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Abstract 
 
 Earlier studies found little evidence of scale economies at large banks; later studies using data 
from the 1990s uncovered such evidence, providing a rationale for very large banks seen worldwide.   
 Using more recent data, we estimate scale economies using two production models.  The standard 
risk-neutral model finds little evidence of scale economies.  The model using more general risk 
preferences and endogenous risk-taking finds large scale economies.  We show that these economies are 
not driven by too-big-to-fail considerations.  We evaluate the cost implications of breaking up the largest 
banks into banks of smaller size.   
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. 

 
For years the Federal Reserve was concerned about the ever-growing size of our largest 
financial institutions. Federal Reserve research had been unable to find economies of 
scale in banking beyond a modest size. 
 
  Alan Greenspan 
  “The Crisis” (Brookings Papers on Economic Activity, Spring 2010, p. 231) 
 

  
I. Introduction 

 The financial crisis that began in 2007 has focused attention on large financial institutions and the 

role the too-big-to-fail doctrine has played in driving their size.  Financial reform has focused on limiting 

the costs that systemically important financial institutions (SIFIs) impose on the economy.  However, the 

potential efficiency benefits of operating at a large scale have been largely neglected in policy discussions 

and recent research.  Textbooks explain that banks should enjoy scale economies as they grow larger 

because the credit risk of their loans and financial services, as well as the liquidity risk of their deposits, 

becomes better diversified, which reduces the relative cost of managing these risks and allows banks to 

conserve equity capital as well as reserves and liquid assets.  In addition, textbooks point to the spreading 

of overhead costs, especially those associated with information technology, as another source of scale 

economies.  But the recent financial crisis has led many to question whether such efficiencies exist or 

whether scale has been driven primarily by institutions seeking to exploit the cost advantages of being too 

big to fail.   

Older empirical studies that used data from the 1980s did not find scale economies in banking 

except at very small banks.  But more recent studies that used data from the 1990s and 2000s and more 

modern methods for modeling bank technology that incorporate managerial preferences for risk and 

endogenize bank risk-taking find significant scale economies at banks of all sizes included in the sample.1  

These studies include Hughes, Lang, Mester, and Moon (1996, 2000), Berger and Mester (1997), Hughes 

and Mester (1998), Hughes, Mester, and Moon (2001), Bossone and Lee (2004), Wheelock and Wilson 

(2009), and Feng and Serletis (2010).  Hughes and Mester (2010) discuss some of these modern methods 

                                                           
1 See Mester (2010) for discussion. 
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of modeling bank technology and the evidence of scale economies obtained from them.  Part of the 

difference in results between the older studies and more recent ones appears to reflect improvements in 

the methods researchers used for measuring scale economies and part reflects a change in banking 

technology, such as the use of information technologies, and environmental factors, such as geographic 

deregulation, which have led to a larger efficient scale of banking production.   

This investigation uses the modeling techniques developed by Hughes, Lang, Mester, and Moon 

(1996, 2000), and Hughes, Mester, and Moon (2001).  These earlier papers used 1994 data on top-tier 

bank holding companies in the U.S., while here we use 2007 data.2  During the thirteen years that separate 

these two data sets, advances in information technology and further implementation of this technology in 

banking as well as greater diversification from geographic consolidation might be expected to increase 

economies of scale in banking.  And indeed, consistent with the textbook prediction and with 

consolidation in the banking industry, we find large scale economies at small banks and even larger scale 

economies at large banks.  The finding of significant scale economies even at banks that are not at a size 

usually considered too big to fail suggests that government policy is not the only source of size-related 

cost economies.  We present evidence below that too-big-to-fail considerations are not the source of the 

scale economies we find.  In addition, we provide estimates of the cost impact of breaking up banks into 

smaller institutions, as has been proposed by some.  In performing this exercise we take into account not 

only the size of the banks but also the potential longer-run impact that accounts for the fact that smaller 

banks focus on different product offerings than larger banks.  Our results suggest that while reducing the 

size of banks would raise the costs of production holding output mix constant (the scale effect), once 

these banks adjusted their product mix, there would be cost savings.  Whether this is socially beneficial, 

however, depends on whether the product mix offered by the largest banks was beneficial – a question 

that is beyond the scope of the current paper. 

                                                           
2 The BHCs in our data set range in size from $72 million to $2.19 trillion in total assets.  We performed additional 
tests that show that our results are robust to estimating the model excluding the largest banks in the sample, 
estimating the model excluding smaller banks in the sample, and estimating the model excluding extreme values for 
the output shares.   
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The paper proceeds as follows.  Sections II-IV discuss the theoretical model that incorporates 

bank managers’ risk preferences and endogenous choice of risk.  Those mainly interested in the empirical 

results can skip to Sections V-VI, which discuss the empirical model specifications.  Section VII 

discusses our data set.  Sections VIII-X give our empirical results, and Section XI concludes.   

 

II. Modeling Banking Cost 

 According to the standard textbook, a cost function uses input prices to translate the production 

function into the minimum cost of producing output.  The textbook usually illustrates the cost function in 

terms of an expansion path graphed on an isoquant map.  The expansion path is the locus of points where 

the marginal rate of substitution equals the input price ratio.  The older literature on modeling bank cost 

functions often applied these concepts in a very straightforward way to bank production.  It considered 

how to specify outputs and inputs in terms of bank assets, financial services, and liabilities.  After 

calculating input prices, it derived a cost function for econometric estimation, applied it to bank data, and 

computed scale economies from the fitted function.  As noted above, the results usually offered no 

evidence of scale economies at large banks. 

 Hughes, Lang, Mester, and Moon (1996, 2000), and Hughes, Mester, and Moon (2001) argue that 

the standard specification of the cost function fails to capture an essential ingredient in bank production – 

risk.  Bank managers’ risk preferences are typically not modeled in standard cost function analysis, yet 

managers face a risk-expected-return trade-off determined by the investment strategy they choose and the 

economic environment in which they operate.  Thus, a bank’s cost depends on its risk exposure, which 

contains an exogenous component reflecting the economic environment and an endogenous component 

reflecting the managers’ choice of risk exposure. 

The standard textbook explains that banks might enjoy scale economies derived from the 

diversification of risk obtained from a larger portfolio of loans and a larger base of deposits.  These 

diversification benefits allow larger banks to manage risk with relatively fewer resources.  In other words, 

a larger scale of operations improves a bank’s risk-return trade-off.  Figure 1 shows the smaller bank’s 
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investment strategies on the risk-return frontier labeled I and the larger bank’s strategies on frontier II.  

Suppose in Figure 1 point A represents production of a smaller, less diversified output, say, some quantity 

of loans with a particular probability distribution of default that reflects the contractual interest rate 

charged and the resources allocated to risk assessment and monitoring.  Point B represents a larger 

quantity of loans with the same contractual interest rate but better diversification and, hence, an improved 

probability distribution of default and lower overall risk.  The better diversification allows the costs of 

risk management to increase less than proportionately with the loan volume while maintaining an 

improved probability distribution of default.  Thus, the response of cost to the increase in output from 

point A to point B reflects scale economies and the expected return at B exceeds that at A. 

Suppose, instead, the larger, better diversified portfolio of loans is produced with the investment 

strategy at point C.  The strategy at C preserves the risk exposure of A, and the better diversification 

improves the expected return.  The bank at C may charge a higher contractual interest rate, which would 

tend to increase risk, but the better diversification offsets the additional risk.  The cost of managing the 

larger loan portfolio at the same risk as A may still increase less than proportionately, but the increase will 

be greater than that occasioned by B.  Thus, the change in cost from A to C may still show scale 

economies, though smaller than from A to B. 

On the other hand, suppose the bank responds to the better diversification of the larger output by 

adopting a more risky investment strategy for an enhanced expected return.  It charges an even higher 

contractual interest rate on loans than at point C.  Better diversification does not offset the increased cost 

occasioned by the additional default risk.  Point D in Figure 1 designates this strategy.  The increased 

inherent default risk due to the higher contractual interest rate results in costs of risk management that 

increase more than proportionately with the loan volume (from A to D), and production appears to exhibit 

the counter-intuitive scale diseconomies found by empirical studies of banking cost that fail to account for 

endogenous risk-taking. 

While the investment strategies at B, C, and D entail producing the same quantity of loans, the 

expected return and its associated cost and risk of producing the loans differ across the three strategies.  
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Figure 2 illustrates this point.  It characterizes the production technology for a quantity of loans 

represented by the isoquant shown in the figure.  The mix of debt and equity used to fund the loans is 

ignored.  Instead, the diagram shows the quantity of physical capital and labor used in the process of 

credit evaluation and loan monitoring.  (As the argument that follows illustrates, this isoquant is not well 

defined in traditional terms.)  Point C shows the least costly way to produce the particular quantity of 

loans with the risk exposure associated with the investment strategy C in Figure 1.  If a bank adopted the 

less risky strategy, B, it might use less labor in credit evaluation and monitoring: point B in Figure 2, a 

less costly method of producing the same quantity of loans.  Thus, the isoquant for this quantity of loans 

that passes through point C captures one investment strategy only.  If the isoquant included a 

characterization of the risk exposure, there would be another isoquant passing through point B for the 

same quantity of loans produced with the lower risk strategy. On the other hand, if a bank adopted the 

more risky strategy, D, it would use more labor, the corresponding point D in Figure 2, a more costly 

method than C.  Thus, the cost of producing this particular quantity of loans depends on a bank’s choice 

of risk exposure and its expected return.  As in Hughes, Lang, Mester, and Moon (1996, 2000), and 

Hughes, Mester, and Moon (2001), we refer to this risk-return-driven cost as the managerial most-

preferred cost function, since it reflects managers’ preferences over investment strategies that reflect the 

risk-expected return trade-off. 

As explained in Hughes, Mester, and Moon (2001), failing to account for endogenous risk-taking 

when estimating a production model can produce misleading estimates of scale economies and cost 

elasticities.  If production is observed at the points A and B, a naïve calculation of the cost elasticity from 

the difference in cost measured at these two points would appear to yield evidence of scale economies.  If 

production is observed at points A and D, a naïve calculation from their difference in cost would appear to 

give evidence of scale diseconomies.  Thus, the specification of the cost function to be estimated must 

account for endogenous risk-taking to detect the scale economies associated with better diversification.  
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III. Modeling Managers’ Preferences for Return and Risk 

 Figures 1 and 2 illustrate that the cost of producing the larger, better diversified output depends 

on managers’ choice of investment strategy in response to the better risk-expected-return trade-off.  Thus, 

cost is not independent of managers’ risk preferences.  Why might risk influence banks’ production 

choices?   

Modern banking theory emphasizes that bank managers face dichotomous investment strategies 

for maximizing value: one, higher risk; the other, lower risk (Marcus, 1984).  The higher risk strategy, 

characterized in part by a lower capital ratio and lower asset quality, exploits mispriced deposit insurance, 

too-big-to-fail policies, and other benefits of the governmental safety net.  Of course, this strategy also 

increases the risk of financial distress – possibly involving regulatory intervention in the operations of the 

bank, liquidity crises, and even insolvency and loss of the bank’s charter.  Such a risky strategy enhances 

a bank’s value when its investment opportunities are not particularly valuable: the expected gains from 

exploiting safety-net subsidies outweigh the potential losses entailed in episodes of financial distress.  On 

the other hand, if a bank enjoys valuable investment opportunities, these market advantages increase its 

expected costs of financial distress.  When the expected losses involved in financial distress exceed the 

expected gains from exploiting the safety net, banks enhance their value by pursuing a lower-risk strategy 

involving a higher capital ratio and higher asset quality.3  Both of these investment strategies maximize 

firm value.  Hence, risk-neutral managers would pursue them.  They manage risk when doing so 

maximizes value (Tufano, 1996). 

These value-maximizing, dichotomous investment strategies highlight the importance of 

accounting for endogenous risk-taking in estimating production costs in banking.  Modeling managers’ 

risk preferences forms the foundation for building a model of bank production and cost. 

We turn first to some notational matters.  We represent bank technology by the transformation 

function, T(y, n, p, x, k)  0, where y denotes information-intensive loans and financial services; k, equity 

                                                           
3 For empirical evidence of these dichotomous strategies, see Keeley (1990) and Hughes, Lang, Moon, and Pagano 
(1997, 2004). 
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capital; xd, demandable debt and other types of debt; xb, labor and physical capital; and x = (xb, xd).  The 

price of the i-th type of input is designated by wi so that the economic cost of producing the output vector 

y is given by wbxb + wdxd + wkk.  If the cost of equity capital is omitted, wbxb + wdxd  gives the cash-flow 

cost (CCF).  We characterize asset quality by two types of proxies: ex ante measures are given by the 

vector of average contractual interest rates on assets such as securities and loans, p, which, given the risk-

free interest rate, r, captures an average risk premium, and an ex post measure, the amount of 

nonperforming loans, n. 

 Rather than express managers’ preferences in terms of how they rank expected return and return 

risk, the first two moments of the subjective distribution of returns, we ask how managers rank production 

plans. Production plans are more basic: to rank production plans, managers must translate plans into 

subjective, conditional probability distributions of profit.  Managers’ beliefs about the probability 

distribution of states of the world, st, and about how the interaction of production plans with states yields 

a realization of after-tax profit,  = g(y, n, p, r, x, k, s), imply a subjective distribution of profit that is 

conditional on the production plan: f(π; y, n, p, r, x, k).  Under certain restrictive conditions, this 

distribution can be represented by its first two moments, E(; y, n, p, r, x, k) and S(; y, n, p, r, x, k).  

Rather than define a utility function over these two moments, we define it over profit and the production 

plan, U(; y, n, p, r, x, k), which is equivalent to defining it over the conditional probability distributions 

f(·).  This generalized managerial utility function subsumes the case of profit maximization where only 

the first moment of the conditional distribution of profit influences utility; however, it also explains cases 

where higher moments influence utility so that managers can trade profit to achieve other objectives 

involving risk. 

 

IV. Modeling Cost When Risk Is Endogenous 
 
 The cost of producing a particular output vector y – financial assets and services – depends on the 

employment of inputs x and k – labor, physical capital, debt, and equity.  How managers choose to 

produce any particular output vector can be modeled as a utility maximization problem.  Hence, the 
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choice from the production strategies highlighted in Figures 1 and 2, points B, C, and D, solves the utility 

maximization problem. 

 Since the utility function ranks production plans – output and input vectors and the resulting 

profit – banks maximize utility conditional on the output vector by solving for the utility-maximizing 

profit and the constituent vector of inputs required to produce it.  Let m designate noninterest income 

while p  y represents interest income.  Total revenue is given by p  y + m.  Letting π designate after-tax 

profit and t, the tax rate on profit, and p = 1/(1 – t), the price of a dollar of after-tax profit in terms of 

before-tax dollars, the before-tax accounting or cash-flow profit is defined as p = p  y + m – wb · xb – 

wd · xd. 

The utility-maximization problem is given by: 

 
(1a)    max U(, x; y, n, p, r, k) 
    , x 
 
(1b)           s.t. p  = p  y + m – wb  xb – wd  xd 
 
(1c)    T(y, n, p, r, x, k)   0.  
 
 

The solution gives the managers’ most preferred profit function, * = MP(y, n, v, k), and the managers’ 

most preferred input demand functions, x* = xMP(y, n, v, k), where v = (w, p, r, m, p).  The managers’ 

most preferred cost function follows trivially from the profit function:  

 

(2)            CMP(y, n, v, k) =  p  y +  m –  pMP(y, n, v, k). 

 

 We claimed above that this utility-maximization problem has sufficient structure to identify and 

control for the choice of production plan from points B, C, and D of Figures 1 and 2 – plans that produce 

the same output, y, but differ in their risk exposure and resources allocated to managing risk.  How then 
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does the solution, the most preferred profit and cost functions and the most preferred input demand 

functions, depend on the risk exposure? 

   First, note that revenue, p  y + m, drives the solution.  In addition, the output prices, p, which 

are contractual returns on assets such as loans and securities, control for the ex ante risk premium of each 

of those assets when they are compared to the risk-free interest rate r.  The quantity of nonperforming 

assets, n, captures ex post or realized default risk.  The quantity of equity capital, k, controls for a key 

component of capital structure that underlies expected return and return risk.  Moreover, since the cost of 

equity and loan losses are excluded from the calculation of cash-flow cost and profit, the quantities of 

equity and nonperforming loans control for these omitted expenses.  These controls as well as the tax rate 

on earnings embodied in the price of a before-tax dollar, p, in terms of after-tax dollars constitute a rich 

characterization of investment strategies that shape cost.  

 These variables that characterize and control for the investment strategy permit the calculation of 

risk-adjusted scale economies from the estimated cost function – a calculation that accounts for the bank’s 

choice of risk exposure.  In Figures 1 and 2 the problem of identifying the points B, C, and D for the 

purpose of computing scale economies is resolved by these control variables.  Note that to the extent that 

larger banks and smaller banks choose a different product mix with different risk characteristics – e.g., 

larger banks produce more off-balance-sheet activities than smaller banks – by controlling for risk 

preferences, this cost model allows us to include banks of all sizes in our estimation. 

 

V. Using the Almost Ideal Demand System to Estimate the Most Preferred Cost Function and Scale 
Economies 

 
 To estimate the utility-maximizing profit and input demand functions that solve the problem (1a), 

(1b), and (1c), we follow Hughes, Lang, Mester, and Moon (1996, 2000), and Hughes, Mester, and Moon 

(2001) and adapt the Almost Ideal Demand System of consumer theory, which was proposed by Deaton 

and Muellbauer (1980), to represent managerial preferences.  Just as the estimation of this system using 

consumers’ budget data recovers consumers’ preferences for goods and services, its application to banks’ 
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data on production and cost recovers managers’ rankings of production plans or, equivalently, their 

ranking of subjective probability distributions of profit conditional on the production plan.   

The profit equation and input demands are expressed as expenditure shares of total revenue: 
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The input shares and profit share sum to one.   

 

Equity capital enters the specification of the profit and input demand equations as a conditional 

argument.  Hence, we include in the estimation a first-order condition defining the utility-maximizing 

value of equity capital: 
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The appendix gives the details of empirical specification and estimation. 

 Managerial preferences represent their beliefs about the probabilities of future states of the world 

and how those states interact with production plans to generate realizations of profit, so managers’ 

preferences change over time.  Consequently, we use cross-sectional data and estimate the production 

system with nonlinear two-stage least squares, which is a generalized method of moments. 

 Hughes, Lang, Mester, and Moon (1996, 2000) show that the Almost Ideal profit share equation 

is identically equal to the translog profit (cost) function when the comparative-static restrictions implied 

by the assumption of profit maximization are imposed or when they are satisfied by the data.  Thus, these 

restrictions provide a test for the consistency of the data with profit maximization (cost minimization). 

 Equation 2 shows how the managers’ most preferred cost function is derived from the profit 

function.  We compute the measure of scale economies, the inverse of the cost elasticity with respect to 

output, from this expression after substituting the optimal demand for equity capital into it: 
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A value greater than one implies scale economies, and a value less than one implies scale diseconomies. 

 

VI. Minimum Cost Functions and Scale Economies 

 The standard minimum cost function is quite different from the most preferred cost function just 

discussed.  The standard cost function can control for some aspects of risk, including the amount of 

nonperforming loans, n, which accounts for the influence of asset quality on cost.  In addition, the 

important role of equity capital in banking production suggests that the minimum cost function should 

include either the required return (price) or quantity of equity capital.  When the required return is not 



12 

readily available (and it isn’t, since most banks are not publicly traded), the minimum cost function can 

be conditioned on equity capital.  In this case, the cost function excludes the cost of equity capital and, 

thus, is cash-flow cost.  Note that this function fails to account for the revenue side of expected return and 

return risk that are found in the specification of the most preferred profit and cost functions.  Thus, the 

standard cash-flow cost function is:  

 

(6)  CCF(y, n, wb, wd, k ) = min (wb · xb + wd · xd ) s.t. T(y, n, x, k)  0 and k = k0. 
                       xb ,xd  
 

We estimate this cost function and its associated share equations with a translog specification:  

ln CCF = α0 + i αi ln gi  + (½)ij αij ln gi ln gj and g = (y, n, w, k). 

  

Scale economies based on this cash-flow cost function are: 
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Some studies of banking technology neglect the critical role of equity capital by defining a 

minimum cash-flow cost function without conditioning it on the amount of equity capital: 

 
(8)  CMS(y, n, wb, wd ) = min (wb  xb + wd  xd ) s.t. T(y, n, x)   0. 
                   xb ,xd  
 

To illustrate the bias introduced by such a cash-flow cost function, consider two banks identical in every 

respect except their capital structures.  One bank uses less equity and more debt to finance the same 

quantity of assets.  Thus, its cash-flow cost of producing the same output will be greater because it incurs 

the interest cost of the additional debt.  Since cash-flow cost does not account for the cost savings of less 

equity, it appears to be a more costly method of producing the same output.  Had the cash-flow cost 
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function been properly conditioned on the amount of equity capital employed, the appearance of a less 

efficient production method would have been dispelled.  Thus, the specification of cost in (8) is 

theoretically mis-specified so we label it with the MS subscript.  For illustrative purposes, we estimate 

this cost function and its associated share equations with a translog specification:  

ln CMS = α0 + i αi ln hi + (½)i j αij ln hi ln hj and h = (y, n, w). 

  

Scale economies based on this cost function are given by: 

(9)   - .
ln C

 ln 

MS
MS

i i

1
cash flow scale economies from the C  cost function =   

 

y


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In contrast to these cash-flow cost functions, consider an economic cost function that includes the 

cost of equity capital: 

 

(10)  CEC(y, n, wb, wd, wk ) =    min   (wb  xb + wd  xd + wkk ) s.t. T(y, n, x, k)  0.  
               xb, xd , k  
 

Since the economic cost function includes the cost of equity capital, it is conditioned on the required 

return (price) rather than the quantity of equity capital.  When a bank is publicly traded, the required 

return, wk , can be computed from an asset pricing model; however, most banks are not publicly traded.  

Instead, the cash-flow cost function in (6) is used to obtain a shadow price of equity capital from which 

the economic cost function and its associated scale economies can be computed.4  The first-order 

condition for optimal equity capital gives its shadow price: 

(11) CF
k

C
w

k


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
. 

Then the economic cost function is: 

(12) ( , , , , ) min ( , , , , ) min ( , , , , ) .CF
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C y n w C y n k w k C y n k k
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
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b d b d b dw w w w w w  

                                                           
4 Braeutigam and Daughety (1983) first suggested this technique, and Hughes, Mester, and Moon (2001) applied it 
to banking production and cost.  
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If we assume that the observed level of equity capital is cost-minimizing, then marginal cost computed 

from the cash-flow cost function equals marginal cost computed from the economic cost function:5  
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Then, using (12) and (13), the degree of scale economies based on the economic cost function is given by: 
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VII. The Data  

Our data set includes 842 top-tier bank holding companies in the United States in 2007.  A top-

tier company is not owned by another company.  The data are obtained from the Y-9 C Call Reports filed 

quarterly with bank regulators.  We model the consolidated bank rather than its constituent banks and 

subsidiaries because investment decisions are generally made at the consolidated level.  The summary 

statistics describing these banks are found in Tables 1-5. 

In all the cost functions we specify the same five outputs: y1, comprising cash, repos, federal 

funds sold, and interest-bearing deposits due from banks; y2, securities, including U.S. Treasury and U.S. 

government agency securities as well as nongovernmental securities; y3, loans; y4, trading assets, 

                                                           
5 Interpreting this proposition in terms of long-run (economic) cost and short-run variable (cash-flow) cost, it 
illustrates the familiar result that long-run and short-run marginal costs are equal when the value of the “fixed” input 
that gives rise to short-run variable cost minimizes long-run cost at the given output vector.   
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investments in unconsolidated subsidiaries, intangibles, and other assets; and y5, the credit equivalent 

amount of off-balance-sheet activities.6  The six inputs are: x1, labor; x2, physical capital; x3, time deposits 

exceeding $100,000 (uninsured);7 x4, all other deposits (including insured deposits); x5, all other borrowed 

funds, including foreign deposits, federal funds purchased, reverse repos, trading account liabilities, 

mandatory convertible securities, mortgage indebtedness, commercial paper, and all other borrowed 

funds; and k, equity capital consisting of equity, subordinated debt, and loan loss reserves.  Except for 

equity capital, the other five input prices are computed as the expenditure on the input divided by the 

quantity of the input.  The price of a dollar of after-tax profit in terms of before-tax dollars is pπ = 1 / (1 – 

t), where the tax rate, t, is the highest marginal corporate tax rate in the state in which the bank holding 

company is headquartered plus the highest federal marginal tax rate (which is 35 percent).  Revenue, p  y 

+  m, is the sum of interest and noninterest income. 

 We proxy ex post asset quality by the amount of nonperforming loans, which is the sum of past 

due loans, leases, and other assets, and assets in nonaccrual status, plus gross charge-offs, plus other real 

estate owned in satisfaction of debts (i.e., real estate owned due to foreclosures).  We proxy ex ante asset 

quality by the average contractual interest rate, pi, on the ith output.  The difference between this yield 

and the risk-free rate captures the risk premium incurred by the asset.  Thus, the contractual interest rate 

captures both a component of revenue and a dimension of asset quality.  Since interest income is not 

reported for all the outputs we specify, we use the weighted average of output prices, p , which is 

measured as the ratio of interest income from accruing assets to the sum of all the outputs. 

 Table 1 describes the full sample we used in the estimation (dropping outliers eliminated 10 bank 

holding companies, yielding 842 firms for the estimations).  Banks range in assets from $72 million to 

$2.19 trillion.  Because of the flexible nature of the production model and the fact that we are controlling 

                                                           
6 Some studies proxy the amount of off-balance-sheet activities by the net income they generate.  However, this 
measure is biased downward by losses.  The credit-equivalent amount is calculated by converting the various 
measures of off-balance-sheet activities into the equivalent amount of on-balance-sheet assets, adjusted by the 
latter’s risk weight.  Loans are weighted at 100 percent.  A stand-by letter of credit is weighted at 100 percent, too, 
on the grounds that it generates the same amount of exposure to default risk as an on-balance-sheet loan.   
7 The limit was temporarily increased to $250,000 in October 2008 and permanently increased by the Dodd-Frank 
Act of 2010.  In 2007 the limit was $100,000. 



16 

for risk preferences and asset quality by including a measure of nonperforming loans and the average 

contractual interest rate on output, the model permits including a wide range of bank sizes.  Tables 2-5 

partition the data by asset size in order to show how the variables in Table 1 differ from small to very 

large banks.  There is no official definition of too big to fail, but asset size of $100 billion or more has 

been considered a threshold for too big to fail in some studies.8 

As shown in Table 2, the mean level of loans as a proportion of total assets falls somewhat as 

banks get larger, from about 0.72 in the smallest category with assets under $0.8 billion to 0.58 in the 

largest category with assets over $100 billion.  The liquid assets ratio in the three smaller groups is 

approximately 0.04 and, in the larger two groups, with assets over $50 billion, it is 0.08 to 0.09.  Trading 

and other assets as a proportion of total assets rise with bank size, from 0.04 in the smallest group to 0.18 

in the largest.  The ratio of the credit-equivalent amount of off-balance-sheet assets to total assets also 

rises with bank size, from 0.03 to 0.66.   

Table 3 details differences in input utilization.  While labor as a proportion of total assets does not 

vary much across the size groups, the physical capital ratio declines.  Compared to smaller banks, larger 

banks fund a smaller proportion of their assets with insured deposits and a larger proportion with other 

borrowed funds (which include foreign deposits, commercial paper, federal funds purchased, securities 

sold under agreement to repurchase, trading account liabilities, and other borrowed money).  Compared 

with insured deposits and other borrowed funds, uninsured deposits are a less important source of funds 

for all size groups. 

Table 4 provides details of differences across size groups in risk exposure and financial 

performance.  As banks increase in size across the six groups, their mean ratio of capital to assets 

increases from 0.099 to 0.13, while the mean ratio of nonperforming assets shows no monotonic pattern 

related to asset size.   The rate of return on assets (ROA) (measured as profits/assets) in the largest group 

                                                           
8 Brewer and Jagtiani (2009) give three too-big-to-fail size thresholds: (1) banks with total book value of assets of at 
least $100 billion, (2) banks that are one of the 11 largest organizations in each year (currently the 11th largest BHC 
has $290 billion in assets), and (3) banks with market value of equity  $20 billion. 
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exceeds that of the other groups, but the differences in their mean ROA are negligible.  The average 

contractual return on accruing assets is higher for smaller banks than for larger banks. 

 

VIII. Evidence of Scale Economies 

We estimate the cost function and input share equations for the theoretically mis-specified cash-

flow cost function (omitting the amount of equity capital), the theoretically proper cash-flow cost function 

(conditioned on the amount of equity capital), and the most preferred profit function and input demand 

functions.  

 Table 6 presents the estimated scale economies for these models.  The first column of results 

shows that for the mis-specified cost function that omits any role for equity capital, all six size groups 

show evidence of scale economies that are statistically significantly greater than one.  The differences 

across size groups in these measured scale economies are slight.  And the means differ little from the 

medians.  To obtain some intuition for the magnitude of the measures, consider two values, 1.01 and 1.03 

at each end of the range for the six groups.  If all outputs increase by 10 percent, at a scale measure of 

1.01, cost increases by 9.9 percent; and, at 1.03, cost increases by 9.7 percent. 

 The second column of results in Table 6 shows estimates of scale economies for the theoretically 

correct specification that includes equity capital as a conditioning argument but omits the cost of equity in 

the calculation of cost.  Hence, we term the result “cash-flow cost.”  For banks in the four size groups 

with less than $50 billion in total assets, we find essentially constant returns to scale, with measures of 

scale economies between 0.94 and 0.96.  For banks larger than $50 billion, we find diseconomies of scale, 

significant at the 1 percent level, with the mean estimate of scale economies at 0.90 and 0.88 in the two 

largest size categories.  (These values imply that a 10 percent increase in all outputs results in an 11 

percent increase in cost.)  Both of the cash-flow cost functions in columns 1 and 2 omit the cost of equity 

in the calculation of cost used in the estimation.  However, the cost function reported in the second 

column controls for the quantity of equity capital.  Table 5 shows that larger banks, on average, fund their 

assets with relatively more equity than smaller banks.  The additional equity used by larger banks to fund 
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a dollar of assets reduces the amount of debt needed to fund that dollar of assets and, thus, reduces the 

relative interest expense of larger banks.  Failing to control for the level of equity capital upwardly biases 

the estimated cost elasticity of larger banks in the mis-specified cost function in column 1.  The cash-flow 

cost function in column 2 controls for this effect and returns a larger cost elasticity (i.e., smaller measure 

of scale economies) for all banks and considerably increased cost elasticity for banks with over $50 

billion in assets – indeed, these banks show evidence of significant scale diseconomies. 

 Both cash-flow cost functions omit the cost of equity capital in their measure of cost and, hence, 

in their estimated cost elasticity.  Column 3 of Table 6 reports these scale economies based on economic 

cost that includes the cost of equity.  Adding the cost of equity increases the scale economies for all size 

categories.  Banks with less than $50 billion in assets experience scale economies between 1.03 and 1.04, 

with the values significant at the 1 percent level for banks in the smaller size categories.  Banks with total 

assets greater than $100 billion experience constant returns to scale.9 

 The failure of these properly specified minimum cost functions to show evidence of scale 

economies at larger banks may follow from their inability to distinguish the differences in risk-expected-

return trade-offs that are inherent in the investment strategies of large and small banks.  The most 

preferred cost function controls for these differences.  We report the estimates of scale economies 

obtained from this cost function in column 4.  The mean value of scale economies for the full sample is a 

significant 1.149.  The categories of banks with assets less than $50 billion experience mean scale 

economies in the range 1.13 to 1.18.10  For banks with assets between $50 billion and $100 billion, mean 

scale economies are 1.23, while for banks with assets over $100 billion mean scale economies are 1.35.  

The median values are more modest: 1.20 and 1.25, respectively.11 

                                                           
9 At a value of 1.03, a 10 percent increase in all outputs would imply a 9.7 percent increase in cost; at 1.04, a 9.6 
percent increase in cost; and at 1.00, a 10 percent increase in cost. 
10 In the case of 1.13, a 10 percent increase in all outputs would imply an 8.8 percent increase in cost, and for 1.18, 
an 8.5 percent increase in cost. 
11 A 10 percent increase in all outputs at 1.23 implies an increase in cost of 8.1 percent, while 1.35 implies a 7.4 
percent increase in cost. 
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 Robustness.  Even though our model is very flexible and we control for risk preferences and 

output quality, there may be some concern that we are including banks with very different production 

technologies in the estimation and that this is driving our results.  However, this does not appear to be the 

case.  First, we re-estimate our model excluding banks with assets of $2 billion or less.  This leaves a 

sample of 215 bank holding companies.  Our scale results are very similar to those obtained with the full 

sample.  Scale economies are significantly different from one at the 1 percent level and increase with 

bank size, from 1.14 for banks in the $2 billion to $10 billion size category up to 1.29 for banks with 

assets greater than $100 billion.  Our results are also robust to re-estimating the model for the sample of 

bank that omits those with extreme values of output shares.  This leaves a sample of 833 bank holding 

companies.  Scale economies are significantly different from one at the 1 percent level and increase with 

bank size, from 1.15 for banks with assets under $0.8 billion and 1.30 for banks with assets greater than 

$100 billion. 

 

IX. Evidence on Whether Scale Economies Are Driven by Too-Big-To-Fail Considerations 

One question is whether the scale economies we find at very large banks are driven by their being 

too big to fail (TBTF), which might give them a cost advantage over other banks.  There is no simple 

categorization of banks as TBTF.  For the purposes of our analysis, let’s consider banks with assets 

greater than $100 billion as being TBTF, which is consistent with the definitions suggested in Brewer and 

Jagtiani (2009).  Here we present evidence that our scale results are not driven solely by TBTF 

considerations. 

First, as presented above, we find scale economies not only at banks with assets > $100 billion 

but also at smaller banks, which are too small to be considered TBTF under any reasonable definition. 

Second, we re-estimated our cost model for our sample of banks dropping the TBTF banks, i.e, 

banks with assets > $100 billion, and then calculated what scale economies would be for the TBTF banks, 

and for banks of other sizes, using this parameterization.  Here, we once again found significant scale 

economies that increase with bank size.  For banks with assets > $100 billion, the mean scale economies 



20 

were 1.38 (compared with 1.35 in the baseline model estimated with the full sample of banks discussed 

above). 

Third, to the extent that TBTF enables banks to enjoy lower funding costs because of lower risk 

premiums on the borrowed funds, it could be that our finding of scale economies at the largest banks in 

the sample is driven by these lower funding costs and that if these banks faced the same cost of funds as 

smaller banks, they would not enjoy scale economies.  To investigate this possibility, we calculated what 

the scale economies for the TBTF banks would have been had the cost of the three inputs representing 

funding costs, namely, w3 = uninsured deposit rate, w4 = insured deposit rate, and w5 = other borrowed 

funds rate, been the median values for the banks with assets ≤ $100 billion.  Again, we find significant 

scale economies that also increase with size.  For banks with assets > $100 billion, the mean scale 

economies were 1.37 (compared with 1.35 in the baseline model). 

Thus, while there may be a funding cost advantage among the largest banks (perhaps because 

they are considered TBTF), our production model controls for this funding advantage in its computation 

of scale economies and there is no evidence that a funding cost advantage influences scale economies. 

 

X. Policy Implications 

 A current policy question is how regulators should handle TBTF banks.  One suggestion has been 

to impose a size limit on banks to try to prevent them from growing to be too big to fail in the first place.  

As discussed in Mester (2010), there would be several consequences of such a size limit, some of which 

might be unintended.  Indeed, should scale economies be as strong as suggested in our results, banks 

would be motivated to try to circumvent such a limit.  On the face of it, our estimates of scale economies 

suggest that such a size limit, by limiting the attainment of scale economies, would be quite costly.  

However, this is actually a more difficult question than it might seem.  Typically, when researchers 

perform such calculations, they vary the scale of operations alone.  And the estimates of scale economies 

essentially do that as well, by keeping product mix constant as scale is expanded.  However, not only is 

the scale of operations different for large and small banks, the output mix also differs considerably, e.g., 
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large banks have a considerably higher share of off-balance-sheet output.  This variation in output mix 

turns out to be important when evaluating the potential cost impact of a size limit on banks. 

 In particular, we ask, what would be the change in cost if we broke up the 17 banks with assets 

greater than $100 billion into banks with assets of $100 billion.  We will decompose the change in costs 

into two parts: the scale effect, which calculates the change in costs ignoring any change in output mix, 

and the mix effect, which calculates the change in costs from the change in the output mix that occurs 

when scale changes.  Let YL = total assets of a bank with assets > $100 billion (a large bank), YS = the 

size limit we are imposing (here, $100 billion), HL represent the output mix (output shares) of the large 

bank, and HS represent the output mix of a $100 billion bank.  Then based on our estimated cost function, 

we can compute the ratio of the estimated cost of a set of n $100 billion banks, nC(YS,HS), to the 

estimated cost of a large bank, C(YL,HL), where n = YL/YS:  
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Our estimated scale economies can be used to calculate the scale effect: 
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To calculate the mix effect, we need to know what product mix a bank with $100 billion in assets would 

produce in order to calculate C(YS,HS).  Because there is no bank in the sample that has $100 billion in 

assets (and even if there were, it would not necessarily be representative), we calculate the mix effect in 

two different ways.  First, we approximate C(YS,HS) by the mean C() of the 10 firms in the size category 

$60 billion to $140 billion in assets, which spans $100 billion.  Second, we approximate C(YS,HS) by 
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evaluating the estimated cost function C() at the median output shares and other non-output variables of 

banks in the asset size category of $50 billion to $100 billion, where we adjust y3 so that the output levels 

sum to $100 billion.   

 Our results indicate that breaking up the 17 banks in our sample with assets > $100 billion into 

smaller banks with $100 billion in assets but with no change in output mix would increase costs: the scale 

effect implies costs would increase by an estimated $990 billion, or 2.4 times the sum of estimated costs 

of the 17 banks.  This is consistent with the large scale economies we found.  However, banks that are 

forced to downsize might also change their product mix over the longer run to one more consistent with a 

smaller scale of operations.  Our estimated mix effect suggests that adjusting their output shares to those 

appropriate to their smaller size would lower costs by $1.0-$1.1 trillion.  Thus, on net, the total longer-run 

impact of breaking up the banks into smaller institutions would be a cost savings of $47-$147 billion.   

These calculations are only intended to be suggestive of one issue that must be considered in 

calculating the cost impact of imposing a size limit, namely, the effect on costs not only of a change in the 

scale of operations but also in the mix of outputs banks would choose to produce.  Of course, these 

calculations ignore other consequences of such a policy.  Moreover, they are only rough estimates and are 

dependent on the method of calculation.  To see this, notice that another method of calculation indicates 

much smaller cost savings: Based on our estimates, the sum of estimated costs for the 17 banks in the 

largest size category with assets > $100 billion is $406 billion, and these banks hold a total of $9.1 trillion 

in assets.  The sum of estimated costs for the 12 banks in the second largest size category with assets 

between $50 billion and $100 billion is $33 billion, and these banks hold a total of $778 billion in assets.  

A simple back-of-the-envelope calculation indicates that redistributing the $9.1 trillion of assets in the 

largest size category to the next largest size category would result in costs of $385 billion (= (9.1 trillion / 

778 billion) * $33 billion), which, compared to the $406 billion cost of banks in the largest category, 

suggests a cost savings of $21 billion.  Again, such a calculation assumes a change in output mix to that 

of banks in the second largest size category (and it also assumes that the other variables in the cost 

function, in particular, input prices, would be those consistent with those at banks in the second largest 
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size category).  The results again suggest that the effect of the change in output mix on costs dominates 

the cost savings attendant to increased scale via scale economies. 

 

XI.  Conclusions 

 We find evidence of large scale economies at smaller banks and even larger economies at large 

banks – economies consistent with the standard textbook arguments – when the production model 

endogenizes managers’ choice of risk vs. expected return.  The standard minimum cost function, even one 

that controls for equity capital, is not able to capture these scale economies. 

Our results indicate that these measured scale economies do not result from cost advantages large 

banks may derive from too-big-to-fail considerations.  Instead, they follow from technological 

advantages, such as diversification and the spreading of information costs and other costs that do not 

increase proportionately with size.  Significant scale economies in banking suggest that technological 

factors, as well as TBTF cost advantages, appear to have been an important driver of banks’ increasing 

size.  While we do not know if the benefits of large size outweigh the potential costs in terms of systemic 

risk that large scale may impose on the financial system, our results suggest that strict size limits to 

control such costs will not likely be effective, since they work against market forces.  Our results also 

indicate that one should consider both scale and product mix when evaluating such a policy. 
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Appendix 

Empirical model and estimation: The Almost Ideal Production System12 

  The managers’ most preferred (MP) production model comprises the profit share equation (3a), 

the input share equations (3b), and the first-order condition for the optimal level of equity capital, k, 

which is a conditioning argument in the share equations.  The profit and input demand functions are 

shares expressed as shares of total revenue, p  y + m, and sum to one.   They are derived by applying 

Shephard’s Lemma to the managerial expenditure function, which is dual to the utility maximization 

problem (1a-1c).  Thus, the model to be estimated is: 
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To save on degrees of freedom, in our estimation we replace the vector of output prices, p, with 

the weighted-average output price, p  = i pi (yi/j yj).  The risk-free rate, r, is the same for all bank 

                                                           
12 The exposition in this appendix is adapted from Hughes, Lang, Mester, and Moon (2000). 



25 

holding companies, so the coefficients on terms involving r are not estimated.  Written out, the equations 

to be estimated are: 
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and  pπ = 1/(1– t). 

 

We impose several conditions on the parameters of the model.  Symmetry requires that13 

(S1) Sij = Sji   i,j,  

(S2) T4s = Ts4   s, and 

(S3) Gsi = Gis   s,i. 

                                                           
13 (S1) must be imposed in the estimation of the share equations, since the constituent coefficients cannot be 
separately identified.  However, (S2) and (S3) involve coefficients of prices that are used by Shephard’s Lemma to 
obtain the share equations.  Consequently, they appear in separate share equations and are, thus, identifiable.  It is a 
judgment call as to whether one imposes these symmetry conditions.  We impose them in our estimation.  
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The input and profit revenue share equations sum to one, which implies the following adding-up 

conditions: 

(A1) Σi Bi + F4 = 1,    

(A2) Σi Gsi + T4s = 0,  s, 

(A3) Σi T3i + R34 = 0,    

(A4) Σi Dji + H4j = 0  j, 

(A5) Σi T4i + R44 = 0, 

(A6) Σi T1i + R14 = 0, 

(A7) Σi T2i + R24 = 0, and 

(A8) Σvj + μ = 0. 

The input and profit share equations are homogeneous of degree zero in (w, p , r, pπ).  The only 

homogeneity condition imposed in the estimation is:  

(H1) Σvj + μ = 0,  

which is equivalent to the adding-up condition (A8).  The other homogeneity conditions contain 

coefficients on variables involving the risk-free rate, r.  These coefficients are not estimated, since r does 

not vary across banks, but the homogeneity conditions can be used to recover these coefficients. 

To summarize: in estimating the model, we imposed (S1), (A1)-(A7), and (A8)  (H1). 

 We estimated the model using nonlinear two-stage least squares, a generalized method of 

moments.  Starting values were obtained by setting the constant terms, Bi, in the input share equations at 

the average value of the input share across banks in the sample, the constant term, F4, in the profit share 

equation at the average value of the profit share across banks in the sample, and all other parameters in 

the input share, profit share, and equity capital demand equation equal to 0.  
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Figure 1 
 

A smaller bank’s investment strategies are depicted on the risk-return frontier labeled I and the larger 
bank’s strategies on frontier II.  The improved trade-off along frontier II results from the better diversification of the 
larger bank.  Point A represents production of a smaller, less diversified output, say, some quantity of loans with a 
particular probability distribution of default that reflects the contractual interest rate charged and the resources 
allocated to risk assessment and monitoring.  Point B represents a larger quantity of loans with the same contractual 
interest rate but better diversification and, hence, an improved probability distribution of default and lower overall 
risk.  The better diversification allows the costs of risk management to increase less than proportionately with the 
loan volume while maintaining an improved probability distribution of default.  Thus, the response of cost to the 
increase in output from point A to point B reflects economies of scale.  And the expected return at B exceeds that at 
A. 

On the other hand, suppose the bank responds to the better diversification of the larger output by adopting a 
more risky investment strategy for an enhanced expected return.  Better diversification does not offset the increased 
cost occasioned by the additional default risk.  Point D in Figure 1 designates this strategy.  The increased inherent 
default risk due to the higher contractual interest rate results in costs of risk management that increase more than 
proportionately with the loan volume (from A to D), and production appears to exhibit the counter-intuitive scale 
diseconomies found by empirical studies of banking cost that fail to account for endogenous risk-taking. 
 
 
       Expected 
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Figure 2 
 

The investment strategies in Figure 1 are illustrated for the case of the larger output along frontier II. The 
production technology for a given quantity of loans is represented by the isoquant.  The mix of debt and equity used 
to fund the loans is ignored.  The diagram shows the quantity of physical capital and labor used in the process of 
credit evaluation and loan monitoring.  Point C shows the least costly way to produce the particular quantity of loans 
with the risk exposure associated with the investment strategy C in Figure 1.  If a bank adopted the less risky 
strategy, B, it might use less labor in credit evaluation and monitoring: point B in Figure 2, a less costly method of 
producing the same quantity of loans.  Thus, the isoquant for this quantity of loans that passes through point C 
captures one investment strategy only.  If the isoquant included a characterization of the risk exposure, there would 
be another isoquant passing through point B for the same quantity of loans produced with the lower risk strategy. On 
the other hand, if a bank adopted the more risky strategy, D, it would use more labor, the corresponding point D in 
Figure 2, a more costly method than C.  Thus, the cost of producing this particular quantity of loans depends on a 
bank’s choice of risk exposure and its expected return.  We shall refer to this characterization of cost as risk-return-
driven cost. 
 
 
       Physical Capital  

 
 
            0   Labor used in risk assessment and monitoring 
 
 
 

C B D
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Table 1. Summary Statistics: Full Sample 
 
The data, obtained from the Y9-C Call Reports filed quarterly with regulators, include 842 top-tier U.S. bank 
holding companies in 2007.  A top-tier company is not owned by another company. 
 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Total Revenue in $1000s 

Financial Performance 
Equity Capital/Assets 
Nonperforming Assets/Assets 
Profit/Revenue 
Profit/Assets 

Asset Allocation 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets  

Input Utilization 

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

Prices 
Average Interest Rate on Assets 
Wage Rate: w1 in $1000s 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
1/(1–Tax Rate) 

13,692,833
1,024,870

0.102
0.022
0.317
0.024

0.044
0.174
0.718
0.051
0.060

0.00027
0.019
0.149
0.610
0.122

0.061
63.322
0.288
0.048
0.028
0.054
0.421
1.730

941,224
70,026 

 

0.097
0.016
0.315
0.023

0.033
0.159
0.734
0.041
0.034

0.00027
0.018
0.134
0.625
0.104

0.061
59.391
0.215
0.047
0.027
0.048
0.420
1.724

117,267,435
8,568,377

0.026
0.018
0.079
0.010

0.046
0.100
0.116
0.036
0.226

0.00011
0.010
0.073
0.114
0.109

0.011
22.224
0.248
0.011
0.005
0.020
0.115
0.241

72,238 
6,555 

 

0.043 
0.000 

-0.299 
-0.014 

 
0.003 
0.000 
0.111 
0.008 
0.000 

 
0.000031 

0.001 
0.006 
0.079 
0.000 

 
0.007 

32.512 
0.059 
0.008 
0.002 
0.013 
0.350 
1.538 

2,187,631,000
158,039,000

0.357
0.243
0.613
0.096

0.429
0.567
0.949
0.409
4.142

0.0023
0.061
0.552
0.854
0.716

0.095
189.621

2.344
0.119
0.059
0.179
0.470
1.887
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Table 2. Summary Statistics: Asset Allocation by Size Groups 
 
The data, obtained from the Y9-C Call Reports filed quarterly with regulators, include 842 top-tier U.S. bank holding companies 
in 2007.  A top-tier company is not owned by another company.  Banks in the largest size category, with assets exceeding $100 
billion, are often perceived as being too big to fail (Brewer and Jagtiani, 2009). 
 
Total Assets < $0.8 billion (n = 328) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

571,582.287
0.045
0.182
0.719
0.040
0.032

589,526.000
0.036
0.163
0.739
0.036
0.025

139,619.056
0.031
0.103
0.108
0.024
0.029

72,238.000 
0.005 
0.006 
0.401 
0.008 
0.000 

799,832.000
0.318
0.567
0.915
0.228
0.181

 
Total Assets $0.8 billion – $2 billion (n = 299) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

1,199,358.877
0.041
0.163
0.738
0.045
0.041

1,123,172.000
0.032
0.150
0.753
0.040
0.032

334,356.263
0.038
0.093
0.102
0.023
0.032

800936.000 
0.007 
0.000 
0.388 
0.008 
0.001 

1,999,119.000
0.400
0.535
0.949
0.169
0.190

 
Total Assets $2 billion – $10 billion (n = 155) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

4,091,767.774
0.038
0.177
0.716
0.060
0.055

3,350,126.000
0.029
0.164
0.725
0.056
0.046

2,031,203.785
0.029
0.098
0.103
0.030
0.041

2,012,453.000 
0.003 
0.003 
0.388 
0.011 
0.001 

9,731,046.000
0.179
0.551
0.946
0.189
0.303

 
Total Assets $10 billion – $50 billion (n = 31) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

16,562,010.323
0.041
0.187
0.684
0.078
0.089

13,871,556.00
0.029
0.170
0.693
0.069
0.073

6,989,958.953
0.029
0.063
0.075
0.032
0.062

10,402,532.00 
0.011 
0.078 
0.496 
0.023 
0.008 

37,017,239.000
0.141
0.373
0.816
0.157
0.295

 
Total Assets $50 billion – $100 billion (n = 12) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

64,794,778.917
0.079
0.139
0.660
0.121
0.441

61,460,925.50
0.044
0.128
0.739
0.112
0.221

12,501,001.639
0.113
0.054
0.142
0.060
0.785

52,947,444.00 
0.022 
0.075 
0.375 
0.060 
0.062 

99,567,393.000
0.429
0.280
0.812
0.242
2.893

 
Total Assets > $100 billion (n = 17) 

Variable Mean Median Std Dev Minimum Maximum

Total Assets in $1000s 
Liquid Assets: y1/Assets 
Securities: y2/Assets 
Loans: y3/Assets 
Trading, Other Assets: y4/Assets 
Off-Balance-Sheet Items: y5/Assets 

532,904,914.00
0.087
0.153
0.577
0.181
0.657

179,573,933.0
0.039
0.131
0.668
0.154
0.250

653,325,466.24
0.082
0.110
0.193
0.084
1.181

110,961,509.0 
0.015 
0.052 
0.111 
0.104 
0.037 

2,187,631,000.0
0.248
0.522
0.800
0.393
4.142
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Table 3. Summary Statistics: Input Utilization by Size Groups 
 
The data, obtained from the Y9-C Call Reports filed quarterly with regulators, include 842 top-tier U.S. bank holding companies 
in 2007.  A top-tier company is not owned by another company.  Banks in the largest size-category, with assets exceeding $100 
billion, are often perceived as being too big to fail (Brewer and Jagtiani, 2009).  
 
Total Assets < $0.8 billion (n = 328) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00030
0.0213
0.1558
0.6344
0.0969

0.00029
0.0198
0.1395
0.6465
0.0885

0.000086
0.0104
0.0698
0.0894
0.0676

0.000095 
0.0018 
0.0063 
0.2330 
0.0007 

0.00065
0.0577
0.5516
0.8172
0.3903

 
Total Assets $0.8 billion – $2 billion (n = 299) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00027
0.0198
0.1508
0.6185
0.1143

0.00026
0.0195
0.1380
0.6240
0.0984

0.00015
0.0098
0.0704
0.0981
0.0810

0.000031 
0.0006 
0.0142 
0.1105 
0.0001 

0.0023
0.0555
0.4223
0.8386
0.6949

 
Total Assets  $2 billion – $10 billion (n = 155) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00024
0.0173
0.1471
0.5909
0.1384

0.00024
0.0157
0.1221
0.6050
0.1276

0.000077
0.0104
0.0808
0.1067
0.0802

0.000074 
0.0015 
0.0443 
0.1302 
0.0083 

0.00048
0.0608
0.3977
0.8332
0.4783

 
Total Assets $10 billion – $50 billion (n = 31) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00022
0.0157
0.1209
0.5532
0.1931

0.00022
0.0123
0.0944
0.5642
0.1745

0.000076
0.0094
0.0626
0.1203
0.0932

0.000086 
0.0055 
0.0230 
0.3207 
0.0412 

0.00044
0.0467
0.2792
0.8539
0.3985

  
Total Assets $50 billion – $100 billion (n = 12) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00017
0.0092
0.1061
0.4749
0.2563

0.00018
0.0083
0.1013
0.4922
0.2216

0.000036
0.0032
0.0464
0.1295
0.1593

0.000093 
0.0057 
0.0430 
0.1910 
0.0498 

0.00022
0.0170
0.1783
0.6795
0.6471

 
Total Assets > $100 billion (n = 17) 

Variable Mean Median Std Dev Minimum Maximum

Labor (FTEs): x1/assets 
Physical Capital: x2/Assets 
Uninsured Deposits: x3/Assets 
Insured Deposits: x4/Assets 
Other Borrowed Funds: x5/assets 

0.00018
0.0097
0.0769
0.3799
0.3670

0.00019
0.0087
0.0692
0.4604
0.2881

0.000047
0.0045
0.0326
0.1712
0.1814

0.000098 
0.0030 
0.0238 
0.0791 
0.1870 

0.00028
0.0191
0.1350
0.5734
0.7161
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Table 4. Summary Statistics: Risk and Financial Performance by Size Groups 
 
The data, obtained from the Y9-C Call Reports filed quarterly with regulators, include 842 top-tier U.S. bank holding companies 
in 2007.  A top-tier company is not owned by another company.  Banks in the largest size-category, with assets exceeding $100 
billion, are often perceived as being too big to fail (Brewer and Jagtiani, 2009). 
 
Total Assets < $0.8 billion (n = 328) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.099
0.064
0.025

42,232.863
0.302
0.023

0.095
0.063
0.018

42,302.000
0.304
0.022

0.028
0.007
0.027

11,720.371
0.078
0.007

0.045 
0.043 
0.000 

6,555.000 
-0.299 
-0.014 

0.235
0.095
0.239

90,682.000
0.544
0.056

 
Total Assets $0.8 billion – $2 billion (n = 299) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.100
0.062
0.020

88,222.164
0.311
0.023

0.095
0.061
0.015

81,848.000
0.309
0.022

0.028
0.007
0.021

27,634.679
0.075
0.009

0.046 
0.040 
0.001 

44,180.000 
0.001 
0.000 

0.357
0.088
0.243

214,208.000
0.613
0.096

 
Total Assets $2 billion – $10 billion (n = 155) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.105
0.060
0.020

30,0481.432
0.336
0.025

0.103
0.060
0.016

246,612.000
0.329
0.024

0.027
0.007
0.016

156,223.469
0.068
0.007

0.043 
0.037 
0.001 

112,616.000 
0.119 
0.006 

0.230
0.087
0.109

876,904.000
0.527
0.055

 
Total Assets $10 billion – $50 billion (n = 31) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.114
0.055
0.017

1,209,522.323
0.353
0.026

0.112
0.056
0.015

1,032,973.000
0.355
0.023

0.023
0.005
0.009

554,743.096
0.069
0.007

0.048 
0.036 
0.002 

641,771.000 
0.213 
0.015 

0.158
0.062
0.042

3,144,098.000
0.478
0.039

 
Total Assets $50 billion – $100 billion (n = 12) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.142
0.041
0.016

4,359,240.750
0.385
0.026

0.135
0.045
0.014

4,349,244.500
0.389
0.028

0.045
0.012
0.008

1,395,613.601
0.061
0.006

0.086 
0.010 
0.004 

1,991,499.000 
0.246 
0.013 

0.259
0.048
0.033

7,890,349.000
0.511
0.033

 
Total Assets > $100 billion (n = 17) 

Variable Mean Median Std Dev Minimum Maximum

Equity Capital/Assets 
Average Interest Rate on Assets 
Nonperforming Assets/Assets 
Total Revenue ($1000s) 
Profit/Revenue 
Profit/Assets 

0.131
0.042
0.024

40,372,301.176
0.404
0.033

0.130
0.045
0.020

15,015,000.00
0.398
0.031

0.034
0.017
0.017

46,498,991.907
0.077
0.013

0.073 
0.007 
0.000 

8,467,745.000 
0.260 
0.019 

0.195
0.067
0.068

158,039,000.00
0.602
0.076
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Table 5. Summary Statistics: Prices by Size Groups 
 
The data, obtained from the Y9-C Call Reports filed quarterly with regulators, include 842 top-tier U.S. bank holding companies 
in 2007.  A top-tier company is not owned by another company.  Banks in the largest size-category, with assets exceeding $100 
billion, are often perceived as being too big to fail (Brewer and Jagtiani, 2009). 
 
Total Assets < $0.8 billion (n = 328) 

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–t)) 

58.495
0.261
0.049
0.028
0.057
0.420
1.728

56.801
0.200
0.047
0.028
0.050
0.420
1.724

12.434
0.216
0.011
0.006
0.027
0.025
0.073

33.389 
0.059 
0.018 
0.013 
0.013 
0.350 
1.538 

122.689
2.181
0.119
0.050
0.179
0.470
1.887

 
Total Assets $0.8 billion – $2 billion (n = 299)  

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–-t)) 

63.261
0.276
0.049
0.029
0.053
0.421
1.730

59.208
0.206
0.048
0.028
0.049
0.420
1.724

16.784
0.235
0.012
0.007
0.024
0.025
0.072

34.810 
0.079 
0.016 
0.008 
0.014 
0.350 
1.538 

167.079
2.344
0.113
0.059
0.178
0.470
1.887

 
Total Assets  $2 billion – $10 billion (n = 155)  

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–t)) 

68.491
0.345
0.047
0.026
0.052
0.421
1.729

62.710
0.251
0.047
0.026
0.046
0.423
1.733

22.557
0.282
0.010
0.007
0.019
0.026
0.075

35.224 
0.062 
0.009 
0.002 
0.021 
0.350 
1.538 

189.621
1.789
0.092
0.048
0.151
0.470
1.887

 
Total Assets $10 billion – $50 billion (n = 31) 

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–t)) 

68.748
0.302
0.054
0.024
0.047
0.422
1.735

66.348
0.273
0.050
0.025
0.045
0.423
1.733

16.664
0.117
0.017
0.006
0.016
0.026
0.075

37.031 
0.150 
0.034 
0.012 
0.029 
0.350 
1.538 

111.536
0.563
0.118
0.042
0.101
0.458
1.846

 
Total Assets $50 – $100 billion (n = 12) 

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–t)) 

79.908
0.347
0.046
0.020
0.039
0.424
1.737

73.445
0.342
0.047
0.020
0.044
0.427
1.745

25.567
0.116
0.008
0.005
0.010
0.020
0.059

32.512 
0.102 
0.029 
0.012 
0.017 
0.395 
1.653 

123.813
0.503
0.055
0.029
0.050
0.458
1.846

 
Total Assets > $100 billion (n = 17) 

Variable Mean Median Std Dev Minimum Maximum

Wage Rate: w1 
Price of Physical Capital: w2 
Uninsured Deposit Rate: w3 
Insured Deposit Rate: w4 
Other Borrowed Funds rate: w5 
Tax Rate 
Price of After-Tax Profit (1/(1–t)) 

88.800
0.443
0.043
0.023
0.043
0.430
1.756

84.380
0.394
0.048
0.023
0.043
0.425
1.739

19.392
0.174
0.016
0.005
0.008
0.015
0.048

59.816 
0.188 
0.008 
0.014 
0.028 
0.410 
1.695 

133.045
0.794
0.066
0.031
0.054
0.458
1.846
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Table 6 
Estimated Mean Scale Economies 

 
Scale economies are calculated as the mean of the estimated scale economies at each point in the sample or size 
category (rather than scale economies evaluated at the mean of the data).  The data, obtained from the Y9-C Call 
Reports filed quarterly with regulators, include 842 top-tier U.S. bank holding companies in 2007.  A top-tier 
company is not owned by another company.  Banks in the largest size-category, with assets exceeding $100 billion, 
are often perceived as being too big to fail (Brewer and Jagtiani, 2009). 
 
The estimations include the cost function and input share equations for the theoretically mis-specified cash-flow cost 
function (omitting the amount of equity capital) and the theoretically proper cash-flow cost function (conditioned on 
the amount of equity capital).  The economic-cost scale economies are inferred from the theoretically proper cash-
flow cost function.  In addition, we estimate the managers’ most preferred profit function and input demand 
functions, which reflect the bank’s risk-expected-return trade-off, and compute the managers’ most-preferred cost 
function from the profit function. 
 

Total Assets 
 

(1) 
Mis-specified 

Cash-Flow 
Cost Function 

 
Omits Level of 

Equity 
 
 

Mean    Median 
 

(2) 
Correct 

Cash-Flow 
Cost Function 

 
Conditioned on 
Level of Equity 

 
 

Mean    Median 

(3) 
Economic 

Cost Function 
 
 

Includes Shadow 
Cost of  Equity 

 
 

Mean    Median 

(4) 
Managers’ Most 
Preferred Cost 

Function 
 

Conditioned on 
Optimal Equity 

 
 

Mean    Median 

Full sample 
n = 842 

1.0319 1.0315 
(0.0056) 

0.9542** 0.9561 
(0.0190) 

1.0389 1.0386 
(0.0083) 

1.1490 1.1341 
(0.0095) 

< $0.8 billion 
n = 328 

1.0344 1.0341 
(0.0064) 

0.9606** 0.9610 
(0.0201) 

1.0430 1.0422 
(0.0093) 

1.1364 1.1272 
(0.0087) 

$0.8 billion – $2 billion 
n = 299 

1.0328 1.0319   
(0.0057) 

0.9582** 0.9612 
(0.0190) 

1.0393 1.0391 
(0.0083) 

1.1421 1.1297 
(0.0093) 

$2 billion – $10 billion 
n = 155 

1.0293 1.0289 
(0.0054) 

0.9490** 0.9522 
(0.0212) 

1.0331 1.0328 
(0.0093) 

1.1549 1.1470 
(0.0103) 

$10 billion – $50 billion 
n = 31 

1.0246 1.0255 
(0.0064) 

0.9363** 0.9421 
(0.0268) 

1.0265** 1.0258 
(0.0126) 

1.1782 1.1518 
(0.0135) 

$50 billion – $100 billion 
n = 12 

1.0211 1.0212 
(0.0077) 

0.8977 0.8981 
(0.0360) 

1.0359** 1.0302 
(0.0156) 

1.2330 1.1976 
(0.0177) 

> $100 billion 
n = 17 

1.0152 1.0162 
(0.0097) 

0.8837 0.8861 
(0.0404) 

1.0279 1.0215 
(0.0193) 

1.3478 1.2508 
(0.0295) 

 
     Standard errors are given in parentheses. 
     All estimates of scale economies are significantly different from 0 at the 1 percent level. 
     Estimates of scale economies in bold are significantly different from 1 at the 1 percent level. 
  * Significantly different from 1 at the 10 percent level 
** Significantly different from 1 at the 5 percent level 
 
 


