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Abstract

In this paper, we aim to design a monetary policy for the euro area that is robust to the high degree of model

uncertainty at the start of monetary union and allows for learning about model probabilities. To this end,

we compare and ultimately combine Bayesian and worst-case analysis using four reference models estimated

with pre-EMU synthetic data. We start by computing the cost of insurance against model uncertainty,

that is, the relative performance of worst-case or minimax policy versus Bayesian policy. While maximum

insurance comes at moderate costs, we highlight three shortcomings of this worst-case insurance policy: (i)

prior beliefs that would rationalize it from a Bayesian perspective indicate that such insurance is strongly

oriented toward the model with highest baseline losses; (ii) the minimax policy is not as tolerant of small

perturbations of policy parameters as the Bayesian policy; and (iii) the minimax policy offers no avenue

for incorporating posterior model probabilities derived from data available since monetary union. Thus, we

propose preferences for robust policy design that reflect a mixture of the Bayesian and minimax approaches.

We show how the incoming EMU data may then be used to update model probabilities, and investigate the

implications for policy.
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1 Introduction

At the start of the European Monetary Union central bankers were faced with tremendous uncertainty

concerning the functioning of the new euro area economy. Macroeconomic models that would provide

reliable measurements of the area-wide effects of monetary policy were not available. In his contribution

to the ECB’s first conference on “Monetary Policy-Making under Uncertainty” on December 3, 1999, the

ECB’s first president, Willem Duisenberg, described the ECB’s assessment of the situation as follows:

“We at the ECB are committed to developing and maintaining a set of tools that are useful for

analyzing the euro area economy and examining the implications for future inflation. This is,

however, not a trivial task given the large uncertainties that we are facing due to the establishment

of a multi-country monetary union. Not only can we expect some of the historical relationships

to change due to this shift in regime, but also, in many cases, there is a lack of comparable and

cross-country data series that can be used to estimate such relationships.”

On the same occasion, ECB Chief Economist Otmar Issing pointed to research on robust policy rules for

the U.S. economy as an example to be followed:

“Given the degree of model uncertainty, central bankers highly welcome the recent academic re-

search on the robustness of monetary policy rules across a suite of different models.”

In the years thereafter, the ECB developed a suite of euro area models estimated with synthetic data from

the pre-EMU period and made public in their working paper series, while researchers around the world

further developed alternative approaches to robust policy design.1

In this paper, we aim to design a monetary policy for the euro area that is robust to the range of

uncertainty spanned by the first generation of euro area models estimated at the ECB but also allows for

learning from the new euro area data. First, we document some of the differences between these models.

1 Several researchers have proposed various forms of worst-case analysis to insure against perturbations of single reference
models of the economy. Recent examples include Sargent (1999), Hansen and Sargent (2002), Giannoni (2002, 2007),
Onatski and Stock (2002), Onatski and Williams (2003), Tetlow and von zur Muehlen (2001, 2004) and Zakovic, Rustem
and Wieland (2007). An early contribution is von zur Muehlen (1982). Other researchers have focused on comparing policy
rules across a limited set of well-studied reference models, such as Levin, Wieland and Williams (1999, 2003), Levin and
Williams (2003), Coenen (2007), Adalid et al. (2005) and Kuester and Wieland (2005). Early contributions in this line of
research are Becker et al. (1986) and McCallum (1988).
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In particular, we show that simple rules optimized for one specific model are not robust; that is, their

performance may deteriorate substantially if implemented in one of the other models.2 Then, following

recent research on robust policy for the U.S. economy by Levin, Wieland and Williams (2003) and Levin

and Williams (2003) we compare traditional Bayesian decision making with minimax analysis that insures

against worst-case scenarios.

In characterizing the Bayesian policy, we use equal model probabilities as prior beliefs of the decision

maker. In principle, one could attempt to compute model probabilities using an identical historical data

set.3 However, as pointed out by President Duisenberg such data are artificial aggregates obtained from

national economies with differential monetary policies and fixed but adjustable exchange rates. Thus, an

agnostic approach regarding the relative probabilities of models estimated with historical, synthetic data

would have seemed appropriate at the start of the EMU. Interestingly, the Bayesian policy with flat priors is

much more robust than the corner solutions represented by the rules optimized for each specific model. We

then compute the minimax policy that delivers maximum insurance against worst-case outcomes. Expected

performance under the minimax policy does not deteriorate much relative to the Bayesian policy with flat

priors. In other words, the cost of maximal insurance is moderate.

While Levin and Williams (2003) follow earlier work in assessing the costs of insurance in terms of

percentage differences in losses, we propose to use instead an absolute measure that is directly interpretable in

terms of economic significance. We construct this measure by translating the absolute increase in losses when

moving from the first-best model-specific rule to a robust candidate rule into a counterfactual, equivalent

increase in inflation volatility. We call this the “Implied Inflation (Variability) Premium,” in short the IIP.4

Next, we subject our finding regarding the low cost of insurance by means of minimax policy to further

scrutiny. First, we take up Sims’ (2001) criticism that minimax policies are equivalent to Bayesian policies

2 This step was accomplished in parallel by Adalid et al. (2005) and Kuester and Wieland (2005) (our earlier working paper
version).

3 The model developers all used historical, synthetic EMU data but different releases and de-trending methods.

4 Findings concerning the cost of insurance by means of the IIP for the euro area differ in an important aspect from Levin
and Williams’ results with three models of the U.S. economy. Focusing on percentage changes of losses, these authors claim
that costs of insurance may be prohibitively high when policy makers do not have a dual objective, i.e., inflation and output
stabilization. Using the IIP measure we find that the central bank can insure against model uncertainty at moderate costs
even if the objective function does not contain any output stabilization objective. This is of particular importance in light
of the Maastricht treaty that established price stability as the primary objective of the ECB.
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with unreasonable priors, then we investigate the fault-tolerance of minimax versus Bayesian policies. To

assess the Sims critique we construct the priors that would rationalize our minimax policies from a Bayesian

perspective. We confirm that these priors may be viewed as excessively tilted toward one model. In other

words, the minimax policy is not very far away from one of the corner solutions that were found to lack

robustness in the evaluation of model-specific rules. This weakness of the minimax policy is uncovered by the

fault-tolerance criteria.5 We check whether policy is fault-tolerant by testing whether minor perturbations

in policy parameters have only a minor impact on the performance of a given policy rule in different models.

In other words, we test whether the policy maker’s “trembling hand” may cause a significant deterioration of

policy outcomes under model uncertainty. We find that the Bayesian policy with flat priors is fault-tolerant

but not the minimax policy. Finally, a third weakness of the minimax rule is that it gives no room for learning

about model probabilities using the true euro area data that have become available since the construction

of the models.

We move beyond the approaches investigated in the recent literature by proposing to use a mixture

of Bayesian and minimax analysis in the design of monetary policy. In this manner we aim to exploit

the seemingly low costs of insurance via minimax while overcoming the shortcomings of minimax policies

exposed in the preceding analysis. To this end, we propose to use so-called ambiguity-averse preferences

for policy design. An intermediate degree of ambiguity aversion uses the model probabilities according to

the Bayesian approach to decision-making but gives extra weight to the worst uncertain outcomes as in the

minimax approach, (see also Brock et al., 2003) . We then compute posterior model probabilities from euro

area data since 1999 and discuss how these probabilities can be incorporated in policy design.

To accomplish this analysis of robustness and learning under model uncertainty, we need to make a

number of unavoidable technical assumptions and modeling choices. For example, we choose to focus on

the appropriate choice of the systematic component of a monetary policy reaction function, rather than on

discretionary policy actions. To this end, we analyze the effect of policies under commitment to a simple

rule. Furthermore, we assume that the private sector forms expectations that are correctly based on the

5 We use this concept in a different way than Levin and Williams (2003) as discussed in Section 4.
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central bank’s policy rule and the respective model economy. Finally, the robust rules we design remain

fairly close to the currently prevailing policy regime (i.e., an estimated rule), such that a change in rules

would be “modest” following the suggestion of Leeper and Zha (2003).6

The remainder of the paper is structured as follows. In Section 2 we compare the first generation of euro

area models developed at the ECB and show that they offer different policy conclusions. Section 3 presents

Bayesian and minimax approaches to model uncertainty. The costs associated with full insurance against

the worst case are quantified relative to a flat prior Bayesian policy. Section 4 investigates the fault-tolerance

of both policies and derives prior beliefs that would render the Bayesian and minimax policies equivalent.

Section 5 proposes a compromise approach in terms of intermediate ambiguity aversion that would bring

together Bayesian and minimax analysis. Section 6 provides an empirical application with learning about

model probabilities following the start of European Monetary Union. Section 7 concludes. Further details

regarding the different models, methods, and sensitivity studies are provided in the appendices.

2 The ECB’s First-generation Euro Area Models Differ in Their

Policy Implications

The first generation of estimated macroeconomic models for the euro area that were developed at the ECB

has been made available to the public in studies by Fagan et al. (2005) (for details see Fagan et al. ECB

Working Paper 42, January 2001), Coenen and Wieland (2005) (for an earlier version see ECB Working

Paper 30, September 2000), and Smets and Wouters (2003) (for an earlier version see ECB Working Paper

171, August 2002). These models were estimated with pre-EMU synthetic data at quarterly frequency.

Creating these data required constructing and aggregating comparable measures from individual euro area

member countries for the years prior to the start of the EMU in 1999. ECB staff accomplished this task and

made the data available to outside researchers along with ECB Working Paper 42 (Fagan et al., 2001).

6 Leeper and Zha (2003) present an analysis in which they focus on the effect of deviations from a policy rule (policy
interventions) on private-sector expectations formation when the private sector cannot observe the monetary regime, a
complication that we abstract from. Yet, as in Leeper and Zha (2003) our policy (rule) change is explicitly designed to be
reasonably “modest,” i.e. it does not imply a marked change of the overall regime.
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Each of the models that originate in the above papers exhibits long-run monetary neutrality as well as

short-run nominal inertia. As a result, monetary policy has short-run real effects and the central bank has the

ability to stabilize output and inflation fluctuations. In other dimensions, the models differ, for example, in

the degree of forward-looking expectation formation, the extent of optimizing behavior by economic agents,

and in terms of magnitude, scope, and parameter estimates.7 The area-wide model presented in Fagan et al.

(2001) is a nonlinear model that is used as an element of the ECB’s forecasting process. For the purposes

of this study, we use the linearized8 version of this model derived by Dieppe et al. (2004) and referred to as

the AW model in the following. Expectation formation in this model is largely backward-looking. The two

models of Coenen and Wieland (2005) are much smaller than the AW model but incorporate forward-looking

expectations. The CW-T variant with Taylor-style staggered wage contracting (see Taylor, 1980) exhibits

less nominal rigidity than the CW-F variant with Fuhrer-Moore style contracts (see Fuhrer and Moore,

1995). Finally, the Smets and Wouters (2003) model (SW) most completely embodies recent advances in

modelling optimizing behavior of economic agents.

Comparing the four models we have found that they exhibit quantitatively important differences with

regard to output and inflation dynamics as well as monetary policy effectiveness. These differences imply

substantial model uncertainty faced by ECB policy makers at the start of the European Monetary Union.

They confirm the perceptions expressed by the quotes of then ECB President Willem Duisenberg and Chief

Economist Otmar Issing in the introduction to this paper.

Model Implications for Euro Area Output and Inflation Dynamics

To investigate the differences in the models’ implications for euro-area output and inflation dynamics we

have derived model-dependent autocorrelation and impulse response functions. The autocorrelation functions

are computed based on the model-specific estimated variance-covariance matrix of all structural shocks. The

7 An earlier working paper version of this paper provides a more detailed description of the respective models; see Kuester
and Wieland (2005, Appendix A).

8 For a detailed description of how exogenous variables in the non-linear model were accommodated in the linearization of the
AW model and for a description of the data underlying the estimation of the variance-covariance matrix of shocks for the
AW model, please refer to Dieppe et al. (2004, Appendices A through C). Extensive benchmarking against the non-linear
AW model has been conducted. The results show that the linearized model’s behavior resembles closely the behavior of the
non-linear version.
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impulse response functions describe the response of output and inflation to a particular monetary policy

shock. Furthermore, we have also compared the unconditional second moments of inflation, output, and

interest rates across models. Along with these measures we have derived proper empirical benchmarks. We

proceed to summarize a few results of the model comparison. For further details the reader is referred to

Appendix A.

The comparison of model dynamics depends importantly on the assumed rule for monetary policy, that

is, the rule for setting the short-term nominal interest rate, rt. We consider two alternatives. First, we

use a common empirical benchmark rule in each of the models. Then we consider the model-specific rules

that were estimated along with the other model equations. The empirical benchmark rule is taken from

Gerdesmeier and Roffia (2004). We adjust their monthly estimates to a quarterly frequency

rt = 0.873rt−1 + (1 − 0.873) (1.93πt + 0.28yt)

= 0.66rt−1 + 0.66πt + 0.10yt. (1)

Here, rt is the quarterly nominal interest rate (annualized), πt is the year-on-year inflation rate and yt is the

output gap. Monthly data from 1985 to 2002 were used in estimation.

The autocorrelation functions indicate that the four models exhibit quite different output and inflation

dynamics. Under the Gerdesmeier-Roffia rule inflation dynamics in the CW-T model die out within a year.

In the SW model inflation persistence is a bit higher, particularly under the model-specific rule. The CW-F

model generates longer-lasting swings in inflation. The AW model stands out with the highest degree of

inflation persistence. Output dynamics are more persistent in the SW and CW-T model. In spite of these

differences the model-dependent autocorrelation functions still fall inside a 95% confidence band implied by

the data. Using model-specific rules we obtain broadly similar results.

With regard to the unconditional variances, we find that the CW-F model induces the highest variance

for inflation among the four models – more than twice as much as the SW model – under the Gerdesmeier-

Roffia rule. Furthermore, all models generate a standard deviation of the output gap that is larger than the
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mean value observed in the data.

The comparison of impulse responses following a positive interest rate shock provides an indication of

the uncertainty about policy effectiveness. If the ECB sets interest rates according to the Gerdesmeier-

Roffia rule, the AW model again generates the highest degree of inflation persistence. The trough is reached

more than five years after the shock. Similarly, output returns only very gradually to baseline. The SW

model marks the smallest degree of output and inflation persistence. The CW-F and CW-T models lie in

between the others. As expected, Taylor contracts generate less inflation persistence than Fuhrer-Moore

contracts. Model specific rules imply greater effects of policy shocks than under the Gerdesmeier-Roffia rule,

particularly in the SW model.

In sum we find that each model fits certain stylized facts in the data. Some models fit the cross-

correlations better than the standard deviations; others are better at reproducing the stylized response of

the economy to a monetary shock than to fit the former moments. Thus, each model may be seen as a

reasonable description of the economy, while none of the models is the perfect model of the economy. The

ordering of models may differ depending on the metric used in estimation and in evaluating the fit. The

models exhibit quantitatively important differences concerning the effectiveness of monetary policy, as well

as the intrinsic persistence and the unconditional variability of output and inflation. Thus, euro area policy

makers are faced with considerable model uncertainty.9

Model Implications for Euro Area Monetary Policy Rules

As noted previously a simple outcome-based Taylor-style policy rule as defined by equation (1) describes

euro area interest rate behavior quite well. Such a rule has three response parameters that we denote by

(ρ, α, β) in the following. These parameters multiply the lagged interest rate rt−1, the year-on-year inflation

9 Of course, one could give these results a more negative interpretation. Since all models “fail” the empirical evidence presented
in a certain dimension, some readers may be tempted to dismiss all of these models for giving policy advice and would rather
postpone analysis until a considerably “better” model of the economy has emerged. We have three objections to this view.
First, actual policy-making is characterized by a heterogeneity of views regarding the evolution of the economy and also
regarding the metric that tells a good model from a bad model. Second, and perhaps most important, the fact that all four
models are used at the ECB suggests that they all deserve positive weight in policy assessments. Finally, in policy practice
it is not possible to discard all models of the economy and postpone policy-making until models arrive that meet greater
consensus. It is this very need to use the existing models to inform our views despite their differences that appears to be at
the heart of policy-making under model uncertainty.
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rate πt, and the output gap yt, all in deviations from steady state,

rt = ρrt−1 + απt + βyt. (2)

We now proceed to ask the question: how well would such a rule perform in stabilizing output and inflation

dynamics in the euro area models under consideration? We focus our analysis on this class of rules, not only

because of their empirical success in explaining ECB interest rate choices, but also because research on the

U.S. economy referred to in Otmar Issing’s quote in the introduction emphasizes the robustness properties

of such rules. For example, simple outcome-based rules of this form tend to be more robust than rules

with more states (see Levin et al., 1999) and forecast-based rules with longer horizons (see Levin et al.,

2003). Further improvements in stabilization performance that can be achieved with forecast-based rules are

hampered by the need for a forecasting model that may be incorrect and introduce additional uncertainty

(see Levin et al., 2003, and Coenen, 2007).

To evaluate policy performance we use the weighted sum of unconditional variances of inflation, the

output gap, and the change in the interest rate. This measure is consistent with a standard quadratic loss

function10

Lm = Var (π) + λyVar (y) + λ∆rVar (∆r) , m ∈ M. (3)

Var(·) denotes the unconditional variance, while M = {CW-F, CW-T, SW, AW} is the model space.

The parameter λy ≥ 0 determines the policy maker’s preference for reducing output variability around

potential relative to curbing inflation variability. The weight λ∆r > 0 introduces a preference for restraining

the variability of changes to nominal interest rates. For the remainder of this paper we use values of

λy ∈ {0, 0.5, 1} that cover the range from strict to flexible inflation targeting and a value for λ∆r = 0.5.11

10 See Levin et al. (1999, 2003), Coenen (2007), and others in this literature. We follow the common practice in the literature of
examining only diagonal cases of the loss function, which is also the most common representation of welfare when obtaining
quadratic loss functions on the basis of approximating the welfare function from simple micro-founded models; see Woodford
(2003). Furthermore, such a loss function is consistent with the objectives of many central banks. This does not mean,
however, that with a diagonal loss function policy makers would not take cross-moments into account. They minimize losses
subject to the law of motion implied by the models, which typically imply that endogenous variables are correlated. Finally,
we also note that more complicated micro-founded models, such as the Smets and Wouters (2003) model, provide quadratic
approximations of the welfare of a representative consumer that incorporate additional variables.

11 This value for λ∆r ensures that interest rate variability does not stray very far from what is observed empirically for the
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Our analysis is subject to a number of caveats. First, all models are linearized around their steady state.

Monetary policy therefore does not have an effect on the average level of inflation and output in the economy,

nor is such an effect accounted for in the computation of losses. Second, in computing losses we abstract

from any transitional dynamics when moving from an initial stochastic steady state obtained under one

interest rate rule to the equilibrium under the optimized rule.12 While we do not assess the importance of

these two caveats, they might partly be alleviated by our explicit focus on policy rules that are close to the

current monetary regime in terms of interest rate behavior. A third caveat that applies to our analysis is that

we understand a model as being given by a set of equations plus one particular parameterization. All four

models are used at the ECB and, as commonly occurs, have been estimated using different methodologies.

The parameterization used in this paper represents the favorite parameterization that the group of modelers

involved in building the model provided. Still, different parameterizations may have different welfare and

optimal policy implications.13

These caveats in mind, we proceed to assess the performance and robustness of optimal simple policy rules

as defined by equation (2). We conduct this assessment assuming that the policy maker credibly commits

to following the rule. The best simple rule is obtained by choosing the response parameters, (ρ, α, β), in (2)

so as to minimize the loss defined by equation (3) for each model.14 Table 1 summarizes the parameters of

the simple rules optimized for each model for the three different values of the weight on output variability

in the loss function, λy.15

euro area, so all policy rules we consider are close to the current policy regime. A change of policy rule should thus be
modest enough to render the models still a viable representation of the economy. This is related to the modesty concept in
Leeper and Zha (2003), albeit we assume that private-sector expectations incorporate the true monetary rule at each point
in time. We have conducted further sensitivity studies with λ∆r ∈ {0.1, 1}, which are reported in the Appendix.

12 We also assume that monetary policy is perfectly credible and that the private sector immediately adjusts its expectations
formation process to account fully for the actual monetary policy rule. The work by Erceg and Levin (2003) suggests that
allowing for a slow adaptation of private-sector beliefs to a change in the rule will lead to slow adjustment of the economy’s
law of motion to the new stochastic steady state with a potential bearing on the ranking of different rules in terms of welfare.

13 The results of Levin et al. (2006) appear to suggest, though, that model uncertainty (in their case the specification of the
labor market) entails much greater differences in optimal simple policy rules (be they model-specific or robustified) than
parameter uncertainty. Similar conclusions emerge when Levin and Williams (2003) compare their results to the findings in
the literature.

14 An alternative would be to use the first-best policy under commitment as a benchmark. We have not done so because we are
interested in measuring the cost of insurance implied by a simple rule (chosen due to a preference for robustness concerning
model uncertainty), rather than being interested in the benefits that may be possible from first-best policy compared to
simple rules in any specific model. For this purpose the model-optimized simple rule is the proper benchmark. As to the
potential benefits of first-best policies compared to optimized three-parameter rules, those are moderate for models with
rational expectations but can be substantial for models with primarily backward-looking expectations (see Dieppe et al.,
2005).
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Table 1 about here.

Table 1: Optimized simple rules

λy = 0 λy = 0.5 λy = 1

Model ρ α β ρ α β ρ α β

CW-F 0.9 0.8 0.4 0.8 0.7 0.6 0.8 0.7 0.8

CW-T 1.0 0.3 0.1 0.8 0.2 0.6 0.8 0.2 0.8

SW 1.0 0.4 0.0 1.0 0.2 0.8 1.0 0.2 1.3

AW 0.6 0.5 0.5 0.4 0.6 1.3 0.4 0.5 1.7
Parameters of optimal simple rules for each model. Shown is the case λ∆r = 0.5 for
loss function (3). Results using a lower or a higher weight on interest rate changes,
λ∆r ∈ {0.1, 1} , are presented in Appendix E.

The best rule in the CW-F model features moderate to strong interest rate smoothing (ρ between 0.8

and 0.9) and strong feedback to inflation (α between 0.7 and 0.8). The best CW-T rule implies a bit more

interest smoothing (greater ρ) but smaller response coefficients on inflation due to the lower degree of inflation

persistence in that model. The best SW policy consistently uses the highest weight on the lagged interest

rate (ρ = 1), essentially implementing a first-difference rule. This finding confirms earlier research showing

that the prominence of rational expectations and forward-looking behavior in models with optimizing agents

renders such a policy strategy optimal. In sharp contrast the rule optimized in the AW model exhibits much

lower values of ρ ranging between 0.4 and 0.6. Optimal AW policy also features a strong feedback to the

output gap as a proxy for future inflation (see Dieppe et al., 2005).

The characteristics of optimal policy rules found in our model space are broadly representative of the

range of characteristics of optimal simple rules found in the literature; Table 9 in Appendix B reports an

overview of four studies for the US, the euro area and Canada, respectively. Exceptions concern the stronger

response to inflation in those rules when output receives no weight in the policy makers’s loss function.

Furthermore, it is of interest to compare the optimized simple rules from the different models with the

estimated ECB policy rule taken from Gerdesmeier and Roffia (2004) given by equation (1). There is no

perfect match. However, the estimated coefficients on the lagged interest rate and inflation, (ρ = 0.66, α =

0.66), are close to the values that are optimal in the AW model, (ρ = 0.6, α = 0.5), when the central bank’s

15 The moments reported here are unconditional second moments when the policymaker commits to using the respective rule.
We abstract from analyzing the standard deviations on any path during a transition phase when switching from any current
rule to the rule given in the Table.
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preference weight on output variability is zero, λy = 0. The estimated coefficient on the output gap is quite

a bit smaller in the estimated rule than in the AW model (at β = 0.1). Such low values occur only for the

SW model and the CW-T model when λy = 0.

Next we investigate the robustness of simple rules; that is, we evaluate the performance of rules optimized

for one model in the other three models. Such a comparison reveals that the euro area models considered

have quite different policy implications. Table 2 reports the percentage increase in loss when using a rule

optimized for Model X in Model Y relative to using the rule that is optimal for Y; see the entries in square

brackets. We confirm earlier results in the literature. Rules with a high degree of interest-rate smoothing

such as those optimized in the SW model generate substantial losses and even explosiveness in models with

a significant backward-looking component such as the AW model. On the other hand, policy designed for

models with strong intrinsic persistence such as AW may not be active enough to anchor expectations if

agents indeed were more forward-looking. For example, for λy = 1.0, the best AW policy would imply

indeterminacy in CW-F and CW-T. Otherwise percentage losses are largest in AW and CW-F, reaching up

to 360%. Table 2 about here.

Table 2: Robustness of rules optimized for a specific model

CW-F rule evaluated in CW-T rule evaluated in

CW-T SW AW CW-F SW AW

λy IIP [%L] IIP [%L] IIP [%L] IIP [%L] IIP [%L] IIP [%L]

0.0 .15 [31] .16 [53] .56 [126] 1.13 [161] .03 [9] ∞ [∞]

0.5 .10 [12] .11 [17] .79 [82] 1.03 [103] .09 [15] .34 [29]

1.0 .13 [12] .19 [27] .93 [71] 1.57 [145] .13 [18] .55 [36]

SW rule evaluated in AW rule evaluated in

CW-F CW-T AW CW-F CW-T SW

λy IIP [%L] IIP [%L] IIP [%L] IIP [%L] IIP [%L] IIP [%L]

0.0 2.06 [360] .04 [8] ∞ [∞] .63 [78] .12 [24] .23 [78]

0.5 .72 [66] .16 [19] 2.06 [324] 1.50 [167] .12 [15] .28 [49]

1.0 1.18 [101] .27 [26] 2.01 [220] ME [ME] ME [ME] .36 [54]

IIP: Implied Inflation (Variability) Premium relative to first-best simple rule for each model
(in percentage points). In square brackets %L: Percentage losses relative to first-best simple
rule for each model (in %). The notation “∞” indicates that the implemented rule results in
instability; the notation “ME” indicates that the implemented rule results in multiple equilibria.
Shown is the case λ∆r = 0.5 for loss function (3). Results using a lower or a higher weight on
interest rate changes, λ∆r ∈ {0.1, 1} , are presented in Appendix E.
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The percentage losses reported in Table 2, which have been commonly used in the recent literature, may

overemphasize the extent of model uncertainty, in particular when the baseline loss is rather low or when

the loss function heavily penalizes small deteriorations in economic outcomes. Similarly, substantial changes

in economic outcomes may be de-emphasized when the baseline loss is already large.

As a remedy to this drawback of relative percentage losses we introduce the implied premium on inflation

variability or “Implied Inflation Premium,” the IIP. This premium measures the increase in the standard

deviation of inflation relative to the outcome under the best simple rule that is necessary to match the loss

under the alternative policy. In other words, we attribute the deterioration in loss that results from a lack

of robustness entirely to inflation variability keeping the standard deviation of output and interest rates

at the benchmark level. The benefit of this premium is that units are intuitive (percentage points of the

standard deviation of the inflation rate) and interpretable on an economic scale. The corresponding premia

are reported in Table 2 under the heading IIP.

The implied inflation variability premia shed new light on the comparison of rules across models. With

no weight on the output gap the SW model exhibits low baseline losses. Using the CW-F policy in the SW

model implies an increase in loss of 53% (cp. upper left panel of Table 2), which seems sizeable. The IIP of

0.16 percentage point on annual inflation (an increase from 0.82 to 0.98 percentage point, say), however, is

rather small. Similarly, using the CW-F policy in AW generates an increase in losses of 126%, which appears

prohibitive. The implied increase of 0.56 percentage point in inflation variability is still sizeable but does

not appear extreme. As these examples show, relative losses may be misleading. We will therefore report

the IIP where appropriate in the remainder of the paper.

3 Two Perspectives on Policy Robustness: Bayes or Minimax

Bayesian Policy Minimizes Expected Loss Given Model Probabilities

A natural first step in the search for a rule that performs more consistently across models than the

model-specific rules discussed in the preceding section is to take a Bayesian perspective as recommended by

Levin et al. (2003). A more robust rule can be found by minimizing a probability-weighted loss function.

12



The Bayesian loss is

LB = min
(ρ,α,β)

EM{Lm} = min
(ρ,α,β)

∑

m∈M

pmLm, (4)

where pm are the policy maker’s priors as to model m. As a start, we consider flat priors pm = 1/|M|. This

may be an appropriate prior when there is uncertainty surrounding the relative fit of models, e.g., when

policy makers do not consider the data informative about model probabilities or when it is not fully agreed

against which metrics or with which data series to evaluate the models. Given that all four models considered

in this paper were estimated with pre-EMU synthetic data and recognizing the concerns expressed by ECB

President Willem Duisenberg as quoted in the introduction to this paper, it seems very reasonable to us to

use flat priors as our point of departure. Of course, the data that have become available subsequent to the

start of the European Monetary Union may be used by the ECB to learn about the likelihood of different

models. We study such a learning process and its implications for robust policy design in Section 6 of this

paper.

The performance of the Bayesian policy in terms of implied inflation variability premia is reported in

Table 3.

Table 3 about here.

Table 3: Flat Bayesian priors versus model-specific simple rules

Optimal Rule Inflation (Variability) Premium and [%L]

λy ρ α β CW-F CW-T SW AW

0.0 0.8 0.6 0.4 .07 [7] .10 [21] .16 [53] .12 [22]

0.5 0.7 0.7 0.8 .09 [7] .08 [9] .14 [22] .26 [21]

1.0 0.7 0.8 1.1 .11 [7] .12 [11] .21 [29] .32 [19]

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to the simple
rules optimized for each model (in percentage points). Shown is the case λ∆r = 0.5 for loss function
(3). For comparison with the literature, we also report the percentage increase in losses relative to the
simple rules optimized for each model (in square brackets). Results using a lower or a higher weight
on interest rate changes, λ∆r ∈ {0.1, 1} , are presented in Appendix E.

Considering all four models in policy design in this manner helps avoid extreme outcomes such as inde-

terminacy and multiple equilibria in forward-looking models or explosiveness in backward-looking models.

Furthermore the increase in inflation variability that would match the increase in loss relative to the opti-

mized model-specific rules, that is, the IIP, reaches at most 0.32 percentage point on the standard deviation
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of annual inflation. Since the CW-F model features the highest benchmark losses of all models (cp. Table 8

in the appendix), it implicitly plays a greater role in the Bayesian optimization than the other models given

equal probabilities. The Bayesian rule with flat priors looks much like the best CW-F policy, albeit with less

interest rate smoothing. The reduction in ρ serves to help performance in the AW model.

To allow for a comparison with other findings in the literature Table 3 also reports the percentage in-

crease in losses. These results serve to illustrate the advantage of using the IIP measure. Percentage losses

of more than 50% in the SW model when using the Bayesian flat prior policy may seem to suggest that

insurance against model uncertainty is prohibitively costly. Once measured on an economically interpretable

scale, however, the opposite conclusion emerges: policy makers in the euro area can insure against model

uncertainty at reasonable cost in each of the models of the economy.

Minimax Policy Insures Against the Worst-case Model

Bayesian optimization with flat priors is one possible approach when policy makers are fairly agnostic

about which among a set of models is most appropriate as a tool for policy design. However, policy makers

may well consider it impossible to define any sensible prior probability distributions over the model space.

This perspective is typically termed Knightian uncertainty. Such an agnostic policy maker could instead ask

how to best insure herself against worst-case scenarios, i.e., worst-case models. This question can be answered

by minimax analysis. The minimax optimization problem arises from a game between a policy maker who

attempts to minimize loss and nature that chooses a model from the model space so as to maximize loss,

LM = min
(ρ,α,β)

max
m∈M

Lm. (5)

Thus, no model probabilities need to be specified to derive the minimax or full insurance policy. Appendix

C describes the algorithm we use to solve the minimax problem in more detail.16

16 Most papers employing minimax analysis consider perturbations around single reference models of the economy, e.g., Onatski
and Williams (2003). Given the diversity of the models used in our paper any reference model meant to nest all the models
would be untractable and it would be difficult to control that all scenarios the policy maker considers are reasonable. The
latter is automatically ensured in our analysis, which builds on a discrete model space.
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The policy rule coefficients and IIP premia implied by the minimax policy are summarized in Table 4.

Table 4 about here.

Table 4: Minimax policy relative to model-specific rules

Optimal Rule Inflation Premium Loss Premium

λy ρ α β CW-F CW-T SW AW ∆Lworst ∆Lexpect

0.0 0.9 0.8 0.5 0 .15 .16 .57 7 17

0.5 0.8 0.7 0.6 0 .10 .11 .73 7 9

1.0 0.8 0.7 0.8 0 .13 .20 .77 7 6

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to first-best
simple rule for each model (in percentage points). Shown is the case λ∆r = 0.5 for loss function (3).
∆Lworst : percentage reduction of worst-case loss relative to worst outcome under flat Bayesian priors.
∆Lexpect : percentage increase in expected loss relative to Bayesian policy (flat priors). Results using
a lower or a higher weight on interest rate changes, λ∆r ∈ {0.1, 1} , are presented in Appendix E.

The minimax policy is close to the best rule for the CW-F model, that is, the model with the highest

baseline loss. The implied inflation variability premia are relatively modest for the CW-T and SW models

but increase with the AW model, adding up to 0.77 percentage point to the standard deviation of the annual

inflation rate. The deterioration in stabilization performance compared to model-specific rules in the AW

model is noticeably stronger than under the Bayesian policy with flat priors (cp. Table 3).

Overall, the costs for insuring against model uncertainty nevertheless seem moderate given the consider-

able range of output and inflation dynamics in the model space. Expected loss relative to flat Bayesian priors

increases by 6% to 17%. Similarly the gains from insurance relative to Bayesian policy in the worst-case

scenario are moderate. Since the CW-F model already influences the flat prior Bayesian policy quite heavily,

worst-case losses are only reduced by 7% under the minimax relative to the Bayesian policy. Finally, we

note that the “insurance premium,” i.e., the cost of an increase in expected loss for a given reduction of

worst-case loss, decreases as the policy maker’s preferences assign a greater weight to the output gap.

4 Three Arguments Against Minimax

In light of the preceding analysis the minimax policy appears to be a very attractive choice as a robust

monetary policy rule for the euro area. It achieves effective insurance against the worst-case model and its

dynamics. This insurance is obtained at surprisingly low cost in terms of expected performance deterioration
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relative to a flat-prior Bayesian policy. However, three arguments against the minimax approach deserve

further consideration: (i) the minimax approach may generate policy recommendations that a Bayesian de-

cision maker would choose only if the probability of the model with the highest losses is overwhelming; (ii) to

the extent that minimax leans strongly toward a single worst-case model small perturbations of the minimax

policy parameters may inherit the lack of robustness of the rules optimized for that model (i.e., minimax

may not be fault-tolerant); and (iii) the minimax policy offers no avenue for incorporating posterior model

probabilities derived from data available since the start of the EMU. We postpone the consideration of pos-

terior model probabilities to Section 6 and consider here the first two arguments against minimax.

Minimax Policy is Replicated by Bayesian Priors Concentrated on a Subset of Models

As noted by Sims (2001) and others, minimax analysis also has a Bayesian interpretation. There exists a

set of “priors” that if used along with a Bayesian objective function would yield the same robust policy rule

as the one obtained using a minimax objective. The major difference with truly Bayesian priors is that these

implied priors are an outcome of the optimal decision and not a primitive for the decision problem. They

therefore need not be rational from a Bayesian perspective but rather they inform the policy maker about

which model underlies the worst-case scenarios.17 Sims (2001) has criticized minimax for often implying

economically unreasonable priors once it is considered from a Bayesian perspective. We already guard

against unreasonable priors by restricting the model space to models that fit European data and have been

developed for the purpose of evaluating euro area monetary policy. However, minimax policies may be

driven primarily by just one of the models in the model space. Thus, we now proceed to extract the priors

that would rationalize the euro area minimax policy derived in the preceding section from the Bayesian

perspective. The procedure involved is discussed in Appendix D. The implied priors are shown in Table 5.

Table 5 about here.

Indeed, these priors indicate that model risk in the space we consider lies primarily with the CW-F

17 An alternative interpretation of minimax analysis exists. Instead of choosing Bayesian priors to support the minimax robust
policy, one can also transform the loss-function so that a decision under a Bayesian objective coincides with the decision
under a minimax objective. This allows us to interpret minimax robust decisions as decisions of a Bayesian policy maker
with an infinite degree of risk aversion. Adam (2004) clarifies the link between Bayesian decision-making and minimax
decision-making.
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Table 5: Minimax implied priors

λy CW-F CW-T SW AW

0.0 1.000 0 0 0

0.5 0.989 0 0 0.011

1.0 0.961 0 0 0.039
Bayesian priors backing the flat minimax solution. Shown is the
case λ∆r = 0.5 for loss function (3). Results using a lower or
a higher weight on interest rate changes, λ∆r ∈ {0.1, 1} , are
presented in Appendix E.

model. Only if the policy makers assign a high weight to output stability does the AW also play a small

role in the determination of the minimax policy. The large weight given to the CW-F model is consistent

with our earlier finding that inflation in that model (under the rule optimized for the model) is substantially

more volatile than in the AW model (1.6 vs. 0.9 percentage point). The output gap, however, is somewhat

more volatile in the AW model (2.0 relative to 1.4 percentage points). Thus, as the preference parameter on

the output gap, λy, increases, this volatility difference gains more importance in the minimax calculus and

the AW model receives some (albeit small) weight in the priors implied by the minimax policy. Neither the

CW-T nor the SW model ever appears among the worst-case losses. Thus, we conclude that Sims’ (2001)

critique of minimax applies to the euro area minimax policy we have derived.

Minimax Policy is Not as Fault Tolerant as Bayesian Policy

Given that the minimax approach leans strongly toward a single worst-case model, the question arises

whether small perturbations of that policy, perhaps due to the “trembling hand” of the policy maker, might

not inherit the lack of robustness of the rules optimized for this specific model. Levin and Williams (2003)

have proposed fault tolerance as a diagnostic tool to assess robustness relative to small perturbations. They

suggest plotting variations in the policy rule parameters against percentage increases in losses for each model.

The procedure implies varying one parameter at a time while keeping the others fixed at the values implied

by the best simple rule for each model. A model is deemed fault tolerant if deviations from the best rule for

that specific model do not trigger a steep increase in losses in that model. A drawback of this procedure is

that comparisons across models are not ceteris paribus in terms of the policy parameters. For example, when
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varying the smoothing parameter, ρ, policy rules used in the different models also have different responses

to inflation and the output gap, α and β. Thus, we decided to use the concept of fault tolerance somewhat

differently. We ask whether policy is fault tolerant, meaning in particular whether minor perturbations in

policy parameters have only a minor impact on performance across models.

Figure 1 about here.

Figure 1: Fault tolerance for flat Bayesian priors
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Figure 1: For each of the models, a line traces out the Implied Inflation (Variability)
Premium (in basis points) under the flat Bayesian policy as the specified parameter
of the policy rule is varied, holding the other two parameters fixed at their respective
values under flat Bayesian priors. The left (right) column of panels pertains to the
preferences for λy = 0(1) and λ∆r = 0.5. A vertical line marks the optimal Bayesian
parameter values.

Our findings for the Bayesian flat prior policy are displayed in Figure 1. Each panel considers implied
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inflation premia across the four models when varying one parameter of the Bayesian rule at a time, while

keeping the others fixed. The respective columns (of three panels each) are associated with values for the

preference parameter λy of zero and one. Policy is fairly tolerant to deviations in α and β. IIPs do not

rise fast in the neighborhood around the optimal parameter values. The admissible range of variations is

smaller for ρ but still permits a safety margin for a policy maker with “trembling hands.” We conclude that

Bayesian policy under flat priors is fault tolerant.

Interestingly, the minimax policy loses the fault tolerance property enjoyed by the Bayesian rule with flat

priors. Figure 2 displays fault tolerance plots for the parameter on the lagged interest rate, ρ, in the minimax

policy.18 Minor changes in policy can lead to a strong increase in the implied inflation variability premia for

the AW model, because this model does not respond well to a high degree of interest-rate smoothing (see

also Dieppe et al., 2005). Minimax monetary policy only just avoids this in the AW model but not with a

wide enough security margin. Thus, “trembling hands” in the conduct of policy could have a strong negative

impact when implementing a policy that attempts to guard against worst-case model uncertainty.

Figure 2 about here.

Figure 2: Fault intolerance for minimax policy
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Figure 2: For each of the models, a line traces out the Implied Inflation (Vari-
ability) Premium (in basis points) under the full insurance policy as the persistence
parameter of the policy rule is varied, holding the other two parameters fixed at their
respective values under the full insurance policy. The left (right) panel pertains to
the preferences for λy = 0 (1) and λ∆r = 0.5. A vertical line marks the optimal
minimax parameter value.

18 The minimax policy is similarly fault intolerant with respect to the other parameters of the rule. Plots are available upon
request.
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5 A Compromise: Intermediate Ambiguity Aversion or “Bayes

Meets Minimax”

Having shown the Bayesian priors associated with the euro area minimax policy and having documented its

lack of fault tolerance, we judge the pure minimax approach less useful for euro area monetary policy makers.

However, rather than abandoning the minimax approach completely, we instead suggest a compromise. We

propose to take some prior information (or preferences across models) into account and balance this prior

(or preference) against the worst uncertain outcome. Following Epstein and Wang (1994) such preferences

may be formalized as follows

LA = min
(ρ,α,β)

{

(1 − e)
∑

m∈M

pmLm + e max
m∈M

Lm

}

, (6)

where e ∈ [0, 1] indexes the degree of desired insurance against worst-case outcomes. These preferences are

also called ambiguity averse (see Brock et al., 2003) because the decision maker places extra weight on the

worst uncertain outcome.19 At the one extreme, e = 0, these preferences amount to minimizing expected

losses from a Bayesian perspective. At the other extreme, e = 1, these preferences deliver the minimax

policy displayed in Table 4. The value of e may be chosen by the policy maker according to his desire for

insurance. The prior model probabilities, pm, may either be estimated from available data or set to reflect

the policy maker’s convictions regarding appropriate modeling.

In this section, we present three examples of ambiguity-averse policies. We first consider a policy maker

who has flat prior model probabilities. In addition, this policy maker has a desire for insurance against

model uncertainty that leads her to choose a value of e = 0.5 for the ambiguity-aversion parameter. The

policy pursued by this decision maker corresponds to the flat prior Bayesian policy with additional weight

given to the (endogenously determined) worst-case scenario.

Table 6 about here.

19 The preferences are a special case of Epstein and Wang’s (1994) “ǫ-contamination” preferences. Strictly speaking, the
minimax preferences also reflect ambiguity aversion, of course.
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Table 6: Ambiguity-averse policy

Optimal Rule Inflation (Variability) Premium

λy ρ α β CW-F CW-T SW AW

Flat priors

0.0 0.8 0.7 0.4 .02 .19 .17 .24

0.5 0.8 0.8 0.7 .02 .09 .13 .45

1.0 0.8 0.8 0.9 .02 .13 .21 .56

AW-leaning

0.0 0.8 0.8 0.5 .06 .14 .18 .11

0.5 0.6 1.0 0.9 .10 .14 .19 .20

1.0 0.6 1.1 1.3 .12 .21 .30 .23

SW-leaning

0.0 0.9 0.7 0.4 .00 .13 .15 .69

0.5 0.8 0.7 0.7 .01 .09 .09 .74

1.0 0.8 0.7 0.9 .02 .11 .15 .79

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to
first-best simple rule for each model (in percentage points). Shown is the case λ∆r = 0.5
for loss function (3). Three ambiguity-averse solutions are shown: one using flat model
priors, one giving extra weight only to the AW and one giving extra weight only to the
SW model. Parameters for the ambiguity-averse solution are pm = 0.25 for the former,
and pAW ≈ 1 and pSW ≈ 1, respectively, for the latter. In each of the cases, the policy
maker gives a weight of e = 0.5 to the worst-case scenario. Results using a lower or a
higher weight on interest rate changes, λ∆r ∈ {0.1, 1} , are presented in Appendix E.

The first panel of Table 6 (labeled “Flat priors”) reports the policy rules and IIP premia for the ambiguity-

averse policy with flat Bayesian priors. The resulting policy coefficients and performance measures reflect

the policy maker’s priors together with the extra insurance against the worst-case scenario. The worst-case

scenario continues to be represented primarily by the CW-F model, as indicated by the implied priors from

a purely Bayesian perspective (shown in the first panel of Table 7).

The loss in performance due to additional insurance against the worst case is slightly greater for the

CW-F and CW-T models but smaller for the SW and particularly the AW model. Thus, the policy rule

constitutes a mix of the prescriptions by the minimax policy and the Bayesian policy. As a result, the

ambiguity-averse policy with flat priors is considerably more fault-tolerant than the minimax policy, as

evident from a comparison of the fault-tolerance charts in the first row of Figure 3 with those of Figure 2.

Table 7 about here.

The second example illustrating the use of the ambiguity-averse preferences concerns a policy maker who

strongly favors the AW model. The AW model follows a long and well-established tradition of macroeconomic
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Table 7: Ambiguity-averse implied priors

Flat priors AW-leaning SW-leaning

λy CW-F CW-T SW AW CW-F CW-T SW AW CW-F CW-T SW AW

0.0 .625 .125 .125 .125 .5 0 0 .5 .500 0 .5 0

0.5 .625 .125 .125 .125 .5 0 0 .5 .478 0 .5 .022

1.0 .625 .125 .125 .125 .5 0 0 .5 .459 0 .5 .041
Bayesian priors backing the ambiguity-averse solution. Shown is the case λ∆r = 0.5 for loss
function (3). Three ambiguity-averse solutions are shown: one using flat model priors, one giving
extra weight only to the AW and one giving extra weight only to the SW model. Parameters
for the ambiguity-averse solution are pm = 0.25 for the former, and pAW ≈ 1 and pSW ≈ 1,
respectively, for the latter. In each of the cases, the policy maker gives a weight of e = 0.5
to the worst-case scenario. Results using a lower or a higher weight on interest rate changes,
λ∆r ∈ {0.1, 1} , are presented in Appendix E.

modeling at central banks. Thus, it would not be surprising if some members of the Governing Council of

the European Central Bank would favor policy analysis conducted on the basis of this model. The AW

model gives little weight to forward-looking private-sector expectations. Dynamic adjustment mechanisms

are defined sufficiently flexible to incorporate the empirical output and inflation persistence in the endogenous

dynamics of the model. In the following we consider a policy maker who, instead of assigning equal weight

to all models, has a profound preference for this modeling approach. The policy maker puts almost exclusive

weight on the AW model (i.e. pAW ≈ 1, and pm ≈ 0 for all other models). However, this policy maker is

sufficiently open-minded to take into account worst case scenarios from the complete model space. To reflect

this open-mindedness we set the ambiguity-aversion parameter again to e = 0.5.

The performance measures reflect the compromise made by the policy maker. Performance in the more

forward-looking models, CW-F, CW-T and SW, deteriorates relative to minimax outcomes, while the per-

formance in the AW model is greatly improved; see panel “AW-leaning” in Table 6. Policy exhibits less

interest-rate smoothing and reacts more to the output gap than under minimax. Thus, it has incorporated

some of the policy features that were optimal under the AW model (cp. Table 1). As can be inferred from the

implied priors that would rationalize this ambiguity-averse policy from a Bayesian perspective, the CW-F

model still has a strong influence on the worst case; see the second panel in Table 7. Yet, by construction,

the AW model receives more weight relative to the minimax implied priors. The other two models (CW-T

or SW) do not influence the worst-case scenarios as indicated by the implied priors.

The AW model and the SW model may be characterized to be at opposite ends of macro-modeling
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paradigms in use at central banks. In contrast to the former, the SW model emphasizes microeconomic

foundations in terms of rational optimizing and forward-looking behavior by households and firms. It shares

these features with many recent macroeconomic models. Thus, we now consider a policy maker who strongly

favors the SW paradigm. The results are shown in the third block of Table 6. The “SW-leaning” ambiguity-

averse policy exhibits slightly more interest-rate smoothing than the minimax policy. Thus, the SW-leaning

ambiguity-averse policy partially embodies some features that were optimal for the SW model (cp. Table 1).

As a result, performance in the more forward-looking SW model and in the CW-T model improves relative

to minimax outcomes, while performance in the backward-looking AW model deteriorates.

Figure 3 about here.

Figure 3: Fault tolerance of ambiguity-averse policy with flat priors
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Figure 3: For each of the models, a line traces out the Implied Inflation (Variability) Premium
(in basis points) under the ambiguity-averse policy as the persistence parameter of the policy rule
is varied, holding the other two parameters fixed at their respective values under the full insurance
policy. The left (right) panel pertains to the preferences for λy = 0 (1) and λ∆r = 0.5. A vertical
line marks the optimal ambiguity-averse parameter value. Shown is the ambiguity-averse policy
with flat priors, (pm = 0.25 for all models) giving weight e = 0.5 to the worst-case loss.

The implied priors for the SW-leaning ambiguity-averse policy (shown in the third panel of Table 7)

illustrate that the CW-F model still influences the worst-case scenarios quite heavily. Interestingly, however,

this example also illustrates the endogeneity of the implied priors given to the worst-case scenarios. The

AW model has somewhat more influence on the worst-case scenarios for λy > 0 as indicated by the implied

priors of the SW-leaning ambiguity-averse policy.

Concluding this section, we review the fault tolerance of the ambiguity-averse policies that lean toward
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the AW or SW model. The first row of Figure 4 reports the fault tolerance charts under the AW-leaning

ambiguity-averse policy for two alternative weights on output stabilization (λy = 0, left panel, and λy = 1,

right panel). Relative to the minimax and the Bayesian policy “AW-leaning” ambiguity-averse policy moves

toward features of the optimal policy for the AW model. Yet the AW model was instrumental in deter-

mining fault intolerance for the minimax and fault tolerance for the Bayesian policies. As a result, the

“AW-leaning” ambiguity-averse policy is more fault-tolerant than its Bayesian or minimax counterparts.

Interestingly, this is not the case under the “SW-leaning” policy, which moves the ambiguity-averse policy

further away from the prescriptions tolerated by the AW model; see the panels in the second row of Figure

4. Since the ambiguity-averse policy is explicitly designed to bring some priors to bear on the worst-case

analysis, the fault-tolerance of this policy depends on which model is given additional weight in the analysis

relative to minimax. Ambiguity-averse policy enjoys greater fault tolerance than minimax if flat priors are

used. Alternatively, if a specific model receives extra weight, the ambiguity-averse policy exhibits greater

fault tolerance within that specific model but possibly lower fault tolerance with respect to other models.

Figure 4 about here.

6 ECB Learning About Model Probabilities Since EMU

An ambiguity-averse policy would allow ECB policy makers to take into account model probabilities and

insure against worst-case scenarios, while largely retaining the fault-tolerance of the Bayesian policy with

flat priors. In addition, it would allow the ECB to use the new data after the start of monetary union

to update model probabilities and incorporate them in policy design. We start this section by asking how

posterior model probabilities have evolved since 1999. This learning process reveals new information about

the likelihood of alternative models of monetary policy transmission in the newly established euro area

economy. Using this information, we ask, second, whether at different points in time the policy advice

derived from a robust policy rule would have notably differed from the results presented in the previous

sections.
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Figure 4: Fault tolerance of AW/SW leaning ambiguity-averse policy (e=0.5)
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Policy leaning toward SW is not fault-tolerant
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Figure 4: For each of the models, a line traces out the Implied Inflation (Variability) Premium
(in basis points) under the ambiguity-averse policy as the persistence parameter of the policy
rule is varied, holding the other two parameters fixed at their respective values under the full
insurance policy. The left (right) panel pertains to the preferences for λy = 0 (1) and λ∆r = 0.5.

A vertical line marks the optimal ambiguity-averse parameter value. Shown are two cases giving
weight e = 0.5 to the worst-case loss: ambiguity-averse policy leaning toward the AW model
and ambiguity-averse policy leaning toward the SW model. Respectively, pAW and pSW ≈ 1.
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To be able to compute the likelihood of the four models over time, we make three simplifying assump-

tions.20 First, we limit ourselves to the information contained in three time series: output, the short-term

interest rate and consumer price inflation. These series are shared by all models. All of these series have

been pre-filtered as described in the notes to Figure 6 in Appendix A. Second, we leave the model structure

as specified by the respective model builders. Thus, we do not change the modeling assumptions over time as

information comes in, nor do we change the values of the structural parameters. Third and closely related,

we assume that the ECB followed one and the same policy rule over the entire EMU period. In particular,

we use the rule estimated by Gerdesmeier and Roffia (2004); cf. equation (1). For coherence we use the same

policy rule to close each of the models.21

Starting with flat priors at the beginning of 1999:Q1 we update posterior model probabilities at the end

of each quarter up to 2005:Q4. We are interested in the posterior model probability of model i conditional

on the above data up to period T , p(Mi|Y
T ). Let p(Mi) be model priors at the beginning of 1999:Q1. Let

p(Y T |Mi) be the likelihood of model i.22 We assume that the shocks in all four models are drawn from a

multi-variate normal distribution. By Bayes’ law the model posterior is given by

p(Mi|Y
T ) =

p(Y T |Mi) · p(Mi)
∑||M||

j=1 p(Y T |Mj) · p(Mj)
.

The first panel of Figure 5 shows the evolution of the posterior model probabilities over time. Not surprisingly,

model probabilities vary over time as new data arrive. However, by 2005:Q4 the CW-T model is much more

likely than the other models. Then, the probability assigned to the CW-T model stands at 70%. The other

three models carry a posterior probability of about 10% each. Interestingly, the learning process over time

20 The methodology we use has certain limitations. In particular, the models’ parameter estimates may reflect information
held at different points in time, and the data are revised (ex-post) data. In addition, besides depending on the measure of
fit, the relative ranking of the models can depend on the precise sample chosen, on the period chosen to initialize the Kalman
filter, and on the choices made for de-trending the data. This sensitivity is well-known in the literature; cp., e.g., Levin et
al. (2006). We nevertheless view this exercise as valuable, since it provides a guide to the stability of our robust policy
prescriptions over time.

21 The data used are from the AWM data set. We use synthetic data from 1984:Q1 to 1998:Q4 to initialize the Kalman
filter for each model. Yet only data from 1999:Q1 onward are used to evaluate the likelihood. The policy rule is appended
by a monetary policy shock, the standard deviation of which is chosen on the basis of the historical residuals from the
Gerdesmeier-Roffia rule.

22 This formulation makes clear that we continue to abstract from parameter uncertainty in this exercise. A model is understood
to be characterized by its structural equations, the law of motion of shocks and a set of parameters estimated or calibrated
by the respective modeler group.
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implies that models such as the AW or CW-F model that previously influenced the worst-case scenario

receive much lower probability weights.

Figure 5 about here.

Figure 5: Data-driven model posteriors and robust policy rules over time
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Figure 5: The first panel shows model posterior probabilities over time. For each of the
models, a line traces out the model probability at the beginning of each quarter. Monetary
policy is conducted using the Gerdesmeier and Roffia (2004) rule; see equation (1). The policy
rule is appended by a monetary policy shock, the standard deviation of which is chosen on the
basis of the historical residuals from the Gerdesmeier-Roffia rule. Posteriors are computed
starting with flat priors at the beginning of 1999:Q1 and using inflation, interest rates and the
output gap to compute the model-likelihood. In each model, data from 1984:Q1 to 1998:Q4
are used to initialize the Kalman filter. The other two panels show optimal (robust) policy
rule coefficients for two objective functions when the data-driven model probabilities are used.
The panels show the case of λ∆r = 0.5 and an exclusive weight on inflation stabilization. The
central panel shows results for the Bayesian objective. The right panel shows results for the
ambiguity-averse objective with data-driven model priors. The latter assumes that e = 50% of
the weight is given to the respective worst-case scenario and the remaining weight is given to
expected losses, where expectations are taken using the model probabilities at the respective
point in time.

Next, we ask to what extent the prescriptions for rules that are robust to model uncertainty have changed

over time. Of course, the pure minimax policy does not change with incoming data. The reason is that all

models remain in the model space (i.e., they retain strictly positive weight throughout the entire sample) and

their parameters do not change. By contrast, the Bayesian and the ambiguity-averse policies can incorporate
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the revised model probabilities obtained with new data. To illustrate this evolution of robust policy, we focus

on policies derived from policy maker preferences with zero weight on output stabilization, λy = 0. Our

motivation is the hierarchical objective assigned to the ECB by the Maastricht Treaty–first comes the pursuit

of price stability, and conditional on that the support of other EU objectives.

The evolution of the policy rule coefficients, (ρ, α, β), consistent with Bayesian policy is shown in the

bottom left panel of Figure 5. Despite the gap opening between model likelihoods over the EMU period,

the Bayesian policy rule prescriptions change only quite slowly. Interest rate smoothing increases slightly

over time, while the weight given to inflation and the output gap in the policy rule declines a bit. The third

panel shows the parameters of ambiguity-averse policy when e = 50% of the weight is given to the worst

case and the remaining weight given to expected losses. As in the case of the Bayesian policy, expectations

are computed by using the time-dependent model probabilities at the respective point in time. Again the

policy maker’s preference is such that no weight is placed on output stabilization, λy = 0. As can be seen

from the right-hand panel, the prescriptions regarding robust policy remain valid even though the posterior

probabilities associated with the models that tend to drive worst-case scenarios (CW-F and AW) decline

over time: under model uncertainty, policy makers will favor a rule with some but not excessive interest

rate smoothing and non-negligible weight on the output gap in the rule – even if stabilizing output is not an

explicit policy objective of the central bank.
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7 Conclusions

Considering four alternative models of the euro area that have been developed and used at the ECB, we

have found that maximum insurance against model uncertainty via minimax policy comes at moderate costs

in terms of lower expected performance. However, the implied priors that would rationalize the minimax

policy from a Bayesian perspective indicate that minimax-type insurance is strongly oriented toward a single

model with high baseline losses. As a consequence, the minimax policy is not as tolerant toward small

perturbations of policy parameters as the Bayesian policy rule. Thus, we propose to strike a compromise

and use so-called ambiguity-averse preferences for policy design. These preferences allow the specification of

prior model probabilities but also give extra weight to the worst uncertain scenarios. Given flat prior model

probabilities, these policies inherit the fault tolerance of the Bayesian policies, while guaranteeing some extra

insurance against worst-case losses.

The implied priors and the IIP (implied inflation variability premia) that we have computed are intended

to help policy makers in refining their views on alternative reference models and in reconsidering their desired

degree of insurance. For practical application, an iterative procedure using implied priors and calculating

costs of alternative degrees of insurance should be a useful tool for policy design.

We also showed how policy makers can learn about the likelihood of alternative models of the euro area

from data since the start of the European Monetary Union. We have found that while data-driven posterior

model probabilities evolved over time, the characteristics of robust policy rules did not change very much:

these rules are not overly persistent and, at the same time, they also give some weight to stabilizing output

even if the central bank is only concerned with inflation stabilization.

For future work, it would be of interest to extend the analysis to allow for the emergence of new models

and parameterizations in the central bank’s learning process. Re-estimation of macroeconomic models used

in policy analysis typically requires a major vetting effort. In the type of analysis presented in the preceding

section, we would treat a new parameterization of a given model as a new model and then investigate to

what extent its posterior model probabilities increase relative to older models with new data.

A full analysis of the implications of parameter uncertainty and learning within each model was beyond
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the scope of this paper. Under multiplicative parameter uncertainty the principle of certainty equivalence

does not hold and standard linear-quadratic solution methods cannot be used anymore. For an analysis

of Brainard-style conservatism and the countervailing experimental activism under learning, we refer the

reader to Wieland (2000, 2006) and who provides a quantitative assessment in smaller backward-looking

and partially forward-looking models, and to Sack (2000), who studies Brainard-style conservatism in a

VAR. Minimax policies with multiplicative parameter uncertainty in a small model are studied by Zakovic,

Rustem, and Wieland (2007).

Another issue to be investigated in the future concerns the uncertainty regarding the unobserved vari-

ables determining the long-run model equilibrium. The uncertainty we have considered by means of the

linearized benchmark models concerned the dynamics around a given steady state. In the future, it would

be interesting to consider also uncertainty about the steady state itself. This will mean including uncertainty

with regard to such variables as the natural rates of interest and unemployment, and the level of potential

output.
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A The Models and Model Uncertainty

To provide a sense of the differences between the four models we compare empirical and model-based autocor-

relation functions and impulse responses. In deriving these measures we consider two alternative assumptions

regarding the policy rule implemented by the ECB. The ECB’s rule is either set equal in all models to the

empirically estimated rule by Gerdesmeier and Roffia (2003) or it is set differently in each model and equal to

the specific rule estimated along with the other equations in that model. Figure 6 reports the autocorrelation

functions.

Figure 6 about here.

As a basis for gauging the autocorrelations empirically, the figure also shows 95% confidence bands for the

autocorrelation function implied by the actual data (grey shaded area). These bands have been obtained by

bootstrapping from a trivariate first-order vector autoregression (VAR) in inflation, the output gap and the

nominal rate; the data have been de-trended prior to running the VAR, see the notes to Figure 6 for details.

The four models imply quite different dynamics thereby spanning a significant range of model uncertainty.

In the CW-T and SW models inflation dynamics largely die out within 4 to 6 quarters, while the CW-F

model generates somewhat longer-lasting dynamics. The AW model stands out with the highest degree of

33



Figure 6: Autocorrelation functions
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Figure 6: Autocorrelation functions. Shown are the autocorrelations of inflation and the output
gap under two sets of policy rules. The first row shows autocorrelations when the Gerdesmeier
and Roffia (2004) rule is implemented in all models; see equation (1). The second row shows
autocorrelations when in each model a model-specific rule is implemented. For the SW model
the rule estimated in Smets and Wouters (2003) is used. For the CW-F and CW-T we use data
on output, inflation and interest rates to estimate a rule of the form (2) by maximum likelihood
from 1984:Q1 to 2005:Q4, taking all parameters apart from the parameters of the monetary rule
as given. For the AW model, a standard Taylor rule with ρ = 0, α = 1.5 and β = 0.5 is used.
Shaded areas mark 95% confidence intervals for the autocorrelation in the data. Autocorrelation
bounds have been obtained by bootstrapping from an estimated trivariate VAR(1). The data are
from the AWM data set and range from 1984:Q1 to 2005:Q4. Log output is linearly de-trended
over this sample. Year-on-year CPI inflation and the quarterly interest rate (annualized) have
been linearly de-trended until 1998:Q4 to account for the convergence period prior to EMU.
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inflation persistence. Output is strongly serially correlated in all models, as it is in the data, but shows fairly

different dynamic patterns. In spite of these differences all four models’ autocorrelations fall within the 95%

confidence intervals – a few periods in the serial correlation pattern of the CW-T model apart.

The second row of Figure 6 shows autocorrelation functions when model-specific rules are implemented

instead.23 This means that now not only the model dynamics bear on the difference in model behavior but

also the difference in rules. The models continue to show dynamics with substantial differences which are,

however, by and large covered by the autocorrelation bands.

To illustrate the extent of uncertainty about policy effectiveness, we report impulse response functions

for inflation and the output gap in Figure 7. We simulate a 100-basis-point shock to the interest rate

(annualized) assuming that monetary policy subsequently follows the Gerdesmeier-Roffia rule (first row) or

the model-specific policy rules (second row). In order to allow the reader to benchmark the models against

outside evidence, we also show symmetric 95% confidence bands obtained from estimating a structural

vector autoregression (SVAR) for the euro area with the often-used Cholesky identification assumption for

a monetary policy shock; for details see the notes to Figure 7. These bands provide a rough guide to the

magnitude of the effect of a monetary innovation.24

Figure 7 about here.

Starting with the common policy rule (first row), again, the AW model generates the highest degree of

endogenous persistence, with inflation reaching its trough more than five years after the shock. Similarly,

output returns only very gradually to baseline in this model. The SW model marks the smallest degree of

output and inflation persistence. The CW-F and CW-T models lie in between in terms of persistence of the

dynamics in response to a policy shock. As expected, Taylor contracts generate less inflation persistence than

Fuhrer-Moore contracts but output is more persistent in the CW-T model. The responses to a monetary

shock under the common rule do not fully coincide with the response to the monetary shock identified in the

VAR, yet overall magnitudes are reasonable for the inflation response – if at the lower end of the spectrum for

most of the models. On the other hand, the model-specific rules illustrate that all models assign a powerful

role to monetary policy: the form of systematic monetary policy has a strong impact on the behavior of each

model economy.25

Table 8 compares the unconditional second moments of inflation, the output gap and the change in the

nominal interest, π, y and ∆r, in the above models under the two sets of rules to moments measured in the

data. Standard deviations and bounds for the data are again obtained by bootstrapping from a first-order

23 For the SW model, we use the rule estimated in Smets and Wouters (2003). For the CW-F and CW-T we use data on output,
inflation and interest rates to estimate model-specific rules of the form rt = ρrt−1 + απt + βyt by maximum likelihood from
1984:Q1 to 2005:Q4, taking all parameters apart from the parameters of the monetary rule as given. The results are for
CW-F: ρ = 0.88, α = 0.12, β = 0.22; for CW-T: ρ = 0.82, α = 0.19, β = 0.18. For the AW, we use the original Taylor rule,
which was used intensively in the calibration of the model, i.e. rt = 1.5πt + 0.5yt.

24 In judging the models’ responses against the identified responses in the VAR we ask the reader to bear in mind that none
of the models was constructed to directly fit this evidence. As a consequence, strictly speaking, none of the models satisfies
the identification assumptions in the structural VAR as inflation responds instantaneously to a monetary innovation in all
four models.

25 On the basis of Figure 7 one might therefore conjecture that once the policy rule was parameterized with that target in
mind, each model could be made to fit the identified impulse responses better than Figure 7 suggests.
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Figure 7: Impulse responses
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Figure 7: Impulse responses to a 100bps temporary unanticipated rise in the nominal
short-term rate (in percentage points annualized). The first line shows responses when, in
all models, monetary policy follows the Gerdesmeier and Roffia (2003) rule, which is given
by equation (1). All variables are measured in percentage points. The second line shows
impulse responses when in each model monetary policy follows a model-specific rule. For
the SW model the rule estimated in Smets and Wouters (2003) is used. For the CW-F
and CW-T model the rule was estimated by maximum likelihood from 1984:Q1 to 2005:Q4
taking the remaining parameter values of the model as given. For the AW model, the
original Taylor rule is used, i.e., rt = 1.5πt + 0.5yt. Also shown (as shaded areas) are
95% confidence bands from an identified VAR(1) in CPI inflation, output and interest
rates in log levels, estimated on the sample 1984:Q1 to 2005:Q4. The VAR includes a
constant, a time-trend and a broken trend (breaking after 1998:Q4) to account for the
nominal convergence prior to EMU.

VAR.26

Table 8 about here.

Under the Gerdesmeier-Roffia rule the CW-F model induces the highest variance for inflation among

the four models – more than twice as much as the SW model – and consequently it induces a rather high

variability of interest rate increments. All models generate a standard deviation of the output gap that is

larger than the mean value observed in the data. Also under the model-specific rules the CW-F model shows

the largest degree of inflation volatility. Under this set of rules the SW model shows more output volatility

than the AW.

Summarizing, the above analysis highlights three important points for this paper. First, each model fits

26 All models are linearized around their respective steady state/balanced growth path values. We use the Andersen-Moore
algorithm to compute the equilibrium law of motion and the doubling algorithm to obtain the variances of endogenous
variables for a given parameterization of the monetary policy rule and given the remaining parameters of the model. The
standard deviations reported thus are unconditional standard deviations of the variables in the stochastic steady state. Since
the models are linearized, the second moments are accurate up to second order only.
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Table 8: Standard deviations

Data Gerdesmeier-Roffia rule Model-specific rule

Avg. std. dev. [95%] CW-F CW-T SW AW CW-F CW-T SW AW

π 0.7 [ .4–1.1] 2.2 1.1 0.8 1.3 2.7 1.0 1.1 1.1

y 1.4 [ .8–2.3] 2.0 1.9 2.1 2.5 1.8 1.6 2.6 2.1

∆r 0.5 [ .4– .6] 0.9 0.5 0.4 0.4 0.5 0.3 0.6 0.5
Unconditional standard deviations of the target variables in the four models when the policy
maker commits himself to using either the Gerdesmeier and Roffia rule (1) or a model-specific
rule. All variables are measured in percentage points. Inflation is in annual terms and the
change in the nominal rate, ∆r, is quarterly annualized. For the model-specific rules, the SW
model uses the rule estimated by Smets and Wouters (2003); the CW-F and CW-T models
use a rule that was estimated by maximum likelihood taking the other parameter values of
these models as given and using data on output, CPI inflation and interest rates from 1984:Q1
to 2005:Q4. For the AW model, a standard Taylor rule is used rt = 1.5πt +0.5yt. Also shown
are the mean standard deviations in the de-trended data along with 95% confidence intervals
(in square brackets) extracted from bootstrapping a VAR(1), which was estimated on the
de-trended data from 1984:Q1 to 2005:Q4 as in Figure 6.

certain stylized facts in the data. Some models fit the cross-correlations better than the standard deviations;

others are better at reproducing the stylized response of the economy to a monetary shock than to fit the

former moments. Each model thus can be seen as a reasonable description of the economy while, at the same

time, none of the models is the perfect model of the economy: the ordering of models may differ depending

on the metric used in estimation and in evaluating the fit.27 Second, despite all models being reasonable to

a certain extent, they all show substantial differences when it comes to the implied effectiveness of monetary

policy, to intrinsic persistence and to the implied standard deviations of key variables. As a result of the

former two points there is, third, considerable model uncertainty for monetary policy in the euro area.

B Optimized simple rules from the literature

This Appendix presents coefficients for optimized simple Taylor-style rules as reported in other studies. It

is meant to enable the reader to gauge how representative the set of models used in this study is.

The optimized simple rules reported in Table 9 were taken from studies available in the literature. The

coefficients shown belong to the rules reported in these studies that came closest to our case of λ∆r = 0.5.

Also we constrain ourselves to rules that fall within the class of rules covered in our paper. The notes to

Table 9 provide further information.

Table 9 about here.

27 Interestingly, for example, the model doing best with respect to the response of inflation and output to a monetary innovation
in Figure 7 when closed by a model-specific rule is the model that did worst when comparing the autocorrelation of inflation
implied by the model to the data in Figure 6: the CW-T model.
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Table 9: Optimized simple rules in the literature

λy = 0 λy ≥ 1

ρ α β ρ α β Model

U.S.

Levin et al. 1.0 0.6 0.1 0.8 0.2 0.7 FM, Fuhrer and Moore (1995).

(1999)(1) 1.1 3.7 1.0 1.0 0.2 1.3 MSR, Orphanides and Wieland (1998).

0.9 1.4 0.1 1.0 0.1 1.2 FRB, Brayton et al. (1997).

0.9 2.8 0.6 1.0 0.1 1.5 TMCM, Taylor (1993).

Levin and 1.5 6.4 0 1.5 1.0 2.5 New Keynesian benchmark model.

Williams 1.0 0.7 0 0.9 0.6 0.8 Fuhrer (2000).

(2003) 0.4 2.3 0.9 0.1 2.4 1.5 Rudebusch and Svensson (1999).

0.4 1.7 0.3 0.6 1.2 1.1 Bayesian robust rule (above models).

0.3 2.2 0.4 0.9 0.6 0.8 Minimax robust rule (above models).

Euro area

Adalid et al. 0.3 6.5 3.7 0.3 6.5 4.3 Angelini et al. (2004).

(2005)(2) 0.5 3.8 2.3 0.6 3.6 3.3 Bayesian robust rule (four models).

Canada

Cote et al. 0 2-4 .5-2 – – – MULTIMOD, NAOMI, QPM.

(2004)(3) 0.9 .1-.2 0-.1 – – – LPM, M1-VECM.
(1) : The coefficient values were read off Fig. 6.3 in Levin et al. (1999). In this figure, the parameters
refer to a zero weight on output λy = 0 through to an exclusive weight on the output stabilization
objective. The numbers reported here in column λy ≥ 1 refer to the latter case. (2): The study uses
three of the models employed here (CW-T, SW, AW) plus a backward-looking three-country model
along the lines of Rudebusch and Svensson (1999) used at the Banca d’Italia. The study uses a lower
weight on interest rate smoothing than the current paper.
(3): The study compares the robustness of optimized simple rules coming from five models of the
Canadian economy in 12 models of the Canadian economy. The loss function does not contain an
interest rate smoothing term, so λ∆r = 0. λy is set to 0.25. Reported is the range of parameters for
the rules proposed, grouping the models into two sets of models that deliver similar prescriptions for
the rule.
NB: Below we also report the rules used by Taylor (1999), which are by and large representa-
tive of optimal rules studied in the literature. In nine macroeconomic models for the US Taylor
(1999) evaluates the following five rules of the general form: rt = ρrt−1 + απt + βyt: [ρ, α, β] ∈
{[1.0, 3.0, 0.8], [1.0, 1.2, 1.0], [0.0, 1.5, 0.5], [0.0, 1.5, 1.0], [1.3, 1.2, 0.06]}.
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C The Minimax Algorithm

We employ the discrete minimax algorithm as implemented in Matlab 6.1 as fminimax. The algorithm is

based on Brayton et al. (1979). We briefly introduce the idea behind the algorithm.

Quasi-Newton methods solve constrained optimization problems stepwise, finding the optimal step s∆k

starting from a point xk. To illustrate this, consider the equality constrained problem

min
x

f(x), s.t. g(x) = 0. (7)

Let L(x,λ) be the corresponding Lagrangian. The Kuhn-Tucker conditions state that there exists a non-

negative vector λ∗ such that at the optimum point (x∗,λ∗) the constraints are met and

h(x∗,λ∗) :=
∂f

∂x
|x∗ +

∂g′

∂x
|x∗λ∗ = 0.

Expanding around xk := x∗ − ∆k, where ∆k is ’small’,







0 = h(x∗,λ∗) ≃ h(xk,λ∗) + fxx|xk
∆k +

∑

λ∗
i gixx|xk

∆k

0 = g(x∗) ≃ g(xk) + ∂g
∂x′

|xk
∆k.

(8)

System (8) is the same system of equations as the first-order conditions derived by solving the following

quadratic sub-problem (QSP), provided ∆k is small enough so λ
qsp
k ≃ λ∗, where λqsp are the multipliers of

the QSP

min∆k

1
2∆

′
kH∆k + ∂f

∂x′
|xk

∆k

s.t. g(xk) + ∂g
∂x′

|xk
∆k = 0,

where H := Lxx|xk,λ∗ .

(9)

An optimum is found by a sequence of updates xk+1 = xk + s∆k, and λk+1 = (1− s)λk + sλqsp
k . Stepsize s

is determined on the basis of a problem-specific merit function.

The minimax problem

min
x

max
j

fj(x), s.t. g(x) ≤ 0, (10)

where some of the constraints in g(·) may be strict, equality constraints can be restated as a non-linear

optimization problem

min
x,γ

γ, s.t. g(x) ≤ 0, and fj(x) ≤ γ ∀j. (11)

Let y := (γ,x′)′, f(y) := γ and stack the constraints fj(x) ≤ γ as b(y) ≤ 0. The Lagrangian for (11) then

reads as L(y,λ) = f(y) + λ′
1g(y) + λ′

2b(y). Analogous to (9), step ∆
(y)
k is found by solving the quadratic
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sub-problem using active set methods (let b̃ mark the binding constraints).

min
∆

(y)
k

∆
(γ)
k + 1

2 ∆
(x)
k

′
Hx∆

(x)
k

s.t. g(yk) + ∂g
∂y′

|yk
∆

(y)
k = 0

b̃(yk) + ∂b̃
∂y′

|yk
∆

(y)
k = 0,

(12)

where Hx := Lxx|xk,λk
. For the minimax problem any second (cross) derivative of L involving γ is zero. In

fminimax, the step-size s in updating yk+1 := yk + s∆
(y)
k has to lead to an improvement in either of two

merit functions. Let E be the set of strict equality constraints in g. The merit functions evaluated at a guess

y(s) = yk + s∆
(y)
k are of the form

P (y,µ) = Loss(y) +
∑

i∈E

µ1,i|gi(x)| +
∑

i/∈E

µ1,i max(gi(x), 0) +
∑

j

µ2,j max(bj(y), 0),

where we suppress subscript k for convenience. Above, µk = max
[

λ
qsp
k , 1

2 (λqsp
k + µk−1)

]

. The first merit

function, exact for the constrained problem (11), sets Loss(y) = γ, while the second merit function sets

Loss(y) = maxj fj(x), which makes use of the minimax problem structure (Brayton et al., 1979). If a

step length is found such that either of the penalty functions signals improvement, y and λ are updated

accordingly.

As with all Quasi-Newton optimization methods, convergence may occur only to a local minimum. We

entertain several starting values to safeguard the results against this feature.

D Bayesian Priors From Unconstrained Minimax

The aim of this section is to explain how priors p̃i can be found such that

x∗ = arg min
x

max
i

fi(x) = arg min
x

∑

i

p̃ifi(x).

In the form of (11), the first-order conditions to the unconstrained (g ≡ 0) minimax problem are DyL :=

∂L
∂y

=





1 −
∑

i λi

∂
∑

i
fi(x)λi

∂x



 = 0. Define

D2
yL :=

∂L

∂y∂y′
=





0 0

0
∂

∑

i
fi(x)λi

∂x∂x′



 .

So for any local minimum of the unconstrained minimax, the first- and second-order conditions for a local

minimum of the unconstrained Bayesian optimization are also met, provided one takes λ∗ (from the final

step of the QSP for the minimax) as the Bayesian priors. Priors p̃i = λ∗
i support the minimax allocation,

x∗. For the case of intermediate ambiguity aversion, the problem is minx maxi f̄i(x), where f̄i(x) = (1 −
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e)
∑

i pifi(x) + efi(x). Substituting for f̄i(·), the first order conditions are

∑

i

λ̄∗
i = 1 and

∑

i

{

(1 − e)pi + eλ̄∗
i

} ∂fi(x)

∂x

∣

∣

∣

∣

x∗

= 0 ∀i.

Priors p̃i := (1 − e)pi + eλ̄∗
i support the ambiguity-averse allocation.

E Alternative Weights on Interest Variability, λ∆r

This Appendix provides the results in the paper for different degrees of interest rate smoothing, λ∆r = .1

and λ∆r = 1.

Tables 10 to 17 about here.

Table 10: Optimized simple rules for λ∆r = .1 and λ∆r = 1

λy = 0 λy = 0.5 λy = 1

Model ρ α β ρ α β ρ α β

λ∆r = .1

CW-F 0.9 1.7 0.6 0.8 1.4 1.0 0.8 1.3 1.3

CW-T 1.0 0.7 0.1 0.8 0.4 1.1 0.8 0.3 1.6

SW 1.0 0.9 0.0 1.0 0.5 2.0 1.0 0.4 3.1

AW 0.4 1.2 1.2 0.4 0.8 2.8 0.5 0.6 3.7

λ∆r = 1

CW-F 0.9 0.6 0.4 0.8 0.5 0.5 0.8 0.5 0.6

CW-T 1.0 0.2 0.1 0.9 0.1 0.4 0.9 0.1 0.6

SW 1.0 0.3 0.0 1.0 0.2 0.6 1.0 0.1 0.8

AW 0.7 0.4 0.4 0.5 0.5 0.9 0.4 0.5 1.2
Parameters of optimal simple rules for each model. Shown is the case λ∆r = 1 for loss function
(3).
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Table 11: Robustness of rules optimized for a specific model λ∆r = .1

CW-F rule evaluated in CW-T rule evaluated in

λy CW-T SW AW CW-F SW AW

%L IIP %L IIP %L IIP %L IIP %L IIP %L IIP

0.0 25 .11 40 .12 ∞ ∞ 81 .53 9 .03 ∞ ∞

0.5 14 .10 26 .13 109 .75 88 .84 12 .06 34 .29

1.0 15 .14 38 .20 94 .81 179 1.71 17 .09 37 .39

SW rule evaluated in AW rule evaluated in

λy CW-F CW-T AW CW-F CW-T SW

%L IIP %L IIP %L IIP %L IIP %L IIP %L IIP

0.0 160 .93 7 .03 ∞ ∞ 89 .57 32 .14 79 .21

0.5 86 .82 17 .13 130 .85 155 1.31 12 .09 25 .12

1.0 123 1.29 27 .24 95 .82 257 2.22 15 .14 25 .14

%L: Percentage losses relative to first-best simple rule for each model (in %). IIP: Implied
Inflation (Variability) Premium relative to first-best simple rule for each model (in percentage
points) (in italics). The notation “∞” indicates that the implemented rule results in instability;
the notation “ME” indicates that the implemented rule results in multiple equilibria. Shown is
the case λ∆r = 0.1 for loss function (3).

Table 12: Robustness of rules optimized for a specific model λ∆r = 1

CW-F rule evaluated in CW-T rule evaluated in

CW-T SW AW CW-F SW AW

λy %L IIP %L IIP %L IIP %L IIP %L IIP %L IIP

0.0 37 .18 69 .21 87 .44 265 1.82 11 .04 ∞ ∞

0.5 12 .11 15 .11 69 .76 87 .96 15 .11 26 .35

1.0 11 .13 22 .19 63 .95 105 1.25 16 .14 40 .67

SW rule evaluated in AW rule evaluated in

CW-F CW-T AW CW-F CW-T SW

λy %L IIP %L IIP %L IIP %L IIP %L IIP %L IIP

0.0 748 3.72 9 .04 ∞ ∞ 81 .71 22 .11 82 .24

0.5 63 .73 20 .18 4299 10.15 171 1.63 17 .15 59 .37

1.0 94 1.17 26 .29 310 2.79 ME ME ME ME 67 .49

%L: Percentage losses relative to first-best simple rule for each model (in %). IIP: Implied
Inflation (Variability) Premium relative to first-best simple rule for each model (in percentage
points) (in italics). The notation “∞” indicates that the implemented rule results in instability;
the notation “ME” indicates that the implemented rule results in multiple equilibria. Shown is
the case λ∆r = 1 for loss function (3).
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Table 13: Flat Bayesian priors versus model-specific simple rules different weights λ∆r

Optimal Rule Inflation Premium Percentage Losses

λy ρ α β CW-F CW-T SW AW CW-F CW-T SW AW

λ∆r = .1

0.0 0.7 1.3 0.7 .09 .10 .14 .13 12 22 49 30

0.5 0.7 1.5 1.7 .11 .07 .09 .21 9 9 19 23

1.0 0.6 1.6 2.4 .12 .11 .13 .24 8 11 24 21

λ∆r = 1

0.0 0.8 0.5 0.3 .07 .11 .18 .12 7 23 60 21

0.5 0.8 0.5 0.5 .08 .08 .16 .28 6 9 23 20

1.0 0.7 0.6 0.8 .10 .12 .25 .36 6 10 30 19

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to the
simple rules optimized for each model (in percentage points). Shown are the cases λ∆r = 0.1
and λ∆r = 1 for loss function (3). For comparison with the literature, we also report the
percentage increase in losses relative to the simple rules optimized for each model.

Table 14: Minimax policy relative to model-specific rules different weights λ∆r

Optimal Rule Inflation Premium Loss Premium

λy ρ α β CW-F CW-T SW AW ∆Lworst ∆Lexpect

λ∆r = .1

0.0 0.8 1.7 0.7 .01 .13 .13 .54 9 16

0.5 0.8 1.4 1.0 .00 .10 .13 .75 8 14

1.0 0.8 1.3 1.3 .00 .14 .20 .81 8 12

λ∆r = 1

0.0 0.9 0.6 0.4 .00 .18 .21 .44 6 11

0.5 0.8 0.6 0.5 .00 .11 .11 .73 6 8

1.0 0.8 0.6 0.6 .01 .14 .22 .70 5 4

Optimal policy rule parameters and Implied Inflation (Variability) Premium relative to first-best
simple rule for each model (in percentage points). Shown are the cases λ∆r = 0.1 and λ∆r = 1
for loss function (3). ∆Lworst : percentage reduction of worst-case loss relative to worst outcome
under flat Bayesian priors. ∆Lexpect : percentage increase in expected loss relative to Bayesian
policy (flat priors).
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Table 15: Minimax implied priors different weights λ∆r

λ∆r=0.1 λ∆r=1

λy CW-F CW-T SW AW CW-F CW-T SW AW

0.0 0.971 0.0 0.0 0.029 1.000 0.0 0.0 0.000

0.5 1.000 0.0 0.0 0.000 0.994 0.0 0.0 0.006

1.0 1.000 0.0 0.0 0.000 0.923 0.0 0.0 0.077

Bayesian priors backing the minimax solution. Shown are the cases λ∆r = 0.1 and
λ∆r = 1 for loss function (3).
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Table 16: Ambiguity-averse policy for different weights λ∆r

Optimal Rule Inflation Premium

λy ρ α β CW-F CW-T SW AW

Flat priors, λ∆r = 0.1

0.0 0.8 1.6 0.7 .03 .12 .14 .28

0.5 0.7 1.5 1.3 .02 .09 .11 .41

1.0 0.7 1.6 1.8 .02 .12 .17 .47

Flat priors, λ∆r = 1

0.0 0.8 0.5 0.4 .01 .15 .20 .24

0.5 0.8 0.6 0.5 .02 .10 .14 .46

1.0 0.8 0.6 0.7 .02 .13 .23 .59

AW-leaning, λ∆r = 0.1

0.0 0.7 1.7 0.8 .09 .14 .16 .12

0.5 0.5 2.1 1.9 .10 .12 .13 .18

1.0 0.5 2.2 2.7 .10 .17 .18 .21

AW-leaning, λ∆r = 1

0.0 0.8 0.6 0.4 .05 .15 .21 .12

0.5 0.7 0.7 0.6 .10 .15 .22 .21

1.0 0.6 0.8 0.9 .13 .22 .34 .25

SW-leaning, λ∆r = .1

0.0 0.8 1.6 0.7 .01 .12 .13 .54

0.5 0.9 1.3 1.1 .01 .09 .09 .75

1.0 0.8 1.2 1.5 .02 .11 .14 .79

SW-leaning, λ∆r = 1

0.0 0.9 0.5 0.4 .00 .15 .19 .47

0.5 0.9 0.5 0.5 .00 .10 .10 .74

1.0 0.8 0.5 0.7 .01 .12 .18 .71

Optimal policy rule parameters and Implied Inflation (Variability) Premium
relative to first-best simple rule for each model (in percentage points). Three
ambiguity-averse solutions are shown: one using flat model priors, one giving
extra weight only to the AW and one giving extra weight only to the SW
model. Parameters for the ambiguity-averse solution are pm = 0.25 for the
former, and pAW ≈ 1 and pSW ≈ 1, respectively, for the latter. The policy
maker gives a weight of e = 0.5 to the worst-case scenario. Shown are the
case λ∆r = 0.1 and λ∆r = 1 for loss function (3).
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Table 17: Ambiguity-averse implied priors for different weights λ∆r

Flat priors AW leaning SW leaning

λy CW-F CW-T SW AW CW-F CW-T SW AW CW-F CW-T SW AW

λ∆r = .1

0.0 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.480 0.0 0.5 0.020

0.5 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.500 0.0 0.5 0.000

1.0 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.500 0.0 0.5 0.000

λ∆r = 1

0.0 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.500 0.0 0.5 0.000

0.5 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.475 0.0 0.5 0.025

1.0 0.625 0.125 0.125 0.125 0.500 0.0 0.0 0.5 0.419 0.0 0.5 0.081

Bayesian priors backing the ambiguity-averse solution. Two ambiguity-averse solutions are
shown: one giving extra weight to the AW and one giving extra weight to the SW model.
Parameters for the ambiguity-averse solution are pSW ≈ 1 and pAW ≈ 1, respectively. We set
e = 0.5, and pm ≈ 0 for all other models. Shown are the case λ∆r = 0.1 and λ∆r = 1 for loss
function (3).
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