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Abstract

Currently there is a growing literature exploring the features of optimal monetary
policy in New Keynesian models under both commitment and discretion. This litera-
ture usually solves for the optimal allocations that are consistent with a rational expec-
tations market equilibrium, but it does not study how the policy can be implemented
given the available policy instruments. Recently, however, King and Wolman (2004)
have shown that a time-consistent policy cannot be implemented through the control of
nominal money balances. In particular, they find that equilibria are not unique under a
money stock regime. We find that their conclusion of non-uniqueness of Markov-perfect
equilibria is sensitive to the instrument of choice. Surprisingly, if, instead, the mone-
tary authority chooses the nominal interest rate there exists a unique Markov-perfect
equilibrium. We then investigate under what conditions a time-consistent planner can
implement the optimal allocation by just announcing his policy rule in a decentralized
setting.
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1 Introduction

Currently there is a growing literature exploring the features of optimal monetary policy in

New Keynesian models under both commitment and discretion. This work usually assumes

that the optimal policy solves a constrained planning problem where the policymaker chooses

among all allocations that are consistent with a market equilibrium. Recently, however,

attention has been paid to how to implement the optimal policy through instrument rules.

We believe that this is an important area of inquiry, because the institutions responsible

for setting policies rarely have direct control over allocations. It is therefore important to

understand whether or not a planner’s allocations are obtainable with a given institutional

structure.

For the case of time-consistent policies that are Markov-perfect, King andWolman (2004)

have examined implementation issues when the monetary authority uses nominal money bal-

ances as the policy instrument in a sticky price environment. Surprisingly, they find that

equilibria are no longer unique under a money-supply regime. Conditional on a given con-

tinuation allocation determined by the future policymaker, the current policymaker cannot

implement a unique point-in-time equilibrium. These multiple equilibria are supported by

strategic complementarities in the price-setting process. In particular, if a price-setting

firm believes that all other price-adjusting firms will set relatively high (low) prices, then it

will be optimal for the individual firm to set a relatively high (low) price. We clarify how

strategic complementarities interact with the money-supply rule. In particular, we show

that multiple equilibria arise because the money-supply rule weakens the existing strate-

gic complementarities in the price-setting process for low inflation outcomes. Each one of

the multiple point-in-time equilibria for a money-supply rule is associated with a different

inflation rate and nominal interest rate.

We then study the implementability of a Markov-perfect nominal interest rate policy,

since actual monetary policy is usually implemented through interest rate policies. We find

that a policy that uses the nominal interest rate as the policy instrument implements a
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unique point-in-time equilibrium. Given the well-understood problems involving interest

rate instruments in other settings, this may be an unexpected result. We obtain this result

because contrary to the money-supply rule, the nominal interest rate instrument uniformly

strengthens strategic complementarities and thereby eliminates multiple equilibria.

Once we have established that a nominal interest rate rule can implement the unique

Markov-perfect equilibrium of the planning problem, we ask if this policy rule can also

implement a unique rational expectations equilibrium. Here we are faced with a long-

established literature, starting with Sargent and Wallace (1975), that shows that interest

rate policies tend to yield indeterminate equilibria unless the interest rate is conditioned on

other variables. However, because we are considering only Markov-perfect equilibria, the

planner is prohibited from making the interest rate conditional on other endogenous vari-

ables. The restriction of analyzing only unconditional nominal interest rate rules introduces

a real indeterminacy into the local dynamics of the rational expectations equilibrium in our

environment.1

On the one hand, our analysis of Markov-perfect equilibria sidesteps this issue because

it essentially picks McCallum’s (1983) minimal state variable solution as the rational expec-

tations equilibrium. Thus, we find that the minimum state variable solution for the fully

decentralized environment is locally unique with sticky prices, a result that does not hold

when prices are flexible.2 For those who find this equilibrium restriction compelling, one may

interpret this result as allowing the planner to achieve the optimal time-consistent allocation

in a fully decentralized environment. If not, then one can also employ a technique that has

been used to make interest rate policies yield determinate equilibria; see, e.g., Carlstrom

and Fuerst (2001) and Adão, Correia, and Teles (2003). We can maintain the assumption

that the monetary policy rule is Markov-perfect and yet eliminate the real indeterminacy

from the rational expectations equilibrium by assuming that the rule simultaneously sets

1The presence of a real indeterminacy for fixed nominal interest rate policies in sticky price models has
been pointed out before in Carlstrom and Fuerst (1998).

2The indeterminancy of nominal interest rate rules in a flexible price environment has been studied
extensively; for example, see McCallum (1986) or Boyd and Dotsey (1994).
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the nominal interest rate and the nominal money supply. This approach selects the optimal

allocation out of the multiplicity of possible equilibria.

The paper proceeds as follows. First, we briefly describe the problem of implementing the

allocations from Markov-perfect optimal policies through instrument rules. Then we study

the problem in a standard New Keynesian economy, which is identical to the one used by

King and Wolman (2004). We first review the King and Wolman (2004) result that using a

money-supply instrument generates multiple equilibria. We then show that using an interest

rate instrument uniquely implements the Markov-perfect allocation. Finally, we discuss

how a synthesis of the two instruments, the money supply and the nominal interest rate,

uniquely implements the Markov-perfect allocation as a rational expectations equilibrium.

A brief summary concludes.

2 Implementation of Markov-Perfect Policies

Consider a policymaker that chooses a sequence of allocations, {xt, st}, in order to maximize

the welfare of a representative agent

∞X
t=0

βtU (xt, st) (1)

subject to the constraint that the allocations are consistent with a competitive equilibrium3

F (xt, st;xt+1, st+1) = 0. (2)

The vector of allocations (xt, st) may contain prices and quantities. Implicit in the statement

of the planning problem is the assumption that the policymaker directly controls prices and

quantities, subject to the constraint that they are consistent with the optimizing behavior

of agents in the competitive equilibrium (CE).

3Even though in the particular economy we will study below firms that set their prices are assumed to
behave as monopolistic competitors, we will use the terminology ‘competitive equilibrium.’
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We distinguish between pre-determined state variables, st, and other non-predetermined

variables, xt. From the CE constraint, it is apparent that the policymaker’s current choices

are constrained by the expectations about future outcomes. This feature can give rise to

a time-consistency problem, in that a policymaker that plans an optimal time path for all

future choices has an incentive to deviate from that plan in the future if he has the option

to reoptimize (Kydland and Prescott (1977)). Solutions to the planning problem that are

derived under the assumption that the policymaker will never deviate from the plan devised

at time zero are called full-commitment solutions.

We study Markov-perfect policies, a class of policies that avoids the time-consistency

problem. Markov-perfect policies restrict choices to be contingent only on payoff-relevant

state variables. At any point in time the policymaker is assumed to decide only on the current

non-predetermined variables, xt, and next period’s state variables, st+1, taking the current

state, st, and the decisions of future policymakers as given. In particular, it is assumed that

future policy decisions are characterized by a policy rule

(xτ , sτ+1) = (Gx (sτ) , Gs (sτ)) for τ > t,

that is consistent with the CE constraints. Conditional on the policy rule, a decision on

next period’s state generates a sequence of allocations {(xτ , sτ+1) : τ > t} and thereby a

continuation value implied by future policies and the choice of next period’s state

V (st+1;G) =
∞X
τ=0

βτU [xt+1+τ (st+1;G) , st+1+τ (st+1;G)] (3)

Today’s optimal policy choice then solves the problem

g (st;G) = arg max
xt,st+1

{U (xt, st) + βV (st+1;G)} (4)

s.t. F [xt, st, Gx (st+1) , st+1] = 0.
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A Markov-perfect equilibrium is a fixed point for the policy rules g and G,

g (s;G) = G (s) for all s. (5)

In general, it is difficult to characterize Markov-perfect equilibria since they involve the

search for a fixed point in function spaces. Most of the literature studying Markov-perfect

equilibria is restricted to linear-quadratic or to higher order polynominal local approxima-

tions of the original problem. One of our objectives is to see if Markov-perfect equilibria

can be globally implemented, and thus local approximation methods are not useful.4 Global

nonlinear computational methods tend to be limited to a small number of state variables.

Furthermore, the computational procedure usually works on the assumption that the policy

rule is unique. Thus again this approach is not helpful for our question.

The study of Markov-perfect equilibria simplifies considerably if there are no payoff-

relevant state variables. In this case the optimal Markov-perfect policy will be a constant

allocation, x∗, that solves the problem

x∗ = argmax
x

u (x) s.t. f (x, x∗) = 0. (6)

We are concerned with the implementation of Markov-perfect policies through a policy

rule where the policymaker does not choose all elements of the allocation. For this purpose

we assume that the allocation vector, x, can be partitioned into two subsets, variables deter-

mined by the private sector, y, and policy instruments, z. A policy rule is then a constant

vector z∗. A Markov-perfect policy is implementable if conditional on the policy rule z∗, the

market constraints (2) define a unique rational expectations equilibrium. In order for the

Markov-perfect policy to be implementable, three conditions have to be satisfied.

First, there needs to be a unique steady state, since in the absence of state variables

4Local approximations are also often problematic, since the steady state of the Markov-perfect equilibrium
around which we want to approximate the economy usually depends on the shape of the policy rule, which
is not known a priori.
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admissable continuation values will be steady-state values. Second, there has to be a unique

point-in-time equilibrium. By this we mean that conditional on the current policy and the

Markov-perfect outcome for the next period there exists a unique allocation and prices in

the current period such that we have a market equilibrium

∃!y s.t. f (y, z∗, y∗, z∗) = 0. (7)

King and Wolman (2004) demonstrate for a simple model with sticky prices that a money

stock rule does not give rise to a unique point-in-time equilibrium. This result is due to

non-linearities induced by the money stock rule. Below we will argue that in the same

environment an interest rate rule implements a unique point-in-time equilibrium.

Third, there has to be a unique dynamic equilibrium. By this we mean that conditional

on the policy rule today and in all future periods there exists a unique rational expectations

equilibrium

∃! {yt} s.t. f (yt, z∗, yt+1, z∗) = 0 for all t. (8)

This is just the usual condition for the existence of a unique rational expectations equilibrium

conditional on some policy rule. We will argue that even though an interest rate policy has a

unique point-in-time equilibrium, it is not dynamically unique unless one is willing to limit

consideration to minimum state variable solutions Although this result has the flavor of the

Sargent and Wallace (1975) result on the indeterminacy of interest rate policies, it differs

from their result in that, for our example, the real allocation is indeterminate rather than the

price level alone being indeterminate. We will also argue that a more general concept of the

Markov-perfect policy rule eliminates this indeterminacy. In particular, if the policymaker

jointly determines the money growth rule and the interest rate, albeit consistent with the

CE conditions, the policy rule will uniquely implement the Markov-perfect allocation and

prices.
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3 The Economy

There is an infinitely lived representative household with preferences over consumption and

leisure. The consumption good is produced using a constant-returns-to-scale technology with

a continuum of differentiated intermediate goods. Each intermediate good is produced by

a monopolistically competitive firm with labor as the only input. Intermediate goods firms

set the nominal price for their products for two periods, and an equal share of intermediate

firms adjusts their nominal price in any particular period. Also, in what follows we restrict

our analysis to perfect foresight economies.

3.1 The representative household

The representative household’s utility is a function of consumption ct, and the fraction of

time spent working nt,
∞X
t=0

βt [ln ct − χnt] , (9)

where χ ≥ 0, and 0 < β < 1. The household is assumed to hold money in order to pay for

consumption purchases

Ptct ≤Mt. (10)

The household’s period budget constraint is

Ptct +Bt +Mt ≤Wtnt +Rt−1Bt−1 +Mt−1 − Pt−1ct−1 + Vt + Tt, (11)

where Pt is the nominal price level, Wt is the nominal wage rate, Bt are the end-of-period

holdings of nominal bonds, Tt are lump-sum transfers, and Rt−1 is the gross nominal interest

rate on bonds. The agent owns all firms in the economy, and Vt is nominal profit income

from firms. The household can adjust money holdings Mt at the beginning of the period.

We will use the term “real” to denote nominal variables deflated by the nominal price level,

which is the price of the aggregate consumption good, and we use lower case letters to denote
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real variables. For example, real balances are mt ≡Mt/Pt.

The relevant first order conditions of the representative household’s problem are5

1/ct = λt (12)

wt/ct = χ, (13)

λt = βλt+1
Rt

Pt+1/Pt
, (14)

Equation (12) equates the multiplier on the household’s budget constraint, λ, with the

marginal utility of consumption. Equation (13) states that the marginal utility derived from

the real wage equals the marginal disutility from work. Equation (14) is the Euler equation,

which states that the marginal utility loss from saving one more unit today is equated with

the discounted marginal utility gain from the real rate of return on savings tomorrow.

3.2 Firms

The consumption good is produced using a continuum of differentiated intermediate goods as

inputs to a constant-returns-to-scale technology. Producers of the consumption good behave

competitively in their markets. There is a measure one of intermediate goods, indexed

j ∈ [0, 1]. Production of the consumption good c as a function of intermediate goods y (j) is

ct =

∙Z 1

0

yt(j)
(ε−1)/εdj

¸ε/(ε−1)
(15)

where ε > 1. Given nominal prices P (j) for the intermediate goods, the nominal unit cost

and price of the consumption good is

Pt =

∙Z 1

0

Pt(j)
1−εdj

¸1/(1−ε)
. (16)

5The cash constraint (10) is binding for positive interest rates, and we have already substituted out for
the Lagrange multiplier on the cash constraint.
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For a given level of production, the cost-minimizing demand for intermediate good j depends

on the good’s relative price, p (j) ≡ P (j)/P ,

yt(j) = pt (j)
−ε ct. (17)

Each intermediate good is produced by a single firm, and j indexes both the firm and

good. Firm j produces y(j) units of its good using a constant-returns technology with labor

as the only input,

yt(j) = nt(j). (18)

Each firm behaves competitively in the labor market and takes wages as given. Real marginal

cost in terms of consumption goods is

ψt = wt. (19)

Since each intermediate good is unique, intermediate goods producers have somemonopoly

power, and they face downward sloping demand curves (17). Intermediate goods producers

set their nominal price for two periods, and they maximize the discounted expected present

value of current and future profits:

max
Pt(j)

∙
Pt (j)

Pt
− ψt

¸
yt (j) + β

λt+1
λt

∙
Pt (j)

Pt+1
− ψt+1

¸
yt+1 (j) . (20)

Since the firm is owned by the representative household, the household’s intertemporal mar-

ginal rate of substitution is used to discount future profits. Using the definition of the firm’s

demand function (17) and the household’s intertemporal rate of substitution, the first order

condition for profit maximization can be written as

∙
Pt (j)

Pt

¸−ε−1 ∙
μψt −

Pt (j)

Pt

¸
+ β

∙
Pt (j)

Pt+1

¸−ε−1 ∙
μψt+1 −

Pt (j)

Pt+1

¸
= 0 (21)

9



where μ = ε/ (ε− 1) is the static markup with flexible prices.

3.3 A symmetric equilibrium

We will study a symmetric equilibrium where all firms that face the same constraints behave

the same. This means that in every period there will be two firm types: the firms that

adjust their nominal price in the current period, type 0 firms with relative price p0, and

the firms that adjusted their price in the previous period, type 1 firms with current relative

price p1. Each period half of all firms have the option to adjust their nominal price. The

equilibrium of the economy is completely described by the sequence of marginal cost, relative

prices, inflation rates, nominal interest rates, and real balances, {ψt, p0,t, p1,t, πt+1,Rt,mt},

such that

0 = (p0,t)
−ε−1 (μψt − p0,t) + β

µ
p0,t
πt+1

¶−ε−1µ
μψt+1 −

p0,t
πt+1

¶
1

πt+1
(22)

1 = 0.5
£
p1−ε0,t + p1−ε1,t

¤
(23)

πt+1 =
p0,t
p1,t+1

(24)

mt = ψt/χ (25)

ψt =
πt+1
βRt

ψt+1 (26)

Equation (22) restates the optimal pricing equation, (21), for a firm that can adjust its price

in the current period. Equation (23) is the price index equation (16) for relative prices.

Equation (24) relates the inflation rate πt ≡ Pt/Pt−1 to the ratio of a price-adjusting firm’s

optimal current relative price and next period’s preset relative price. Equation (25) relates

real balances to marginal cost, using the household’s optimal labor supply condition, (13),

together with the fact that real balances are equal to consumption. Equation (26) is the

household Euler equation, (14), after substituting for the marginal utility of income from

(12) and (13). For ease of exposition we will drop time subscripts from now on and denote

next period’s values by a prime.
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Allocations in this economy are suboptimal because of two distortions. The first distortion

results from the monopolistically competitive structure of intermediate goods production:

the price of an intermediate good is not equal to its marginal cost. The average markup

in the economy is the inverse of the real wage, P/W , which is, according to equation (19),

the inverse marginal cost 1/ψ. The second distortion reflects inefficient production when

relative prices are different from one. Using the firm’s demand function (17) and aggregate

production (15) we can obtain the total demand for labor as a function of relative prices

and aggregate output. Solving aggregate labor demand for aggregate output we obtain an

‘aggregate’ production function

c = an with a ≡ 2/
£
p−ε0 + p−ε1

¤
, (27)

Given the symmetric production structure, equations (15) and (18), efficient production

requires that equal quantities of each intermediate good be produced. The degree of alloca-

tional inefficiency is reflected in the term a ≤ 1. The allocation is efficient if a = 1, implying

that p0 = p1 = 1.

The policymaker is assumed to maximize lifetime utility of the representative agent,

taking the competitive equilibrium conditions (22)-(26) as constraints. For a time-consistent

Markov-perfect policy the policymaker takes future policy choices as given and policy choices

are functions of payoff-relevant state variables only. Because there are no state variables in

our example, this amounts to the planner maximizing the current period utility function of a

representative agent and choosing an unconditional value for the policy instrument. Taking

future policy as given means that the planner has no control over future outcomes, such as

future relative prices or allocations.

One usually states the problem in terms of the planner choosing the market allocation. In

this case we can view the planner choosing a vector y = (p0, p1, π0, ψ) subject to constraints

(22)-(24), and conditional on the choices of next period’s policymaker, y0. The planner’s
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choices determine the representative household’s utility through their impact on allocational

efficiency and the markup. In this model, with ε = 11, implying a markup of approximately

10 percent, and χ = 1/1.1 the optimal allocation of consumption and labor is .9996 and 1.0

respectively. Thus, there is very little allocational inefficiency. This allocation implies an

annual inflation rate of 1.82 percent and a nominal interest rate of 2.84 percent. We will use

this parameterization in the following examples.

Note that the statement of the planner’s problem in terms of the market allocation does

not involve any reference to the policy instrument, z, be it real balances or the nominal

interest rate. To determine whether the Markov-perfect equilibrium can be implemented as

described in equations (7) or (8), we have to characterize the feasible set for market outcomes

y conditional on the policy instrument.

4 Implementation of Point-in-Time Equilibria

In most models of monetary economies money-supply policies lead to a unique equilibrium

with a determinate price level, whereas interest rate policies imply equilibrium indeterminacy.

Exactly the opposite is true for the simple economy we have just described. As King and

Wolman (2004) have shown, a Markov-perfect money-supply rule will imply non-uniqueness

for the point-in-time equilibrium, and as we will show, a Markov-perfect interest rate policy

will imply a unique point-in-time equilibrium. It turns out that (non)uniqueness of the

equilibrium is related to the presence of strategic complementarities in the price-setting

process and how the policy rule amplifies or weakens these complementarities.

Before we discuss the two policy rules, we want to demonstrate that strategic comple-

mentarities are inherent to the firms’ price-setting problem. In the context of the model’s

monopolistic-competition framework, strategic complementarities are said to be present if

it is optimal for an individual price-adjusting firm to increase its own relative price, p0, if

all other price-adjusting firms increase their relative price, p̄0. To study this issue we use
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a graphic representation of the individual firm’s FOC for profit maximization, (22), which

states that the sum of today’s marginal profit, MP (p0, ψ), and tomorrow’s discounted mar-

ginal profit, βMP (p0/π
0, ψ0) /π0, has to be zero. For the profit maximization problem to be

well-defined we need the profit function to be concave; that is, the marginal profit function

MP is decreasing in the relative price. In the Appendix we also show that

Proposition 1 With constant marginal cost, ψ = ψ0, tomorrow’s marginal profit,MP (p0/π
0, ψ0) /π0,

is increasing in the inflation rate π0 for a neighborhood around zero inflation, π0 = 1.

In Figure 1 we graph today’s (red line) and tomorrow’s marginal profit (blue line) for an

individual firm conditional on all other firms’ relative price, p̄0, and a positive inflation rate.

The positive inflation rate erodes the firm’s relative price tomorrow and therefore the firm

will set its optimal price, p0, above the static profit-maximizing relative price, μψ, such that

it balances today’s negative marginal profit against tomorrow’s positive marginal profit. Now

suppose that all other firms increase their relative price. It follows from expression (24) that

the inflation rate will increase, π0 = p̄0/p
0
1, and this will shift tomorrow’s marginal profit curve

up, leaving today’s marginal profit curve unchanged. It is then optimal for the individual firm

to also increase its own relative price. Thus, there is a source of strategic complementarities,

independent of monetary policy. The choice of monetary policy instrument will modify

strategic complementarities through its general equilibrium feedback effect on marginal cost.
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p0

Own Price p0

Marginal Profit

Marginal Profit Today MP(p0,ψ)

Marginal Profit Tomorrow MP(p0/π',ψ')/π'

μψ=1

π' 

ψ

Figure 1. Strategic Complementarities

4.1 A money supply policy

We now review King and Wolman’s (2004) analysis of a Markov-perfect nominal money

stock rule. We first show that such a policy will in general imply the existence of multiple

steady states. Furthermore, we show that the point-in-time equilibrium is not unique even

conditional on a particular steady state allocation for the continuation of the economy. The

equilibrium is not unique because for low inflation rates the money stock rule weakens the

existing strategic complementarities in the price-setting process.

King and Wolman (2004) assume a homogeneous monetary policy rule that sets the

nominal money stock in proportion to the preset nominal price from the last period

M = m̃P1. (28)

In terms of the Markov problem (7) the policy instrument is z = m̃. Combining the policy
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rule (28) with the money demand equation (10) yields the modified policy rule in real terms

c = m̃p1. (29)

Finally, combining (29) with the optimal labor supply condition (13) yields the equilibrium

condition for marginal cost

ψ = χm̃p1. (30)

4.1.1 (Non)uniqueness of the steady state

We now show that for most values of the money-supply policy parameter, m̃, the steady-

state of the economy will not be unique. Since in a Markov-perfect equilibrium without

state variables the expected future policy has to be a steady-state, non-uniqueness of the

steady-state alone suggests that the monetary policy rule may result in indeterminacy of the

point-in-time equilibrium.

Proposition 2 There exist values m̃min < m̃1 = 1/ (χμ) ≤ m̃2 such that (1) if m̃ ∈

(m̃min, m̃1] then there exists a unique non-inflationary steady-state; (2) if m̃ ∈ (m̃1, m̃2),

then there exist two inflationary steady-states; (3) if m̃ = m̃2 then there exists a unique

inflationary steady-state; and (4) if m̃ > m̃2 then no steady-state exists.

Proof. Substitute (30) for marginal cost in (22) and obtain the following steady-state map-

ping from the inflation rate to the policy parameter

m̃ =
1

χμ
h (π∗) and h (π∗) =

π∗ + βπ∗ε

1 + βπ∗ε
.

In steady-state, the nominal interest rate, R > 1, and because βR = π∗, π∗ > β. For

π∗ ∈ (β, 1], h(π∗) is strictly increasing and less than one. For positive inflation, π∗ > 1,

the function h satisfies (1) h (π∗) > h (1) = 1 and (2) h (∞) = 1. Since h is continuous

the function must eventually be decreasing if it is to approach 1 as π∗ →∞. So there must
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exist an inflation rate π2 such that h (π∗) ≤ h2 = h (π2). Furthermore, h is monotonically

increasing (decreasing) for π∗ < π2 (π∗ > π2). Let m̃1 = 1/ (χμ) and m̃2 = m̃1h2. The

proposition follows immediately from the properties of the h function.¥

Figure 2 displays the steady-state inflation rates π∗ consistent with the money rule m̃

for the parameter values used in section 3.3, in particular, χμ = 1. Note that m̃1 is the

money-supply policy parameter associated with a zero steady-state inflation rate, and that

the range of policy parameters associated with multiple steady-states is relevant, since the

optimal Markov-perfect policy is inflationary.
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Figure 2. Steady State Multiplicity with a Money Rule

4.1.2 Non-uniqueness of the point-in-time equilibrium

Suppose that we choose one of the possible steady-states as a continuation of the economy

in the next period. We now show that the choice of a money-supply instrument weakens
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strategic complementarities when the average firm chooses a low relative price, and that the

complementarities persist when the average firm chooses a high relative price. The resulting

shape change of the optimal reaction function, that is, the mapping from the average firm’s

relative price to an individual firm’s optimal relative price response, gives rise to multiple

point-in-time equilibria.

Consider again the response of an individual firm to an increase in the relative price set

by all other firms, but now allow for the feedback coming through the money stock policy.

When all other price-adjusting firms increase their relative price, it follows from the price

index equation, (23), that the preset relative price, p̄1, declines. From equation (30) it then

follows that today’s marginal cost declines, which in turn shifts down today’s marginal profit

curve in Figure 1. Thus the policy-induced feedback effect reduces the individual firm’s need

to increase its own relative price in response to the general price increase; that is, it weakens

the strategic complementarities.

It is easily shown that the impact of p̄0 on p̄1 declines with p̄0. Thus, strategic com-

plementarities are weakened the most when the relative price of price-adjusting firms is the

lowest. The resulting shape of a firm’s optimal response function is depicted in Figure 3 for

the parameter values used in section 3.3, and assuming that next period’s policy generates

a steady-state inflation rate π = 1.05. We can see that for low values of other firms’ relative

price choice, there are no strategic complementarities, and the reaction function is quite

flat. If other firms start setting higher relative prices, then an individual firm’s own optimal

relative price starts to increase and the rate at which it responds also increases. Thus the

reaction function becomes steeper than the 45 degree line and multiple equilibria due to

self-fulfilling expectations are possible. In the Appendix we prove the following Proposition.

Proposition 3 Suppose the current and future policymakers use the same money stock rule

m̃. If m̃ ∈ (m̃1, m̃2), then, in general, at least two point-in-time equilibria exist. If m̃ = m̃1

then the point-in-time equilibrium is unique.
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Figure 3. Optimal Response Function for Money Rule

4.2 An interest rate policy

In this section we evaluate the benefits of using an interest rate instrument to implement

Markov-perfect policies. We find that steady-states and point-in-time equilibria are unique,

despite the fact that the reaction function remains characterized by strategic complementar-

ities. In what follows, we solve for the current equilibrium, y, conditional on current policy

z = R and future equilibrium outcomes y0. With a fixed nominal interest rate, policy affects

marginal cost through the Euler equation,

ψ =
ψ0

βRp01
p0 (31)

which combines (24) and (26). We first show existence and uniqueness of the steady-state

and the point-in-time equilibrium. We then show that uniqueness occurs despite the con-

tinued presence of strategic complementarities. Indeed, the interest rate rule strengthens

existing strategic complementarities. Finally, we discuss the existence of a unique rational
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expectations equilibrium for the policy rule.

Proposition 4 Conditional on the nominal interest rate R > 1, there exists a unique steady-

state (p∗0, p
∗
1, ψ

∗).

Proof. Equation (31) and (24) determine the unique steady-state inflation rate

π∗ = βR. (32)

Equations (23), (24), and (32) uniquely determine the steady-state relative prices

p∗ε−10 = 0.5
¡
1 + π∗ε−1

¢
and p∗1 = p∗0/π

∗. (33)

From equation (22) we obtain the steady-state marginal cost

ψ∗ =
1

μ

1 + βπ∗ε−1

1 + βπ∗ε
p∗0. (34)

¥

Uniqueness of the point-in-time equilibrium with an inflationary interest rate rule is not

due to the elimination of strategic complementarities but to a strengthening of the strategic

complementarities. Consider again the response of an individual firm to an increase in the

relative price set by all other firms, but now allow for the feedback coming through the inter-

est rate policy. From equation (31) it now follows that today’s marginal cost increases, which

in turn shifts up today’s marginal profit curve in Figure 1. Thus the policy-induced feedback

effect increases the individual firm’s need to increase its own relative price in response to the

general price increase; that is, it strengthens the strategic complementarities.
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Figure 4. Optimal Response Function for Nominal Interest Rate Rule

Figure 4 displays the reaction function for the interest rate policy conditional on the

parameterization used in Section 3.3 and assuming that next period’s policy generates a

steady-state inflation rate π = 1.05. In the following proposition we state that as long as

tomorrow’s policy does not try to implement price stability, there will always exist a unique

point-in-time equilibrium for the current period.

Proposition 5 (A) If next period’s policy choice attains an inflationary or deflationary

steady-state outcome, then (1) for any nominal interest rate for which a current period

equilibrium exists it is unique, and (2) there always exists a nominal interest rate for which

an equilibrium exists. (B) If next period’s policy choice attains a steady-state outcome with

stable prices, then (1) the current period equilibrium is indeterminate if current policy also

tries to attain the stable-price steady-state βR = 1; (2) no current period equilibrium exists

if βR 6= 1.
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4.3 Dynamic (in)determinacy

The dynamics of the rational expectations equilibrium conditional on the interest rate policy

are characterized by the first order vector difference equation in (p0t, ψt) determined by the

Euler equation (31) for marginal cost and the rewritten first order condition for optimal

pricing (22),

ψ

p0
=

ψ0

βRp01
. (35)

(p0)
1−ε
µ
1− μ

ψ

p0

¶
= −β (p01)

1−ε
µ
1− μ

ψ0

p01

¶
. (36)

Recall that the preset relative price p1 is determined by p0 through the price index equation

(23). For a locally unique rational expectations equilibrium to exist, both eigenvalues of

the linearized difference equation system (35) and (36) have to be greater than one. For

the parameterization that we have used in section 3.3, only one of the eigenvalues is greater

than one, independent of the steady-state inflation rate around which we approximate the

equation system. In the Appendix we also show that for inflation rates close to one and

for very large inflation rates, only one of the eigenvalues is greater than one, independent

of the parameter values. Thus the solution to the linearized difference equation system

tends to be indeterminate, and the rational expectations equilibrium is not locally unique.6

Furthermore, since the dynamics of the economy are characterized in terms of real variables,

the real allocation is indeterminate. This contrasts with Sargent and Wallace’s (1975) study

in which nominal interest rate policies imply an indeterminate price level but a determinate

real allocation. In our environment, the price level is determinate conditional on a given real

allocation,

Pt = P0,t−1/p1,t, P0,t = p0tPt, and P1t = p1,tPt. (37)

However, if we restrict the solution of the local dynamics to be in accord with McCallum’s

6In the Appendix we also show that the money supply rule supports a locally unique rational expectations
equilibrum.
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(1983) minimum state variable solution, there is only one such solution, namely p0,t = p∗0

and ψt = ψ∗, and the nominal prices are determined conditional on the law of motion, (37),

and the initial price, P0,−1. This is easy to see, since there are no state variables and the

minimum state variable solution must be the steady-state, which is unique. We also note that

in an economy like ours with flexible prices, it is well known that the minimum state variable

solution still displays nominal indeterminacy. This difference indicates another important

distinction between flexible and sticky price environments.

The policymaker can uniquely implement the Markov-perfect equilibrium through a pol-

icy that jointly determines the nominal interest rate and the money stock. The choice of a

nomial interest rate eliminates the potential for multiple point-in-time equilibria, whereas

the money rule picks the Markov-perfect equilibrium allocation among the possible solutions

to the system of dynamic equations.7

The usual procedure to eliminate dynamic indeterminacies arising from a fixed nominal

interest rate policy — making the interest rate decision contingent on other endogenous vari-

ables; see, e.g., McCallum (1986), Boyd and Dotsey (1994), or Carlstrom and Fuerst (1998)

— cannot be used to implement Markov-perfect equilibria. This approach is not applicable,

since, by definition, decisions in Markov-perfect equilibria can depend only on payoff-relevant

state variables and not other endogenous variables, be they lagged or contemporaneous.8

Reputation-based time-consistent policies can eliminate dynamic indeterminacies in a way

similar to our approach. For example, Atkeson, Chari, and Kehoe (2007) implement unique

equilibria based on nominal interest rate rules through the specification of the off-equilibrium

behavior of the policymaker’s history-contingent decision rules.

7We note, however, that implementing this combination policy requires the monetary instrument to
be state contingent. In order to replicate the optimal allocations, the policy-maker would need complete
information. In an environment with incomplete information, it would be interesting to explore the properties
of this type of combination policy.

8This argument does not apply to the implementation of optimal policies with full-commitment; see, e.g.,
by Giannoni and Woodford (2002).
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5 Conclusion

This paper has analyzed the importance of the monetary policy instrument in decentralizing

a time-consistent planner’s optimal policy. In that regard, it is part of a growing literature

investigating the implementation of optimal plans. We have shown that whether a plan-

ner uses a money instrument or an interest rate instrument is crucial for determining if

optimal Markov-perfect allocations can be attained via the appropriate setting of the instru-

ment. King and Wolman (2004) were the first to alert us to the non-trivial ramifications

of decentralization. They produced a surprising result of significant impact, namely, that

decentralization is a non-trivial problem. With regard to using a money instrument, im-

plementation of the optimal allocation is unattainable. A time-consistent planner using a

money instrument could not achieve the allocations chosen by a planner who was able to

directly pick allocations. In fact, they showed that steady-states and equilibria were not

unique at the optimal inflation rate. Since, in reality, no central bank picks allocations, this

result presents a challenge for understanding just how a time-consistent central bank might

operate.

Intuition gained from the early rational expectations literature on monetary policy as de-

picted in Sargent and Wallace (1975) would suggest that an interest rate instrument would

have similar problems. Here we have shown that it does not. A planner using an interest rate

instrument can achieve the Markov-perfect allocations of the standard time-consistent plan-

ning problem. The result occurs for two key reasons. The interest rate instrument pins down

future inflation in ways unobtainable using a money instrument and, in so doing, increases

the degree of strategic complementarity that arises from the monopolistically competitive

price-setting problem itself.
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Appendix

A Proof of Proposition 1. Strategic Complementari-
ties

The optimal relative price of a price-setting firm satisfies the FOC for profit maximization
(22). With constant marginal cost, ψ = ψ0, and positive inflation this implies

p0 ≥ μψ ≥ 1 ≥ p0/π
0 (A.1)

since the marginal profit function is decreasing in p0. The derivative of the firm’s marginal
profit tomorrow with respect to inflation is

∂MP (p0/π
0, ψ) /π0

∂π0
= (ε− 1)

³p0
π0

´−ε−1 ³
μ2ψ − p0

π0

´ 1

π02
(A.2)

Thus tomorrow’s marginal profit is increasing in inflation iff

μ2ψ >
p0
π0
. (A.3)

Note that with zero inflation the optimal relative price satisfies p0 = μψ. Since we have a
positive markup, μ > 1, we get

μ2ψ > μψ = p0. (A.4)

By continuity condition (A.3) is satisfied for a neighborhood around zero inflation.¥

B Proof of Proposition 3. Nonuniqueness of PITE
with Money Rule

Suppose that today’s and tomorrow’s policymakers choose the same policy rule, m̃ = m̃0 ∈
(m̃1, m̃2). From Proposition 2 this policy is consistent with the existence of two steady-state
equilibria. We now show that even conditional on choosing future behavior to be in accord
with one of the two possible steady-states, p01 = p∗1 and ψ

0 = ψ∗, there exist two point-in-time
equilibria in the current period. An individual firm’s optimal relative price is determined by
the profit maximization condition, (22),

p0 = μ
ψ + βψ∗π0ε

1 + βπ0ε−1
, (B.1)

conditional on today’s marginal cost and tomorrow’s marginal cost and inflation rate. To-
gether with the policy rule (30) and the definition of the inflation rate (24), the reaction
function simplifies to

1

μχm̃
p0 = p0

(p1/p0) + β (p0/p
∗
1)

ε−1

1 + β (p0/p∗1)
ε−1 = g (p0, p

∗
1) . (B.2)
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In equation (B.2) the left-hand-side price p0 is interpreted as an individual firm’s optimal
relative price in response to the expected aggregate relative prices, p0 and p∗1, on the right-
hand-side. Note that the price index equation (23) implies that p1 is a decreasing function
of p0. For parameter values and policy choice such that μχm̃ = 1, we can interpret g as the
reaction function and Figure 3 can be used to visualize the argument below.
One can show that the ‘reaction’ function g in terms of the relative price p0 intersects

the 45-degree line at p0 = 1, and is above (below) the 45-degree line when p0 is less than
(greater than) one,

g (p0, p
∗
1)

⎧⎨⎩ <
=
>

⎫⎬⎭ p0 for p0

⎧⎨⎩ >
=
<

⎫⎬⎭ 1 (B.3)

As p0 becomes large, g(p0, p∗1) converges to the 45-degree line from below,

lim
p0→∞

g (p0, p
∗
1) = p0. (B.4)

With some some additional algebra one can show that the derivative of the g function at
p0 = 1 is

∂g (p0, p
∗
1)

∂p0
|p0=1 = −

1− β (p∗1)
1−ε

1 + β (p∗1)
1−ε . (B.5)

We can now show that for m̃ ∈ (m̃1, m̃2) the LHS and the RHS of expression (B.2)
will in general intersect twice. On the one hand, from Proposition 2 it follows that since
m̃ > m̃1, that is, μχm̃ > 1, the slope coefficient of the LHS linear expression in p0 is less
than one. Thus the LHS defines a line through the origin below the 45-degree line. On the
other hand, the RHS of (B.2) intersects the 45-degree line at p0 = 1, and stays above (below)
the 45-degree line whenever p0 is less than (greater than) one. Furthermore, as p0 becomes
arbitrarily large the RHS of (B.2) converges to the 45-degree line from below.
Since the LHS is strictly below the RHS for p0 ≤ 1, the two curves do not intersect in

this range. We know that at least one intersection point exists, since we consider policy
rules that are consistent with the existence of a steady-state, and the steady-state price is a
solution to the reaction function (B.2). Thus there must be an intersection point for p0 > 1.
If m̃ = m̃1, then we know that a unique non-inflationary steady-state with p0 = 1 exists,

and this steady-state also satisfies (B.2). For this case, the LHS is the 45-degree line and the
RHS has a unique intersection with the 45-degree line at p0 = 1. Furthermore, from (B.5)
it follows that the slope of the RHS at p0 = 1 is negative. With a marginally larger value of
m̃, the slope of the LHS becomes less than one, and there will be at least two intersections
with the RHS to the right of p0 = 1.¥
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C Proof of Proposition 4. (Non)uniqueness of PITE
with Interest Rate Rule

The current equilibrium is defined by the two equations (31) and (22), which map the current
period relative price p0 to current period marginal cost ψ. Rewriting (22), we have

ψ = f1 (p0) =

µ
1

βR

ψ0

p01

¶
p0 (C.1)

ψ = f2 (p0) =
1

μ
(p0 + βA0pε0) . (C.2)

where, A0 = (p01)
1−ε
³
1− μψ0

p01

´
, and next period’s variables are evaluated at their steady-

state values, p∗1 and ψ∗ as determined by (32), (33) and (34). An intersection of the two
functions represents a potential equilibrium.
The two functions always intersect at p0 = 0, but p0 = 0 is not a feasible outcome, since

the price index equation (23) together with p1 being positive implies a lower bound, p0, for
the optimal relative price. Both functions are strictly increasing at p0 = 0,

∂f1
∂p0

=
1

μβR

π∗ + β (π∗)ε

1 + β (π∗)ε
(C.3)

∂f2
∂p0

=
1

μ

¡
1 + βA0εpε−10

¢
. (C.4)

The function f2 is strictly concave (linear, strictly convex) if A0 < 0 (A0 = 0, A0 > 0),

∂2f2
∂p20

=
1

μ
βA0ε (ε− 1) pε−20 . (C.5)

The sign of the term A0 depends on the inflationary stance of next period’s steady-state
policy. From (22) we get

βA0 = β (p∗1)
1−ε

(
1− μ

"
1

μ

1 + β (π∗)ε−1

1 + β (π∗)ε
p∗0

#
1

p∗1

)

= β (p∗1)
1−ε

(
1− π0

1 + β (π∗)ε−1

1 + β (π∗)ε

)

= β (p∗1)
1−ε
½

1− π∗

1 + β (π∗)ε

¾
. (C.6)

The first equality uses the steady-state expression for next period’s marginal cost (34), and
the second equality uses the steady-state expression for next period’s inflation rate (33).
Thus A0 is negative (positive) if next period’s policy is inflationary, π∗ > 1 (deflationary,
π∗ < 1), and A0 = 0 if next period’s policy implements price stability, π∗ = 1.
If next period’s policy is inflationary and an intersection between f1 and f2 exists for
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positive values of p0, the intersection point is unique since the function f1 is linear and the
function f2 is strictly concave. The two functions intersect for positive p0 if at p0 = 0 the
function f2 is steeper than f1,

∂f1
∂p0

=
1

μ

1

βR

π∗ + β (π∗)ε

1 + β (π∗)ε
<
1

μ
=

∂f2
∂p0

¯̄̄̄
p0=0

(C.7)

This condition can always be satisfied for a sufficiently large nominal interest rate R ≥ 1. In
other words the policymaker can always find an interest rate for which the functions intersect.
Recall that there is a lower bound for feasible relative prices p

¯
0, so the policymaker has to

choose an interest rate that implies a sufficiently large value for the relative price p0. A
policymaker can always find such an interest rate, since he can always replicate the steady-
state by choosing R = R∗. Thus there exists a choice for R such that an equilibrium exists
and it is unique. An analogous argument applies if next period’s policy is deflationary.
If next period’s policy implements price stability, that is, ψ∗ = 1/μ and p∗1 = 1, then

the only policy for today that is consistent with the existence of an equilibrium is a nominal
interest rate such that βR = 1. But then equations (C.1) and (C.2) are satisfied for any
feasible combination of (p0, ψ) such that

p0 > p
¯0
and ψ = p0/μ.

If current policy is inflationary or deflationary, βR 6= 1, then the only solution to equations
(C.1) and (C.2) is p0 = 0. But p0 = 0 is not a feasible outcome, so no equilibrium exists. ¥

D Local (in)determinacy of the rational expectations
equilibrium

D.1 The money stock rule

If the policymaker follows a money-supply rule, we can substitute for marginal cost from
expression (30) in equation (36) and get a difference equation in the optimal relative price
only

(p0)
1−ε
µ
1− μχm̃

p1
p0

¶
= −β (p01)

1−ε
(1− μχm̃) .

The use of the price index equation (23) for the preset relative price is implicit. Log-linearzing
this equation at a steady-state yields

p̂0 = β
1− μχm̃

1− μχm̃ [(επ + πε) / (ε− 1)] p̂
0
0

and the equilibrium is locally unique if the absolute value of the scale coefficient on the right-
hand-side is less than one. We now use the expression for the steady-state with a money
rule and get

p̂0 = β
h (π)− 1

h (π)
¡
επ+πε

ε−1
¢
− 1

p̂00
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For positive inflation rates the function h (π) > 1 and the expression in parentheses in the
denominator is greater than one. Therefore the numerator is smaller than the denominator,
and the scale coefficient is less than one. Thus the equilibrium is locally stable for any
positive steady-state inflation rate.

D.2 The nominal interest rate rule

We study the difference equation (35) and (36) in the transformed marginal cost z = ψ/p0

βRz = z0q0

(p0)
1−ε (1− μz) = −β (p01)

1−ε
(1− μz0q0)

where q ≡ p0/p1. Log-linearizing the two equations around the steady-state yields

ẑ = ẑ0 +
¡
1 + q1−ε

¢
p̂00 (D.8)

(ε− 1) p̂0 +
μz

1− μz
ẑ =

μq0z0

1− μq0z0
ẑ0 + ap̂00 (D.9)

and a = (1− ε) (q0)
1−ε
+

μq0z0

1− μq0z0

³
1 + (q0)

1−ε
´

Note that in the steady-state q = q0 = π. Solving for future p0 and z yields∙
ẑ0

p̂00

¸
= C

∙
ẑ
p̂0

¸
(D.10)

with C = ∆

∙
(1− ε)π1−ε + (1 + π1−ε) b − (ε− 1) (1 + π1−ε)

−b ε− 1

¸
,

∆ = −πε−1/ (ε− 1) , and

b =
π + βπε

βπε
1 + βπε

1− π
.

Let tr denote the trace of C and det denote the determinant of C,

det = −πε−1 (D.11)

tr = 1− πε−1 +
1

ε− 1
π

π − 1
(1 + βπε)

βπε
¡
1 + βπε−1

¢ ¡
1 + πε−1

¢
| {z }

f(π)

(D.12)

From the Schur-Cohn Criterion and some algebra we get that the roots of the characteristic
polynomial of C satisfy the following conditions:

• both roots are inside the unit circle if

|det| < 1 and |tr| < 1 + det; (D.13)
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• both roots are outside the unit circle if

either det > 1 and |tr| < 1 + det (D.14)

or det < −1 and |tr| < − (1 + det) ;

• one root is inside and one root is outside the unit circle if

|tr| > |1 + det| ; (D.15)

For price stability, π = 1, the rational expectations equilibrium is locally indeterminate
since 1 + det = 0 and tr = ∞ and condition (D.15) is satisfied. Therefore the rational
expectations equilibrium is locally indeterminate for a neighborhood of price stability. For
large values of the inflation rate, condition (D.15) is also satisfied, since the polynominal in
the inflation rate defined by the function f is of higher order than ε− 1. We are unable to
prove that condition (D.15) is satisfied for all intermediate values of the inflation rate but,
given our baseline calibration in section 3.3 condition, (D.15) is satisfied for all values of the
inflation rate.
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