. It is assumed

that these exogenous disturbances evolve according to stationary AR(1) processes Z̃t =

ρzZ̃t−1 + σzεz,t, χ̃t = ρχχ̃t−1 + σχε
χ
χ,t and g̃t = ρgg̃t−1 + σgεg,t. Finally, let π̃∗,t = ln (π∗,t/π∗),

where π∗ is a constant and π̃∗,t evolves as a random walk π̃∗,t = π̃∗,t−1+σπε
π
π,t. The innovations

are stacked in the vector εt = [εz,t, εχ,t, εg,t, επ,t, εR,t] and are assumed to be independently

and identically distributed according to a vector of standard normal random variables. The

law of motion for the exogenous processes completes the specification of the DSGE model.

State-Space Representation. After log-linearizing the equilibrium conditions of the model,

the solution of the resulting rational expectations difference equations leads to a state-space

representation of the form

yt = Ψ0(θ) + Ψ1(θ)t+ Ψs(θ)st (13)

st = Φ1(θ)st−1 + Φε(θ)εt,
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where yt is a vector of observables, such as aggregate output, inflation, and interest rates; and

st contains the unobserved exogenous shock processes as well as the potentially unobserved

endogenous state variables of the model economy. The model specification is completed

by making a distributional assumption for the vector of innovations εt and the initial state

vector s0.

2.2 What Has the DSGE Model Estimation Literature Delivered?

The goal of the DSGE model estimation literature is to provide quantitative answers to

macroeconomic questions as well as probabilistic measures of uncertainty associated with

these answers. As an illustration, I will use the DSGE model described in Section 2.1 to

assess the welfare effects of changes in the target inflation rate. The model is estimated with

U.S. data from 1965 to 2005 on linearly detrended log GDP, interest rates, GDP deflator

inflation, log inverse M1-velocity, and an empirical measure of the target inflation rate that

is constructed from bandpass filtered inflation and long-run inflation expectations. Following

the empirical strategy in Aruoba and Schorfheide (2011), the target inflation rate is treated

as an observed variable such that it becomes possible to assess the time series fit of the DSGE

model and the propagation of unanticipated changes in the target inflation rate through a

comparison with a VAR. Except for the use of an observable measure of the target inflation

rate, the empirical illustration is representative of the large literature on estimated DSGE

models that has emerged recently.

Bayesian Inference. While over the past decades numerous econometric procedures for the

analysis of DSGE models have been developed,2 I will focus on Bayesian inference techniques

that have first been used in the context of DSGE model estimation in DeJong, Ingram, and

Whiteman (2000), Schorfheide (2000), and Otrok (2001) and are by now widely applied in

the literature. Let θ denote the collection of parameters of the DSGE model described in

Section 2.1. Bayesian inference starts from a prior distribution represented by the density

p(θ). The prior is combined with the conditional density of the data Y given the parameters,

2The textbooks by Canova (2007) and DeJong and Dave (2007) provide a detailed overview.
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denoted by p(Y |θ). According to Bayes Theorem, the posterior distribution, that is the

conditional distribution of parameters given data, is given by

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, p(Y ) =

∫
p(Y |θ)p(θ)dθ, (14)

where p(Y ) is called the marginal likelihood or data density. In DSGE model applications, it

is typically not possible to derive moments and quantiles of the posterior distribution analyt-

ically. Instead, inference is implemented via numerical methods such as MCMC simulation.

MCMC algorithms deliver serially correlated sequences {θ(s)}nsims=1 of draws from the density

p(θ|Y ). Based on these draws, one can approximate the posterior density, its moments and

quantiles, and for instance construct credible sets. In addition, the sequence {θ(s)}nsims=1 can be

transformed into a sequence {f(θ(s))}nsims=1 to characterize the posterior distribution of f(θ),

where f(θ) could be a set of steady states or impulse response functions computed from the

DSGE model. A more detailed discussion of numerical techniques to implement Bayesian

inference for DSGE models can be found, for instance, in An and Schorfheide (2007a) and

Del Negro and Schorfheide (2010).

Estimates of Parameters and Transformations Thereof. The output and inflation trade-off

faced by a central bank is determined by the NKPC, which for values of the target inflation

rate near zero can be approximated as follows:

π̃t = γbπ̃t−1 + γfEt[π̃t+1] + κM̃Ct, (15)

where

γb =
ι

1 + βι
, γf =

β

1 + βι
, and κ =

(1− ζ)(1− ζβ)

ζ(1 + βι)
.

x̃t denotes percentage deviations from the log-linearization point ln(xt/x∗) and MCt abbre-

viates the marginal cost of producing an additional unit of the intermediate good. Posterior

and prior densities for the coefficient on marginal costs κ and lagged inflation γb are depicted

in the top panels of Figure 1. The posterior density of κ peaks at about 0.08 and the poste-

rior of γb peaks at 0.03, implying that the influence of the lagged inflation term in the NKPC

is essentially negligible. The posterior densities reflect the sample information and turn out

to be much more concentrated than the prior densities.
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The bottom left panel depicts densities for the percentage loss 100|1/D∗ − 1| in output

caused by the inability of a fraction of intermediate goods producers to choose their prices

optimally. D∗ depends on the steady-state mark-up controlled by λ as well as the price

setting parameters ζ and ι:

D∗ =

(1− ζ)

[
1

1−ζ −
ζ

1−ζ

(
1
π∗

)− 1−ι
λ

]1+λ

1− ζπ
(1+λ)(1−ι)

λ
∗

. (16)

It can be verified that D∗ is bounded below from one. This lower bound is attained if prices

are flexible (ζ = 0), if all firms that are unable to re-optimize fully index their old prices

to inflation (ι = 1), or if the steady-state inflation rate is zero (meaning that the gross

inflation π∗ = 1). The posterior estimate of the output loss due to the New Keynesian

distortion is about 0.6%. Interestingly, it is the combination of modeling assumption about

the substitutability of intermediate inputs with information about the correlation between

inflation and a measure of aggregate marginal costs that delivers the output loss estimate.3

The prior density of D∗ peaks at about 0.1, because the prior distribution places more

weight on large values of γb, which imply the New Keynesian friction is reduced by the firms’

dynamic indexation.

At last, the bottom right panel shows densities for the interest rate coefficient 1/(ν(R∗−

1)) in the log-linearized demand equation for real money balances at the end of period t:

M̃t+1 = − 1

ν(R∗ − 1)
R̃t +

γ

ν
X̃t −

1− ν
ν

E[π̃t+1] + E[χ̃t+1], (17)

where R∗ is the steady-state nominal interest rate. The (partial) interest rate elasticity

of money demand indirectly affects the welfare costs induced by taxing money balances

via inflation. In a Bayesian framework, the posterior densities plotted in Figure 1 provide a

formal characterization of parameter uncertainty. Point and interval estimates can be derived

as solutions to decision problems that entail the minimization of posterior expected losses.

The most widely used point estimates are the posterior mean and median, and the so-called

highest-posterior density interval is the shortest interval among all (including disconnected)

intervals that are 1− α credible, i.e., have posterior probability 1− α.

3Alternatively, many authors use the frequency of price changes observed in micro-level data sets to

determine ζ and hence the magnitude of the aggregate distortion D∗.
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Policy Analysis. What are the relative strengths of the monetary and New Keynesian friction

and what rate of long-run inflation optimizes the trade-off between these two frictions? The

results obtained from the estimated model are depicted in Figure 2. Each line in the left

panel of the figure represents the (steady-state) welfare loss function for a particular draw of

θ from its posterior distribution. The loss is expressed in terms of consumption equivalents

relative to a 2.5% (annualized) target inflation rate. Negative values imply welfare gains.

The right panel contains (pointwise) posterior means and 90% credible intervals for these

losses. The welfare gain is maximized at an inflation rate of near zero, meaning that the

New Keynesian friction dominates the policy recommendation.

Summary. The empirical illustration suggests that econometricians have developed a pow-

erful toolkit that enables an elegant econometric analysis of DSGE models. The strengths

of the formal econometric analysis are its ability to efficiently extract information about pa-

rameters from long-run averages and sample autocovariances of macroeconomic time series

and to account for parameter (and model) uncertainty in inference and decision making.

Researchers have made extensive use of these strengths. The Bayesian approach has the

additional advantage that it allows the researcher to coherently combine sample information

(contained in the likelihood function) with nonsample information represented by prior dis-

tributions. There exist many published papers that to varying degrees follow the template

of the empirical analysis presented above, albeit in pursuit of answers to different economic

questions. The computations are by now automated in software packages such as DYNARE

and accessible to a large community of empirical macroeconomists, which is a reflection of

the progress that the literature has made over the past ten years.

2.3 Challenges

The smooth execution of the empirical analysis in the previous section may give the impres-

sion that the literature has solved most of the key conceptual problems associated with the

estimation of DSGE models. Unfortunately – for those who are applying the methods – and

fortunately – for those who are developing them, this is not the case. Computational con-

straints put bounds on the degree of realism and complexity of macroeconometric models. In
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light of the steady progression of computational capabilities, much of the ongoing research

focuses on enriching endogenous propagation mechanisms (e.g., by incorporating labor mar-

ket frictions, financial frictions, informational frictions and learning, heterogeneity impulses),

the use of richer exogenous shock processes (e.g., anticipated shocks and shocks with regime-

switching or stochastic volatility dynamics), and accounting for model-implied nonlinear

dynamics of endogenous variables in the estimation of DSGE models. Rather than scrutiniz-

ing the latest advances in enriching DSGE models, I will focus on some methodological and

conceptual challenges that have plagued the field for a while. Recent advances in the estima-

tion of nonlinear DSGE models are discussed in Fernández-Villaverde and Rubio-Ramı́rez

(2011), with a special emphasis on time-varying volatility dynamics in macroeconomic data.

Challenge 1: Fragile Parameter Estimates. The NKPC (15) appears in many DSGE models.

In Schorfheide (2008), I compiled a table of 42 DSGE model-based estimates of κ and γb

that had been published in academic journals. The large number of estimates is testament

to a widespread use of the estimation techniques that have been developed in recent years.

The estimates range from essentially zero to about four. A value near zero implies that

monetary policy changes have a large effect on output but very little effect on inflation. A

value of four, on the other hand, means that prices are essentially flexible and that output

does not react to monetary policy changes. This remarkable range is due to differences in

model specification, choice of observables and sample period, data definitions, and detrend-

ing. Unfortunately, the measures of uncertainty reported in the individual studies give no

indication about the fragility of the results from a meta perspective. To illustrate this point,

Figure 3 depicts a 90% credible set for γb and κ in (15) based on the estimation of the DSGE

model described in Section 2.1 as well as the 42 parameter estimates surveyed in Schorfheide

(2008). It is apparent that the posterior uncertainty conditional on a specific model and data

choice is dwarfed by the variation across model specifications and data sets. The fragility

of parameter estimates potentially translates into other objects of interest such as inference

about the sources of business cycle fluctuations, forecasts, as well as policy prescriptions.

Thus, accounting for model uncertainty as well as for different approaches of relating model

variables to observables is of first-order importance.
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Challenge 2: Aggregate Uncertainty versus Misspecified Endogenous Propagation. Figure 4

depicts the time series of inverse velocity used for the estimation of the DSGE model. In

addition, the figure shows a counterfactual path for velocity that is obtained by setting all

exogenous shocks except the money demand shock equal to zero. The sequence of money de-

mand shocks is kept at its estimated value. A visual inspection of Figure 4 suggests that the

money demand shock explains most of the historical variation in velocity. This finding has

two possible interpretations. On the one hand, it could be the case that velocity fluctuations

are overwhelmingly due to changes in money demand. On the other hand, it is conceivable

that the endogenous transmission of technology, government spending, and monetary policy

shocks into monetary aggregates is misspecified and the exogenous money demand shock

absorbs mostly specification error. In the absence of other empirical evidence, formal econo-

metric methods have difficulties distinguishing these two interpretations. The phenomenon

that the variation in certain time series is to a large extent explained by shocks that are

inserted into intertemporal or intratemporal optimality conditions is fairly widespread and

has led to criticisms of existing DSGE models, e.g. Chari, Kehoe, and McGrattan (2007).

Challenge 3: Trends. The DSGE model of Section 2.1 implies that velocity follows a sta-

tionary process with a constant mean. Figure 4 shows that inverse velocity was falling from

1960 to 1982 and then rising subsequently, which suggests that its path would be better

captured by a trend-stationary model with a structural break. The problem of a mismatch

between trends in the data and trends in DSGE models is fairly widespread and extends be-

yond the velocity series. Most DSGE models impose strict balanced growth path restrictions

implying, for instance, that consumption-output, investment-output, government spending-

output, and real-wage output ratios should exhibit stationary fluctuations around a constant

mean. In the data, however, many of these ratios exhibit trends. As a consequence, counter-

factual low frequency implications of DSGE models manifest themselves in exogenous shock

processes that are estimated to be highly persistent. To the extent that inference about

the sources of business cycles and the design of optimal economic policies is sensitive to the

persistence of shocks, misspecified trends are a reason for concern.

Challenge 4: Statistical Fit. Macroeconometrics is plagued by a trade-off between theoretical
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coherence and empirical fit. Theoretically coherent DSGE models impose tight restrictions

on the autocovariance sequence of a vector time series, which often limit its ability to track

macroeconomic time series as well as, say, a less restrictive vector autoregression (VAR). A

Bayesian framework allows researchers to assign probabilities to competing model specifica-

tions. If π0,i are prior probabilities assigned to models Mi, i = 1, 2, then the posterior odds

of the two models after observing a sample of T observations are given by

π1,T

π2,T

=
π1,0

π2,0

p(Y |M1)

p(Y |M2)
. (18)

The marginal likelihood p(Y ), omitting the conditioning on Mi, was defined in (14) and

implicitly penalizes the in-sample fit of a model by a measure of complexity. The log marginal

likelihoods for the DSGE model and the VAR are −940.22 and −924.14, respectively, and

shift the prior odds in favor of the VAR by a factor of e16.

To shed some light on the difference in (penalized) fit of DSGE model and VAR, Figure 5

depicts the impulse responses to an unanticipated change in the target inflation rate. In both

the DSGE model and the VAR, the response is identified by the assumption that the target

inflation rate evolves exogenously. The target inflation shock raises inflation and nominal

interest rates by about 22 basis points in the long run. Output falls because the higher

inflation rate exacerbates both the New Keynesian and the monetary distortion. While the

estimated responses of output, inflation, and interest rates are similar, the inverse velocity

response is very different and points toward a source of misspecification of the DSGE model:

It is unable to capture the rather large long-run elasticity of money demand with respect to

interest rate changes.

If the goal of the empirical analysis is to provide an impulse response function to an

unanticipated change in the target inflation rate, one might feel more comfortable relying on

the VAR prediction because a formal econometric analysis suggests to place more weight on

them (though the VAR does not provide a coherent economic explanation for the responses).

If, on the other hand, the goal is to determine the welfare effect of the change in the inflation

target, then the VAR is of limited use. While the drop in output and money balances might

suggest a welfare loss, it is unclear how to trade off a decrease in consumption against an
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increase in leisure. At the same time the discrepancy between the VAR and the DSGE model

responses is disconcerting as money balances enter directly the households’ utility function.

In order to narrow the gap between the DSGE and the VAR impulse responses to a target-

inflation rate shock, I reduce the value of ν from 31.7 to 3 to increase the (partial) elasticity

of money demand to interest rate changes without re-estimating the remaining parameters.

A comparison of impulse responses obtained under the two values of ν is provided in the top

panels of Figure 6. With ν = 3 there is overlap of the VAR and the DSGE impulse response

bands over a horizon of 5 to 20 quarters. While real deficiency of the DSGE model is its

inability to deliver a small short-run and a large long-run interest elasticity of money demand,

it is possible to adopt a “loss-function-based” estimation approach for ν and choose a value

that matches the properties of the DSGE models with the VAR evidence on the long-run

effect of target inflation changes. The bottom panels of Figure 6 illustrate how the change

in ν affects the policy implications. A higher interest elasticity increases the welfare cost

of inflation caused by the monetary distortion and shifts the optimal inflation toward -2%,

which yields a zero nominal interest rate.

Challenge 5: Reliability of Policy Predictions. Estimated DSGE models are often used

as laboratories for policy experiments. An example of such an experiment is a change in

the target inflation rate discussed above. While our sample contains observations from

a high inflation episode as well as observations from low inflation episodes, there are no

extended periods of zero or negative inflation, which are the inflation rates at which the New

Keynesian and the monetary friction create a trade-off for policymakers. More generally,

to the extent that no (or very few) observations on the behavior of households and firms

under a counterfactual policy exist, the DSGE model is used to derive the agents’ decision

rules by solving intertemporal optimization problems assuming that the preferences and

production technologies are unaffected by the policy change. In most cases, the policy

invariance is simply an assumption, and there is always concern that the assumption is

unreliable. This concern is typically exacerbated by evidence of model misspecification.

While it is conceivable that a model with the worse statistical fit delivers the better policy

prediction as illustrated by Kocherlakota (2007), bad fit is certainly no guarantor of good
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policy predictions.

In the remainder of this paper, I will discuss recent progress in overcoming these five

challenges. I will begin by reviewing current work on the identification of DSGE model

parameters (Section 3). Lack of identification contributes to the fragility of parameter esti-

mates. A second factor contributing to the fragility of estimates is model misspecification.

Misspecification also plays a leading role in the other four challenges. While misspecifica-

tion can be alleviated through improving the endogenous propagation mechanisms of the

DSGE model, I will focus on two other directions of research, namely the generalization of

exogenous shock processes in Section 4 and the development of hybrid models that correct

DSGE model misspecification in Section 5. Finally, in Section 6 I discuss some simulation

experiments that illustrate how even simple forms of heterogeneity and asset market incom-

pleteness can undermine the policy invariance of preference and technology parameters in

a representative agent model and lead to an understatement of the uncertainty associated

with policy predictions.

3 Identification and Inference

The fragility of estimates discussed in Section 2.3 is in part due to lack of identification of

key DSGE model parameters. Identification in DSGE models, even if they are linearized, is

much less transparent than identification in linear simultaneous equations models. This lack

of transparency is reflected in the fact that the system matrices of the state-space represen-

tation (13) are complicated nonlinear functions of the underlying DSGE model parameters

θ, which for all but the most rudimentary and unrealistic DSGE models can only be eval-

uated numerically. While the early literature on DSGE model estimation had paid very

little attention to identification, more recently researchers have realized that estimation ob-

jective functions are often uninformative with respect to important parameters such as the

Phillips curve coefficients in (15) or the parameters in the monetary policy rule (11). Canova

and Sala (2009), for instance, document identification problems in popular New Keynesian

DSGE models. Section 3.1 provides a simple example that illustrates the identification prob-
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lems. Section 3.2 presents recently developed conditions for identification of DSGE model

parameters, and consequences for econometric inference are discussed in Section 3.3.

3.1 A Simple Example

The following stylized example illustrates identification problems that may arise in the con-

text of DSGE models. Suppose that the structural model is nested in the following state-

space representation, which resembles (13):

yt = [ 1 1 ]st, st =

 φ1 0

φ3 φ2

 st−1 +

 1

0

 εt. (19)

The first state, s1,t, resembles an exogenous shock, such as technology, whereas the transition

equation for s2,t mimics that of an endogenous state variable such as the capital stock.

Moreover, for the sake of concreteness, suppose that the relationship between the reduced-

form (state-space) parameter φ = [φ1, φ2, φ3]′ and the structural (DSGE model) parameter

θ = [θ1, θ2]′ is given by:

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2. (20)

In order to understand the identification problems, it is useful to rewrite the state-space

model as ARMA(2,1) process

(1− φ1L)(1− φ2L)yt = (1− (φ2 − φ3)L)εt. (21)

First, (20) implies that θ2 becomes nonidentifiable as θ1 approaches zero, because for θ1 = 0

the law of motion of yt is invariant to θ2. Second, it can be easily verified that the following

two parameterizations are observationally equivalent:

θ2
1 = ρ, (1− θ2

1) = θ1θ2 versus θ̃2
1 = 1− ρ, θ̃2

1 = θ̃1θ̃2.

Under both parameterizations, yt follows an AR(1) process with autocorrelation parameter

ρ, because one factor of the autoregressive polynomial of the ARMA(2,1) process cancels

against the moving-average polynomial.
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3.2 Conditions for Identifiability

Recent work by Iskrev (2010) and Komunjer and Ng (2009) develops necessary and sufficient

conditions for the identifability of DSGE model parameters. The conditions are meant to be

comparable to the rank and order conditions that exist for simultaneous equations models

and focus on linearized DSGE models with Gaussian innovations that can be cast in the

state-space form (13). Iskrev (2010) develops a condition based on the direct relationship

between the parameter vector θ and first and second population momentsmT (θ) of a sequence

of observations Y1:T = [y1, . . . , Yt]
′. A sufficient condition for global identifiability is that

mT (θ̃) = mT (θ) implies that θ̃ = θ for each pair (θ, θ̃). If the condition holds only in an open

neighborhood of θ, then θ is locally identifiable. Since the state-space model is linear, the

identifiability condition is necessary if the structural shocks εt as well as the initial state s0

are normally distributed. If mT (θ) is continuously differentiable, then θ is locally identifiable

if the Jacobian matrix ∂mT (θ)/∂θ′ is of full column rank. Since even linearized DSGE models

are nonlinear in the parameters, the rank condition needs to be verified for a large number

of empirically relevant parameter values. The simple model in Section 3.1 is not globally

identifiable, but it is locally identifiable for many values of θ. However, local identification

fails, for instance, if θ1 = 0.

Komunjer and Ng (2009) extend Iskrev’s conditions from a finite number of second mo-

ments stacked in mT (θ) to the infinite-dimensional autocovariance sequence, represented by

the spectral density of yt. To do so, the authors develop rank conditions that ensure that

the mapping between θ and the reduced-form parameters of the state-space representation is

(locally) one-to-one. The difficulty in developing such conditions arises from the fact that the

parameters of the state-space representation themselves suffer from identification problems.

Thus, a naively defined reduced-form parameter vector

φ = [vec(Ψ0)′, vec(Ψ1)′, vec(Ψs)
′, vec(Φ1)′, vec(Φε)

′]′,

where the Ψ and Φ matrices refer to the coefficient matrices in (13), needs to be re-

parameterized in terms of an identifiable subvector before rank conditions can be stated.
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3.3 Consequences for Inference

From an inferential viewpoint, there are two basic reactions to a potential lack of identi-

fication. The first perspective is represented in the large literature on weakly or partially

identified econometric models: Taking data and model as given, the econometrician should

use inferential procedures that are robust to a potential lack of identification. The second

perspective is reflected in the following quote from Dreze (1974), p. 164: “The econometri-

cian who is concerned with inference about parameters that are not identified may try to

overcome this difficulty by collecting richer data, or by resorting to a more restrictive the-

ory.”4 I will subsequently focus on identification-robust inference in Bayesian and frequentist

analysis as well as the notion of collecting richer data sets.

Bayesian Inference. Bayesian inference with proper priors does not require identifiability

as a regularity condition. As long as the prior distribution is proper (meaning the total

probability mass is one), so is the posterior, see for instance Poirier (1998). What matters

for inference is the curvature in the likelihood function, as priors do not get updated in

directions in which the likelihood function is flat. This leads to a number of practical chal-

lenges. First, inference becomes more sensitive to the choice of prior distributions, thereby

making a careful, systematic, and well-documented choice of prior distribution important for

compelling empirical work.5 Second, lack of identification may complicate the generation of

parameter draws from the posterior distribution.

Figure 7 depicts two likelihood functions for the stylized model of Section 3.1, constructed

by simulating 100 artificial observations based on two different sets of “true” θ values. In

the top panel, the “true” value of θ1 is fairly close to zero, which makes it difficult to

identify θ2. Accordingly, the likelihood function has a ridge and is fairly flat in the direction

of θ2. The second parameterization highlights the global identification problem. While

not directly visible from the contours plotted in the figure, the likelihood function is in

4The debate between Lubik and Schorfheide (2004, 2007) and Beyer and Farmer (2007) illustrates how

a restrictive theory can lead to identification and the disagreement between researchers as to whether such

restrictions should be imposed in empirical work.
5Müller (2010) develops measures of prior sensitivity and informativeness tailored toward DSGE model

applications.
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fact bimodal. It is typically the lack of global identification and the resulting multimodal

posterior surfaces that cause problems for posterior simulators.6 While many of the posterior

simulators that are used in practice, most notably the version of the random-walk Metropolis

(RWM) algorithm described in An and Schorfheide (2007a), in principle deliver consistent

approximations of posterior moments and quantiles even if the posterior is multimodal, the

practical performance can be poor as documented in An and Schorfheide (2007a).

Recent research on posterior simulators tailored toward DSGE models tries to address

the shortcomings of the “default” approaches that are being used in empirical work. An

and Schorfheide (2007b) use transition mixtures to deal with a multimodal posterior dis-

tribution. This approach works well if the researcher has knowledge about the location of

the modes, obtained, for instance, by finding local maxima of the posterior density with

a numerical optimization algorithm. Chib and Ramamurthy (2010) propose to replace the

commonly used single block RWM algorithm with a Metropolis-within-Gibbs algorithm that

cycles over multiple, randomly selected blocks of parameters. Kohn, Giordani, and Strid

(2010) propose an adaptive hybrid Metropolis-Hastings samplers and Herbst (2010) devel-

ops a Metropolis-within-Gibbs algorithm that uses information from the Hessian matrix to

construct parameter blocks that maximize within-block correlations at each iteration and

Newton steps to tailor proposal distributions for the various conditional posteriors.

Frequentist Inference. Standard large sample approximations of sampling distributions of

estimators and test statistics require parameter identifiability as regularity conditions. The

literature on identification-robust inference procedures relaxes this regularity condition while

maintaining that the coverage probability of a confidence interval CST (Y1:T ) constructed from

a sequence of observations Y1:T should converge uniformly in the following sense:

lim
T−→∞

inf
φ̃∈P

inf
θ∈Θ(φ̃)

Pφ̃{θ ∈ CST (Y1:T )} = 1− α. (22)

Here φ̃ denotes an identifiable reduced-form parameter that indexes the probability distri-

6Suppose the likelihood function of a DSGE model were completely uninformative with respect to all

parameters. In this case, one would simply have to generate draws from the prior, which typically can be

done by direct sampling or acceptance sampling given the highly informative prior distributions that are

used in the literature.
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bution of the data. Θ(φ̃) denotes the set of structural parameters that is consistent with a

particular reduced-form parameter φ̃. This set degenerates to a singleton in a point-identified

model. In the context of the example presented in Section 3.1, φ̃ could be defined as the

autocovariances of order zero to three. If the autocovariances of order one to three are zero,

then θ2 is nonidentifiable and Θ(φ̃) corresponds to a line in R3.

The standard approach of constructing confidence sets by taking a point estimate and

adding and subtracting multiples of the associated standard error estimate does typically

not lead to valid inference in models with identification problems (meaning (22) is violated).

Instead, confidence sets are often obtained through pointwise testing procedures. Suppose

that inference for the reduced-form parameter φ̃ is regular in the sense that7
√
T ( ˆ̃φ− φ̃) =⇒

N(0,Λ) and that the relationship between φ̃ and θ can be expressed by a function φ̃∗(θ).

To obtain a valid confidence set, choose a grid T for θ and conduct pointwise tests of

the hypothesis φ̃ = φ̃∗(θ) for all θ ∈ T . The confidence set for θ is composed of those

values of θ for which the null hypothesis cannot be rejected. This approach is explored in

Guerron-Quintana, Inoue, and Kilian (2010). While the procedure leads to valid inference

in the sense of (22), it has several drawbacks. In high-dimensional parameter spaces, the

procedure requires many pointwise tests. Moreover, the method is conservative in regions

of the parameter space in which the parameters are well identified. The development of

efficient methods to construct identification-robust confidence intervals for a DSGE model

remains an open area of research.

Richer Data Sets. DSGE models are typically estimated with observations on only a subset

of all the variables that appear in the model, because due to its stylized structure, it is

only able to capture the dynamics of some but not all variables in a realistic manner. For

instance, the simple structure of the labor market of the model in Section 2 (infinitely elastic

labor supply, absence of search frictions) makes it difficult to match the dynamics of hours

worked and wages, which is why these observations are omitted from the likelihood function.

7The example in Section 3.1 illustrates that the sampling distribution of estimators of the state-space

coefficients may be irregular. To overcome this problem, φ̃ could be defined as the coefficients of the VAR

approximation of a DSGE model, which leads to a standard normal sampling distribution provided that the

process yt is stationary.
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However, long-run properties of series that are excluded from the likelihood function, e.g., the

average labor share, remain informative about some of the DSGE model parameters. This

nonsample information can and should be used for inference. Nonsample information might

also include evidence from microeconometric panel studies on demand or supply elasticities.

The nonsample information may be able to resolve some identification problems inherent

in the likelihood function. In a Bayesian framework, it is most natural to use this information

in the specification of a prior distribution, which was the approach taken in the empirical

analysis in Section 2. I started with marginal densities for the model parameters θi, i =

1, . . . , k and then combined them with a function f(θ) that incorporates some information

from long-run averages of observations that do not enter the construction of the likelihood

function:

p(θ) ∝ f(θ)
k∏
i=1

pi(θi). (23)

where

f(θ) = exp

{
− 1

2

[
(I∗(θ)/Y∗(θ)− 0.16)2

0.0052
+

(lsh(θ)− 0.60)2

0.012

]}
.

Here I∗(θ), Y∗(θ), and lsh(θ) are functions that define the steady-state levels of investment,

output, and labor share. The values 0.16 and 0.60 are long-run averages of the investment-

output ratio and the labor share computed from U.S. data. This method of constructing prior

distributions is formalized in Del Negro and Schorfheide (2008). The underlying assumption

in the application of Bayes Theorem in this case is that sample and nonsample information

are approximately independent.

4 Sensitivity to Shock Specification

A DSGE model consists of endogenous propagation mechanisms, e.g., investment and cap-

ital accumulation, derived from some primitive assumptions about agents’ preferences and

production technologies, as well as exogenous propagation mechanisms. While most of the

modeling efforts in the DSGE model literature are rightly directed toward the specification
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of the endogenous propagation mechanism, this section focuses on the specification of exoge-

nous shock processes and its consequences for inference based on estimated DSGE models.

These shocks themselves are frequently assumed to follow independent AR(1) processes as

in Section 2.1. The lag length restriction for the individual shock processes is, in many

instances, arbitrary. The assumption that the exogenous processes are independent of each

other is a reflection of a modeling strategy that tries to explain the comovements of macroe-

conomic aggregates with economic mechanisms rather than through correlated exogenous

shocks.

A careful specification of the law of motion for the exogenous shocks can help to overcome

model misspecification, in particular if one means by misspecification inferior time series fit

(adjusted for model dimensionality) relative to more flexible time series models such as

VARs. More specifically, recent empirical work has documented that the fit of a DSGE

model can be improved by relaxing the restriction that the exogenous shocks exhibit AR(1)

dynamics. Smets and Wouters (2007) use an ARMA mark-up shock to improve model fit, and

Del Negro and Schorfheide (2009) let their government spending shock follow a higher-order

autoregressive process. Curdia and Reis (2010) propose to introduce correlation among the

exogenous processes and replace independent univariate shock processes by a vector process.

At the same time, some of the current arbitrariness in the specification of the exogenous

shock processes as well as potential generalizations to improve the model fit contribute to

the identification problems discussed in Section 3 and thereby to the fragility of parameter

estimates.

Generalization of Shock Dynamics and Identification. Consider a DSGE model in which

a representative firm has access to a Cobb-Douglas production function of the form Yt =

ZtK
α
t H

1−α
t and capital accumulates according to Kt+1 = (1− δ)Kt + It. To the extent that

α can be measured from labor share data, δ from NIPA data on capital stock depreciation,

and output, hours, and investment are used as observables in the estimation, the latent total

factor productivity process Zt is essentially identified as (Solow) residual in the production

function. As discussed in Section 3.3, in a Bayesian estimation the information about α

and δ can be incorporated through a prior distribution. The Kalman filter that is used to
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compute the likelihood function delivers estimates of the latent capital stock Kt as well as Zt.

Given observations on Yt, Ht, and It as well as fairly tight priors on α and δ, the only source

of uncertainty with regard to the latent variables is the initialization of the capital stock. In

turn, it is fairly straightforward to identify the coefficients of a flexible time series model for

the exogenous technology process. In practice, AR(1) or AR(2) models are widely used for

the TFP process because they are fairly successful in capturing the stochastic properties of

the Solow residual.

Alternatively, consider a simplified version of the monetary policy rule (11):

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2Ỹt) + εR,t. (24)

Unlike in the production function example, the slope coefficients in the monetary policy rule

are not tied to steady states of macroeconomic aggregates that could be identified through

long-run averages. As a consequence, assumptions about the stochastic properties of the

exogenous monetary policy shock εR,t are closely tied to the identification of the policy rule

coefficients. The assumption that εR,t is an iid sequence provides identification in the sense

that lagged inflation and output can serve as instrumental variables in the estimation of the

policy rule coefficients. This source of identification vanishes if εR,t is allowed to be serially

correlated. Unfortunately, in many instances of DSGE model estimation, the identification of

key economic mechanisms is determined by somewhat arbitrary and restrictive assumptions

about the stochastic properties of exogenous shocks. More general shock processes, on the

other hand, are likely to exacerbate the problem of multimodal estimation objective functions

as illustrated in Herbst (2010).

Documenting Sensitivity to Auxiliary Modeling Assumptions. In particular in medium to

large-scale DSGE models that are estimated on seven or more observables, the choice of

several of the shocks is somewhat arbitrary. While there is little controversy about technology

and monetary policy shocks, the inclusion of inter- and intratemporal preference shocks, price

mark-up shocks, or risk-premium shocks tends to be controversial and typically guided by

improving model fit. To the extent that there is modeling uncertainty about the exogenous

shock structure and that assumptions about the shock structure affect the identification

of key parameters and propagation mechanisms, it is useful to document the sensitivity to
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modeling assumptions in a systematic manner. In Ŕıos-Rull, Schorfheide, Fuentes-Albero,

Kryshko, and Santaeulalia-Llopis (2009), this is done by Bayesian model averaging across

model specifications with different exogenous shock specifications.

5 Hybrid Models

Econometric modeling typically faces a trade-off between theoretical coherence and empirical

fit. The DSGE paradigm delivers empirical models with a strong degree of theoretical coher-

ence that often fit worse than more densely parameterized time series models, e.g., VARs,

as illustrated in Section 2. In the literature, essentially two approaches exist to construct

empirical models that relax DSGE model restrictions. I will refer to these models as additive

hybrid models (Section 5.1) and hierarchical hybrid models (Section 5.2), respectively. Hy-

brid models provide a complete characterization of the law of motion of the data, as opposed

to empirical procedures that remove some variation from the data that the DSGE model is

unable to capture. At the same time, hybrid models retain important dynamic properties of

the DSGE model.

5.1 Additive Hybrid Models

The additive hybrid model augments the state-space model (13) by a latent process zt that

bridges the gap between data and theory:

yt = Ψ0(θ) + Ψ1(θ)t+ Ψs(θ)st + Λ0 + Λ1t+ Λzzt (25)

st = Φ1(θ)st−1 + Φε(θ)εt, zt = Γ1zt−1 + Γηηt.

The process zt is often called measurement error, blaming the data collectors rather than

the DSGE model builders for the gap between data and theory.8 Unlike in the generaliza-

tion of the exogenous shocks of the DSGE model described in Section 4, the agents in the

8The use of measurement errors in the estimation of optimization-based macro models dates back at

least to Sargent (1989) and Altug (1989) and has been advocated more recently by Ireland (2004).
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model economy do not account for zt in their decision making and consequently there is no

interaction with the economic states st.

Special Cases. Without any restrictions on Λ and Γ, the model (25) is not identifiable. The

following two restrictions have been widely used in practice. First, a low dimensional vector

of structural shocks εt is combined with a diagonal Γ1 matrix, e.g., Altug (1989). In this

setup, the εt’s generate the comovements between the observables, whereas the elements of

zt pick up idiosyncratic dynamics that are not captured by the structural part of the hybrid

model. Second, if one sets Ψ0, Ψ1, and Λz to zero, then the hybrid model uses the DSGE

component to describe the fluctuations of yt around a deterministic trend path, but it ignores

the common trend restrictions of the structural model. This version of the additive hybrid

model is typically estimated in two steps, e.g., Smets and Wouters (2003). In the first step,

deterministic trends are removed from the data, and in the second step, the DSGE model is

estimated based on the linearly detrended observations.

Correcting Low Frequency Misspecification. Section 2.3 illustrated that some of the misspec-

ification of DSGE models rests in their inability to capture certain long-run features of the

data. The hybrid model can be used to correct these deficiencies. Canova (2010) proposes

the following specification:

yt = Ψs(θ)st + Λ0 + zt (26)

st = Φ1(θ)st−1 + Φε(θ)εt

zt = zt−1 + z̄t−1 + ηt, z̄t = z̄t−1 + νt.

Depending on the restrictions imposed on the variances of ηt and νt, the process zt is inte-

grated of order one or two and can generate a variety of stochastic trend dynamics.

Connecting DSGE Models with Large Data Sets. Macroeconomists have access to large

cross sections of aggregate variables that include measures of sectoral economic activities

and prices as well as numerous financial variables. Additive hybrid models can also be

used to link DSGE models with aggregate variables that are not explicitly modeled. Using

these additional variables in the estimation potentially sharpens inference about latent state
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variables. Moreover, the link enables researchers to construct impulse response functions

and predictions for economic variables that are not explicitly modeled.

Let yt denote the observable variables that are described by the DSGE model and let xt

denote a large vector of nonmodeled variables. The joint law of motion of yt and xt is given

by

yt = Ψ0(θ) + Ψ1(θ)t+ Ψs(θ)st + zy,t (27)

xt = Λ0 + Λ1t+ Λsst + zx,t (28)

st = Φ1(θ)st−1 + Φε(θ)εt. (29)

Since the structure of this model resembles that of a dynamic factor model (DFM), e.g., Sar-

gent and Sims (1977), Geweke (1977), and Stock and Watson (1989), I refer to the system

(27) to (29) as DSGE-DFM. The vector of factors is given by the state variables associated

with the DSGE model. The processes zy,t and zx,t are uncorrelated across series and capture

idiosyncratic but potentially serially correlated movements (or measurement errors) in the

observables. (28) links the variables xt to the DSGE model. This linkage generates comove-

ments between the yt’s and the xt’s and allows the computation of impulse responses to

the structural shocks εt. The DSGE-DFM was originally proposed by Boivin and Giannoni

(2006). Kryshko (2010) improves some computational aspects of the Bayesian inference for

the DSGE-DFM. Moreover, using a DSGE model very similar to the one described in Sec-

tion 2.1, he documents that the space spanned by factors extracted from the DSGE-DFM

is similar to the space spanned by the factors estimated with an unrestricted DFM. This

finding gives an economic interpretation to the factors extracted with a reduced-form factor

model and lends credibility to the state transitions implied by the DSGE model. Schorfheide,

Sill, and Kryshko (2010) study the forecast performance of the DSGE-DFM with respect to

some specific variables xt that are not explicitly modeled in the DSGE model.

5.2 Hierarchical Hybrid Models

Now consider the following modification of the additive hybrid model:

yt = Λ0 + Λ1t+ Λsst, st = Γ1st−1 + Γεεt, (30)
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where

Λi = Ψi(θ) + ηΨ
i , i = 0, 1, s, Γi = Φi(θ) + ηΦ

i , i = 1, ε. (31)

In this setup Ψi(θ) and Φi(θ) are interpreted as restrictions on the unrestricted state-space

matrices Λi and Γi. The disturbances ηΨ
i and ηΦ

i can capture deviations from the restriction

functions Ψi(θ) and Φi(θ). The smaller the variance of the η’s, the closer the empirical

model stays to the DSGE model. In a Bayesian framework, the stochastic restrictions (31)

correspond to a prior distribution of the unrestricted state-space matrices conditional on the

DSGE model parameters θ.

DSGE-VARs. It turns out that the formal Bayesian analysis of the model composed of (30)

and (31) is computationally challenging and the subject of ongoing research. The analysis

is considerably easier to implement if the state-space model in (30) is replaced by a VAR:

yt = B1yt−1 + . . .+Bpyt−p +Bc + ΣtrΩεt, (32)

where Σtr is the unique lower triangular Cholesky factor of the one-step-ahead VAR fore-

cast error covariance matrix Σ, Ω is an orthogonal matrix, and εt ∼ N(0, I). Let B =

[B1, . . . , Bp, Bc]
′. Suppose that DSGE model parameters θ and VAR parameters are linked

through binding functions denoted by

B∗(θ), Σ∗(θ), Ω∗(θ). (33)

The prior distribution for the VAR coefficients (B,Σ,Ω) conditional on θ is chosen such

that it is centered at the binding functions (33) but allows for deviations through a nonzero

covariance matrix, as in (31).9 This covariance matrix is scaled by a hyperparameter λ.

Overall, the setup leads to a hierarchical model of the form

pλ(Y,B,Σ, θ) = p(Y |B,Σ)pλ(B,Σ,Ω|θ)p(θ), (34)

where p(θ) is a prior for the DSGE model parameters and p(Y |B,Σ) is the likelihood function

associated with (32). Details of the specification of pλ(B,Σ,Ω|θ) can be found in Del Negro

and Schorfheide (2004) or Del Negro and Schorfheide (2010). The resulting empirical model

9The basic idea of using a DSGE model to formulate a prior distribution for VAR coefficients dates back

to Ingram and Whiteman (1994).
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is more flexible than the DSGE model itself while it still inherits many of its dynamic

properties for a wide range of hyperparameter settings.

Empirical Illustration. The DSGE model from Section 2 is now used to create a hierarchical

hybrid model. The analysis differs in three dimensions from the DSGE-VARs in Del Negro

and Schorfheide (2004) and Del Negro, Schorfheide, Smets, and Wouters (2007). First, the

prior distribution used in the analysis is a combination of the Minnesota prior10 and the

DSGE model prior. For λ = 0, no information is used from the DSGE model and a VAR

with the Minnesota prior is estimated. For λ = ∞, on the other hand, the DSGE model

restrictions are dogmatically imposed. Second, the DSGE model implies that the target

inflation rate evolves according to a unit root process, which was not covered by the existing

DSGE-VAR setup. Consequently, I generalized the construction of the prior distribution to

allow for unit roots in the DSGE model. Third, in order to identify the target inflation rate

shock, I use the assumption that π∗,t is the first element of yt and simply restrict Ω in (32)

to be the identity matrix. Thus, the target inflation rate does not react to the other shocks

contemporaneously.

The top left panel of Figure 8 depicts the log marginal data density as a function of the

hyperparameter λ, given by

ln pλ(Y ) = ln

∫
pλ(Y,Φ,Σ, θ)d(Φ,Σ, θ). (35)

This function peaks approximately at λ = 0.5. Thus, the DSGE model restrictions improve

the fit of the empirical model relative to the fit attained with only the Minnesota prior.

However, since the marginal likelihood is much larger at λ = 0.5 than at λ = ∞, the

plot provides evidence for model misspecification. The remaining panels of Figure 8 depict

posterior mean impulse responses to an inflation target shock as a function of λ. First, the

responses of the target inflation rate, output, and inflation do not substantially change as

one varies λ, suggesting that the DSGE model seems to be well specified in this dimension.

Second, the response of real money balances is highly sensitive to the choice of λ. The rather

10Details on the version of the Minnesota prior used for the empirical analysis can be found in Del Negro

and Schorfheide (2010).
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low value of λ favored by the marginal likelihood implies a real money balance response that

is much stronger than the response predicted by the DSGE model.

6 Econometric Policy Evaluation

As illustrated in Section 2, estimated DSGE models can serve as a laboratory for policy

experiments, such as changes in the target level of inflation or changes in tax policies. The

key assumption underlying such experiments is that the primitives of the model, in par-

ticular the parameters that characterize preferences and technologies, are policy invariant.

Chang, Kim, and Schorfheide (2010) conduct a simulation experiment to assess the policy

invariance of the parameters in a simple neoclassical stochastic growth model. The data

generating process is a heterogeneous agent economy in which individuals face idiosyncratic

productivity shocks, idiosyncratic productivity risk is uninsurable, individuals face a borrow-

ing constraint, and labor supply is indivisible. Based on aggregated data from this economy,

a representative agent model is estimated. The question of interest is to what extent the

effect of labor and capital tax changes can be correctly predicted with the estimated repre-

sentative agent model, assuming the invariance of the “structural” parameters. According

to the simulations, the parameters of the representative agent model are not invariant to the

policy changes. Moreover, the bias in the policy predictions is large relative to the size of the

predictive intervals obtained from the Bayesian analysis. Interestingly, there is little evidence

of misspecification when the representative agent model is estimated based on data from the

heterogeneous agent economy. Unlike in applications with actual U.S. data, posterior odds

favor the DSGE model over a less restrictive and more densely parameterized VAR.

If the empirical analysis does reveal strong evidence of model misspecification in the

sense of a violation of the cross coefficient restrictions imposed by a DSGE model on a state-

space representation, e.g., (30), or a VAR approximation, e.g., (32), then there is not only

concern as to whether the structural parameters of the DSGE model should be treated as

policy invariant, but also whether the discrepancies between the restricted and unrestricted

representations are policy invariant. Del Negro and Schorfheide (2009) develop DSGE-VAR-
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based methods to assess the robustness of policy predictions to perturbations in the model

misspecification.

7 Conclusion

The literature on the econometric analysis of DSGE models has made substantial progress

over the past decade, and the econometric analysis of DSGE models has become a fairly

standard procedure that is now taught in many Ph.D. programs around the world. Nonethe-

less, many challenges that need to be tackled in the future remain. The purpose of this

paper was to review several of these challenges and to discuss current research that tries to

address them.
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Figure 1: Posterior (and Prior) Densities

Notes: NKPC marginal cost coefficient is κ in (15), NKPC lagged inflation coefficient is γb

in (15), NK Distortion is 100|1/D∗−1| in (16), and money demand elasticity is 1/(ν(1−R∗)

in (17). Solid lines depict posterior densities and dashed lines represent prior densities.

Figure 2: Welfare Implications of Estimated DSGE Model

Notes: The left panel depicts several draws from the posterior distribution of steady-state

welfare costs (in percent of consumption) of deviating from 2.5% inflation as a function

of counterfactual target inflation. The right panel depicts pointwise posterior means and

credible intervals.
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Figure 3: New Keynesian Phillips Curve Estimates

Notes: 90% credible set obtained from estimated DSGE model is denoted by solid contours.

Point estimates reported in the papers surveyed in Schorfheide (2008) are indicated by “+”.

Figure 4: Inverse Velocity: Actual and Counterfactual Path

Notes: The solid line depicts actual inverse velocity, and the dashed line depicts a counter-

factual path that is solely based on money demand shocks.
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Figure 5: Target Inflation Shock Impulse Responses – DSGE vs. VAR

Notes: 90% credible bands for impulse responses to a change in the target inflation rate for

DSGE model (solid) and VAR (dashed).
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Figure 6: The Role of ν: Impulse Responses and Welfare

ν = 31.7 ν = 3.0

Notes: Top panels: 90% credible bands for impulse responses to a change in the target

inflation rate for the DSGE model (solid) and the VAR (dashed). Bottom panels: pointwise

90% credible intervals of steady-state welfare costs (in percent of consumption) of deviating

from 2.5% inflation as a function of counterfactual target inflation. The left-hand side panels

are generated based on the posterior distribution of ν, which has a mean of ν̂ = 31.7. The

right-hand-side panels are based on fixing ν = 3.
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Figure 7: Example – Contours of the Likelihood Function for T = 100

Notes: The intersection of the solid line indicates the parameter value that was used to

simulate the observations from which the likelihood function is constructed.
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Figure 8: DSGE-VAR Estimation

Notes: The top left panel depicts the log marginal data density of the DSGE-VAR as a func-

tion of λ/(1 + λ). The remaining panels depict posterior mean impulse responses computed

from the DSGE-VAR for various values of λ, ranging from λ = 0 (solid) to λ =∞ (dotted).
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Technical Appendix to “Estimation and Evaluation of

DSGE Models: Progress and Challenges”

A DSGE Model

The subsequent exposition is based on a slightly more general utility function:

U(x) = B
x1−γ

1− γ
.

A.1 Equilibrium Conditions

Household’s Problem: Given exogenous states, policy, and prices,

U ′(xt) =
A

Wt

(A.1)

1 = βEt

[
U ′(xt+1)

U ′(xt)

Rt

πt+1

]
(A.2)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S ′
(

it
it−1

)]
(A.3)

+βEt

{
µt+1

U ′(xt+1)

U ′(xt)

(
it+1

it

)2

S ′
(
it+1

it

)}

kt+1 = (1− δ)kt +

[
1− S

(
it
it−1

)]
(A.4)

µt = βEt

{
U ′(xt+1

U ′(xt)

[
Rk
t+1 + (1− δ)µt+1

]}
(A.5)

U ′(xt)

Pt
= βEt

[
U ′(xt+1)

Pt+1

+
χt+1

Pt+1

(
A

Z
1/1−α
∗

)1−νm (Mt+1

Pt+1

)−νm]
(A.6)

Ξp
t+1|t =

U ′(xt+1)

U ′(xt)πt+1

(A.7)

As in the search-based model, we define Mt+1 = Mt+1/Pt.

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose

their capital labor ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α
Wt

Rk
t

Ht. (A.8)
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Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the

aggregate price level) to maximize expected profits subject to the demand curve for their

differentiated product, taking the aggregate price level Pt as well as the prices charged by

other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rk

t )
αZ−1

t (A.9)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ (πιt)

−1/λ IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξp
t+1|tF

(1)
t+1

]
(A.10)

F (2)
t = (pot )

− 1+λ
λ
−1YtMCt + ζβ (πιt)

− 1+λ
λ IEt

[(
pot

πt+1pot+1

)− 1+λ
λ
−1

Ξp
t+1|tF

(2)
t+1

]
(A.11)

F (1)
t = (1 + λ)F (2)

t (A.12)

Final Good Producing Firms’ Problem: Final goods producers take factor prices and

output prices as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry

ensures that final good producers make zero profits and leads to

πt =
[
(1− ζ) (πtp

o
t )
− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(A.13)

Aggregate Resource Constraint: is given by

Yt = D−1
t (ZtK

α
t H

(1−α)
t −F), (A.14)

where

Dt = ζ

[(
πt−1

πt

)ι(
1

πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (A.15)

The gross domestic product of this economy is given by Yt = Yt.

Market Clearing: The goods market clears:

Xt + It +

(
1− 1

gt

)
Yt = Yt (A.16)

Monetary Policy: The central bank supplies the quantity of money necessary to attain

the nominal interest rate

Rt = R1−ρR
∗,t RρR

t−1 exp{σRεR,t}, R∗,t = (r∗π∗,t)

(
πt
π∗,t

)ψ1
(

Yt
γYt−1

)ψ2

(A.17)
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A.2 Steady States

For estimation purposes it is useful to parameterize the model in terms of Y∗ = Y∗, H∗, and

M∗ and solve the steady-state conditions for A, B, and Z∗.

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
1

π∗

)− 1−ι
λ

]−λ
Rk
∗ =

1

β
+ δ − 1

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(

1
π∗

)− (1+λ)(1−ι)
λ

Ȳ∗ = Y∗D∗

Z∗ = (Ȳ∗ + F)/(Kα
∗H

1−α
∗ )

K∗ =
α(Ȳ∗ + F)po∗
(1 + λ)Rk

∗

 1− ζβ
(

1
π∗

)−(1−ι)/λ

1− ζβ
(

1
π∗

)−(1−ι)(1+λ)/λ


−1

W∗ =
1− α
α

K∗
H∗

Rk
∗

I∗ = δK∗

X∗ = Y∗ − I∗ − (1− 1/g∗)Y∗

A =
1

M∗

[
χ∗π

νm
∗ W∗

(R∗ − 1)Z
(1−νm)/(1−α)
∗

]1/νm

U ′∗ = A/W∗

B = U ′∗X
γ
∗

A.3 Log-Linearizations

We will frequently use equation-specific constants, such as A and B. Variables dated t + 1

refer to time t conditional expectations.
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Household’s Problem: The optimality conditions for the household can be expressed as

W̃t =
1

γ
X̃t (A.18)

−γX̃t = −γX̃t+1 + (R̃t − π̃t+1) (A.19)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1

(1 + β)S ′′
µ̃t (A.20)

k̃t+1 = (1− δ)k̃t + δĩt (A.21)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γX̃t+1 + βRk
∗R̃

k
t+1 (A.22)

νmM̃t+1 = γX̃t + νmχ̃t+1 − (1− νm)π̃t+1 −
1

R∗ − 1
R̃t (A.23)

Ξ̃p
t|t−1 = −γ(X̃t − X̃t−1)− π̃t. (A.24)

Equations (A.18) to (A.24) determine wages, consumption, investment, capital, the shadow

value of installed capital, the rental rate of capital, real money balances, and the stochastic

discount factor.

Firms’ Problems: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃k
t − Z̃t. (A.25)

Conditional on capital, the labor demand is determined according to

H̃t = K̃t + R̃k
t − W̃t (A.26)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions

can be written as follows.

F̃t = (1−A)

[
−1 + λ

λ
p̃ot + Ỹt

]
(A.27)

+A
[
− ι
λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃p

t+1|t

]
A1 = ζβ

(
1

π∗

)−(1−ι)/λ



A-5

and

F̃t = (1−A)

[
−
(

1 + λ

λ
+ 1

)
p̃ot + Ỹt + M̃Ct

]
(A.28)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1

)
p̃ot +

(
1 + λ

λ
+ 1

)
π̃t+1

+

(
1 + λ

λ
+ 1

)
p̃ot+1 + F̃t+1 + Ξ̃p

t+1|t

]
A2 = ζβ

(
1

π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation

rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(

1

π∗

)−(1−ι)/λ

π̃t−1 (A.29)

Ap =
(po∗)

1/λ

1− ζ

Equations (A.27) to (A.29) determine π̃t, F̃t, and p̃ot .

Resource Constraint, Market Clearing Conditions: Aggregate output evolves accord-

ing to

˜̄Yt = Ỹt + D̃t = (1 + F/Ȳ∗)[Z̃t + αK̃t + (1− α)H̃t]. (A.30)

and the steady-state price dispersion follows

D̃t = ζ

(
1

π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)

λ
π̃t −

ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (A.31)

The goods market clearing condition is of the form

Ỹt =
X∗

X∗ + I∗
X̃t +

I∗
X∗ + I∗

Ĩt + g̃t. (A.32)

Monetary Policy: The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1(π̃t − π̃∗t ) + ψ2(Ỹt − Ỹt−1)] + εR,t. (A.33)
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B Data

The data set is identical to the one used in Aruoba and Schorfheide (2011). The empirical

analysis is based on quarterly U.S. postwar data on aggregate output, inflation, inflation

expectations, interest rates, and (inverse) velocity of money. Unless otherwise noted, the

data are obtained from the FRED2 database maintained by the Federal Reserve Bank of

St. Louis. Per capita output is defined as real GDP (GDPC96) divided by civilian non-

institutionalized population (CNP16OV). I take the natural log of this measure and extract

a linear trend and link the deviations from this trend to the stationary fluctuations around

the deterministic steady state that the DSGE model produces. Inflation is defined as the

log difference of the GDP deflator (GDPDEF), and our measure of nominal interest rates

corresponds to the federal funds rate (FEDFUNDS). Money is incorporated as an observable

by using inverse M1 velocity. I use the sweep-adjusted M1S series provided by Cynamon,

Dutkowsky, and Jones (2006). The M1S series is divided by quarterly nominal output to

obtain inverse velocity, and we relate the natural logarithm of the resulting series to the log

deviations from 100 ∗ ln(M∗/Y∗). The estimation sample ranges from 1965:I to 2005:I, and

I use the likelihood functions conditional on data from 1964:I to 1964:IV to estimate the

DSGE model and the VARs.

In order to obtain a measure of the inflation target, three series are combined: GDP

deflator filtered through a one-sided band-pass filter as well as 1-year and 10-year-ahead

inflation expectations obtained from the Survey of Professional Forecasters, maintained by

the Federal Reserve Bank of Philadelphia. Since the agents generate forecasts of future target

inflation rates with a random walk model, a one-sided bandpass filter that removes cycles of

a duration of less than 64 quarters is used. A time-domain moving average representation

of the ideal one-sided filter (truncated at 500 lags) is constructed, and then missing lagged

observations are replaced by optimal backcasts obtained from an estimated AR(4) model.

To combine the three series, a small state-space model with measurement equations

π̃BPt = π̃∗,t + 0.025ε1,t, π̃1y
t = π̃∗,t + η2,t, π̃10y

t = π̃∗,t + η3,t,
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and state transitions

π̃∗,t = π̃∗,t−1 + σπεπ,t, η2,t = ρ2η2,t−1 + σ2ε2,t, η3,t = ρ3η3,t−1 + σ3ε3,t

is used. The εi,t’s are iid standard normal random variables and π̃BPt , π̃1y
t , and π̃10y

t are

bandpass filtered inflation, 1-year-ahead forecasts, and 10-year-ahead forecasts, respectively.

The innovation standard deviation for π̃BPt is fixed to implicitly control the weight on the

bandpass filtered series and the remaining parameters are estimated. If one regresses the

filtered series π̃∗,t on the three observed measures, the coefficients are 0.57 (π̃BPt ), 0.22 (π̃1y
t ),

and 0.23 (π̃10y
t ). Moreover, the dynamics of π̃∗,t are well approximated by the random walk

that the DSGE model agents use to forecast the target inflation rate.

C Empirical Analysis

C.1 DSGE Model Estimation

The methods used to estimate the DSGE model are described in detail in An and Schorfheide

(2007a). The following DSGE model parameters are fixed during the estimation: δ = 0.014,

γ = 1, χ∗ = 1, g∗ = 1.2, ln(M∗/Y∗) = −0.38, ln(H∗/Y∗) = −3.35, lnY∗ = 1, ψ1 = 1.7, and

the log-linearization point π∗,A = 4. Moreover, we set β = 1/(1 + rA/400), where rA = 2.5.

Marginal prior distributions for the remaining parameters are summarized in columns 2 to 4

of Table A-1. The joint prior is obtained by the product of the marginal densities, multiplied

by the function f(θ) defined in Equation (23) of Section 3.3 of the paper. Posterior means

and 90% credible intervals are provided in columns 5 and 6 of Table A-1.

C.2 VAR Estimation

The VAR used as a reference model in Section 2.3 is identical to the one used in Aruoba

and Schorfheide (2011). Output, inflation, interest rates, and inverse velocity are collected

in the 4 × 1 vector y1,t and the target inflation rate in the scalar y2,t. Moreover, let yt =

[y′1,t, y2,t]
′. Assume that yt follows a Gaussian vector autoregressive law of motion subject
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to the restrictions that the target inflation rate evolves according to a random walk process

and that the innovations to the target inflation rate are orthogonal to the remaining shocks.

These restrictions are consistent with the assumptions that underlie the DSGE model and

identify the propagation of unanticipated changes in the target inflation. The VAR takes

the form

y1,t = Φ0 + Φ1yt−1 + . . .+ Φpyt−p + Ψ∆y2,t + u1,t (A.34)

y2,t = y2,t−1 + σπ∗επ∗,t, (A.35)

where u1,t ∼ N (0,Σ11) and is independent of επ∗,t. The VAR composed of (A.34) and (A.35)

with p = 4 is estimated using the version of the “Minnesota” prior described in Del Negro

and Schorfheide (2010). The hyperparameters are λ1 = 0.1, λ2 = 3.1, λ3 = 5, λ4 = 1, and

λ5 = 1. Our prior assumes that the elements of Ψ are independently distributed according

to N (0, λ−2
4 ).

C.3 DSGE-VAR Analysis

The DSGE-VAR framework described in Del Negro and Schorfheide (2010) is modified to

account for the fact that one of the observables, namely the target inflation rate, is non-

stationary. Moreover, the DSGE model prior for the VAR coefficients is augmented by a

standard Minnesota prior with the hyperparameter settings described above. Consider the

VAR of the form

yt = B1yt−1 + . . .+Bpyt−p +Bc + ΣtrΩεt, (A.36)

where Σtr is the unique lower triangular Cholesky factor of the one-step-ahead forecast error

covariance matrix Σ, Ω is an orthogonal matrix, and εt ∼ N(0, I). Let B = [B1, . . . , Bp, Bc]
′,

x′t = [y′t−1, . . . , y
′
t−p, 1] and write the VAR in matrix form as Y = XB + U . The prior

distribution of the VAR parameters given the DSGE model parameters θ, (B,Σ)|θ, is repre-

sented by dummy observations Y∗(θ) and X∗(θ). The resulting prior takes the Matric-normal

inverted-Wishart (MNIW) form

B,Σ|θ ∼MNIW

(
B∗(θ), X∗(θ)

′X∗(θ), S
∗(θ), λDT + TM − k

)
, (A.37)
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where λD is a hyperparameter, T is the size of the actual sample, TM is the number of

dummy observations for the Minnesota prior, and

B∗(θ) = [X∗(θ)
′X∗(θ)]

−1X∗(θ)
′Y∗(θ),

S∗(θ) = Y∗(θ)
′Y∗(θ)− Y∗(θ)′X∗(θ)[X∗(θ)′X∗(θ)]−1X∗(θ)

′Y∗(θ).

In the remainder of this subsection, I describe the construction of the moment matrices

X∗(θ)
′X∗(θ), X∗(θ)

′Y∗(θ), and Y∗(θ)
′Y∗(θ).

In order to combine the DSGE model prior and the Minnesota prior, the moment matrices

are expressed as follows:

X∗(θ)
′X∗(θ) = (λDT )ΓDXX(θ) +XM ′

∗ XM
∗ , . . .

The first part is derived from the DSGE model and the second part corresponds to the

dummy observations that are used to specify the Minnesota prior. I will subsequently focus

on the first part. If the vector yt is stationary, then ΓDXX(θ) is the population covariance

matrix of xt. An extension to the case of nonstationary yt’s can be obtained as follows.

Recall that the DSGE model has a state-space representation of the form

yt = Ψ0 + Ψsst, st = Φ1st−1 + Φεεt.

Assume that the state vector st in period t = −τ was equal to zero, s−τ = 0, and that

εt ∼ iidN(0,Σε). By iterating the state-transition equation forward, one can obtain the

distribution of s0 and hence y0. Iterating the state-transition forward for another p periods

yields the joint distribution of y0, . . . , yp. The matrices ΓDXX , ΓDXY , and ΓDY Y are now con-

structed from the appropriate elements of the joint covariance matrix of y0, . . . , yp. If some

of the elements of st are nonstationary and others are stationary, the stationary ones can be

initialized in period −τ through their ergodic distribution, and the nonstationary ones with

a pointmass at zero. In our application, st contains one nonstationary element, namely the

target inflation rate, and we set τ = 40.
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Table A-1: Prior and Posterior Distributions

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv

Households

ν Gamma 20.0 5.00 31.7 [24.8, 38.2]

Firms

α Beta 0.30 .025 0.28 [0.27, 0.29]

λ Normal 0.15 0.01 0.16 [0.15, 0.18]

ζ Beta 0.60 0.15 0.75 [0.72, 0.79]

ι Beta 0.50 0.25 0.03 [0.00, 0.07]

S ′′ Gamma 5.00 2.50 5.37 [2.68, 8.11]

Central Bank

ψ2 Gamma 1.00 0.50 1.02 [0.83, 1.21]

ρR Beta 0.50 0.20 0.67 [0.63, 0.72]

σR InvGamma 0.50 4.00 0.33 [0.28, 0.39]

σR,2 InvGamma 1.00 4.00 0.80 [0.59, 1.01]

π̃∗0,A Normal 0.00 2.00 -0.11 [-3.27, 3.26]

σπ InvGamma 0.05 4.00 0.05 [ 0.04, 0.05]

Shocks

ρg Beta 0.80 0.10 0.90 [0.86, 0.93]

σg InvGamma 1.00 4.00 1.15 [0.99, 1.30]

ρχ Beta 0.80 0.10 0.98 [0.97, 0.99]

σχ InvGamma 1.00 4.00 1.30 [1.18, 1.42]

ρz Beta 0.90 0.05 0.80 [0.70, 0.89]

σz InvGamma 2.00 4.00 2.08 [1.32, 2.81]

Notes: Para (1) and Para (2) correspond to the means and the standard deviations for Beta,

Gamma, and Normal distributions and to s and ν for the Inverse Gamma distribution with

density pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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