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Abstract

We explain why central counterparties (CCPs) emerged historically. With standardized

contracts, it is optimal to insure counterparty risk by clearing those contracts through

a CCP that uses novation and mutualization. As netting is not essential for these

services, it does not explain why CCPs exist. In over-the-counter markets, as contracts

are customized and not fungible, a CCP cannot fully guarantee contract performance.

Still, a CCP can help: As bargaining leads to an inefficient allocation of default risk

relative to the gains from customization, a transfer scheme is needed. A CCP can

implement it by offering partial insurance for customized contracts.
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1 Introduction

A central counterparty (CCP) is an institution designed to insure counterparty risk. After

financial trades are executed, the clearing process reconciles the terms of the trades to make

them legally binding. This, however, need not prevent default. Adding a CCP to this

clearing process offers two additional services to deal with the costs of a possible default: (i)

novation and (ii) mutualization of losses. Novation refers to the legal act of replacing the

original contract between the buyer and the seller with a contract between the buyer and

the CCP and another one between the seller and the CCP. By doing so, the CCP erases

the original obligations between the buyer and the seller and becomes the sole counterparty

to both the original buyer and seller. As a consequence, if the CCP is able to fulfill the

contract, it eliminates the idiosyncratic risk borne by a trader that his particular counterparty

defaults. Still, this does not mean that a CCP eliminates default risk altogether. Rather,

the CCP needs to make sure that it has enough resources to cover this risk using proper

risk management tools, such as collateral in the form of margins. Should margins not offer

enough resources, it can ask its members to cover its losses; in other words, it mutualizes its

losses.

When financial trades are taking place on centralized trading platforms like the New York

Stock Exchange or the Chicago Mercantile Exchange, clearing takes place through a CCP.

Other markets do not have formal clearing arrangements: These are often described as over-

the-counter markets (OTC) where trades do not take place on a formal/organized trading

platform but are instead bilaterally negotiated. Even before the current financial crisis,

many observers criticized the organization of these markets, in particular for their lack

of transparency and counterparty risk management. As trades are bilateral, there is no

information about who is trading which securities and at what price, with the consequence

that risk exposures are difficult to manage. As a consequence, policies have been adopted to

impose mandatory clearing through a CCP for a large fraction of standard OTC derivatives

to improve transparency and stability in these markets.1

We present a framework that explains why CCP-clearing – by which we mean the process

of novation and mutualization – has emerged as an efficient part of the market structure on

centralized trading platforms. Then we analyze whether it can and should be introduced

for OTC markets as well.2 To do so, we distinguish between standardized and customized

1In the US, the Frank-Dodd bill requires clearing for all sufficiently standardized derivatives. Other
proposal point to a minimum fraction of volume and/or value of the OTC market to be formally cleared (see
for example BIS (2007) or IMF (2010)).

2We do not look at two other services – multilateral netting (see Duffie and Zhu (2009) and the provision
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financial contracts in a highly stylized way along two dimensions: fungibility and trading

protocol. Standardized contracts are traded competitively on a centralized market with an

organized trading protocol. As a consequence, they can be forced to be cleared through a

CCP.3 Such contracts are fungible: The contract can be easily replaced by the same contract

at any given point in time through a market trade. Once contracts, however, are customized

to the needs of their counterparties, they are less fungible and can escape any mandatory

clearing. Since these contracts are customized, there is no formal market where they can

be traded or replaced. Also, their specific terms are bilaterally negotiated directly between

the counterparties. The degree of customization is thus endogenous, making it extremely

difficult to mandate CCP clearing as part of the trading arrangement.4 Hence, CCP clearing

of OTC transactions needs to recognize the limited fungibility of contracts and the need to

provide incentives for their formal clearing.5

When financial contracts are standardized, we find that an efficient allocation is implemented

when agents trade on a centralized exchange, where a mutualized CCP novates trade. Nova-

tion diversifies counterparty risk, thus reducing the need for collateral, while mutualization

insures against the cost of default. Therefore, the CCP can guarantee the full terms of

trade. This explains the prevalence of such clearing arrangements on formal exchanges. To

the contrary, when contracts are customized, we find that an efficient allocation cannot be

implemented for two reasons. First, the scope for insurance through mutualization is limited

due to a lack of fungibility. Second, the trading protocol (in our case bilateral bargaining)

introduces the inefficiency that – relative to the gains from customization – some counterpar-

ties take on too much default risk, while others take on too little. A revenue-neutral transfer

scheme could improve the allocation by skewing default risk toward trades with larger gains

from customization. But the scheme still needs to give incentives to traders to reveal their

of trade information (see Koeppl, Monnet and Temzelides (2009) and Acharya and Bisin (2009)) – that are
often associated with CCP clearing but need not be performed by a CCP. Leitner (2009) develops a model
of a data warehouse that could be taken up by a CCP.

3For example, once the traders agree to buy or sell, the clearing process automatically sends the contract
to the CCP for novation. As such, the agreement to buy or sell includes the agreement to CCP-clearing.

4Commonly, a distinction is being made between OTC transactions in standardized and customized
contracts. One can argue, however, that any OTC transaction is intrinsically customized as it involves
a bilateral trading environment rather than a centralized exchange. Trading on a centralized exchange is
usually combined with a specific clearing arrangement offered by a clearinghouse. In general, counterparties
can always choose to sufficiently customize a transaction – including the clearing arrangement itself – thereby
effectively preventing mandatory clearing by a CCP for sufficiently standardized assets.

5Kroszner (1999) gives an historical account of how standardization of financial contracts was crucial for
the formation of centralized markets with formal clearing arrangements. As assets became standardized,
they could easily be cleared through a CCP and traders worried less or not at all about counterparty risk.
As a consequence, they could accept anonymous counterparties, which expanded their set of possible trades.
The account, however, is silent on the benefits and effects of customized contracts.
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trades in customized contracts. Interestingly, a CCP can provide such incentives in the form

of gains from diversifying counterparty risk (i.e., novation), thereby improving the allocation

to a second best. Hence, there is room for (limited) CCP clearing of OTC contracts even if

they are customized, albeit for a fundamentally different reason than on a centralized trading

platform.

This yields three important insights for reorganizing OTC markets that go beyond issues

related to systemic risk, standardization, and netting.6 First, mandating formal clearing

for standardized contracts might not be effective to increase transparency: Traders need

incentives to also submit for formal clearing OTC transactions that are easily customized.

CCP clearing can provide incentives for formal clearing as long as it offers enough direct

benefits. Second, these gains are linked to the benefits of novation, which can be offered

by a CCP even for customized contracts, and are not related to netting.7 Third, trading

of customized financial contracts can lead to a misallocation of risk. Introducing a CCP

for OTC trades can improve the allocation by influencing the terms of trade of customized

contracts.

We design a model that allows us to study the economics of clearing in general and that is

inspired by the history of the Chicago Mercantile Exchange operating as a futures exchange

as described by Kroszner (1999). Risk-averse farmers have to decide on how much wheat

to grow before they know the demand for wheat by, say, bakers. The demand for wheat by

bakers is uncertain, however, due to an aggregate demand shock. Therefore, farmers’ income

– and, hence, their consumption – is uncertain. To insure against this income risk, farmers

can trade futures contracts; i.e., they can trade promises to deliver some wheat in the future

at a given price.

However, futures contracts offer only limited insurance when there is a risk of default. In our

model, each farmer has to deal with a single baker that can go bust. If a farmer contracted

with a bankrupt baker, he does not need to deliver his wheat and can still sell it on the spot

market, but at the spot price. As a consequence, a farmer who is trading futures still faces

two types of risk: first, the risk that his counterparty goes bust, and second, the associated

6Formal multilateral netting institutionalizes the tear up and compression of redundant trades that are
often used to offset exposures between counterparties in these markets. The potential for such netting
increases with more standardized contracts. It can reduce systemic risk and achieve savings in collateral
costs but need not be offered within a CCP structure. The failure of Lehman Brothers makes this point clear,
as an emergency round of compressions was quite effectively carried out without having a CCP structure in
place. However, the reestablishment of positions was more difficult, as this involved an allocation of losses
associated with the failure of Lehman as a counterparty (see IMF (2010)).

7Multilateral netting becomes less effective as the degree of customization rises and can even lead to
opportunity costs that outweigh its benefits (see Duffie and Zhu (2009)). Furthermore, if netting reduces
systemic risk, this benefit is not directly enjoyed by the counterparties to the trade.
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price risk of having to sell his wheat in the spot market.

We then study three risk management tools adding them in succession: collateral, novation,

and mutualization of losses. We model collateral as an asset, gold, that bakers can produce

on demand. Posting collateral is costly as it includes a deadweight loss, but it can be seized

if a baker goes bust. The deadweight loss reduces the attractiveness of a futures contract for

bakers and thus the price of a futures contract. Hence, insurance against default through

collateral is costly, and as a consequence, farmers do not fully insure against default.

With novation, a third party – called CCP – becomes the seller of wheat to all bakers.

Hence, while some bakers still go bust, the CCP does not face idiosyncratic default risk as

its position is completely diversified. Therefore, novation eliminates counterparty risk for

farmers by pooling idiosyncratic counterparty risk. As this is costless, the optimal collateral

policy is to require no collateral.8 While novation eliminates counterparty risk, it does not

eliminate the price risk for farmers. When bakers go bust, the CCP still has to sell the

wheat on the spot market at the equilibrium price. Therefore, its revenue also depends on

the spot price, which in turn depends on the aggregate demand for wheat; in other words, the

CCP incurs replacement cost risk that is state-dependent. Because the promised payment

to farmers depends on the CCP revenue, farmers still face the original price risk.

Mutualization of losses, however, eliminates the remaining price risk. Adopting a “survivor-

pays-rule,” the CCP can impose an additional payment from bakers who did not go bust when

wheat was cheap. To make it worthwhile for bakers, the CCP must compensate bakers with

a transfer when wheat is expensive. In this way, the CCP can make its revenue independent

of the aggregate demand shock. In our framework, farmers are then fully insured against the

aggregate uncertainty and are guaranteed to receive the exact value of their futures contract.

Our key result here is that a CCP can lower collateral requirements because it can reduce

risk exposures for market participants more efficiently. This is not due to netting, but due

to diversifying risk (novation) and insuring against it (mutualization).

In the second part of the paper, we address the question of the role for CCP clearing on OTC

markets. Such markets are characterized by customized contracts that are traded bilaterally

and are not fungible in the sense that it is very hard to replace them (extreme replacement

cost risk). We also assume that the gains from customized contracts differ across trades. To

capture these features, we introduce the possibility for farmers to produce special or “exotic”

types of wheat. Bakers now would like to consume both, exotic and plain wheat. Exotic

wheat can only be traded bilaterally as it has to be produced by a farmer to meet the specific

8This certainly seems extreme but is due to default being exogenous. Were defaults endogenous (i.e.,
strategic), it would still be optimal to require some collateral as an incentive device.
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needs of a baker. Importantly, this implies that exotic wheat is not fungible, as only the

individual baker for which the wheat has been produced values it. Hence, if the baker for

which the exotic wheat has been produced goes bust, the wheat cannot be sold in the spot

market. Finally, the gain from customization varies across trades in the sense that the gains

from consuming exotic wheat differs across bakers.

Farmers have to decide between producing either plain wheat (and selling it via a futures

contract) or exotic wheat (and selling it OTC forward). If they trade OTC, they are matched

with a baker. For farmers, the cost of trading OTC is that exotic wheat has no value on

the spot market in case a baker defaults. Hence, farmers will require costly collateral to

insure against default. The benefit of trading OTC is that the farmer makes a take-it-or-

leave-it offer9 to the baker, and therefore, can extract all the baker’s surplus. This means

that farmers will trade OTC with bakers only if the OTC contract generates enough surplus;

i.e., if a baker’s valuation of their exotic wheat is high enough. This gives us a threshold

valuation below which farmers prefer to trade on the futures market and that determines

the relative size of the futures and OTC market.

There are several sources of inefficiencies on the OTC market. First, farmers again face the

risk that their counterparty defaults. A CCP can again alleviate this inefficiency through

novation exactly as in the futures market – by pooling default risk, but across all exotic

wheat. Fungibility, however, restricts now what the CCP can offer. In our stylized setup, it

can only pay out the expected payment from the trade, as any default on a contract implies

an irrecoverable total loss (i.e., the replacement cost risk is extreme). In other words, the

CCP cannot offer insurance against the aggregate cost of default.10 Thus, farmers receive

always less than the negotiated price when the trade is settled by the CCP, independent

of whether their original counterparty defaults or not. Nonetheless, novation makes OTC

trading in exotic wheat more attractive, leading to an increase in its size relative to the

futures market.

Second, the size of each OTC trade need not reflect the valuation of a baker for his particular

exotic wheat. Indeed, in our setup, bilaterally negotiated trades lead to a fixed amount of

wheat produced across trades of exotic wheat. Therefore, given a fixed probability of default,

the default exposure is then also constant across trades. This is inefficient from a social point

of view, as the size of an OTC trade should increase with the gains from customization for

the baker. In other words, it is socially efficient when default risk is skewed toward trades

9Our results are robust to changes in bargaining power.
10More generally, the less fungible the traded contracts are, the higher the replacement cost risk and,

hence, the lower the scope to insure against it via mutualization.
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with high gains from producing exotic wheat. A revenue-neutral transfer scheme can achieve

this by taxing the surplus from matches with high gains and subsidizing matches with low

gains. The intuition for this result is straightforward. A tax or subsidy directly changes

the surplus in the match – and indirectly the bargaining power. Since farmers have market

power to price the contract, they will try to maintain their profit margin by producing

more or less wheat. Somewhat counterintuitively, a tax (subsidy) makes it harder (easier)

to extract surplus and gives farmers incentives to produce more (less) exotic wheat. The

negotiated payment will decrease, however, as it is given by the marginal benefit from the

contract for the buyer. This result holds even when the gains from trading exotic wheat

cannot be directly observed by the CCP. The reason is that our bargaining assumptions lead

to a distribution of surplus where matches with low gains from trading exotic wheat cannot

mimic matches with higher gains.11

A CCP is well placed to implement the transfer scheme. A farmer matched with a baker

needs to have an incentive to reveal its trade but potentially faces a transfer payment.

With novation, the CCP can still induce revelation as it offers savings in collateral costs.

This makes novation an important prerequisite for influencing the allocation of risk in OTC

markets. CCP clearing of OTC trades then contrasts sharply with mutualization of losses

through a CCP in the futures market. The former redistributes default risk by indirectly

influencing the terms of trades to correct an inefficient distribution of default risk across

different trades.12 To the contrary, the “survivor-pays-rule” is state-dependent and does not

influence the terms of trades at all. It is an insurance transfer that allocates default losses

optimally across different states.

We present the model in Section 2, and we analyze optimal trading and clearing arrangements

for standard assets in Section 3. The results on customized assets and OTC trades are

presented in Section 4, that also includes the case with private information. We conclude in

Section 5.

11Interestingly, with private information, the CCP must be able to decline clearing of certain trades in
order to implement the transfer scheme.

12The transfer scheme falls short of achieving full efficiency that would require a direct change in the
distribution of bargaining power for OTC transactions. This could be done via intermediating OTC trades,
which goes beyond the clearing of trades.
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2 The Environment

We describe now a general equilibrium model with incomplete markets. The fact that mar-

kets are incomplete is important as agents will not be able to perfectly insure against two

sources of risk. The first risk arises from an aggregate demand shock leading to price fluctua-

tions, while the second one is related to default on trades, in the sense that some counterparty

will be unable to make good on its promises. This allows us to analyze how a particular

asset structure in combination with clearing arrangements can complete the market.

2.1 Model

The economy has two periods and there are two goods: Gold that is storable and wheat.

There is a measure 1 of farmers that can produce wheat. Producing wheat, however, takes

time: any amount needs to be produced in t = 1 for consumption in t = 2. There are

many possible states in t = 2, which we denote by θ. For simplicity, we represent a farmer’s

preferences by the following expected utility,

U(x (θ) , q) = −q + Eθ [log x (θ)] ,

where x (θ) is the amount of gold consumed at date 2 in state θ and q ≥ 0 is the amount

of wheat produced . We take expectations only over second period utility as no uncertainty

will be resolved at t = 1.

There is also a measure 1/(1 − δ) > 1 of bakers in the economy that can produce gold in

both periods for consumption in t = 2. To introduce the idea of default, we assume that

bakers die with probability δ at the end of t = 1, so that there is only a measure 1 of bakers

alive in t = 2. A baker’s death is a random event that does not depend on the action of the

baker. Again, we assume that a baker’s expected utility takes the following simple form

V (y (θ, θi) , x1, x2 (θ, θi)) = −µx1 + (1 − δ)Eθi,θ [θi log (y (θ, θi)) − x2 (θ, θi)] ,

where the parameter θi is a preference shock for the baker realized in t = 2, y is the amount

of wheat consumed in t = 2, x1 ≥ 0 is the amount of gold produced in the first period, and

x2 is the net production of gold in the second period.13 To capture the idea that it is in

general costly to pledge collateral, we assume that producing gold is more costly in the first

period, i.e., µ > 1. Finally, we model the preference shock θi with the aggregate component

13If x2 < 0, a baker consumes gold in t = 2.

8



θ and an idiosyncratic component εi according to

θi = θ + εi,

where θ is drawn from a distribution F with mean 1 and εi is iid drawn from a distribution

G with mean 0. Therefore, θ denotes the aggregate state in t = 2.

2.2 Trading Frictions

We now discuss the role of some of our assumptions and how they help us in getting to the

idea of a CCP. First, farmers need to produce wheat in the first period, before the realization

of the aggregate demand shock θ. Given their preferences, they will want to insure against

this shock by locking in the price. Full prepayment, however, is costly, but one can trade

futures contracts, in which bakers promise to pay gold against delivery of wheat in the second

period. With full commitment such a promise is credible.

Second, bakers can die, which implies the possibility for default on the futures contract.

Thus, whenever farmers trade with a specific baker in the first period, they face a default

exposure. While being insured against the demand shock, a farmer who writes a futures

contract now faces a default risk that effectively limits this insurance.

Third, an individual baker’s utility for wheat is realized only in the second period. So, at

the time a baker purchases a futures contract, he does not yet know his exact preference for

wheat. This creates the need for bakers to trade among themselves, since there are gains

from trade between bakers with high and low idiosyncratic shocks. This gives us a rationale

to introduce a spot market in period 2.

To summarize, our environment formalizes the fundamental frictions that will allow us to

endogenize the need for futures contracts and proper clearing arrangements. Spot trading

of wheat can allocate wheat across surviving bakers efficiently. A futures contract between

an individual farmer and baker can partially insure against the aggregate demand shock but

exposes farmers to counterparty default. Collateral in form of prepayment by gold that has

been produced early can insure against such default but is costly. This provides a rationale

for clearing arrangements that can provide cheaper and better insurance against default

risk. In the next section, we look at different market mechanisms and how close they fare in

achieving a benchmark, which is the first-best allocation without trading frictions.
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2.3 The First-Best Allocation

As a benchmark for our environment, we consider a social welfare function that gives equal

weight to all farmers and bakers. A (symmetric) first best is described by an allocation of

gold (x∗, x∗

1, x
∗

2) and an allocation of wheat (q∗, y∗) across farmers and bakers, measurable

with respect to the realized shocks. Given any realization of θi across bakers, it will be

sufficient to only use the aggregate shock θ to define the allocation of gold across farmers;

therefore we denote it by x∗(θ). Similarly, the optimal allocation for bakers will depend

only on the aggregate shock and a baker’s idiosyncratic shock; hence we simply denote it by

x∗

2(θ, θi) and y∗(θ, θi) respectively. All other allocations cannot depend on the realization of

the shocks in period t = 2. A first-best allocation solves the following problem

max log (x(θ)) − q +

∫

θi log (y(θ, θi)) − x2(θ, θi) −
1

1 − δ
µx1dF × G

subject to
∫

y(θ, θi)dG ≤ q for all θ (1)

x(θ) ≤

∫

x1 + x2(θ, θi)dG for all θ. (2)

The objective function takes into account that some of the bakers will die after the first

period. The constraints (1) and (2) are resource constraints for the consumption of wheat

and gold for any given realization of the aggregate shock.

Consumption of gold takes place only in the second period, and it is inefficient to produce gold

early on, as µ > 1 and δ > 0. Hence, the efficient allocation has no early production of gold,

x∗

1 = 0. Also, the strict concavity of the farmers’ utility function from their consumption of

gold implies that it is optimal to insure farmers perfectly against the aggregate demand shock.

Similarly, our assumption on preferences implies that bakers’ consumption is proportional to

his realized preference for wheat. It is straightforward to verify that the optimal allocation

satisfies x∗(θ) = 1, q∗ = 1 and y∗(θ, θi) = θi/θ with x∗

2(θ, θi) being indeterminate.

3 Efficient Trading and Clearing Arrangements

3.1 Spot Market

We assume first that there is only a perfectly competitive market in t = 2, where bakers can

purchase wheat from farmers against gold. We call this market the spot market, because in
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this market any trade is immediately settled with gold and each unit of wheat costs p(θ)

units of gold. Wheat is produced in the first period so that the quantity of wheat q available

later on is fixed.

The problem of a baker entering the spot market with wealth equal to ω units of gold is then

Ṽ (ω) = max
y,x2

θi log (y) − x2 (3)

subject to

p (θ) y ≤ x2 + ω.

Since the budget constraint will hold with equality, we can rewrite this problem as

Ṽ (ω) = ω + max
y

θi log (y) − p (θ) y.

Hence, the demand of bakers is independent of initial wealth ω. Since gold is more expensive

to produce in t = 1, bakers will not produce any gold early on. This implies that we can set

ω = 0.

We now turn to the problem of farmers in the spot market. Farmers have q units of wheat to

sell. Since farmers do not value wheat in the second period, they will sell all wheat against

gold. For each unit, they get p(θ) so that they can consume p(θ)q units of gold. Farmers then

choose their initial investment in wheat to maximize their expected payoff, taking as given

the spot price of wheat, p(θ) in t = 2. Note that a farmer is small; therefore his individual

production decision does not affect the equilibrium spot price. He thus solves

max
q

−q +

∫

log (p(θ)q) dF (θ) (4)

with solution q = 1 for each farmer.

It will be convenient later on to define a spot market equilibrium in the following way. For an

aggregate supply of wheat Q, a spot market equilibrium in t = 2 is given by a price schedule

{p (θ)}θ and an allocation for bakers (y(θ, θi), x2(θ, θi)) for each state θ, such that (i) taking

p(θ) as given, bakers choose y(θ, θi) and x2(θ, θi) to solve (3) with ω = 0 and (ii) the market

for wheat clears for all θ,
∫

y(θ, θi)dG(εi) = Q.

The solution to the baker’s problem is given by

y(θi) = θi/p (θ) , (5)
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with x2 (θ, θi) = p(θ)y(θi). Using market clearing and the fact that in equilibrium Q = q = 1,

we obtain the equilibrium price for all θ,

p (θ) = θ/Q = θ, (6)

Note that our assumptions on preferences imply that both the equilibrium quantity produced

by farmers q = 1 and the equilibrium spot price p(θ) = θ will remain unchanged when we

vary the market structure later on.

A spot market for wheat in t = 2 suffices to allocate wheat optimally across bakers. Their

individual consumption of wheat and the expected payment are first best, since we have
∫

py(θi)dG(εi) = 1. Even though the bakers’ aggregate consumption stays constant, the

equilibrium spot price moves one for one with the aggregate demand shock θ. This implies

immediately that farmers’ consumption of gold depends on θ. Hence, they are not insured

against aggregate demand fluctuations. Replacing the equilibrium allocation, ex-ante welfare

is given by

W s =

∫

log (θ) dF (θ) − 1 +

∫

θi log

(

θi

θ

)

− θidF × G. (7)

3.2 Futures Market

On top of the spot market in t = 2, we now add a futures market in the first period where

agents trade futures contracts. A futures contract is basically a promise to deliver one unit

of wheat at t = 2 in exchange for gold.

We make the assumption that a farmer can trade only with a single baker. More precisely,

we postulate that bakers can acquire wheat either by trading in the futures market in t = 1

or by waiting and trading in the spot market in t = 2. Therefore, there will be trade on the

futures market only if bakers are at least as well off as trading on the spot market. If this

is the case, we will assume that a random measure 1 of bakers is selected to participate in

the futures market. In a symmetric equilibrium, all farmers will supply the same quantity

of futures contracts, and bakers will demand the same quantity. Therefore, we can assume

that one farmer is trading with a single baker. Bakers who are not selected to trade in the

futures market will buy wheat in the spot market.

This implies that a farmer is exposed to counterparty risk, as any single baker dies with

probability δ > 0. In this case, we say there is default.14 To insure against the risk of

14We choose to have an exogenous default rate because endogenous default introduces intricacies that
would blur the main message of this paper. The case with endogenous default is available from the authors
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Period 2

Period 1 Investment q = 1

pf

δ default (1 − δ) no default

Spot Market Settlement of Futures

collateral k

Futures Market pf = 1 + (1 − µ)k

p(θ) + k

Figure 1: Market Structure – Spot and Futures

default, farmers who are trading a futures contract may want to require bakers to post some

gold as collateral t = 1. We let k denote the required collateral per unit of wheat traded

forward.

A futures contract is a pair (pf , k), with the understanding that one contract entitles the

owner to one unit of wheat at a price pf with the requirement to pledge k units of collateral.

There is then no difference between pledging collateral and prepaying so that one can think

of it as settling an obligation by netting collateral with the final payment. In case of default,

farmers are not required to honor their obligation from the futures contract to deliver wheat

so that they can still sell it on the spot market. Figure 1 depicts the market structure with

collateral.

If a baker purchases qb units of a futures contract (pf , k), he has a claim to qb units of

wheat in t = 2, subject to paying the futures price pf minus the collateral k he has already

pledged. Since he can also sell these units on the spot market at price p(θ), his net wealth

is given by ω = (p(θ) + k − pf) qb. Using the fact that his demand on the spot market y(θi)

is independent of his wealth position (see equation (5)), a baker will choose the number of

contracts qb to maximize his expected revenue, or

Ṽ f (pf , k) = max
qb

−µkqb + (1 − δ)

∫

(p(θ) + k − pf) qbdF (θ), (8)

where the first term expresses the additional costs of securing the trade with collateral when

purchasing wheat forward.

Farmers can either sell their wheat in the futures market or in the spot market. However, we

upon request.
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can show that they prefer to lock in the price by selling their entire production in the futures

market. If farmers sell q futures contracts, q is also the amount of wheat available in t = 2.

If their counterparty does not default, the revenue from selling q units of futures contracts

is given by pfq. To the contrary, a farmer who faces default keeps the posted collateral kq

and sells his wheat on the spot market. Hence, he obtains a state-dependent revenue equal

to (p(θ) + k) q, where p(θ) is the equilibrium spot price. The farmer’s problem in period 1

is then given by

max
q

−q + (1 − δ) log (pfq) + δ

∫

log ((p (θ) + k) q) dF (θ). (9)

Given a spot market price schedule {p(θ)}θ, a futures market equilibrium is a futures contract

(pf , k) and supply and demand of such contracts, such that (i) the demand qb solves (8), (ii)

the supply q solves (9), (iii) the market clears qb = q, and (iv) the price schedule {p(θ)}θ is

a spot equilibrium price schedule given q.

To solve for the futures contract price pf , bakers must be indifferent between trading spot

and trading futures. This leads to the following no-arbitrage pricing condition

pf =

∫

p(θ)dF (θ) −

(

µ

1 − δ
− 1

)

k. (10)

Arbitrage pricing implies that bakers need to be fully compensated for the cost of posting

collateral, which is composed of the direct cost µ > 1 and the indirect cost that collateral

is lost for the baker if he dies (δ > 0). Hence, farmers bear all the cost of collateral, as

the futures price declines for any k. Moreover, given the equilibrium price (10), bakers are

indifferent between pledging a high amount of collateral and a low price, or inversely.

Turning to the supply of futures contract, the solution to (9) is again given by q = 1. Since

only a measure 1 of bakers can participate in the futures market, market clearing implies

immediately that qb = q = 1 independent of the collateral policy.15 Hence, the aggregate

supply of wheat has not changed relative to the equilibrium with only a spot market. All

wheat is still allocated among bakers through spot trades in t = 2, yielding again the

15Since bakers are indifferent between trading in futures or only in the spot market, in equilibrium some
bakers will not engage in futures transactions. Furthermore, our preference structure makes the amount
sold on the futures market independent of the price since the log function implies that the substitution
and revenue effects cancel each other. With a more general utility function, the amount produced on the
futures market would be higher than if production was only traded spot, as a futures contract offers partial
insurance.
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equilibrium spot price schedule p(θ) = θ. Thus, in equilibrium, we obtain

pf = 1 + (1 − µ(δ))k, (11)

where we have defined the effective cost of collateral for bakers by µ(δ) = µ/(1− δ) > 1. As

bakers are fully reimbursed for the collateral cost, welfare is given by

W f = (1 − δ) log (1 + (1 − µ(δ)) k) + δ

∫

log (θ + k) dF (θ) − 1 +

∫

θi log

(

θi

θ

)

− θidF ×G,

(12)

where the first term is the farmers’ utility from a performing futures contract (one where

the baker is still alive) and the second from seizing collateral and selling wheat in the spot

market when a counterparty defaults.

The equilibrium is parametrized by the amount of collateral k. To find the optimal collateral

policy, we assume that bakers compete. Therefore, the optimal collateral policy maximizes

farmers’ welfare (9) given (11). Using collateral to get insurance is costly. Still, farmers

prefer using collateralized futures contract than only trading on the spot market as long

as the collateral cost is low or the default probability is high. The proof of this result is

relegated to the Appendix.

Proposition 1. Spot and futures markets with collateral (Pareto) dominate a spot market

alone. The equilibrium price on the futures market equals the expected spot price minus

collateral costs, i.e., pk
f = 1 + (1 − µ(δ))k ≤ 1.

It is never optimal for farmers to fully insure against default through collateral. The optimal

collateral policy is k∗ = 0, if and only if µ ≥ µ(δ) > 1, where ∂µ/∂δ > 0 for all δ > 0.

A futures market partially insures farmers against the aggregate price risk of selling wheat on

the spot market. The insurance is imperfect, as farmers face the risk that their counterparty

defaults with probability δ > 0. Then, farmers have to sell their wheat on the spot market

assuming risk in their consumption of gold. This gives rise to two sources of inefficiency

for farmers. First, default reintroduces aggregate price risk in the futures contract. And

second, farmers suffer from a lack of diversification, as they can only trade with a specific

counterparty. One way to limit these risks is to require collateral.

Somewhat surprisingly, farmers never fully collateralize their trades. But the intuition is

simple. In case of default, farmers can still sell their production spot in period 2. If farmers

were to fully collateralize – i.e., require full prepayment (k = pf ) – they would enjoy too
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much consumption in default states at the expense of lower consumption in nondefault

states. Therefore, they prefer to undercollateralize their exposures. This implies that costly

collateral is not a perfect substitute for insurance. Hence, we look next at better clearing

arrangements offered through CCP clearing.

3.3 Central Counterparty Clearing

We now introduce the notion of a CCP. This is a third party such as a clearing agent or a

clearinghouse that clears all trades.16 While the CCP takes the terms of trades as given, it

can affect them indirectly by modifying the trading environment, such as setting additional

collateral requirements.

3.3.1 Novation

Novation is a mechanism whereby the CCP becomes the buyer to every seller and the seller

to every buyer. More precisely, the original futures contract between a farmer and a baker

is superseded by two contracts: One between the farmer and the CCP and one between the

CCP and the baker. This means that farmers and bakers are now facing only the CCP in the

second period when settling futures contracts. Without loss of generality, we assume that

only the CCP can set and administer collateral requirements. Naturally, these requirements

will change the price of a futures contract, which we now denote by pn
f .

With novation, given q futures contracts (pn
f , k) have been signed in equilibrium, the revenue

of the CCP – and hence its payout to the farmers – in t = 2 is

Rn(θ) = kq +
(

pn
f − k

)

(1 − δ)q + p(θ)δq. (13)

In this period, the CCP receives all payments from bakers and all wheat from farmers and

uses these proceeds to fulfill the obligations from the futures contracts.17 It can also seize the

16In its most primitive function, it could simply be a collateral storage facility. A collateral storage facility
might be necessary if farmers cannot commit to make the necessary investment in wheat when they sell
wheat forward against collateral. The third party then holds the collateral in escrow until the quantity
of wheat promised forward is released to the baker. Hence, with a two-sided strategic default problem, a
neutral third party that stores collateral is essential for managing default risk, as has been pointed out in a
companion paper (see Koeppl and Monnet, 2008). See also Mattesini, Monnet and Wright (2009). Rather
than making this notion precise in this framework, we abstract from this issue and assume that farmers can
perfectly commit.

17Novation is not a guarantee. In order for it to be a guarantee, we would have to require that the CCP
satisfies a solvency constraint. In other words, the CCP would guarantee to settle all trades at the price pn

f

16



collateral of all bakers that default on their futures trade. The first term in (13) is all of the

collateral that the CCP collects from bakers in the first period, where we have used market

clearing qb = q. The second term is the overall gold payments – net of collateral postings

– made by nondefaulting bakers for settling their futures contracts. In exchange, the CCP

delivers a total of (1 − δ)q units of wheat. Finally, the CCP can sell the remaining amount

of wheat δq on the spot market at price p(θ), which is the final term. The CCP’s revenue is

thus state-dependent, as the spot price of wheat varies with the aggregate demand shock.

An equilibrium with novation is a futures market equilibrium where instead of (9), farmers

solve

max
q

−q + E log (Rn(θ)) .

In the symmetric equilibrium,18 we have that qb = q = 1 and, hence, each farmer receives a

payment equal to

Rn (θ) = pn
f + δ

(

p(θ) + k − pn
f

)

. (14)

By no-arbitrage, the equilibrium futures price needs to make bakers indifferent between

trading in the futures markets or only on the spot market. Hence, the equilibrium price is

unaffected by novation and it is given by

pn
f = 1 + (1 − µ (δ)) k. (15)

Replacing this in the revenue equation (14), we obtain that farmer’s ex-ante utility is given

by

log
(

(1 − δ) (1 + (1 − µ (δ))k) + δ (θ + k)
)

− 1. (16)

at which farmers sold wheat forward. This would pin down a collateral requirement, again influencing the
price. Our approach is more general as it also allows for a partial guarantee.

18The revenue is expressed for a symmetric equilibrium where all farmers produce the same quantity q.
Given all other farmers produce q, it is not beneficial for a farmer to produce something else other than q

when the terms of the futures contract are (pn
f , k). To see this, suppose farmer i ∈ [0, 1] produces qi. Then

the revenue of the CCP is

Rn(θ) = k

∫

qidi +
(

pn
f − k

)

(1 − δ)

∫

qidi + p(θ)δ

∫

qidi.

Consider the rule for the CCP to divide its revenue pro rata among farmers so that farmer i gets

R(qi) =
qi

∫

qidi
Rn (θ) .

Given this payment from the CCP, a farmer’s production choice is independent of all other farmer’s choices.
Indeed, a farmer would solve

max
qi

−qi +

∫

log

(

qi
∫

qidi
Rn (θ)

)

dF

with the solution again being qi = 1 for all i.
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Given collateral k, risk-averse farmers obtain the average revenue across all futures trades.

Novation thus acts as a substitute for diversification ex-ante. If farmers cannot perfectly

diversify counterparty risk upfront, they can do so with a CCP that averages this exposure.

Since the bakers’ payoff is independent of the collateral posted, the optimal collateral policy

maximizes a farmer’s expected payoff. From equation (16), it is straightforward to see that

average consumption for farmers decreases with k.

Proposition 2. Novation perfectly diversifies counterparty risk. The optimal collateral pol-

icy with novation is then k∗ = 0.

The intuition for this result is straightforward. Collateral is costly to produce, and these

costs have to be borne entirely by farmers. Hence, collateral is a costly insurance device

against counterparty risk. Novation, to the contrary, simply pools all the counterparty

risk of individual farmers, thereby perfectly diversifying it. Requiring collateral would just

lower the revenue in all states without providing any additional insurance neither against

idiosyncratic default risk, nor against the aggregate price risk.19

Novation is not equivalent to guaranteeing farmers the futures price pn
f , as the revenue of the

CCP fluctuates with the price risk θ. Still, novation benefits farmers by providing savings

on collateral – implying a higher futures price (pn
f > pf ) – and perfect diversification of

counterparty risk, even though there is always some default in the aggregate. However,

novation alone cannot deliver the first-best allocation. The CCP’s revenue depends on the

spot price, as it needs to sell the wheat from defaulted trades. There is thus still some room

to insure farmers against the aggregate price risk.

3.3.2 Novation and Mutualization

We now introduce mutualization of losses. When losses are mutualized, surviving bakers

pay (or receive) an additional fee φ(θ) to the CCP, which can depend on the aggregate state

of the economy. We denote by pm
f the price of the futures contract with mutualization and

again allow the CCP to request collateral k for any unit of wheat traded on the futures

market. An equilibrium with novation and mutualization is defined as an equilibrium with

19With endogenous default, it is optimal to impose some collateral requirement. The reason is that
collateral acts as an incentive device to lower default. The derivation is available upon request from the
authors. Still, novation leads to a reduction in the optimal collateral requirement.
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novation where φ (θ) 6= 0 for some θ. Bakers choose to trade futures contracts according to

max
qb

−µkqb + (1 − δ)

∫

(

p(θ) + k − pm
f − φ(θ)

)

qbdF (θ), (17)

where the state-dependent fee schedule φ(θ) now influences the wealth of bakers. The no-

arbitrage condition then gives

pm
f = 1 + (1 − µ(δ))k −

∫

φ(θ)dF (θ). (18)

where we have used the spot price p(θ) = θ. The futures price reflects the expected costs of

the mutualization scheme φ (θ) for bakers. Using the fact that the total production of wheat

is sold on the futures market and that farmers will choose the same production level q = 1,20

the revenue of the CCP is given by

Rm(θ) = (1 − δ)pm
f + δ (p(θ) + k) + (1 − δ)φ(θ). (19)

The CCP’s revenue is composed of three terms. The first two terms are due to the CCP

novating futures contracts. As in the previous section, the CCP receives the payment pm
f

from nondefaulting bakers. Also, the CCP can sell the wheat that was due to be transferred

to defaulting bakers on the spot market for the price p (θ), while still keeping the collateral

they pledged. Finally, the third term is the additional payment that bakers who have not

defaulted make to the CCP.

We now construct a fee schedule φ(θ) such that (i) Rm(θ) = 1, (ii) k = 0, and (iii)
∫

φ(θ)dF (θ) = 0. Given such a fee schedule, the CCP can fully insure farmers – at the

expected fair price of pm
f = 1 for producing q = 1 – while not relying on costly collateral

at all to safeguard against default.21 As the mutualization fee averages to zero, bakers are

indifferent in period 1 in participating in a futures market operated by a mutualized CCP

20The argument for symmetric production is similar to the one for novation.
21Indeed, if k > 0, one can never ensure a constant payment across states θ of at least 1. Integrating the

revenue equation with respect to the aggregate shock yields

∫

Rm(θ)dF (θ) = 1 + k (1 − µ) < 1.

Hence, for some state the aggregate revenue must be less than 1. More generally, one can design a fee
structure with constant revenue for any given collateral level and show that given this fee structure, it is
optimal to impose no collateral requirement.
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and one that is not. Setting Rm(θ) = 1 and k = 0, we obtain from the revenue equation (19)

φ(θ) =
δ(1 − θ)

1 − δ
. (20)

Given this fee schedule, we obtain that the futures price is again the expected spot price

pm
f =

∫

p(θ)dF (θ) = 1. (21)

Since there is no expected transfers between bakers and farmers, the futures price does not

adjust at all and equals the fixed payment Rm(θ) = 1 from the CCP to a farmer for selling

wheat forward. The transfer schedule implies that for θ < 1 bakers that have not defaulted

must pay more than the agreed futures price, while they pay less whenever θ > 1. Hence,

mutualization guarantees a fixed payment that enables bakers to perfectly insure farmers

against the aggregate price risk.

Proposition 3. Novation and mutualization of losses implement the efficient allocation

through trading on futures and spot markets.

To summarize, futures markets can allow for a better allocation of price risk. However, al-

locating this risk is imperfect whenever there is also counterparty risk: default reintroduces

price risk into futures contracts. Clearing arrangements help deal with this counterparty

risk. Novation improves the allocation by diversifying counterparty risk but does not insure

against it. Mutualization of losses provides such insurance. Importantly, these clearing ar-

rangements, which indirectly influence the terms of trades, do not directly alter the incentives

to trade.

4 Over-the-Counter Markets

While a CCP can achieve the first-best allocation when products are standardized and traded

on a centralized exchange, how would it fare when products are specialized and traded over

the counter? To answer this question, we now introduce OTC trading, as originating from

the demand for differentiated products that cannot be traded centrally. Hence, the trading

environment is linked to the type of product being traded and cannot be changed. In the

model, aside from plain wheat, each baker can now also demand a special type of wheat

(called exotic) which only he can consume. We use exotic wheat as a metaphor for those

financial contracts that are designed to fulfill the specific needs of the contract’s holder.
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4.1 The Model

The environment is the same as before except for that there are now two types of wheat:

Plain and exotic. Within the type of exotic wheat, there are as many varieties of wheat as

there are bakers: Each baker likes to consume only his variety of exotic wheat. Farmers need

to specialize in their production. They can produce either plain wheat or some variety of

exotic wheat, but not both. We assume that farmers are as good in producing plain wheat

as exotic wheat, so that their preferences are represented by

U(x (θ) , q, s) = −q − s + Eθ [log x (θ)]

where s is the amount of any exotic wheat they produce for a specific baker. Since farmers

have to specialize, we require that sisj = 0 for any i 6= j and qsi = 0 for any i where si is

the production for a specific baker.

The preferences of baker i over general and exotic wheat are given by

V (y (θ, θi) , si, x1, x2 (θ, θi)) = −µx1 + (1 − δ)Eθi,θ [θi log (y (θ, θi)) + σv(si) − x2 (θ, θi)] ,

where v is concave, v(0) = 0, v′(0) = ∞ and θi is again a preference shock in t = 2. We

assume that σ ∈ [σ, σ] is distributed across bakers according to some distribution H . It

is a fixed, observable ex-ante characteristic of a baker and expresses how much a baker

likes his type of exotic wheat relative to general wheat. It thus describes the gains from

customization. We analyze the case in which σ is private information in Section 4.7 below.

An important feature of our setup is that bakers still value plain wheat, even if they consume

exotic wheat. More precisely, while bakers can do without exotic wheat, i.e., si = 0 is

possible, they cannot do without plain wheat. Therefore, all bakers will want to obtain some

plain wheat – either on the futures market in the first period or in the spot market in second

period – while some bakers may not consume their exotic wheat.

To formalize bilateral OTC trading in exotic wheat, we employ a model of a one-sided search

in which farmers and bakers bargain over trading exotic wheat.22 The sequence of events

is as follows. Each farmer is randomly matched with exactly one baker. We assume for

simplicity that the farmers make a take-it-or-leave-it offer to the baker that specifies a price

pi, a contract size si, and a collateral requirement ki.
23 If the baker accepts the offer, the

22Trading exotic wheat in a centralized market with Walrasian pricing is impossible, as only one baker
likes a type of exotic wheat.

23In the Appendix, we briefly discuss our results with more general Nash bargaining.
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farmer produces the exotic wheat for the baker, which is delivered in t = 2. If the baker

rejects it, the farmer moves on to trade on the competitive futures market, where a CCP

operates with novation and mutualization in place, as analyzed in the previous section.24

There is still a spot market for plain wheat in t = 2, where all bakers can purchase such

wheat against gold.

Once again, let us stress that a baker likes only his type of exotic wheat. Since exotic wheat

is special to only one baker, it is not worth anything to any other baker. Hence, there is no

value for this wheat on the spot market. In other words, it is not fungible. This introduces

extreme price risk into producing exotic wheat, as it cannot be sold after default on the

market.25

4.2 OTC Trading and Equilibrium

As we established earlier, equation (5) implies that a baker’s demand for plain wheat in the

spot market depends only on the spot price p(θ) and is not influenced by trading exotic wheat.

Furthermore, since bakers who access the futures market do not consume exotic wheat,

their problem on the futures market is as described previously. Therefore, futures contracts

continue to be priced by no-arbitrage so that a baker is indifferent between trading on the

spot market or in the futures market. Also, since a CCP is operating under novation and

mutualization on the futures market, we know that k = 0. Therefore, given the equilibrium

futures contract (pf , 0), a baker accepts an OTC offer (si, pi, ki), if and only if

−µki + (1 − δ)

[

σv(si) − (pi − ki) +

∫

Ṽ (0)dF × G

]

≥ (1 − δ)

∫

Ṽ (0)dF × dG, (22)

If the baker accepts the offer, a baker needs to pledge collateral ki in t = 1. If he is still alive

in the second period, the baker obtains si units of exotic wheat but incurs the cost of paying

the remaining pi − ki units of gold. Finally, the baker can acquire plain wheat on the spot

market with expected value being EṼ (0). If he rejects the offer, the baker can either trade

on the futures market in which case he gets an expected payoff Ṽ f , or on the spot market.

So, no arbitrage pricing yields Ṽ f = (1 − δ)
∫

Ṽ (0)dF × dG.

24If there is a measure n of farmers in the futures market, a measure n of bakers is randomly selected to
participate in the futures market – among those bakers are those who were not matched with a farmer and
those who rejected an offer. This is feasible as there are always more bakers than farmers that do not trade
in exotic wheat.

25This is an extreme assumption that could be weakened by allowing exotic wheat to be sold as general
wheat in the spot market at a discount λ ∈ (0, 1).
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The equilibrium contract is then given by the farmer’s take-it-or-leave-it offer which solves

max
(si,pi,ki)

−si + (1 − δ) log (pi) + δ log (ki)

subject to

−µki + (1 − δ) [σv(si) − (pi − ki)] ≥ 0.

Here, with probability δ, the baker defaults leaving the farmer with only his collateral, as

exotic wheat is worthless and the farmer had to specialize his production. The first-order

conditions yield

v′(si) = v(si) (23)

ki =
δ

1 − δ

pi

µ(δ) − 1
(24)

pi = (1 − δ)σv′(si) (25)

where the last equation follows from the participation constraint of bakers.

Let s̄ be the solution to equation (23). It is independent of σ, the surplus generated from

producing exotic wheat.26 Farmers use the price to extract all of the baker’s expected surplus

from consuming exotic wheat. To ensure participation of farmers in the OTC market, their

payoff from trading OTC must be higher than their payoff from selling a futures contract

for plain wheat. If there is a fraction n of farmers producing plain wheat, this participation

constraint is given by

1 − s̄ + log
(

(1 − δ)σv′(s̄)
)

+ δ log

(

δ

(1 − δ)(µ(δ) − 1)

)

≥ log

(
∫

Rm(θ)

n
dF (θ)

)

(26)

where Rm(θ)/n is defined by the CCP’s revenue as given in equation (19). Since only a

fraction n of farmers is active on the futures market, we have that aggregate production is

nq, and since the production of plain wheat is q = 1, the aggregate supply of wheat is n. The

spot price is then given by p(θ) = θ/n, and arbitrage pricing yields a futures price equal to

pf = 1/n. This implies again that the CCP using novation and mutualization on the futures

market can ensure Rm(θ) = 1, and we obtain that farmers make an offer to produce exotic

wheat if and only if the baker’s valuation σ satisfies

1 − s̄ + log
(

(1 − δ)σv′(s̄)
)

+ δ log

(

δ

(1 − δ)(µ(δ) − 1)

)

≥ log

(

1

n

)

. (27)

26This is an implication of the distribution of bargaining power and log-utility. As discussed in the
Appendix, it does not influence our results.
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Therefore, there is a threshold σ̂(n) below which farmers prefer to produce plain wheat on

the futures market. This implies that the number of OTC trades is equal to the number of

bakers with σ above the threshold σ̂(n) that are matched with a farmer. Hence, we have

that

n = 1 − min

{

1 − H(σ̂(n))

(1 − δ)
, 1

}

(28)

where σ̂(n) satisfies equation (27) with equality.

Finding an equilibrium amounts to finding a fixed point n∗ of equation (28). When n =

0, there is no production of plain wheat, and the spot price goes to infinity. Hence, in

equilibrium there always must be some production of plain wheat. To have OTC trades

in equilibrium, we simply need to require that a farmer being matched with the highest σ

always prefers to produce exotic wheat.27

Proposition 4. An equilibrium with OTC trades exists if and only if

1 − s̄ + log
(

(1 − δ)σ̄v′(s̄)
)

+ δ log

(

δ

(1 − δ)(µ(δ) − 1)

)

> 0.

Figure 2 summarizes the payoff in the equilibrium allocation for farmers. Below the equilib-

rium threshold σ̂, farmers produce plain wheat and sell it in the futures market to obtain

the payoff u (pf (σ̂)). All other farmers produce the same quantity s(σ) = s̄ of exotic wheat

but extract increasingly more surplus as prices increase with σ. The farmers’ pay-offs from

OTC trades are thus increasing in σ. Note that farmers on the OTC market choose to bear

the default risk associated with their counterparty. Again, this suggests that there can be

gains from employing CCP clearing.

4.3 Efficient Allocations on the OTC Market

In order to evaluate the gains from CCP clearing on the OTC market, we next establish two

different benchmarks that represent constrained efficient allocations. In the first benchmark,

a planner is constrained by feasibility and participation constraints only. In the second

benchmark, the planner is in addition constrained by the fact that farmers should receive all

the surplus from the match.

27If we had assumed a futures market without CCP clearing, the value of the outside option for farmers to
produce plain wheat would be lower. In equilibrium, there would then be more trades in the OTC market.
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Figure 2: Payoff for Farmers – Equilibrium with OTC Market

4.3.1 Efficient Allocations

We take the size of the OTC market as exogenously given, in the sense that there are n

farmers in the futures market and 1−n farmers that produce in the OTC market.28 We give

only an informal discussion of the (constrained) efficient allocation and relegate the analysis

to the Appendix.

The social planning problem takes the matches – parametrized by σ – as given. The planner

can direct farmers to produce a quantity s (σ) of exotic wheat and bakers to pay x2 (σ) units

of gold in those matches. Hence, the planner is restricted in that only one farmer can produce

for one baker: If the farmer produces s(σ) units of exotic wheat, then this is exactly the

consumption of the baker with characteristic σ. The planner, however, can redistribute the

aggregate gold payment
∫ σ̄

σ̂
x2(σ)dH across farmers. Assuming that the planner in charge of

28Qualitatively, the properties of the efficient allocation for the OTC market are independent of its size.
So we abstract from solving the optimal market size for OTC trading. However, this is an important issue, as
introducing CCP clearing for OTC trades will modify the size of the OTC market. An analysis of allocating
trades across markets is available from the authors upon request.
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allocating exotic wheat is utilitarian, his problem is described by29

max
s(σ),x2(σ),x(σ)

∫ σ̄

σ̂

(1 − δ) [σv(s(σ)) − x2(σ)] + log (x(σ)) − s(σ)dH(σ)

subject to
∫ σ̄

σ̂

x(σ)dH(σ) =

∫ σ̄

σ̂

(1 − δ)x2(σ)dH(σ)

(1 − δ) [σv(s(σ)) − x2(σ)] ≥ v̄ for all σ ∈ [σ̂, σ̄]

log (x(σ)) − s(σ) ≥ ū for all σ ∈ [σ̂, σ̄]

s(σ), x2(σ), x(σ) ≥ 0 for all σ ∈ [σ̂, σ̄].

The first constraint is a resource constraint on allocating gold across farmers. The other

constraints are participation constraints on farmers and bakers, and non-negativity restric-

tions.

One can show that – independent of the participation constraints and similar to the OTC

equilibrium – it is always optimal to “price” the OTC contract as

(1 − δ)σv′(s(σ)) = x(σ), (29)

for a given contract size s (σ). Hence, farmers receive consumption according to their

marginal contribution to the match surplus, i.e. the expected marginal benefit from exotic

wheat consumption. If participation does not constrain the planner, the first-best allocation

equates marginal benefits and costs of producing gold and exotic wheat, thus yielding a

constant consumption across all matches, x(σ) = 1. This implies that, while the production

of exotic wheat is increasing in the surplus σ of the match, farmers suffer more production

costs as σ increases but consume the same so that their utility is decreasing in σ.

However, with this allocation, farmers who are in a high surplus match (i.e., large σ) have

more incentives to trade on the futures market; their consumption is fixed, but they have to

produce a lot of exotic wheat, possibly shrinking their utility below ū, the utility they would

obtain on the futures market.30 Figure 3 shows the farmer’s payoff for the efficient allocation

when farmers have the outside option of trading on the futures market. For σ ≥ σ∗, farmers

have an incentive to trade on the futures market, and this outside option drives a wedge

into the production of exotic wheat. Farmers need to be rewarded for higher production of

exotic wheat with higher consumption. Given the “pricing” formula (29), the production of

29We set x1(σ) = 0 so that no baker produces gold in the first period, as this would be inefficient.
30The bakers’ outside option is v̄ = 0, as they do not derive any surplus form trading on the futures market

compared with only trading general wheat in the spot market.
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Figure 3: Farmer’s Payoff – Efficient Allocation

exotic wheat is now given by

log
(

(1 − δ)σv′(s(σ))
)

− s(σ) = ū (30)

where ū is the utility a farmer can obtain when trading on the futures market. Hence, it is

still efficient to have the production of exotic wheat increasing with σ, but less so as farmers

need to be compensated for their production.31

4.3.2 Efficient Allocations with Bargaining

We now also impose the bargaining protocol on the planner. We do so by imposing that the

planner’s allocation must give all the surplus to farmers while bakers receive v̄ = 0.32 The

planner is therefore constrained to give at least as much as what the farmer would get if he

would resort to a bilaterally negotiated contract. The problem of the planner is the same

as before, except that bakers have no surplus, σv(s(σ)) = x2(σ), and the farmers’ outside

31We have that

0 <
ds

dσ
=

1

σ

v′

v′ − v′′
−

1

σ

v′

v′′
.

32Since farmers extract all surplus when trading bilaterally, it must be the case that the surplus bakers
receive is 0. If there were an allocation in the match that would make both the farmer and the baker better
off, the farmer could replicate the allocation and make himself better off by extracting all surplus via a
take-it-or-leave-it offer from the bakers.
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Figure 4: Payoff for Farmers – Efficient Allocation with Bargaining

option is given by

ū = max

{

−s̄ + log ((1 − δ)σv(s̄)) + δ log

(

δ

µ − (1 − δ)

)

,−1 + log

(

1

n

)}

, (31)

which compares the options to trade bilaterally or on the futures market.

Figure 4 shows an efficient allocation when we allow for the option to trade and clear bilat-

erally. When σ is low, the planner again achieves an allocation that depends only on the

outside option to trade in the futures market, with the production of wheat increasing in

this region. But now, the bilateral outside option becomes relevant for high σ. The planner

can still induce a contract size that is higher than the one with an OTC equilibrium, as

the planner can offer insurance against idiosyncratic default risk without having to resort to

collateral. This increases the surplus in matches that can be redistributed to leave farmers

with exactly the same utility as with bilateral clearing. Most important, the contract size,

however, is then independent of σ for high valuations. This is a direct consequence of the

bilateral outside option in equation (31) and our log-linear preference structure.

To summarize, the equilibrium allocation differs from the efficient allocations with bilateral

outside options along two dimensions. First, farmers are not insured against the default risk.

Second, bargaining leads to a constant contract size across some OTC trades, although it is

efficient to have the contract size increase with the surplus from the match as expressed by

σ.
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This suggests again that there is some room for CCP clearing to improve on the equilib-

rium allocation. Novation can diversify the default risk, and mutualization can change the

incentives to negotiate a particular contract size and payment. An important feature here

is that efficient allocations – independent of the assumed outside option – share with the

equilibrium allocation that in any match the payment is equal to the expected marginal

benefit of exotic wheat (see equation (29)). Hence, in order to achieve efficiency gains, CCP

clearing cannot distort bargaining directly. It will have to influence bargaining indirectly by

changing the surplus in a match.

4.4 CCP Clearing for OTC Trades

Suppose there is a CCP for clearing exclusively OTC trades.33 We again assume that the

CCP takes the terms of OTC trades (si, pi, ki) as given but novates the trade, i.e., becomes

the counterparty to every trade. Obviously, novation and mutualization will affect the terms

of the trade, and we will solve for the equilibrium OTC contract in due course. We first

specify what happens when a trade is submitted for clearing.

There are two important differences between clearing OTC contracts and futures contracts

for plain wheat. First, exotic wheat is not fungible; therefore, the CCP cannot obtain any

additional revenue from selling the exotic wheat on a spot market. Second, trading futures

on plain wheat implies automatic CCP clearing, i.e., there is no incentive to clear plain

wheat bilaterally by collateralizing the trade with k > 0. This is not the case on the OTC

market: Consider an OTC trade with terms (si, pi, ki). As shown above, the contracts differ

in the underlying surplus σ and, hence, in their terms. If the CCP were to split its revenue

Rn equally across all farmers, as done when clearing futures, some farmers would get a lower

utility than others and might have no incentive to submit the trade for clearing through the

CCP. This implies that the CCP has to design a payment rule m(si, pi, ki) so that there are

incentives for the farmer and the baker to submit their trade for clearing to the CCP.34 A

payment rule m(·) of the CCP is incentive compatible, if for every OTC trade (si, pi, ki)

−si + log (m(si, pi, ki)) ≥ −s̄ + log
(

(1 − δ)σv′(s̄)
)

+ δ log

(

δ

(1 − δ)(µ(δ) − 1)

)

(32)

where the right-hand side denotes the farmer’s payoff from the optimal OTC contract when

33Koeppl, Monnet, and Temzelides (2009) consider the problem of a CCP operating on two platforms and
possibly cross-subsidizing its operations.

34The problem of providing incentives to submit OTC trades to formal clearing was first pointed out and
modeled by Koeppl, Monnet, and Temzelides (2009).
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clearing bilaterally. Note that while the CCP takes the OTC contract as given, its promised

payment m(·) and additional collateral requirements will alter the negotiated contract.35

Denote the additional collateral requested by the CCP k̃i. Its revenue is then given by

ROTC = (1 − δ)

∫ σ̄

σ̂

(pi + φi)dH(σ) + δ

∫ σ̄

σ̂

(

ki + k̃i

)

dH(σ). (33)

Since exotic wheat is not fungible, there is extreme counterparty risk, causing the revenue for

the CCP to be independent of the aggregate demand shock θ. For an incentive compatible

payment rule m(·), all farmers with a match above the cut-off point σ̂ for OTC trades submit

their trade for clearing with the CCP. The CCP then delivers then all exotic wheat si to

non-defaulting bakers and receives in return the outstanding net payment (pi−ki− k̃i). The

CCP also obtains the collateral pledged for each OTC trade, which is equal to (ki + k̃i). We

again have included an additional (positive or negative) payment for bakers φi, which is now

independent of the aggregate demand shock θ, but can depend on the characteristics σ and

as such is lump-sum. The exotic wheat delivered to the CCP and owed to defaulting bakers

is worthless. The payment rule m(·) is then resource feasible, if and only if

∫ σ̄

σ̂

m(si, pi, ki)dH(σ) = ROTC. (34)

4.5 Gains from Novation

We first consider a payment schedule that insures against the counterparty risk associated

with a specific contract (si, pi, ki). Consider the payment schedule

m(si, pi, ki) = (1 − δ)pi + δ
(

ki + k̃i

)

. (35)

This payment schedule perfectly diversifies the counterparty risk associated with a contract

σi, as it simply pays out all funds the CCP receives, which are the payments from performing

contracts and the collateral seized from contracts in default. Here, we have set φi = 0 for

all σ. In this sense, novation shares only default risk among farmers. It is immediate that

the payment schedule is resource feasible for the CCP. Also, note that novation through the

payment schedule m depends only on the contract terms, but not on σ directly.

Given the payment schedule (35), if the trade is cleared through the CCP, farmers will make

35Here we have required that the payment m (si, pi, ki) fully insures farmers against the risk of default.
This does not have to be the case, but as farmers are risk averse, insurance against counterparty risk saves
the CCP resources.
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a take-it-or-leave-it offer according to

max
(si,pi,ki)

−si + log (m(si, pi, ki)) (36)

subject to

−µ
(

ki + k̃i

)

+ (1 − δ)
[

σv(si) −
(

pi − ki − k̃i

)]

≥ 0 (37)

with first-order conditions given by

−1 + ξ(1 − δ)σiv
′(si) = 0 (38)

1

(1 − δ)pi + δ
(

ki + k̃i

) ≤ ξ (39)

1

(1 − δ)pi + δ
(

ki + k̃i

) ≤ ξ
(1 − δ)(µ(δ) − 1)

δ
, (40)

where ξ is the multiplier on the participation constraint for the baker. Since (1−δ)(µ(δ)−1) >

δ, the last constraint will not hold with equality implying ki = 0. It follows then from the

binding participation constraint that

(1 − δ)σ (v(si) − v′(si)) = (µ − 1)k̃i. (41)

Equation (41) gives us the production of exotic wheat si as a function of collateral re-

quirements by the CCP. Requiring collateral increases insurance but drives a wedge in the

bargaining problem that causes the contract size si to increase with σ.36 When the CCP di-

versifies counterparty risk through novation, it is thus never optimal for the CCP to provide

additional insurance through collateral.

Lemma 5. If the CCP shares default risk through novation, it is optimal to not require

collateral (k̃i = ki = 0).

Proof. The baker has no benefit from CCP clearing. Hence, we look at the utility gains

from collateral for farmers. Taking into account the solution of the bargaining problem, the

farmer receives the payment

m(si, pi, ki) = (1 − δ)σv′(si(k̃i)).

36Hence, having collateral requirements increase with the gains from customization can increase the con-
tract size for such contracts. Similarly, a negative collateral requirement could subsidize a trade, thereby
lowering the contract size si. However, as collateral is costly (µ > 1), providing incentives through it will be
dominated by a tax-transfer scheme.
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The value for a farmer from submitting the contract to the CCP is then given by

−si(k̃i) + log
(

(1 − δ)σv′(si(k̃i))
)

.

Differentiating with respect to si, we obtain

(

−1 +
v′′(si)

v′(si)

)

∂si

∂k̃i

< 0,

since v is strictly concave and the contract size si increases with collateral.

Novation gives farmers an incentive to submit all OTC trades for clearing to the CCP, as

the incentive constraint for clearing (32) is satisfied. The contract size stays unchanged at s̄,

but novation saves collateral costs and guarantees farmers exactly their expected payment

(1 − δ)pi. The negotiated price changes and is now given by

pi = σv′(s̄), (42)

which ensures that farmers obtain the payment of a bilateral contract independent of default.

Hence, they are again perfectly insured against counterparty risk.

The cut-off point for OTC trades σ̂ is now given by

1 − s̄ + log ((1 − δ)σ̂v′(s̄))) = log

(

1

n∗

)

(43)

with n∗ solving (28) where σ(n) = σ̂. Since the value of an OTC trade increases for any

given σ, it must be the case that the cut-off point σ̂ decreases, and as a consequence, there

are more OTC trades in equilibrium. We can thus characterize how the equilibrium on the

OTC market changes with novation through a CCP.

Lemma 6. CCP clearing with novation increases surplus for OTC trades and, therefore,

increases the size of the OTC market, i.e., σ̂ and n∗ decline. This improves farmers’ welfare

but lowers bakers’ welfare, as the futures price increases.

Figure 5 shows that CCP clearing shifts the payoff upwards for farmers that have traded OTC

beforehand. This will draw additional farmers to the OTC market, and as a consequence,

less plain wheat is produced. As this pushes up prices for plain wheat, all farmers gain from
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Figure 5: Payoff for Farmers – CCP for OTC Market with Novation

introducing a CCP on the OTC market. However, this comes at a cost to bakers: They are

worse off because they have to pay more for plain wheat, and they get no extra surplus from

exotic wheat. This creates a possible conflict of interest for introducing CCP clearing on

OTC markets, which we do not analyze further.37

As is evident from Figure 5, with novation alone, CCP clearing cannot achieve an efficient

allocation in the OTC market. The reason is that bargaining leads to socially inefficient

contract sizes across σ. It would be optimal to have the contract size increase with σ. This

implies that farmers in matches with high σ should produce more wheat than farmers in

matches with low σ, at the cost of reducing their payoff.38 We show next that a redistribu-

tive, revenue-neutral transfer scheme that charges additional fees to surviving bakers can

accomplish a better allocation.

4.6 Improving the Allocation of Default Risk

Beyond novation, a CCP now also charges additional fixed fees φ(σ) for clearing – which

can be positive or negative for bakers that do not default, but depend on the (observable)

37While this stark result is somewhat an artifact of farmers extracting all the surplus, it will survive for a
sufficiently unequal distribution of bargaining power.

38This is akin to a standard production externality where high productivity matches do not take into
account how their marginal product compares with the average one in the economy.
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characteristic of the match σ. With such fees, the farmer will offer a contract to solve

max
(si,pi,ki)

−si + log (m(si, pi, ki))

subject to

−µki + (1 − δ) [σv(si) − pi − φ(σ) − ki] ≥ 0.

Suppose the CCP uses the same payment schedule m(·) as with novation (see equation (35)).

The fee φ(σ) leaves the structure of the contract the same but influences the total surplus of

the OTC trade. As the first-order conditions remain the same, it follows immediately from

the participation constraint that the negotiated contract size si solves

σ [v(si) − v′(si)] = φ(σ). (44)

Like collateral with novation, the fee φ(σ) drives a wedge into the choice of the contract

size, but without influencing the pricing of the contract directly. As v is concave, this wedge

causes si to be an increasing function of φ(σ).

Taking the size of the OTC market with novation as given, the CCP can thus influence the

contract size across trades through its fee schedule φ. A positive fee will reduce surplus in a

match. The farmer would like to maintain the surplus by adjusting his offer to produce more

at a lower price. Similarly, a negative fee subsidizes an OTC trade by increasing the surplus.

It is now easier for the farmer to extract surplus, and he will produce less at a higher price.

The CCP, however, faces additional restrictions on the fee schedule φ. Given the optimal

collateral policy k̃i = ki = 0,39 the CCP’s revenue is now given by

ROTC = (1 − δ)

∫ σ̄

σ̂

(pi + φ(σ)) dH(σ). (45)

Hence, the payment schedule m(·) is resource feasible if and only if the fees φ are purely

redistributive (or revenue neutral) across OTC trades,

∫ σ̄

σ̂

φ(σ)dH(σ) = 0. (46)

Furthermore, the CCP needs to induce trades to be submitted for clearing; i.e., the payment

schedule has to be incentive feasible according to equation (32). Finally, we also require

that farmers do not have an incentive to switch to the futures market because φ reduces the

39It is straightforward to verify that the optimal collateral policy with novation is not affected by the
mutualization scheme.
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surplus of a trade. Hence, we require that the schedule φ(σ) induces a contract size such

that

1 − si(φ(σ)) + log
(

(1 − δ)σv′(si(φ(σ)))
)

= log

(

1

n∗

)

, (47)

where we have used the payment schedule m and the fact that the CCP takes the size of

the OTC market with novation as given. Since these restrictions simply mirror the trading

frictions for a planner, there exists a fee schedule φ∗ that implements the constrained efficient

allocation with trading frictions.

Proposition 7. CCP clearing with novation together with a revenue-neutral transfer scheme

achieves the efficient allocation with bargaining (x∗(σ), s∗(σ)) on the OTC market by employ-

ing a payment schedule and fee structure

m∗(si, pi, ki) = (1 − δ)pi

φ∗(σ) = σ [v(s∗(σ)) − v′(s∗(σ))] .

The optimal fee structure φ∗ implies a fixed positive fee for high valuations. As σ declines,

the fee structure eventually declines and becomes negative.

Proof. Let (x∗(σ), s∗(σ)) be the constrained efficient allocation where the planner is restricted

by bargaining. Given the payment schedule m(si, pi, ki) = (1 − δ)pi, the solution to the

bargaining problem has to satisfy

σv′(si) = pi.

and the binding participation constraint. Hence, we can use the price pi and the fee schedule

to obtain

σ [v(s∗(σ)) − v′(s∗(σ))] = φ(σ) = σ [v(si) − v′(si)]

for all σ ∈ [σ̂, σ̄]. By concavity of v, we then have si = s∗(σ) and a payment equal to

(1 − δ)pi = (1 − δ)σv′(s∗i ) = x∗(σ)

for all σ ∈ [σ̂, σ̄]. By construction, the concavity of v implies then that the solution to the

bargaining problem is (x∗(σ), s∗(σ)) for all σ ∈ [σ̂, σ̄].

Hence, it suffices to show that the resource constraint of the CCP is satisfied by the payment

and the fee schedule. Since ki = k̃i = 0, we only need to show that

∫ σ̄

σ̂

φ(σ)dH(σ) = 0.
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We have

∫ σ̄

σ̂

φ(σ)dH(σ) =

∫ σ̄

σ̂

σ [v(s∗(σ)) − v′(s∗(σ))] dH(σ)

=

∫ σ̄

σ̂

σv(s∗(σ))dH(σ) −

∫ σ̄

σ̂

σv′(s∗(σ))dH(σ)

=

∫ σ̄

σ̂

σv(s∗(σ))dH(σ) −

∫ σ̄

σ̂

x∗(σ)

1 − δ
dH(σ)

= 0,

where the last equality follows from the fact that the efficient allocation with bargaining is

resource feasible.

For the shape of φ∗, we need only to characterize how the optimal contract size changes with

σ. For σ high enough, the optimal contract size is given by

s̄ − s∗(σ) + log

(

v′(s∗(σ))

v′(s̄)

)

= δ

(

log

(

δ

δ + (µ − 1)

))

< 0,

which implies that s∗(σ) is constant and larger than the equilibrium value with bilateral

clearing s̄. Hence, φ∗(σ) > 0.

For σ such that the futures market is the relevant outside option of farmers, the relationship

−s∗(σ) + log ((1 − δ)σv′(s∗(σ))) = −1 + log

(

1

n∗

)

implies that s∗(σ) increases with σ, and so does φ∗. Finally, when farmers’ utility declines

with σ, the fact that x∗(σ) = (1−δ)σv′(s∗(σ)) implies that s∗(σ) has to increase as well.

As shown in Figure 6, the optimal fee schedule φ∗ taxes high surplus matches and subsidizes

low surplus ones. Taxing surplus reduces what farmers can extract and, as a consequence,

the contract size will increase. A subsidy of course has exactly the opposite effect. Inter-

estingly, the CCP needs to employ novation in order to change contract sizes. Novation

offers diversification at no cost, while bilateral clearing would require costly collateral as a

substitute for diversifying risk. The CCP is able to use this benefit in order to extract some

of the surplus from the match by imposing a positive fee φ(σ). At this fee, matches with high

valuations are then made indifferent between clearing bilaterally with collateral and clearing

through a CCP, as represented in the figure by the downward shift in farmers’ utility. In

this sense, only novation makes the transfer system feasible for the CCP.
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Figure 6: Payoff for Farmers – CCP for OTC Market with Novation and Mutualization

Since the CCP takes the terms of the bilaterally negotiated contract as given, it cannot

influence the structure of the contract and achieve a better allocation. Here, the key frictions

are that farmers can extract all the surplus from bakers.40 The transfer scheme can therefore

alleviate but not entirely remove the production inefficiency in the OTC market. The CCP

could circumvent this friction and negotiate the terms of trade directly with bakers and

farmers. It would thus assume the role of a dealer that goes well beyond the mere clearing

and settlement of trades. We will discuss this issue further below.

4.7 The Transfer Scheme with Private Information

The CCP’s fee schedule is conditional on the valuation of bakers σ. However, it is unlikely

that this valuation is publicly observable. It seems natural to assume that it is private

information for the parties of the OTC trade. Next we outline the constrained efficient

allocation under private information and relegate details to the Appendix.

The planner now needs to provide incentives for the match to reveal the true valuation σ

of the OTC trade; in other words, we require that a match cannot achieve a higher payoff

by misrepresenting its valuation.41 We use a direct mechanism where agents in a match

40As we argue in the Appendix, this holds more generally whenever the distribution of bargaining power
differs from the weights in the planner’s objective function.

41This relates our problem to the literature on Mirleesian Taxation, in which a planner taxes labor income
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directly report their valuation σ with the planner, imposing an allocation (x2(σ), s(σ)) that

is a function of the reported σ.

We require again that the planner has to respect the bargaining frictions, so that farmers

extract all surplus from trade; in other words, we impose the restriction x2(σ) = σs(σ) for

all σ on the allocations the planner can propose. This restrictions limits what σ a match

can report. If a match with true valuation σ reported σ′ instead, it must be the case that

σv(s(σ′)) − x2(σ
′) ≥ 0 = σ′v(s(σ′)) − x2(σ

′), (48)

since otherwise the baker in the match would receive a negative surplus and, hence, would

prefer to trade on the futures markets. Hence, only reports of lower valuations than the true

one (σ′ ≤ σ) are feasible. Taking into account that bakers never receive any surplus, the

truth-telling constraints for any valuation σ are thus given by

−s(σ) + log (x(σ)) ≥ −s(σ′) + log (x(σ′)) for all σ′ ≤ σ. (49)

This condition implies that in the constrained efficient allocation, the utility for farmers must

be weakly increasing in σ. If it were not, farmers would have an incentive to misrepresent

the valuation of the match.

Still, it is efficient to have a high production of exotic wheat for high valuation matches.

Therefore, the production of exotic wheat should be increasing in σ, but farmers also need to

have a (weakly) increasing payoff in σ. Figure 7 exhibits the constrained efficient allocation.

The planner guarantees a minimum payoff for farmers, but above a threshold σ̃ the bilateral

outside option binds so that the payoff is strictly increasing in σ. It is important to realize

here that while a farmer in a match with valuation σ < σ̃ has an incentive to report any

σ′ > σ̃, such a report is not feasible as the baker would just object to it.

A CCP can implement this constrained efficient allocation as before. Crucially, we assume

that the CCP declines to clear any trade (si, pi) that does not satisfy

pi = σv′(s(σ)) (50)

for some σ ∈ [σ̂, σ̄]. This restricts the possibilities for OTC trades to misrepresent their

valuation when submitting it for CCP clearing.42 Gains from novation can be achieved with

with output being observable, but productivity being private information.
42This then corresponds to a direct revelation mechanism where traders simply report σ to the CCP. The

CCP then levies a mutualization fee φ(σ) and “clears” the corresponding contract (s(σ), p(σ)), where we
have taken into account that no collateral will be used.
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Figure 7: Payoff for Farmers – Mutualization with Private Information

the payment schedule m = (1− δ)pi and are necessary for taxing high valuation matches. It

is then feasible for a match with σ to submit a trade corresponding to some σ′ if and only if

σv(s(σ′)) − pi(σ
′) − φ(σ′) ≥ 0. (51)

Since σ′v(s(σ′)) − pi(σ
′) − φ(σ′) = 0, only farmers with σ > σ′ can pretend to be σ′. Also,

a baker would get a positive payoff whenever a farmer were to lie, since the payment would

be σ′v′(s(σ′)) < σv′(s(σ′)). Hence, the fee schedule φ(σ) satisfies truth-telling if for all σ

U(σ, φ(σ)) ≥ U(σ, φ(σ′)) for all σ′ ≤ σ, (52)

where U(·) is the utility for a farmer of making announcement σ′ given the true valuation is

given by σ.

Using the constrained efficient allocation as shown in Figure 7, we obtain that the payment

schedule m = (1 − δ)pi and the fee schedule

φ(σ) = σ [v(s∗(σ)) − v′(s∗(σ))]

satisfies the truth-telling constraint. The reason is that the bilateral outside option implies

again a fixed positive fee for high σ, which gives a strict preference to farmers to reveal their

type of match. For low σ, the fee schedule is negative and increases with σ so that farmers
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are indifferent between announcing their true valuation or any lower one. For high σ, the

fee schedule is positive and increasing. In this way, a match with a high valuation has less

surplus if it is cleared through the CCP. To induce bakers to participate, given the terms of

the take-it-or-leave-it offer, requires a higher production of exotic wheat. Hence, the contract

size is again increasing with the valuation in a match. The CCP can charge φ (σ) > 0 to high

σ, as it taxes the additional surplus that originates from the diversification of counterparty

risk. This revenue can then be transferred to matches with a lower valuation, with the effect

of reducing their production of exotic wheat. Hence, private information does not prevent a

redistribution of default risk but limits it.

5 Conclusion

Our paper offers a formal model of a CCP and of clearing more generally. We find that CCP

clearing with novation and mutualization of losses is part of an efficient market structure

for standardized financial contracts that are centrally traded on a competitive market. A

CCP that clears OTC trades has to take into account, however, that fungibility of contracts

is limited and that due to their customized nature formal clearing remains a choice for the

counterparties.

The discussion about formal clearing of OTC transactions has primarily focused on the

benefits offered by netting but has largely overlooked how intricate clearing is for such

transactions. A CCP can still offer novation – albeit not in the form of a guarantee –

and it is precisely these gains from novation that can give incentives for counterparties to

formally clear OTC transactions through a CCP. With such incentives in place, a CCP is

then perfectly situated to affect both the level of risk individual counterparties have to bear

and the overall allocation of risk in the market.

We have deliberately abstracted from one important question that the introduction of CCP

clearing might entail moral hazard. This is clearly pivotal for addressing the optimal col-

lateral structure of a CCP, and we think it deserves particular attention. In this context, it

will be necessary to study the optimal scope for CCP clearing in the sense that one creates

an institution that is too-big-to-fail and entails potentially an overall increase in risk due to

a moral hazard problem.

Finally, some of our assumptions are quite strong but are driven by the desire to derive stark

results. One issue is to extend our analysis to cases in which counterparties contemplate

default if it is in their interest. Collateral will then play a crucial role as an incentive device.

40



Also, we have assumed that preferences are represented by log-linear utility. This simplifies

the analysis greatly, as there are no wealth effects from introducing insurance and there are

no distortions from reallocating risk. It would be interesting to see how our results fare

under different preference structures, but we doubt this would affect the main message of

what CCP clearing adds to financial markets and how it differs for OTC markets.
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7 Appendix

7.1 Proof of Proposition 1

The bakers’ welfare is not affected by the market structure. Since k = 0 is feasible, farmers

must be better off with a futures market, as they are partially insured against the aggregate

shock θ.

The utility of a farmer given collateral k is given by

Uf = (1 − δ) log (1 + (1 − µ(δ)) k) + δ

∫

log (θ + k) dF (θ).

Hence, the optimal level of collateral solves

∂Uf/∂k ≡ ϕ(k) =
1 − µ(δ)

1 + (1 − µ (δ))k
(1 − δ) + δ

∫

1

θ + k
dF (θ) = 0

It is easy to check that utility is strictly concave in k, i.e., ϕ′(k) < 0 for all δ. Hence, it is

optimal to set k > 0, unless ϕ(0) ≤ 0. This is the case for critical values of µ and δ such

that

µ(δ) = 1 − δ + δ

∫

1

θ
dF (θ).

Since 1/θ is a strictly convex function and E(θ) = 1, we have µ(δ) > 1 and ∂µ(δ)/∂δ > 0

for all δ > 0.

To show that futures trades are never fully collateralized, set pk
f = k̄ = 1 + (1− µ(δ))k̄. The

first-order condition then yields

1 − µ(δ)

k̄
(1 − δ) + δ

∫

1

θ + k̄
dF (θ) =

=
1

k̄

[

(1 − µ(δ)) + µ(δ)δ + δ

∫
(

k̄

θ + k̄
− 1

)

dF (θ)

]

1

k̄

[

(1 − µ) + δ

∫
(

k̄

θ + k̄
− 1

)

dF (θ)

]

< 0,

as µ > 1 and θ > 0. Since utility is concave, any k ≥ k̄ can thus never be optimal, which

completes the proof.
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7.2 Constrained Efficient Allocations on OTC Markets

7.2.1 First-Best Allocations

Consider all matches in the OTC market and suppose that there are no outside options the

planner has to respect. Then, the planner has to satisfy only a resource constraint and his

problem solves

max
(s(σ),x(σ),x2(σ))

∫ σ̄

σ̂

((1 − δ) [σv(s(σ)) − x2(σ)] + log (x(σ)) − s(σ)) dH(σ)

subject to
∫ σ̄

σ̂

x(σ)dH(σ) ≤

∫ σ̄

σ̂

(1 − δ)x2(σ)dH(σ) (λ1)

x2(σ) ≥ 0 (λ2(σ))

The first-order condition yields

(1 − δ)σv′(s(σ)) = 1

1/x(σ) = λ1

λ1 = 1 − λ2(σ)

Therefore, if λ2(σ) = 0 for all σ so that all bakers produce, then λ1 = 1 and x(σ) = 1. The

first-best allocation is therefore given by

(1 − δ)σv′(s(σ)) = 1

x(σ) = 1.
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7.2.2 Efficient Allocations

The constrained planner’s problem introduces participation constraints and is described by

max
s(σ),x(σ),x2(σ)

∫ σ̄

σ̂

{(1 − δ) [σv(s(σ)) − x2(σ)] + log (x(σ)) − s(σ)} dH(σ)

subject to
∫ σ̄

σ̂

x(σ)dH(σ) =

∫ σ̄

σ̂

(1 − δ)x2(σ)dH(σ) (λ1)

x2(σ) ≥ 0 (λ2(σ))

(1 − δ) [σv(s(σ)) − x2(σ)] ≥ v̄ (λ3(σ))

log (x(σ)) − s(σ) ≥ ū (λ4(σ))

where v̄ = 0 and ū are the payoffs from the bakers’ and farmers’ outside options, respectively.

By the Inada condition, s(σ) > 0 and x(σ) > 0 for any σ. The first-order conditions are

(1 − δ)σv′(s(σ)) =
1 + λ4(σ)

1 + λ3(σ)

1

x(σ)
=

λ1

1 + λ4(σ)

λ1 = 1 + λ3(σ) −
λ2(σ)

1 − δ
.

Since s(σ) > 0 and σ > 0 for all σ, we can assume without loss of generality that x2(σ) > 0

for all σ. Hence, λ2(σ) = 0. Therefore, we obtain a single first order necessary condition for

all matches,

(1 − δ) σv′(s(σ)) = x(σ).

The participation constraints give us the optimal allocation. First, notice that λ3(σ) = λ3

for all σ as λ2(σ) = 0. Hence, we need to consider only two cases.

Case 1: λ3 = 0. In this case, we know λ1 = 1. If λ4(σ) = 0, then the solution is the

efficient allocation, i.e. (x(σ), s(σ)) = (x∗, s∗(σ)). Since x(σ) = x∗ = 1 is constant and s∗(σ)

is increasing in σ, the farmer’s participation constraint may be binding when σ is large so that

λ4(σ) > 0. In particular, this is the case for all σ > σ∗ such that log ((1 − δ)σ∗v′(s∗(σ))) =

ū + s∗(σ).
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Suppose then λ3 = 0 and λ4(σ) > 0. The allocation for the match is

log ((1 − δ) σv′(s(σ))) = ū + s(σ)

(1 − δ) σv′(s(σ)) = x(σ) > 1.

Note that farmers consume more than the efficient amount.

The individual payment x2(σ) is indeterminate, but the total aggregate payment needs to

be sufficient to cover the consumption of the farmers. Hence, a necessary and sufficient

condition for this case is that

∫ σ̄

σ̂

σv(s(σ))dH(σ) ≥

∫ σ∗

σ̂

x∗

1 − δ
+

∫ σ̄

σ∗

σv′(s(σ))dH(σ).

This is sufficient, since the planner can then set x2(σ) = σv(s(σ)) − ε, for ε small enough.

This is necessary, since the equilibrium we consider gives a positive surplus to all bakers so

that σv(s(σ)) > x2(σ) for all σ. When this condition is not satisfied, bakers have no surplus,

which is the second case.

To summarize, the constrained efficient allocation is then given by

(x∗, s∗(σ))

for all σ < σ∗ and

log ((1 − δ)σv′(s(σ))) = ū + s(σ)

(1 − δ) σv′(s(σ)) = x(σ)

for all σ ≥ σ∗.

Case 2: λ3 > 0. When the above allocation is not feasible, the constrained efficient al-

location must be such that bakers have no surplus, or x2(σ) = σv(s(σ)). If λ4(σ) = 0, we

get

x(σ) = x̃ =
1

1 + λ3
< x∗.

Hence, the payment is constant, but less than the efficient amount. The first-order conditions

give us s(σ) as the solution to

(1 − δ)σv′(s(σ)) = x̃.
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When x(σ) is constant, the farmer’s participation constraint might bind for σ large enough,

as s(σ) is increasing in σ. Hence given x̃, there is some cut-off σ̃, such that for all σ > σ̃, the

farmer’s participation constraint will be violated if s(σ) is set such that (1 − δ) σv′ (s(σ)) = x̃.

This implies λ4(σ) > 0 for all σ > σ̃, and the allocation is given by

log ((1 − δ)σv′(s(σ))) = ū + s(σ)

(1 − δ)σv′(s(σ)) = x(σ).

To complete the characterization of the constrained optimal solution when λ3 > 0, we find

x̃ from the resource constraint

∫ σ̃

σ̂

x̃dH(σ) +

∫ σ̄

σ̃

x(σ)dH(σ) = (1 − δ)

∫ σ̄

σ̂

σv(s(σ)))dH(σ).

To summarize, when bakers have no surplus, the constrained efficient allocation is described

by

x̃ < x∗

(1 − δ) σv′(s(σ)) = x̃

for all σ < σ̃ and

log ((1 − δ)σv′(s(σ))) = ū + s(σ)

(1 − δ)σv′(s(σ)) = x(σ)

for all σ ≥ σ̃.

7.2.3 Efficient Allocations with Bargaining

The planner now has to respect that farmers make a take-it-or-leave-it offer to bakers and

that a match akways has the option to trade bilaterally with collateral. This implies that
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x2(σ) = σv′(s(σ)) in any allocation. The planner’s problem is then given by

max
(s(σ),x(σ))

∫ σ̄

σ̂

−s(σ) + log (x(σ)) dH(σ)

subject to
∫ σ̄

σ̂

x(σ)dH(σ) ≤ (1 − δ)

∫ σ̄

σ̂

σiv(s(σ))dH(σ) (λ)

− s(σ) + log (x(σ)) ≥ ū (λ(σ))

The first-order conditions are given by

x(σ) =
1 + λ(σ)

λ
(53)

(1 − δ)σv′(s(σ)) =
1 + λ(σ)

λ
. (54)

Note that ū has the following definition when farmers can either trade futures (and a CCP

operates on the futures market) or clear bilaterally,

ū = max

{

−s̄ + log ((1 − δ)σv(s̄)) + δ log

(

δ

µ − (1 − δ)

)

;−1 + log

(

1

n

)}

.

For low σ, it is more profitable for farmers to trade futures than clear bilaterally. The farmers

participation constraint reads

−s(σ) + log ((1 − δ)σv′(s(σ))) ≥ −1 + log

(

1

n

)

Denote by s′(σ) the level of production such that this constraint binds. We have that

s′(σ) is an increasing function of σ with the utility of farmers being constant so that their

consumption of gold has to increase over this range of σ. As σ increases further, it becomes

more profitable to clear bilaterally than to trade futures. Then, for these levels of σ > σ̃,

and to replace the first-order condition in the farmers’ participation constraint, we obtain

the following participation constraint for farmers

s̄ − s(σ) + log

(

v′(s(σ))

v(s̄)

)

≥ δ log

(

δ

µ − (1 − δ)

)

so that s(σ) = s′ is the same for all σ such that this constraint binds. As the right-hand side

is negative, by concavity of v we have that s′ > s̄. The solution is then the same as in the

case in which there is no bargaining friction and there is no surplus for any bakers.
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To summarize, the constrained efficient allocation is given by

(1 − δ)σv′(s(σ)) = x′

for all σ < σ′,

−s(σ) + log ((1 − δ)σv′(s(σ))) = −1 + log

(

1

n

)

for all σ′ < σ < σ̃ and

(1 − δ)σv′(s′) = x(σ)

for all σ ≥ σ̃. The value of x′ is again given by the resource constraint.

7.2.4 Efficient Allocations with Bargaining and Private Information

We now consider the planner’s problem with bilateral outside options under private infor-

mation. The planner does not observe σ. The match then makes a report regarding σ to

the planner, and the planner chooses an allocation based on the report.

We assume that the planner knows how the bargaining power is distributed. Since bakers will

have no surplus, a report must be feasible for the match, which implies that the truth-telling

constraint is given by

−s(σ) + log (x(σ)) ≥ −s(σ′) + log (x(σ′)) for all σ ≥ σ′.

Note that this condition requires that farmers’ utility is nondecreasing in σ. The planner’s

problem is then given by

max
s(σ),x(σ))

∫ σ̄

σ̂

−s(σ) + log (x(σ)) dH(σ)

subject to

(1 − δ)

∫ σ̄

σ̂

σv(s(σ))dH(σ) ≥

∫ σ̄

σ̂

x(σ)dH(σ)

−s(σ) + log (x(σ)) ≥ −1 + log

(

1

n

)

−s(σ) + log (x(σ)) ≥ ū(σ)

−s(σ) + log (x(σ)) ≥ −s(σ′) + log (x(σ′)) for all σ ≥ σ′

where ū(σ) is the outside option of a bilateral OTC trade with collateral.

Suppose first that none of the participation constraints is binding. Note that x(σ) is in-
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creasing with σ, since any constrained efficient allocation satisfies (1 − δ)σv′(s(σ)) = x(σ).

The constrained optimal solution must then give the same utility ū to all farmers with the

solution being described by

(1 − δ)σv′(s(σ)) = x(σ)

−s(σ) + log (x(σ)) = ū.

To see this, suppose by way of contradiction that there is a subset Σ with positive measure

such that for all σ ∈ Σ, −s(σ) + log (x(σ)) > ū. Without loss of generality, we can assume

that for σ ∈ Σ, −s(σ) + log (x(σ)) = ū′ > ū. Hold s(σ) constant for all σ ∈ Σ, define

x̃(σ) = x(σ) − ε(σ) for all σ ∈ Σ such that −s(σ) + log (x̃(σ)) = ū′ − ε for some ε > 0

sufficiently small. This frees up total resources
∫

Σ
ε(σ)dH(σ) that can be distributed to

all farmers in matches with σ /∈ Σ so that their utility shifts up uniformly still satisfying

truth-telling. Since x(σ) is increasing with σ and the utility is concave, the gain in utility for

these agents will more than compensate for the loss in utility of farmers with σ ∈ Σ. Hence,

the original allocation was not constrained efficient. A contradiction.

Suppose now that the participation constraints bind for some σ. Since truth-telling requires

non-decreasing utility for farmers, it is optimal to have utility for farmers as high as possible,

but constant, until the bilateral outside option becomes relevant. Recall that ū(σ) is increas-

ing in σ. Consider then ū such that ū ≥ −1+ log
(

1
n

)

, but ū ≥ ū (σ) only for σ < σ̃ for some

σ̃ and ū < ū(σ) otherwise. The constrained efficient allocation under private information is

then described by

(1 − δ)σv′(s(σ)) = x(σ)

−s(σ) + log (x(σ)) = ū for all σ ≤ σ̃

−s(σ) + log (x(σ)) = ū(σ) for all σ > σ̃

where σ̃ is chosen to satisfy the feasibility constraint

(1 − δ)

∫ σ̄

σ̂

σv(s(σ))dH(σ) =

∫ σ̄

σ̂

x(σ)dH(σ).

7.3 Generalized Nash Bargaining

The goal of this section is to show that Nash bargaining also leads to an inefficient contract

size in OTC trading. We first solve for the equilibrium allocations on the OTC market where
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the counterparties to an OTC trade have access to novation by a CCP, but where there is

no mutualization. Novation here increases surplus in the OTC trade, which is split between

the farmer and baker according to the distribution of bargaining power. As before, this does

not influence the optimal structure of the contact.

In an OTC trade, the valuation σ is common knowledge for the trading parties. Suppose

there is Nash bargaining where η is the relative weight of farmers. Define the surplus of

farmers and bakers as S1 and S2 respectively. We then have

S1 = log ((1 − δ)pi) − s(σ) − ū

S2 = (1 − δ) [σv(s(σ)) − pi] − v̄,

where we already have used the payment schedule m under novation. The outside options

are participation in the futures market, which offers no surplus for bakers (v̄ = 0), but

positive surplus for farmers. Again, with novation it is not optimal to use collateral and the

bargaining problem with no collateral is given by

max
(s(σ),pi)

Sη
1S1−η

2

yielding the following first-order conditions

pi = (1 − δ)σv′(s)

ηS2

(1 − η)S1
= (1 − δ)σv′(s).

The pricing of the OTC contract is once again independent of the bargaining assumption

and equates the price to the expected marginal benefit of the transactions for bakers. Hence,

there is no inefficiency in the pricing of the OTC contract.

Rewriting, we obtain

v(s)

v′(s)
− 1 =

1 − η

η
[log ((1 − δ)σv′(s)) − s − ū] .

Note that ū is constant. Hence, for any given η ∈ (0, 1), the contract size increases with σ

(i.e., ds/dσ > 0). Again, there is a cut-off point with respect to σ – depending on η – such

that only matches with a higher surplus will carry out OTC trades. Also, if the bargaining

power shifts toward bakers (i.e., η declines), the contract size s will increase for all σ.

The efficient allocation that respects the outside option to trade on the futures market gives
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zero surplus to farmers for sufficiently high σ (see the previous section in this Appendix). If

the farmers receive zero surplus in the solution above, we have that v′(s) = v(s) independent

of σ. Otherwise, the surplus is positive for farmers (unless all bargaining power rests with

bakers, or η = 0), and hence, there is an inefficient contract size due to bargaining. Also,

note that this inefficiency does not disappear if the bargaining power is equally distributed

(η = 1/2) and, thus, mirrors the weighting in the planner’s objective function. This implies

that the benefits of mutualization are independent of our bargaining assumption.
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