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Abstract

This paper proposes new methodologies for evaluating out-of-sample forecasting

performance that are robust to the choice of the estimation window size. The method-

ologies involve evaluating the predictive ability of forecasting models over a wide range

of window sizes. We show that the tests proposed in the literature may lack the power

to detect predictive ability and might be subject to data snooping across di¤erent

window sizes if used repeatedly. An empirical application shows the usefulness of the

methodologies for evaluating exchange rate models�forecasting ability.
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1 Introduction

This paper proposes new methodologies for evaluating the out-of-sample forecasting perfor-

mance of economic models. The novelty of the methodologies that we propose is that they

are robust to the choice of the estimation and evaluation window size. The choice of the

estimation window size has always been a concern for practitioners, since the use of di¤er-

ent window sizes may lead to di¤erent empirical results in practice. In addition, arbitrary

choices of window sizes have consequences about how the sample is split into in-sample and

out-of-sample portions. Notwithstanding the importance of the problem, no satisfactory so-

lution has been proposed so far, and in the forecasting literature it is common to only report

empirical results for one window size. For example, Meese and Rogo¤ (1983a) use a window

of 93 observations, Chinn (1991) a window size equal to 45, Qi and Wu (2003) use a win-

dow of 216 observations, Cheung et al. (2005) consider windows of 42 and 59 observations,

van Dijk and Franses�(2005) window size is 128, Clark and West�s (2006, 2007) window is

120 observations, Gourinchas and Rey (2007) consider a window of 104 observations, and

Molodtsova and Papell (2009) consider a window size of 120 observations. This common

practice raises two concerns. A �rst concern is that the �ad hoc�window size used by the

researcher may not detect signi�cant predictive ability even if there would be signi�cant

predictive ability for some other window size choices. A second concern is the possibility

that satisfactory results were obtained simply by chance, after data snooping over window

sizes. That is, the successful evidence in favor of predictive ability might have been found

after trying many window sizes, although only the results for the successful window size were

reported and the search process was not taken into account when evaluating their statistical

signi�cance. Only rarely do researchers check the robustness of the empirical results to the

choice of the window size by reporting results for a selected choice of window sizes. Ulti-

mately, however, the size of the estimation window is not a parameter of interest for the

researcher: the objective is rather to test predictive ability and, ideally, researchers would

like to reach empirical conclusions that are robust to the choice of the estimation window

size.

This paper views the estimation window as a "nuisance parameter": we are not interested

in selecting the "best" window; rather we would like to propose predictive ability tests

that are "robust" to the choice of the estimation window size. The procedures that we

propose ensure that this is the case by evaluating the models�forecasting performance for

a variety of estimation window sizes, and then taking summary statistics of this sequence.
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Our methodology can be applied to most tests of predictive ability that have been proposed

in the literature, such as Diebold and Mariano (1995), West (1996), McCracken (2000) and

Clark and McCracken (2001). We also propose methodologies that can be applied to Mincer

and Zarnowitz�s (1969) tests of forecast e¢ ciency, as well as more general tests of forecast

optimality. Our methodologies allow both for rolling as well as recursive window estimation

schemes and let the window size to be large relative to the total sample size. Finally, we also

discuss methodologies that can be used in the Giacomini and White�s (2005) and Clark and

West�s (2007) frameworks, where the estimation scheme is based on a rolling window with

�xed size.

This paper is closely related to the works by Pesaran and Timmermann (2007) and Clark

and McCracken (2009), and more distantly related to Pesaran, Pettenuzzo and Timmermann

(2006) and Giacomini and Rossi (2010). Pesaran and Timmermann (2007) propose cross val-

idation and forecast combination methods that identify the "ideal" window size using sample

information. In other words, Pesaran and Timmermann (2007) extend forecast averaging

procedures to deal with the uncertainty over the size of the estimation window, for example,

by averaging forecasts computed from the same model but over various estimation win-

dow sizes. Their main objective is to improve the model�s forecast. Similarly, Clark and

McCracken (2009) combine rolling and recursive forecasts in the attempt to improve the

forecasting model. Our paper instead proposes to take summary statistics of tests of predic-

tive ability computed over several estimation window sizes. Our objective is not to improve

the forecasting model nor to estimate the ideal window size. Rather, our objective is to

assess the robustness of conclusions of predictive ability tests to the choice of the estimation

window size. Pesaran, Pettenuzzo and Timmermann (2006) have exploited the existence of

multiple breaks to improve forecasting ability; in order to do so, they need to estimate the

process driving the instability in the data. An attractive feature of the procedure we propose

is that it does not need to impose nor determine when the structural breaks have happened.

Giacomini and Rossi (2010) propose techniques to evaluate the relative performance of com-

peting forecasting models in unstable environments, assuming a "given" estimation window

size. In this paper, our goal is instead to ensure that forecasting ability tests be robust to the

choice of the estimation window size. That is, the procedures that we propose in this paper

are designed for determining whether �ndings of predictive ability are robust to the choice

of the window size, not to determine which point in time the predictive ability shows up:

the latter is a very di¤erent issue, important as well, and was discussed in Giacomini and

Rossi (2010). Finally, this paper is linked to the literature on data snooping: if researchers
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report empirical results for just one window size (or a couple of them) when they actually

considered many possible window sizes prior to reporting their results, their inference will

be incorrect. This paper provides a way to account for data snooping over several window

sizes and removes the arbitrary decision of the choice of the window length.

After the �rst version of this paper was submitted, we became aware of independent

work by Hansen and Timmermann (2011). Hansen and Timmermann (2011) propose a

sup-type test similar to ours, although they focus on p-values of the Diebold and Mariano�s

(1995) test statistic estimated via a recursive window estimation procedure for nested models�

comparisons. They provide analytic power calculations for the test statistic. Our approach

is more generally applicable: it can be used for inference on out-of-sample models�forecast

comparisons and to test forecast optimality where the estimation scheme can be either rolling,

�xed or recursive, and the window size can be either a �xed fraction of the total sample size

or �nite. Also, Hansen and Timmermann (2011) do not consider the e¤ects of time-varying

predictive ability on the power of the test.

We show the usefulness of our methods in an empirical analysis. The analysis re-evaluates

the predictive ability of models of exchange rate determination by verifying the robustness

of the recent empirical evidence in favor of models of exchange rate determination (e.g.,

Molodtsova and Papell, 2009, and Engel, Mark and West, 2007) to the choice of the window

size. Our results reveal that the forecast improvements found in the literature are much

stronger when allowing for a search over several window sizes. As shown by Pesaran and

Timmermann (2005), the choice of the window size depends on the nature of the possible

model instability and the timing of the possible breaks. In particular, a large window is

preferable if the data generating process is stationary but comes at the cost of lower power,

since there are fewer observations in the evaluation window. Similarly, a shorter window may

be more robust to structural breaks, although it may not provide as precise an estimation as

larger windows if the data are stationary. The empirical evidence shows that instabilities are

widespread for exchange rate models (see Rossi, 2006), which might justify why in several

cases we �nd improvements in economic models�forecasting ability relative to the random

walk for small window sizes.

The paper is organized as follows. Section 2 proposes a framework for tests of predictive

ability when the window size is a �xed fraction of the total sample size. Section 3 presents

tests of predictive ability when the window size is a �xed constant relative to the total sample

size. Section 4 shows some Monte Carlo evidence on the performance of our procedures in

small samples, and Section 4 presents the empirical results. Section 5 concludes.
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2 Robust Tests of Predictive Accuracy When the Win-

dow Size is Large

Let h � 1 denote the (�nite) forecast horizon. We assume that the researcher is interested
in evaluating the performance of h�steps-ahead direct forecasts for the scalar variable yt+h
using a vector of predictors xt using either a rolling, recursive or �xed window direct forecast

scheme. We assume that the researcher has P out-of-sample predictions available, where the

�rst prediction is made based on an estimate from a sample 1; 2; :::; R, such that the last out-

of-sample prediction is made based on an estimate from a sample of T�R+1; :::; R+P�1 = T
where R+P+h�1 = T+h is the size of the available sample. The methods proposed in this
paper can be applied to out-of-sample tests of equal predictive ability, forecast rationality

and unbiasedness.

In order to present the main idea underlying the methods proposed in this paper, let us

focus on the case where researchers are interested in evaluating the forecasting performance of

two competing models: Model 1, involving parameters �, and Model 2, involving parameters

. The parameters can be estimated either with a rolling, �xed or a recursive window

estimation scheme. In the rolling window forecast method, the true but unknown model�s

parameters �� and � are estimated by b�t;R and bt;R using samples of R observations dated
t�R+1; :::; t, for t = R; R+1; :::; T . In the recursive window estimation method, the model�s
parameters are instead estimated using samples of t observations dated 1; :::; t, for t = R;

R + 1; :::; T . In the �xed window estimation method, the model�s parameters are estimated

only once using observations dated 1; :::; R. Let
n
L
(1)
t+h

�b�t;R�oT
t=R

and
n
L
(2)
t+h

�bt;R�oT
t=R

denote the sequence of loss functions of models 1 and 2 evaluating h�steps-ahead relative
out-of-sample forecast errors, and let

n
�Lt+h

�b�t;R; bt;R�oT
t=R

denote their di¤erence.

Typically, researchers rely on the Diebold and Mariano (1995), West (1996), McCracken

(2000) or Clark and McCracken�s (2001) test statistics for inference on the forecast error

loss di¤erences. For example, in the case of the Diebold and Mariano�s (1995) and West�s

(1996) test, researchers evaluate the two models using the sample average of the sequence of

standardized out-of-sample loss di¤erences:

�LT (R) �
1b�RP�1=2

TX
t=R

�Lt+h(b�t;R; bt;R); (1)

where b�2R is a consistent estimate of the long run variance matrix of the out-of-sample loss
di¤erences, which di¤ers in the Diebold and Mariano�s (1995) and West�s (1996) approaches.
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The problem we focus on is that inference based on eq. (1) relies crucially on R, which

is the size of the rolling window in the rolling estimation scheme or the way the sample

is split into the in-sample and out-of-sample portions in the �xed and recursive estimation

schemes. In fact, any out-of-sample test for inference regarding predictive ability does require

researchers to choose R: The problem we focus on is that it is possible that, in practice, the

choice of R may a¤ect the empirical results. Our main goal is to design procedures that will

allow researchers to make inference about predictive ability in a way that does not depend

on the choice of the window size.

We argue that the choice of R raises two types of concerns. First, if the researcher tries

several window sizes and then reports the empirical evidence based on the window size that

provides him the best empirical evidence in favor of predictive ability, his test may be over-

sized. That is, the researcher will reject the null hypothesis of equal predictive ability in

favor of the alternative that the proposed economic model forecasts the best too often, thus

�nding predictive ability even if it is not signi�cant in the data. The problem is that the

researcher is e¤ectively "data-mining" over the choice of R, and does not correct the critical

values of the test statistic to take into account the search over window sizes. This is mainly

a size problem.

A second type of concern arises when the researchers has simply selected an ad-hoc value

of R without trying alternative values. In this case, it is possible that, when there is some

predictive ability only over a portion of the sample, he may lack to �nd empirical evidence

in favor of predictive ability because the window size was either too small or large to capture

it. This is mainly a lack of power problem.

Our objective is to consider R as a nuisance parameter, and develop test statistics to

perform inference about predictive ability that does not depend on R. The main results in

this paper follow from a very simple intuition: if partial sums of the test function (either

forecast error losses, or adjusted forecast error losses, or functions of forecast errors) obey

a Functional Central Limit Theorem (FCLT), we can take any summary statistic across

window sizes to robustify inference and derive its asymptotic distribution by applying the

Continuous Mapping Theorem (CMT). We consider two appealing and intuitive types of

weighting schemes over the window sizes. The �rst scheme is to choose the largest value of

the �LT (R) test sequence, which corresponds to a �sup-type�test. This mimics to the case

of a researcher experimenting with a variety of window sizes and reporting only the empirical

results corresponding to the best evidence in favor of predictive ability. The second scheme

involves taking a weighted average of the �LT (R) tests, giving equal weight to each test.
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This choice is appropriate when researchers have no prior information on which window sizes

are the best for their analysis. This choice corresponds to an average-type test. Alternative

choices of weighting functions could be entertained and the asymptotic distribution of the

resulting test statistics could be obtained by arguments similar to those discussed in this

paper.

The following proposition states the general intuition behind the approach proposed in

this paper. In the subsequent sub-sections we will verify that the high-level assumption in

Proposition 1, eq. (2), holds for the test statistics we are interested in.

Proposition 1 (Asymptotic Distribution.) Let ST (R) denote a test statistic with win-

dow size R. We assume that the test statistic ST (:) we focus on satis�es

ST ([�(�)T ]) ) S(�) (2)

where ) denotes weak convergence in the space of cadlag functions on [0; 1] equipped with

the Skorokhod metric. Then,

sup
[�T ]�R�[�T ]

ST (R)
d! sup
�����

S(�); (3)

1

[�T ]� [�T ] + 1

[�T ]X
R=[�T ]

ST (R)
d!
Z �

�

S(�)d� (4)

where 0 < � < � < 1.

Note that this approach assumes that R is growing with the sample size and, asymptot-

ically, becomes a �xed fraction of the total sample size. This assumption is consistent with

the approaches by West (1996), West and McCracken (1998) and McCracken (2001). The

next section will consider test statistics where the window size is �xed.

In the existing tests, � = lim
T!1

R
T
is �xed and condition (2) holds pointwise for a given

�. Condition (2) requires that the convergence holds uniformly in � rather than pointwise,

however. It turns out that this high-level assumption can be shown to hold for many of the

existing tests of interest under their original assumptions. As we will show in the next sub-

sections, this is because existing tests had already imposed assumptions for the FCLT to take

into account recursive, rolling and �xed estimation schemes and because weak convergence

to stochastic integrals can hold for partial sums (Hansen, 1992).

Note also that the practical implementation of (3) and (4) requires researchers to choose

� and �. To avoid data snooping over the choices of � and �, we recommend researchers to
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impose symmetry by �xing � = 1��, and to use � = [0:15] in practice. The recommendation
is based on the small sample performance of the test statistics that we propose, discussed in

Section 4.

We next discuss how this result can be directly applied to widely used measures of relative

forecasting performance, where the loss function is the di¤erence of the forecast error losses of

two competing models. We consider two separate cases, depending on whether the models are

nested or non-nested. Subsequently we present results for regression-based tests of predictive

ability, such as Mincer and Zarnowitz�s (1969) forecast rationality regressions, among others.

For each of the cases that we consider, a sketch of the proof that the test statistics satisfy

condition (2) is provided in Appendix A. Our proofs are a slight modi�cation of West (1996),

Clark and McCracken (2001) and West and McCracken (1998) and extend their results to

weak convergence in the space of functions on [�; �].

2.1 Non-Nested Model Comparisons

Traditionally, researchers interested in doing inference about the relative forecasting perfor-

mance of competing, non-nested models rely on the Diebold and Mariano�s (1995), West�s

(1996) and McCracken�s (2000) test statistics. The statistic tests the null hypothesis that the

expected value of the loss di¤erences evaluated at the pseudo-true parameter values equals

zero. That is, let �L�T (R) denote the value of the test statistic evaluated at the true para-

meter values; then the null hypothesis can be rewritten as: E [�L�T (R)]. The test statistic

that they propose relies on the sample average of the sequence of standardized out-of-sample

loss di¤erences, eq. (1):

�LT (R) �
1b�RP�1=2

TX
t=R

�Lt+h(b�t;R; bt;R); (5)

where b�2R is a consistent estimate of the long run variance matrix of the out-of-sample loss
di¤erences. A consistent estimate of �2 for non-nested model comparisons that does not

take into account parameter estimation uncertainty is provided in Diebold and Mariano

(1995). Consistent estimates of �2 that take into account parameter estimation uncertainty

in recursive windows are provided by West (2006) and in rolling and �xed windows are

provided by McCracken (2000, p. 203, eqs. 5 and 6). For example, a consistent estimator

when parameter estimation error is negligible is:

�̂2R =

q(P )�1X
i=�q(P )+1

(1� ji=q(P )j)P�1
TX
t=R

�Ldt+h

�b�t;R; bt;R��Ldt+h�i �b�t�i;R; bt�i;R� ; (6)
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where �Ldt+h
�b�t;R; bt;R� � �Lt+h �b�t;R; bt;R� � P�1PT

t=R�Lt+h

�b�t;R; bt;R� and q(P ) is a
bandwidth that grows with P (e.g., Newey and West, 1987). In particular, a leading case

where (6) can be used is when the same loss function is used for estimation and evaluation.

For convenience, we provide the consistent variance estimate for rolling, recursive and �xed

estimation schemes in Appendix A.

Appendix A shows that Proposition (1) applies to the test statistic (5) under broad con-

ditions. Examples of typical non-nested models satisfying Proposition 1 (provided that the

appropriate moment conditions are satis�ed) include linear and non-linear models estimated

by any extremum estimator (e.g. Ordinary Least Squares, General Method of Moments and

Maximum Likelihood); the data can have serial correlation and heteroskedasticity, but are

required to be stationary (which rules out unit roots and structural breaks), and the forecast

errors (which can be either one period or multi-period) should be evaluated using continu-

ously di¤erentiable loss functions, which include Mean Square Forecast Errors (MSFE) as a

special case.

Our proposed procedure specialized to two-sided tests of non-nested forecast model com-

parisons is as follows. Let

RT = sup
R2fR;:::Rg

j�LT (R) j; (7)

and

AT =
1

R�R + 1

RX
R=R

j�LT (R)j ; (8)

where �LT (R) is de�ned in eq. (5), R = [�T ] ; R = [�T ]; R = [�T ]; and �̂
2
R is a consistent

estimator of �2. Reject the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for all R in favor

of the alternative HA : limT!1E [�L
�
T (R)] 6= 0 for some R at the signi�cance level � when

RT > k
R
� or when AT > kA� ; where the critical values kR� and kA� are reported in Table 1,

Panel A, for various values of �.

Researchers might be interested in performing one-sided tests as well. In that case, the

tests in eqs. (7) and (8) should be modi�ed follows: RT = supR2[R;:::R] �LT (R) ; AT =

1
R�R+1

RX
R=R

�LT (R). The tests reject the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for

all R in favor of the alternative HA : limT!1E [�L
�
T (R)] < 0 for some R at the signi�cance

level � when RT > k
R
� or when AT > kA� ; where the critical values kR� and kA� are reported

in Table 1, Panel B, for various values of �.
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INSERT TABLE 1 HERE

Finally, it is useful to remind readers that, as discussed in Clark and McCracken (2001),

(5) is not necessarily asymptotically normal even when the models are not nested. For

example, when yt+1 = �0 + �1 + ut+1 and yt+1 = �0 + �1zt + vt+h with xt independent of zt
and �1 = �1 = 0, the two models are non-nested but (5) is not asymptotically normal. The

asymptotic normality result does not hinge on whether or not two models are nested but

rather on whether or not the disturbance terms of the two models are numerically identical

in population under the null hypothesis.

2.2 Nested Models Comparison

For the case of nested models comparison, we follow Clark and McCracken (2001). Let

Model 1 be the parsimonious model, and Model 2 be the larger model that nests Model 1.

Let yt+h denote the variable to be forecast and let the period-t forecasts of yt+h from the

two models be denoted by by1;t+h and by2;t+h: the �rst ("small") model uses regressors x1;t
and the second ("large") model uses regressors x1;t and x2;t. Clark and McCracken�s (2001)

ENCNEW test is de�ned as:

�LET (R) � P
P�1

PT
t=R

�
(yt+h � by1;t+h)2 � (yt+h � by1;t+h) (yt+h � by2;t+h)�

P�1
PT

t=R (yt+h � by2;t+h)2 ; (9)

where P is the number of out-of-sample predictions available, and by1;t+h; by2;t+h depend on
the parameter estimates �̂t;R; ̂t;R. Note that, since the models are nested, Clark and Mc-

Cracken�s (2001) test is one sided.

Appendix A shows that Proposition 1 applies to the test statistic (9) under the same

assumptions as in Clark and McCracken (2001). In particular, their assumptions hold for

one-step-ahead forecast errors (h = 1) from linear, homoskedastic models, OLS estimation,

and MSE loss function (as discussed in Clark and McCracken (2001), the loss function used

for estimation has to be the same as the loss function used for evaluation).

Our robust procedure specializes to tests of nested forecast model comparisons as follows.

Let

RE
T = sup

R2fR;:::Rg
�LET (R) ; (10)

and

AET =
1

R�R + 1

RX
R=R

�LET (R) : (11)
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Reject the null hypothesis H0 : limT!1E[�L
E
T (R)] = 0 for all R at the signi�cance level �

against the alternativeHA : limT!1E[�L
E
T (R)] > 0 for some R whenRE

T > k
R
� orAET > kA� ;

where the critical values kR� and k
A
� for various values of � are reported in Table 2(a) for the

rolling window estimation scheme, and in Table 2(b) for the recursive window estimation

scheme.

INSERT TABLE 2(a,b) HERE

2.3 Regression-Based Tests of Predictive Ability

Under the widely used MSFE loss, optimal forecasts have a variety of properties. They should

be unbiased, one step-ahead forecast errors should be serially uncorrelated, and h-steps-

ahead forecast errors should be correlated at most of order h�1 (see Granger and Newbold,
1986, and Diebold and Lopez, 1996). It is therefore interesting to test such properties.

We do so in the same framework as West and McCracken (1998). Let the forecast error

evaluated at the pseudo-true parameter values �� be vt+h (�
�) � vt+h, and its estimated

value be vt+h
�b�t;R� � bvt+h. We assume one is interested in the linear relationship between

the prediction error, vt+h, and a (p� 1) vector function of data at time t.
For the purposes of this section, let us de�ne the loss function of interest to be Lt+h (�),

whose estimated counterpart is Lt+h(b�t;R) � bLt+h. To be more speci�c:
De�nition 2 (Special Cases of Regression-based tests of Predictive Ability) The fol-

lowing are special cases of regression-based tests of predictive ability:

(i) Forecast Unbiasedness Tests: bLt+h = bvt+h:
(ii) Mincer-Zarnowitz�s (1969) Tests (or E¢ ciency Tests): bLt+h = bvt+hXt, where Xt is a

vector of predictors known at time t (see also Chao, Corradi and Swanson, 2001). One

important special case is when Xt is the forecast itself.

(iii) Forecast Encompassing Tests (Chong and Hendry, 1986, Clements and Hendry, 1993,

Harvey, Leybourne and Newbold, 1998): bLt+h = bvt+hft; where ft is the forecast of the en-
compassed model.

(iv) Serial Uncorrelation Tests: bLt+h = bvt+hbvt:
More generally, let the loss function of interest be the (p� 1) vector Lt+h (��) = vt+hgt,

whose estimated counterpart is bLt+h = bvt+hbgt, where gt (��) � gt denotes the function

describing the linear relationship between vt+h and a (p� 1) vector function of data at time
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t, with gt(b�t) � bgt. In the examples above: (i) gt = 1; (ii) gt = Xt; (iii) gt = ft; (iv) gt = vt.

The null hypothesis of interest is typically:

E (Lt+h(��)) = 0: (12)

In order to test (12), one simply tests whether bLt+h has zero mean by a standard Wald test
in a regression of bLt+h onto a constant (i.e., testing whether the constant is zero). That is,

WT (R) = P
�1

TX
t=R

bLt+h(b�t;R)0b
�1R TX
t=R

bLt+h(b�t;R); (13)

where b
R is a consistent estimate of the long run variance matrix of the adjusted out-
of-sample losses, 
, typically obtained by using West and McCracken�s (1998) estimation

procedure.

Appendix 1 shows that Proposition 1 applies to the test statistic (13) under broad con-

ditions, which are similar to those discussed for eq. (5). The framework allows for linear

and non-linear models estimated by any extremum estimator (e.g. OLS, GMM and MLE),

the data to have serial correlation and heteroskedasticity as long as stationary is satis�ed

(which rules out unit roots and structural breaks), and forecast errors (which can be either

one period or multi-period) evaluated using continuously di¤erentiable loss functions, such

as MSE.

Our proposed procedure specialized to tests of forecast optimality is the following. Let

RW
T = sup

R2fR;:::Rg
[LT (R)0 b
�1R LT (R)]; (14)

and

AWT =
1

R�R + 1

RX
R=R

[LT (R)0 b
�1R LT (R)]; (15)

where

LT (R) � P�1=2
TX
t=R

Lt+h(b�t;R);
and b
R is a consistent estimator of 
. Reject the null hypothesisH0 : limT!1E (Lt+h(��)) =
0 for all R at the signi�cance level � when RW

T > kR� for the sup-type test and when

AWT > kA;W�;p for the average-type test, where the critical values kR;W�;p and kA;W�;p for various

values of � are reported in Table 3.

INSERT TABLE 3 HERE
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A simple, consistent estimator for 
 can be obtained by following West and McCracken

(1998). West and McCracken (1998) have shown that it is very important to allow for a

general variance estimator that takes into account estimation uncertainty and/or correcting

the statistics by the necessary adjustments. See West and McCracken�s (1998) Table 2

for details on the necessary adjustment procedures for correcting for parameter estimation

uncertainty. The same procedures should be implemented to obtain correct inference in

regression-based tests in our setup. For convenience, we discuss in detail how to construct a

consistent variance estimate in the leading case of Mincer and Zarnowitz�s (1969) regressions

in Appendix B in either rolling, recursive or �xed estimation schemes.

Historically, researchers have estimated the alternative regression: bvt+h = bg0t �b� (R)+b�t+h,
where b� (R) = �

P�1
PT

t=R bgtbg0t��1 �P�1PT
t=R bgtbvt+h� and b�t+h is the �tted error of the

regression, and tested whether the coe¢ cients equal zero. It is clear that under the additional

assumption that E (gtg0t) is full rank (a maintained assumption in that literature) the two

procedures share the same null hypothesis and are therefore equivalent. However, in this

case it is convenient to de�ne the following re-scaled Wald test:

W(r)
T (R) = b� (R)0 bV �1� (R)b� (R) ;

where bV�(R) is a consistent estimate of the asymptotic variance of b� (R) ; V�: We propose
the following tests:

RW
T = sup

R2fR;:::Rg
b� (R)0 bV �1� (R)b� (R) ; (16)

and

AWT =
1

R�R + 1

RX
R=R

b� (R)0 bV �1� (R)b� (R) : (17)

Reject the null hypothesis H0 : limT!1E [b� (R)] = 0 for all R when R�
T > kR;W�;p for the

sup-type test and when A�T > kA;W�;p for the average-type test. Simulated values of kR;W�;p and

kA;W�;p for various values of � and p are reported in Table 3.

Under more general speci�cations for the loss function, the properties of forecast errors

previously discussed may not hold. In those situations, Patton and Timmermann (2007)

show that a "generalized forecast error" does satisfy the same properties. The procedures

that we propose can also be applied to Patton and Timmermann�s (2007) generalized forecast

error.

13



3 Robust Tests of Predictive Accuracy When the Win-

dow Size is Small

All the testsconsidered so far rely on the assumption that the window is a �xed fraction of

the total sample size, asymptotically. This assumption rules out the tests by Clark and West

(2005, 2007) and Giacomini and White (2005), which rely on a constant (�xed) window size.

Propositions 3 and 4 extend our methodology in these two cases by allowing the window size

to be �xed.

First, we will consider a version of Clark and West�s (2005, 2007) test statistics. Monte

Carlo evidence in Clark and West (2006, 2007) and Clark and McCracken (2001, 2005)

shows that Clark and West�s (2007) test has power broadly comparable to the power of an

F-type test of equal MSE. Clark and West�s (2005, 2007) test is also popular because it has

the advantage of being approximately normal, which permits the tabulation of asymptotic

critical values applicable under multi-step forecasting and conditional heteroskedasticity.

Consider the following nested forecasting models:

yt+h = �01x1t + e1;t+h; (18)

yt+h = �02x2t + e2;t+h; (19)

where x2;t = [x01;t z
0
t]
0. Let �̂1t(R) = (

Pt
s=t�R+1 x1;sx

0
1;s)

�1Pt
s=t�R+1 x1;sys+h and

�̂2t(R) = (
Pt

s=t�R+1 x1;sx
0
1;s)

�1Pt
s=t�R+1 x1;sys+h and let ê1;t+h(R) and ê2;t+h(R) denote the

corresponding models�one-step-ahead forecast errors. Note that, since the models are nested,

Clark and West�s (2007) test is one sided. Under the null hypothesis that ��2 = [�
�0
1 0

0]0, the

MSPE-adjusted of Clark and West (2007) can be written as:

MSPE-adjusted = P�1
TX
t=R

ê21;t+h(R)�
�
ê22;t+h(R)� (ŷ1;t+h � ŷ2;t+h)2

�
= 2P�1

TX
t=R

ê1;t+h(R) [ê1;t+h(R)� ê2;t+h(R)]

where P�1
PT

t=R(ŷ1;t+h � ŷ2;t+h)2 is the adjustment term. When R is �xed, as Clark and

West (2007, p.299) point out, the mean of MSPE � adjusted is nonzero in general. We
consider an alternative adjustment term so that the adjusted loss di¤erence will have zero
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mean. Suppose that ��2 = [�
�0
1 0

0]0 and that x2;t is strictly exogenous. Then we have

E[ê21;t+h(R)� ê22;t+h(R)]

= E[(yt+h � �̂1;t(R)0x1;t)2 � (yt+h � �̂2;t(R)0x2;t)2]

= E[(et+h � (�̂1;t(R)� ��1)0x1;t)2 � (et+h � (�̂2;t(R)� ��2)0x2;t)2]

= E[(�̂1;t(R)� ��1)0x1;tx01;t(�̂1;t(R)� ��1)]� E[(�̂2;t(R)� ��2)0x2;tx02;t(�̂2;t(R)� ��2)]

= E[ŷ21;t+h(R)� ŷ22;t+h(R)]

where et+h = e1;t+h = e2;t+h under the null hypothesis, and the second equality follows from

the strict exogeneity of x2;t. Thus, �t+h(R) � ê21;t+h(R)� ê22;t+h(R)� [ŷ21;t+h(R)� ŷ22;t+h(R)]
has zero mean under the null hypothesis.

Proposition 3 (Out-of-Sample Robust Test with Fixed Window Size I. ) Suppose

that: (a) E(e2tjx2s) = 0 for all s and t such that t�R � s � t+R; (b) f[e1;t+1; x01;t+1; z0t+1]0g is
�-mixing of size �r=(r�2); (c) [e1;t+h; x01;t; z0t; �̂1;t(R)0; �̂1;t(R+1)0; :::; �̂1;t(R); �̂2;t(R)0; �̂2;t(R+
1)0; :::; �̂2;t(R)]

0 has �nite 4r-th moments uniformly in t; (d) R and R are �xed constants.

Then

�R �

2666664
P�1=2

PT
t=R �t+h(R)

P�1=2
PT

t=R+1 �t+h(R + 1)
...

P�1=2
PT

t=R �t+h(R)

3777775 d! N(0;
)

where 
 is the long-run covariance matrix, 
 =
P1

j=�1 �j and

�j = E

8>>>>><>>>>>:

2666664
�t+h(R)

�t+h(R + 1)
...

�t+h(R)

3777775

2666664
�t+h�j(R)

�t+h�j(R + 1)
...

�t+h�j(R)

3777775
09>>>>>=>>>>>;
:

Let r = R�R + 1: The test that we propose is:

CWT � �0Rb
�1�R d! �2r; (20)

where b
 is a consistent estimate of 
. The null hypothesis is rejected at the signi�cance

level � for any R when CWT > �
2
r;�, where �

2
r;� is the (1� �)� th quantile of a chi-square

distribution with r degrees of freedom.
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The proof of this proposition follows directly from Corollary 24.7 of Davidson (1994,

p. 387). There are several cases of model comparisons in practice where Assumption (a)

is satis�ed, for example a su¢ cient condition is that the regressors x1;t and zt be strictly

exogeneous.

We also consider the Giacomini and White�s (2005) framework. Proposition 4 provides

a methodology that can be used to robustify their test for unconditional predictive ability

with respect to the choice of the window size.

Proposition 4 (Out-of-sample Robust Tests with Fixed Window Size II. ) Suppose

the Assumptions of Theorem 4 in Giacomini and White (2005) hold. Let

GWT = inf
R2fR;:::Rg

j�LT (R) j; (21)

where

�LT (R) �
1b�RT�1=2

TX
t=R

�LT (b�t;R; bt;R);
R and R are �xed constants, and �̂2R is a consistent estimator of �

2.

Under the null hypothesis H0 : limT!1E
h
�LT

�b�t;R; bt;R�i = 0 for one window size;
GWT

d! N (0; 1) ;

The null hypothesis for the GWT test is rejected at the signi�cance level � in favor of the

two-sided alternative limT!1E
h
�LT

�b�t;R; bt;R�i 6= 0 for any R when GWT > z�=2; where

z�=2 is the 100 (1� �=2)% quantile of a standard normal distribution.

Note that, unlike the previous cases, in this case we consider the inf (:) over the sequence

of out-of-sample tests rather than the sup (:). The reason why we do so is related to the

special nature of Giacomini and White�s (2005) null hypothesis: if their null hypothesis is

true for one window size then it is necessarily false for other window sizes; thus, the test

statistic is asymptotically normal for the former, but diverges for the others. That is why it

makes sense to take the inf (:). The assumption that the null hypothesis holds only for one

value of R may sound peculiar, but the unconditional predictive ability test of Giacomini

and White (2005) typically implies a unique value of R. For example, consider the the case

where data are generated from yt = ��2 + et where et
iid� (0; �2), and let the researcher

be interested in comparing the MSFE of a model where yt is unpredictable (yt = e1t) with

that of a model where yt is constant (yt = �2 + e2;t). Under the unconditional version of
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the null hypothesis we have E[y2t+1 � (yt+1 � R�1�tj=t�R+1yj)2] = 0, which in turn implies

��22 � �2

R
= 0. Thus, if the null hypothesis holds then it holds with a unique value of R.

The proof of Proposition 4 is provided in Appendix A. Note that one might also be inter-

ested in a one-sided test, where H0 : limT!1E
h
�LT

�b�t;R; bt;R�i = 0 versus the alternative
that limT!1E

h
�LT

�b�t;R; bt;R�i > 0. In that case, construct GWT = infR=R;:::R�LT (R) ;

and reject when GWT > z�; where z�=2 is the 100(1� �)% quantile of a standard normal

distribution.

4 Monte Carlo evidence

In this section, we evaluate the small sample properties of the methods that we propose and

compare them with the methods existing in the literature. We consider both nested and

non-nested models�forecast comparisons, as well as forecast rationality. For each of these

tests under the null hypothesis, we allow for three choices of �, one-step-ahead and multi-

step-ahead forecasts, and multiple regressors of alternative models to see if and how the

size of the proposed tests is a¤ected in small samples. We consider the no-break alternative

hypothesis and the one-time-break alternative to compare the power of our proposed tests

with that of the conventional tests.

For the nested models comparison, we consider a modi�cation of the DGP (labeled �DGP

1�) that follows Clark and McCracken (2005a) and Pesaran and Timmermann (2007). Let0BB@
yt+1

xt+1

zt+1

1CCA =

0BB@
0:3 dt 01�p

0 0:5 01�p

0 0p�1 0:5 � Ip

1CCA
0BB@
yt

xt

zt

1CCA+
0BB@
uy;t+1

ux;t+1

uz;t+1

1CCA ; t = 1; :::; T � 1;
where y0 = x0 = 0, z0 = 0p�1, and [uy;t+1 ux;t+1 u0z;t+1]

0 iid� N(0(p+2)�1; Ip+2). We compare the
following two nested models�forecasts for yt+h:

Model 1 forecast : b�1;tyt (22)

Model 2 forecast : b1;tyt + b02;txt + b03;tzt;
and both models�parameters are estimated by OLS in rolling windows of size R: Under

the null hypothesis dt = 0 for all t and we consider h = 1; 4; 8, p = 0; 3; 5 and T =

50; 100; 200; 500. Under the no-break alternative hypothesis dt = 0:1 or dt = 0:2 (h = 1,

p = 0 and T = 200). Under the one-time-break alternative hypothesis, dt = 0:5 � I(t � �)

for � 2 f40; 80; 120; 160g, (h = 1, p = 0 and T = 200).
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For the non-nested models�comparison, we consider a modi�cation of DGP1 (labeled

�DGP2�):0BB@
yt+1

xt+1

zt+1

1CCA =

0BB@
0:3 dt 01�p

0 0:5 0

0 0 0:5Ip

1CCA
0BB@
yt

xt

zt

1CCA+
0BB@
uy;t+1

ux;t+1

uz;t+1

1CCA ; t = 1; :::; T � 1;
where y0 = x0 = 0, z0 = 0p�1, and [uy;t+1 ux;t+1 u0z;t+1]

0 iid� N(0(p+2)�1; Ip+2). We compare the
following two non-nested models�forecasts for yt+h:

Model 1 forecast : b�1yt + b�2xt (23)

Model 2 forecast : b1yt + b02zt;
and both models�parameters are estimated by OLS in rolling windows of size R. Under

the null hypothesis dt = 0:5 for all t and we consider h = 1; 4; 8, p = 1; 3; 5 and T =

50; 100; 200; 500. Under the no-break alternative hypothesis dt = 0:5 or dt = 1 (h = 1, p = 1

and T = 200). Under the one-time-break alternative hypothesis, dt = 0:5 � I(t � �) + 0:5 for
� 2 f40; 80; 120; 160g, (h = 1, p = 1 and T = 200).
�DGP3� is designed for regression-based tests and is a modi�cation of West and Mc-

Cracken�s (1998). Let

yt+1 = �t � Ip + 0:5yt + "t+1; t = 1; :::; T;

where "t+1
iid� N(0p�1; Ip). We focus on tests of forecast unbiasedness discussed in De�nition

2. Let y1;t be the �rst variable in the vector yt. We estimate y1;t+h = �0yt + vt+h by

rolling regressions and test E(vt+h) = 0 and E(ytvt+h) = 0 for h = 1; 4; 8 and p = 1; 3; 6.

We let �t = 0:5 or �t = 1 under the no-break alternative and �t = 0:5 � I(t � �) for

� 2 f40; 80; 120; 160g under the one-time break alternative (h = 1, p = 1 and T = 200).
For the forecast comparison tests with a �xed window size, we consider the following

DGP (labeled �DGP4�):

yt+1 = �txt + "t+1; t = 1; :::; T;

where xt and "t+1 are i.i.d. standard Normal independent of each other. We compare the

following two nested models�forecasts for yt: a �rst model is a no-change forecast model,

e.g. the random walk forecast for a target variable de�ned in �rst di¤erences, and the second

is a model with the regressor:

Model 1 forecast : 0

Model 2 forecast : b�txt:
18



To ensure that the null hypothesis in Proposition 4 holds for one of the window sizes, R, we

let �t = (R� 2)�1=2. The number of Monte Carlo replications is 5,000. To ensure that the
null hypothesis in Proposition 3 holds, we let �t = 0.

The size properties of our test procedures in small samples are �rst evaluated in a series of

Monte Carlo experiments. We report empirical rejection probabilities of the tests we propose

at the 10%, 5% and 1% nominal levels. In all experiments except DGP4, we investigate

sample sizes where T = 50; 100; 200 and 500 and set � = 0:05; 0:15; 0:25 and � = 1��. For
DGP4, we let P = 100; 200 and 500 and let R = 20 or 30 and R = R+ 5: Tables 4, 5 and 6

report results for the R"
T and A"T tests for the nested models comparison (DGP1), the RT

andAT tests for non-nested models comparison (DGP2), andRW
T andAWT for the regression-

based tests of predictive ability (DGP3), respectively. In each table, panel A reports results

for the baseline case, and panels B and C report results for the multiple forecast horizon

case and for the multiple regressor case, respectively. For the multiple horizon case (panel

B), we use the heteroskedasticity and autocorrelation consistent (HAC) estimator with the

truncated kernel, bandwidth h� 1 and the adjustment proposed by Harvey, Leybourne and
Newbold (1997), as suggested by Clark and McCracken (2011, Section 4).

Table 4 shows that the nested model comparison tests (i.e., RE
T and AET tests) have good

size properties overall. Except for small sample sizes, they perform well even in the multiple

forecast horizon and multiple regressor cases. Although the e¤ect of the choice of � becomes

smaller as the sample size grows, the RE
T test tends to over-reject with smaller values of �.

The AET test is less sensitive to the choice of �. The tests implemented with � = 0:05 tend to
reject the null hypothesis too often when the sample size is small. For the size properties we

recommend that � = 0:15. Table 5 shows that the non-nested model comparison tests (RT

and AT tests) also have good size properties although they tend to be slightly under-sized.
They tend to be more under-sized as the forecast horizon grows, and the RT test tends to

reject too often when there are many regressors (p = 5). Table 6 shows the size properties of

the regression-based tests of predictive ability (RW
T and AWT tests). The tests tend to reject

more often as the the forecast horizon increases and less often as the number of restrictions

increases.

INSERT TABLES 4, 5 and 6

Table 7 reports empirical rejection frequencies for DGP4. The left panel shows results

for the GWT test, eq. (21), reported in the column labeled �GWT test�. The table shows
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that our test is conservative when the number of out-of-sample forecasts P is small, but

otherwise it is controlled. Similar results hold for the CWT test discussed in Proposition 3.

INSERT TABLE 7

Next, we consider three additional important issues. First, we evaluate the power prop-

erties of our proposed procedure in the presence of departures from the null hypothesis in

small samples. Second, we show that traditional methods, which rely on an �ad-hoc�window

size choice, may have no power at all to detect predictive ability. Third, we demonstrate

traditional methods are subject to data mining (i.e. size distortions) if they are applied to

many window sizes without correcting the appropriate critical values.

Tables 8, 9 and 10 report empirical rejection rates for the Clark and McCracken�s

(2001) test under DGP1, the non-nested model comparison test of Diebold and Mariano

(1995), West (1996) and McCracken (2000) under DGP2, and West and McCracken�s (1998)

regression-based test of predictive ability under DGP3, respectively. In each table, the

columns labeled �Tests Based on Single R� report empirical rejection rates implemented

with a speci�c value of R which would correspond to the case of a researcher who has chosen

one �ad-hoc�window size R, has not experimented with other choices, and thus might have

missed predictive ability associated with alternative values of R. The columns labeled �Data

Mining�report empirical rejection rates incurred by a researcher who is searching across all

values of R 2 f30; 31; :::; 170g (�all R�) and across four values, R 2 f40; 80; 120; 160g. That
is, the researcher reports results associated with the most signi�cant window size without

taking into account the search procedure when doing inference. The critical values used

for these conventional testing procedures are based on Clark and McCracken (2001) and

West and McCracken (1998) for Tables 8 and 10 and are equal to 1.96 for Table 9. Note

that to obtain critical values for the ENCNEW test and regression-based test of predictive

ability that are not covered by their tables, the critical values are estimated from 50,000

Monte Carlo simulations in which the Brownian motion is approximated by normalized par-

tial sums of 10,000 standard normal random variates. For the non-nested model comparison

test, parameter estimation uncertainty is asymptotically irrelevant by construction and the

standard normal critical values can be used. The nominal level is set to 5% and the sample

size is 200.

The �rst row of each panel reports the size of these testing procedures and shows that all

tests have approximately the correct size except the data mining procedure, which has size

distortions and leads to too many rejections with probabilities ranging from 0.175 to 0.253.
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Even when only �ve window sizes are considered, data mining leads to falsely rejecting the

null hypothesis with probability more than 0.13. This implies that the empirical evidence

in favor of the superior predictive ability of a model can be spurious if evaluated with the

incorrect critical values. Panel A of each table shows that the conventional tests and proposed

tests have power against the standard no-break alternative hypothesis. While the power of

the RE
T test is increasing in �, it is decreasing in � for the RT and RW

T tests. The power of

the AET , AT and AWT tests is not sensitive to the choice of �.

Panel B of each table demonstrates that, in the presence of a structural break the tests

based on an �ad-hoc�rolling window size can have low power depending on the window size

and the break location. Our proposed tests tends to be more powerful than those based on

the ad-hoc window size. Against the break alternative, the power of the proposed tests tend

to be decreasing in �. Based on these size and power results we recommend � = 0:15 in

Section 2, which provides a good performance overall.

INSERT TABLES 8, 9 and 10

Finally, we show that the e¤ects of data mining are not just a small sample phenomenon.

We quantify the e¤ects of data mining asymptotically by using the limiting distributions of

our test statistics. Table 11 reports the results, which demonstrate that the over-rejections

of traditional tests when researchers data snoop over window sizes persist asymptotically.

INSERT TABLE 11

5 Empirical evidence

The poor forecasting ability of economic models of exchange rate determination has been

recognized since the works by Meese and Rogo¤ (1983a,b), who established that a random

walk forecasts exchange rates better than any economic models in the short run. Meese and

Rogo¤�s (1983a,b) �nding has been con�rmed by several researchers and the random walk

is now the yardstick of comparison for the evaluation of exchange rate models.

Recently, Engel, Mark and West (2007) and Molodtsova and Papell (2009) documented

empirical evidence in favor of the out-of-sample predictability of some economic models,

especially those based on the Taylor rule. However, the out-of-sample predictability that

they report depends on certain parameters, among which the choice of the in-sample and

out-of-sample periods and the size of the rolling window used for estimation. The choice of
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such parameters may a¤ect the outcome of out-of-sample tests of forecasting ability in the

presence of structural breaks. Rossi (2006) found empirical evidence of instabilities in models

of exchange rate determination; Giacomini and Rossi (2010) evaluated the consequences of

instabilities in the forecasting performance of the models over time; Rogo¤ and Stavrakeva

(2008) also question the robustness of these results to the choice of the starting out-of-sample

period. In this section, we test the robustness of these results to the choice of the rolling

window size.

It is important to notice that it is not clear a-priori whether our test would �nd more or

less empirical evidence in favor of predictive ability. In fact, there are two opposite forces

at play. By considering a wide variety of window sizes, our tests might be more likely to

�nd empirical evidence in favor of predictive ability, as our Monte Carlo results have shown.

However, by correcting statistical inference to take into account the search process across

multiple window sizes, our tests might at the same time be less likely to �nd empirical

evidence in favor of predictive ability.

Let st denote the logarithm of the bilateral nominal exchange rate, where the exchange

rate is de�ned as the domestic price of foreign currency. The rate of growth of the exchange

rate depends on its deviation from the current level of a macroeconomic fundamental. Let

ft denote the long-run equilibrium level of the nominal exchange rate as determined by the

macroeconomic fundamental, and zt = ft � st. Then,

st+1 � st = �+ �zt + "t+1 (24)

where "t+1 is an unforecastable error term.

The �rst model we consider is the Uncovered Interest Rate Parity (UIRP). In the UIRP

model,

fUIRPt = (it � i�t ) + st; (25)

where (it � i�t ) is the short-term interest di¤erential between the home and the foreign coun-
tries.

The second model we consider is a model with Taylor rule fundamentals, as in Molodtsova

and Papell (2009) and Engel, Mark and West (2007). Let �t denote the in�ation rate in the

home country, ��t denote the in�ation rate in the foreign country, � denote the target level of

in�ation in each country, ygapt denote the output gap in the home country and ygap�t denote

the output gap in the foreign country. Note that the output gap is the percentage di¤erence

between actual and potential output at time t, where the potential output is the linear time

trend in output, and that Taylor rule speci�cation is one for which Papell and Molodtsova
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(2009) �nd the least empirical evidence of predictability so our results can be interpreted as

a lower bound on the predictability of Taylor rules that they consider. Since the di¤erence in

the Taylor rule of the home and foreign countries implies it�i�t = � (�t � ��t )+ (y
gap
t � ygap�t ),

we have that the latter determines the long run equilibrium level of the nominal exchange

rate:

fTAY LORt = � (�t � ��t ) +  (y
gap
t � ygap�t ) + st: (26)

The benchmark model, against which the forecasts of both models (25) and (26) are

evaluated, is the random walk, according to which the exchange rate changes are forecast to

be zero. We chose the random walk without drift to be the benchmark model because it is

the toughest benchmark to beat (see Meese and Rogo¤, 1983a,b).

We use monthly data from the International Financial Statistics database (IMF) and from

the Federal Reserve Bank of St. Louis from 1973:3 to 2008:1 for Japan, Switzerland, Canada,

Great Britain, Sweden, Germany, France, Italy, the Netherlands, and Portugal. Data on

interest rates were incomplete for Portugal and the Netherlands, so we do not report UIRP

results for these countries. The former database provides the seasonally adjusted industrial

production index for output, and the 12-month di¤erence of the CPI for the annual in�ation

rate, and the interest rates. The latter provides the exchange rate series. The two models�

rolling forecasts (based on rolling windows calculated over an out-of-sample portion of the

data starting in 1983:2) are compared to the forecasts of the random walk, as in Meese and

Rogo¤ (1983a,b). We focus on the methodologies in Section 2.2 since the models are nested.

In our exercise, � = 0:15, which implies R = �T and R = (1 � �)T ; the total sample size
T depends on the country, and the values of R and R are shown on the x-axes in Figures

1 and 2, and o¤er a relatively large range of window sizes, all of which are su¢ ciently large

for asymptotic theory to provide a good approximation.

Empirical results are shown in Table 12 and Figures 1 and 2. The column labeled �Test

Based on Single R� in Table 12 reports the empirical results in the literature based on a

window size R equal to 120, the same window size used in Molodtsova and Papell (2009).

According to the �Test Based on Single R;�the Taylor model signi�cantly outperforms a

random walk for Canada and the U.K. at 5% signi�cance level, whereas the UIRP model

outperforms the random walk for Canada and Italy at the 5% signi�cance level. According to

our tests, instead, the empirical evidence in favor of predictive ability is much more favorable.

Figures 1 and 2 report the estimated Clark and McCracken�s (2001) test statistic for the

window sizes we consider. Note that the R"
T test rejects if, for any window size R (reported

on the x-axis), the test statistic is above the critical value line (dotted lines). In particular,
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the predictive ability of the economic models tends to show up at smaller window sizes, as

the �gures show. This suggests that the empirical evidence in favor of predictive ability may

be driven by the existence of instabilities in the predictive ability, for which rolling windows

of small size are advantageous.

INSERT TABLE 12 AND FIGURES 1 AND 2

6 Conclusions

This paper proposes new methodologies for evaluating economic models�forecasting perfor-

mance that are robust to the choice of the estimation window size. These methodologies are

noteworthy since they allow researchers to reach empirical conclusions that do not depend on

a speci�c estimation window size. We show that tests traditionally used by forecasters su¤er

from size distortions if researchers report, in reality, the best empirical result over various

window sizes, but without taking into account the search procedure when doing inference

in practice. Traditional tests may also lack power to detect predictive ability when imple-

mented for an "ad-hoc" choice of the window size. Finally, our empirical results demonstrate

that the recent empirical evidence in favor of exchange rate predictability is even stronger

when allowing a wider search over window sizes.
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7 Appendix A. Proofs

Veri�cation of the High-Level Assumptions in Proposition 1

In this appendix we verify that the tests of predictive ability we focus on satisfy (2).

Then the results (3) and (4) follow by the Continuos Mapping Theorem. We follow the

proofs of West (1996), Clark and McCracken (2001) and West and McCracken (1998) very

closely and extend their results to weak convergence in the space of functions on [�; �].

(a) The tests of West (1996) and McCracken (2000): For the out-of-sample tests

of non-nested model comparisons considered in Section 2.1, we adopt the same notation as

in West (1996) and assume that Assumptions 1�4 in West (1995) hold with Assumption 4

holding for all values of R = [�T ]; [�T ] + 1; :::; [�T ] (Assumptions 1�4 of McCracken, 2000

are identical to Assumptions 1�4 in West, 1996). It is relatively straightforward to show

that Lemmas A1�A6 of West (1996) holds under these assumptions with the supt replaced

by supR�RR supR�t�T � sup[�T ]�t�]. Thus the key is to prove our version of his Lemma 4.1
and it su¢ ces to verify that the Assumptions C1, C2 and A5 in Corollary 3.1 in Wooldridge

and White (1988) are satis�ed by P 1=2(f � Eft).
Assumption C1 is a nominal assumption and is trivially satis�ed for the test statistics of

equal predictive ability of non-nested models estimated with either rolling, recursive and

split-sample estimation techniques.

Let Ht = (1=t)
Pt

s=1 hs(�
�) in the recursive scheme and Ht = (1=R)

Pt
s=t�R+1 hs(�

�) in

the rolling scheme. We need to show that the partial sum
P
[(ft+� � E(ft+� ))0 H 0

t] satis�es

Assumption C2 of Wooldridge and White (1988). We focus on Ht because we have already

assumed that ft satis�es these assumptions. In the recursive scheme, note that

PX
t=R

Ht = aR;0(h1 + � � �+ hR) + aR;1hR+1 + � � � aR;P�1hR+P�1;

where aR;j =
PP�1

k=j 1=(R + k) for j = 0; 1; :::; P � 1 (see West, 1996, p. 1081). This in turn
can be written as

PX
t=R

Ht =
TX
t=1

btht

where bt = aR;0 for t = 1; :::; R and bt = aR;t�R+1 for t = R + 1; :::; T . In the rolling scheme,

the sum can be written as
PX
t=R

Ht =

TX
t=1

btht
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where bt = min(t; R; T � t)=R. Thus we show that Assumption C2 is satis�ed for btht. In the
both schemes, bt is bounded. Thus Assumption C2(i) is satis�ed. Because fbtg is a sequence
of deterministic bounded constants and ht is strong mixing, btht is near epoch dependent

as required by Assumptions C2(ii)(iii). Assumption C2(iv) is also satis�ed because of the

assumptions on ht and the boundedness of bt.

Finally, Assumption A5 is satis�ed since

V ar

 
T�1=2

[sT ]P
t=R

H(t)

!
= V ar

 
s1=2 [sT ]�1=2

[sT ]P
t=R

H(t)

!
! s � �hhShh

using McCracken�s (2000) notation.

Therefore Theorem 3.1 of Wooldridge and White (1989) completes the proof.

(b) The ENCNEW test of Clark and McCracken (2001): For the out-of-sample tests of nested

model comparisons considered in Section 2.2, we assume that Assumptions 1, 2, 3 and 4 in

Clark and McCracken (2001) hold with Assumption 4 holding for all values of R = [�T ];

[�T ]+1; :::; [�T ]. To prove our version of their Theorem 3.3(a), we need to show that Lemma

1, Lemma 8, Lemma 9(a)(b) and 10(b) of Clark and McCracken (2000b) hold uniformly in

� 2 [�; �] rather than pointwise in �, where our � is their � = (1 + �)�1. Note that T=R in
the proof of Lemma 1(a) and that in the �rst inequality on page 6 of Clark and McCracken

(2000b) are bounded uniformly in � and that

sup
R�t�T

jT�1=2
tX
j=1

[Qt � E(Qt)] � sup
1�t�T

jT�1=2
tX
j=1

[Qt � E(Qt)] = Op(1)

where Qt is a generic random variable that satis�es the Functional Central Limit Theorem

and Op(1) is uniform in � 2 [�; �]. Using these two results, we can prove that Lemmas
1(a) and (b) hold uniformly in � 2 [�; �]. The uniform version of Lemma 1(c) follows from

the uniform version of Lemmas 1(a) and 1(b). The proofs of Lemmas A2, A3(b), A5 and

A6 are based on the Function Central Limit Theorem of Davidson (1994, Corollary 29.19)

and the convergence of martingale approximations (Hansen, 1992, Theorem 3.1) both of

which holds uniformly in �. Therefore given the proofs of Clark and McCracken (2000b)

it is straightforward to extend their proofs to show that Lemmas A2, A5 and A6 holds

uniformly in � 2 [�; �]. Note that Lemma A4 holds. Therefore Lemma A10 holds uniformly
in � 2 [�; �]. The uniform version of Theorem 3.3 follows from the uniform version of

Lemmas A6 and A10.

(c) The test of West andMcCracken (1998): For the tests of regression based predictive
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ability considered in Section 2.3, we assume that Assumptions 1�5 in West and McCracken

(1998) hold with wt in Assumption 4 replaced by

wt = [v0t� vec(gt�)
0 vt g

0
t h

0
t vech((gtg

0
t)
0]0

and Assumption 5 holding for all � such that (1 � �)=� � � � (1 � �)=� and all values of
R = [�T ]; [�T ] + 1; :::; [�T ]. We need to add vech((gtg0t) in the de�nition of wt to extend

their Lemma 4.3. Then the proof follows by applying similar arguments to those in (a).

(i) Lemmas A1, A2 and A3 inWest and McCracken (1998) follow directly from our discussion

in (a).

(ii) Uniform convergence of HAC covariance estimators in both West (1995) and West and

McCracken (1998) can be proved as follows. Lemmas A3 and A4 in West and McCracken

(1998) can be strengthened to ensure uniform convergence of HAC covariance estimators in

the following way. By the uniform convergence of the parameter estimates (shown in (a)), the

fact that � 2
�
�; �

�
which is bounded, the assumption that the variance is non-singular for

each �, using Lemma A3 in Andrews (1993) and the discussion on p. 835 in Andrews (1993)

we conclude that Lemma A3 in West and McCracken (1998) holds. Similarly, Lemma A4 in

West and McCracken (1998) holds because of the parameter estimate is uniformly consistent,

and the fact that ft and its derivatives are uniformly consistent. The test statistic in Clark

and West (2007) focuses on the product of the forecast error of the small model times the

di¤erence in the forecasts of the small model and the large model. Thus, the test statistic

has the same structure as the tests of forecast rationality considered in West and McCracken

(1998).

(iii) Lemma 4.1 can be strengthened as follows. Lemma 4.1(b) is strengthened as P�1=2
P[Ts]

t=R gt+1vt+h

) S
1=2
ff B (s) and (a) and (c) hold uniformly in R :

sup
R
jP�1=2

[Ts]X
t=R

bgt+1bvt;t+� � P�1=2 [Ts]X
t=R

gt+1vt;t+� � FB
h
P�1=2

X
H (t)

i
j = op (1)

sup
R
jE
X

H (t)H (t)0]� �hhShhj = op (1)

sup
R
jE
�
P�1

X
gt+1vt+�

X
H (t)0

�
]� �fhSfhj = op (1) :

We extend Lemma 4.2 by applying FCLT in Corollary 3.1 Wooldridge and White (1988)

similarly to the proof of (a).

(iv) To prove Lemma 4.3, as in West and McCracken, p. 836) we focus on the case in which gt
and �t are scalars. By our version of Lemma A1, supR supt jb�t���j = op (1)supR P�1P g2t+1;��

�e�t� =
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Op (1) by the fact that supR P
�1P g2t+1;��

�e�t� � (T � �T � h)�1 jP�1PT
t=�T g

2
t+1;��

�e�t� j =
Op (1) by assumption 3 (which is uniform because it does not depend on R), and the re-

maining terms are Op (1) uniformly in R by our version of Lemma A1 in (i) and Markov�s

inequality.

(v) Our version of Theorems 4.1, 4.2 and 5.1 follow from these lemmas and replacing point-

wise convergence by uniform convergence, as we did in (a). Theorem 7.1 let b� (R) ��PT
t=R bg2t+1��1 �PT

t=R bgt+1bvt+1� Clark andMcCracken�s results can be strengthened as P 1=2b� (R))
V 1=2B (�) by using the same arguments as in the proof of Lemma 4.2.

Proof of Proposition 4 Following the assumptions in Theorem 4 of Giacomini and White

(2005), we have

�LT (R)
d! N (0; 1) (27)

for every R = R;R+1; :::; R, where R and R are two constants that are �xed relative to the

sample size. Since the asymptotic distribution in eq. (27) does not depend on the choice of

R, and the set of values that R can take is �xed, it follows that

GWT
d! N (0; 1) :
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8 Appendix B. Variance Estimation and Asymptotic

Distributions.

(a) For the out-of-sample tests of non-nested model comparisons considered in Section

2.1, a consistent estimator for the variance that takes into account parameter estimation error

is as follows (McCracken, 2000): b�2R = b�2ff + �fh � bF bB bS 0fh + bSfh bB0 bF 0� a + �hh bF bB bShh bB0 bF 0;
where �fh and �hh are such that:

Scheme: �fh �hh

Recursive 1� ��1 ln (1 + �) 2 [1� ��1 ln (1 + �)]
Rolling, � � 1 �=2 � � �2=3
Rolling, 1 < � <1 1� (2�)�1 1� (2�)�1

Fixed 0 �;

(28)

b�2ff;R; bSfh; Shh are the HAC variance estimates of ft+h; ft+hht; ht respectively,bF = T�1
[sT ]P
t=R

�
@ft+h

�b�t;R� =@��, and bB = BT , where BT is such that b�t;R � �� = BtHt.

Note that the critical values for signi�cance level � are, respectively, kR� and kA� , where

kR� and k
A
� solve Pfsup�2[�;�] (1� �)

�1=2 jB (1) � B (�) j > kR� g = � and Pf
R �
�
(1� �)�1=2

jB (1)� B (�)j d� > kA� g = �; and are computed using Monte Carlo simulation methods.

(b) For the out-of-sample tests of nested model comparisons considered in Section 2.2, it

follows from Proposition 1 that RET =) sup�2[�;�] �
�1 R 1

�
[Bk (s)� Bk (s� �)]0 dBk (s) ; and

AET =)
R �
�

n
f��1

R 1
�
[Bk (s)� Bk (s� �)]0 dBk (s)g

o
; where R = [�T ]; R = [�T ] ; Bk (�) is

a standard k-variate Brownian motion and k is the number of parameters in the larger

model in excess of the parameters in the smaller model. Note that the critical values for

a signi�cance level � are, respectively, kR� and kA� , where k
R
� and kA� solve Pfsup�2[�;�]

��1
R 1
�
[Bk (s)� Bk (s� �)]0 dBk (s)> kR� g= � and Pf

R �
�

n
��1

R 1
�
[Bk (s)� Bk (s� �)]0 dBk (s)

o
> kA� g = �, respectively. The critical values are obtained via Monte Carlo simulation meth-
ods.

(c) For the out-of-sample tests of nested model comparisons considered in Section 2.3, a

consistent estimator for the variance that takes into account parameter estimation error in

the case of Mincer and Zarnowitz�s (1969) regressions is as follows (West and McCracken,

1998): b
R = Sff + �fh
�
FBS 0fh + SfhB

0F 0
�
+ �hhFBShhB

0F 0, where �fh, �hh have been
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de�ned in eq. (28), Sff ; Sfh, Shh are HAC variance estimates of bLt+h(b�t;R); bLt+h(b�t;R)ht; ht,bF = T�1 [sT ]P
t=R

�
@ bLt+h(b�t;R)=@��, and bB = BT , where BT is such that b�t;R � �� = BtHt:

Note that the statistics proposed in this paper build upon: T�1
PT

t=R
bLt+h(b�t;R)0b
�1R PT

t=R
bLt+h(b�t;R);

whereas the traditional Wald test is: WT (R) = P�1
PT

t=R
bLt+h(b�t;R)0b
�1R PT

t=R
bLt+h(b�t;R):

Under the null hypothesis H0 : limT!1E (Lt+h(��)) = 0 for all R; RWT =) sup�2[�;�]

(1� �)�1 [Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] ; and AWT =)
R �
�
(1� �)�1 [Bp (1)� Bp (�)]0

[Bp (1)� Bp (�)] d�;where R = [�T ] ; R = [�T ]; R = [�T ] ; and Bp (�) is a standard p-
dimensional Brownian motion. Critical values for a signi�cance level � are, respectively, kR;W�

and kA;W� , where kR;W� and kA;W� solve Pfsup�2[�;�] (1� �)
�1 [Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)]

> kR;W� g = �, Pf
R �
�
(1� �)�1 [Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d� > kA;W� g = �:
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9 Tables and Figures

Table 1. Critical Values for Non-Nested Model Comparisons

Panel A. Two-Sided Critical Values

RT test AT test
� 10% 5% 1% 10% 5% 1%

0.15 2.4653 2.7540 3.3372 1.4624 1.7393 2.2928

0.20 2.3987 2.6979 3.2825 1.4891 1.7719 2.3450

0.25 2.3334 2.6418 3.2286 1.5129 1.8092 2.3945

0.30 2.2642 2.5777 3.1599 1.5399 1.8380 2.4334

0.35 2.1865 2.4989 3.0991 1.5647 1.8648 2.4755

Panel B. One-Sided Critical Values

RT test AT test
� 10% 5% 1% 10% 5% 1%

0.15 2.1277 2.4589 3.1061 1.1344 1.4541 2.0732

0.20 2.0572 2.3990 3.0590 1.1589 1.4880 2.1166

0.25 1.9864 2.3329 3.0078 1.1797 1.5108 2.1670

0.30 1.9207 2.2614 2.9537 1.2014 1.5357 2.2058

0.35 1.8386 2.1868 2.8622 1.2258 1.5606 2.2409

Notes to Table 1. The critical values are obtained by Monte Carlo simulation using 50,000

Monte Carlo replications in which Brownian motions are approximated by normalized partial

sums of 10,000 standard normal random variates.
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Table 2(a). Critical Values for Nested Model Comparisons Using ENCNEW

in Rolling Regressions. Panel A. 10% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 3.9383 3.2651 2.7901 2.4207 2.1397 1.0606 1.0509 1.0557 1.0628 1.0779

2 5.6238 4.7021 4.0398 3.5472 3.1364 1.6027 1.6004 1.6131 1.6282 1.6529

3 6.9083 5.8076 5.0120 4.4155 3.9117 2.0365 2.0411 2.0526 2.0741 2.0992

4 7.9417 6.6788 5.7622 5.0918 4.5009 2.3769 2.3769 2.3896 2.4178 2.4400

5 8.8922 7.4685 6.4714 5.7091 5.0630 2.6650 2.6669 2.6841 2.7027 2.7506

6 9.7030 8.1372 7.0832 6.2397 5.5625 2.9012 2.9103 2.9292 2.9793 3.0271

7 10.4663 8.8057 7.6191 6.7431 6.0087 3.1514 3.1447 3.1691 3.1952 3.2424

8 11.2258 9.4397 8.1361 7.1555 6.4060 3.3606 3.3732 3.3791 3.4241 3.4861

9 11.8880 9.9882 8.6720 7.6060 6.7839 3.5543 3.5609 3.5807 3.6138 3.6682

10 12.5023 10.5105 9.1460 8.0328 7.1817 3.7282 3.7421 3.7661 3.8148 3.8799

11 13.1050 11.0000 9.5353 8.3810 7.5166 3.9033 3.9139 3.9411 3.9938 4.0362

12 13.7285 11.5549 9.9912 8.7988 7.7886 4.0793 4.0717 4.0998 4.1497 4.2059

13 14.2379 11.9539 10.4070 9.1365 8.1557 4.2483 4.2677 4.2983 4.3479 4.3922

14 14.7922 12.4266 10.8329 9.5350 8.4873 4.4186 4.4336 4.4744 4.5344 4.5818

15 15.2904 12.8073 11.1753 9.8687 8.7749 4.5999 4.5968 4.6167 4.6743 4.7455
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Table 2(a). Critical Values for Nested Model Comparisons Using ENCNEW

in Rolling Regressions. Panel B. 5% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 5.2106 4.4037 3.8175 3.3653 2.9672 1.7212 1.7250 1.7277 1.7578 1.7867

2 7.1941 6.0870 5.2817 4.6900 4.1940 2.4460 2.4524 2.4667 2.4809 2.5147

3 8.6766 7.3757 6.4414 5.6956 5.1017 2.9878 2.9942 3.0145 3.0291 3.0638

4 9.9801 8.4269 7.3542 6.5057 5.8203 3.3736 3.3821 3.4083 3.4380 3.4902

5 11.0899 9.3779 8.2062 7.2369 6.4568 3.7636 3.7636 3.7964 3.8315 3.8851

6 12.0293 10.2038 8.9327 7.8604 7.0478 4.0740 4.0749 4.1175 4.1443 4.2154

7 12.9684 10.9771 9.6020 8.4979 7.6047 4.3889 4.4147 4.4481 4.4866 4.5643

8 13.8311 11.7098 10.1977 9.0788 8.1170 4.6712 4.6758 4.7101 4.7572 4.8184

9 14.5854 12.3429 10.8114 9.5442 8.5896 4.9465 4.9664 4.9899 5.0261 5.1008

10 15.4082 13.0137 11.3283 10.0612 9.0527 5.1798 5.2039 5.2468 5.2887 5.3779

11 16.0986 13.6306 11.8735 10.4781 9.4248 5.3868 5.3977 5.4650 5.5109 5.5710

12 16.7878 14.1765 12.3970 10.9857 9.8252 5.6145 5.6394 5.6592 5.7062 5.7830

13 17.4795 14.6829 12.8751 11.3870 10.2301 5.8174 5.8200 5.8896 5.9445 6.0393

14 18.0793 15.2880 13.3657 11.8226 10.6058 6.0631 6.0683 6.1094 6.1913 6.2594

15 18.7774 15.8456 13.7500 12.1875 10.9393 6.2622 6.2559 6.3083 6.3868 6.4720
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Table 2(a). Critical Values for Nested Model Comparisons Using ENCNEW

in Rolling Regressions. Panel C. 1% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 8.1248 7.0317 6.2526 5.6305 5.0886 3.4345 3.4475 3.4516 3.4753 3.5225

2 10.7102 9.1525 8.1140 7.3778 6.7193 4.3709 4.4253 4.4959 4.5238 4.5651

3 12.6148 10.7701 9.5087 8.6335 7.8188 5.0151 5.0557 5.1076 5.1608 5.2130

4 14.4512 12.3304 10.9446 9.7063 8.7498 5.5978 5.6193 5.6792 5.7664 5.8489

5 15.7483 13.5035 11.8009 10.5938 9.4934 6.0746 6.1204 6.1572 6.2721 6.3551

6 17.1316 14.6207 12.9223 11.4535 10.3722 6.6328 6.6519 6.6843 6.7477 6.8566

7 18.4058 15.6036 13.6712 12.1276 11.0177 7.0298 7.0197 7.0609 7.1523 7.2397

8 19.4893 16.5436 14.4587 12.9683 11.7467 7.4327 7.5014 7.5554 7.6790 7.7505

9 20.5251 17.5530 15.2885 13.6780 12.3658 7.8075 7.8581 7.9447 8.0477 8.1781

10 21.4156 18.2554 16.1388 14.3467 12.9096 8.1720 8.2469 8.2792 8.4031 8.4557

11 22.3654 19.0642 16.8119 14.9437 13.5102 8.5524 8.5682 8.6651 8.7453 8.8469

12 23.4042 19.9109 17.4420 15.4734 13.9833 8.8930 8.9258 8.9640 9.0394 9.1783

13 24.2346 20.6730 18.1467 16.1575 14.4604 9.1303 9.1601 9.1785 9.2868 9.4391

14 25.1145 21.4808 18.7456 16.7833 14.9291 9.4630 9.4666 9.5161 9.6433 9.7375

15 25.8071 21.9110 19.2806 17.1883 15.5342 9.8260 9.8114 9.8535 9.9536 10.0418

Notes to Table 2(a). The critical values are obtained by Monte Carlo simulation using 50,000

Monte Carlo replications in which Brownian motions are approximated by normalized partial sums

of 10,000 standard normal random variates.
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive Regressions. Panel A. 10% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 2.0428 1.8830 1.7435 1.6219 1.5091 0.8622 0.8775 0.8889 0.9035 0.9145

2 3.1227 2.8651 2.6639 2.4803 2.3071 1.3159 1.3341 1.3463 1.3624 1.3886

3 3.8543 3.5597 3.3135 3.0828 2.8768 1.6625 1.6933 1.7117 1.7366 1.7641

4 4.5082 4.1321 3.8364 3.5797 3.3376 1.9164 1.9396 1.9763 2.0036 2.0513

5 5.0500 4.6473 4.3051 4.0016 3.7208 2.1657 2.1996 2.2321 2.2660 2.3092

6 5.5757 5.1252 4.7305 4.4050 4.1127 2.3704 2.4048 2.4319 2.4803 2.5176

7 6.0374 5.5414 5.1276 4.7811 4.4461 2.5437 2.5800 2.6205 2.6861 2.7341

8 6.4764 5.9482 5.5127 5.1154 4.7680 2.7313 2.7723 2.8313 2.8637 2.9257

9 6.8944 6.3558 5.8931 5.4766 5.1087 2.9325 2.9670 3.0143 3.0573 3.1207

10 7.2925 6.7043 6.1977 5.7599 5.3639 3.0651 3.1145 3.1628 3.2137 3.2765

11 7.6143 7.0246 6.5176 6.0541 5.6192 3.2109 3.2607 3.3109 3.3586 3.4171

12 7.9420 7.2955 6.7881 6.3120 5.8538 3.3502 3.3884 3.4376 3.4948 3.5555

13 8.2883 7.6221 7.0714 6.5759 6.1197 3.5006 3.5339 3.5941 3.6482 3.7235

14 8.6058 7.9305 7.3606 6.8337 6.3895 3.6514 3.7110 3.7557 3.8150 3.8825

15 8.8857 8.1370 7.5860 7.0482 6.5921 3.7525 3.8152 3.8827 3.9428 4.0206
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive Regressions. Panel B. 5% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 3.0638 2.8140 2.6240 2.4461 2.2837 1.4557 1.4647 1.4803 1.4944 1.5156

2 4.3131 3.9726 3.7085 3.4525 3.2181 2.0191 2.0367 2.0747 2.0998 2.1306

3 5.2001 4.7817 4.4370 4.1523 3.8574 2.4272 2.4667 2.4985 2.5294 2.5799

4 5.9751 5.4797 5.0997 4.7538 4.4246 2.7898 2.8346 2.8649 2.9151 2.9672

5 6.6020 6.0993 5.6497 5.2538 4.8908 3.0721 3.1101 3.1594 3.2014 3.2573

6 7.2016 6.6383 6.1759 5.7537 5.3856 3.3314 3.3874 3.4495 3.5145 3.5688

7 7.7958 7.1705 6.6788 6.2057 5.8055 3.6212 3.6614 3.7128 3.7675 3.8320

8 8.3056 7.6811 7.1379 6.6678 6.2018 3.8526 3.9251 3.9847 4.0383 4.0988

9 8.8298 8.0886 7.5283 7.0132 6.5634 4.1026 4.1468 4.1963 4.2526 4.3328

10 9.2405 8.5008 7.8841 7.3616 6.8901 4.2921 4.3589 4.4014 4.4695 4.5361

11 9.5814 8.8543 8.2431 7.6692 7.2053 4.4731 4.5319 4.6075 4.6818 4.7440

12 10.0759 9.2244 8.5686 7.9979 7.4890 4.6464 4.7230 4.7902 4.8681 4.9279

13 10.4586 9.6354 8.9276 8.3086 7.7620 4.8333 4.8881 4.9780 5.0596 5.1334

14 10.8035 9.9911 9.2899 8.6125 8.0456 5.0157 5.0715 5.1384 5.2180 5.3065

15 11.1341 10.3049 9.5879 8.8894 8.2925 5.1351 5.2050 5.2704 5.3477 5.4548
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive Regressions. Panel C. 1% Nominal Signi�cance Level

RET test AET test
� �

k 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 5.6201 5.1151 4.7583 4.4755 4.1745 2.8616 2.8970 2.9269 2.9625 3.0234

2 7.2437 6.5985 6.1236 5.7072 5.3488 3.6444 3.6771 3.7370 3.7917 3.8304

3 8.4061 7.6970 7.1352 6.6393 6.2252 4.1941 4.2496 4.2845 4.3363 4.3943

4 9.5015 8.7269 8.0833 7.5067 7.0207 4.7015 4.7737 4.8230 4.8818 4.9463

5 10.2276 9.3676 8.6622 8.1127 7.5346 5.1724 5.2169 5.2603 5.3311 5.4173

6 11.0099 10.0029 9.3611 8.6827 8.1067 5.4380 5.4751 5.5475 5.6192 5.7446

7 11.7372 10.7116 9.9961 9.1691 8.6190 5.7559 5.8201 5.8908 5.9751 6.0984

8 12.3869 11.4660 10.5721 9.7422 9.1030 6.1524 6.2224 6.2895 6.3647 6.4412

9 12.9844 12.0180 11.1165 10.2776 9.6076 6.4368 6.5099 6.6060 6.7043 6.7516

10 13.5982 12.6136 11.6897 10.8368 10.0149 6.7008 6.7982 6.9033 6.9543 7.0391

11 14.1987 12.9637 12.0527 11.2496 10.5364 7.0026 7.0685 7.1484 7.2302 7.3586

12 14.6368 13.3992 12.4392 11.5945 10.8842 7.2767 7.3195 7.3934 7.5024 7.5876

13 15.0736 13.8831 12.7743 11.8981 11.2180 7.4715 7.5770 7.6601 7.7316 7.8259

14 15.6463 14.3440 13.3178 12.3353 11.6119 7.6955 7.7587 7.8581 7.9879 8.1301

15 16.1904 14.8480 13.7635 12.7435 11.9302 7.9630 8.0681 8.1428 8.2522 8.3688

Notes to Table 2(b). The critical values are obtained by Monte Carlo simulation using 50,000

Monte Carlo replications in which Brownian motions are approximated by normalized partial sums

of 10,000 standard normal random variates. k denotes the number of additional regressors in the

nesting forecasting model.
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Table 3(a). Critical Values for Regression-Based Forecast Tests

in Rolling Regressions. Panel A. 10% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 6.0232 5.6957 5.3519 5.0603 4.7289 2.3352 2.3866 2.4360 2.4863 2.5356

2 8.7104 8.3182 7.9441 7.5702 7.1775 4.0327 4.0971 4.1615 4.2310 4.3055

3 10.9175 10.5160 10.1210 9.6689 9.2188 5.5968 5.6865 5.7731 5.8579 5.9555

4 12.8892 12.4355 11.9888 11.5234 11.0328 6.9825 7.1009 7.1930 7.2968 7.4078

5 14.7178 14.2720 13.8253 13.3149 12.8049 8.3948 8.5133 8.6385 8.7684 8.8849

6 16.5061 16.0064 15.5135 14.9935 14.4440 9.6853 9.8289 9.9636 10.1149 10.2460

7 18.2076 17.6931 17.1643 16.6285 16.0431 10.9867 11.1379 11.3069 11.4364 11.5806

8 19.8602 19.2927 18.7560 18.1639 17.5679 12.2381 12.4036 12.5735 12.7378 12.9106

9 21.4528 20.8269 20.2910 19.7234 19.0474 13.5190 13.6791 13.8281 13.9988 14.1684

10 23.0218 22.3889 21.8070 21.1754 20.5231 14.7707 14.9352 15.0980 15.3045 15.4487

11 24.4742 23.8423 23.2744 22.6039 21.9323 15.9558 16.1214 16.2999 16.4800 16.6643

12 26.0187 25.3868 24.7328 24.0608 23.3456 17.1518 17.3281 17.5026 17.6942 17.8671

13 27.5256 26.8514 26.1987 25.5138 24.8065 18.4130 18.5986 18.7856 18.9767 19.1441

14 29.0283 28.3664 27.6849 27.0006 26.2935 19.6634 19.8409 20.0041 20.2057 20.3971

15 30.4502 29.7092 29.0774 28.4029 27.6317 20.8167 21.0132 21.2140 21.4499 21.6352
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Table 3(a). Critical Values for Regression-Based Forecast Test

in Rolling Regressions. Panel B. 5% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 7.5564 7.2275 6.8546 6.4796 6.0972 3.1920 3.2724 3.3522 3.4358 3.5206

2 10.3769 10.0324 9.6538 9.2701 8.8118 5.1033 5.2112 5.3354 5.4318 5.5503

3 12.7735 12.3460 11.9425 11.4939 11.0302 6.7967 6.9427 7.0852 7.2406 7.3766

4 14.8321 14.3901 13.9540 13.4943 12.9867 8.2969 8.4687 8.6318 8.7958 8.9664

5 16.7614 16.2736 15.8067 15.3362 14.8067 9.7989 9.9693 10.1493 10.3354 10.5375

6 18.5950 18.0767 17.6066 17.1015 16.5707 11.2498 11.4217 11.6045 11.8109 11.9937

7 20.3976 19.8283 19.3049 18.7764 18.2241 12.6046 12.7993 12.9861 13.1972 13.3996

8 22.1168 21.5762 21.1031 20.4959 19.8974 13.9372 14.1526 14.3703 14.5839 14.8045

9 23.8522 23.2566 22.6911 22.1283 21.4786 15.2917 15.5188 15.7380 15.9483 16.1988

10 25.4795 24.9024 24.2752 23.6293 23.0278 16.5691 16.7627 17.0114 17.2422 17.4755

11 27.0374 26.4198 25.7992 25.1407 24.5003 17.8549 18.0967 18.3394 18.5560 18.8105

12 28.6076 27.9345 27.3250 26.7175 26.0002 19.1315 19.3671 19.6241 19.8921 20.1026

13 30.1707 29.5526 28.9241 28.2376 27.4890 20.4014 20.6697 20.9340 21.2116 21.4713

14 31.7441 31.0769 30.4594 29.8000 29.0350 21.7238 21.9949 22.2826 22.5831 22.8479

15 33.3115 32.6722 31.9929 31.2398 30.4675 22.9763 23.2559 23.5206 23.7834 24.0850
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Table 3(a). Critical Values for Regression-Based Forecast Test

in Rolling Regressions. Panel C. 1% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 10.9092 10.5765 10.2265 9.9023 9.4320 5.2912 5.4610 5.6518 5.8473 6.0006

2 14.1825 13.7016 13.3209 12.8796 12.3924 7.6681 7.8800 8.1139 8.3134 8.5258

3 16.5599 16.2327 15.8236 15.4133 14.9400 9.5437 9.7501 10.0145 10.2618 10.4837

4 19.1441 18.5812 18.1744 17.7106 17.2011 11.2408 11.4497 11.7294 12.0478 12.2695

5 21.2724 20.6837 20.2955 19.7587 19.2763 12.8595 13.1439 13.4204 13.7497 14.0333

6 23.2017 22.7202 22.2382 21.7131 21.1407 14.4503 14.7644 15.0760 15.3602 15.7306

7 25.0052 24.5921 24.0584 23.5994 23.0652 15.9616 16.3350 16.7109 16.9853 17.3829

8 26.9436 26.3662 25.9507 25.3262 24.7723 17.5904 17.8867 18.2658 18.5772 18.8987

9 28.7768 28.2601 27.7835 27.1973 26.4835 19.0634 19.4360 19.8217 20.2149 20.5634

10 30.4888 29.9409 29.3264 28.7970 28.1661 20.3842 20.7962 21.1757 21.5661 21.9883

11 32.4046 31.7953 31.2932 30.6334 30.0165 21.8198 22.2137 22.7070 23.0265 23.4243

12 34.1354 33.5681 33.0216 32.4559 31.6939 23.3545 23.7738 24.1897 24.6128 24.9903

13 35.6631 35.0345 34.5340 33.9171 33.2544 24.7177 25.1323 25.5434 25.9649 26.3638

14 37.1971 36.7807 36.3541 35.5661 34.8225 26.0787 26.4930 26.9710 27.4368 27.8999

15 38.9308 38.3865 37.8899 37.3130 36.5785 27.4027 27.8453 28.3305 28.8926 29.2522

Notes to Table 3(a). The critical values are obtained by Monte Carlo simulation using 50,000

Monte Carlo replications in which Brownian motions are approximated by normalized partial sums

of 10,000 standard normal random variates. p denotes the number of restrictions being tested.
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Table 3(b). Critical Values for Regression-Based Forecast Tests

in Recursive Regressions. Panel A. 10% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 0.8667 0.8162 0.7657 0.7152 0.6647 0.5112 0.5115 0.5117 0.5119 0.5121

2 1.7237 1.6230 1.5222 1.4215 1.3207 1.0158 1.0161 1.0165 1.0168 1.0171

3 2.5790 2.4281 2.2772 2.1263 1.9753 1.5193 1.5197 1.5201 1.5205 1.5208

4 3.4335 3.2325 3.0315 2.8305 2.6293 2.0225 2.0229 2.0233 2.0238 2.0242

5 4.2875 4.0363 3.7853 3.5340 3.2827 2.5251 2.5256 2.5261 2.5265 2.5271

6 5.1412 4.8401 4.5387 4.2374 3.9361 3.0274 3.0280 3.0285 3.0291 3.0296

7 5.9944 5.6430 5.2917 4.9403 4.5888 3.5297 3.5304 3.5310 3.5316 3.5322

8 6.8471 6.4458 6.0444 5.6429 5.2417 4.0318 4.0325 4.0332 4.0337 4.0344

9 7.7001 7.2487 6.7972 6.3457 5.8942 4.5338 4.5345 4.5353 4.5360 4.5367

10 8.5525 8.0512 7.5496 7.0479 6.5466 5.0356 5.0363 5.0372 5.0379 5.0385

11 9.4053 8.8537 8.3023 7.7503 7.1988 5.5373 5.5382 5.5389 5.5397 5.5403

12 10.2577 9.6559 9.0543 8.4526 7.8508 6.0390 6.0399 6.0407 6.0415 6.0424

13 11.1099 10.4582 9.8066 9.1547 8.5029 6.5404 6.5413 6.5422 6.5430 6.5438

14 11.9621 11.2604 10.5587 9.8566 9.1545 7.0417 7.0426 7.0436 7.0446 7.0455

15 12.8147 12.0625 11.3107 10.5588 9.8068 7.5434 7.5443 7.5453 7.5462 7.5471
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Table 3(b). Critical Values for Regression-Based Forecast Test

in Recursive Regressions. Panel B. 5% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 0.8716 0.8207 0.7701 0.7194 0.6688 0.5144 0.5147 0.5150 0.5153 0.5156

2 1.7302 1.6293 1.5285 1.4274 1.3264 1.0202 1.0207 1.0211 1.0216 1.0220

3 2.5873 2.4360 2.2850 2.1337 1.9825 1.5249 1.5254 1.5259 1.5264 1.5270

4 3.4430 3.2416 3.0405 2.8390 2.6375 2.0287 2.0293 2.0299 2.0305 2.0310

5 4.2983 4.0467 3.7954 3.5437 3.2921 2.5321 2.5328 2.5334 2.5341 2.5347

6 5.1529 4.8511 4.5498 4.2478 3.9460 3.0351 3.0359 3.0366 3.0373 3.0379

7 6.0072 5.6553 5.3037 4.9517 4.5998 3.5383 3.5391 3.5399 3.5407 3.5416

8 6.8611 6.4590 6.0574 5.6555 5.2533 4.0410 4.0417 4.0426 4.0434 4.0443

9 7.7146 7.2628 6.8108 6.3590 5.9067 4.5434 4.5444 4.5452 4.5461 4.5468

10 8.5677 8.0659 7.5638 7.0618 6.5597 5.0459 5.0469 5.0477 5.0486 5.0494

11 9.4210 8.8693 8.3169 7.7645 7.2121 5.5482 5.5490 5.5499 5.5509 5.5519

12 10.2742 9.6720 9.0699 8.4674 7.8650 6.0499 6.0510 6.0521 6.0530 6.0541

13 11.1271 10.4747 9.8223 9.1699 8.5176 6.5518 6.5531 6.5541 6.5552 6.5562

14 11.9801 11.2773 10.5753 9.8732 9.1699 7.0541 7.0553 7.0565 7.0575 7.0587

15 12.8324 12.0802 11.3277 10.5752 9.8228 7.5556 7.5569 7.5580 7.5592 7.5604
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Table 3(b). Critical Values for Regression-Based Forecast Test

in Recursive Regressions. Panel C. 1% Nominal Signi�cance Level

RWT test AWT test

� �

p 0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35

1 0.8804 0.8298 0.7788 0.7276 0.6766 0.5206 0.5209 0.5213 0.5218 0.5223

2 1.7430 1.6415 1.5402 1.4390 1.3374 1.0288 1.0294 1.0300 1.0306 1.0311

3 2.6028 2.4511 2.2994 2.1479 1.9961 1.5351 1.5359 1.5368 1.5377 1.5384

4 3.4606 3.2583 3.0570 2.8551 2.6526 2.0405 2.0414 2.0422 2.0431 2.0440

5 4.3184 4.0663 3.8143 3.5617 3.3094 2.5458 2.5468 2.5479 2.5490 2.5499

6 5.1746 4.8723 4.5697 4.2672 3.9651 3.0501 3.0512 3.0521 3.0531 3.0539

7 6.0313 5.6785 5.3257 4.9732 4.6204 3.5540 3.5549 3.5562 3.5576 3.5586

8 6.8873 6.4845 6.0811 5.6777 5.2754 4.0578 4.0592 4.0605 4.0619 4.0630

9 7.7422 7.2896 6.8361 6.3834 5.9304 4.5616 4.5629 4.5643 4.5657 4.5669

10 8.5973 8.0941 7.5902 7.0879 6.5839 5.0650 5.0665 5.0681 5.0696 5.0709

11 9.4511 8.8982 8.3444 7.7924 7.2382 5.5679 5.5695 5.5712 5.5726 5.5741

12 10.3058 9.7024 9.0983 8.4956 7.8916 6.0708 6.0723 6.0738 6.0755 6.0767

13 11.1600 10.5058 9.8532 9.1998 8.5453 6.5743 6.5755 6.5771 6.5787 6.5801

14 12.0146 11.3106 10.6077 9.9037 9.1995 7.0770 7.0785 7.0801 7.0815 7.0829

15 12.8675 12.1139 11.3602 10.6071 9.8531 7.5800 7.5817 7.5830 7.5840 7.5853

Notes to Table 3(b). The critical values are obtained by Monte Carlo simulation using 50,000

Monte Carlo replications in which Brownian motions are approximated by normalized partial sums

of 10,000 standard normal random variates. p denotes the number of restrictions being tested.
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Table 4. Size of Nested Model Comparison Tests � DGP1

Panel A. � = 0:05; 0:15; 0:25, h = 1 and p = 0

RET test AET test
� = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

T � : .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25

50 .161 .138 .128 .093 .080 .074 .039 .025 .021 .123 .121 .120 .067 .067 .064 .017 .018 .017

100 .175 .122 .112 .098 .067 .061 .030 .012 .014 .110 .105 .104 .058 .058 .057 .011 .011 .011

200 .133 .114 .106 .070 .063 .056 .018 .014 .013 .113 .108 .104 .054 .054 .051 .010 .011 .010

500 .112 .108 .107 .058 .051 .053 .014 .011 .010 .112 .110 .108 .052 .052 .053 .010 .008 .009

Panel B. h = 1; 4; 8, � = 0:15 and p = 0

RET test AET test
� = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

T h : 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

50 .136 .140 .124 .079 .085 .083 .025 .032 .035 .119 .112 .082 .063 .056 .038 .016 .012 .008

100 .113 .126 .129 .065 .070 .078 .017 .020 .030 .113 .112 .106 .060 .054 .051 .012 .010 .011

200 .109 .129 .119 .053 .070 .065 .013 .018 .020 .107 .120 .111 .056 .059 .051 .011 .011 .010

500 .108 .128 .119 .055 .066 .062 .012 .015 .014 .106 .121 .120 .054 .055 .059 .011 .009 .011

Panel C. p = 0; 3; 5, � = 0:15 and h = 1

RET test AET test
� = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

T p : 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5

50 .132 .121 .084 .081 .065 .036 .024 .016 .006 .121 .115 .096 .067 .057 .046 .018 .012 .009

100 .128 .126 .115 .067 .069 .056 .015 .014 .011 .114 .115 .104 .061 .056 .053 .011 .013 .014

200 .106 .112 .111 .058 .061 .056 .012 .013 .010 .106 .102 .095 .053 .053 .054 .012 .013 .012

500 .104 .102 .104 .050 .055 .052 .011 .010 .012 .097 .094 .098 .049 .047 .048 .009 .011 .011

Notes to Table 4. h is the forecast horizon, (p+ 1) is the number of regressors in the nesting

forecasting model, � is the nominal signi�cance level. The number of Monte Carlo replications is

5,000.
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Table 5. Size of Non-Nested Model Comparison Tests � DGP2

Panel A. � = :05; :15; :25, h = 1 and p = 1

RT test AT test
� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T � : .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25

50 .033 .049 .060 .010 .017 .019 .000 .001 .001 .066 .078 .083 .021 .029 .031 .001 .002 .002

100 .047 .059 .066 .018 .024 .023 .002 .001 .002 .078 .083 .086 .036 .039 .040 .003 .004 .004

200 .057 .069 .073 .023 .029 .031 .002 .003 .004 .084 .088 .089 .040 .041 .040 .005 .006 .007

500 .071 .079 .082 .031 .036 .036 .004 .005 .006 .091 .093 .092 .043 .042 .044 .007 .007 .007

Panel B. h = 1; 4; 8, � = :15 and p = 1

RT test AT test
� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T h : 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

50 .049 .000 .001 .016 .000 .000 .000 .000 .000 .077 .000 .000 .030 .000 .000 .001 .000 .000

100 .070 .003 .000 .024 .000 .000 .004 .000 .000 .093 .017 .000 .043 .003 .000 .005 .000 .000

200 .074 .018 .003 .028 .004 .000 .003 .000 .000 .090 .038 .006 .037 .013 .001 .004 .001 .000

500 .077 .072 .023 .037 .024 .005 .007 .002 .000 .092 .072 .014 .043 .033 .004 .007 .003 .000

Panel C. p = 1; 3; 5, � = :15 and h = 1

RT test AT test
� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T p : 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

50 .044 .170 .614 .012 .071 .375 .001 .004 .051 .079 .112 .234 .030 .038 .100 .002 .004 .008

100 .056 .136 .446 .021 .058 .278 .001 .006 .070 .083 .100 .168 .034 .046 .084 .003 .004 .010

200 .071 .100 .225 .026 .049 .127 .003 .008 .030 .091 .094 .120 .041 .045 .060 .005 .005 .009

500 .075 .089 .122 .035 .040 .064 .005 .006 .012 .093 .097 .108 .041 .046 .055 .008 .008 .009

Notes to Table 5. h is the forecast horizon, p is the number of regressors in model 2, � is

the nominal signi�cance level. The number of Monte Carlo replications is 5,000.
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Table 6. Size of Regression-Based Tests of Predictive Ability � DGP3

Panel A. � = :05; :15; :25, h = 1 and p = 1

RW
T test AWT test

� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T � : .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25 .05 .15 .25

50 .031 .062 .089 .005 .016 .029 .000 .000 .000 .085 .106 .120 .027 .042 .051 .001 .002 .002

100 .061 .094 .113 .020 .037 .044 .001 .001 .003 .097 .112 .122 .037 .049 .054 .001 .002 .003

200 .088 .107 .119 .036 .049 .052 .003 .005 .006 .094 .113 .120 .039 .049 .055 .003 .005 .006

500 .099 .120 .138 .043 .057 .060 .007 .008 .007 .098 .116 .131 .041 .049 .058 .004 .006 .007

Panel B. h = 1; 4; 8, � = :15 and p = 1

RW
T test AWT test

� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T h : 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

50 .032 .000 .004 .006 .000 .003 .000 .000 .003 .068 .016 .001 .025 .000 .000 .001 .000 .000

100 .064 .027 .006 .023 .006 .003 .002 .000 .002 .088 .096 .040 .039 .037 .005 .005 .001 .000

200 .085 .092 .047 .037 .037 .014 .006 .005 .002 .098 .141 .111 .050 .073 .050 .008 .013 .003

500 .093 .174 .136 .043 .087 .063 .009 .020 .011 .098 .165 .163 .053 .096 .087 .011 .029 .024

Panel C. p = 1; 3; 6, � = :15 and h = 1

RW
T test AWT test

� = :10 � = :05 � = :01 � = :10 � = :05 � = :01

T p : 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6

50 .076 .011 .007 .026 .002 .001 .001 .000 .000 .105 .023 .011 .046 .004 .001 .008 .000 .000

100 .110 .036 .024 .047 .011 .007 .006 .001 .000 .129 .026 .018 .063 .008 .003 .011 .000 .000

200 .116 .062 .057 .059 .020 .021 .010 .002 .002 .127 .027 .019 .066 .009 .004 .013 .000 .000

500 .137 .087 .091 .072 .042 .043 .018 .009 .006 .133 .032 .020 .074 .011 .006 .016 .001 .001

Notes to Table 6. h is the forecast horizon, p is the number of restrictions being tested. �

is the nominal signi�cance level. The number of Monte Carlo replications is 5,000.
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Table 7. Size properties �Fixed Window

GWT Test CWT Test

P R=20 R=30 R=20 R=30

Panel A. 10% Nominal Size

100 0.1282 0.1736 0.1202 0.1264

200 0.1022 0.1382 0.1044 0.1028

500 0.0654 0.1092 0.0938 0.0924

Panel B. 5% Nominal Size

100 0.0824 0.1140 0.0546 0.0652

200 0.0676 0.0936 0.0460 0.0444

500 0.0362 0.0638 0.0416 0.0480

Panel C. 1% Nominal Size

100 0.0322 0.0482 0.0074 0.0122

200 0.0282 0.0366 0.0068 0.0062

500 0.0096 0.0250 0.0052 0.0078

Notes to Table 7. The table reports empirical rejection frequencies of the the GWT test,

eq. (21), implemented with R=20 or 30, and R=R+5. It also reports empirical rejection

frequencies of the CWT test, eq. (20), implemented with the same choices of window sizes.

The number of Monte Carlo replications is 5,000.
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Table 8. Rejection Frequencies of Nested Model Comparison Tests � DGP1

Panel A. No Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

dt R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R �ve R

0.00 0.072 0.062 0.058 0.052 0.055 0.057 0.199 0.144

0.10 0.164 0.193 0.252 0.305 0.304 0.280 0.557 0.465

0.20 0.505 0.653 0.756 0.802 0.789 0.704 0.943 0.908

The Proposed Tests

RT test AT test
dt � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0.00 0.070 0.063 0.056 0.054 0.054 0.051

0.10 0.191 0.260 0.284 0.318 0.319 0.320

0.20 0.634 0.770 0.806 0.830 0.831 0.830
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Table 8. Rejection Frequencies of Nested Model Comparison Tests � DGP1

Panel B. One-Time Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

� R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R �ve R

0 0.071 0.063 0.058 0.052 0.055 0.057 0.199 0.145

40 0.467 0.445 0.107 0.085 0.077 0.096 0.493 0.502

80 0.860 0.925 0.902 0.232 0.207 0.232 0.975 0.959

120 0.978 0.993 0.995 0.975 0.332 0.331 1.000 0.999

160 0.997 1.000 1.000 1.000 0.980 0.400 1.000 1.000

The Proposed Tests

RT test AT test
� � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0 0.069 0.063 0.056 0.054 0.054 0.051

40 0.508 0.275 0.131 0.171 0.075 0.064

80 0.924 0.935 0.857 0.837 0.647 0.374

120 0.994 0.998 0.996 0.994 0.985 0.955

160 1.000 1.000 1.000 1.000 1.000 1.000

Notes to Table 8. � is the parameter value with � = 0 corresponding to the null hypothesis. � is

the break date with � = 0 corresponding to the null hypothesis. The �ve values of R used in the

last column are R = 20; 40; 80; 120; 160. The nominal signi�cance level is set to 0.05. The number

of Monte Carlo replications is 5,000.
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Table 9. Rejection Frequencies of Nonnested Model Comparison Tests � DGP2

Panel A. No Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

dt R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R four R

0.5 0.050 0.045 0.045 0.043 0.042 0.042 0.175 0.130

1.0 0.975 0.983 0.974 0.921 0.772 0.427 0.986 0.992

1.5 1.000 1.000 1.000 1.000 0.998 0.893 1.000 1.000

The Proposed Tests

RT test AT test
dt � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0.5 0.038 0.029 0.021 0.033 0.041 0.050

1.0 0.970 0.930 0.882 0.931 0.926 0.923

1.5 1.000 1.000 1.000 1.000 1.000 1.000
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Table 9. Rejection Frequencies of Nonnested Model Comparison Tests � DGP2

Panel B. One-Time Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

� R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R four R

0 0.051 0.045 0.044 0.043 0.041 0.042 0.175 0.129

40 0.111 0.073 0.043 0.039 0.041 0.041 0.187 0.161

80 0.380 0.332 0.155 0.045 0.038 0.038 0.247 0.413

120 0.695 0.686 0.518 0.117 0.048 0.042 0.562 0.753

160 0.890 0.903 0.832 0.523 0.138 0.058 0.843 0.931

The Proposed Tests

RT test AT test
� � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0 0.038 0.029 0.021 0.032 0.041 0.050

40 0.063 0.031 0.022 0.026 0.034 0.045

80 0.224 0.080 0.023 0.023 0.025 0.031

120 0.552 0.304 0.140 0.073 0.050 0.039

160 0.827 0.654 0.463 0.447 0.394 0.371

Notes to Table 9. � is the parameter value with � = 0 corresponding to the null hypothesis. � is

the break date with � = 0 corresponding to the null hypothesis. The �ve values of R used in the

last column are R = 20; 40; 80; 120; 160. The nominal signi�cance level is set to 0.05. The number

of Monte Carlo replications is 5,000.
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Table 10. Rejection Frequencies of Regression-Based Tests of Predictive Ability � DGP3

Panel A. No Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

�t R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R four R

0.0 0.026 0.038 0.047 0.047 0.053 0.049 0.253 0.135

0.5 0.998 0.999 0.999 0.983 0.800 0.333 1.000 1.000

1.0 1.000 1.000 1.000 0.959 0.568 0.085 1.000 1.000

The Proposed Tests

RWT test AWT test

�t � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0.0 0.027 0.037 0.038 0.043 0.048 0.049

0.5 0.985 0.985 0.971 0.994 0.985 0.975

1.0 0.865 0.868 0.806 0.984 0.967 0.935

56



Table 10. Rejection Frequencies of Regression-Based Tests of Predictive Ability � DGP3

Panel B. One-Time Break Alternative

Conventional Tests

Tests Based on Single R Data Mining

� R = 10 R = 20 R = 40 R = 80 R = 120 R = 160 all R four R

0 0.026 0.037 0.046 0.048 0.053 0.051 0.253 0.136

40 0.035 0.040 0.034 0.037 0.042 0.035 0.198 0.112

80 0.146 0.159 0.089 0.020 0.018 0.014 0.211 0.193

120 0.431 0.494 0.352 0.073 0.006 0.006 0.513 0.516

160 0.842 0.903 0.849 0.495 0.089 0.003 0.932 0.925

The Proposed Tests

RT test AT test
� � = 0:05 � = 0:15 � = 0:25 � = 0:05 � = 0:15 � = 0:25

0 0.111 0.037 0.003 0.083 0.047 0.011

40 0.078 0.022 0.002 0.067 0.038 0.008

80 0.100 0.022 0.001 0.063 0.024 0.003

120 0.332 0.108 0.004 0.180 0.059 0.005

160 0.804 0.493 0.043 0.704 0.410 0.079

Notes to Table 10. � is the parameter value with � = 0 corresponding to the null hypothesis of no

predictive ability. � denotes the break date with � = 0 indicating that there is no structural break

and the null hypothesis of no predictive ability holds. The �ve values of R used in the last column

are R = 20; 40; 80; 120; 160. The number of Monte Carlo replications is set to 5,000.
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Table 11. Data Mining �Asymptotic Approximation Results

� DMWT W(r)
T ENCNEWT

p = 1 2 3 4 1 2 3 4

0.15 0.2604 0.2604 0.2712 0.2750 0.2784 0.1023 0.1251 0.1347 0.1305

0.20 0.0963 0.2296 0.2391 0.2412 0.2462 0.1161 0.1264 0.1224 0.2017

0.25 0.0928 0.2017 0.2102 0.2112 0.2166 0.0903 0.1124 0.1215 0.1178

0.30 0.1761 0.1761 0.1842 0.1838 0.1881 0.0903 0.1087 0.1170 0.1148

0.35 0.1513 0.1513 0.1584 0.1581 0.1606 0.0853 0.0996 0.1075 0.1066

Note: The table shows asymptotic rejections of nominal 5% tests for nonnested models

(DMWT ), forecast optimality (W(r)
T ) and nested models (ENCNEWT ) repeated over se-

quences of windows sizes equal to
�
�T
�
;
�
�T + 1

�
; ::: ,

��
1� �

�
T
�
. Asymptotic approxima-

tions to the tests statistics are based on Brownian motion approximation with T = 10; 000.

The number of Monte Carlo replications is 5,000.
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Table 12. Empirical Results

RT Test AT Test �Test Based on Single R�

UIRP Taylor UIRP Taylor UIRP Taylor

Japan 10.43** 7.30** -3.20 -4.59 -5.88 2.55

Canada 73.06** 44.44** 7.13** 15.75** 15.62** 30.07**

Switzerland 16.59** - - -1.00 - - -15.76 - -

U.K. 9.06** 22.26** -11.65 -1.68 -20.58 6.88**

France -1.10 -0.01 -12.33 -9.57 -13.49 -14.29

Germany 3.83 0.87 -11.91 -15.54 -17.28 -21.30

Italy 24.99** 27.40** -2.07 -5.33 12.31** -6.88

Sweden 57.79** 42.26** -2.38 5.58** -22.28 -12.70

The Netherlands - - 7.59** - - -2.70 - - 1.35

Portugal - - 109.37** - - 24.30** - - -10.43

Note. Two asterisks denote signi�cance at the 5% level, and one asterisk denotes sig-

ni�cance at the 10% level. For the RT and AT tests we used �= 0:15 (the value of R will
depend on the sample size, which is di¤erent for each country, and it is shown in Figures 1

and 2). For the �Test Based on Single R�, we implemented Clark and McCracken�s (2001)

test using R = 120; its one-sided critical values at the 5% and 10% signi�cance levels are

3.72 and 2.65.
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Figure 1 Panel A
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Figure 1 Panel B
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Figure 1 plots the estimated Clark and McCracken (2001) ENCNEW test statistic for

comparing the UIRP model with the random walk for the window sizes we consider (reported

on the x-axis), together with 5% and 10% critical values of the RE
T test statistic. The test

rejects when the largest value of the Clark and McCracken�s (2001) test is above the critical

value line. Countries are Canada (CAN), France (FRA), United Kingdom (GBP), Germany

(GER), Italy (ITA), Japan (JAP), Sweden (SWE) and Switzerland (SWI).

61



Figure 2 Panel A
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Figure 2 Panel B
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Figure 2 plots the estimated Clark and McCracken (2001) ENCNEW test statistic for

comparing the Taylor rule model with the random walk for the window sizes that consider

(reported on the x-axis), together with 5% and 10% critical values of the RE
T test statistic.

The test rejects when the largest value of the Clark and McCracken�s (2001) test is above the

critical value line. Countries are Canada (CAN), France (FRA), United Kingdom (GBP),

Germany (GER), Italy (ITA), Japan (JAP), Sweden (SWE) and Switzerland (SWI), the

Netherlands (NET) and Portugal (POR).

63


