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Abstract

We present a theory of spino¤s in which the key ingredient is the originator�s private infor-

mation concerning the quality of his new idea. Because quality is privately observed, by the

standard adverse-selection logic, the market can at best o¤er a price that re�ects the average

quality of ideas sold. This gives the holders of above-average-quality ideas the incentive to spin

o¤. We show that only workers with very good ideas decide to spin o¤, while workers with

mediocre ideas sell them. Entrepreneurs of existing �rms pay a price for the ideas sold in the

market that implies zero expected pro�ts for them. Hence, �rms�project selection is indepen-

dent of �rm size, which, under some additional assumptions, leads to scale-independent growth.

The entry and growth process of �rms leads to invariant �rm-size distributions that resemble

the ones for the US economy and most of its individual industries.

1 Introduction

The generation and implementation of new ideas shapes industry dynamics and the structure of

�rms. Ideas can be generated in many di¤erent contexts, but many important innovations have been

developed by workers of established �rms. In some cases, workers sell their ideas to established �rms
�We thank Hal Cole, Ken Hendricks, Hugo Hopenhayn, Boyan Jovanovic, Chris Phelan, Victor Rios-Rull and

participants at several seminars and conferences for useful comments. Rossi-Hansberg thanks the Sloan Foundation
for �nancial support. The views expressed in this paper are those of the authors and do not necessarily re�ect the
views of the Federal Reserve System or the Federal Reserve Bank of Philadelphia. This paper is available free of
charge at www.philadelphiafed.org/research-and-data/publications/working-papers/.
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(including their own), and in other cases, they use them to start new �rms: spino¤s. Whether an

innovation by a worker is implemented by existing �rms, leads to a spino¤, or is discarded depends

on the initial knowledge about the idea, as well as the pro�ts that the di¤erent entities can generate

by implementing it. In this paper, we present a theory of spino¤s in which the key ingredient is the

originator�s private information concerning the quality of his new idea. Because quality is privately

observed, by the standard adverse-selection logic, the market can at best o¤er a price that re�ects

the average quality of ideas sold. This gives the holders of above-average-quality ideas the incentive

to spin o¤. But spinning o¤ is costly and there is a critical quality level at which the loss from

selling the idea at the market price balances the costs imposed by spinning o¤. Ideas that are of

higher quality than this critical level lead to spino¤s, while ideas that are of lower quality than the

critical level are sold to existing �rms.

Our theory of spino¤s implies a new model of �rm entry and �rm growth. Ideas that are

spun o¤ generate entry of new businesses, while ideas that are sold to existing �rms generate new

employment in existing �rms. We take the view that when a person sets up his or her own business,

the person has some new business idea in mind � it could be something as simple as a pizza store

in a new location or something sophisticated like new business software. Our model of spino¤s

encompasses both cases because the pizza store owner could have �sold�his idea of a new location

to a national franchise by partnering with it and the owner of the new business software could

have sold his invention to an existing software company. Thus, in a broad sense, entry occurs when

these options to sell new ideas are not exercised, and growth of existing �rms occurs when they are

exercised. This view also explains our terminology: we call our model a theory of spino¤s precisely

because the alternative is to sell the new idea to an established �rm. We explore this model of

entry and �rm growth at some length in the paper.

There are several key elements in our theory. The �rst key element, of course, is private

information. Speci�cally, we assume that a worker with a new idea has private information on the

mean payo¤ from the idea. The worker can either decide to create a new �rm to implement the

idea or sell the idea to an established �rm at a price that is independent of the (privately observed)

mean return. If he does the latter, he can credibly reveal the mean return to the buying �rm after

the sale, since there is nothing at stake for him at that point. Knowing the mean return, the buying

�rm then decides whether to implement the idea. Low quality ideas are discarded without being

implemented. Implementing an idea means producing with it for one period. Producing with an

idea �either in a spino¤ or in an established �rm �reveals the actual payo¤ from the idea We call

an idea that has been implemented, and therefore that has a known payo¤, a project. Production
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requires one unit of labor. Since labor is costly, the project payo¤ can be low enough to make

further use non-optimal. In that case, the project is dropped. If the project payo¤ is su¢ ciently

high, the project is run forever and provides a constant source of pro�ts to the entrepreneur who

implemented it.

The second key element is the costs of spinning o¤. We assume that managing one or more

projects is a full-time job that leaves the entrepreneur no time to devote to inventing new ideas.

Thus, becoming an entrepreneur implies giving up on the possibility of spinning o¤ in the future

with an even better idea. Clearly this option to spin o¤ in the future has value and, consequently,

prospective entrepreneurs �workers who decide to test an idea on their own �are more choosy

about which projects to accept and run than established entrepreneurs. Because project returns

are speci�c to the entrepreneur who tests the idea, projects that are discarded by a prospective

entrepreneur cannot be sold to established entrepreneurs. This speci�city makes workers with ideas

more selective in choosing which ideas to test on their own compared to established entrepreneurs.

Thus the mean return at which established entrepreneurs are just willing to test an idea is lower

than the mean return that just induces a worker to spin o¤ and test on his own. The gap in these

thresholds implies that ideas can sell at a positive price in the market. To use an analogy, it is like

having a �lemons problem�in which withholding a used car from the market is costly (because, say,

the person has to pay insurance costs, garage fees, etc.) and, therefore, the person may sell a car

even if the price fetched in the market is lower than the (privately observed) value of the car.1

The third key element is competition in the market for ideas. When individuals are risk neutral

or have constant absolute risk aversion, and competition forces all the (expected) surplus from

new ideas to go to the seller of the idea, the mean return for which established entrepreneurs are

indi¤erent between testing an idea or discarding it is independent of the size of the entrepreneur�s

�rm. Under some additional assumptions, this independence permits the model to display scale-

independent growth for established �rms, for which there is some evidence in the US data. If

the market for ideas was not competitive, scale-independent growth would not be an equilibrium

outcome of the model.

There are two strands of literature directly related to our paper: the one on spino¤s and the one

on �rm/industry dynamics. A key contribution of this paper is to combine these two, otherwise

1 It seems plausible that setting up and running a new �rm will leave the entrepreneur with little time to innovate,
at least for some length of time. For simplicity we go to the extreme and assume that this length of time is in�nite.
What is fundamental is that there be some cost to spinning o¤. In Appendix B, we consider an extension of our
model in which project returns are not speci�c to the entrepreneur who tests the project and entrepreneurs do not
forgo the opportunity of getting ideas. However, (new) entrepreneurs must pay a resource cost to start up a new
�rm. The main results hold in this environment as well.
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separate, literatures.2 Turning �rst to the literature on spino¤s, our paper is related to Anton

and Yao (1995, 1994). They study the problem of a worker who privately learns of an innovation

and must decide between revealing the innovation to his employer in return for compensation or

keeping it secret and exploiting the innovation independently in a spino¤. In their model, the spino¤

competes directly with the parent �rm and it is the threat of competition that makes it (potentially)

rational for the parent �rm to compensate the inventor after learning about the innovation. If

competition reduces pro�ts enough, the inventor has a credible threat and the equilibrium outcome

is for him to reveal the idea in return for adequate compensation. Franco and Filson (2006) provide

a theory of spino¤s based on imitation. Established �rms understand that workers acquire know-

how on the job and eventually become knowledgeable enough to pro�tably set up a competing

�rm. In equilibrium, the workers �pay�for this valuable know-how by accepting a lower wage. In

contrast to these studies, in our model spino¤s do not compete with established �rms so the threat

of competition, or imitation, is absent. Instead, as noted above, the reason ideas get sold at all is

that spinning o¤ is costly. This allows us to broaden the scope of the analysis beyond a narrowly

de�ned industry. Silveira and Wright (2007) study the market for ideas in the context of a search

model and focus on the role of liquidity provision in the functioning of this market. Finally, neither

of the latter two papers focuses on the friction created by private information.

Turning to the literature on �rm dynamics, previous studies have mostly taken a di¤erent

approach. The seminal works of Jovanovic (1982), Hopenhayn (1992), and Ericson and Pakes

(1995) study �rm dynamics that result from a stream of productivity levels drawn from exogenously

speci�ed distributions for existing and new �rms. So do more recent papers like Luttmer (2007),

Klette and Kortum (2004), and Rossi-Hansberg and Wright (2007). In contrast to these studies, we

stress the fact that new ideas occur to people as opposed to organizations. And the people to whom

these ideas occur choose the organization that gets to implement their ideas �established �rms or

their own start-ups. In our model, a key implication of this choice is that the distribution from

which established �rms draw their project payo¤s (or, equivalently, their productivity shocks) and

the distribution from which new �rms draw their project payo¤s are both endogenously determined.

Furthermore, the distribution for new �rms has a higher mean than the distribution for established

�rms. As we discuss later in the paper, there is empirical evidence to support this implication.

Finally, our theory connects to an older empirical literature on the �rm-size distribution. In an

early study, Simon and Bonini (1958) established that the distribution of �rm sizes in the United

2 In an interesting contribution, Anton and Yao (2002) model a market for ideas based upon credible partial
disclosure via bond-posting. However, they do not model a competitive market for ideas and neither do they examine
the implications for �rm dynamics.
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States was well approximated by a Yule distribution. The Yule distribution is a one-parameter

distribution that results when new entrants are always of some given size and established �rms

grow, on average, at a rate that is independent of their size (Gibrat�s Law). As noted earlier, our

model is consistent with scale independent growth of established �rms and, by assumption, spino¤s

start o¤ with one employee (or a constant team size). Thus, our framework can deliver a Yule

distribution for the size of business �rms. Importantly, our theory provides a microfoundation for

the single parameter that governs the shape of the Yule distribution. As we discuss later in the

paper, there is evidence that this parameter varies across time and across industries, suggesting

the need for such microfoundation.

The rest of the paper is organized as follows. Section 2 describes the model and establishes

some basic results. Section 3 characterizes the selection of ideas and projects and the price of ideas

when individuals are risk neutral. Section 4 is devoted to exploring some of the implications of our

theory of spino¤s and how those implications stack up against available empirical evidence. Section

5 derives the invariant distribution of �rm sizes and compares it to the data on �rm sizes for the

US as a whole and for a set of two-digit NAICS industries. Section 6 concludes. In Appendix A we

collect all proofs not included in the main text and show that the main points of our theory carry

over to the case where individuals have constant absolute risk aversion. In Appendix B we extend

the model to allow for entrepreneurs to generate ideas and a sunk resource cost of new entry and

show that the main results of the paper continue to hold.

2 The Model

Agents order consumption according to the following utility function:

U(fctg) =
1X
t=0

�tu (ct) ;

where u (ct) : R! R is strictly increasing, concave, twice continuously di¤erentiable and bounded.
The boundedness assumption is needed to invoke standard contraction mapping arguments but it

is not necessary. In Section 3 we study two particular cases, namely, u (c) = c and u (c) = �ae�bc;
which do not satisfy the boundedness assumption but for which we can solve the Bellman equation

in closed form.

Individuals work in two occupations. They can be entrepreneurs or workers. A worker can work

for an entrepreneur at a wage w > 0 each period and we assume that there is a perfectly elastic
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supply of workers at this wage. For simplicity, we abstract from a savings decision so individuals

consume what they earn each period. Entrepreneurs earn pro�ts from the projects they own and

run, and workers earn wages plus any compensation they receive for ideas they sell to entrepreneurs.

As noted already, for the main model we assume that entrepreneurs do not generate ideas, only

workers do. A worker can become an entrepreneur if he has an idea and decides to spin o¤ and

start his own �rm.

An idea is a non-replicable technology to produce consumption goods using labor, speci�cally,

an idea uses one unit of labor.3 Consider an entrepreneur who owns a �rm with N 2 f1; 2; ::g ideas.
Then his one-period pro�ts are given by

�(S;N) = N (S � w)

where S = 1
N

PN
i=1 Pi denotes the average revenue and Pi the per period income generated from a

particular idea. We assume that Pi > 0 with probability one.

We assume that in each period the probability of a worker getting an idea is �: An entrepreneur

does not get ideas but buys ideas from workers. An entrepreneur learns about ideas with proba-

bility 0 < 
(�;N) < 1: For now, we do not take a stand on the speci�cation of 
(�) but assume,
as seems natural, that the probability of learning about an idea in any given period is increasing

in � and N: We will have more to say about the speci�cation of 
 (�) at the beginning of Section
4. In particular, in equilibrium, the number of ideas an entrepreneur learns about �the demand

for ideas �must be equal to the number of ideas generated by workers �the supply of ideas. As

we show below, equilibrium in the market for ideas will determine the average probability of an

entrepreneur learning about an idea, but not the distribution of probabilities among them. Thus, if

we write 
(�;N) = �~
 (�;N) ; � will be an equilibrium object (the average probability of an entre-

preneur learning about an idea) and ~
(�) (the distribution of probabilities among entrepreneurs) is
a primitive of our economy that can be speci�ed arbitrarily, but which we specify as �N in Section

4.

The mean payo¤ per period from the idea is �; which is private information to the originator

of the idea.4 The mean payo¤ is drawn from a continuous distribution H(�) with H 0(�) > 0 for

3We assume that ideas are non-replicable technologies in order to determine the scale of each project. If technologies
are replicable, we would need a demand structure and goods di¤erentiation to limit the size of each project. This
simple extension would complicate our framework without providing new insights.

4We assume anyone can tell apart genuine ideas from fake ideas. In other words, it is veri�able whether an idea will
pay a strictly positive revenue stream with probability one. Without this assumption we could not impose conditions
on the realization of the payo¤s from these ideas that are common knowledge to workers and entrepreneurs. We
can also invoke a di¤erent argument. We model the generation of ideas through the parameter �, which governs the
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all � � 0: The actual payo¤ is drawn from a distribution F�(P ); where
R
PdF� (P ) = �. The

realization of P for a given idea can be discovered by implementing the idea for one period.5 We

impose the following assumptions on this distribution. First,
R
f (P ) dF� (P ) is increasing in �

for all increasing functions f , F� (0) = 0 all �: Second, F� is continuous with respect to � and

lim�!1 F�(w) = 0:6

As mentioned above, entrepreneurs do not get ideas as they are involved in the management

of their �rm, but they can buy ideas from workers.7 An entrepreneur who has bought an idea can

pay w to try it out for one period and observe the realization of P: If he does, he will use the idea

to produce as long as his future expected utility from doing so is greater than from dropping it.

Entrepreneurs may decide to implement a project even if the stream of pro�ts is negative (P < w),

since having an extra project may alter the number of ideas they learn about in the future.

A worker who has had an idea this period has two potential uses for it. He can sell his idea to

an entrepreneur, in which case he reveals the mean payo¤ to the entrepreneur who buys it. In this

case he earns a wage w plus the price Z at which he sells the idea. The idea is then owned by the

entrepreneur and he decides to try it out or not. He can also leave with the idea and become an

entrepreneur of a �rm with only this idea: a spino¤. Note that in the market of ideas, the price

of an idea has to be non-contingent on the quality of the idea. The reason is that any contingent

contract would give the worker an incentive to lie about the quality of the idea. So the only

incentive-compatible price is independent of quality, in which case the agent is indi¤erent between

revealing the true quality of the idea or not. Since this information is useful for the entrepreneur,

we assume that the worker does reveal the true quality. The price of an idea Z is determined in

equilibrium, where all entrepreneurs will be indi¤erent between buying ideas or not.

frequency with which workers have ideas. We view this as a shortcut for a model in which it is costly to generate
ideas, even fake ones (which pay zero). If the cost of generating fake ideas is not too low, a market for ideas will still
form, since the arguments in the paper are developed for general � and distributions H and F�.

5We assume two layers of uncertainty (about � and about P ) in order to avoid contracts in which the private
information is fully revealed at the contracting stage in exchange for a fee, by threatening dire consequences for
misrepresentation. For instance, one could write a contract that says that lying about P is a criminal o¤ense. Then,
P would be credibly revealed. In our setup, these contracts are not used, since the inventor does not know the
realization P , only its mean �.

6A su¢ cient condition for
R
f (P ) dF� (P ) increasing in � is that a higher � implies a distribution that �rst order

stochastic dominates a distribution with a lower �: Since � is also the mean of the distribution, this assumption need
not be satis�ed for all probability distributions. However, it is satis�ed by the Uniform and the Normal distributions
(our numerical example uses a Uniform distribution). The assumption is needed in order to deliver a well-de�ned
ordering of ideas and is necessary for our selection results reported later. The assumption lim�!1 F� (w) = 0 means
that, as the mean of the distribution increases, the distribution puts less and less weight on outcomes less than or
equal to w: So for high enough � it is impossible to lose by trying out the idea. Again, this is naturally true for
the Uniform and Normal distributions. This assumption is needed to guarantee that some ideas will always lead to
spino¤s.

7We relax this assumption in Appendix B where we impose an exogenous resource cost to start a new �rm.
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We assume that the implementation of an idea and the return that it generates are speci�c

to the entrepreneur who tests the idea. Hence, projects are entrepreneur-speci�c (but not worker-

speci�c). The notion that some entrepreneur-speci�c knowledge is used to generate output from the

particular implementation of an idea seems plausible. We could imagine a more elaborate setting

where a worker who tests an idea can sell his realized project to an established entrepreneur at some

loss. In this case, established entrepreneurs would be able to expand by buying ideas and testing

them and by buying projects directly from workers who test them but wish to delay becoming

entrepreneurs. For simplicity, we chose to make the assumption that without the entrepreneur who

implemented the idea, the project has zero value.

We also assume that contracts contingent on the realizations of the project payo¤ are not

possible. The implicit assumption is that contingent contracts come hand-in-hand with additional

agency problems (private information, imperfect enforcement, etc.) that make the use of contingent

contracts sub-optimal.8 We also abstract from �nancing issues. The friction that leads to a spino¤

�the private observability of the mean return �will also make it di¢ cult for an entrepreneur to

obtain �nancing for the project. One possibility is to imagine that these �nancing hurdles impose

additional costs on the spino¤. We show in Appendix B that including such a resource cost does

not change the main results. Thus, we simply abstract from these issues in the main body of the

paper.

2.1 An Entrepreneur�s Problem

Consider the problem of an entrepreneur with average revenue S; coming from N old ideas, who

owns one new idea with mean payo¤ �. If the entrepreneur tests the idea, his value function is

V (�; S;N) =

Z
[u (�(S;N) + w + P � Z � w)] dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P ):

This period, his expected utility is the result of consuming the pro�ts from the accumulated used

projects �(S;N), his wage w, the price of the idea Z; and the random realization of pro�ts from the

new project P �w: Note that the distribution from which P is drawn has expected value �. Denote
by W (S;N) the continuation value of an entrepreneur with N projects with average revenue S. If

the entrepreneur uses the project, next period he will manage a �rm with N+1 projects and average

8Anton and Yao (1995) consider this possibility and show that contingent contracting does not replace the �sale�
of ideas or start-ups provided the inventor has limited wealth (or liability).
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revenue (NS + P ) = (N + 1). If he does not use it, next period his continuation value stays constant

at W (S;N) : The continuation value (or the value without any new idea) of an entrepreneur with

N projects with average revenue S is given by

W (S;N) = 
 (�;N)

Z �H
max [V (�; S;N); u (�(S;N)� Z + w) + �W (S;N)] dH(�)

+(1� 
 (�;N)H (�H)) [u (�(S;N) + w) + �W (S;N)]

or

W (S;N) = 
 (�;N)

Z �H
max [V (�; S;N)� u (�(S;N)� Z + w)� �W (S;N); 0] dH(�)

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

+
 (�;N)H(�H) [u(�(S;N)� Z + w) + �W (S;N)]

where �H denotes the mean revenue value at which workers leave the �rm with their idea.9 The

probability of �nding out about an idea next period is 
 (�;N). Any worker with an idea can leave

and set up his own �rm. He will do so as long as the idea is good enough, that is � � �H . Hence,
ideas get implemented in existing �rms only if � < �H . Given that an idea of expected revenue �

is generated, the value of implementing it is, as discussed above, given by V (�; S;N). The value

of not implementing the idea is given by u(�(S;N) � Z + w) + �W (S;N); namely, the utility of
consuming pro�ts and wage today and paying the price for the idea, plus the same continuation

value tomorrow. An idea will not be implemented if it provides a very low expected value. If the

entrepreneur does not �nd out about an idea, or if the idea is good enough to generate a spino¤,

the value of the entrepreneur is given by u(�(S;N)+w)+�W (S;N); since he does not pay for the

idea. One of these scenarios happens with probability 1� 
 (�;N)H (�H).

The next lemma shows that the continuation value W (S;N) exists and is increasing and con-

tinuous in average revenue S: We then show in Lemma 2 that the value of an entrepreneur with

an idea �; V (�; S;N); is increasing and continuous in the expected value of the idea � and in the

average return S: All proofs are relegated to Appendix A.

Lemma 1 W (S;N) exists and is strictly increasing in S.

Lemma 2 V (�; S;N) exists and is strictly increasing and continuous in � and S.

9Note that we are already assuming that workers spin o¤ when they get an idea with � > �H . We prove below
that this is, in fact, the case. In the meantime, all our arguments remain una¤ected if we were to de�ne a set MH

that includes the ��s for which agents spin o¤. Then the integrals above would integrate over all values of � that are
not in MH .
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An entrepreneur will implement an idea with expected revenue � if

V (�; S;N) > u(�(S;N)� Z + w) + �W (S;N):

Let �L (S;N) be the value of � that solves

V (�L; S;N) = u(�(S;N)� Z + w) + �W (S;N): (1)

Then an entrepreneur will implement an idea as long as � > �L (S;N). Thus we can rewrite

W (S;N) as

W (S;N) = 
 (�;N)

Z �H

�L(S;N)
[V (�; S;N)� u(�(S;N)� Z + w)� �W (S;N)] dH(�)

+
 (�;N)H(�H) [u(�(S;N)� Z + w) + �W (S;N)]

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

The next lemma shows that there exists a unique function �L (S;N) that satis�es Equation (1).

Lemma 3 There exists a unique function �L (S;N) that satis�es Equation (1).

2.2 A Worker�s Problem

The expected utility of a worker with an idea � who decides to spin o¤ is given by

V0(�) =

Z
u (P ) dF�(P ) + �

Z
max [W (P; 1) ;W0] dF�(P ):

The continuation value of a worker currently working in a �rm, W0, is then given by

W0 = �

Z
max [V0(�); u (w + Z) + �W0] dH(�) + (1� �) [u (w) + �W0] :

Using arguments similar to the ones used above for V , we can show that V0(�) is strictly

increasing in �. A worker with an idea � will leave the �rm and become an entrepreneur if

V0(�) > u(w + Z) + �W0

Let �H be the value of � that solves

V0(�H) = u(w + Z) + �W0: (2)
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Thus, if � > �H the worker will leave his employer and set up a new �rm. The continuation value

of a worker can therefore be written as

W0 = �

Z
�H

V0(�)dH(�) + (1� �) [u (w) + �W0] + �H (�H) (u (w + Z) + �W0) :

We show formally below that there exists a unique threshold �H . Note also that �H is constant

and so it is independent of the characteristics of the �rm (S;N) in which the agent works.

Lemma 4 There exists a unique value �H that satis�es equation (2). Furthermore V0(�) is in-

creasing and continuous in �:

We still need to de�ne the realized return needed in order to continue with a project once its

return is realized. De�ne PL (N;S) as

W

�
NS + PL (N;S)

N + 1
; N + 1

�
=W (S;N);

and PH by

W (PH ; 1) =W0:

Then a �rm keeps the project if the realized return is P � PL (N;S) and a spino¤ stays in operation
if the realized return on the idea that generated the spino¤ is such that P � PH : Note that P < PH ,
the spino¤ will exit and the would-be entrepreneur will return to the labor force as a worker. In

that case, given that the implementation of his project was speci�c to him, the project has zero

resale value.

2.3 Equilibrium

A long-run equilibrium of this economy is a distribution of �rm sizes �N ; a list of four thresholds,

�L(�); �H ; PL(�) and PH ; a price of ideas, Z; and the average probability with which an entrepreneur
buys an idea, �, (where � is given by 
(�;N) = �~
(�;N)) such that entrepreneurs solve the problem

in Section 2.1, workers solve the problem in Section 2.2 and the price, Z, and the average probability

of buying an idea, �; clears the market for ideas:

�

1X
N=1

(N � 1)�N = �
1X
N=1

~
(�;N)�N ; (3)

where the l.h.s. is the supply of ideas and the r.h.s. is the demand for ideas. Note that both sides

include the ideas that lead to spino¤s so the equation implies market clearing in the market for
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ideas. As we show in the next section, the price Z will be such that entrepreneurs will be indi¤erent

about how many ideas to buy. Therefore, market clearing will just require that the number of ideas

bought by entrepreneurs be equal to the number of ideas generated by workers. That is, market

clearing simply determines the value of �; but it leaves indeterminate the function ~
(�;N): Hence,

if we want to determine the number of ideas bought by a �rm, we need to specify ~
(�;N) as a

primitive of the model. The �exibility to specify ~
(�;N) is then the direct result of a competitive

market for ideas and the resulting equilibrium price Z:

3 Characterization

In this section we characterize the thresholds on the expected revenue from an idea that determine

if an idea is thrown away, implemented by a particular �rm, or results in a spino¤. For this, we

�rst assume that the utility function is of the form

U(fctg) =
1X
t=0

�tu (ct) =
1X
t=0

�tct:

We show in Appendix A that our main results hold under a CARA utility function as well. The

main reason to choose these two utility functions is that we can solve the value of an existing �rm in

closed form given the additive separability or log additive separability of these utility functions.10

Under the assumption that the utility function is linear we can fully solve this problem in closed

form. The �rst result shows that the threshold �L (S;N) is independent of S and N . �L (S;N)

independent of S is implied by risk neutrality (or, in the CARA case below, by the fact that risk

does not depend on the level of wealth). �L (S;N) constant in N is the result of the market for

ideas. Since workers will sell their ideas to whoever is willing to pay more for them, and there is a

relative scarcity of ideas, workers extract all the surplus of an idea and we can solve for the price of

an idea in equilibrium. The proposition also yields the result that in equilibrium PL = w, and so

entrepreneurs use all projects that give positive returns. In contrast, PH > w and so spino¤s use

projects that give strictly positive returns. The reason is that new entrepreneurs that start a �rm

with a project with a low realized return have the option of going back to work for a �rm and start

a new �rm in the future with a better project. The proposition also shows that the threshold for

10These speci�cations do not satisfy the boundedness assumption we made in Section 2. However, since in these
two cases we can solve the functional equation for W (S;N) analytically, it follows from Theorem 9.12 in Stokey,
Lucas, and Prescott (1989) that the solution is, in fact, optimal.
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implementing ideas through spino¤s is greater than the one for implementing ideas within the �rm,

�L < �H . This is essentially the result of a positive option value of spinning o¤ in the future and

our assumption that project returns are entrepreneur speci�c. Thus, inventors are more selective

with the ideas they implement when they spin o¤ than established �rms: This also implies that

some ideas do not result in spino¤s and so some �rms grow. An industry�s growth is then the result

of entry through spino¤s and growth in the intensive margin.

Proposition 5 If u (ct) = ct; then in equilibrium

� the value of the �rm is given by W (S;N) = (�(S;N) + w) =(1� �),

� the value of a worker is given by W0 = (w + f0) =(1� �) for some positive constant f0;

� �L (S;N) is independent of S and N , and �L (S;N) < w;

� the thresholds for using a project are given by PL (S;N) = w and PH = w + f0 > w,

� �L < �H ; so some ideas are implemented within existing �rms and some through spino¤s,

� and the market price of ideas is given by

Z =
1

H (�H)

Z �H

�L

[�� w + �

1� �

Z
max [P � w; 0] dF�(P )]dH(�) > 0: (4)

Hence, the value of an established entrepreneur, W (S;N), is given by the present value of his

current projects plus the present value of his wage. Future projects have zero value after paying a

competitive price for the idea. Similarly, the value of a worker, W0, is given by the present value

of his wage plus the present value of having ideas. The latter includes the gains from selling some

of these ideas and of the possibility of spinning o¤ with one of them.

The key insight in the previous proposition is that the selection of the ideas implemented in

existing �rms, which is given by �L and �H , is independent of S and N . Because of this, the

set of ideas that will be implemented within each �rm is independent of the �rm�s size. It is the

competitive market for ideas that leads to this result. In the absence of this competitive market,

entrepreneurs of existing �rms will appropriate some of the surplus of a given idea. Because of

this, established entrepreneurs would care about the number of ideas they implement in the future,

which in general depends on their size. Hence, selection of ideas and projects would depend on �rm

size as well. This in turn would determine how many ideas they buy in equilibrium given their size,

13
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Figure 1: Selection of Ideas

namely, 
 (�; �) : This is not the case when entrepreneurs pay the competitive market price Z of an
idea. In this case the expected bene�ts for all entrepreneurs is zero, the selection thresholds are

identical for all �rms, and the shape of the function 
 (�; �) (but not its level �) is indeterminate
and so has to be speci�ed exogenously. This is the sense in which the market for ideas is key to

generating scale independence in the selection of ideas.11

In order for �rm growth to be scale independent not only do we need the thresholds �L and �H
to be independent of the size of the �rm, but we also need the number of innovations bought by a

given �rm in the market for ideas to be proportional to its size. In order for �rms to buy projects

at a rate proportional to their size, we will assume a linear probability of learning about ideas,


 (�;N) = ��N , where � is determined by equalizing the demand and supply of ideas. In e¤ect,

we are assuming that an entrepreneur learns about ideas for sale through all the agents working in

his �rm, including himself. This may be the result of workers having ideas themselves and selling

them to their employer, as that may be easier than contracting with an unknown entrepreneur.

Alternatively, one may think of employees �nding out about ideas for sale in the market and

informing their employer.

Figure 1 summarizes what we have learned about �rm behavior and �rm entry. It shows

expected revenue � in the real line. For projects above �H , �rms�workers spin o¤. All other

�rms implement ideas with ��s between �L and �H . An incumbent risk-neutral entrepreneur would

implement projects as long as they pay expected return w, so the di¤erence between �L and w is

the result of an entrepreneur�s ability to drop the project next period (this ordering can change

11 In the particular case in which 
 (�;N) = ~�(�)N and utility is linear, even without the market for ideas, �L
is independent of size. The market for ideas is necessary to obtain scale independence in the selection of ideas if
the utility function is not linear and/or 
 (�; �) is not linear in N: In Appendix A, where we consider the case of
exponential utility, this is evident.
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once we consider risk-averse agents). The threshold that determines �L is given byZ
(P � w) dF�L(P ) +

�

1� �

Z
w
(P � w) dF�L(P ) = 0: (5)

The di¤erence between �L and �H is the result of the option value of exiting and setting up a new

�rm in the future, f0. The threshold �H is implicitly determined byZ
(P � w) dF�H (P ) +

�

1� �

Z
PH

(P � w � f0) dF�H (P ) = Z: (6)

The value of having ideas for the worker is given by

f0 = �

Z
max

�Z
(P � w)F�(P ) +

�

1� �

Z
max [P � w � f0; 0] dF�(P ); 0

�
dH(�)+(1��)Z: (7)

This value includes the option to spin o¤ and start a new �rm and therefore give away the chance

to spin o¤ with a better idea, as well as the expected value of the ideas sold in the market �Z. The

di¤erence between the two thresholds comes from the option value, included in f0; of closing a new

�rm and starting another one later on with a better idea and the fact that workers give up the price

of an idea Z when they set up the �rm. Note that if f0 = 0, the two threshold equations and the

equation for Z imply that Z = 0 and �L = �H : So, all projects would be implemented via spino¤s.

However, as shown in the previous proposition, f0 is positive, since workers can extract the value

of very good projects by spinning o¤. New �rms will require a higher return from their �rst project

than existing �rms demand from new projects, given the larger option value f0 that new �rms

have of returning to an old �rm and spinning o¤ in the future, namely, PH > w = PL:12 Both of

these equations imply that the number of entrants as a fraction of the population is constant and

so is the number of new projects implemented in existing �rms each period as a fraction of total

population.13

These results depend on the assumption that project returns are speci�c to the entrepreneur

who implement the idea. If project returns were not entrepreneur speci�c, then a worker who found

that his project has a payo¤ between w and PH could sell that project to an established �rm. Then,

workers will not be any more selective in implementing ideas than established �rms and �H = �L;

but it would still be the case that PH > w = PL:
12See Appendix B, where the di¤erence between equations (5) and (6) is not f0 but an exogenous entry cost f:
13Note that PH > w implies that a project dropped by a spino¤ could be sold to existing �rms. Since we have

assumed that projects are speci�c to the entrepreneur, we have abstracted from these transactions. We could relax
this by assuming that projects can be sold at some cost. This would lead to a situation where some projects are sold
at market value to existing �rms. If we assume that projects can be sold at some cost, the agent who is deciding
whether to carry on as an entrepreneur will decide to do so if the cost of selling the existing project is greater than
the value of being a worker and having the option to spin o¤ in the future. Then, this model would have both a
market for ideas and a market for start-ups. Importantly, it will not eliminate the market of ideas which is the focus
of this paper.
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Finding an equilibrium amounts to solving equations (4), (5), (6) and (7) for the values of Z;

f0; �L and �H ; and the market clearing condition (3) for �: The next proposition establishes that

an equilibrium exists and is unique.

Proposition 6 A long-run equilibrium for this economy exists and is unique

As we noted above, one potential issue is the existence of an equilibrium with contingent con-

tracts, namely, a contract in which an entrepreneur o¤ers the worker the contingent return on an

idea minus w. We can now be more speci�c about how big these costs of writing contingent con-

tracts need to be for such contracts not to be used. Workers with good ideas that would otherwise

spin o¤would be willing to stay if the cost of writing a payo¤-contingent contract that mimics what

the worker gets by spinning o¤ costs less than f0: Note that this includes everything the worker

gives up by spinning o¤. Namely, the market price of his future ideas as well as the option to spin

o¤ in the future with a better idea.

In Appendix A, we show that all results, except �L < w; hold when individuals order preferences

according to u (ct) = �ae�bct . In this case all agents in the economy are risk averse. However,
because their risk aversion does not depend on the level of their wealth, in the presence of markets

for ideas, we still obtain the result that �L is constant, and therefore that the selection of ideas

and projects is scale independent as before. All other details, including an explicit formula for the

equilibrium price of an idea, are relegated to Appendix A.

4 Comparative Statics, Empirical Implications, and Evidence

Our theory determines the selection thresholds �L and �H , the market price of ideas Z; and the

option value of spinning o¤ f0. These equilibrium values depend on the di¤erent parameters of the

model, namely, the discount factor �, the probability of having ideas �, the outside wage w, as well

as the distributions of realizations given an idea; F�, and the distribution of the quality of ideas,

H. With linear utility, no other parameters enter the model. Given the values of (�L; �H ; Z; f0)

the model also yields implications on the size distribution of �rms, �rm growth rate, the number

of spino¤s, and other distributional outcomes. Important for our purposes is that none of the

latter implications have to be solved for in order to obtain (�L; �H ; Z; f0). We can solve the model

sequentially because the value of ideas, both within existing �rms and in new �rms, do not depend
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in equilibrium on the distribution of �rm sizes in the economy. We turn to the implications on the

size distribution of �rms and other outcomes in the next section.

The values of (�L; �H ; Z; f0) are determined by Equations (4), (5), (6), and (7). From Equation

(5) it is immediate that �L is decreasing in �, independent of �, and increasing in w. Furthermore,

�L decreases if we switch from F� to F 0� where F
0
� �rst order stochastically dominates F�. �L

is independent of the distribution H. Hence, �rms are more selective as wages increase, but less

selective if agents are more patient or if the distribution of realization of a given idea improves.

The e¤ect of parameters on the other equilibrium values is much more complex, as the system

is only block-recursive for �L. We therefore proceed with numerical simulations. In all numerical

simulations we let F� (P ) =
P�(���=2)

� . Namely, we let F� be a Uniform distribution with range of

length � centered at �. For H we use a Generalized Pareto distribution with minimum value given

by 1 and shape coe¢ cient given by �. That is

H (�) = 1� (1 + �(�� 1))�1=� :

So a higher � implies that the distribution has a left tail with more mass.

Given these two distributional assumptions, we need to pick 5 parameters. We let � = 0:95: a

standard value for yearly data. We will show comparative statics for the values of !; � and �. We

let � = 8; which, given the ranges of the other three parameters, gives us realistic ratios of new

employees in new �rms relative to new employees in continuing �rms. This statistic is the only

moment that matters to determine the size distribution of �rms and other distributional outcomes,

as we argue in the next section. We denote this statistic �H=�L and calculate it to be between 0:07

and 0:12 in the US economy from 1989 to 2003 (we discuss the details of this calculation in the

next section).

Figure 2 shows the value of (�L; �H ; Z; f0) as a function of � and �. We choose a range of �

that makes a worker have between 0:2% and 0:6% probability of having an idea each period. So a

�rm with 1000 employees will have 2 to 6 ideas per year. The range of values of � that we choose

makes agents spin o¤ with about 3% of those ideas. They also show the number of spino¤s per

period per worker, and the �H=�L ratio discussed above. As one can see in the �gure, the ratio of

new employees in new �rms to new employees in continuing �rms is in the relevant range for these

parameter values.

Several results are noteworthy. As � increases, we shift more mass to the tail of the distribution

H: This implies that good ideas are more likely. As noted above this does not a¤ect how selective
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Figure 2: Comparative Statics for � and �

continuing �rms are in choosing which projects to implement, �L, but it does imply that workers

wait longer for better ideas to spin o¤. As � increases, we also �nd that the price of ideas increases,

since the average idea sold in the market is now of better quality. This is because both �H went

up and there is more mass in the left tail of the distribution. The option value of setting up a new

�rm, f0, also goes up.

An increase in � has similar e¤ects, although (in this exercise) smaller in magnitude. First,

as � increases, the values of �H , Z and f0 all go up. This means that a higher probability of

generating ideas leads to more selection of ideas by potential entrepreneurs. Since �rms�selection

of implemented projects �L does not vary with �, this means that �rms implement a wider range

of projects (�H � �L grows). Note that even though workers are more selective in their choice of
projects (higher �H) there are more spino¤s per worker. The e¤ect of � is hard to assess in Figure

2, so we show this dimension separately in Figure 3.
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Figure 3: The e¤ect of �

Figure 4 shows the same six graphs presented in Figure 2, but we change the axes to re�ect

changes in the wage w rather than the shape parameter of the Generalized Pareto distribution,

�: The �gure shows similar comparative statics for � as described above. The e¤ect of higher

outside wages follows a di¤erent pattern. Higher w implies more selection by �rms as is easy to

show analytically (higher �L). Furthermore, a higher w reduces �H ; Z and f0 but it increases the

number of spino¤s and the ratio of lambdas. So if workers are more expensive, �rms will implement

a smaller range of projects. Since on average the ideas sold to �rms are worse, the price of ideas

falls as does the option value of an idea. As the threshold �H decreases with the increase in w,

more ideas lead to spino¤s and, given the number of ideas per person �, there are more spino¤s

per person. This also implies that the number of new employees in new �rms grows relative to the

number of new employees in continuing �rms and so �H=�L increases as well.

We now discuss the evidence in support of the implications of our theory. The empirical lit-
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Figure 4: Comparative Statics for � and w

erature on spino¤s has identi�ed several regularities. An important regularity seems to be that

"employees start their own �rms after becoming frustrated with their employers. Their frustration

is often related to having an idea about an innovation or a new (sub)market rejected by their em-

ployer" (Klepper and Sleeper, 2005). In our paper, disagreements mean that parties cannot �nd a

price at which they can transact. This is the core implication of our way of modelling incomplete

information.

Perhaps, the most important implication of our framework is that only the best ideas lead to

spino¤s. Therefore, we should observe in the cross-section that the �rst idea of a �rm is in general

better than future ideas. This is consistent with some of the available evidence, which suggests that

the �rst product of a �rm is, on average, the most successful of its products. Prusa and Schmitz

(1994) argue that this is the case in the PC software industry. The �rst product of a �rm sells, on

average, 1:86 times the mean product in its cohort, while the second product sells only 0:91 times
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the mean product in its cohort. That is, �rst products are, on average, about twice as successful

as second products. The �rst product is also about twice as successful as the third, fourth, and

�fth products. This evidence suggests that spino¤s discriminate more than incumbent �rms in

choosing which projects to implement. This is exactly in line with the selection mechanism our

theory underscores. Another related �nding is the evidence in Luttmer (2008) that new �rms need

to draw from a better distribution in order to explain the age distribution of �rms.

The model also predicts the fraction of unsuccessful spino¤s that exit the economy. Large �rms

can have unsuccessful projects, too, but they do not exit; they just drop the project. They do

not exit, since they have at least one ongoing project that provides a permanent source of pro�ts.

Some authors (for instance, Hall and Woodward, 2007) have argued that a common phenomenon

is for workers to spin o¤ only to be acquired by a larger �rm some years later. Our theory provides

a rationale, namely, adverse selection, for why we have spino¤s, but we do not address the issue

of spino¤s being acquired by existing �rms later on. The theory also has predictions for the entry

process of �rms. Large �rms generate more spino¤s than small �rms, although as a fraction of

the workforce, the number of spino¤s is constant. This is consistent with the evidence discussed

in Klepper and Sleeper (2005) that �rms that produce a wider range of products generated more

spino¤s over time. Franco and Filson (2006) show, for the hard-drive industry, that more know-how

(which is likely correlated with size) also leads to more spino¤s.

Our numerical simulations in the previous subsection generated several other empirical implica-

tions. In particular, parameters that could be related to better economic circumstances, like � or �;

imply a higher threshold to spin o¤, more spino¤s, a higher price of ideas, a higher option value of

spinning o¤ and proportionately more new workers entering through spino¤s. These predictions of

the model are particularly relevant in light of the results in Jovanovic and Rousseau (2008). They

show that the aggregate Tobin�s Q is positively related to the skill premium, negatively related

to the relative investment of incumbents, and positively related to the number of spino¤s. High

aggregate Tobin�s Q can be compared to times in which � is high: times where many agents have

ideas. Or times where � is high: times where ideas are particularly good. Given this, our model

predicts that in fact we should see more spino¤s, a higher value of the option to spin o¤, a higher

market price of ideas �which could be compared to the skill premium where the skilled are the

agents with ideas �and less investment by incumbents relative to new �rms, as is evident by the

increase in �H=�L.

Similarly, the previous section illustrates the predictions of the model for how these variables

change with respect to outside wages. In particular, the model implies that the price of ideas
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decreases with wages, the number of spino¤s increases, and the entry of new workers through new

�rms increases as well. We do not know of empirical work that has contrasted these types of

implications with data but these are implications of our model that can be potentially tested. As

we show in the remainder of the paper, the implications of all of these parameters for the ratio of

�H=�L are particularly relevant as they are directly related to the shape of the size distribution of

�rms. We now turn to these implications of the model and examine how they compare with the

data.

5 Invariant Distribution of Firm Sizes: Theory and Evidence

In order to derive the implications of our model for �rm growth and the size distribution of �rms,

we need to take a stand on the number of projects that �rms �nd out about. The reason is that

in our model, given the price in the competitive market for ideas, entrepreneurs are indi¤erent

about how many ideas to buy. This implies, as argued above, that we need to specify the function

~
 (�) : Assume that entrepreneurs encounter ideas in proportion to the number of agents in the �rm.
This amounts to assuming that they �nd out about ideas generated by agents in their own �rm or,

alternatively, they and their workers get information about ideas at a constant rate per person.

Suppose that a �rm with N projects has a probability of �nding out about an idea given by

~
 (�;N) = �N: We assume that the maximum size of a �rm is given by N such that �N < 1.14

Everyone in the �rm has a probability � > 0 of generating an idea. Note that since the value

of � depends on our de�nition of a period, we can always make � small enough by appropriately

de�ning the length of a period in the model. Correspondingly, we can make N arbitrarily large. In

case a �rm hits the size constraint N , its workers will sell ideas to other �rms. For the moment we

abstract from this problem, but we return to it below.

As we have shown, entrepreneurs are indi¤erent about how many ideas to buy in the market.

Thus, in combination, this speci�cation of ~
 (�) implies that the growth of �rms will be independent
of size (Gibrat�s Law). It is important to note, however, that Gibrat�s Law is not su¢ cient to

determine the form of the invariant distribution of �rm sizes. The latter depends on the process

of entry and exit. For example, as Gabaix (1999) shows, Gibrat�s Law with no entry and exit and

14Alternatively we could work with continuous time and assume that the process by which �rms generate ideas is
Poisson with parameter �N . This would imply an identical random process for generating ideas in continuous time.
Note that we are assuming that the process of generating ideas and the process of assigning knowledge and ownership
are independent. If instead each worker had an unconditional probability of generating an idea � independently of
other workers, there would be a positive probability of generating several ideas per period, which we rule out.
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a re�ecting barrier arbitrarily close to size 0 leads to a Pareto distribution with coe¢ cient 1: In

contrast, in Eeckhout (2004) Gibrat�s Law with no entry (of cities) and no re�ecting barrier leads

to a Log Normal distribution in the limit. In our case, the total mass of �rms is also normalized to

1 �which is equivalent to having exit at a proportional rate �but there will be entry at size 1. This,

as we show below, leads to a Yule distribution for �rm sizes, which �ts the �rm size data well (as

shown before by Simon and Bonini (1958)). In this sense, it is the entry process that distinguishes

our theory from other theories of �rm dynamics that are also consistent with Gibrat�s Law.

Given our speci�cation for ~
(�) we need to determine � such that the supply of ideas and the
demand for ideas equalize in equilibrium at price Z: Let �N denote the share of �rms of size N in

equilibrium (we will discuss this distribution in much more detail below). Then, market clearing

in the market for ideas requires

�
1X
N=1

(N � 1)�N = ��
1X
N=1

N�N ; (8)

where the l.h.s. is the supply of ideas (N � 1 workers in a �rm of size N have a probability � of

generating an idea) and the r.h.s. is the demand for ideas (a �rm of size N learns of and buys


 (�;N) = ��N ideas). Denote by � the average �rm size, then

� = 1� 1

�
: (9)

Note that our assumption that the maximum size of �rms is given by N implies an additional

adjustment for �: Since �rms get zero expected bene�ts out of implementing ideas, entrepreneurs

are indi¤erent about expanding or not. Hence, they do not care about this upper bound for the

size of their �rm. The only role that this bound plays is to determine how other �rms grow if there

is a positive mass of constrained �rms. Thus, the only adjustment we need to make is to add the

upper bound N to equation (8). Notice, however, that equation (9) still holds.

In order to derive the size distribution of �rms, �rst note that the size of the industry will

increase constantly in our setup since innovation does not stop (every worker in the industry has

probability � of having an idea independently of where they work). The probability of �rms adding

a project is positive for all �rms, while the probability of dropping a project that is already being

used is zero. Hence, �rms will only grow over time. This is combined with a positive mass of new

entrants with one worker every period. So we can show only that there is an invariant distribution of

employment shares and �rm sizes measured as a share of total employment. That is, we normalize

by the size of total employment. This normalization is equivalent to having an exogenous death
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rate independent of size.15

First, consider the transition equation for a �rm with N workers. Each worker has a probability

� of having an idea. If they do, the �rm implements it if � 2 [�H ; �L (N)] and if it implements it,
the �rm uses the idea with probability 1� F� (PL (N)) where PL (N) is such that

W

�
NS + PL (N)

N + 1
; N + 1

�
=W (S;N);

which by the arguments above does not depend on S.

In what follows we will ignore the upper bound on �rm sizes N: We will return to it once we

de�ne the invariant distribution of �rm sizes for the case without this bound. Hence if p (N;N + 1)

denotes the probability of a �rm transitioning from N to N + 1 workers

p (N;N + 1) = ��N

Z �H

�L

(1� F� (PL)) dH (�) :

Hence,

p
�
N;N 0� =

8>>>>>><>>>>>>:

0 for N 0 > N + 1

��N
R �H
�L

(1� F� (PL)) dH (�) for N 0 = N + 1

1�
h
��N

R �H
�L

(1� F� (PL)) dH (�)
i

for N 0 = N

0 for N 0 < N

:

Let S = f1; 2; :::g ; then, for any A � S,

p (N;A) =
X
N 02A

p
�
N;N 0�

is positive if N 2 A or N + 1 2 A.

Let Lt be the total labor force and Et the total number of �rms or enterprises in period t; and

let f�Ng be the invariant distribution of �rm sizes. The probability that a �rm with N employees

generates a spino¤ is given by

s (N) = ��N

Z
�H

(1� F� (PH)) dH (�)

15 In our model, �rms die for two di¤erent reasons. First, new �rms may �nd out that their productivity is low and
exit. Second, as described in the text, we normalize the total mass of �rms to one. This is equivalent to assuming
that exit rates of continuing �rms are independent of size. Thus, in a stylized way, we do incorporate the feature
that exit rates are decreasing in size.
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where PH satis�es

W (PH ; 1) =W0:

Hence, the expected number of spino¤s in period t+1 given the distribution of �rm sizes in period

t is given by

Et

N=1X
N=1

s (N) �N = Et��

Z
�H

(1� F� (PH)) dH (�)
N=1X
N=1

N�N

= ��

Z
�H

(1� F� (PH)) dH (�)Lt � �HLt;

where �H denotes the number of new employees in new �rms as a fraction of total employment.

Hence the expected number of spino¤s is a constant fraction of the population, Lt.

Similarly we can calculate the expected number of new workers in existing �rms, which is given

by

Et

LtX
N=1

p (N;N + 1) �N = Et

LtX
N=1

��N

Z �H

�L

(1� F� (PL)) dH (�) �N

� �LEt

LtX
N=1

N�N = �LLt;

where �L denotes the number of new employees in old �rms as a fraction of total employment.

Then, for Et large

Lt+1 = Lt + Et

LtX
N=1

[p (N;N + 1) + s (N)] �N = (1 + �H)Lt + �LLt:

Given our de�nition of �L and �H , population evolves according to

Lt+1 = (1 + �H + �L)Lt

Thus,

Et+1 = Et + Et

1X
N=1

s (N) �N = Et + �HLt:

Hence the number of �rms is expanding at a constant rate. In terms of the number of �rms, the

economy is growing at a constant rate. Note that we are assuming that Et is large enough so that

Lt and Et evolve deterministically. For small Lt and Et, however, both are random variables that

evolve according to a stochastic process.
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We now compute the invariant distribution of the share of workers in �rms of di¤erent sizes.

Let �N denote the probability that a worker is employed by a �rm with N workers. The probability

that a worker has an idea that is used within the �rm is given by �L; independently of the �rm�s

size. Then, the invariant distribution satis�es

[�1 (1� �L) + �H ]L = �1L0 = �1 (1 + �L + �H)L

or

�1 (1� �L) + �H = �1 (1 + �L + �H)

which implies

�1 =
�H

�H + 2�L
: (10)

Intuitively, the number of workers in �rms of size 1 today, �1L; minus the number of workers in

�rms of size 1 that become workers in �rms of size 2, �1�LL, plus the number of new workers in

�rms of size 1, �HL, is equal (in the invariant distribution) to the number of workers in �rms of size

1 tomorrow, �1L
0, which is equal to �1 (1 + �L + �H)L; given that the growth rate of employment

is �L + �H :

Similarly, for �rms of size N;

�N (1� �LN) + �N�1�L (N � 1) + �N�1�L = �N (1� �LN) + �N�1�LN

= �N (1 + �L + �H)

and so

�N = �N�1
�LN

�H + �L (N + 1)
(11)

which implies that
�N
N

=
�N�1
N � 1

�L (N � 1)
�H + �L (N + 1)

:

Note that by de�nition

(1 + �L + �H)

1X
N=1

�N =

1X
N=2

�
�N (1� �LN) + �N�1�L (N � 1) + �N�1�L

�
+�1 (1� �L) + �H

which implies that

(�L + �H)

1X
N=1

�N =

" 1X
N=2

�N�1�L + �H

#
= �L

1X
N=1

�N + �H

26



Hence,
1X
N=1

�N = 1;

and so the resulting ��s form a probability distribution. This distribution is the invariant distribu-

tion of population shares across �rms of di¤erent sizes.

Proposition 7 There exists a unique invariant distribution � of employment shares across �rm

sizes, where �N denotes the share of workers employed by �rms of size N .

To obtain the distribution of �rm sizes we need to transform the distribution of worker shares

into a distribution of �rm sizes. For this, note that if the share of the population employed by �rms

of size N is given by �N , then the share of �rms of size N; �N ; is given by

�N =
�N

N
P1
N=1

�N
N

: (12)

Clearly, since
P1
N=1 �N = 1, 0 <

P1
N=1

�N
N < 1 and so �N is well de�ned, exists, and is unique.

Since we are normalizing the total mass of the size distribution to one we are, in e¤ect, introducing

exit at a constant rate for all sizes.

Corollary 8 There exists a unique invariant distribution � of �rm sizes.

Simon and Bonini (1958) propose an exogenous growth and entry process of �rms that leads

to the same type of distribution, namely, a Yule distribution. This distribution approximates a

Pareto in the upper tail. Note from the previous equations that the distributions � and � depend

only on the value of the ratio �H=�L. So, one of the contributions of our theory is to provide

a microfoundation for the value of �H=�L that in Simon and Bonini (1958) is just an exogenous

parameter.

Note also that in the theory N � N . Hence, in order to get distributions of employment shares
and �rm sizes that are consistent with the theory we need to re-normalize both distributions. Hence,

the distribution of employment shares is given by

~�N =
�NPN
N=1 �N

and the distribution of �rm sizes by

~�N =
~�N

N
PN
N=1

~�N
N

:
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Now consider the expected growth rate of employment, gN ; of a �rm of employment size N .

The �rm grows by one employee with probability N�L, thus

gN =
(N + 1)N�L +N (1�N�L)�N

N
= �L:

Hence, the expected growth rate of �rms is just given by the probability per worker of its employees

generating an idea that is used. This probability is constant, so the expected growth rate in terms of

employees of existing �rms is constant, which is a statement of Gibrat�s Law. Therefore, the model

is consistent with the evidence in Sutton (1997), who argues that the unconditional (on survival)

growth rate is consistent with Gibrat�s Law. Of course, this is the result of our assumption that


 (�;N) / �N ; however, we were free to assume this, given that the market for ideas implies that
�rms with di¤erent characteristics select ideas identically. For our purposes, whether Gibrat�s Law

holds exactly or not is not crucial. What we will show is that using Gibrat�s Law we can approximate

the size distribution well. However, we can incorporate any pattern of scale dependence in growth

rates and use the model to generate implications for the size distribution.

The model has another relevant implication. Since employment grows by one unit at a time,

the variance of the growth rate of employment is decreasing in N: In particular, the variance of the

growth rate of employment is given by�
1

N
+ 2 (1� �L)

�
�L + (1� �L)2

which is decreasing in N: Gabaix (2005) documents that the volatility of �rm growth rates decreases

with size with an elasticity between 0.15 and 0.20. Our model implies a volatility that also declines

with size but not with a constant elasticity.

Proposition 9 The expected growth rate in employment size of existing �rms is independent of

their size. Furthermore, the variance of �rm employment growth is decreasing in �rm size.

Similarly, the expected growth rate in average revenue of a �rm with average revenue S and N

employees is given by

gS;N =
��N

R �H
�L

R1
PL

�
NS+P
N+1

�
dF� (P ) dH (�) + S (1�N�L)� S

NS

=

��N
N+1

R �H
�L

R1
PL
PdF� (P ) dH (�) +

�
NS
N+1

�
N�L + S (1�N�L)� S

NS

=
1

N + 1

"
��

S

Z �H

�L

Z 1

PL

PdF� (P ) dH (�)� �L

#
:
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This implies, as �L and PL, and therefore �L; are independent of N that

ES (gS;N ) = 0:

So average growth rates across �rms of di¤erent average revenues are zero. However, large �rms

that have had good realizations and therefore have a high S will tend to grow slower, and vice

versa. In this sense there will be reversion to the mean, conditional on the number of employees.

This is consistent with Luttmer (2008), who argues that a higher rate of growth for young (and

small) �rms is key in explaining the age distribution of �rms. Our paper complements Luttmer

(2008) by providing a micro-founded model of why this is the case.

Also note that the variance of gS (S;N) is decreasing in N , since the larger the �rm, the smaller

the contribution of new projects (see also Proposition 9 and Gabaix (2005)). Since �rms implement

projects that yield only non-negative pro�ts, this implies that the growth rate of total revenue or

total pro�ts will decline with size.

Note that since

�N = �N�1
�LN

�H + �L (N + 1)

it is immediate that as N ! 1 or � ! 0; when N ! N , �N � �N�1; so the share of workers at
large �rms is approximately constant. This implies that the density of �rm sizes will be proportional

to 1=N as N becomes large. That is, the tail of the distribution will be arbitrarily close to the tails

of a Pareto distribution with coe¢ cient one. Similarly if �H is small, �N � �N�1 (N= (N + 1)) ;

and so for N large �N � �N�1 and the distribution of �rm sizes is approximately Pareto with

coe¢ cient one. This is interesting given that several authors have concluded that the upper tail of

the distribution of �rm sizes is close to a Pareto distribution with coe¢ cient one (see, for example,

Axtell (2001)). We summarize these results in the following proposition.

Proposition 10 As �! 0, or N !1; the density of �rm sizes is arbitrarily close to the density of
a Pareto distribution with coe¢ cient one, for large enough �rm sizes. Furthermore, the distribution

of �rm sizes is closer to a Pareto distribution with coe¢ cient one, the smaller the mass of workers

in new �rms, �H :

The invariant distribution of �rm sizes, as well as any other outcome of the model, is a function

of the exogenous parameters and distributions in the model, namely, �, w; and the distributions

F� and H. However, as we show above, the e¤ect of all those variables can be summarized through

the value of �L and �H=�L: Therefore we can assign a particular value to this ratio and compute
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the resulting distribution of employment shares and �rm sizes. Figure 5 illustrates the invariant

distribution in this model and compares it with the distribution of �rm sizes in 2000 in the US. The

data for the distribution of enterprises come from the Statistics of US Businesses (SUSB) program.

These data cover the whole private US economy (except agriculture) and were constructed by the

US Census Bureau for the study in Rossi-Hansberg and Wright (2007).16 In this paper we make

use of the evidence on enterprises rather than the evidence on establishments which is the focus

of Rossi-Hansberg and Wright (2007). Apart from the size distribution of �rms for the aggregate

economy, the data set includes the size distribution of enterprises at the two-digit NAICS level

for 2000, which we also use below. The industry data are provided for enterprises of up to 10000

employees.

In order to compute the distribution given in equation (12), we need to truncate the distribution

of �rm sizes at a certain size. We choose N = 500000; since the largest �rms reported in the

aggregate data have this number of employees. We choose �H=�L = 1=9 and so 90% of the new

employees are hired by existing �rms and 10% by new �rms. As is evident from equations (10) and

(11), the distribution depends only on the ratio �H=�L and not on �H and �L separately.

Figure 5 shows how our model can do a good job in matching the distribution of �rm sizes.

Relative to a Pareto distribution with coe¢ cient one (a straight line with slope minus one), it

exhibits a relatively thinner tail of small �rms. Furthermore, since in the model and in the data we

are truncating the distribution, both distributions exhibit thinner tails than the Pareto distribution

for very large sizes. This is only the result of truncation in the model. If we let N ! 1, then
the theory implies that the upper tail will be arbitrarily close to the Pareto distribution for large

enough sizes. Similarly, in the data the census does not reveal the sizes of the largest �rms because

of con�dentiality concerns. Furthermore, while in the model we do not have integer constraints

and so there are some �rms at all sizes, in the data there cannot be any fractional �rms, which

truncates the distribution as well. Hence, the reason to have a small mass of large �rms on the

upper tail is similar in the model and the data.

One noticeable di¤erence between the distribution generated by the model and the distribution

generated in the data is that the theoretical distribution lies below the empirical one in Figure 5.

The reason for this is that in our setup, ideas are generated by one employee and not by teams of

employees. Consequently, individual agents spin o¤, not teams of agents. This is clearly not true

16Rossi-Hansberg and Wright (2007) discusses the important di¤erences observed in the size distribution of estab-
lishments and enterprises (�rms). Their paper is solely concerned with establishments, while the current paper is
about �rms.
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Figure 5: Model vs. Data

in the data. Firms enter small, but not necessarily with one employee. Were we to assume that

teams of between 2 and 3 employees have ideas and spin o¤, we could shift the theoretical curve

in Figure 5 so that it lies on top of the empirical one. Thus, the emphasis is on the shape, not the

level of the curves. This exercise is illustrated in Figure 6.

Figure 6 uses a value of �H=�L = 0:0736. This value is the empirical counterpart of �H=�L

in the US economy from 1989 to 2003. Namely, we calculated the net number of workers added

by new �rms and divided it by the net number of workers added by continuing �rms. The data

come from the US Small Business Administration (SBA). If we instead calculate the ratio for each

year and average over time, �H=�L increases to 0:1235: Clearly, the model does a very good job of

matching the aggregate distribution, arguably better than a Pareto distribution at the upper and

lower tails.
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Figure 6: Model vs. Data with Variable Team Size

Figure 7 shows how we can modify the shape of the invariant distribution by changing the ratio

�H=�L. We illustrate this using N = 10000: The relationship between �H=�L and the primitives

of the model is discussed in Section 4. Here, we simply display the invariant distribution for

�H=�L = 1=2; 1=5, 1=10, and 1=20: It is clear from the �gure that as we increase the number of

entrants (by increasing �H=�L); we shift mass to the lower tail, and therefore, the slope of the

curve in Figure 7 becomes steeper. However, as we know from the previous proposition, if one

increases N to large enough values, the shape of the distribution approaches a Pareto distribution,

as N increases, in all these cases. Figure 7 illustrates the invariant distribution for a large range of

parameters. The empirical value of �H=�L is as calculated above, equal to 0:0736.

The next step is to assess whether the relationship between �H=�L and the size distribution of

�rms can explain some of the variation in the size distribution of enterprises across sectors. Di¤erent
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Figure 7: The E¤ect of �H=�L

sectors have di¤erent values of �H=�L. This, according to our model, should explain some of the

variation in the distribution of enterprise sizes in the data.

There are two main issues in performing this exercise. The �rst is that the data to calculate

�H=�L for enterprises at the two-digit NAICS level are not publicly available. There are data

provided by the US SBA to do this for establishments, but aggregating to enterprises is not trivial.

Furthermore, the data for establishments will, in general, show relatively more new net employment

in new establishments than in continuing establishments compared to the enterprise data. This

occurs since continuing enterprises may add new employees by adding a new establishment. Hence,

�H=�L calculated with establishment data will be larger than with enterprise data. Given the

available data, we can compute this measure for the aggregate economy for both enterprises and

establishments. In fact, our calculations show that the ratio for establishments is about 10 times

larger than for enterprises. This provides a measure of the bias when we use establishment data
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instead of enterprise data. We can then compute �H=�L using establishment data for each two-digit

NAICS industry and multiply them by the ratio of the measure of �H=�L for enterprises divided by

the one for establishments for the aggregate economy. This provides us with an estimated measure

of �H=�L for enterprises in all two-digit NAICS industries.

The second issue is that we need a benchmark to compare our results. In particular, we need to

assess if the model can explain some of the variation in the observed size distribution of enterprises

across industries. We use the aggregate observed distribution of enterprises as our benchmark. So

we compare the average absolute distance between the industry size distribution of establishments

and the aggregate one in the data. We then compute the size distribution predicted by the model

if we use the industry �H=�L calculated as described above. We need to do one more adjustment.

From our discussion of Figures 5 and 6, it is clear that in order to match the level of the size

distribution of enterprises we need to adjust the size of the teams that can have an idea and

implement it. We saw in Figure 6 that a team of 2.5 workers does a good job for the aggregate

economy. However, the required minimum team size probably varies substantially across industries.

To address this we choose the team size for each industry so as to minimize the average absolute

deviation between the model�s implied distribution and the industry distribution of enterprises.

Figures 8 and 9 show the results of this exercise for 19 two-digit NAICS industries and the

aggregate economy. For all industries we set the upper bound on �rm size, N , equal to 20000,

although our calculations do not change signi�cantly if we choose numbers between 10000 and

30000. The data is censored at 10000, so 20000 seems reasonable.

The �gure for the total economy is almost identical to Figure 6, except that the estimated

team size is actually 2.72 not 2.5 as in that �gure. The �gures include the estimated team size for

each industry, which varies from 1 in the �Accommodation and Food Services Industry�to 403 for

�Management of Companies and Enterprises�(a clear outlier given the shape of the distribution of

enterprises in this industry. The second largest team size is 16.4 for �Utilities�). We also report

the average absolute di¤erence between the modeled distribution and the data and the aggregate

distribution and the industry data. The model beats the aggregate benchmark in 14 out of 19

industries. It does a particularly good job in matching the distribution in �Manufacturing�, �Educa-

tional Services�and �Health Care and Social Assistance�. We conclude that although certainly not

the only source of variation, �H=�L explains part of the industry variation in the size distribution

of �rms.

As discussed above, in computing the distributions predicted by the model for the observed
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Figure 8: Industry Size Distributions and Model I
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Figure 9: Industry Size Distributions and Model II
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�H=�L in each industry, we also estimated the size of the implied team sizes across industries,

namely, the size of the team that makes the model �t the industry data as closely as possible. It is

then a natural question whether the team sizes implied by the model via the exercises performed

above are related to observed �team sizes�. Since spino¤s always start with one team, we can look

at the average size of entering �rms in the data. These data are publicly available from the SBA

for �rm births between 2002 and 2003, 2003 and 2004, and 2004 and 2005. The data provided

by the SBA report the number of employees in new �rms by size bins (1-4, 5-9, 10-19, 20-100,

100-500, and 500+). We compute average entry size in two ways. The �rst one uses the mean

employment size in the bin and 750 employees for the 500 plus category. The second, a lower

bound, is computed by using the lower limit of the bin, which we know exactly (even for the largest

bin). We calculate correlations between the model�s predicted team sizes as reported in Figures

8 and 9, and the average entry size over the three year pairs. The result is a correlation of 0.918

when we use the mean of the size bin and 0.925 when we use the lower limit of the size bin. These

very high correlations are, we believe, an encouraging outcome for the model. In particular, note

that no data on entry size were used in calculating the model�s team size predictions. The results

are similar if we use individual year pairs. All correlations fall between 0.909 and 0.936.

Figure 10 presents the team sizes predicted by the model together with the data on entry. We

order industries so that the predicted team sizes are increasing. The high correlation we reported

above is evident in the graph. Two anomalies are worth pointing out. First, the model clearly

under-predicts team size in the �Accommodation and Food Services Industry�. Second, the large

team size predicted for the �Management of Companies and Enterprises� industry is re�ected by

large entry sizes in the data, but still an order of magnitude smaller.17

6 Conclusion

We propose a theory of �rm dynamics in which workers have ideas for new projects that can

be implemented inside existing �rms or, at a cost, in new �rms: spino¤s. Workers have private

information about the quality of their ideas. Because of an adverse selection problem, workers

can sell their ideas to existing �rms only at a price that is not contingent on their information.

Therefore, workers with very good ideas decide to spin o¤ and set up a new �rm. This implies that

through selection, our theory determines the productivity distributions of existing and new �rms.

17Note that one source of error in this calculation is probably that in some industries �rms may enter at very large
scales, but the data are censored at 500 employees so we cannot see that.
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Figure 10: Model�s Predicted Team Size and Average New Firm Size in the US

Furthermore, since entrepreneurs of existing �rms pay a price for the ideas sold in the market that

implies zero expected pro�ts, the model is consistent with scale-independent growth in �rm size.

It is the existence of a competitive market for ideas that is key for this result and, together with

entry via spino¤s, leads to distributions of �rm sizes that resemble the empirical ones.

The theory produces a size distribution of �rms that depends on all the parameters and dis-

tributions of the model through the value of �H=�L only. The model links this ratio to primitive

parameters and therefore guides us on how these parameters determine the size distribution of

�rms. We calculated this ratio using aggregate and industry US data and showed that one obtains

size distributions that, for the entire US economy and most industries, are hard to distinguish from

their empirical counterpart.

We view as one of the contributions of this paper to provide a simple model of �rm dynamics

that focuses on private information in the generation of new technology. In order to do so, we have
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made some strong assumptions, many of which can be relaxed in di¤erent ways. For example, we

have assumed that entrepreneurs do not generate ideas as they are involved in running their �rm.

In Appendix B we outline how to relax this assumption by introducing a resource cost of setting

up a new �rm. We leave other extensions for future research. One extension would be to allow for

non-compete clauses. For instance, we could assume that with some probability, which depends

on local laws, workers that spin o¤ may lose property rights to their �rst project. Of course this

would increase �H and make workers more selective about spinning o¤.

Another extension is to study the links between the aggregate generations of ideas, wages,

and industry productivity. We could endogenize wages by requiring that the total compensation

package of workers (which includes wages, the price of ideas and the possibility of getting an idea

good enough to become an entrepreneur) clears a fully speci�ed labor market. Then, an increase in

the rate at which workers get ideas will have consequences for the observed wages and the measured

productivity of �rms. Essentially, we could embed this theory of �rm dynamics and entry into an

equilibrium framework, such as the neoclassical growth model and study the interactions between

industry evolution and wages.

Finally, if spino¤s tend to be geographically close to their parent �rm, then they are a potentially

important reason why we get clusters of �rms working in the same line of business in the same

locality. Augmented by a location choice, our theory could then form the basis of a dynamic theory

of industrial agglomeration.
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7 Appendix A

In this appendix we �rst provide all the proofs not included in the main text. We also prove the

analog of Proposition 5 for the case of exponential utility.

Proof of Lemma 1:

Proof. Let C be the space of bounded continuous functions de�ned on R� N: De�ne the
operator T (W ) : C ! C as

T (W ) (S;N) = 
 (�;N)

Z �H
max [V (�; S;N)� u(�(S;N)� Z + w)� �W (S;N); 0] dH(�)

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

+
 (�;N)H (�H) [(�(S;N)� Z + w) + �W (S;N)]

where

V (�; S;N) =

Z
[u (�(S;N) + w + P � Z � w)] dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P ):

It is easy to show that T is a contraction using Blackwell�s conditions. It satis�es monotonicity

since W � W 0 implies that T (W ) � T (W 0) (all expressions above are increasing in the function

W ). It satis�es discounting, since for a > 0

T (W + a) � �a+ T (W )

where � < 1. Hence, T is a contraction by the Contraction Mapping Theorem and a unique �xed

point to the operator T exists.

Suppose W is increasing in S. Since S appears only in � and W in the de�nition of T , T (W )

is strictly increasing in S, given that � is strictly increasing in S: Hence, since the subset of weakly

increasing functions in C is closed, by the Contraction Mapping Theorem, the �xed point of T is
weakly increasing in S: The corollary to the Contraction Mapping Theorem (see page 52, Corollary

1, in Stokey, Lucas and Prescott, 1989) then says that we can apply the operator T to the �xed

point one more time to conclude that the �xed point is strictly increasing in S:

To show that W is continuous in S; note that since the space of continuous functions is closed

in the sup norm, we can apply the same argument to show continuity given that � is continuous in

S; F� is continuous in �; and H(�) is continuous in �:
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Proof of Lemma 2:

Proof. By Lemma 1 W (S;N) exists and therefore V (�; S;N) exists. Since �(S;N) +w�w+
P �Z is strictly increasing in P , the �rst term in V is strictly increasing in �; since

R
f (P ) dF� (P )

is increasing in � for all increasing functions f . Since W (S;N) is strictly increasing in S by the

previous lemma, Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P )

is strictly increasing in �, which proves the result.

That V is strictly increasing in S follows from W being strictly increasing in S.

To show that V is continuous in � and S; note that by Lemma 1, W (S;N) is continuous in S;

the maximum of continuous functions is continuous, and F� is continuous with respect to �.

Proof of Lemma 3:

Proof. First note that given our assumption that F� (0) = 0 all � we know that � � 0: Then

V (0; S;N) = u (�(S;N)� Z) + �W (S;N) < u(�(S;N)� Z + w) + �W (S;N)

since w > 0. In contrast,

lim
�!1

V (�; S;N) = lim
�!1

Z
u (�(S;N) + w � Z � w + P ) dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P )

> u(�(S;N)� Z + w) + �W (S;N):

The inequality follows because the probability that P > w goes to 1 as � !1 and

max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
is non-negative. Hence since V (�; S;N) is strictly increasing and continuous in �; by the Mean

Value Theorem there exists a unique scalar �L that satis�es (1) for each pair (N;S). Let �L (S;N)

be the unique function that takes this value given a pair (S;N) :

Proof of Lemma 4:

Proof. We �rst need to show that V0 is increasing and continuous in �; but this follows directly

from F� being continuous and increasing in � as assumed above. We also know that

V0(0) = u (0) + �W0 < u (w + Z) + �W0
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since w + Z > 0 and max [W (0; 1) ;W0] = W0. The latter is the result of the fact that a new

entrepreneur with a project that pays 0 earns less than a worker and has fewer opportunities with

regard to exploiting his future ideas (he has exercised the option of spinning o¤). In contrast,

lim
�!1

V0(�) = lim
�!1

Z
u (P ) dF�(P ) + �

Z
w
W (P; 1) dF�(P )

> u (w) + �W0:

Hence since V0(�) is strictly increasing in � and continuous by the Mean Value Theorem, there

exists a unique scalar �H that satis�es (2).

Proof of Proposition 5:

Proof. Guess

W (S;N) = ! (� (S;N) + w) = ! (N (S � w) + w)

Since

W (S;N) = 
 (�;N)

Z �H
max

26664
R
[�(S;N) + w + P � Z � w] dF�(P )

+�
R
max

h
W
�
NS+P
N+1 ; N + 1

�
;W (S;N)

i
dF�(P );

�(S;N)� Z + w + �W (S;N)

37775 dH(�)
+(1� 
 (�;N)H (�H)) [�(S;N) + w + �W (S;N)]

then

! (N (S � w) + w) = (1 + �!) (N (S � w) + w)� 
 (�;N)H (�H)Z

+
 (�;N)

Z �H
max

�
�� w + �!

Z
max [P � w; 0)] dF�(P ); 0

�
dH(�)

Let

! = 1� �!

or

! =
1

1� �
then

Z =
1

H (�H)

Z �H
max

�
�� w + �

1� �

Z
max [P � w; 0] dF�(P ); 0

�
dH(�)

=
1

H (�H)

Z �H

�L

max

�
�� w + �

1� �

Z
PL

[P � w] dF�(P ); 0
�
dH(�)
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Note that this is exactly the condition that makes

W (S;N) =
�(S;N) + w

1� � :

That is, it makes the value function of entrepreneurs equal to the present value of the current project

of the �rm. So entrepreneurs are willing to pay up to Z for workers�ideas, and workers will get this

price or will sell the idea to another entrepreneur. Competition for ideas among entrepreneurs then

guarantees that the market price of ideas Z is determined by the condition above in equilibrium.

Then

V (�L; S;N) = (�(S;N)� Z + w) + �W (S;N)

implies that �L satis�esZ
(P � w) dF�L(P ) +

�

1� �

Z
max [P � w; 0] dF�L(P ) = 0; (13)

and therefore is independent of S and N: Hence, �L < w; since entrepreneurs can drop the idea

next period (the maximum in the second term on the l.h.s.). PL satis�es

max [P � w; 0] > 0 for P > PL;

so PL = w: Then �L is given by

1

1� �

Z
w
(P � w) dF�L(P ) =

Z w

0
[w � P ] dF�L(P ):

Namely, the present value of the gains from implementing a project has to be equal to the cost.

Guess that

W0 =
w + f0
1� �

then

V0(�) =

Z
PF�(P ) +

�

1� �

Z
max [P;w + f0] dF�(P ):

The continuation value of a worker currently working in a �rm, W0, is then given by

w + f0
1� � = �

Z
max

�Z
PF�(P ) +

�

1� �

Z
max [P;w + f0] dF�(P ); w + Z + �

w + f0
1� �

�
dH(�)

+(1� �)
�
w + �

w + f0
1� �

�
so

f0 = �

Z
max

�Z
(P � w)F�(P ) +

�

1� �

Z
max [P � w � f0; 0] dF�(P ); 0

�
dH(�)+(1��)Z (14)
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which determines f0 as a positive constant (givenH assigns positive mass to ��s such that
R
(P � w)F�(P )

> 0) and veri�es our guess.

Then

V0(�) =
w

1� � +
�f0
1� � +

Z
(P � w) dF�(P ) +

�

1� �

�Z
max [P � w � f0; 0] dF�(P )

�
:

Since

V0(�H) = w + Z + �W0

�H is given by Z
(P � w) dF�H (P ) +

�

1� �

Z
max [P � w � f0; 0] dF�H (P ) = Z;

Two results are immediate from this expression. First, since Z � 0 and f0 > 0 the left-hand

side of the above equation evaluated at �H = �L is less than the right-hand side given that �L is

determined by equation (13). Since the left-hand side is increasing in �, it follows that �L < �H .

Second, since PH is such that P � w � f0 = 0; it follows that PH = w + f0 > w:

Proof of Proposition 6:

Proof. To establish this proposition, observe that when Z = 0; f0 given by equation (14) is

positive. Then, Equations (5) and (6) imply that if �H = �L; the l.h.s. of (6) is negative and hence

smaller than Z = 0: Now note that the l.h.s. of (6) is strictly increasing and continuous in �H as

is the r.h.s. However, observe that the derivative of the l.h.s. of equation (6) with respect to �H
is strictly larger than the derivative of Z with respect to �H and the di¤erence of both derivatives

is bounded away from 0; as Z is the average value of the l.h.s. of (6) for the interval [�L; �H ]:

Therefore, by the Intermediate Value Theorem there exists a unique �H that solves equation (6).

Given �H we can immediately obtain a unique value of Z and f0: Furthermore, �L is uniquely

determined by equation (5) since the r.h.s. of equation (5) is strictly increasing and continuous in

�Land at �L = 0 the r.h.s. is less than zero.

We still need to show that there exists a unique invariant distribution �N and an average

probability of entrepreneurs buying an idea �: To show that there exists a unique � given an

invariant distribution is immediate from equation (3). Showing existence of a unique invariant

distribution is more involved and we dedicate Section 5 to it. In Corollary 8 we show that in fact

such a distribution exists and is unique.
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We now proceed to prove the analog of Proposition 5 for the case of exponential utility. We are

interested in this case because as in the linear case the value functions can be solved analytically,

which allows us to obtain an expression for the price of an idea. Furthermore, in contrast with the

linear case, with exponential utility agents are not risk neutral and, most important, without the

market for ideas the thresholds would depend on the size of �rms. That is, absent a market for ideas

the selection of ideas would be �rm-speci�c. Hence, this case further illustrates the importance of

the market for ideas in generating scale independent growth.

Proposition 11 If u (ct) = �ae�bct ;

� the value of the �rm is given by

W (S;N) =
u(�(S;N) + w)

1� � ;

� the value of a worker is given by
W0 = u(w)f0

for some positive constant f0;

� �L (S;N) is independent of S and N ,

� the thresholds for using a project are given by PL (S;N) = w and a constant PH (S;N) > w;

� the market price of ideas is given by

Z =
1

b
log

"
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

#
> 0;

� and �L < �H ; so some ideas are implemented within existing �rms and some through spino¤s.

Proof. Guess that

W (S;N) = �ae�b[�(S;N)+w]f(N)

for some function f (N) independent of S. Substitute the guess to get

�ae�b[�(S;N)+w]f(N) = 
 (�;N)

Z �H
max

24 V (�; S;N) + ae�b[�(S;N)+w]ebZ
+�ae�b[�(S;N)+w]f(N); 0

35 dH(�)
+(1� 
 (�;N)H (�H))

h
ae�b[�(S;N)+w] + �ae�b[�(S;N)+w]f(N)

i
�
 (�;N)H (�H)

h
ae�b[�(S;N)+w]ebZ + �ae�b[�(S;N)+w]f(N)

i
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and

V (�; S;N) =

Z
�ae�b[�(S;N)+w]ebZe�b(P�w)dF�(P ) +

�

Z
max

h
�ae�b[�(S;N)+w]e�b(P�w)f(N + 1);�ae�b[�(S;N)+w]f(N)

i
dF�(P ):

Then,

f(N) = �
 (�;N)
1� �

Z �H
max

26664
�
R
ebZe�b(P�w)dF�(P )

+�
R
max

�
�e�b(P�w)f(N + 1);�f(N)

�
dF�(P )

+ebZ + �f(N); 0

37775 dH(�)
+

1

1� � +

 (�;N)H (�H)

1� �

�
ebZ � 1

�
which does not depend on S. This veri�es our guess. Now guess that

f (N) =
1

1� � :

Substituting this guess, we obtain that

ebZ � 1 = ebZ
Z �H

�L

Z �
1� e�b(P�w)

�
dF�(P )dH(�)

+
�

1� �

Z �H

�L

Z
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

Hence Z needs to satisfy this equation for our guess to be correct. Or,

ebZ =
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

which implies that

Z =
1

b
log

"
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

#
:

Note that this is exactly the condition that makes

W (S;N) =
�ae�b[�(S;N)+w]

1� � =
u(�(S;N) + w)

1� � ;

so entrepreneurs are willing to pay up to this amount for workers�ideas, and workers will get this

price or will sell the idea to another entrepreneur. Competition for ideas among entrepreneurs then

guarantees that the condition is satis�ed.
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The threshold �L (S;N) is implicitly de�ned by

V (�L (S;N) ; S;N) = u(�(S;N)� Z + w) + �W (S;N)

which can be written asZ
�e�b(P�w)dF�L(P ) + e

�bZ �

1� �

Z
max

h
1� e�b(P�w); 0

i
dF�L(P ) = �1

or Z
�e�b(P�w)dF�L(P ) + e

�bZ �

1� �

Z
PL

h
1� e�b(P�w)

i
dF�L(P ) = �1

which determines �L as a constant.

PL is then determined by

W

�
NS + PL
N + 1

; N + 1

�
=W (S;N)

or
e�b[PL�w]

1� � =
1

1� �
and so PL = w:

We still need to show that PH = w: As before guess that

W0 = �ae�bwf0

W (P; 1) =
�ae�bP
1� �

then

V0(�) =

Z
�ae�bwe�b(P�w)dF�(P ) + �

Z
max

�
�ae�bwe�b(P�w) 1

1� � ;�ae
�bwf0

�
dF�(P )

= ae�bw
�
�
Z
e�b(P�w)dF�(P ) + �

Z
max

�
�e�b(P�w) 1

1� � ;�f0
�
dF�(P )

�
and from the expression for W0 ,

f0 =
1

1� � �

�

1� �

Z
max

26664
24 R �

1� e�b(P�w)
�
dF�(P )+

�
1��

R
max

�
f0 � e�b(P�w); 0

�
dF�(P )

35 ;
;�e�bZ

37775 dH(�)
which determines f0 as a positive constant, where f0 < 1= (1� �) and veri�es our guess.
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The threshold �H is determined by

V0(�H) = u(w + Z) + �W

which implies thatZ
�e�b(P�w)dF�H (P ) +

�

1� �

Z
max

h
�e�b(P�w) + (1� �) f0; 0

i
dF�H (P ) = �e

�bZ :

The equation above implies that PH satis�es

e�b(PL�w) = (1� �) f0 < 1

since f0 < 1= (1� �). Hence, we conclude that PL > w:

To show that �H > �L, we need to compare the equations that determine these thresholds,

namely, Z
e�b(P�w)dF�L(P ) = 1 + e�bZ

�

1� �

Z
PL

h
1� e�b(P�w)

i
dF�L(P )Z

e�b(P�w)dF�H (P ) = e�bZ +
�

1� �

Z
PH

h
(1� �) f0 � e�b(P�w)

i
dF�H (P )

But note thatZ
PH

h
(1� �) f0 � e�b(P�w)

i
dF�H (P ) <

Z
PL

h
1� e�b(P�w)

i
dF�L(P ) < 1

since (1� �) f0 < 1 and PH > PL: Hence,Z
e�b(P�w)dF�H (P ) <

Z
e�b(P�w)dF�L(P )

which implies that �H > �L.

8 Appendix B

In this appendix we brie�y discuss an extension of the model where we assume that when spinning

o¤, individuals do not give up the option of having new ideas. However, without this assumption

spinning o¤ would be costless, which would eliminate the market for ideas. Therefore, in this

appendix, we introduce a resource cost f > 0 of creating a new �rm, which restores the market for

ideas.
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The value of an entrepreneur who himself has an idea with average return � is

V E(�; S;N) =

Z
[u (�(S;N) + w + P � w)] dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P ):

An entrepreneur who buys an idea with return � has value V (�; S;N) as de�ned in the text. Note

that since the current utility of the entrepreneur is di¤erent depending on whether he pays for the

idea or not, we need to de�ne both value functions.

W (S;N) now satis�es the following functional equation

W (S;N) = �

Z
max

�
V E(�; S;N); u (�(S;N) + w) + �W (S;N)

�
dH(�)

+
 (�;N)

Z �H
max [V (�; S;N); u (�(S;N)� Z + w) + �W (S;N)] dH(�)

+(1� �� 
 (�;N)H (�H)) [u (�(S;N) + w) + �W (S;N)] :

Essentially, we just added the value of getting an idea to the continuation of being an entrepreneur.

Note that entrepreneurs will implement all their good ideas themselves and so the �rst integral

above is not truncated at �H : The lower threshold will be di¤erent for an idea that an entrepreneur

himself gets than for ideas that he buys in the market. Let �EL (S;N) be the worst of his own ideas

that an entrepreneur will test/implement. This threshold is given by:

V E(�EL ; S;N) = u(�(S;N) + w) + �W (S;N):

Note that in the linear case, �EL (S;N) = �L(S;N) because the Z cancels out from equation (1),

which determines �L(S;N): Whether idea is bought or thought, the threshold PL = w at which a

project is implemented remains the same because post-implementation the price paid for the idea

is sunk.

The expected utility of a worker with an idea � that decides to spin o¤ is now given by

V0(�) =

Z
u (P � f) dF�(P ) + �

Z
max [W (P; 1) ;W0] dF�(P ):

The rest of the worker�s problem is exactly as stated in the text. Of course, now the threshold

�H will depend on the value of the exogenous cost f . Note also that the equilibrium condition (3)

remains the same as if ideas generated by entrepreneurs were not sold in the market.

We then have the following analog of Proposition 5 :

51



Proposition 12 If u (ct) = ct; then in equilibrium

� �L (S;N) = �EL (S;N) ; both are independent of S and N , and �L (S;N) < w;

� the thresholds for using a project are given by PL (S;N) = PH = w

� �L < �H ; so some ideas are implemented within existing �rms and some through spino¤s,

� and the market price of ideas is given by

Z =
1

H (�H)

Z �H

�L

[�� w + �

1� �

Z
max [P � w; 0] dF�(P )]dH(�) > 0:

Proof. The proof is much simpler than in the text because now the cost of spinning o¤ is

exogenously given and does not have to be solved for. The proof that PL (S;N) = PH = w simply

follows from the fact that since the cost of spinning o¤ is now exogenously given by f; once this cost

is paid there is no reason to not carry on with a project that pays at least w. That is, there is no

option value to going back to being a worker. For the rest, note that the threshold that determines

�L is given by Z
(P � w) dF�L(P ) +

�

1� �

Z
w
(P � w) dF�L(P ) = 0;

independently of whether ideas are bought or thought. The threshold �H is now implicitly deter-

mined by Z
(P � w � f) dF�H (P ) +

�

1� �

Z
w
(P � w) dF�H (P ) = Z;

where, as before,

Z =
1

H (�H)

Z �H

�L

[�� w + �

1� �

Z
max [P � w; 0] dF�(P )]dH(�) > 0:

As discussed in the text, this system has a unique solution where �L < �H and Z > 0. Note that

the system is identical except for the substitution of the exogenous value f for the endogenous

value f0.

Observe that unlike the model in the text, all projects that yield at least w are implemented.

Therefore, there is no reason to assume that the output of projects is speci�c to the founder of the

company. That is, �rms can be sold in the market. Of course, in equilibrium there are no gains

from such sales.

Finally, we need to modify the expression for transition probabilities. Now, the probability of

a �rm transitioning from N to N + 1 workers is given by

p (N;N + 1) = �

Z
�L

(1� F� (w)) dH (�) + ��N
Z �H

�L

(1� F� (w)) dH (�) :
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Note that in this environment, the de�nition of �H remains unchanged but that of �L changes

accordingly. Now, the expected number of new workers in old �rms is given by

Et

LtX
N=1

"Z
�L

(1� F� (w)) dH (�) + �N
Z �H

�L

(1� F� (w)) dH (�)
#
��N

�
�
�L + o(N

�1)
�
Lt;

where o(N�1) converges to 0 as N goes to in�nity. Relative to the calculations in the text, we are

adding, in expectations, a constant amount of workers due to the fact that the one entrepreneur

in each �rm is now contributing ideas also and those ideas have a higher probability of being

implemented than ideas bought in the market. This implies that growth is not scale independent:

small �rms grow faster than large �rms, although this dependence becomes vanishingly small as

N becomes large. Therefore, the upper tail of the invariant distribution will again satisfy the

statement in Proposition 10 in the text.
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