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Abstract

Participants in student loan programs must repay loans in full regardless of whether they complete

college. But many students who take out a loan do not earn a degree (the dropout rate among college

students is between 33 to 50 percent). We examine whether insurance against college-failure risk can

be offered, taking into account moral hazard and adverse selection. To do so, we develop a model that

accounts for college enrollment, dropout, and completion rates among new high school graduates in the

US and use that model to study the feasibility and optimality of offering insurance against college failure

risk. We find that optimal insurance raises the enrollment rate by 3.5 percent, the fraction acquiring a

degree by 3.8 percent and welfare by 2.7 percent. These effects are more pronounced for students with

low scholastic ability (the ones with high failure probability).
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JEL Codes: D82; D86; I22;

1 Introduction

Recent research in the education literature provides support for the fact that financial constraints during

college-going years are not crucial for college enrollment (Carneiro and Heckman (2002), Cameron and Taber

(2001)). Rather, it is student characteristics, such as learning ability, that determine the decision to enroll.
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Given the generosity of the student loan program, funds are readily available and eligible high school gradu-

ates invest in college if they perceive the returns to a college education to be high enough (Ionescu (2009a)).1

However, there is considerable financial risk in taking out a student loan because many students do not

complete college. Using the 1990 Panel Study of Income Dynamics (PSID), Restuccia and Urrutia (2004)

document that 50 percent of people who enroll do not complete college. Using the NCES data and surveys,

we find that 37 percent and 35 percent of students enrolled in 1989-90 and 1995-96, respectively, do not

possess a degree and are not enrolled in college five years after their initial enrollment.

The financial risk implied by these facts is evident in the Survey of Consumer Finances (SCF). For the five

surveys conducted between 1992 and 2004, the percentage of non-students with a student loan who report

not having either a 2- or 4-year college degree is 47 percent, on average. Furthermore, non-students with

loans but without a degree have a significantly higher (education) debt burden. Table 1 reports the ratio

of median education debt to median income among non-students with student loans, 10 or more years after

first taking out the loan. As is evident, students without degrees have a significantly higher debt burden

than degree holders.

Table 1: College debt burden by completion status
10+ years since taking out the loan

Survey year w/ degree w/o degree
1992 0.09 0.12
1995 0.06 0.14
1998 0.12 0.15
2001 0.12 0.10
2004 0.14 0.24

The financial risk of taking out a student loan but being unable to complete college may discourage some

people from taking out a loan and enrolling in college. Thus, even though prospective students may not be

credit constrained, a mechanism to share the risk of failing to complete college – college failure risk – might

improve the welfare of enrolled students and encourage more people to enroll and complete college.2

The aim of this paper is to study whether the student loan program can offer insurance against college

failure risk. The current operation of the program suggests that it is administratively feasible to offer some
1For detailed evidence on how financial aid affects students’ college-going behavior, see Dynarski (2003) and Hoxby (2004).

The former study presents evidence that financial factors represent an important determinant of both enrollment and persistence.
The latter provides a comprehensive perspective on the issue of college choice, examining it from both an individual and
institutional point of view. Also, for an extensive analysis of the college financial system’s weaknesses and strengths, see Kane
(1999).

2Heckman (1999) has pointed out that the erosion of average real wages between 1980 and 1990 could have been mitigated
(in an accounting sense) if more people had acquired college degrees. Specifically, for the 1990 workforce of 120 million, 5.4
million more would have to become college equivalents to reverse the 1980-1990 erosion of real wages, and about 1 million
additional skilled persons would need to be added to the workforce each year on top of the once and for all change of 5.4 million.
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insurance. Under the current system, a borrower can choose from a menu of fairly sophisticated repayment

options (standard, graduated, income-contingent and extended repayment). Nevertheless, under each of

these payment options, the borrower is required to repay the entire loan and associated interest expenses

regardless of whether he or she completed college. We will examine whether it is feasible to forgive a portion

of the loan for students who fail out of college.3

We conduct our investigation under two important constraints on the provision of failure insurance. First, we

require that the insurance scheme not distribute resources from people with a high probability of completion

to people with a low probability of completion (and vice versa). Formally, this requires that the insurance

program be self-financing with respect to each person who chooses to participate. The current programs

enforce this self-financing constraint regardless of whether the program participant actually graduates from

college. We will permit failures to pay less than graduates, but each participant will pay the full cost of

college in expectation. Second, we require that the insurance program guard against adverse selection (the

possibility that poor risks will attempt to pool with good risks). As we verify later, moral hazard is not an

issue in this context because insurance against college failure risk increases the value of exerting effort in

college.

In the theoretical section of the paper, we develop a simple model of a student’s enrollment and college

effort decisions. The model postulates the necessary heterogeneity in student characteristics in order to be

consistent with the diversity of enrollment and effort decisions we see in reality and the importance generally

assigned to ability heterogeneity and self-selection into college attendance and completion by researchers

(see, for instance, Venti and Wise (1983)). The heterogeneity is in a student’s utility cost of putting effort

into college and his or her outside option, neither of which is directly observable to loan administrators. The

unobserved heterogeneity complicates the task of providing insurance. These complications are analyzed in

the theoretical section and the constrained optimization problem that delivers the optimal insurance program

is developed.

In the quantitative section, we calibrate the model to US data on college enrollment, leaving, and completion

rates as well as the average college costs of program participants, distinguishing between students of different

scholastic ability levels as measured by SAT scores. We quantify the effects of insurance on enrollment and

completion rates as well as welfare. The optimal insurance offered in case of non-completion ranges between

10 to 45 percent of total college cost. The insurance scheme induces an increase in the enrollment rate of 3.5

percentage points and an increase in college graduates of 3.8 percentage points. Although insurance draws

in students with a high risk of failure, completion rates rise because fewer students voluntarily leave college.

Insurance increases welfare by 2.7 percent on average.
3The borrower is permitted to discharge her loan only if a repayment effort over 25 years does not fully cover all obligations.
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There is a rich literature on higher education, with important contributions focusing on college enrollment

and completion. Studies that take a quantitative-theoretical approach have given a prominent role to the

risk of college failure. These include studies by Akyol and Athreya (2005); Caucutt and Kumar (2003);

Garriga and Keightley (2007); Ionescu (2009b); Restuccia and Urrutia (2004). But these studies do not

generally consider the possibility of providing insurance against this risk. One exception is Ionescu (2009b)

who studied the effects of alternative bankruptcy regimes for student loans. She shows that individuals with

relatively low ability and low initial human capital levels are affected to a greater degree by the risk of failure

and the option to discharge one’s debt under a liquidation regime helps alleviate some of this risk.4 Also,

with the exception of Garriga and Keightley (2007) none of these studies recognize that students may choose

to drop out.5

Empirical research on college behavior, however, calls for a careful modeling of college dropout behavior.

Manski and Wise (1983) argue that college students learn over time about what college means and given

this learning some choose to drop out. In addition, they suggest that college preparedness is more important

than college aspiration for college completion. Furthermore, Stinebrickner and Stinebrickner (2008) show

that most of the attrition among students from low-income families cannot be attributed to short-term credit

constraints.6 In a companion paper, Stinebrickner and Stinebrickner (2009) provide evidence on the relative

importance of the most prominent alternative explanations for dropout behavior and find that learning about

ability plays a particularly important role in this decision. Among other possible factors of importance, they

find that students who find school to be unenjoyable are unconditionally much more likely to leave. But this

effect seems to arise to a large extent because these same students also tend to receive poor grades. In our

model, dropout behavior will arise for similar reasons.

Our paper is related to studies that focus on merit-based policies. Our insurance arrangement can be

interpreted as being merit based: as we show later in the paper, the insurance premium is lower for higher

ability types and the amount of insurance offered is higher as well. However, unlike merit-based aid, our

insurance arrangement has no aid or grant component – it is self-financed with respect to each individual

who participates, in expectation. Caucutt and Kumar (2003) analyze various types of college subsidies and

conclude that merit-based aid that uses any available signal on ability increases educational efficiency with

little decrease in welfare. Gallipoli, Meghir, and Violante (2008) examine the partial and general equilibrium

effects of wealth-based and merit-based tuition subsidies on the distribution of education and earnings. In
4Although insurance against college failure risk is not the focus of their paper, Akyol and Athreya (2005) observe that the

heavy subsidization of higher education directly mitigates the risk of college failure by reducing the college premium.
5Garriga and Keightley (2007) model college as a multi-period risky investment with endogenous enrollment, time-to-degree,

and dropout behavior. The focus of their paper is on the effects of broad-based tuition subsidies and merit-based education
policies on college enrollment and completion behavior rather than insurance against college failure risk.

6The authors use unique longitudinal data that have been collected specifically for this type of purpose at Berea College.
Despite the fact that the direct costs to students at Berea are approximately zero, the authors document that 50 percent of
students do not graduate.
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related work, Redmon and Tamura (2007) use a Mincer model of human capital with ability differences to

characterize the optimal length of schooling by ability class and the importance of school district composition

for growth and distribution.

The key contribution of this paper is to construct a theory consistent with the reality of college enrollment,

leaving and completion behavior as well as returns to education and use it to design an insurance scheme

against the risk of failing at college, recognizing adverse selection and moral hazard. In addition, we map the

model to the data and quantify the effects of alternative insurance arrangements on enrollment, completion

and welfare. The rest of the paper is organized as follows. Section 2 presents the choices available to a

student. Section 3 lays out the key predictions of this model when no insurance is offered and compares

these predictions to patterns in the data. Section 4 develops the constrained optimization problem that

delivers the optimal insurance scheme. Parameter selection and calibration of the model are presented in

Section 5. Section 6 presents the results of offering insurance in the calibrated model and Section 7 concludes.

2 Environment

Time is discrete and indexed by t = {0, 1, 2, . . .} . In period 0, a prospective student makes a one-time decision

to enroll in college or not. If she does not enroll, she can work in a low-paid job with disutility of effort θ ≥ 0

and, starting in period 1, earn y ≥ 0. The earnings y are drawn from a distribution H(y). At the time of

the enrollment decision, the student knows θ but not the realization of y.

If the individual chooses to enroll in college, she learns the cost of making effort in college. Effort, e, is a

binary variable that can take values 0 (no effort) or 1 (effort).7 The cost of making an effort is denoted γ

and the student draws γ ≥ 0 from a distribution G(γ). After she learns γ the student decides whether to

continue on in college. If she chooses to leave, she incurs the cost of effort θ in the low-paid job and draws

her (life-time) earnings y in period 1. She also incurs some partial college expenses φx, where 0 < φ < 1.8

At the time of choosing whether to continue in college, the student knows γ and θ but not her earnings in

period 1 and beyond.

If the student continues in college she incurs the annual college cost of x. A continuing student must choose

between putting in effort or not. If she chooses to shirk (e = 0), she will fail with probability 1 but she will

not incur effort costs of any kind in period 0 and will start life in period 1 with an earnings draw y from the

distribution H(y) and a debt of x. If she chooses to put in effort (e = 1), she will complete her first year with

7The assumption that effort is binary is essentially without loss of generality. Given the large college premium in earnings
it is safe to assume that if a student finds it optimal to exert any effort in college, he or she would want to exert the maximum
effort possible.

8We assume that if a student voluntarily withdraws from college, he or she pays a cost that is some (relatively small)
proportion of a year’s college costs. We fix this proportion to be 1/4.
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Figure 1: Timing of decisions

probability π ∈ (0, 1). If she completes successfully, she begins period 1 as a college student with one more

year to go and debt of x (no interest accumulates on the debt as long as the student continues in college). If

she fails to complete, she starts period 1 with an earnings draw y from H(y) and a debt of x.

Figure 1 illustrates this timing of period 0 decisions. In the case in which a student succeeds in completing

the first year of college, she faces a similar decision tree in period 1 (which we will describe below).

In period 1, a student with one more year to go has to choose again whether to continue in college. If she

does not continue, she gets an earnings draw y from the distribution H(y) and starts her life with debt 5x/4.

If she continues, she incurs another year of college expense x. And, as in period 0, she must choose between

putting in effort or shirking. If she shirks, she fails with probability 1 but does not incur any effort cost in

period 1 and starts life in period 2 with an earnings draw y from the distribution H(y) and a debt of 2x.

If she puts in effort, she completes college with probability π. If she succeeds in completing, she draws her

life-time earnings y from the distribution M(y) and has debt of 2x. If she fails to complete college, she starts

period 2 with an earnings draw y from H(y) and a debt of 2x.

In order to describe individuals’ decision problems in period 0 and 1 (these are the only periods in which

there are decisions to be made), we will start with describing the utility (payoffs) to students at the start of
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period 1 (students that have one more year of college to go).

1. A student who drops out gets

V D1 (x) =
ˆ
U(y − 5x/4)dH(y).

2. A student who continues but shirks gets

V S1 (x) = β

ˆ
U(y − 2x)dH(y).

3. A student who continues and puts in effort gets

V E1 (π, x, γ) = −γ + β

[
π

ˆ
U(y − 2x)dM(y) + (1− π)

ˆ
U(y − 2x)dH(y)

]
.

Turning to period 0, the payoffs are as follows

1. An individuals who does not enroll gets

W (θ) = −θ + β

ˆ
U(y)dH(y).

2. An individual who enrolls, but drops out gets

V D0 (x, θ) = −θ +
ˆ
U(y − x/4)dH(y).

3. An individual who enrolls, continues and shirks gets

V S0 (x, θ) = −βθ + β

ˆ
U(y − x)dH(y).

4. An individual who enrolls, continues and puts in the effort gets

V E0 (π, x, γ) = −γ + β

[
πmax[V E1 (π, x, γ), V S1 (x), V D1 (x)] + (1− π)

ˆ
U(yN − x)dH(yN )

]
.

The structure of payoffs is generally self-explanatory. One aspect worth remarking on is that leaving or

shirking in period 0 forces the individual to work in the low-paid job for 1 period. In contrast, if the student

fails in period 0 despite putting in effort, she does not have to work in the low-paid job. This assumption
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is a convenient way to capture the fact that exerting effort in college has benefits even if it does not lead to

college credits. Also, since anyone who is in college in period 1 must have successfully completed one year

of college (and therefore exerted effort in period 0), she can drop out or shirk and not have to work in the

low-paid job. Thus, θ does not appear in either V D1 (x) or V S1 (x).

We make the following set of assumptions on the primitives.

Assumption 1: U(c) : R→ R++ with U ′(·) > 0 and U ′′(·) < 0.

Assumption 2: β2
´
U(y − 2x)dM(y) >

´
U(y)dH(y) (college degree is profitable financial investment).

Assumption 3:
´
z(y)dM(y) >

´
z(y)dH(y) for any z(y) strictly increasing in y (the distribution M

first-order stochastic dominates the distribution H).

3 College Enrollment, Dropout and Failure Under the Current System

We begin by studying the choice problem in period 1. There are three options open to the student. She

could drop out, or continue on in college but not put in any effort, or she could continue on in college and

exert effort.

Proposition 3.1. In period 1, there is a cut-off γ1(x, π)≥0 such that for γ > γ1(x, π), students drop out

and for γ ≤ γ1(x, π) they continue on with effort. Furthermore, γ1(x, π) is increasing in π.

Proof. Since 5x/4 < 2x and β < 1, V D1 (x) > V S1 (x). Hence, dropping out is strictly better than shirking

in period 1. Therefore, the student chooses between continuing on with effort or dropping out. Denote the

difference in payoffs between these two choices by V1(x, π, γ) = V E1 (x, π, γ)−V D1 (x). Observe that V1(x, π, γ)

is continuous and strictly decreasing in γ ∈ [0,∞). If V1(x, π, 0) ≤ 0, then γ1(x, π) = 0. If V1(x, π, 0) > 0, by

continuity and strict monotonicity with respect to γ, there exists a unique γ̂ > 0 such that V1(x, π, γ̂) = 0.

Hence γ1(x, π) > 0.

To prove γ(x, π) is increasing in π note that

V1(x, π, γ) = −γ + βπ

[ˆ
U(y − 2x)dM(y)−

ˆ
U(y − 2x)dH(y)

]
+β
ˆ
U(y − 2x)dH(y)−

ˆ
U(y − x)dH(y).
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By Assumption 2, V1(x, π, γ) is strictly increasing in π. Now consider π̂ < π̃. If V1(x, π̂, 0) < V1(x, π̃, 0) ≤ 0,

then γ1(x, π̂) = γ1(x, π̃) = 0. If V1(x, π̂, 0) ≤ 0 < V1(x, π̃, 0), then 0 = γ(x, π̂) < γ(x, π̃). Finally, if

0 < V1(x, π̂, 0) < V1(x, π̃, 0), then 0 < γ(x, π̂) < γ(x, π̃). This establishes that γ(x, π) is increasing in π.

It is perhaps worth noting that the threshold γ will be zero for sufficiently low probability of success π.

Observe that V1(x, 0, 0) < 0 and, by Assumption 2, V1(x, 1, 0) > 0. Thus, when no effort in school is required

(γ = 0) there exists π1 > 0 such that V1(x, π1, 0) = 0. For all π < π1, V E1 (x, π, γ)− V D1 (x) < 0 for all γ ≥ 0.

Therefore, the threshold γ1(x, π) is 0 for all π ≤ π1.

We now study the choices in period 0. The choice problem can be broken down into two parts. First,

conditional on not putting in effort in college, is it better to drop out or shirk? And, second, given the

answer to the first question, is it better to put in effort in college?

Proposition 3.2. In period 0, there exists a cut-off θ0(x) > 0 such that conditional on not putting in effort

in college students drop out for θ < θ0(x) and shirk for θ ≥ θ0(x).

Proof. Consider the function V D0 (x, θ)− V S0 (x, θ) = −θ(1− β) +
´
U(y − x/4)dH(y)− β

´
U(y − x)dH(y),

which is continuous and strictly decreasing in θ ∈ [0,∞). We have V D0 (x, 0)−V S0 (x, 0) =
´
U(y−x/4)dH(y)−

β
´
U(y − x)dH(y) > 0. By continuity and strict monotonicity with respect to θ, there exists θ0(x) > 0

such that V D0 (x, θ0(x))− V S0 (x, θ0(x)) = 0. For any θ below this cut-off, dropping out is strictly preferred to

shirking and at or above this cut-off, shirking is weakly or strictly preferred to dropping out.

Proposition 3.2 shows that conditional on not putting in effort in college, some students would rather spend

time in college shirking than dropping out so as to delay paying the cost θ. Students who choose to do this

are using the student loan program to borrow and consume leisure.

The next proposition deals with the decision to put in effort in college in period 0.

Proposition 3.3. In period 0, there exists a cut-off γ0(x, π, θ) ≥ 0 such that for γ < γ0(x, π, θ) (if applicable),

students put in effort in period 0 and for γ ≥ γ0(x, π, θ) they either drop out or shirk. Furthermore, γ0(x, π, θ)

is increasing in π and θ.

Proof. Consider the function V0(x, π, γ, θ) = V E0 (x, π, γ) −max[V D0 (x, θ), V S0 (x, θ)] which is continuous for

all (π, γ, θ) ∈ [0, 1] × [0,∞) × [0,∞) and strictly increasing in π (by Assumption 2), strictly decreasing in

γ and strictly increasing in θ. If V0(x, π, 0, θ) ≤ 0, then γ0(x, π, θ) = 0. If V0(x, π, 0, θ) > 0, by continuity

and strict monotonicity with respect to γ there exists a unique γ̂ > 0 such that V0(x, π, γ̂, θ) = 0. Thus,

γ0(x, π, θ) > 0.
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The fact that γ0(x, π, θ) is increasing in π can be established exactly along the lines of the proof given in

Proposition 3.1.

To prove γ0(x, π, θ) is increasing in θ, consider θ̃ < θ̂. If V0(x, π, γ, θ̃) < V0(x, π, γ, θ̂) ≤ 0, then γ0(x, π, θ̃) =

γ0(x, π, θ̂) = 0. If V0(x, π, γ, θ̃) ≤ 0 < V0(x, π, γ, θ̂), then 0 = γ0(x, π, θ̃) < γ0(x, π, θ̂). Finally, if 0 <

V0(x, π, γ, θ̃) < V0(x, π, γ, θ̂) then 0 < γ0(x, π, θ̃) < γ0(x, π, θ̂). This establishes that γ0(x, π, θ) is increasing

in θ.

These propositions can be conveniently seen in Figure 2. The left (right) figure presents the choices that the

student makes in period 0 (period 1) in terms of the effort levels required on the job, θ, and the effort level

required in college, γ.

Figure 2: Choices in periods 0 and 1

Propositions 3.1 and 3.3 give us two thresholds for γ. It is important to understand the relationship between

them because it will play an important role in the discussion of optimal insurance. We have the following

proposition.

Proposition 3.4. Assume that π > π̄1. For sufficiently low value of θ, γ0(x, π, θ) < γ1(x, π) and for

sufficiently high value of θ, γ0(x, π, θ) > γ1(x, π).

Proof. We will evaluate V0(x, π, γ, θ) at the value of γ for which the student is indifferent between putting

in effort or dropping out in period 1.

For π > π̄1 and θ < θ0(x), V0(x, π, γ1(x, π), θ) = −γ1(π, x) + θ−β[
´
U(y−x/4)dH(y)−

´
U(y−x)dH(y)]−

βπ[
´
U(y−x)dH(y)−

´
U(y−5x/4)dH(y)]. This implies that for θ sufficiently close to 0, V0(x, π, γ1(x, π), θ) <

0. Hence, for θ sufficiently small, γ0(x, π, θ) < γ1(x, π).

For π > π̄1 and θ > θ0(x), V0(x, π, γ1(x, π), θ) = −γ1(π, x)+βθ−βπ[
´
U(y−x)dH(y)−

´
U(y−5x/4)dH(y)].

This implies that for θ sufficiently large V0(x, π, γ1(x, π), θ) > 0. Hence for θ sufficiently large, γ0(x, π, θ) >

γ1(x, π).
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The significance of these results is that for a student with γ < γ0(x, π, θ) < γ1(x, π) it is optimal to put in

effort in period 0, and if she successfully completes college in period 0, to also put in effort in period 1. In

contrast, for a student with γ1(x, π) < γ < γ0(x, π, θ), it is optimal to put in effort in the first year of college

but then drop out even if he or she is successful. This is a student for whom the cost of effort is high enough

that exerting effort throughout both years of college is not optimal but it is low enough (and disutility from

the low-paid job high enough) that it is optimal to exert effort in the first year of college and thereby avoid

θ.

Next we will determine who enrolls in college. Observe that since enrolling in college and then leaving gives

people about the same utility as working, there is a small cost to a student to enroll in college and learn her

γ. However, if the student’s probability of success is sufficiently low, she may choose not to enroll because

regardless of the value of γ she will find it optimal to leave rather than continue with college. Similarly, for a

student of a given probability of success, if the effort in the low-paid job is sufficiently high, she may choose

to enroll.

The following proposition gives the cut-off value of effort required on the job that makes the student indifferent

between working and enrolling in college. For every effort less than that, the student strictly prefers not to

enroll.

Proposition 3.5. In period 0, there exists a cut-off θC(x, π) ≥ 0 such that for θ > θC(x, π) enrolling gives

at least as much utility as working and θ ≤ θC(x, π) working gives at least as much utility as enrolling.

Furthermore, θC(x, π) is decreasing in π.

Proof. Consider the function VC(x, π, θ) =
´

max{V E0 (x, π, γ), V D0 (x, θ), V S0 (x, θ)}dG(γ) −W (θ). We will

show that this function is increasing in θ. Observe that

VC(x, π, θ) =
ˆ γ0(x,π,θ)

0

V E0 (x, π, γ)dG(γ) +
ˆ
γ0(x,π,θ)

max[V D0 (x, θ), V S0 (x, θ)]dG(γ)−W (θ).

Let θ increase by ∆ > 0. Consider the effect of this change on VC(x, π, θ) in 2 parts:

VC(x, π, θ + ∆)− VC(x, π, θ) = [VC(x, π, θ + ∆)− V̄C(x, π, θ + ∆)] + [V̄C(x, π, θ + ∆)− VC(x, π, θ)].

where

V̄C(x, π, θ+∆) =
ˆ γ0(x,π,θ)

0

V E0 (x, π, γ)dG(γ)+
ˆ
γ0(x,π,θ)

max[V D0 (x, θ+∆), V S0 (x, θ+∆)]dG(γ)−W (θ+∆).

11



Then [V̄C(x, π, θ + ∆)− [VC(x, π, θ)] is given by

ˆ
γ0(x,π,θ)

max{−(θ + ∆) +
ˆ
u(y − x/4)H(dy),−(θ + ∆)β + β

ˆ
u(y − x)H(dy)}dG(γ)} −

ˆ
γ0(x,π,θ)

max{−θ +
ˆ
u(y − x/4)H(dy),−θβ + β

ˆ
u(y − x)H(dy)}dG(γ)} +∆

Observe that the above change is non-negative because the positive ∆term contributes ∆ while the negative

∆ term contributes either -∆G(γ0(x, π, θ)) (in the case where θ+ ∆ < θ0) or −β∆G(γ0(x, π, θ)) (in the case

where θ+ ∆ ≥ θ0). Furthermore, the term [VC(x, π, θ+ ∆)− V̄C(x, π, θ+ ∆)] is non-negative by optimality.

Hence, VC(x, π, θ + ∆)− VC(x, π, θ) ≥ 0. Thus VC(x, π, θ) is increasing in θ.

Since VC(x, π, θ) is increasing in θ, if enrolling is optimal for some θ, enrolling must also be optimal for any

θ̂ greater than θ. Therefore, there must be a cut-off value θC(x, π) ≥ 0 such that for all θ > θC(x, π) the

student will find it optimal to enroll and for θ ≤ θC(x, π) the student will find it optimal to not enroll.

To establish that the threshold is decreasing in π observe that V E0 (x, π, γ) is strictly increasing in π and,

therefore, VC(x, π, θ) is strictly increasing in π. It follows that the cut-off θC(x, π) cannot be strictly increasing

in π.

Our model of college enrollment and college completion is consistent with a diversity of student behavior.

First, it predicts that not every student will enroll in college. Second, among those who enroll some will

leave college voluntarily or shirk in period 0. These are the students who discover that their disutility from

putting in effort in college is higher than γ0(x, π, θ). Third, there will be students who continue on in college

(and put in effort) in period 0, but fail to complete their courses satisfactorily with probability 1−π. Fourth,

among students who successfully complete their courses in period 0, some will leave college voluntarily in

period 1. These are the students whose disutility from putting in effort in college happens to be between

γ0(x, θ, π) and γ1(x, π). Fifth, there will be students who continue on in college (and put in effort) in period

1, but fail to graduate, with probability 1− π. Finally there are students who enroll in college and complete

their degrees. Figure 3 sums up this diversity of behavior as determined by the two types of effort costs, θ

and γ.

Next, we turn briefly to the observable implications of the theory. Among other things, the theory implies

specific patterns regarding enrollment, non-completion and earnings with respect to the probability of success

π. If prospective students can be classified by some observable index of their probability of success in college

conditional on putting in effort – by their scholastic ability – the theory makes predictions about the variation

in student performance across scholastic ability groups. In what follows, we will assume that there is an

12



Figure 3: Choices in college

observable index a that varies positively with probability of success π. That is,

Assumption 4: π(a) is increasing in a.

We study how the cut-offs illustrated above change with a, holding all other primitives constant. The purpose

is to show that the model is consistent with the basic qualitative patterns in the data regarding enrollment,

non-completion and earnings across observed ability groups. As we will document in section 5, if a is proxied

by SAT scores we find that enrollment rates are increasing in a, non-completion rates are decreasing in a

and earnings are increasing in a.

Proposition 3.5 delivers that θC(x, π) is decreasing in the probability of success π. Since π(a) is increasing in

a this implies that the enrollment cut-off is declining in a. Hence, enrollment rates – defined as the fraction

of students of a particular ability group who enroll in college – are increasing in a.

For each ability level a define the non-completion rate, n(a), as the sum of the fraction of students who enroll

in college but drop out, shirk or fail in period 0, or drop out or fail in period 1. That is,

n(a) = [1−G(γ0(x, π(a), θ)] + [1− π(a)]G(γ0(x, π(a), θ)) + π(a)G(γ0(x, π(a), θ))

×{[1− G̃(γ1(x, π(a), θ))] + [1− π(a)]G̃(γ1(x, π(a)))},

where G̃(γ) = min{1, G(γ)
G(γ0(x,θ,π(a)))} is the distribution of γ conditional on γ < γ0(x, π(a), θ).

Proposition 3.6. The non-completion rate n(a) is decreasing in a.

Proof. The expression for n(a) simplifies to 1 − π(a)2G(γ0(x, θ, π(a)))G̃(γ1(x, π(a))). Substituting in the
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expression of G̃(γ) we get

n(a) = 1− π(a)2G(γ0(x, θ, π(a))) min
{

1,
G(γ1(x, π(a)))
G(γ0(x, θ, π(a)))

}
= 1− π(a)2 min{G(γ0(x, θ, π(a))), G(γ1(x, π(a)))}

The result follows from Propositions 3.3 and 3.1, which established that γ0(x, π, θ) and γ1(x, π) are increasing

in π and the assumption that π(a) is increasing in a.

Next we show that average earnings are increasing in scholastic ability. By average earnings of a scholastic

group a we mean

e(a) = F (θC(x, π(a)))
ˆ
ydH(y) + [1− F (θC(x, π(a)))][n(a)

ˆ
ydH(y) + (1− n(a))

ˆ
ydM(y)]

Proposition 3.7. Average earnings e(a) are increasing in a.

Proof. Follows from Proposition 3.5, which established that θC(x, π) is decreasing in π and therefore θC(x, π(a))

is decreasing in a and Proposition 3.6, which delivered that n(a) is decreasing in a, and Assumption 3, which

implies
´
ydM(y) >

´
ydH(y).

These propositions relied on the assumption that a affected π only. It is possible that a also affects other

primitives, for instance, the distribution from which the effort cost γ is drawn, the distribution from which

earnings y are drawn and the college cost 2x. Indeed, in the quantitative section, we will permit a to affect

these distributions and the college cost as well.

4 Insuring College Failure Risk

Can the student loan program gainfully offer insurance against college failure risk? As noted in the intro-

duction, we wish to answer this question, recognizing that the student loan program cannot redistribute

resources from students with a high probability of success (high ability) to students with a low probability

of success (low ability) and recognizing that insurance against college failure may encourage shirking (and

therefore failure).

It is best to break up the answer into two parts. Consider first the nature of optimal insurance in period 1

when loan administrators can observe effort so that moral hazard is not an issue. Conditional on the student

having put in effort, the student loan program gives a transfer f1 to a student if she fails college and collects a
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premium s1 if she completes college. Since the insurance is required to be self-financing (no cross-subsidies),

we must have −π · s1 + (1− π) · f1 = 0. Ignoring the −γ term, expected utility given these transfers is then

π ·
ˆ
U(y − 2x− [(1− π)/π]f1)dM(y) + (1− π) ·

ˆ
U(y − 2x+ f1)dH(y).

Maximizing the above expression with respect to f1 yields the following first-order condition:

ˆ
U ′(y − 2x− [(1− π)/π]f1)dM(y) =

ˆ
U ′(y − 2x+ f1)dH(y).

Hence the value of f1 that attains the maximum is one that equalizes the expected marginal utility of

consumption following failure and success. Denote this value of f1 by f∗1 . Because there is a college premium

in earnings (meaning that the distribution M(y) first-order stochastic dominates the distribution H(y)) the

value of f∗1 will typically far exceed the cost of college 2x. Henceforth, we will proceed under the assumption

that this is so.

Assumption 5: f∗1 > 2x (first best insurance exceeds college costs)

Since our goal is to study the possibility of offering insurance against the risk of paying for college but failing

to graduate, we limit the maximum insurance that can be offered against failure to 2x. The following is then

true.

Lemma 4.1. Given Assumption 5, V E1 (x, π, γ, f1)) = −γ+β[πU(y−2x−f1π/(1−π))+(1−π)U(y−2x+f1)]

is strictly increasing in f1 ∈ [0, 2x]

Proof. The result follows from noting that ∂V E1 (x, π, γ, f1))/∂f1 > 0 for all f1 ∈ [0, 2x].

When effort is not observable, however, actuarially fair insurance up to the full cost of college cannot generally

be offered. Under full-cost insurance, a student who shirks receives β
´
U(y)dH(y). In contrast, the student

gets
´
U(y − 5x/4)dH(y) from dropping out. For β close to 1, shirking will dominate dropping out. In fact,

we will proceed under the assumption that it does.

Assumption 6: β
´
U(y)dH(y) >

´
U(y− 5x/4)dH(y) (full-cost insurance makes dropping out better than

shirking)

Thus, with full-cost insurance, students who chose to drop out prior to the introduction of insurance (and

by Proposition 3.4 such students do exist) now may be motivated to shirk instead. If at least some students

shirk, the failure rate will exceed π and the premia collected will fail to cover loss claims.9

9It is not certain that these students will find it optimal to shirk. The reason is that insurance also increases the value of
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We first consider optimal insurance schemes that do not induce shirking. This is a restrictive but simpler

problem to analyze. It is simpler because with a “no-shirking” insurance arrangement, the probability

of failure is simply π. In contrast, less restrictive insurance schemes may induce shirking and raise the

probability of failure above π since shirkers fail with probability 1. The endogeneity of the failure probability

makes the general insurance problem difficult. The solution to the restrictive“no-shirking” insurance problem

provides some guidance on how to set up the general optimal insurance problem.

We will denote the indemnity in period t (i.e., the payment received in the event of failure in period t) as

ft and the payment in case of success as st. We will assume that students who succeed pay their premia

when they leave college. Assuming that program administrators cannot tell the difference between genuine

failures and those who fake failure by shirking, the payoffs in period 1 are as follows:

1. A student who drops out gets

V D1 (x, s0) =
ˆ
U(y − 5x/4− s0)dH(y).

2. A student who continues but shirks gets

V S1 (x, f1, s0) = β

ˆ
U(yN − 2x− s0 + f1)dH(y).

3. A student who continues and puts in effort gets

V E1 (x, π, γ, f1, s0, s1) = −γ + β[π
ˆ
U(y − 2x− s0 − s1)dM(y) +

(1− π)
ˆ
U(y − 2x− s0 + f1)dH(y)].

And, the payoffs in period 0 are as follows:

1. Individuals who do not enroll get

W (θ) = −θ + β

ˆ
U(y)dH(y).

putting in effort in college.
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2. Students who enroll but leave get

V D0 (x, θ) = −θ +
ˆ
U(y − x/4)dH(y).

3. Students who enroll, do not leave and shirk get

V S0 (x, θ, f0) = −βθ + β

ˆ
U(y − x+ f0)dH(y).

4. Students who enroll, do not leave and put in the effort get

V E0 (π, x, γ, f0, f1, s0, s1) = −γ + β[πmax[V E1 (π, x, γ, s0, s1, f1), V S1 (x, s0, f1), V D1 (x, s0)]

+(1− π)
ˆ
U(y − x+ f0)dH(y)].

Define the welfare of a student with utility costs (θ, γ) as

W (π, x, θ, γ, f0, f1, s0, s1) = max{V E0 (π, x, γ, f0, s0, f1, s1), V S0 (x, θ, f0), V D(x, θ)}

The optimal insurance problem with the no-shirking constraint is:

sup
{f0,f1,s0,s1}

ˆ
θ

[ˆ
γ

max{W (x, π, γ, θ, s0, f0, s1, f1),W (θ)}dG(γ)
]
dF (θ)

subject to:

V D0 (x, θ)− V S0 (x, f0) > 0 for all θ

V D1 (x, s0)− V S1 (x, s0, f1) > 0

s0π − f0(1− π) = 0

s1π − f1(1− π) = 0

The no-shirking constraints put upper bounds on the level of insurance that can be offered in periods 0 and

1.

Proposition 4.2. In an optimal no-shirking insurance arrangement f0 must be 0 and f1 must be strictly
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less than some level f̄1 > 0.

Proof. Consider the incentive constraint in period 0. This constraint requires that

−θ(1− β)/β +
[ˆ

U(y − x/4)dH(y)− β
ˆ
U(y − x+ f0)dH(y)

]
> 0

Since
´
U(y−x/4)dH(y)−β

´
U(y−x)dH(y) > 0, for any f0 > 0, there exists a θ(f0) such that the constraint

holds exactly. Since the distribution F (θ) has unbounded support the constraint is violated for all θ ≥ θ(f0).

Thus the optimal “no-shirking” f0 must be 0. By the feasibility constraint, the optimal “no-shirking” s0 must

also be 0.

Since
´
U(y − 5x/4)dH(y) − β

´
(y − 2x)dH(y) > 0, there exists f̄1 > 0 such that

´
U(y − 5x/4)dH(y) −

β
´

(y − 2x+ f̄1)dH(y) = 0. For f1 ≥ f̄1, the period 1 no-shirking constraint is violated. Thus, the optimal

“no-shirking” f1 must be less than f̄1.

Proposition 4.3. The supremum of the no-shirking insurance program exists and feasible f1 exist that come

arbitrarily close to attaining the supremum.

Proof. Since payoffs are bounded above by the quantity
´
U(y)dM(y) (the expected utility of a person with

a college degree and no debt), ex-ante utility, namely,

ˆ
θ

[ˆ
γ

max{W (x, π, γ, θ, 0, 0, π/(1− π)f1, f1),W (θ)}dG(γ)
]
dF (θ)

is bounded above by the same quantity for every feasible choice of f1. Thus the set of attainable ex-ante

utility must have a least upper bound.

From Assumption 6 we have that f̄1 < 2x. By Lemma 4.1 we have V E1 (x, π, γ, 0, 0, π/(1−π)f1, f1) is strictly

increasing in f1 ∈ [0, f̄1). Thus, ex-ante utility is strictly increasing in f1 ∈ [0, f̄1). It follows that the

supremum is not attained by any feasible f1 but f1 exist that come arbitrarily close to attaining it.

We now turn to the general insurance problem wherein we allow for insurance levels that induce shirking.

The failure rate will now exceed 1− π because shirkers fail with probability 1. Students who succeed must

pay a higher premium to cover the losses imposed by shirkers. This raises two issues. First, the increase in

the cost of insurance might induce more students to shirk and a positive feedback between higher insurance

costs and the measure of shirkers might make it impossible to offer such insurance. Second, even if such

insurance levels are feasible, they may be too costly in terms of the “tax” on the successful students and

worse than “no-shirking” insurance.
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We will now permit f = (f0, f1) to be any element of the the set [0, x]× [0, 2x]. It is helpful to think of the

premia s = (s0, s1) as being made up of two parts. One part is the “base” premia that cover losses when

there is no shirking and is given by b(f) = (b0(f0), b1(f1)) = (π/(1 − π)f0, π/(1 − π)f1). The other part

is the additional premia that need to be collected to cover the losses imposed by shirkers. Denote these as

τ(f) = (τ0(f), τ1(f)).

Define γ0(x, π, θ, f, b(f) + τ(f)) ≥ 0 as the cut-off value of γ above which an enrolled student will not put in

effort in college in period 0 (i.e., she will either drop out or shirk). This cut-off solves

V E0 (x, π, γ, f, b(f) + τ(f)) = max{V D0 (x, θ), V S0 (x, θ, f0)}

The existence of this cut-off follows from the same logic as in Proposition 3.3.

Define θ(x, f0) as the cut-off value of θ above which, conditional on not putting in effort in college, a student

would prefer to shirk and below which she would prefer to drop out. This cut-off solves

V S0 (x, θ, f0) = V D0 (x, θ)

Existence follows from the same logic as in Proposition 3.2.

Finally, define γ1(x, π, f1, b(f) + τ(f)) as the cut-off value of γ above which the student does not put effort

in college in period 1. This cut-off solves

V E1 (x, π, γ, f1, b(f)+τ(f)) = V S1 (x, f1, b0(f0)+τ0(f0))χ{f1≥f̄1(f0)}+V
D
1 (x, b0(f0)+τ0(f0))[1−χ{f1≥f̄1(f0)}]

where χ{f1≥f̄1(f0)} is an indicator function that takes on the value 1 if the expression in {·} is true and f̄1(f0)

is such that
´
U(y − 5x/4− b0(f0)− τ0(f0))dH(y)− β

´
(y − 2x− b0(f0)− τ0(f0) + f̄1)dH(y) = 0. We have

incorporated the fact that if f1 is at least as large as f̄1(f0), the student finds it optimal to shirk. Given an

outside option (dropping out or shirking), existence follows from the same logic as in Proposition 3.1.

We can state the requirement for the feasibility of f .
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Definition 4.4. Insurance levels f ∈ [0, x]× [0, 2x] are feasible if there exist τ∗ = (τ∗0 (f), τ∗1 (f)) such that

π ·G(γ0(x, π, θ, f, b(f) + τ∗(f)) · τ∗0 (f)

= [1−G(γ0(x, π, θ, f, b(f) + τ∗(f)))] · [1− F (θ(x, f0))] · f0 (1)

and

π2 ·G(γ0(x, π, θ, f, b(f) + τ∗(f))) · G̃(γ1(x, π, f1, b(f) + τ(f))) · τ∗1 (f)

= [1− G̃(γ1(x, π, f1, b(f) + τ(f)))] · χ{f1≥f̄1} · f1 (2)

where G̃(γ) = min{1, G(γ)/G(γ0(x, π, θ, f, b(f) + τ∗(f)))}.

The term multiplying τ∗0 (f) on the lhs of (1) is the measure of enrolled students who put in effort in period 0

and succeed. Each of them pays the additional premium τ∗0 (f). The term on the rhs of (1) is the measure of

enrolled students who do not put in effort in college and shirk. Each of them collects f0 from the insurance

scheme. For feasibility, the two sides must balance. Similarly, the term multiplying τ∗1 (f) on the lhs of (2)

is the measure of students who put in effort in period 1 and succeed (as before G̃ is the distribution of γ

conditional on the set of γ for which students put in effort in period 0). Each of them pays the additional

premium τ∗1 (f). The term on the rhs of (2) is the measure of students who do not put in effort in period 1.

If the insurance scheme offers f1 ≥ f̄1 then all these students shirk; otherwise they drop out. For feasibility

the two sides must balance.

Let Φ ⊂ [0, x] × [0, 2x] be the set of f which are feasible. Φ is non-empty because any insurance scheme

in which f0 = 0 and f1 < f̄1, τ = (0, 0) satisfies both equations (these are the set of no-shirking insurance

levels). The general optimal insurance problem can be stated compactly as follows:

sup
f∈Φ

ˆ
θ

[ˆ
γ

max{W (x, π, γ, θ, f, b(f) + τ(f)),W (θ)}dG(γ)
]
dF (θ).

The fact that Φ is non-empty and that all payoffs are bounded above by
´
U(y)dM(y) implies that the

supremum must exist. If no f attains the supremum, insurance levels exist that come arbitrarily close to

attaining it.
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Figure 4: Choices when insurance is provided

Figure 4 indicates the effects of optimal insurance. Insurance increases the value of going to college and,

thus, shifts up the the γ0 and γ1 loci. Thus, insurance increases the fraction of students putting in effort

in both periods. If optimal insurance requires f0 > 0, then it shifts down the θ0 locus – of the students

who choose not to put in effort in college in period 0, a bigger fraction choose to continue on in college and

shirk. Both effects work to lower dropout rates in period 0. Dropout rates also decline in period 1 because

γ1 shifts up and all those who do not put in effort either continue to drop out or shirk – the latter happens

if optimal f1 ≥ f̄1. The effect of optimal insurance on the non-completion rate is ambiguous because it

encourages some students who were dropping out to put in effort (this is the positive effect) and others who

were dropping out to shirk (the negative effect). Of course, optimal insurance raises the enrollment rate.

It is an open question whether optimal insurance should tolerate some amount of shirking. Providing

insurance beyond the “no-shirking” level will encourage more enrollment and more effort in college but it will

also cause some students to shirk and thereby increase the cost of providing the insurance.

Note that the insurance friction here is entirely about adverse selection. Optimal insurance never encourages

anyone who was putting in effort in college to stop putting in effort. Indeed, it encourages people who were

not putting in effort to put in effort. The friction is simply that some students who were choosing to drop

out may choose to continue on in college without putting in effort (there is no change in their college effort

decision). Thus, insurance attracts students whose failure probability is 1. This is an extreme form of adverse

selection.

Some additional comments are worth making. First, we are implicitly assuming that once a student fails

college, he or she never attempts college again. If we were to relax this assumption, the insurance arrangement

would need to specify that once a student avails herself of insurance, she cannot re-enroll in college without

re-paying the indemnity with interest.

21



Second, we are abstracting from the adverse effects on the private returns to college education that may

stem from policy-induced increases in college completion rates.10 On the other hand, we are also abstracting

from the myriad social benefits of a more educated populace.

Finally, the following caveat should be kept in mind regarding the optimality of the insurance arrangement.

Because higher education is subsidized by federal and state governments, changes in enrollment and com-

pletion rates induced by insurance will change the level of subsidy being received by the higher education

sector. The welfare costs of this additional subsidy are being ignored here.

5 Mapping the Model to Data

The first issue that must be dealt with is that students vary in their probability of success π. Furthermore,

the insurance arrangements discussed in the previous section assume that each student’s π is observable to

student loan administrators. So the first task is to pool students with respect to some observable index of

the probability of success in college. We use SAT scores for this purpose. In particular, we classify students

in 5 groups. Table 2 gives the distribution in 1999 of students who took the SAT.

Table 2: Distribution of SAT scores
SAT scores 0− 699 700− 900 901− 1100 1101− 1250 1251− 1600
Fraction 0.079 0.224 0.342 0.205 0.15

In what follows, we will consider only the four top groups. We will denote these groups by the index

i ∈ {1, 2, 3, 4, }.

There are 4 parameters and 4 distributions in the model. Among the parameters are 2 preference parameters

σ and β and 2 college parameters x and π. Among the distributions are distributions for the (unobserved)

heterogeneity F (θ) and G(γ) and the distributions of earnings of non-college and college workers H(y) and

M(y). We assume that all students have the same preference parameters and draw from the same distribution

of the “outside option” F (θ) but we allow the parameters x and π and the distributions G(γ), H(y) and

M(y) to depend on i. Naturally, we expect π(i) to increase with i. We also expect the distribution G(γ) to

depend on i because the utility cost of exerting effort in college is, plausibly, more likely to be lower for a

student with a higher SAT score. We also expect x to depend on i because students with higher SAT scores

tend to go to more selective colleges and these colleges tend to have higher tuition.11 This tendency for x
10Card and Lemieux (2001) as well as Bound, Lovenheim, and Turner (2009) find evidence of congestion effects in higher

education: an increase in the number of people seeking higher education tends to be associated with a decline in educational
attainment.

11We do not explicitly analyze the matching of students of varying ability to colleges of varying selectivity, but our quan-
titative work recognizes the fact that students with similar scholastic abilities tend to sort into similar colleges. For details
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to increase with i is partly offset by the tendency of more selective colleges to provide more financial aid.

Finally, if scholastic ability is correlated with ability more broadly (as seems plausible), we also expect H(y)

and M(y) to depend on i. In particular, we would expect students with higher SAT scores to be more likely

to draw a higher y.

5.1 Preference Parameters, Earnings Distributions and College Costs

We assume that the utility function is given by

U(c) =

 (c+ ε)1−σ/(1− σ) if c > 0

ε1−σ/(1− σ) if c ≤ 0

where ε is a small positive number. Thus the utility function is defined over the real line but is effectively

CRRA with coefficient of relative risk aversion of σ for c >> 0. We set σ = 2 and β = 0.97, both conventional

values in quantitative macroeconomics.

In the theory, y is the person’s lifetime earnings. We calibrate the lifetime earnings distributions using

earnings data from the CPS for 1969-2002 for synthetic cohorts. There are 5000 observations in each year’s

sample, on average. We distinguish between two education groups: those with at least 12 years but less

than 16 years of completed schooling and those with at least 16 years of completed schooling. The former

corresponds to the non-college group and the latter to the college group. For each education group, we

calculate the mean real earnings of heads of households who are 25 years old in 1969, 26 years old in 1970,

. . . , 58 years old in 2002.12 The mean present value of life-cycle earnings for each group is simply the sum of

the mean earnings at each age.13 For the non-college group mean life-time earnings is $1.07 million and for

the college group it is $1.69 million. These estimates imply a college premium of 58 percent. Micro-studies

find that the increase in lifetime earnings from each additional year in college is between between 8% and

13% (see Willis (1986) and Card (2001)). Since the average college graduate has more than 4 years of college

education (some students do post-graduate schooling), our calibration of the college premium is roughly

consistent with the high end of this range of estimates.14

To estimate the variation of lifetime earnings around these mean values, we assume that the life-time earnings

on the importance of individual characteristics coupled with college characteristics for college attendance and completion, see
Bound, Lovenheim, and Turner (2009), Hastings, Kane, and Staiger (2006), Hoxby (2004) and Light and Strayer (2000).

12To increase the number of observations in each age group, we consider five-year bins. That is, by age 25 in 1969 we mean
heads of household who are between 23 and 27 years old (both inclusive) in that year. Real values are calculated using the CPI
for 1999

13Ignoring discounting overestimates life-time earnings and ignoring earnings beyond age 58 underestimates it.
14Restuccia and Urrutia (2004) use a 10% rate of return, which corresponds to a lifetime college premium of about 1.5.
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of an individual in education group k are given by z(µk25 +µk26 + · · ·+µk58), where z is a random variable with

mean 1 and variance σ2
z(k) and µkn is the mean earnings in education group k at age n. Then, σz(k) is simply

the (common) coefficient of variation of earnings at any age n in education group k. We set σz(k) equal to

the mean coefficient of variation in earnings across all ages in education group k. This construction implies

that the standard deviation of y is $ 0.8 million for the college group and $ 0.5 million for the non-college

group.

The above calibration of the mean and standard deviation of lifetime earnings for the two education groups

is for each group as a whole. Within each group, we permit the distribution of lifetime earnings of individuals

to vary systematically with scholastic ability (see Cunha and Heckman (2009), Hendricks and Schoellman

(2009)). We use the data set High School and Beyond (HS&B) to group students by the four ability groups

i ∈ {1, 2, 3, 4} and compute the mean earnings for each group of those students who are five years out

from the year they acquired their highest degree and are employed full-time. We use these mean earnings

to compute the mean earnings of each ability group relative to the overall mean earnings of the education

group in question and then apply these relative mean earnings factors to the mean earnings in the CPS

data for the corresponding education group. This yields (µC
i

(y), i = 1,2,3,4) = (1.66, 1.74, 1.84, 1.91) and

(µNCi , i = 1,2,3,4) = (1.05, 1.11, 1.17, 1.21).15 We assume that the standard deviation of earnings for each

ability group is the same as for the group as a whole. Finally, in order to compute the relevant expected

utility values, we assume that all earnings distributions are Normal.

The cost for college was $20,706 per year for private universities and $8,275 per year for public universities

in 1999. Among the students who borrowed for their education, 67% went to public and 33% to private

universities. The enrollment-weighted total college costs are $49,508 in 1999 dollars (College Board (2001)).

We consider heterogeneous costs of college. Using the same enrollment-weighted procedure, we estimate

college costs across ability groups using data from the Princeton Review on college rankings in terms of

average SAT scores of accepted students and data from USA Today on college costs (tuition and room

and board). We estimate college costs for the 4 groups of ability levels to be: $35,200, $37,000, $56,400,

and $73,400 (in 1999 dollars). Thus, we find that high ability students enroll in more expensive colleges

(more selective colleges tend to be more expensive). We set college costs (in millions) (2xi, i=1,2,3,4) =

(0.0352, 0.0370, 0.0564, 0.0734).

15We use the HS&B because the B&B data set (which reports earnings for more years) covers only college graduates while
the BPS data set covers both high school and college graduates but reports earnings only upon graduation. Since earnings
differentials due to ability are likely to manifest themselves gradually over time, using earnings information from some years
out is preferable. We normalize the units in which earnings are measured in the model so that 1 unit means $1 million.
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5.2 Completion Probabilities and Distributions of Disutility from Effort

To calibrate πi, we use the Beginning Postsecondary Student Longitudinal Survey (BPS 1995/96), which

collects data on intensity of college attendance and completion status of post-secondary education programs

for students who enrolled in 1995.

We consider only students who enroll without delay in either 2- or 4-year colleges following high school

graduation. Because we do not have part-time enrollment in the model, we consider students who enroll

exclusively full-time in their first academic year and enroll full-time in their first and last months of enrollment

in future academic years.16 The survey records the fraction of students (for each ability group) who, in 2001,

report having earned a bachelor’s degree. This is the degree completion rate and for our universe of students

comes out to be (ci, i=1,2,3,4) = (0.601, 0.72, 0.825, 0.871).17 These rates do not identify πi because the

universe includes students who do not put effort in college; for instance, it includes students who drop out

shortly after enrolling and therefore never earn a degree. To identify πi, we first locate students who, in

2001, report not having earned a bachelor’s degree and who report having last enrolled in academic years

1995-96 or 1996-97. This group is our empirical analog of students who drop out or fail in period 0 or drop

out at the start of period 1. We refer to this group as leavers and their fraction (in our universe of students)

comes out to be (li i=1,2,3,4) = (0.088, 0.056, 0.025, 0.013).18 The complement set is our empirical analog

of students who are in good standing at the start of period 1 and who put in effort in college. Therefore,

we obtain (πi i=1,2,3,4) = ((0.601/(1 − 0.088), 0.72/(1 − 0.056), 0.825/(1 − 0.025), 0.871/(1 − 0.013)) =

(0.659, 0.7627, 0.8462, 0.8825). Observe that π is increasing in SAT scores, which justifies our initial thought

that SAT scores are an observable proxy for π.

The calibration of the distributions F (θ) andGi(γ) is achieved via moment matching. The moments we target

are enrollment and leaving rates for the four ability groups. We use the National Education Longitudinal

Study (NELS:88) to collect information on the college enrollment choices of students who were high school

seniors in 1992. We consider a student to be enrolled in college if he or she enrolled without any delay after

high school and was enrolled in either a 2-year or 4-year colleges in October 1992. The enrollment rates by

our four ability groups comes out to be (ei i=1,2,3,4) = (0.795, 0.894, 0.943, 0.957).

We assume that F is distributed normal with mean µθ and standard deviation σθ and the Gi(γ) is distributed

16Since students can enroll full-time but drop out shortly thereafter, “exclusively full-time enrollment in the first academic
year” simply means that the student is enrolled full-time for the months he or she is actually enrolled. For later academic
years, we weaken the full-time requirement to apply to only the first and last months of enrollment. This allows students to go
part-time for short stretches of time.

17We did not want the college performance of students with very low and very high SAT scores to overly affect the performance
of their respective groups (the 700− 900 group and the 1250− 1600 group). We employed a 5% Winsorization with respect to
SAT scores to reduce the sensitivity of group performance to outliers.

18These statistics also reflect a 5% Winsorization.
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exponential with mean µγi . These distributional assumptions imply that there are 6 parameters to be

constrained by 8 moments. The problem reduces to finding the vector of parameters α = (µθ, σθ, µγi=1,2,3,4)

that solves

min
α

(
4∑
i=1

wi((ei − ei(α))2 + vi(li − li(α))2

)
,

where ei(α) and li(α) are the corresponding model rates and wi and vi are the weights assigned to these

rates.

Table 3: Enrollment and leaving rates: model and data
SAT scores 700− 900 901− 1100 1101− 1250 ≥ 1251
Enrollment rates : Data 0.795 0.894 0.943 0.957
Enrollment rates : Model 0.77 0.908 0.949 0.961
Leaving rates: Data 0.088 0.056 0.025 0.013
Leaving rates: Model 0.088 0.043 0.025 0.013

Table 3 gives the outcome of this moment matching exercise. As is evident, the match between data and model

moments is quite good. We find the distributions F (θ) ∼ (0.39, 0.21) and G1(γ) ∼ (0.066), G2(γ) ∼ (0.065),

G3(γ) ∼ (0.057), and G4(γ) ∼ (0.046). Note that means of the γ distributions decline with ability. This is

consistent with our interpretation of γ as the utility cost associated with school work. High-ability students

seem to bear fewer costs (i.e., find the work more enjoyable) than low-ability students.

6 Insurance Against Failure Risk

In this section we report the results regarding insurance for each of the 4 ability groups. We follow the

structure of the analysis in Section 4. For each ability group (i.e., for each π) we consider the best possible

insurance when (i) effort is observable, (ii) effort is not observable and the insurance must respect the

no-shirking constraint, and (iii) effort is not observable and shirking is tolerated.

6.1 Full Insurance

First, we consider the case where effort is observable. The model delivers that the level of insurance that

equates marginal utilities across states, f∗i , is 0.076, 0.104, 0.143, 0.172 for i = 1, ...4. These levels are higher

than the cost of college, 2xi, for all ability levels i (they represent 216.5%, 280.8%, 253.6%, and 234.5% of

college costs by ability groups). Thus our calibrated economy satisfies Assumption 5. So, when effort is

observable, it is optimal to insure students of all ability groups up to the full cost of college.
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6.2 No-shirking Insurance

Recall from Proposition 4.2 that an optimal no-shirking insurance must offer f0 = 0 in period 0 and up to f̄i 1

in period 1, where f̄i 1 satisfies
´
U(y− 5xi/4)dHi(y) = β

´
(y− 2xi + f̄i 1)dHi(y) (here Hi is the non-college

distribution of earnings of ability group i). An important observation is that when this level of insurance

is provided, there is a positive mass of students who are indifferent between shirking and dropping out in

each ability group. Our assumption is that if a student is indifferent between shirking and dropping out, she

shirks. Given that, we consider giving an indemnity of 1% less than the level that makes shirking just as

good as dropping out. Thus, we offer ¯̄fi 1 = 0.99f̄i 1 in case of failure and the premium that is paid in case

of success is ¯̄si 1 = (1− πi) ¯̄fi 1/πi.

Table 4 presents the indemnity offered, ¯̄fi 1, by ability groups, as well as the premium paid in case of success,

¯̄si 1, as percentages of the cost of college. The indemnity offered increases in ability, with the top ability

group receiving more than two times more indemnity than the bottom ability group. However, given that

the college cost increases in the ability level, each ability group is forgiven a roughly constant fraction of

their college cost in the case where failure occurs. The bottom/highest ability group is forgiven 23.3%/24.6%

of their college cost. The insurance, however, is more expensive for the low-ability groups relative to the

high-ability groups: the premium is 12.1% of the college cost for the bottom ability group and only 3.3% of

the college cost for the top ability group.

Table 5 displays how enrollment, leaving and completion rates change with the insurance. Since insurance

increases the value of putting in effort in college, given θ there is less chance a student will want to drop out

of college. Thus, there is a tendency for leaving rates to go down and completion rates to go up. On the other

hand, there is a selection effect working in the opposite direction. Because insurance increases the value of

putting in effort in college, it also increases enrollment. The new enrollees are students with low values of θ.

Since the γ0(x, θ, π) locus is increasing in θ, the new enrollees are more likely to drop out in period 0. For the

first three ability groups, the first effect dominates and insurance causes leaving rates to fall and completion

rates to rise. For the top ability group, the second effect is decisive. For this group, insurance encourages

everyone to enroll and there is a sufficiently large increase in the share of “low θ” students so that leaving

rates rise and completion rates fall.

Table 5 also displays the welfare gain from insurance, namely, the percentage increase in welfare with insur-

ance relative to the no-insurance (baseline) model. As we might expect, the insurance is most valuable to

students with a high probability of failure and, indeed, the welfare gains decline with rising ability.19

19These gains are in the nature of social welfare gains where the social welfare function treats students with different θ values
symmetrically.
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Table 4: No-shirking insurance
SAT scores 700− 900 901− 1100 1101− 1250 ≥ 1251

Indemnity f1 0.0082 0.0084 0.0134 0.018
Percentage of 2x 23.34 22.74 23.7 24.55
Premium s1 0.0043 0.0026 0.0024 0.0024
Percentage of 2x 12.08 7.61 4.31 3.27

Table 5: Enrollment, leaving and completion rates: no-shirking insurance
SAT scores 700− 900 901− 1100 1101− 1250 ≥ 1251
Enrollment rates with insurance 0.848 0.924 0.965 1
Enrollment rates : data 0.795 0.894 0.943 0.957
Leaving rates with insurance 0.032 0.030 0.020 0.015
Leaving rates: data 0.088 0.056 0.025 0.013
Completion rates with insurance 0.638 0.740 0.829 0.870
Completion rates: data 0.601 0.720 0.825 0.871
Welfare gains in percentage 2.83 2.38 2.06 1.86

6.3 Optimal Insurance

We consider the general insurance case where fi ∈ [0, x] × [0, 2xi]. For comparison purposes, we first show

the results if insurance is offered only in period 1.

The first task is to determine the set of feasible insurance schemes for each ability group. When insurance

is offered only in period 1, an insurance arrangement f = (0, f1), f1 ∈ [0, 2xi], is feasible if there exists a

τ∗i 1(f) such that equation (2) is satisfied for ability group i. Obviously, any fi 1 < f̄i 1 is feasible because

there is no shirking and τ1 = 0 will trivially satisfy the feasibility condition. To determine feasibility for

f1 ≥ f̄i, we divide [f̄i 1, 2xi] into a fine grid and for each grid point attempt to find a τ that satisfies (2). Our

procedure is to iterate on τ1. For iteration k, we set τk1 to the value that satisfies (2) given the decision rules

corresponding to τ1 from iteration k − 1 (i.e., τk−1
1 ). We start the iterations with τ0

1 = 0. If this iterative

process converges we classify that particular grid point as feasible. If the process diverges, we classify it as

infeasible.

We find that the feasible indemnity levels f1 ∈ [f̄1, 2x] differ across ability groups. These sets turn out to

be ∅, [23.8, 29.8], [24, 34.8], [25.9, 50.5] (numbers are given in % of the college cost, 2xi) for i = 1,2,3,4. No

insurance including and beyond f̄1 1 is feasible for the lowest ability group. For the other three ability groups,

insurance levels beyond f̄i 1 are feasible. More f are feasible for higher ability levels.

These sets highlight the adverse selection problem. In the bottom ability group the probability of success π

is low. A low π means that γ1, the threshold above which a person does not put in effort in college, is low.
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Table 6: Optimal shirking insurance: periods 0 and 1
SAT scores 700− 900 901− 1100 1101− 1250 1251− 1600
f∗0 as percentage of 2x 29.83 10.27 11.26 13
s∗0 as percentage of 2x 15.44 3.2 2.05 1.73
f∗1 as percentage of 2x 15.99 18.38 21.01 30.65
s∗1 as percentage of 2x 8.28 5.72 3.82 4.1
τ∗0 as percentage of 2x 0.50 0.045 0.0062 0.0042
τ∗1 as percentage of 2x 0 0 0 0.125

Furthermore, the mean of the G distribution for the lowest ability group is the highest. These two factors

combine to make the mass of students who drop out in period 1 the highest for the lowest ability group.

When insurance beyond f̄1 1 is offered, all these students shirk. Thus there is a large jump in the measure

of shirkers. This requires that τ1 be increased significantly above zero to balance (2). A higher τ1 decreases

the number of students who put in effort in college and increases the number of students who wish to shirk.

This makes the jump in τ1 in the next iteration even higher still. This process of higher and higher jumps in

τ1 means that no insurance beyond f̄1 1 can be offered. In contrast, the successive increases in τ1 get smaller

(and eventually converge to 0) for the other three ability groups – owing to the fact that γ1 threshold is

higher and the mean of the G distribution is lower.

Even though insurance higher than or equal to f̄i 1 is feasible for the top 3 ability groups, we find that it

is not optimal to offer such insurance. Thus the optimal insurance scheme, even if we allow for shirking in

period 1, is to offer the best no-shirking insurance. Although insurance provides benefits for students who

put in effort in college, the fact that students have to pay more than the actuarially fair insurance price

(τ1 > 0) makes the net benefit of insurance at or beyond f̄i 1 (i = 2, 3, 4) negative.

We turn now to the full insurance problem with shirking when insurance is offered in both periods. The

calculation of feasible f is a natural extension of the method described above. For each ability group, we

start with (τ0, τ1) = (0, 0) and iterate on equations (1) and (2) simultaneously. If convergence is achieved,

the f is classified as feasible. We find that a higher f0 is associated with a lower f1: if more insurance is

offered in period 0, less can be offered in period 1. The reason is that period 0 insurance encourages more

people to put in effort in college in period 0 and, if successful, to drop out in period 1. Thus, it increases

the mass of potential shirkers in period 1 and therefore increases the cost of providing insurance beyond

the “no-shirking” level. As examples, Figure 5 shows the sets of feasible f (shown in white), Figure 6 shows

the associated τ0 and τ1, and Figure 7 presents welfare for feasible combinations of (f0, f1) (including the

optimal mix) for ability levels 2 and 4.

Table 6 presents the optimal mix of indemnity offered (f∗0 , f
∗
1 ) as well as the base premia, (s∗0, s

∗
1) and (τ∗0 , τ

∗
1 ).
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Figure 5: Feasible sets (in white) when insurance is provided
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Note: The left panel is for ability level 2 and the right panel for ability level 4.

Figure 6: Additional tax collected when insurance is provided
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Figure 7: Welfare when insurance is provided
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It is optimal to offer significant amounts of insurance in periods 0 and 1. Since any positive insurance in

period 0 induces shirking, the optimal insurance scheme tolerates some shirking in period 0 for every ability

group. In period 1, for ability groups i = 1,2,3 the insurance offered in period 1 is just short of the level

that would induce shirking. This is similar to the situation when insurance is offered in period 1 only, except

that the “no-shirking” insurance levels are now lower. The reason is that students who succeed in college in

period 0 owe the period 0 insurance premium. All else remaining the same, this reduces the value of putting

in effort in college in period 1 and therefore it lowers the γ threshold above which it is better to drop out.

Thus the “no-shirking” insurance levels for period 1 are lower than they would be if no insurance is offered in

period 0. As in the case when insurance is offered in period 1 only, offering insurance beyond the no-shirking

level in period 1 is too costly for the first three ability groups. The exception to this is the top ability group.

For this group, the measure of potential shirkers in period 1 is low enough that it is optimal to go beyond

the no-shirking insurance level.

Insurance offered is generally increasing in ability. This is true for insurance offered in period 1 and is true

for insurance offered in period 0 for the top three ability groups. Adverse selection becomes less important

as ability rises and, therefore, more generous insurance can be offered. The exception to this general rule

is the lowest ability group for which the insurance offered in period 0 is quite high (higher than what is

offered for any of the other ability groups). This happens because failure probability for this group is high

and insurance in period 0 is more valuable than insurance in period 1.

Table 7 gives the enrollment, leaving and completion rates for optimal insurance. A comparison with Table

5 indicates that optimal insurance has virtually the same effects as insurance in period 1 only. There is an

increase in enrollment and completion rates relative to the data for the bottom three ability groups. The
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top ability group behaves differently with respect to leaving and completion but this is due to the fact that

there are more “low θ” students post insurance (the enrollment probability is 1).

Table 7: Enrollment, leaving and completion rates: insurance
SAT scores 700− 900 901− 1100 1101− 1250 1251− 1600
Enrollment rates with ins 0.869 0.924 0.966 1
Enrollment rates : data 0.795 0.894 0.943 0.957
Leaving rates with ins 0.027 0.029 0.020 0.012
Leaving rates: data 0.088 0.056 0.025 0.013
Completion rates with ins. 0.636 0.740 0.830 0.870
Completion rates: data 0.601 0.720 0.825 0.871
Shirking rates 0.187 0.46 0.06 0.35

In the aggregate, optimal insurance induces an increase in enrollment rates from 89.9% to 93.4%. On average,

0.57% students shirk. Out of everyone who enrolls, only 2.36% decide to leave college compared to 4.11% in

the case where insurance is not offered. The average completion rate increases from 74.9% to 76.1% out of

everyone who enrolls. The combination of these effects delivers the result that the percentage of high school

graduates who acquire a college degree increases from 67.3% in the benchmark economy to 71.1%. Offering

insurance increases the value of putting effort in college and thus induces more people to stay in college. This

induces an increase in completion rates. Although some of the marginal students who decide to enroll and

stay in college with insurance may decide to shirk and thus will counteract the positive effect on completion

rates, this negative effect is secondary.

Table 8: Welfare changes: insurance with shirking
SAT scores 700− 900 901− 1100 1101− 1250 1251− 1600
Relative to baseline model 3.54 2.66 2.28 2.01
Relative to no-shirking insurance 0.73 0.29 0.23 0.15

Table 6.3 displays the welfare gains from optimal insurance across ability groups. Two comparisons are

presented. The first line displays the welfare gain relative to the baseline model. As one would expect the

gain is largest for the lowest ability group and the gains decline with ability. The next line displays the

gains relative to the no-shirking insurance arrangement. The gains are much smaller, indicating that the

no-shirking insurance arrangement captures most of the welfare gains. In the aggregate, there is a welfare

gain of 2.7% on average in the optimal contract relative to the baseline economy.
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7 Conclusion

A large fraction of students who enroll in college do not earn a degree. Many of these students borrow money

to finance their (failed) college education. We assume that students are cognizant of the fact that borrowing

to go to college is a risky endeavor. The focus of our paper is to examine – theoretically and quantitatively

– if the risk of failing to complete college (college failure risk) can be, at least partially, insured.

We conduct the analysis under two constraints on the provision of failure insurance. First, we assume that

any insurance scheme cannot redistribute resources from students with a high probability of completing

college to students with a low probability of completing college. Second, the insurance program must guard

against adverse selection: the possibility that poor risks will attempt to pool with the good risks when

insurance is offered.

We develop a model of student enrollment and effort decisions. Our model is consistent with a diversity of

behavior on the part of students. We develop the notion of optimal insurance against college failure risk,

taking into account the two constraints noted above. Our model predicts that some amount of insurance

against failure risk is desirable and can be offered. Also, the optimal insurance scheme may tolerate some

amount of adverse selection (the pooling of bad risks with good ones). We calibrate our model of student

enrollment and effort decisions to match data on US college enrollment, leaving and completion rates. Using

the calibrated model, we compute the optimal insurance and quantify the effect of optimal insurance on these

rates as well as on welfare. We find that optimal insurance increases enrollment rates by 3.5 percentage points

and increases college completion rates by 1.2 percentage points. Although insurance draws in students

with a high risk of failure, the completion rate rises because fewer students drop out voluntarily from

college. On average, welfare increases by 2.7 percent. We also present results broken down by ability groups.

Students with relatively low scholastic ability and a high failure probability benefit the most from failure

insurance. Since these students are typically from low-income backgrounds and most in need of loans to

finance the expense of a college education, our results suggest that insurance against college failure risk will

be particularly useful to students from low-income backgrounds.
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