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Abstract

Worker flows and job flows behave differently over the business cycle. We investigate
the sources of the differences by studying quantitative properties of a multiple-worker ver-
sion of the search/matching model that features endogenous job separation and intra-firm
wage bargaining. Our calibration incorporates micro- and macro-level evidence on worker
and job flows. We show that the dynamic stochastic equilibrium of the model replicates
important cyclical features of worker flows and job flow simultaneously. In particular, the
model correctly predicts that hires from unemployment move countercyclically while the
job creation rate moves procyclically. The key to this result is to allow for a large hiring flow
that does not go through unemployment but is part of job creation, for which procyclicality
of the job finding rate dominates its cyclicality. We also show that the model generates
large volatilities of unemployment and vacancies when a worker’s outside option is at 83%
of aggregate labor productivity.
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1 Introduction

Worker flows and job flows behave differently over the business cycle. It is well-known that
gross worker flows between unemployment and employment are countercyclical: The separation
flow into unemployment goes up during recessions; the hiring flow from the unemployment pool
also rises because the increases in the separation flow raise the unemployment pool rapidly, thus
increasing hires as well.1 The behavior of job flows is different: Job destruction is countercyclical,
whereas job creation is procyclical. Despite the clear difference in their cyclicality, there has been
no attempt to reconcile it in the literature.

In the canonical model of labor search/matching, a worker-firm match that operates linear
technology is taken to be the unit of analysis. While this traditional framework allows researchers
to analyze worker transitions, it cannot be applied to the analysis of job flows because job flows
are measured from establishment-level employment observations. In order to study both flows
simultaneously, one needs a framework in which firms can hire multiple workers subject to the
search friction.

In the previous literature, researchers have arbitrarily used either job flows or worker flows
as the model’s empirical counterparts. For example, Mortensen and Pissarides (1994), Cole and
Rogerson (1999), and den Haan, Ramey, and Watson (2000) take job flows as the empirical
counterpart, while, starting with Shimer (2005), the literature’s focus has largely shifted to the
cyclicality of transition rates between employment and unemployment. However, given that the
two flows have different cyclical properties, the standard model is inherently unable to match the
cyclicality of both flows. In this paper, we explore whether and how the search/matching model
with multiple-worker firms can simultaneously explain the cyclicality of worker flows and job
flows. Through this study, we can provide a fuller account of the U.S. labor market dynamics.

A recent paper by Elsby and Michaels (2008) develops a multiple-worker version of the match-
ing model where production technology exhibits decreasing returns to scale and firms make en-
dogenous hiring and separation decisions under the presence of the search friction. They adopt
the intra-firm bargaining framework by Stole and Zwiebel (1996a,b) to determine wages, which
naturally generalizes Nash bargaining often used in the standard model. Our model is based on
theirs. However, their focus is on the model’s ability to solve the well-known volatility puzzle
by Shimer (2005), and their analysis mostly relies on steady-state comparative statics. They
pay no attention to cross-sectional implications of the model nor the differences in the cycli-
cality of worker flows and job flows.2 We extend their model in several important dimensions
(which are discussed shortly) and solve for the stochastic dynamic equilibrium, applying a ver-
sion of the algorithm developed by Krusell and Smith (1998).3 Another recent paper by Cooper,

1The job finding rate drops significantly during recessions, lowering hires, but this effect is dominated by the
increase in the separation flow.

2Acemoglu and Hawkins (2006) also develop a similar model and examine its implications for the volatility
puzzle. However, their model assumes exogenous separation, and they also consider only the steady-state com-
parative statics. Other papers that consider the multiple-worker-firm setting include Smith (1999), Cahuc and
Wasmer (2001), and Cahuc, Marque, and Wasmer (2008). But they assume exogenous separation and focus on
analytical properties of the model. Yashiv (2006), Rotemberg (2006), and Krause and Lubik (2007) examine
quantitative properties of the large-firm model, but again, exogenous separation is assumed.

3Elsby and Michaels (2008) actually compute transition dynamics of their model. However, they assume,
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Haltiwanger, and Willis (2007) considers a similar environment and the authors do examine
quantitative properties of the model including aggregate dynamics as well as its cross-sectional
implications. However, their focus is again on the volatility puzzle. Furthermore, wages are
derived under the assumption that firms make a take-it-or-leave-it offer, implying that employed
workers obtain zero surplus.4

This paper is also related to the long-standing literature on aggregate implications of the
economy with a large number of heterogeneous establishments. We do not attempt to provide
an exhaustive review of this literature. We instead focus on recent papers that are most relevant
to our paper.5 Campbell and Fisher (2000) analyze the effects of hiring and firing costs on the
dynamics of job creation and destruction rates. They, however, assume the competitive labor
market so that there is no unemployment in their model. Further, the aggregate uncertainty takes
the form of shocks to the aggregate wage rate, which is exogenous to their model. Veracierto
(2008) studies a similar environment but solves for the full stochastic general equilibrium in which
all prices are endogenous. However, he focuses on the effects of firing taxes and again assumes
the competitive labor market, so that no unemployment exists (see also Samaniego (2008)).

In summary, none of the existing papers attempts to match the behavior of both worker
flows and job flows simultaneously. As mentioned above, the recent search/matching literature
mostly focuses on worker transition rates, whereas the literature on heterogeneous establishments
studies job flows. We take a step toward integrating the two branches of the literature.

As mentioned above, our model is based on Elsby and Michaels (2008) but differs from theirs
in quantitatively important ways. First, we allow for exogenous worker turnover, which plays a
critical role in our quantitative exercises. Second, we introduce the firing cost, which is incurred
when the firm endogenously sheds its workers. We calibrate the model at weekly frequency and
then construct quarterly job flows and monthly worker flows following the same procedures used
by the BLS.

We show that the dynamic stochastic equilibrium of the model successfully replicates impor-
tant cyclical features of worker flows and job flows. In particular, the model correctly predicts
that hires from unemployment move countercyclically while job creation moves procyclically. An
important assumption for achieving this result is that workers separated due to endogenous job
destruction go to the unemployment pool. This creates countercyclical job destruction as well
as the worker flow into unemployment. When the negative aggregate shock hits the economy,
the separation rate into unemployment increases while the job finding rate drops, as is the case
in the standard search/matching model. The hiring flow from the unemployment pool rises as
a result of increasing unemployment in the face of the negative shock. The countercyclicality
of worker flows between employment and unemployment is consistent with the empirical liter-

among other restrictive assumptions, that the aggregate shock is nonstationary. In contrast, we use a stationary
aggregate shock. This is important because we can then apply the Krusell-Smith algorithm originally developed
to solve for a stationary equilibrium of heterogenous consumer models.

4Another limitation of Cooper, Haltiwanger, and Willis (2007) is that important parameters are estimated
to match volatilities of unemployment and vacancies, and thus it is unclear whether their result arises from the
model’s internal magnification mechanism or not.

5Important earlier contributions in this area can be found in the references of the papers discussed in this
paragraph.
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ature.6 However, an important observation to make is that the flow into unemployment takes
up less than one-third of establishment-level total separations. We assume that the remaining
part of separations occurs at a constant exogenous rate. The hiring flow associated with these
exogenously separated workers moves procyclically because, for those workers, the movement of
the job finding rate is the only factor affecting the hiring flow. Given the presence of the large
procyclical hiring flow, job creation, which counts all hiring flows, becomes procyclical. This
finding points to importance of heterogeneity in labor market flows. We underscore this point by
showing that the model with either endogenous (countercyclical) separation only or exogenous
(constant) separation only cannot replicate the cyclicality of both flows simultaneously.

We also find that the model is able to generate large volatilities of labor market variables. Our
benchmark calibration implies that the outside benefit parameter is at 83% of average labor pro-
ductivity.7 This is much smaller than the value of 96% that is needed in Hagedorn and Manovskii
(2008) to fully account for volatilities of unemployment and vacancies.8 In the literature of the
volatility puzzle, the model’s volatility is often examined through the steady-state comparative
statics. However, impulse response functions from our model reveal that the dynamic stochastic
equilibrium implies large deviations from the steady state at least in the short run and that
magnification of the shock largely come from such deviations.

In the next section, we review the business-cycle facts about job flows and worker flows.
Section 3 lays out the model, and Section 4 provides some useful characterizations of the model.
In Section 5, we exert an effort in calibrating the model as tightly as possible by referring to the
employment growth distribution as well as first moments for worker flows and job flows. Section
6 gives a brief description of the computational method used to solve for the dynamic stochastic
equilibrium of the model. The details on the algorithm are given in Appendix B. Section 7
discusses the main results of this paper and also points out some problems of the model. We
then conduct the sensitivity analysis in Section 8 with respect to three alternative calibrations.
We find that our main results are largely intact with respect to those alternative calibrations.

Having established that the model replicates key dynamic features of worker flows and job
flows, Section 9 discusses three important applications using the model. First, we assess the
extent to which different data collection procedures influence cyclicality of worker flows and
job flows. Specifically, we calibrate and solve the model at weekly frequency and thus are
able to assess the extent of time aggregation biases that may pertain to observed job flows and
worker flows, which are, respectively, collected at quarterly and monthly frequencies. The second
application focuses on the effects of shutting down the endogenous job separation decision on
measured job destruction. Since job destruction is measured from net employment changes over
a quarterly period, it can fluctuate reflecting firms’ hiring decision (even with no endogenous job
separation) and our exercise intends to measure how large this effect is. The issues addressed
in these two applications are important to our understanding of the labor market dynamics,

6See for example Fujita and Ramey (2006) and Fujita (forthcoming).
7Our calibration strategy leaves no degree of freedom for the outside option parameter.
8Elsby and Michaels (2008) emphasize the feature that downward sloping labor demand makes the surplus

size endogenous in this environment and argue that the model does a better job of magnifying the shock. The
idea is that even though the marginal surplus, which is important for magnification, is small, the average surplus
can be large. The same intuition applies to our results as well.
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especially because some researchers have posed skepticism on the usefulness of job flows as
empirical measures of labor flows. Lastly, we examine the extent of nonlinearity and asymmetry
in the aggregate dynamics of our model. Section 10 concludes the paper by offering promising
future research avenues identified by our results.

2 Facts

In this section, we review the definitions of worker flows and job flows and then summarize the
cyclical properties of those series.

2.1 Definitions

Job flows. The job flow series are measured from the Business Employment Dynamics (BED)
data, which are based on the administrative records of the Quarterly Census of Employment and
Wages (QCEW). The coverage of the QCEW is very broad, representing 98% of employment on
nonfarm payrolls. The administrative records are linked across quarters to provide a longitudinal
history for each establishment. The linkage process allows the tracking of net employment
changes at the establishment level, which in turn allows calculating net employment gains at
opening and expanding establishments and net employment losses at closing and contracting
establishments.

The measures of job flows were originally developed by Davis, Haltiwanger, and Schuh (1996):
job creation (destruction) is defined as the sum of net employment gains (losses) over all estab-
lishments that expand (contract) or start up (shut down) between the two sampling dates. Since
we are interested in business cycle fluctuations of the series, we use the series that trace net
employment changes over a quarterly period. Normalizing creation and destruction by aggre-
gate employment yields rates of job creation and destruction, respectively.9 In this paper, we
use the term “job flows” to represent “rates” unless otherwise specifically mentioned. Job flow
series are one of the most widely-used measures to gauge the “churning” of the economy from
the perspective of firms. The sample period of the job flow series starts at 1992Q3 and ends at
2008Q2.10

Worker flows. Similar but different measures can be constructed based on changes in the
labor market status of workers. The Current Population Survey (CPS) polls a large number of
workers each month, ascertaining whether they are employed and, if nonemployed, whether or
not they engaged in active job search activities (i.e., unemployed) over the preceding month. It
is the official survey that underlies well-known statistics such as the unemployment rate and the
employment-to-population ratio. While the CPS is designed to provide a snapshot of the U.S.
labor market for each month, one can use its longitudinal component to obtain measures of worker

9More precisely, average employment between the beginning and the end of the quarter is used for normaliza-
tion.

10Unfortunately, the series only go back to the early 90s. Longer time series are available for the manufacturing
sector. In terms of their cyclicality, job flows for the whole economy and the manufacturing sector behave similarly
over the overlapping period. However, levels of job flows and their volatilities are significantly different.
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flows. We use the flow series constructed by the BLS.11 Our analysis focuses on gross worker
flows and transition rates between employment and unemployment, although in the calibration
section, we also discuss transitions into and out of the out-of-the-labor-force pool. Gross worker
flows based on the CPS come from the comparison of the labor market status at each monthly
survey. To be specific, transition rates between employment and unemployment are, respectively,
measured by:

EUt−k,t
Et−k

and
UEt−k,t
Ut−k

,

where EUt−k,t (UEt−k,t) refers to the number of workers who switch their labor market status
from “employed” (“unemployed”) to “unemployed” (“employed”) between week t−k and t. The
value of k takes either 4 or 5, depending on the calendar. We call the former the separation rate
and call the latter the job finding rate. The numerators EUt−k,t and UEt−k,t are what we call
worker flows.

2.2 Measurement in the Search/Matching Models

The literature has explored whether the search/matching model is able to replicate the business
cycle features of the U.S. labor market. Because the model is silent about which data to refer to in
evaluating the model’s quantitative performance, some researchers have used job flows, whereas
others have considered worker transition rates. For example, Mortensen and Pissarides (1994),
Cole and Rogerson (1999), and den Haan, Ramey, and Watson (2000) all evaluate the model’s
performance with respect to job flows. On the other hand, probably starting with Shimer (2005),
the literature’s focus has shifted toward fluctuations of worker transition rates, in particular, the
job finding rate of unemployed workers.

However, as we will see, job flows and worker flows behave quite differently over the business
cycle, meaning that the canonical models of labor search/matching are inherently unable to
explain both flows simultaneously. Furthermore, it seems misleading to evaluate the quantitative
performance of the model that does not have a notion of “firm,” with respect to the data measured
from a firm’s perspective.

2.3 Business Cycle Statistics

Unimportance of entry and exit. First, consider Figure 1 where we plot the time series of
job flows in the private business sector. In the figure, we show not only the total rates of job
creation and destruction but also their breakdowns into expansion, entry, contraction, and exit.
The intention of this figure is to show unimportance of the extensive margins for the business-
cycle fluctuations of job flows. According to the data, roughly 75% of total job flows come from
expansion or contraction of the existing establishments. More important, cyclical fluctuations of
total job flows are mostly accounted for by expansion or contraction. For instance, the correlation

11The data are available at www.bls.gov/cps/cps flows.htm. Fujita and Ramey (2006) also construct worker
flow series that are comparable to the BLS series. The cyclicality of the two data sets is very similar. See Fujita
and Ramey (2006) for data construction details and measurement issues in the CPS.

6



 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 1993  1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008

Total creation rate
Expansion rate

Entry rate
Total destruction rate

Contraction rate
Exit rate

Figure 1: Job creation and destruction rates
Notes: The data are taken from the BLS Business Employment Dynamics and cover
the private business sector. See Subsection 2.1 for definitions of the series.

between the total job creation (destruction) rate and the expansion (contraction) rate is higher
than 0.95. This fact is important because our model developed in the next section does not
feature extensive margins. The statistics below are thus calculated using the expansion rate and
contraction rate. From here on, we use the terms “job creation rate” and “job destruction rate”
to represent the expansion rate and contraction rate, respectively.

Business-cycle statistics. Table 1 characterizes the cyclicality of job flows and worker flows
using standard business-cycle statistics. The original series are logged and then detrended by
using the HP filter with smoothing parameter of 1,600. As mentioned above, original worker
flows and transition rates are monthly series. We render them quarterly by simple averaging so
that we can examine their cyclicality on an equal footing with job flow series. The real GDP
series is used as a cyclical indicator to judge each variable’s volatility and cyclicality. We can
summarize the characteristics of the labor market flows as follows.

• The separation rate into unemployment is countercyclical and the job finding rate is pro-
cyclical.

• The job finding rate is somewhat more volatile than the separation rate.12

• The separation flow is somewhat more volatile than the hiring flow.

12Shimer (2007) and Hall (2005a) argue that the separation rate into unemployment is roughly constant over
the business cycle. Fujita and Ramey (2006, 2009); Fujita (forthcoming); Elsby, Michaels, and Solon (2009);
Canova, Lopez-Salido, and Michelacci (2007); and Yashiv (2007) argue otherwise.
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Table 1: Business Cycle Statistics for Worker Flows and Job Flows

Volatility
Relative Corr. with
volatility output

Worker flows
E to U 0.067 5.987 −0.694
U to E 0.057 5.061 −0.468

Transition rates
Separation rate 0.073 6.488 −0.739
Job finding rate 0.086 7.685 0.772

Job flows
Creation rate 0.028 3.099 0.472
Destruction rate 0.035 3.838 −0.398

Stocks
Unemployment rate 0.129 8.018 −0.827
Vacancies 0.141 8.785 0.875

Notes: The first column gives the standard deviation of each series
that is logged and HP filtered with smoothing parameter of 1,600. The
middle column gives the standard deviation of each variable relative
to that of real GDP. Sample periods are as follows. Worker flows and
transition rates: 1990Q1–2009Q2. Job flows: 1992Q3–2008Q4. Unem-
ployment and vacancies: 1951Q1–2009Q2. Worker flows and transition
rates are calculated from the the BLS labor flow series that are available
at www.bls.gov/cps/cps flows.htm. The separation and job finding rates
are based on transition rates between employment and unemployment.
The original monthly series are converted into quarterly series by time
averaging. The sample period for real GDP is adjusted to match the
sample period of each variable.

• The job destruction rate is countercylical and the job creation rate is procyclical.

• The job destruction rate is somewhat more volatile than the job creation rate.

• Worker flows are more volatile than job flows.

Table 1 also shows volatilities of the unemployment rate and vacancies. As is well known
in the literature, these two variables are quite volatile when compared with volatility of labor
productivity. The same is true with respect to output volatility. Lastly, a well-known fact about
the cyclicality of unemployment and vacancies, i.e., Beveridge curve, can also be observed from
each variable’s correlation with output.

3 Model

The model presented here is derived from the one developed by Elsby and Michaels (2008).
Our model, however, differs from theirs in three important ways. First, we allow for exogenous
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(z, x, d,m, n) (z, x, d,m′, n′)

Firms choose n′′.
Matching occurs.

Production
occurs.

New (z′, x′, d′)

(z′, x′, d′, m′, n′)

Beginning of Beginning of
the current period. the next period.

Firms choose n′.

(z′, x′, d′, m′′, n′′)

Bargaining
occurs. drawn.

Matching occurs.

Exogenous separation
occurs to dn workers.

Exogenous separation
occurs to d′n′ workers.

Figure 2: Timing of events

worker turnover, which turns out to play a critical role in our quantitative exercises. Second, we
introduce the firing cost, which is incurred when a firm endogenously sheds its workers. Third,
we specify idiosyncratic and aggregate productivity processes that are more general and plausible
than theirs.

Time is discrete. There are two types of agents: firms and workers. Both are infinitely lived.
The total measure of firms is normalized to one. The total measure of workers is denoted by L.
The timing of events is summarized in Figure 2. Since we write down the model recursively, we
drop time subscripts from all variables and follow the convention that primes and double-primes
denote variables in the next period and the following period, respectively.

3.1 Firm

At the beginning of each period, a firm is characterized by (x, d, n). The variable x represents
idiosyncratic productivity of a firm. The variable d is the proportion of workers leaving the
firm for exogenous reasons before the firm makes its employment decision. In other words, d
represents the size of exogenous separations. The variable n is the number of workers employed at
the firm. Let m be the type distribution of firms. In addition, firms are affected by the aggregate
productivity shock z. The aggregate state of the world is represented by (z,m). We use Gz(z

′|z),
Gx(x

′|x), and Gd(d
′|d) to represent the stochastic process of z, x, and d, respectively.

In each period, a firm (i) may lose part of its workers according to realization of the exoge-
nous separation shock d, (ii) adjusts the number of workers (either by hiring or shedding), (iii)
negotiates wage with its workers, and (iv) produces and pays the negotiated wage to the workers.

In the first stage, dn workers leave the firm exogenously. The variable d could be zero in which
case no worker leaves the firm. Note that it is natural to assume that all firms lose workers at
a constant rate every period, which is nested in our specification. However, as will be discussed
in Section 5, our specification gives us a flexibility of matching a certain cross-sectional feature
of the data. Since those workers are considered to leave the firm voluntarily, we assume that
exogenous separation imposes no direct costs on the firm.
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In the next stage, the firm adjusts the size of employment. We assume that when the
endogenous reduction of its employment size occurs, the firm incurs the “firing cost” τ per
worker. Recall that the marginal cost of exogenous separation is zero. Therefore, with τ > 0,
a firm that desires to reduce its size of employment does not necessarily appeal to endogenous
reduction of employment. Instead, it may choose to let its employment shrink through exogenous
worker turnover. Hiring workers requires the firm to post vacancies. As is standard in the
search/matching literature, it is assumed that it incurs the flow vacancy posting cost κ for each
vacancy posted. Each vacancy is filled with the job filling probability q(z,m), which will be
endogenized later. Because of the law of large numbers, the cost of hiring a worker turns out to
be deterministic and κ

q(z,m)
. Observe that the firm can always hire the exact number of workers

it is willing to hire by taking into account the job filling probability.
In the production stage, the following production technology is available to all firms:

y = zxF (n′), (1)

where F ′ > 0 and F ′′ < 0. A prime is attached to n owing to our timing assumption. The
negotiated wage is a function of both aggregate and individual states and thus is expressed as
w(z, x, d,m′, n′). The expected present discount value of the firm before the employment decision,
Π(z, x, d,m, n), can be represented as follows:

Π(z, x, d,m, n) = max
n′≥0

{
zxF (n′) − w(z, x, d,m′, n′)n′ −

κ

q(z,m)
max(n′ − (1 − d)n, 0)

−τ max((1 − d)n− n′, 0) + β

∫ ∫ ∫
Π(z′, x′, d′, m′, n′)dGd(d

′|d)dGx(x
′|x)dGz(z

′|z)

}
,

(2)

wherem′ = Φm(z,m) is a law of motion of the type distribution of firms. The terms κ
q(z,m)

max(n′−

(1 − d)n, 0) and τ max((1 − d)n − n′, 0) capture the hiring and firing costs, respectively. Nat-
urally, these costs are asymmetric. Notice also that workers at the same firm obtain the same
wage w(z, x, d,m′, n′). The Bellman equation above yields the optimal decision rule of the firm
n′ = φn(z, x, d,m, n).

3.2 Worker

Workers are engaged in one of two activities: producing or searching for a job. When working
at the firm characterized by (x, d, n′) under the aggregate states z and m′, the worker receives
the bargained wage w(z, x, d,m′, n′). In the following period, with probability d′, the worker
separates from the firm exogenously. If exogenous separation does not occur in the next period,
the worker is subject to the risk of endogenous separation. After separating from the firm,
whether endogenously or exogenously, the worker starts looking for a job.

While the worker is looking for a job, he obtains the flow value b per period. With probability
f(z′, m′), which we will characterize later, the worker will find a job and become employed in the
next period. Let We(z, x, d,m

′, n′) and Ws(z,m
′) be the values of being employed and looking
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for a job, respectively. The two values can be express by the following Bellman equations:

We(z, x, d,m
′, n′) = w(z, x, d,m′, n′)

+ β

∫ ∫ ∫ (
d′ + (1 − d′)In′′<(1−d′)n′

(1 − d′)n′ − n′′

(1 − d′)n′

)
Ws(z

′, m′′)

+ (1 − d′)

(
In′′>(1−d′)n′ + In′′=(1−d′)n′ + In′′<(1−d′)n′

n′′

(1 − d′)n′

)
We(z

′, x′, d′, m′′, n′′)

dGd(d
′|d)dGx(x

′|x)dGz(z
′|z), (3)

Ws(z,m
′) = b+ β

∫
(1 − f(z′, m′))Ws(z

′, m′′)dGz(z
′|z)

+ β

∫ ∫
f(z′, m′)We(z

′, x′, d′, m′′, n′′)dGf(x
′, d′, n′′)dGz(z

′|z), (4)

where Gf (x
′, d′, n′′) represents the type distribution of hiring firms. I is an indicator function that

takes the value 1 if the logical expression attached to it is true and takes the value zero otherwise.
In Equation (3), the expression in front of Ws(z

′, m′′) summarizes all possibilities of separating
from the firm. Specifically, the first term corresponds to the case with exogenous separation
and the second term corresponds to the case in which the firm is reducing its workforce and
the worker happens to be one of those workers. The expression in front of We(z

′, x′, d′, m′′, n′′)
summarizes all possibilities of staying with the firm. The first two terms represent the cases in
which either the firm is expanding or inactive. The last term captures the possibility that the
worker stays with the firm even though the firm is shrinking. In Equation (4), the second term
on the right-hand side gives the expected value of failing to find a new job, and the third term
gives the expected value of succeeding in a job search. Observe that the worker needs to take
the expectation with respect to the firm type distribution as well as the aggregate shock.

3.3 Bargaining

Since production technology exhibits diminishing returns and the firm can employ multiple work-
ers, bargaining is not as trivial as in the standard setting, which features bargaining between
one worker and one firm. We adopt the bargaining solution proposed by Stole and Zwiebel
(1996a,b), which naturally generalizes the Nash surplus sharing rule to the multiple-worker-firm
setting. The bargaining outcome takes the form that total surplus is split between the firm and
its workers according to the Shapley value of each agent.

Remember that since firms finished adjusting the number of workers at the timing of the wage
negotiation, the hiring cost is sunk in the negotiation. The marginal surplus of a firm, which we
denote J(z, x, d,m′, n′), takes the following form:

J(z, x, d,m′, n′) = zxF ′(n′)−w(z, x, d,m′, n′)−wn(z, x, d,m
′, n′)n′ +βD(z, x, d,m′, n′), (5)

where

D(z, x, d, n′, m′) =

∫ ∫ ∫
Πn(z

′, x′, d′, m′, n′)dGd(d
′|d)dGx(x

′|x)dGz(z
′|z) (6)
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is the expected marginal profit of the firm. The intra-firm bargaining results in the outcome that
the marginal surplus is divided between the worker and the firm based on each party’s bargaining
weight. Letting η be the bargaining power of the workers, the bargained wage w(z, x, d,m′, n′)
is implicitly characterized by the following rule:

(1 − η) [We(z, x, d,m
′, n′) −Ws(z,m

′)] = η [J(z, x, d,m′, n′) + τ ] . (7)

Note that the firing cost τ is added to the marginal value of the firm because the firm can avoid
paying the firing cost by continuing the relationship (i.e., if the negotiation breaks down, the loss
to the firm is J(z, x, d,m′, n′) + τ).

3.4 Matching and Separation

Matching technology is characterized by an aggregate matching function M = M(S, V ), where
M is the number of new matches created, S is the number of workers looking for a job, and V
is the number of vacancies posted. Notice that, when matching occurs, the type distribution of
firms is represented by m. We can compute S from m and the total number of workers L as
follows:

S(m) = L−

∫
n dm. (8)

When firms make a decision about hiring/firing, firms do not know V a priori. Since knowing
V is crucial in forming expectation about the job filling rate q(z,m), firms form expectation
about V . We denote V = ΦV (z,m) as the forecasting function used by all agents in the model
economy to predict the number of vacancies posted when the aggregate state is (z,m). In

equilibrium, expected V has to coincide with the realized V , which we denote Ṽ . Using the
optimal hiring/firing policy of firms, Ṽ can be computed as follows:

Ṽ =

∫
max(φn(z, x, d,m, n) − (1 − d)n, 0)dm

q(z,m)
. (9)

Note that the max operator is used to count only the number of new jobs that firms create and
that in order to predict q(z,m) firms need to predict V .

The expected new matches created can be defined as follows:

M(z,m) = M(S(m),ΦV (z,m)). (10)

The job finding probability f(z,m) and the vacancy-filling probability q(z,m) are, respectively,
written as follows:

f(z,m) =
M(z,m)

S(m)
, (11)

q(z,m) =
M(z,m)

ΦV (z,m)
. (12)
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The number of aggregate hires under the aggregate state (z,m) is computed by:

∫
max(φn(z, x, d,m, n) − (1 − d)n, 0)dm. (13)

The number of aggregate exogenous separations is computed by:

∫
dn dm. (14)

The number of aggregate endogenous separations is computed by:

∫
max((1 − d)n− φn(z, x, d,m, n), 0) dm. (15)

Adding the two types of separations gives the number of aggregate total separations:

∫
dn+ max((1 − d)n− φn(z, x, d,m, n), 0) dm. (16)

3.5 Equilibrium

We define the dynamic stochastic equilibrium of the economy as follows.

Definition 1 (Recursive stationary equilibrium)
A recursive stationary equilibrium of the model economy consists of the value functions, Π(z, x, d,m, n),
D(z, x, d,m′, n′), We(z, x, d,m

′, n′), Ws(z,m
′), optimal decision rule φn(z, x, d,m, n), wage func-

tion w(z, x, d,m′, n′), forecasting functions of the employment in the next period Φm(z,m), and
number of vacancies ΦV (z,m), such that:

1. Given forecasting functions and wage function, firms choose φn(z, x, d,m, n) optimally, and
Π(z, x, d,m, n) is the resulting value function, solving (2).

2. D(z, x, d,m′, n′) is consistent with the optimal decision rule φn(z, x, d,m, n).

3. Given forecasting functions, wage function, and firms’ optimal decision rules, We(z, x, d,m
′, n′)

and Ws(z,m
′) solve the Bellman equations (3) and (4), respectively.

4. w(z, x, d,m′, n′) is the bargaining solution characterized by (7).

5. Forecasting function Φm(z,m) is consistent with the stochastic process of x and d, and the
optimal decision rule φn(z, x, d,m, n).

6. Forecasting function ΦV (z,m) is consistent with the realized number of vacancies, which
is implied by firms’ optimal decision rule.
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4 Characterization

4.1 Optimal Hiring/Firing Rules

First, we characterize the optimal decision rule of firms and then the bargaining outcome. Even
though the model does not have a simple analytical solution like the one derived by Elsby and
Michaels (2008), the characterization greatly helps us solve the model numerically.

Using the recursive formulation of firms’ expected present discount value of profits (5), the
firm’s optimal decision is characterized by the following first-order conditions with respect to n′:

zxF ′(n′) − w(z, x, d,m′, n′) − wn(z, x, d,m
′, n′)n′

−
κ

q(z,m)
In′>(1−d)n + τIn′<(1−d)n + βD(z, x, d,m′, n′) = 0. (17)

The indicator function is necessary because the marginal cost of adjusting n′ depends on whether
(i) the firm is increasing employment after exogenous separation occurs (n′ > (1− d)n), or (ii) it
is not changing the employment (n′ = (1−d)n), or (iii) it is shedding workers on top of exogenous
separations (n′ < (1 − d)n).

The first-order condition (17) is helpful in characterizing the optimal decision of the firms.
First, notice that the only term that includes the current n is the marginal adjustment costs
of employment κ

q(z,m)
In′>(1−d)n and τIn′<(1−d)n. This implies that the solution to the first-order

condition is affected by the current n only through the marginal adjustment costs. Since both
κ

q(z,m)
and τ are positive, the left-hand side of the first-order condition in the case of n′ > (1−d)n

can be obtained by shifting the left-hand side for n′ = (1− d)n downward, as in Figure 3. In the
case of n′ < (1 − d)n, the left-hand side of the first-order condition is obtained by shifting the
one for n′ = (1 − d)n upward, again as in Figure 3. The solutions to the first-order condition
corresponding to the cases of n′ > (1− d)n and n′ < (1− d)n are n∗ and n∗, respectively. Using
n∗ and n∗, we can characterize the optimal decision rule φn(z, x, d,m, n) as follows:

zxF ′(n∗) − w(z, x, d,m′, n∗) − wn(z, x, d,m
′, n∗)n∗ + τ + βD(z, x, d,m′, n∗) = 0, (18)

zxF ′(n∗)−w(z, x, d,m′, n∗)−wn(z, x, d,m
′, n∗)n∗ −

κ

q(z,m)
+ βD(z, x, d,m′, n∗) = 0. (19)

Figure 4 presents the optimal decision rule for a given (z, x, d,m). The optimal decision rule
takes the form of the (s, S) rule, with [n∗, n∗] as the inactive region. When the current n after
exogenous separation ((1−d)n) is above n∗, the firm reduces its employment to n∗. When (1−d)n
is below n∗, the firm increases its employment to n∗. When (1 − d)n is in the inactive region,
the firm lets its employment size decline with exogenous separation only. When the model does
not feature exogenous separation, the diagonal line in Figure 4 becomes a 45-degree line.

In order to compute the optimal decision rule, we need the wage function, w(z, x, d,m′, n′)
and the firm’s expected marginal value with respect to n′, D(z, x, d,m′, n′). How can we compute
D(z, x, d,m′, n′)? Using (6), the definition of D(z, x, d,m′, n′), and the optimal decision rule that
we just obtained, we can characterize the updating formula for D(z, x, d,m′, n′) as follows:
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Figure 3: First-order condition

D(z, x, d,m′, n′) =

∫ ∫ ∫
Πn(z

′, x′, d′, m′, n′)dGd(d
′|d)dGx(x

′|x)dGz(z
′|z), (20)

where

Πn(z
′, x′, d′, m′, n′) = (1 − d′)





−τ if ñ′ > n∗

z′x′F ′(ñ′) − w(z′, x′, d′, m′′, ñ′) − wn(z
′, x′, d′, m′′, ñ′)ñ′ + βD(z′, x′, d′, m′′, ñ′) if ñ′ ∈ [n∗, n∗]

κ
q(z′,m′)

if ñ′ < n∗,

and m′′ = Φm(z′, m′), ñ′ = (1 − d′)n′, n∗ and n∗ are characterized by equations (18), (19),
respectively, for (z′, x′, d′, m′). For the steady-state version of the model without exogenous
separation and firing cost, Elsby and Michaels (2008) show that Equation (20) is a contraction
mapping in D and thus has a unique fixed point.

4.2 Bargaining Outcome

Combining (3), (4), (5), and (17) with the formula for the bargaining solution (7), we can
obtain the following differential equation that governs the behavior of the bargained wage. See
Appendix A.1 for derivation.

w(z, x, d,m′, n′) = (1 − η)b+ η [zxF ′(n′) − wn(z, x, d,m
′, n′)n′

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]
. (21)
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If we further assume F (n) = nα, we can obtain the following closed form solution to the differ-
ential equation above.

w(z, x, d,m′, n′) = (1 − η)b+ η

[
zxαn

′α−1

1 − η(1 − α)

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]
. (22)

See Appendix A.2 for derivation. Equations (21) and (22) generalize the wage equations derived
by Elsby and Michaels (2008) to the case in which the firing cost and exogenous worker turnover
are present.

5 Calibration

This section discusses the benchmark calibration of the model. The model is calibrated at weekly
frequency. High frequency calibration is essential since it allows us to emulate the empirical mea-
surement. With respect to the parameters for which we do not have tight identifying restrictions,
we will conduct the sensitivity analysis in Section 8.

5.1 Functional Forms

We assume that the matching function takes the Cobb-Douglas form:

M = M(S, V ) = µSψV 1−ψ. (23)
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Let us denote the ratio of job seekers to vacancies (i.e., market tightness) by θ. The production
function for individual firms is assumed to take the simple functional form that exhibits decreasing
returns to scale with α < 1:

y = zxF (n) = zxnα. (24)

Both the aggregate and idiosyncratic productivity shocks follow standard AR(1) processes:

z′ = ρzz + ǫz, (25)

x′ = ρxx+ ǫx, (26)

where ǫz ∼ N(0, σ2
z), and ǫx ∼ N(0, σ2

x).
13 The exogenous separation probability d is chosen to

follow the following process:

d =

{
d̃ with probability pd,
0 with probability 1 − pd,

(27)

where pd denotes the probability that exogenous separation occurs at each firm. Conditional on
the firm being hit by the shock, each worker faces the separation probability of d̃. As we will
see later in this section, this process gives us the flexibility of matching a certain feature of the
employment growth distribution.14

5.2 Measurement of Labor Market Flows

Measurement of worker flows and job flows plays an important role in our quantitative exercises.
We need to address two important issues here.

First, job flows are measured from establishment-level net employment changes over a quar-
terly period as discussed in Section 2. Worker flows are measured from changes in the labor
market status over a monthly period. The difference in frequency of data collection can cause
differences in cyclical properties of job flows and worker flows. To deal with this issue, we solve
the model at weekly frequency, and the simulated weekly observations are compiled in the same
way as the BLS does. This way we can assess the extent to which differences in the cyclicality
of the observed series are accounted for by the different measurement practices.

The second issue is that worker flows between unemployment and employment are only a
part of all worker flows. In the literature, the attention has often been focused on this flow,
mainly because researchers are interested in fluctuations in the unemployment rate. However,
establishment-level data in general include all worker flows. More specifically, establishment-
level total separations (hires) consist of three types of flows (i) separations into (hires from) the
unemployment pool, (ii) separations into (hires from) the out-of-the-labor-force pool, and (iii)

13The search/matching literature, including Elsby and Michaels (2008), often uses the memoryless process for
idiosyncratic productivity. Adopting such a process often helps obtain an analytical solution while maintaining
persistence of the idiosyncratic shock. However, this process is inconsistent with evolution of establishment-level
productivities.

14An alternative is to assume pd = 1, so that all firms shed workers at the same exogenous rate. Our specification
nests this alternative but the model is not able to match the feature with pd = 1.
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separations into (hires from) other employers. Obviously, these three types of worker flows affect
the behavior of job flows, which are measured from establishment-level net employment changes.

This paper’s interest is to simultaneously account for the cyclicality of worker flows between
employment and unemployment as well as job creation and destruction. To this end, we take the
following strategy. First, we calibrate the model such that hires and separations that occur at the
establishment level include all three types of flows. We then make the following three assump-
tions: (a) workers separated due to endogenous employment reduction go to the unemployment
pool; (b) two other types of separations are lumped together into exogenous separation; and (c)
all job seekers face the same job finding rate.

First, note that these assumptions entail the implication that the size of job seekers is ex-
panded to accommodate hires that do not go through the unemployment pool. Importantly, we
do so without introducing further heterogeneity into the model, such as participation and/or
on-the-job search decisions.15 We now discuss the three assumptions in detail. First, separa-
tions associated with employer-initiated contractions of establishment size are often labeled as
“layoffs,” and a plausible presumption is that those workers are more likely to go to the unem-
ployment pool.16 As shown, for example, by Fujita and Ramey (2009), the separation rate into
unemployment is strongly countercyclical in the data and the behavior of endogenous separations
generated from the model is consistent with this empirical observation.

As for the assumption (b), note first that the separation rate into the out-of-labor-force pool is
nearly acyclical. Our assumption of the constant separation rate is consistent with this empirical
evidence.17 The remaining part of exogenous separations corresponds to the job-to-job flow.
Note that there are no direct transitions from one job to another in our model. The model does,
however, generate job-to-job transitions by way of time aggregation: The model is simulated at
weekly frequency but the data are collected at monthly frequency. Those who separate and find
jobs within a month show up as the job-to-job flow. The job-to-job transition rate in our model
indeed exhibits procyclicality (as in the data) owing to the procyclical job finding rate.18 Nagypál
(2008) plots the monthly time series of the job-to-job transition rate calculated from the SIPP
from the period of 1996 through 2003. According to the graph, it exhibits weak procyclicality
as in our model.

The assumption (c) is made for the sake of simplicity. The assumption implies that we apply
the job finding rate inferred from experience of unemployed workers to all separated workers.
This simplifying assumption comes from the fact that there is no or limited evidence on the size
of the pool of job seekers being out of the labor force or on the job. While there are many studies
that emphasize the importance of on-the-job search, they provide no empirical evidence on the
job finding rate for on-the-job seekers. For those who are out of the labor force, one could use

15Previous prominent papers have also made similar assumptions. See, for example, Cole and Rogerson (1999),
den Haan et al. (2000) and Cooper, Haltiwanger, and Willis (2007).

16A piece of supporting evidence is that, according to the “reasons for unemployment” data in the official CPS,
of all workers who are unemployed due to “layoffs” or “quits,” the fraction of the former is around 80%.

17We confirmed this by looking at the data constructed by Fujita and Ramey (2006), although they do not
directly analyze the cyclicality of that flow in the paper.

18The model with on-the-job search tends to imply stronger procyclicality of the job-to-job transition rate (see
for example Tasci (2007)). It is because of the procyclical job finding rate as well as the procyclical job-seeking
activity. The latter mechanism is absent from our model but is rarely tested against the available evidence.
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Table 2: Benchmark Parameter Values: Weekly Calibration

Parameter Value Description

ψ 0.5000 Elasticity of matching function w.r.t. vacancies

α 0.6700 Curvature of production function

β 0.9990 Time discount factor

η 0.7200 Workers’ bargaining power

µ 0.1492 Scale parameter of matching function

τ 0.0894 Firing cost

pd 0.0406 Prob. of firm-level exogenous separation shock

d̃ 0.2155 Conditional prob. of exogenous separation for workers

b 0.4000 Flow outside benefit (normalization)

ρx 0.9800 Persistence of idiosyncratic shock

σx 0.0300 Standard deviation of idiosyncratic shock

κ 0.0073 Flow cost of posting a vacancy

L 11.472 Labor force size

ρz 0.9957 Persistence of aggregate shock

σz 0.0025 Standard deviation of aggregate shock

the pool of “want-a-job” workers. However, there is a good reason to believe that the flow from
the out-of-labor force may not necessarily come from this pool of workers.19 In any event, the
pool of “want-a-job” workers is also strongly countercyclical; therefore, applying the same job
finding rate to these workers does not change our results below in significant ways.

5.3 Parameter Values

Table 2 summarizes the parameters of the model. The weekly time discount factor is set to
0.999, which implies a quarterly interest rate of 1.2%. The elasticity of the matching function
with respect to vacancies is set to 0.5. The available evidence on this parameter, summarized
in Petrongolo and Pissarides (2001), varies widely across studies. The chosen value for the
benchmark calibration is on the low side within the reasonable range. We later examine the
sensitivity of our results with respect to a higher value. We do not have tight direct evidence on
the bargaining power parameter. For the benchmark calibration, we simply use 0.72, the value
used by Mortensen and Nagypál (2007). Again, the sensitivity with respect to the alternative
value will be examined later.

Next, the curvature parameter of production is set to 0.67. The similar value is often used in
the literature that looks at establishment-level employment dynamics using the same production
technology (e.g., Campbell and Fisher (2000) and Cooper, Haltiwanger, and Willis (2007)). We

19See Fujita and Ramey (2006) for details.
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will conduct the sensitivity analysis along this dimension as well. The AR(1) coefficient of the
aggregate productivity process is set such that quarterly first-order autocorrelation coincides
with 0.95 (≈ 0.995712). The calibration of the standard deviation of the aggregate shock σz is
discussed later.

Parameters set internally. We target the following labor market statistics to select some
of the remaining parameters. First, we target the monthly job finding rate of job seekers at
25%. This roughly corresponds to the historical average of the monthly transition rate from
unemployment to employment.20 Given the monthly-level target, we set the target for the weekly
job finding rate f(θ) at 6.75%. The weekly job filling rate q(θ) is targeted at 33%, the value
used by Ramey (2008), which is in turn based on the study by Barron, Berger, and Black (1997).
These two target values for f and q pin down steady-state labor market tightness θ at 0.205. We
can then calculate the scale parameter of the matching function µ through f

θψ
.

The steady-state endogenous separation rate in the model, which, as discussed above, corre-
sponds to the employment-to-unemployment transition rate. We set its target to 1.5% at monthly
frequency, which roughly corresponds to its historical average. The steady-state total separation
rate is targeted at 5% at monthly frequency. The JOLTS (Job Openings and Labor Turnover
Survey) reports the monthly total separation rate, which is much smaller than 5%. However, as
shown by Davis, Faberman, Haltiwanger, and Rucker (2008), the JOLTS data seriously under-
estimate the level of the total separation rate. These authors adjust the JOLTS series by using
the more comprehensive BED data and show that the time-series average of the adjusted JOLTS
data is about 5% from the period of January 2001 through December 2006. Given the target
levels of the endogenous separation rate and the total separation rate, the exogenous separation
rate is targeted at 3.5% (= 5% − 1.5%) at monthly frequency. Accordingly, the weekly level

exogenous separation rate, pdd̃, is chosen to be 0.875% (= 3.5%
4

). We will determine pd to be

0.0406 below, and d̃ is thus set equal to 0.216.
The parameters for the idiosyncratic productivity process, ρx and σx, and frequency of the

exogenous separation shock pd are identified by using the establishment-level information on
which the three parameters have strong influence. First, the aggregate job flow rate is aimed
at around 8%, which roughly corresponds to the historical average of the private-sector job
creation and destruction rates. Second, the average one-quarter persistence measure of the job
creation rate is at around 0.7. This statistic is proposed by Davis, Haltiwanger, and Schuh
(1996) and measures the percentage of newly-created jobs at time t that remain filled at the next
sampling date one quarter later. They report that the historical average of this measure for the
manufacturing sector over the period of 1972Q2 through 1988Q4 is 0.678.21 Lastly, we also use a
piece of evidence on the employment growth distribution, which is reported by Davis, Faberman,

20See Fujita and Ramey (2006) for the time-series behavior of the series. The level of the job finding rate does
not take into account time aggregation error pointed out by Shimer (2007). But this issue is not relevant here
because our data collection procedure is exactly the same as the one used by the BLS.

21Unfortunately, empirical evidence on this measure is available only for the manufacturing sector. The per-
sistence measure of job destruction is defined similarly as the percentage of newly-destroyed jobs at time t that
do not reappear at the next sampling date. Davis, Haltiwanger, and Schuh (1996) report that job destruction
persistence in manufacturing is 0.723 over the same period.
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Haltiwanger, and Rucker (2008). Specifically, we target the fraction of establishments that
have no employment change at 15.7%. Recall our assumption that at the establishment level,
exogenous separation occurs only with probability pd. This specification is adapted to match
this statistic.22 Assigning the three parameters to match the three statistics yield ρx = 0.98,
σx = 0.03, and pd = 0.0406.

The three parameters b, κ and L are determined as follows. First, note that one of the three
parameters can be set at an arbitrary value as normalization. Accordingly we set b equal to
0.4.23 The remaining two parameters are set such that the model matches steady-state levels of
labor market tightness θ and the endogenous separation rate given all other parameter values.
Through this process, we obtain κ = 0.0073 and L = 11.472.

Finally, determining the remaining two parameters, σz, and τ , we appeal to second moment
properties of the model. First, we set σz at the level (0.0025) that delivers the aggregate output
volatility of roughly 2%. To see how τ is set, note that τ and the average hiring cost (κ

q
) have

strong influences on the firm’s dynamic hiring/firing decision. The latter has already been pinned
down and we thus choose τ to match the relative volatility of the job destruction rate and job
creation rate. The implied level of this parameter (0.894) turns out to be quite low. It amounts
to 25% of average weekly wage. This estimate is consistent with the empirical evidence that the
firing cost in the U.S. is very low.24

5.4 Steady-State Properties

Before discussing the dynamic properties of the model, let us first look at the performance of the
model in the steady state. Table 3 compares the model’s steady-state values with corresponding
target values. While we are unable to achieve an exact match due to the model’s nonlinearity,
the model delivers the steady-state values broadly in line with the empirical targets.

We also examine the model’s cross-sectional implications. Table 4 compares the employment
growth distributions based on the simulated data and the actual data. Recall that we select
the parameter values (in particular, pd) to match the fraction of establishments with no net
employment change. The table shows that the model has difficulties in replicating some of the
features of the empirical growth distribution. In particular, there are too many establishments
in the model making large employment changes, i.e., more than a 20% increase or reduction
of employment. We conjecture that this problem stems from the structure of the adjustment
costs in our model: In the model, the labor adjustment costs are linear in the number of hiring

22The case with pd = 1 is unable to match the statistic because exogenous separations always result in declines
in employment even when the firm does not actively change the employment size.

23This level by itself has no particular meaning in our paper. In the context of the volatility puzzle, what is
relevant is its relative level to average labor productivity, which we will discuss shortly.

24Despite the empirical evidence, the literature on the effects of the firing cost on labor market dynamics
typically uses much higher values. For example, Campbell and Fisher (2000) set the firing cost equal to 50%
of the quarterly wage in their benchmark calibration. Hopenhayn and Rogerson (1993) and Veracierto (2008)
also use similar values. The interpretation offered by Campbell and Fisher is that it corresponds to the cost of
destroying the job position. It is thus possible that the firm incurs no cost of replacing workers for the same
position but incurs a larger cost in getting rid of the position itself. However, our model does not have a distinction
between worker turnover and job-position turnover. The correct interpretation of the firing cost in our model is
thus the cost associated with worker turnover, which is empirically low.
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Table 3: Steady-State Implications: Benchmark Calibration

Data collection Empirical
Model

frequency target

Worker-side data

Separation rate Monthly 0.015 0.014

Job finding rate Monthly 0.250 0.242

Unemployment rate Monthly 0.057 0.053

Establishment-side data

Total separation rate Monthly 0.050 0.045

Job flow rates Quarterly 0.080 0.081

Job flow persistence measure Quarterly 0.710 0.730

b/(average labor productivity) − − 0.830

Notes: The persistence measure in the data is taken from Davis, Haltiwanger, and
Schuh (1996), which covers the manufacturing sector for 1972Q2-1988Q4. The total
separation rate is taken from Davis et al. (2008), which is based on the JOLTS data.
The model-based moments are calculated by aggregating one million establishment-level
observations. To calculate the model based moments, we follow the same data-collection
procedures as those used in actual surveys.

or firing. In reality, such large employment adjustments may also require an adjustment of the
capital stock, which could incur large fixed costs. The model completely abstracts away from
such considerations. Integrating the type of model considered in this paper with, for example,
the model of lumpy investment is beyond the scope of this paper at this point and thus left for
future research.

6 Computation

We solve the model numerically since there is no analytical solution. Our solution method is
based on the partial information approach developed by Krusell and Smith (1998). We make
use of their method because our model faces the same problem of having an infinite dimensional
aggregate state variable, namely, the type distribution of heterogeneous firms m. The essence of
the approach is to limit the information that agents in the model use to a finite set of statistics
summarizing the type distribution and transform the original problem to a tractable approxi-
mated problem. The approach is implemented by replacing the large state variable by a finite
set of statistics that summarize the type distribution. Unlike the problem solved by Krusell and
Smith (1998), we found that simple log-linear functional form is not sufficient to achieve a high
accuracy of the approximation. We overcame the problem by introducing higher-order terms in
the approximate forecasting functions. Appendix B contains details about the computational
algorithm.
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Table 4: Employment Growth Distribution

Growth rate
Empirical Model

interval

> −0.20 0.076 0.159

−0.20 to −0.05 0.167 0.194

−0.05 to −0.02 0.097 0.044

−0.02 to 0.00 0.078 0.023

No change 0.157 0.157

0.00 to 0.02 0.080 0.020

0.02 to 0.05 0.100 0.045

0.05 to 0.20 0.169 0.169

0.20 < 0.076 0.190

Notes: The table reports employment shares for
indicated intervals of the quarterly employment
growth rate in the BED micro data from 2001 to
2006 and in the steady state of the model. The
empirical distribution is taken from Davis et al.
(2008) and is based on continuously existing estab-
lishments. The model-based growth distribution is
calculated from one million establishment-level ob-
servations.

7 Main Results

7.1 Business Cycle Statistics

Table 5 summarizes the main results. The table presents volatilities of variables of our interest
(panel (a)), the ratio of each variable’s volatility to that of output (panel (b)), and the correlation
with output. The first column presents the empirical moments and the second column lists the
model-based moments based on the benchmark calibration. The remaining columns are discussed
in the later section. All series are first logged and HP filtered with smoothing parameter of 1,600.

The model-based moments are calculated from a large panel that consists of 6,000 weekly
observations (after discarding the first 120 weekly observations) across one million establishment-
level observations. Aggregate time series for each series is obtained by mimicking the data
collection procedures used in actual surveys. Monthly worker flows and transition rates are
converted into quarterly series by time averaging.

In this section, we first discuss the comparison of the empirical moments with the model-based
moments under the benchmark calibration.

Volatilities. The first two columns of panels (a) and (b) compare volatilities of variables of
our interest. Given that our calibration does not target volatilities of labor market variables, the
model does a reasonably good job in this regard, even though our model generates somewhat
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smaller volatilities than those of empirical data. On the other hand, the model is able to mimic
the empirical features that (i) the job finding rate is more volatile than the separation rate, (ii)
the separation flow is more volatile than the hiring flow, and (iii) worker flows are more volatile
than job flows.25

The last two rows of panel (a) and (b) also show that the model generates fluctuations
of unemployment and vacancies that are somewhat smaller yet roughly comparable to those
in the data. In Table 5, we evaluate the model’s performance, taking output as a cyclical
indicator. Recall, however, the literature on the volatility puzzle looks at magnification of labor
market variables relative to fluctuations in labor productivity. If we take labor productivity
as a cyclical indicator, volatilities of the model are quite close to those in the data.26 In the
standard search/matching model, it is well-known that the outside option parameter b plays a
key role for volatilities of the model. In particular, Hagedorn and Manovskii (2008) show in their
setting that when the outside option parameter is set to the level close to labor productivity,
the model exhibits large magnification. Recall that our calibration strategy leaves no degree of
freedom of assigning parameters to match volatilities of labor market variables. Our benchmark
calibration implies the level of b that is 83% of average labor productivity, which is substantially
lower than Hagedorn and Manovskii’s value (96%). The reason is that, as Elsby and Michaels
(2008) emphasize, with downward sloping labor demand, average surplus can be relatively large
even though marginal surplus is small. An important point to note here is that Elsby and
Michaels’ claim is based on the steady-state elasticities. That is, they match the elasticities
calculated from the regressions of labor productivity on unemployment and vacancies. On the
other hand, our results are based on the simulations of the stochastic dynamic equilibrium: We
match unconditional volatilities of these variables.

Correlations. Panel (c) of Table 5 considers the correlation pattern with respect to aggregate
output. While the model is short of matching the comovement pattern exactly, the overall
comovement pattern is consistent with the data. First, observe that the model replicates the
countercyclical separation rates into unemployment and the procyclical job finding rate. Second,
the model captures the overall differences in the cyclicality of worker flows and job flows. That
is, the model generates the procyclical job creation rate and countercyclical job destruction rate
while maintaining countercyclicality of worker flows. The fact that the model is able to capture
countercyclicality of separations and the job destruction rate is not surprising; it is a direct
consequence of the countercyclical separation rate into unemployment.27

Why is the job creation rate procyclical? The presence of the large hiring flow governed by the
exogenous component of separations plays an important role. Note that, in the model, there is a
flow of workers that separates from their employer independently of the firm-level idiosyncratic
shocks and aggregate shock and that this flow occurs at a constant rate of aggregate employment.

25Recall that we calibrate the model so that volatilities of creation and destruction rates are roughly equal to

each other.
26In our benchmark calibration, the relative volatilities of unemployment and vacancies are, respectively, 15.9

and 18.4. These figures are actually somewhat higher than comparable figures reported in the literature.
27Strictly speaking, the countercyclicality of the destruction rate is less clear because the link with the separation

rate is not tight. We will come back to this issue shortly.
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Table 5: Comparison of Business Cycle Properties

Empirical Benchmark Alternative calibration

α = 0.4 η = 0.5 ψ = 0.6

(a) Standard deviation

E-to-U flow 0.067 0.077 0.042 0.092 0.080

U-to-E flow 0.057 0.043 0.023 0.052 0.046

Separation rate 0.073 0.078 0.043 0.093 0.082

Job finding rate 0.086 0.084 0.046 0.098 0.079

Job destruction rate 0.035 0.058 0.031 0.069 0.058

Job creation rate 0.028 0.059 0.030 0.068 0.055

Unemployment rate 0.129 0.107 0.059 0.127 0.108

Vacancies 0.141 0.124 0.066 0.144 0.157

(b) Relative standard deviation

E-to-U flow 5.987 3.910 3.148 4.321 4.143

U-to-E flow 5.061 2.206 1.738 2.452 2.355

Separation rate 6.844 3.957 3.197 4.386 4.237

Job finding rate 7.685 4.287 3.412 4.612 4.084

Job destruction rate 3.838 2.963 2.302 3.233 2.999

Job creation rate 3.099 2.980 2.262 3.209 2.867

Unemployment rate 8.018 5.444 4.434 5.974 5.580

Vacancies 8.785 6.318 4.973 6.778 8.136

(c) Correlation with output

E-to-U flow -0.694 -0.280 -0.377 -0.287 -0.358

U-to-E flow -0.468 -0.344 -0.338 -0.387 -0.467

Separation rate -0.739 -0.452 -0.538 -0.454 -0.510

Job finding rate 0.772 0.970 0.987 0.965 0.971

Job destruction rate -0.398 -0.257 -0.344 -0.249 -0.288

Job creation rate 0.472 0.124 0.192 0.102 0.095

Unemployment rate -0.827 -0.985 -0.977 -0.983 -0.985

Vacancies 0.875 0.875 0.915 0.866 0.906

Notes: See notes to Table 1 for the calculation of the empirical moments. The model-based
moments are calculated from a large panel that consists of 6,000 weekly observations (after
discarding the first 120 weekly observations) across one million establishment-level observations.
Aggregate time series for each series is obtained by mimicking the data collection procedures used
in actual surveys. Monthly worker flows and transition rates are converted into quarterly series
by time averaging. The 500 quarterly observations are first logged and HP filtered. Panel (b)
gives the ratio of standard deviation of each variable to that of output.
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However, because of the lower job finding rate in downturns, hires from the non-unemployed pool
of job seekers go down. In other words, the flow associated with the exogenous component of
separations is procyclical. Furthermore, as we saw in the calibration section, a share of the
separation flow into unemployment is less than a third of total separations. The job creation
rate, which in principle counts all hiring flows, then becomes procyclical.28

Next consider the cyclicality of unemployment and vacancies. The model generates strong
countercyclicality of unemployment and strong procyclicality of vacancies. The latter result is
remarkable in the sense that the standard search/matching models with the endogenous separa-
tion decision (such as the model of Mortensen and Pissarides (1994) or its DSGE version by den
Haan, Ramey, and Watson (2000)) are unable to replicate the strong procyclicality of vacancies.
In our model, the correlation between the two variables, which is not reported in Table 5, is
highly negative at −0.86.

Endogenous vs. exogenous separation. We have argued above that in oder to match
the cyclical behavior of job flows and worker flows simultaneously, it is essential to feature two
types of flows: worker flows (i) that are mainly influenced by countercyclical separation and
(ii) that are dominated by the procyclical job finding rate. In our model, the former flows are
associated with endogenous separation, while the latter flows are associated with the exogenous
part of separation. To appreciate this point more fully, we consider the following two hypothetical
economies in which separation occurs either for the exogenous reasons only or for the endogenous
reason only.29

Table 6 reports correlations of hires and separations with output in these two cases. The first
column of the table also presents correlations from the benchmark model, which features both
types of separations. Observe that the model with exogenous separation only generates hires
and separations that are both procyclical. Similarly, the model with endogenous separation only
generates countercyclical flows. The model that features both types of worker flows countercycli-
cal separations and procyclical hires simultaneously. This last point underlies our main result
that our model successfully matches the cyclical behavior of job flows.

7.2 Impulse Responses

Figure 5 plots impulse responses of the model to the 1% negative aggregate shock. Note that in
the figure, we distinguish between the number of job creation and destruction (Figure 5 (b)) and
rates of job creation and destruction (Figure 5 (c)). First consider Figure 5 (a) where worker
flows between unemployment and employment are plotted. Note first that, in the impact period,
the separation flow into and the hiring flow from unemployment move in the opposite direction.
However, the decline in the hiring flow is only one third of the increase in the separation flow.
This is because some of the initial declines within the quarter are already reversed toward the

28Again, there is an issue of time aggregation associated with the quarterly definition of job flows, but we will

examine this issue below.
29Note that when the model features exogenous separation only, the firing cost (τ) is zero under the aforemen-

tioned assumption that only endogenous separation incurs the firing cost. For the endogenous-separation-only

case, we also assume τ = 0, to be consistent with the exogenous-separation-only case.
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Table 6: Endogenous vs.Exogenous Separations

Benchmark
Exogenous Endogenous

only only

Separations -0.130 0.503 -0.448

Hires 0.228 0.382 -0.456

Notes: The table reports correlation of separations and hires
with output in the model. See notes to Table 5 for construction
of the statistics. In all three, the steady-state total separation
rate is set equal to 4.5% at monthly frequency. The benchmark
model features both endogenous and exogenous separation, and
“separations” and “hires” in this case include all worker flows.

end of the quarter as the unemployment pool expands. In the second quarter, the initial decline
in the hiring flow from unemployment is completely eliminated, reaching a higher level than the
steady-state level. On the other hand, Figure 5 (b) shows that the initial decline in job creation is
twice as large as the decline in the unemployment-to-employment flow and that the bounce-back
of job creation from the second quarter on is much less pronounced.

0.59
Next, observe that the response of the stock of unemployment, shown in Figure 5 (d), exhibits

a small hump. Note that the difference between separations and hires plotted in Figure 5 (a)
corresponds to the change in unemployment. The behavior of worker flows implies that the
changes in unemployment are positive only up to the second quarter. From the third quarter on,
unemployment continues to decline.

We can draw two general important implications from the impulse responses. First, the
analysis based on the dynamic stochastic equilibrium is quite different from the one based on
the steady-state analysis. In the literature, magnification of the model is often inferred from
the steady-state elasticity because “labor market turnover is fast.” However, by definition,
the steady-state analysis implies that labor market flows in the opposite directions are always
equated. As is clear from the dynamics of the model shown in Figure 5, this condition is far from
satisfied in the short run. In particular, the increase in unemployment in the impact quarter is
largely explained by the difference between the hiring flow and separation flow.

Second, the impulse responses shown in the figure clearly show the lack of the propagation
mechanism in the model. In particular, the effects on the endogenous separation rate mostly die
away in two quarters; it reaches back to the steady-state level in the third quarter. Accordingly,
the effects of the aggregate shock on the employment-to-unemployment flow as well as job de-
struction are concentrated in the first quarter. Empirically, the response of the separation rate
and the associated flow is known to be much more persistent (see for example Fujita (forthcom-
ing)). It is also known that the job destruction rate is more persistent in the data than in the
model, even though the evidence is limited to the manufacturing job destruction rate (e.g., Davis
and Haltiwanger (1999)). In other words, the model implausibly implies too much “cleansing
effect” in the short run. Furthermore, the lack of persistence in the separation rate makes it dif-

27



(a) Worker flows
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Figure 5: Impulse responses in the baseline economy

Notes: Plotted are responses to the −1% aggregate shock expressed as deviations from the steady-
state levels. Job flows and job flow rates are calculated from the establishment-level net employment
changes over a quarterly period. Quarterly worker flows, transition rates, unemployment, and vacan-
cies are averages of monthly data. See also notes to Table 5.

ficult for the model to generate the empirically plausible unemployment response, which exhibits
a much more pronounced hump-shape. Recall that in Subsection 5.4, we pointed out that our
assumption of proportional labor adjustment costs may hinder the model’s ability to match the
tails of the employment growth distributions. We conjecture that the lack of persistence can be
also traced to the assumption of proportional labor adjustment costs.

8 Sensitivity Analysis

In this section, we conduct the sensitivity analysis with respect to three alternative calibrations:
(i) lower curvature parameter of the production function (i.e., 0.4), (ii) lower bargaining power

28



Table 7: Parameter Values: Alternative Calibrations

Alternative calibrations

Parameter lower α lower η higher ψ

ψ 0.5000 0.5000 0.5900

α 0.4000 0.6700 0.6700

β 0.9990 0.9990 0.9990

η 0.7200 0.5000 0.7200

µ 0.1492 0.1492 0.1273

τ 0.1345 0.1564 0.0897

pd 0.0465 0.0406 0.0406

d̃ 0.1882 0.2155 0.2158

b 0.4000 0.4000 0.4000

ρx 0.9900 0.9800 0.9800

σx 0.0500 0.0300 0.0300

κ 0.0222 0.0129 0.0074

L 2.4327 8.1544 10.220

ρz 0.9957 0.9957 0.9957

σz 0.0330 0.0330 0.0330

b/(ave. prod.) 0.6350 0.7700 0.8300

of workers (i.e, 0.5), and (iii) higher elasticity of the matching function with respect to vacancies
(i.e., 0.6). For each case, we re-calibrate the model following the same procedure as the bench-
mark calibration. In other words, the same moment conditions are maintained and thus each of
the parameter changes also involves changes in other parameter values.30 Table 7 presents all
parameter values for these three cases.

8.1 Steady States

We find that steady-state properties of the model under these alternative calibrations are very
close to those under the benchmark calibration. That is, under all three alternative calibrations
we match the steady-state values targeted earlier with the benchmark calibration. We also obtain
employment growth distributions that share basically the same properties as the one under the
the benchmark calibration.31 However, one dimension along which three calibrations differ is the
ratio of the outside option parameter b to average labor productivity (see the last row of Table
7). Remember that we do not have a degree of freedom to target this value. The implied ratios,
therefore, arise as the endogenous outcomes of the calibrations. Naturally, the variations in the
relative level of b yield a different strength of magnification.

30We, however, maintain the same parameter values for the aggregate TFP process.
31All steady-state results are available upon request.

29



8.2 Business Cycle Statistics

The last three columns of Table 5 give business cycle statistics under the three alternative
calibrations. Overall, all three calibrations deliver a performance similar to the one under the
benchmark calibration. One can notice, however, that volatilities of unemployment and vacancies
tend to rise, moving from left to right. The changes in volatilities can be explained by the
aforementioned differences in the relative level of b. First, lowering α underpredicts volatilities,
since the calibration implied the level of b that is 64% of average labor productivity. Note,
however, that even with the low level of b, roughly 60% of the unemployment volatility can be
explained. The calibration with lower bargaining power of workers generates larger volatilities
than under the benchmark calibration. This is achieved even though this calibration implies
a lower relative level of b. This suggests that giving lower bargaining power to workers raise
volatilities for the same relative level of b, as is the case in the standard model.32 The panel
(c) of Table 5 presents correlations with output. While the comovement pattern varies under
different calibrations, none of the key results from the benchmark calibration are overturned,
suggesting the robustness of the model’s quantitative property in this regard.

9 Applications

Having established that the model’s quantitative properties are consistent with empirical obser-
vations, we now consider the following three experiments using the model. First, we examine
the effects of time aggregation on the cyclicality of worker flows and job flows. The second ex-
periment, which is related to the first one, examines the cyclicality of job flows, especially job
destruction, when all separations are assumed to occur at an exogenous constant rate. Note that
these two applications are very important for our understanding of the labor market dynamics,
especially given that some researchers have posed skepticism on the usefulness of job flows as
empirical measures of labor market churning.33 Third, we analyze the extent of asymmetry and
nonlinearity in the aggregate dynamics of the model.

9.1 Effects of Time Aggregation

One potential explanation for why job flows and worker flows behave differently could be traced
to their different measurement practice. Specifically, job flows are measured from net employment
changes over a quarterly period, whereas worker flows are measured from changes in workers’
labor market status over a one-month period. Table 8 presents the business cycle statistics using
quarterly averages of weekly job flows in comparison to those based on the actual definitions of job
flows. Since job flows are identical to worker flows at weekly frequency, this comparison reveals
the extent to which the measurement practice accounts for the differences in their cyclicality.

This table shows that the different data collection practice does not induce large systematic
biases in the cyclicality of job flows. First, job flows based on weekly averages are less volatile

32For the effect of changing the bargaining power parameter on the steady-state elasticity of market tightness,

see for example Mortensen and Nagypál (2007).
33See, for example, Section 2.7 in Hall (2005b). Shimer (2007) also makes a similar point.
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Table 8: Effects of Time Aggregation

Benchmark Weekly Benchmark Weekly

average average

Relative s.d. Corr. with output

Job destruction rate 2.963 2.390 −0.257 −0.294

Job creation rate 2.980 2.532 0.124 0.091

Notes: See notes to Table 5. For the numbers under “weekly average,” we first
obtain aggregate job creation and destruction rates at weekly frequency and then
average them over the 12-week period. We use those “quarterly” series to calculate
the reported statistics.

than the quarterly job flows, but the differences in volatilities are relatively small. Second,
calculating job flows using weekly averages alters the correlation pattern with respect output
only slightly. These results thus exclude the possibility that differences in cyclicality of worker
flows and job flows are attributed to the data collection practice.

9.2 Job Destruction Rate with No Endogenous Separation

The second application entails usefulness of the job destruction rate as a measure of active em-
ployment reduction, which corresponds to endogenous job destruction in the model. Specifically,
measured job destruction can be affected whenever an establishment reduces the stock of em-
ployment over a quarterly period, regardless of the cause of the employment change. Consider a
case in which employment declines as a result of exogenous worker turnover that the firm decides
not to replace immediately. This may be the optimal choice for the firm when laying off workers
incurs large costs. If the firm follows this employment policy, measured job destruction loses its
usefulness as a measure of active employment reduction. It is actually the decision of not hiring
that causes job destruction to move.

To infer the upper-bound of this effect, we deliberately shut down the channel of endogenous
job destruction to see how much the job destruction rate can fluctuate only through the channel
of this no-replacement policy.34 Table 9 presents the results from this exercise in comparison
to the observed data and the benchmark model. Let us first start with panel (c) of the table.
Interestingly, even without endogenous separation, the measured job destruction rate exhibits
strong countercyclicality. This is because, during downturns, more establishments decide not to
replace workers who left the establishment for exogenous reasons.

Consider now panel (b), which compares relative volatilities of the job destruction rate as well
as other variables of interest. It shows that the volatility of the job destruction rate in the model

34Although the model is based on the benchmark calibration, some adjustments of calibration are necessary.
For example, we target the size of the total monthly separation rate at 5% as in the benchmark case. However,
since all separations occur for exogenous reasons, we set pdd̃ = 0.0125, instead of 0.00875. We then chose pd to
achieve the fraction of establishments with no employment change at 0.157. This procedure results in pd = 0.115
and d̃ = 0.109. Further, we reset the vacancy posting cost κ at 0.035 to achieve the same level of b relative to
average labor productivity (83%) as in the benchmark calibration.
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Table 9: Experiment with No Endogenous Separation

Empirical Benchmark No endog.

model separation

(a) Standard deviation

Job destruction rate 0.035 0.058 0.046

Job creation rate 0.028 0.059 0.081

Separation rate 0.073 0.078 0.008

Job finding rate 0.086 0.084 0.088

(b) Relative standard deviation

Job destruction rate 3.838 2.963 2.432

Job creation rate 3.099 2.980 4.232

Separation rate 6.844 3.957 0.433

Job finding rate 7.685 4.287 4.640

(c) Correlation with output

Job destruction rate -0.398 -0.257 -0.313

Job creation rate 0.472 0.124 0.227

Separation rate -0.739 -0.452 -0.927

Job finding rate 0.772 0.970 0.913

is reduced roughly 20%, relative to the benchmark model. While the reduction is substantial,
readers may find it somewhat surprising that the model without the endogenous separation
decision can generate such non trivial fluctuations in the job destruction rate. However, there are
caveats in interpreting this result. First, this number is an upper-bound as mentioned above. In
the model, firms are restricted from actively shedding workers. In other words, the result is based
on the employment policy that is optimal only when endogenous job destruction imposes infinite
costs on the firms. Second, shutting down endogenous separation shifts the balance of relative
volatilities toward the job creation side, thereby making the model’s quantitative performance
worse. Observe that the job creation rate is a lot more volatile than the job destruction rate
in the model with exogenous separation only, implying that employment fluctuations are largely
accounted for by the job creation rate. This is at odds with the empirical evidence. Furthermore,
as can be seen in the last row of each panel, the model generates virtually no variations in the
separation rate.35 This is simply inconsistent with the facts about the separation rate.

9.3 Asymmetry and Nonlinearity

The third application looks at the extent of asymmetry and nonlinearity of the model dynamics.36

In the literature, there is evidence that the U.S. labor market exhibits asymmetry and nonlin-

35The model generates smaller but some variations in the separation rate, which arise due to time aggregation.
This bias is emphasized in Shimer (2007), but the result here indicates that the bias is quantitatively very small.

36More specifically, asymmetry here means differences in the magnitude of responses to positive and negative
shocks; and nonlinearity means a nonlinear relationship between the responses to a small shock and a large shock.
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Figure 6: Asymmetry of impulse responses
Notes: Plotted are responses to ±1% aggregate shocks expressed as deviations from the steady-state
levels. Signs of the responses to the positive (+1%) shock are flipped. See notes to Table 5.

earity.37 Given that our model includes highly nonlinear micro-level features, it is interesting to
see how those features translate into asymmetry and nonlinearity of aggregate dynamics.

To examine the asymmetry, we calculate each variable’s responses to positive and negative
shocks and present the results by flipping signs of the responses to the positive shock (Figure 6).
To examine the nonlinearity, we consider the two cases in which the economy is hit by one-%
and two-% negative shocks. We then present the results in which the size of responses to the
two-% shock is halved (Figure 7).

Figure 6 indicates that the negative shock induces larger responses than the positive shock
in our model. The extent of asymmetry is not trivial. For example, an initial response of the
separation rate in the face of the negative shock is roughly 20 % larger (in an absolute term) than
that in the face of positive shock. Observe also that the negative shock leads to a considerably
larger response in unemployment than the positive shock. (The difference is largest in the

37Recent papers that address this issue include McKay and Reis (2008) and Barnichon (2009).
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(a) Worker flows

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 1  2  3  4  5  6  7  8

Quarter

Unemployment-to-employment flow (-1.0%)
Employment-to-unemployment flow (-1.0%)
Unemployment-to-employment flow (-2.0%)
Employment-to-unemployment flow (-2.0%)

(b) Job creation and destruction rates

-0.1

-0.05

 0

 0.05

 0.1

 1  2  3  4  5  6  7  8

Quarter

Job creation rate (-1.0%)
Job destruction rate (-1.0%)

Job creation rate (-2.0%)
Job destruction rate (-2.0%)

(c) Transition rates

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 1  2  3  4  5  6  7  8

Quarter

Job finding rate (-1.0%)
Separation rate into unemployment (-1.0%)

Job finding rate (-2.0%)
Separation rate into unemployment (-2.0%)

(d) Unemployment and vacancies

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3  4  5  6  7  8

Quarter

Unemployment (-1.0%)
Vacancies (-1.0%)

Unemployment (-2.0%)
Vacancies (-2.0%)

Figure 7: Nonlinearity of impulse responses
Notes: Plotted are responses to −1% and −2% aggregate shocks expressed as deviations from the
steady-state levels. The responses to the −2% shock are halved, so that they are comparable to those
to the −1% negative shock. See also notes to Table 5.

second quarter.) On the other hand, Figure 7 shows that the model features little nonlinearity;
the responses to shocks of different magnitude are related almost linearly.

The results here appear to suggest that the model cannot (at least fully) account for empirical
regularities regarding nonlinearity and asymmetry. We suspect that a richer cost structure (as
we also discussed elsewhere) may improve the performance of this model along this dimension.
Fully exploring this issue is out of the scope of this paper but is certainly an interesting future
research topic.

10 Conclusion

This paper has quantitatively investigated cyclical properties of the search/matching model with
multiple-worker firms. Our main focus was to see whether and how the model can reconcile
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differences in the cyclicality of worker flows and job flows. We show that the model is able to
replicate countercyclical hires from unemployment and procyclical job creation and that the key
to this result is to allow for a large hiring flow that does not go through unemployment, for which
procyclicality of the job finding rate dominates its cyclicality.

We identify the lack of propagation as the main drawback of the model. In our model,
the effects of the aggregate shock mostly die away in a few quarters. However, labor market
adjustments in reality are known to be much more long-lasting. Our model has also faced
difficulties in matching the tail of the observed employment growth distribution. We conjecture
that both of these problems have to do with the fact that the model features only proportional
labor adjustment costs (i.e., the search cost on the hiring side and firing cost on the separation
side). Enriching the cost structure, say, by introducing some form of fixed costs, can potentially
improve the model’s performance along these dimensions. We believe that this is an ambitious
yet important future research subject.

Appendix A Wage Equation

A.1 Derivation of the Wage Differential Equation

First, we can write the Bellman equation for the job seeker as follows.

Ws(z,m
′) = b+ β

∫
(1 − f(z′, m′))Ws(z

′, m′′)dGz(z
′|z)

+ β

∫ ∫
f(z′, m′)We(z

′, x′, d′, m′′, n′′)dGf(x
′, d′, n′′)dGz(z

′|z). (28)

Using the bargaining solution (7), this can be rewritten as:

Ws(z,m
′) = b+ β

∫
Ws(z

′, m′′)dGz(z
′|z)

+ β

∫ ∫
f(z′, m′)

η

1 − η
[J(z′, x′, d′, m′′, n′′) + τ ]dGf (x

′, d′, n′′)dGz(z
′|z). (29)

Using (5), it can be re-expressed as:

Ws(z,m
′) = b+β

∫
Ws(z

′, m′′)dGz(z
′|z)+β

∫ ∫
f(z′, m′)

η

1 − η
[z′x′F ′(n′′)−w(z′, x′, d′, m′′, n′′)

− wn(z
′, x′, d′, m′′, n′′)n′′ + βD(z′, x′, d′, m′′, n′′) + τ ]dGf (x

′, d′, n′′)dGz(z
′|z). (30)

Notice that job seekers are only matched with hiring firms (n′′ > (1 − d′)n′). We can use the
first-order condition for the hiring firm (17) to obtain the following expression:

Ws(z,m
′) = b+ β

∫
Ws(z

′, m′′)dGz(z
′|z)

+ β

∫
f(z′, m′)

η

1 − η

[
κ

q(z′, m′)
+ τ

]
dGz(z

′|z). (31)
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Notice that we can eliminate integration with respect to Gf(x
′, d′, n′′) since the expression inside

the integral is independent of firm types.
Consider next the Bellman equation for the employed worker:

We(z, x, d,m
′, n′) = w(z, x, d,m′, n′)

+ β

∫ ∫ ∫ (
d′ + (1 − d′)In′′<(1−d′)n′

(1 − d′)n′ − n′′

(1 − d′)n′

)
Ws(z

′, m′′)

+ (1 − d′)

(
In′′>(1−d′)n′ + In′′=(1−d′)n′ + In′′<(1−d′)n′

n′′

(1 − d′)n′

)
We(z

′, x′, d′, m′′, n′′)

dGd(d
′|d)dGx(x

′|x)dGz(z
′|z). (32)

Separating out Ws(z
′, m′′), the above equation can be rewritten as:

We(z, x, d,m
′, n′) = w(z, x, d,m′, n′) + β

∫
Ws(z

′, m′′)dGz(z
′|z)

+ β

∫ ∫ ∫
(1 − d′) [We(z

′, x′, d′, m′′, n′′) −Ws(z
′, m′′)]

(
In′′>(1−d′)n′ + In′′=(1−d′)n′ + In′′<(1−d′)n′

n′′

(1 − d′)n′

)
dGd(d

′|d)dGx(x
′|x)dGz(z

′|z). (33)

Using the bargaining solution (7), we get:

We(z, x, d,m
′, n′) = w(z, x, d,m′, n′) + β

∫
Ws(z

′, m′′)dGz(z
′|z)

+ β
η

1 − η

∫ ∫ ∫
(1 − d′) [J(z′, x′, d′, m′′, n′′) + τ ]

(
In′′>(1−d′)n′ + In′′=(1−d′)n′ + In′′<(1−d′)n′

n′′

(1 − d′)n′

)
dGd(d

′|d)dGx(x
′|x)dGz(z

′|z). (34)

Applying (5) and the first-order conditions (17), we can obtain the following expression:

We(z, x, d,m
′, n′) = w(z, x, d,m′, n′) + β

∫
Ws(z

′, m′′)dGz(z
′|z)

+β
η

1 − η

∫ ∫ ∫
(1−d′)

[
In′′>(1−d′)n′

(
κ

q(z′, m′) + τ

)
+ In′′=(1−d′)n′ [J(z′, x′, d′, m′′, n′′) + τ ]

]

dGd(d
′|d)dGx(x

′|x)dGz(z
′|z). (35)

The term associated with firing firms drops out of the equation because the first-order condition
implies J(z′, x′, d′, m′′, n′′) + τ = 0 for firing firms.

Plugging what we obtained above and (5) into the bargaining solution (7), we obtain:

w(z, x, d,m′, n′) − b− β

∫
f(z′, m′)

η

1 − η

[
κ

q(z′, m′)
+ τ

]
dGz(z

′|z)

=
η

1 − η

[
zxF ′(n′) − w(z, x, d,m′, n′) − wn(z, x, d,m

′, n′)n′ + τ − β

∫
(1 − d′)τdGd(d

′|d)

]
.

(36)
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Solving this equation for w(z, x, d,m′, n′) gives us the following wage equation:

w(z, x, d,m′, n′) = (1 − η)b+ η [zxF ′(n′) − wn(z, x, d,m
′, n′)n′

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]
. (37)

A.2 Solution to the Differential Equation

Assuming F (n) = nα, the above wage equation becomes:

w(z, x, d,m′, n′) = (1 − η)b+ η
[
zxαn

′α−1 − wn(z, x, d,m
′, n′)n′

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]
. (38)

To solve the differential equation above, we guess the following wage function (Equation (22)).

w(z, x, d,m′, n′) = (1 − η)b+ η

[
zxαn

′α−1

1 − η(1 − α)

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]
. (39)

Taking the derivative of the function above, we obtain:

wn(z, x, d,m
′, n′) =

zxηα(α − 1)n
′α−2

1 − η(1 − α)
. (40)

We can compute the right-hand side of Equation (38) to verify that the guess is correct.

(1 − η)b+ η
[
zxαn

′α−1 − wn(z, x, d,m
′, n′)n′

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]

= (1 − η)b+ η

[
zxαn

′α−1 −
zxηα(α− 1)n

′α−1

1 − η(1 − α)

+τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)
+ β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]

= (1 − η)b+ η

[
zxαn

′α−1

1 − η(1 − α)
+ τ

(
1 − β + β

∫
d′ dGd(d

′|d)

)

+β

∫
f(z′, m′)

(
τ +

κ

q(z′, m′)

)
dGz(z

′|z)

]

= w(z, x, d,m′, n′).

37



Appendix B Computational Algorithm

Our numerical solution to the model exploits the partial information approach developed by
Krusell and Smith (1998).38 Note that one of the aggregate state variables is m, the type distri-
bution of heterogeneous firms. This is an infinite dimensional object, and thus it is impossible
to store in a computer. Also, we do not know the function Φm(z,m), which maps the space of
the type distribution and the space of aggregate productivity shock into the space of the type
distribution. The essence of the Krusell and Smith (1998) approach is to limit the information
that agents in the model use to a finite set of statistics that summarize the type distribution and
parameterize Φm(z,m) by a known function of the statistics.

We take N , the number of employment, as the set of statistics; it is the minimum set of
the state variables that could effectively replace m. We construct the approximate equilibrium

by replacing m by N in the model. After solving the approximate equilibrium with N , we can
evaluate whether N is sufficient to make the approximate equilibrium close to the true equilibrium
by adding one more statistic and see how the properties of the model are influenced. If the model
properties are intact, we assume that the approximate equilibrium with N is close to the true
equilibrium under full information. Accordingly, the functions for aggregate employment in the
next period Φm(z,m) and the number of vacancies posted ΦV (z,m) are replaced by ΦN (z,N)
and ΦV (z,N), respectively.

We solve the optimal decision of firms for grid points placed on the space of n and N . The
bounds for n are chosen such that the optimal decision for n′ stays within the bounds. The
bounds for N are chosen such that the bounds do not bind in simulations.

Logarithms of both aggregate and idiosyncratic shocks are assumed to follow AR(1) processes.
The AR(1) process for idiosyncratic productivity is approximated by a finite-state first-order
Markov chain using the method proposed by Ada and Cooper (2003). We denote pxx′ as the
Markov transition probabilities for log x. The AR(1) process for aggregate productivity is also
approximated by a finite-state first-order Markov chain.39 The abscissas for log z are equally-
spaced, and the optimal decision rules are solved at the abscissas. We use piecewise linear
approximation to compute the optimal decision off the abscissas. We denote pzz′ as the Markov
transition probabilities for log z.

We obtain the type distribution of heterogeneous firms via simulation. Let I be the number
of firms. Since the total measure of firms is one, each firm carries the weight of 1

I
. The type of

firm i in period t is represented by a triplet (xi,t, di,t, ni,t). Employment N and the number of
job seekers S in period t can be computed by:

Nt =
1

I

I∑

i=1

ni,t, (41)

St = L−Nt, (42)

38Rı́os-Rull (1999) offers a good summary of the method.
39While we appeal to the finite-state approximation in calculating the conditional expectation with respect

to aggregate uncertainty (when we solve the firm’s problem), we maintain the original AR(1) process in the
simulation stage so that the process has a continuous state space.
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respectively. We can compute the realized number of vacancies posted in period t as follows:

Ṽt =
1

f(zt, Nt)

1

I

I∑

i=1

max(φn(zt, xi,t, di,t, Nt, ni,t) − (1 − di,t)ni,t, 0). (43)

The detailed solution algorithm takes the following steps.

Algorithm 1 (Computation Algorithm of the Approximate Equilibrium)
1. Parameterize the forecasting functions ΦN (z,N) and ΦV (z,N). We assume the following

functional form with logs of z and N .

logN ′ = ΦN (z,N) = ΦN,0 +

IZ∑

i=1

ΦN,Z,i(logZ)i +

IN∑

i=1

ΦN,N,i(logN)i, (44)

log V = ΦV (z,N) = ΦV,0 +

IZ∑

i=1

ΦV,Z,i(logZ)i +

IN∑

i=1

ΦV,N,i(logN)i, (45)

(46)

Observe that the functional forms above accommodate higher-order terms of logZ and
logN . In the case of the incomplete-market stochastic growth model studied by Krusell
and Smith (1998), it is known that IZ = IN = 1 is sufficient for obtaining the accurate
solution. It is unclear whether the first moment is enough. We thus start from IZ = IN = 1
and increase IZ = IN until the forecasting functions have a sufficiently high prediction
power.

2. Set an initial guess for the set of coefficients {ΦN,0,ΦN,Z,i,ΦN,N,i,ΦV,0,ΦV,Z,i,ΦV,N,i}. De-
note the initial guess as Φ0.

3. Set a guess of the expected marginal value function D0(z, x, d,N ′, n′).

4. Use the following first-order conditions to obtain the two thresholds n∗(z, x, d,N) and
n∗(z, x, d,N) which characterize the optimal decision rule n′ = φn(z, x, d,N, n).

zxF ′(n∗)−w(z, x, d,N ′, n∗)−wn(z, x, d,N
′, n∗)n∗ + τ + βD0(z, x, d,N ′, n∗) = 0, (47)

zxF ′(n∗)−w(z, x, d,N ′, n∗)−wn(z, x, d,N
′, n∗)n∗−

κ

q(z,N)
+βD0(z, x, d,N ′, n∗) = 0, (48)

where N ′ = exp Φ0
N (z,N) and V = exp Φ0

V (z,N).

5. Update D0(z, x, d,N ′, n′) and obtain D1(z, x, d,N ′, n′) using the following Bellman opera-
tor:

D1(z, x, d,N ′, n′) =
∑

z′

∑

x′

∑

d′

pzz′pxx′pdd′Πn(z
′, x′, d′, N ′, n′), (49)
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where

Πn(z
′, x′, d′, N ′, n′) = (1 − d′)






−τ if ñ′ > n∗

z′x′F ′(ñ′) − w(z′, x′, d′, N ′′, ñ′) − wn(z
′, x′, d′, N ′′, ñ′)ñ′ + βD0(z′, x′, d′, N ′′, ñ′) if ñ′ ∈ [n∗, n∗]

κ
q(z′,m′)

if ñ′ < n∗,

and N ′′ = exp ΦN(z′, N ′), ñ′ = (1 − d′)n′, V ′ = exp ΦV (z′, N ′), and n∗ and n∗ are charac-
terized by Equations (47) and (48), respectively, for (z′, x′, d′, N ′′).

6. Compare D0(z, x, d,N ′, n′) and D1(z, x, d,N ′, n′). If the chosen norm is smaller than a
prespecified tolerance level, stop the iteration and go to the next step. Otherwise, update
D0(z, x, d,N ′, n′) by replacing it with D1(z, x, d,N ′, n′) and go back to step 4.

7. Simulate the model economy to update Φ0. First, set the length of simulation T . Draw
a sequence of {zt}

T
t=1 using a random number generator. Set the initial type distribu-

tion of firms {(xi,1, di,1, ni,1)}
I
i=1. We use the steady-state type distribution as the initial

distribution.

8. Compute Nt and St using the period-t type distribution.

9. Start finding a consistent Vt. First set V 0
t = exp ΦV (zt, Nt).

10. Using V 0
t , solve for the optimal decision of firms. Using the optimal decision and the type

distribution in period t, compute the realized Ṽ 0
t .

11. Compare V 0
t and Ṽ 0

t . If the chosen norm is smaller than a prespecified tolerance level, take
V 0
t as Vt and go to the next step. Otherwise, update V 0

t by taking the weighted average of

V 0
t and Ṽ 0

t , and go back to step 10.

12. Update the type distribution using the optimal decision rule φn(z, x, d,N, n) under Vt.

13. If the simulation reaches the last period, stop and go to the next step. Otherwise, go back
to step 8 with the updated distribution and z in the next period.

14. Drop the first T 0 observations of the simulated time series of {Nt}
T
t=1 and {Vt}

T
t=1 to ran-

domize the initial conditions. Run OLS regressions of the form (44) and (46) using the
simulated time series. Let Φ1 be the new coefficients from the regressions.

15. Compare Φ0 and Φ1. If the chosen norm is smaller than a predetermined tolerance level,
stop and go to the next step. Otherwise, update Φ0 and go back to step 3.

16. If the coefficients do not converge, or the fit of the regression is not high enough, it is
necessary to change the functional forms of ΦN and ΦV or increase the set of statistics to
replace m.
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17. Once the consistent ΦN , ΦV , w(z, x, d,N ′, n′), D(z, x, d,N ′, n′) and φn(z, x, d,N, n) are
obtained, run simulations to study cyclical properties of the model.

It turns out that, unlike the case of Krusell and Smith (1998), the parameterized forecasting
functions (44) and (46) do not have good forecasting power with IZ = IN = 1. We thus
increased IZ = IN and found that raising IZ = IN higher than 3 does not improve accuracy of
the forecasting functions. In our benchmark model, adjusted R2 for (44) and (46) are 0.9998 and
0.9672, respectively, for IZ = IN = 1 and 0.9999 and 0.9958, respectively, for IZ = IN = 3. Note
also that adding cross-terms of log z and logN in forecasting equations does not significantly
affect the accuracy.
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