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Abstract

In economics, common factors are often assumed to underlie the co-movements of a set of macroeconomic vari-

ables. For this reason, many authors have used estimated factors in the construction of prediction models. In this

paper, we begin by surveying the extant literature on diffusion indexes. We then outline a number of approaches

to the selection of factor proxies (observed variables that proxy unobserved estimated factors) using the statistics

developed in Bai and Ng (2006a,b). Our approach to factor proxy selection is examined via a small Monte Carlo

experiment, where evidence supporting our proposed methodology is presented, and via a large set of prediction

experiments using the panel dataset of Stock and Watson (2005). One of our main empirical findings is that our

“smoothed” approaches to factor proxy selection appear to yield predictions that are often superior not only to a

benchmark factor model, but also to simple linear time series models which are generally difficult to beat in forecast-

ing competitions. In some sense, by using our approach to predictive factor proxy selection, one is able to open up the

“black box” often associated with factor analysis, and to identify actual variables that can serve as primitive building

blocks for (prediction) models of a host of macroeconomic variables, and that can also serve as policy instruments,

for example. Our findings suggest that important observable variables include various S&P500 variables, including

stock price indices and dividend series; a 1-year Treasury bond rate; various housing activity variables; industrial

production; and exchange rates.
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1 Introduction

The idea that individual economic variables can be forecast with some precision by refining the

information from a large panel of data into a small set of estimated factors (predictors) is intrigu-

ing. It suggests that there is a small set of crucial latent factors which generate the co-movements

in a large set of macroeconomic variables. This idea is consistent, for example, with the no-

tion that a small set of underlying shocks are responsible for the dynamic behavior implicit in

dynamic stochastic general equilibrium models. The practice of using observable economic vari-

ables to proxy the latent factors is espoused on the Federal Reserve Bank of New York’s website:

“In formulating the nation’s monetary policy, the Federal Reserve considers a number of factors,

including the economic and financial indicators which follow, as well as the anecdotal reports com-

piled in the Beige Book. Real Gross Domestic Product (GDP); Consumer Price Index (CPI);

Nonfarm Payroll Employment Housing Starts; Industrial Production/Capacity Utilization; Retail

Sales; Business Sales and Inventories; Advance Durable Goods Shipments, New Orders and Unfilled

Orders; Lightweight Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500 Stock Index; M2”

(see http://www.newyorkfed.org/education/bythe.html). The recent literature on factor (diffusion

index) models is rich and diverse. A very few of the most important papers include: Bai (2003), Bai

and Ng (2002, 2006a,b,c,d, 2007), Boivin and Ng (2005), Connor and Korajczyk (1993), Ding and

Hwang (1999), Forni, Hallin, Lippi, and Reichlin (2000, 2005), Forni and Reichlin (1996, 1998),

Geweke (1977), Rapach and Strauss (2007), and Stock and Watson (1996, 1998, 1999, 2002a,b,

2004a,b, 2005).

In this paper, our purpose is twofold: first, we provide a review of the extant literature, with

careful emphasis on the implementation of factor estimation and prediction using the methods of

Bai and Ng as well as Stock and Watson. We then outline a simple methodology for the construction

of factor proxies for use in prediction models, where our proxies are observable economic variables.

In this sense, we attempt to look inside the “black box,” in the sense that our proxy factors

are observable and hence have clear economic meaning, while factors in general are often hard

to interpret economically (see below for further discussion). As a case in point, policy makers use

individual observable variables as policy instruments, for example. Our factor proxies might thus be

used for policy, while estimated unobserved factors are not as obviously used in policy applications.

In this sense, our main contribution is to add to the broad literature on prediction using factor
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models. The methodology that we outline is very straightforward, and is based upon application

of the A(j) and M(j) statistics developed in Bai and Ng (2006a,b). An ancillary purpose in this

paper is to note that in some cases factor proxies defined as observable variables may actually

perform as well as estimates of unobserved factors based on standard factor analysis. This is rather

an interesting finding, suggesting for example that factor analysis should be applied with caution,

particularly in cases where parameter estimation error implicit to factor construction may be great.

Following the approach of Stock and Watson (2002a,b), diffusion index forecasts involve a two-

step procedure. First, the method of principal components is used to estimate the factors from

a large panel of possible predictors, X. Second, the estimated factors are used to forecast the

variable of interest, yt+1. Stock and Watson (2002a) demonstrate that diffusion index forecasts

yield encouraging results. Bai and Ng (2006a), however, point out that the regressors (factors) in

the diffusion index model are estimated, hence substantially increasing the forecast error variance.

In a related paper, Bai and Ng (2006b) examine whether observable economic variables can serve as

proxies for the underlying unobserved factors. In particular, they use the A(j) and M(j) statistics

to determine whether a group of observed variables yields precisely the same information as that

contained in the latent factors. Stock and Watson (2002a) have also attempted to link the factors

to observed variables. Thus, in some sense, Bai and Ng, as well as Stock and Watson, have already

looked inside the “black box.” Our approach is to take their argument one step further, and to

argue that if observable economic variables are indeed good proxies of the unobserved factors, then

these proxies can be used in place of the factors in the diffusion index model for prediction. Once

the set of factor proxies is fixed, we effectively eliminate the incremental increase in forecast error

variance (i.e., uncertainty) associated with the use of estimated factors. Along these lines, we

consider “smoothed” versions of the A(j) and M(j) statistics that pre-select a set of factor proxies

prior to the ex-ante construction of a sequence of predictions. It is worth noting that by replacing

the estimated factors with observed variables, we are trading off the above variety of uncertainty

with “variable selection uncertainty.” Our empirical results suggest that there are cases in macro

forecasting where the trade-off is worthwhile.

In a Monte Carlo experiment, we show that the A(j) and M(j) statistics can be used to

construct prediction models that perform quite favorably when compared with standard factor

model predictions. We additionally carry out a large variety of prediction experiments using the

macroeconomic dataset of Stock and Watson (2005). In these experiments, we predict a number of
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price and income variables, including industrial production, real personal income less transfers, real

manufacturing and trade sales, the number of employees on non-agricultural payrolls, the consumer

price index, the personal consumption expenditure implicit price deflator, and the producer price

index for finished goods. Using recursively estimated models, we construct h = 1, 3, 12, and 24 step

ahead forecasts. We show that the A(j) and M(j) statistics appear to offer an interesting means

by which factor proxies for later use in prediction models can be chosen. Indeed, our “smoothed”

approaches to factor proxy selection appear to yield predictions that are often mean square forecast

error “superior” not only relative to a benchmark factor model, but also to simple linear time series

models which are often difficult to beat in forecasting competitions. Furthermore, our methods

based on the use of the A(j) statistic appear to perform better than those based on the M(j)

statistic. Finally, we provide evidence that: (i) versions of our factor proxy selection method that

use only a single factor proxy are preferred to those based on the use of bk proxies, where bk is a
consistent estimate of the true number of factors; and (ii) while our “smoothed” proxy selection

method is clearly superior for h = 1, 3, and 12, the method breaks down at the longest forecast

horizon that we consider (i.e., h = 24). For the longest horizons, the estimated factor approach to

prediction (e.g., that used by Stock and Watson (2002a,b)) dominates.

By using our approach to predictive factor proxy selection, we believe that we are able to

“open up” the “black box” often associated with factor analysis, at least to a certain extent, and to

identify actual variables that can serve as primitive building blocks for (prediction) models of a host

of macroeconomic variables. Our empirical analysis suggests that important underlying observable

variables, in the sense that they are good proxies for latent factors, include the S&P500 price index

and dividend series; the 1-year Treasury bond rate; various housing activity variables; industrial

production; and an exchange rate.

The rest of the paper is organized as follows. In Section 2 we review the diffusion index literature,

with some focus on the methods that are used in our Monte Carlo and empirical experiments. In

Section 3 we discuss the use of factor proxies, including a discussion of the Bai and Ng (2006a,b)

tests, and a discussion of the methodological approach to the construction and use of factor proxies

for prediction. Section 4 contains a summary of the empirical methodology used in the paper, and

Section 5 summarizes the data used. In Section 6, the results of a small Monte Carlo experiment

studying the finite sample properties of the Bai and Ng (2006a,b) tests are presented, and in

Section 7 we summarize our empirical findings. Finally, in Section 8 we briefly discuss the most
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recent advances in the diffusion index methodology, and concluding remarks are gathered in Section

9.

2 Review: Diffusion Index Models and the Principal Components

Approach to Estimation

2.1 The diffusion index model

Following Stock and Watson (2002a,b), let yt+1be the series we wish to forecast and Xt be an N -

dimensional vector of predictor variables, for t = 1, . . . , T . Assume that (yt+1,Xt) has a dynamic

factor model representation with r common dynamic factors, ft. Hence, ft is an r × 1 vector. The

dynamic factor model is written as:

yt+h = α(L)ft + β0Wt + εt+h (1)

and

xit = λi(L)ft + eit, (2)

for i = 1, 2, . . . , N , where Wt is an l × 1 vector of other observable variables with l << N, such

as contemporaneous and lagged values of yt; h > 0 is the lead time between information available

and the dependent variable; xit is a single datum for a particular predictor variable; eit is the

idiosyncratic shock component of xit; and α(L) and λi(L) are lag polynomials in nonnegative

powers of L. In general, dynamic factor models can be transformed into static factor models. In

Stock and Watson (2002a), the lag polynomials α(L) and λi(L) are modeled as α(L) =
Pq
j=0 αjL

j

and λi(L) =
Pq
j=0 λijL

j . The finite order of the lag polynomials allows us to rewrite (1) and (2)

as:

yt+h = α0Ft + β0Wt + εt+h (3)

and

xit = Λ
0
iFt + eit, (4)

where Ft = (f
0
t, . . . , f

0
t−q)

0 is an r × 1 vector, with r = (q + 1)r and α is an r× 1 vector. Here, r is

the number of static factors (i.e., the number of elements in Ft). Additionally, Λi = (λ
0
i0, . . . ,λ

0
iq)
0
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is a vector of factor loadings on the r static factors, where λij is an r × 1 vector for j = 0, . . . , q

and β = (β1, . . . ,βl)
0. Alternatively, from (2), the dynamic factor model can be represented as:

xit = λ0i0ft + λ0i1ft−1 + . . .+ λ0iqft−q + eit

= λ0i(L)ft + eit (5)

and:

λi(L) = λi0 + λi1L
1 + . . .+ λiqL

q.

For complete details, see Bai and Ng (2007). Now, (5) can be written in the static form (4) where

Ft and Λi are defined as above. The static factor model refers to the contemporaneous relationship

between xit and Ft. One major advantage of the static representation of the dynamic factor model

is it enables us to use principal components to estimate the factors. This involves estimating Ft

using an eigenvalue-eigenvector decomposition of the sample covariance matrix of the data. It is

worth noting that the use of principal components to estimate the factors cannot be done with

infinitely distributed lags of the factors (see Stock and Watson (2002a)). Ding and Hwang (1999),

Forni et al. (2000), Stock and Watson (2002b), Bai and Ng (2002) and Bai (2003) showed that the

space spanned by both the static and dynamic factors can be consistently estimated when N and T

are both large. For forecasting purposes, little is gained from a clear distinction between the static

and the dynamic factors. However, many economic analyses hinge on the ability to isolate the

primitive shocks or the number of dynamic factors (see Bai and Ng (2007)). Boivin and Ng (2005)

also compare alternative factor based forecast methodologies, and conclude that when the dynamic

structure is unknown and the model is characterized by complex dynamics, the approach of Stock

and Watson performs favorably. If the idiosyncratic errors, et = (e1t, . . . , eNt)
0, are cross-sectionally

independent and i.i.d. over time, then (4) is the classical factor analysis model. It is important at

this juncture to note that the factor model does not generally require the idiosyncratic errors to

be cross-sectionally independent (see e.g., Bai and Ng (2002)). This is a crucial departure, as it

ensures that we can assume the existence of an “approximate” rather than “strict” factor model.

(Moreover, the idiosyncratic errors are restricted to be “weakly” correlated, roughly speaking, as

the basic structure of the factor model requires the factors to account for the “bulk” of the co-

movement across variables.) Of final note, it should be mentioned that Geweke (1977) and Sargent

and Sims (1977) were among the first to extend the classical factor analysis model to dynamic

models.
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Following Bai and Ng (2002), let Xi be a T × 1 vector of observations for the ith variable.

For a given cross-section i, we have Xi
(T×1)

= F 0
(T×r)

Λi
(r×1)

+ ei
(T×1)

where Xi = (Xi1, . . . ,XiT )
0,

F 0 = (F1, . . . , FT )
0 and ei = (ei1, . . . , eiT )

0. The whole panel of data X = (X1, . . . ,XN)

can consequently be represented as X
(T×N)

= F 0
(T×r)

Λ0
(r×N)

+ e,
(T×N)

where Λ = (Λ1, . . . ,ΛN )
0 and

e = (e1, . . . , eN ). However, Connor and Korajczyk (1986, 1988, 1993) note that in static models,

the factors can be consistently estimated by principal components as N →∞ even if eit is weakly

cross-sectionally correlated. Similarly, for dynamic factor models, Forni and Reichlin (1996,1998)

and Forni, Hallin, Lippi and Reichlin (2000) discuss consistent estimation of the factors when

N,T → ∞. In a predictive context, Ding and Hwang (1999) analyze the properties of forecasts

constructed from principal components when N and T are large. They perform their analysis un-

der the assumption that the error processes {eit, εt+h} are cross-sectionally and serially iid. This

assumption is inappropriate for macroeconomic models, particularly when multiperiod forecasts

are involved. Stock and Watson (2002b) emphasize that most macroeconomic variables are serially

correlated and some like alternative measures of the money supply may be cross-correlated even

after the aggregate factors are controlled for. We work with high-dimensional factor models that

allow both N and T to tend to infinity, and in which eit may be serially and cross-sectionally cor-

related so that the covariance matrix of et = (e1t, . . . , eNt) does not have to be a diagonal matrix.

We will also assume {Ft} and {eit} are two groups of mutually independent stochastic variables.

Furthermore, it is well known that for ΛFt = ΛQQ
−1Ft , a normalization is needed in order to

uniquely define the factors, where Q is a nonsingular matrix. Now, assuming that (Λ0Λ/N)→ Ir,

we restrict Q to be orthonormal, for example. This assumption, together with others noted in

Stock and Watson (2002b), enables us to identify the factors up to a change of sign and consis-

tently estimate them up to an orthonormal transformation. Forecasts of yT+h based on (3) and

(4) involve a two step procedure because both the regressors and coefficients in the forecasting

equations are unknown. The data sample {Xt}Tt=1 is first used to estimate the factors, { eFt}Tt=1 by
means of principal components. With the estimated factors in hand, we obtain the estimators bα
and bβ by regressing yt+h onto eFt and the observable variables in Wt. Of note is that if

√
T/N → 0,

then the generated regressor problem does not arise, in the sense that least squares estimates of bα
and bβ are √T consistent and asymptotically normal (see Bai and Ng (2007).)
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2.2 Common factor estimation using principal components

The problem of obtaining the necessary estimates in (4) would be simplified if we knew F 0. Then

Λi could be estimated via least squares by setting {xit}Tt=1 to be the dependent variable and {Ft}Tt=1
to be the explanatory variable. On the other hand, if Λ were known, Ft could be estimated by

regressing {xit}Ni=1 on {Λi}Ni=1. Since the common factors are not observed, in the regression analysis

of (4), we replace Ft by eFt, estimates that span the same space as Ft when N,T →∞. Estimation
of these common factors from large panel data sets of macroeconomic variables can be carried out

using principal component analysis. We refer the reader to Stock and Watson (1998, 2002a, 2002b,

2004a, 2004b) and Bai and Ng (2002) for a detailed explanation of this procedure, and to Connor

and Korajczyk (1986, 1988, 1993), Forni and Reichlin (1996, 1998) and Forni, Hallin, Lippi and

Reichlin (2000) for further detailed discussion of diffusion models, in general.

As noted earlier Ft and λi are not separately identified, but rather identifiable only up to a

square matrix. Stock and Watson (1998) further demonstrate that when principal components is

used, the factors remain consistent even when there is some time variation in Λ and small amounts

of data contamination, so long as the number of variables in the panel dataset or the number of

predictors is very large (i.e., N >> T ). In this paper, we only give an outline of how principal

component analysis is carried out, with particular emphasis on those features of the analysis that

allow us to carry out our prediction experiments using the A(j) and M(j) statistics of Bai and Ng

(2006b).

Let k (k < min{N,T}) be an arbitrary number of factors, Λk be the N × k matrix of factor

loadings, (Λk1, . . . ,Λ
k
N )

0, and F k be a T × k matrix of factors (F k1 , . . . , F kT )0. From (4), estimates

of Λki and F
k
t are obtained by solving the optimization problem:

V (k) = min
Λk,Fk

(NT )−1
NX
i=1

TX
t=1

(xit − Λk0i F kt )2 (6)

Let eF k and eΛk be the minimizers of equation (6). Since Λk and F k are not separately iden-

tifiable, if N > T , a computationally expedient approach would be to concentrate out eΛk and
minimize (6) subject to the normalization F k0F k/T = Ik. Minimizing (6) is equivalent to max-

imizing tr[F k0(XX 0)F k]. This optimization is solved by setting eF k to be the matrix of the k
eigenvectors of XX 0 that correspond to the k largest eigenvalues of XX 0. Note that tr[·] represents

the matrix trace. The superscript in Λk and F k signifies the use of k factors in the estimation
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and the fact that the estimates will depend on k. Let eD be a k × k diagonal matrix consisting of

the k largest eigenvalues of XX 0. The estimated factor matrix, denoted by eF k, is √T times the
eigenvectors corresponding to the k largest eigenvalues of the T × T matrix XX 0. Given eF k and
the normalization F k0F k/T = Ik, eΛk0 = ( eF k0 eF k)−1 eF k0X = eF k0X/T is the corresponding factor

loadings matrix.

The solution to the optimization problem in (6) is not unique. If N < T , it becomes compu-

tationally advantageous to concentrate out F
k
and minimize (6) subject to Λ

k0
Λ
k
/N = Ik. This

minimization is the same as maximizing tr[Λk0X 0XΛk], the solution of which is to set Λ
k
equal to

the eigenvectors of the N ×N matrix X 0X that correspond to its k largest eigenvalues. One can

consequently estimate the factors as F
k
= X 0Λ

k
/N . eF k and F k span the same column spaces,

hence for forecasting purposes, they can be used interchangeably depending on which one is more

computationally efficient. Given eF k and eΛk, let bV (k) = (NT )−1 NP
i=1

TP
t=1
(xit− eΛk0i eF kt )2 be the sum of

squared residuals from regressions of Xi on the k factors, ∀i. A penalty function for over fitting,

g(N,T ), is chosen such that the loss function

IC(k) = log(bV (k)) + kg(N,T ) (7)

can consistently estimate r. Let kmax be a bounded integer such that r ≤ kmax. Bai and Ng (2002)

propose three versions of the penalty function g(N,T ), namely, g1(N,T ) =
³
N+T
NT

´
log

³
NT
N+T

´
,

g2(N,T ) =
³
N+T
NT

´
logC2NT , and g3(N,T ) =

µ
log(C2NT )

C2NT

¶
, all of which lead to consistent estimation

of r. In our empirical and Monte Carlo experiments, we use g2(N,T ). Of note is that we tried the

other penalty functions above, and our results were qualitatively the same. However, Bai and Ng

(2002), as well as others, have shown that in certain contexts, results are sensitive to the choice of

penalty function. Hence, (7) becomes:

IC(k) = log(bV (k)) + k(N + T

NT
) logC2NT

where CNT = min{
√
N,
√
T}. The consistent estimate of the true number of factors is then:

bk = arg min
0≤k≤kmax

IC(k), (8)

and limN,T→∞Prob[bk = r] = 1 if g(N,T )→ 0 and C2NT · g(N,T )→∞ as N,T →∞, as shown in

Bai and Ng (2002).
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3 Using Proxies in Place of Factors for Prediction

3.1 Prediction using factors

Reconsider the general equation (3), yt+h = α0Ft+β0Wt+ εt+h. As mentioned above, and shown in

Stock and Watson (2002b) and Bai and Ng (2002), under a set of moment conditions on (ε, e, F 0)

and an asymptotic rank condition on Λ, if the space spanned by Ft can be consistently estimated,

then
√
T consistent estimates of α and β are obtainable. Under a similar set of conditions, it

is also possible to obtain min[
√
N,
√
T ] consistent forecasts if

p
T/N → 0 as N,T → ∞. Let

zt = (F
0
t ,W

0
t)
0; E(εt+h|yt, zt, yt−1, zt−1, . . . ) = 0, for any h > 0; and let zt and εt be independent of

the idiosyncratic errors eis, ∀i, s. If Ft is observable and α and β are known, based on the above

assumption that the mean of εt+h conditional on past information is zero, the conditional mean

and minimum mean square error forecast of yT+h is given by:

yT+h|T = E(yT+h|zT , zT−1, . . . ) = α0FT + β0WT ≡ δ0zT

Such a prediction is not feasible, however, since α, β and Ft are all unobserved. The feasible

prediction that replaces the unknown objects by their estimates is:

byT+h|T = bα0 eFT + bβ0WT = bδ0bzT , (9)

where bzt = ( eF 0t ,W 0
t)
0. Here, bα and bβ are the least squares estimates obtained from regressing yt+h

on eFt and Wt, t = 1, . . . , T − h. We suppress the k superscript on eF kt because we assume we have
consistently estimated the number of factors underlying the dataset. The factors, Ft, are estimated

from xit by the method of principal components, as discussed above. As the objective is to forecast

yT+h, a crucial aspect of our analysis is the distribution of the forecast error. As explained in detail

in Bai and Ng (2006a), since yT+h = yT+h|T + εT+h, it follows that the forecast error is:

bεT+h ≡ byT+h|T − yT+h = (byT+h|T − yT+h|T )− εT+h

If εt ∼ N(0,σ2ε), then:

bεT+h ∼ N(0,σ2ε + var(byT+h|T )) (10)

where

var(byT+h|T ) = 1

T
bz0TAvar(bδ)bzT + 1

N
bα0Avar( eFT )bα. (11)
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Here, var(byT+h|T ) reflects both parameter uncertainty and regressor uncertainty. In large samples,
var(bεT+h) is dominated by σ2ε . If we ignore var(byT+h|T ), σ2ε alone will under-estimate the true
forecast uncertainty for finite T and N . Let us now assume for a moment that Ft is observable.

The feasible prediction of yT+h would then be yT+h|T = α0FT + β
0
WT = δ

0
zT , where α and β

are the least squares estimates obtained from regressing yt+h on Ft and Wt. Once again, since

yT+h = yT+h|T + εT+h, the forecast error is:

εT+h = yT+h|T − yT+h = (yT+h|T − yT+h|T )− εT+h

If εt ∼ N(0,σ2ε), then

εT+h ∼ N(0,σ2ε + var(yT+h|T )), (12)

where

var(yT+h|T ) =
1

T
z0TAvar(δ)zT . (13)

Thus, and as discussed by Bai and Ng (2006a), when comparing var(yT+h|T ) with var(byT+h|T ), it is
clear that estimating the factors increases the forecast error variance, var(byT+h|T ), by 1

N
bα0Avar( eFT )bα.

Of course, if we could observe the factors instead of estimating them, we would reduce the forecast

error variance from (10) to (12). In finite samples, this may yield important prediction error vari-

ance reduction. It is for this reason that we consider replacing the factors in (9) with observable

variables that closely proxy the factors. The approach taken in order to do this involves implement-

ing a “first stage” factor analysis in which proxies are formed using the A(j) and M(j) statistics of

Bai and Ng (2006b). In a “second stage,” the observable proxies are used in the construction of a

prediction model. In this way, all estimation error associated with the factor analysis and proxy se-

lection is essentially “hidden” in the first stage, and does not directly manifest itself in the “second

stage” prediction models and prediction errors. Put another way, we are trading-off “estimated

factor uncertainty” for “variable selection uncertainty” (see introduction for further discussion).

Of course, issues related to “pre-testing” and sequential testing bias still arise. Nevertheless, in

our prediction experiments we attempt to quantify through finite sample experiments the potential

gains to using the “proxy” approach.
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3.2 Using the A(j) and M(j) tests of Bai and Ng (2006b) to uncover factor

proxies

For a detailed theoretical discussion of the results presented in this subsection, the reader is referred

to Bai and Ng (2006b). Here, we draw heavily on aspects of that paper that are relevant to our

empirical implementation. Note that while Bai and Ng (2006b) suggest using the A(j) and M(j)

statistics to assess whether key business cycle indicators approximate the latent factors, we use the

A(j) and M(j) statistics to select factor proxies for subsequent use in prediction models. The A(j)

statistic depends on the actual size of a t-test. TheM(j) test is based on a measure of the distance

between observed variables and factor estimates thereof.

Suppose we observe G0, a (T×m) matrix of observable economic variables that could potentially

proxy the latent factors (i.e., G is an m× T matrix). At any given time t, any of the m elements

of Gt (m× 1) will be a good proxy if it is a linear combination of the r × 1 latent factors, Ft. Let

Gjt be an element of the m vector Gt. The null hypothesis is that Gjt is an exact proxy, or more

precisely, ∃ θj (r× 1) such that Gjt = θ0jFt. In order to implement all of the methods, consider the

regression Gjt = γ0j
eFt + ρt. Let bγj be the least squares estimate of γj and let bGjt = bγ0j eFt. The test

is carried out by constructing the following t-statistic:

τt(j) =
( bGjt −Gjt)
(dvar( bGjt))1/2 (14)

where

dvar( bGjt) =
1

N
bγ0j eD−1

Ã eF 0 eF
T

! eΓt
Ã eF 0 eF
T

! eD−1bγj
=

1

N
bγ0j eD−1eΓt eD−1bγj , (15)

and eΓt is defined below. The last step above is due to the normalization that eF 0 eF/T = Ibk. Once
again, eD is a k × k diagonal matrix consisting of the k largest eigenvalues of XX 0. Given the null

hypothesis that Gjt = θ0jFt and that
bGjt converges to Gjt at rate √N , Bai and Ng (2006b) show

that the limiting distribution of
√
N( bGjt − Gjt) is asymptotically normal and hence τt(j) has a

standard normal limiting distribution. Consistent choices for the the bk × bk matrix eΓt include the
following:

eΓ1t = 1

n

nX
i=1

nX
j=1

eΛieΛ0j 1T
TX
t=1

eeiteejt , ∀ t, (16)
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eΓ2t = 1

N

NX
i=1

ee2iteΛieΛ0i, (17)

and

eΓ3 = bσ2e eΛ0eΛN , (18)

where bσ2e = 1
NT

NP
i=1

TP
t=1
ee2it, eeit = xit − eΛ0i eFt and n

min[N,T ] → 0 as N,T → ∞. In our Monte Carlo

simulation and our empirical analysis, we choose n = min{
√
N,
√
T}. Equation (16) allows cross-

section correlation but assumes time-series stationarity of eit. This covariance estimator is a HAC

type estimator because it is robust to cross-correlation (see Bai and Ng (2006a) for complete details).

Equation (17) allows for time-series heteroskedasticity, but assumes no cross-sectional correlation

of eit. Equation (18) assumes no cross-sectional correlation and constant variance, ∀i and ∀t. For

small cross-sectional correlation in eit, Bai and Ng (2006a) found that constraining the correlations

to be zero could sometimes be desirable. In this regard, they make the point that (17) and (18)

are useful even if residual cross-correlation is genuinely present.

As mentioned earlier, τt(j) in (14) has a standard normal limiting distribution. Let Φ
τ
ξ be the ξ

percentage point of the limiting distribution of τt(j). The hypothesis test based on the t-statistic in

(14) enables us to determine whether an observed value of a candidate variable is a good proxy at

a specific time t. For our purposes however, given information up to time T , whatever methods or

procedures we use to select the proxies ought to select whole time series Gj , for which Gjt satisfies

the null hypothesis, ∀t. In this regard, our first proxy selection method is based upon the following

statistic:

A(j) =
1

T

TX
t=1

1(|τt(j)| > Φτ
ξ ). (19)

The A(j) statistic is the actual size of the test (i.e., the probability of Type I error given the sample

size). Since τt(j) is asymptotically standard normal and the test is a two-tailed test, the actual

size, A(j), of the t-test should converge to the nominal size (the desired significance level is 2ξ) as

T → ∞. This means that if a candidate variable is a good proxy of the underlying factors of a

dataset, the A(j) statistic calculated from its sample time series should approach 2ξ as the sample

size increases. This is the basis on which we use the A(j) statistic to select proxies. It should be

noted that the A(j) statistic does not constitute a test in the strict sense since we do not compare a

test statistic to a critical value to determine whether or not to reject a null hypothesis. Rather, this
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procedure gives a ranking of the proxies with the best proxy having an A(j) statistic value closest

to 2ξ. In our implementation, the candidate set of proxies, G0, is the same as the panel dataset X

from which we estimate the factors. Given the choice of the significance level 2ξ, the A(j) statistic

incorporates some degree of robustness by allowing Gjt to deviate from bGjt for a specified number
of time points.

The second method for selecting the proxies considers the statistic:

M(j) = max
1≤t≤T

|τt(j)|, (20)

which is based on a measure of how far the bGjt curve is from Gjt. If eit is serially uncorrelated,

then:

P (M(j) ≤ x) ≈ [2Φ(x)− 1]T , (21)

where Φ(x) is the cdf of a standard normal random variable. From (20) and (21), we can perform

a test to determine whether the time series of a candidate variable is a good proxy for the latent

factors. For instance, suppose we are given a significance level 2ξ and a sample of size T from a

particular candidate variable, Gj . From the right hand side of (21), we can calculate the corre-

sponding critical value, x, for the test. For the same sample, we calculate M(j) from (20) and

conclude that Gj is a good proxy if M(j) ≤ x, and a bad proxy otherwise. The test based on the

M(j) statistic is thus stronger than the selection method based on the A(j) statistic, as the M(j)

test gives a sharp decision rule. However, the M(j) test has at least one disadvantage. It requires

eit to be serially uncorrelated. We ignore this requirement in our experimental analysis. It should

be noted that x increases with the sample size, T . Depending on the nature of the observed sample,

this fact could either preserve or reduce the power of the M(j) test.1

The proxies selected depend on the structure of the bk × bk matrix eΓt that we use in (15). For
a given proxy selection method, if the choice of eΓ1t , eΓ2t , eΓ3 used in calculating (15) all produce the
same proxies, it could mean that the respective assumptions associated with the use of eΓ1t , eΓ2t , eΓ3
might not be very relevant, empirically. We found no gains, in our experimental set-up, to usingeΓ1t and eΓ3, and hence all reported results are for the case where we use eΓ2t

Finally, Shanken (1992) points out that it is theoretically crucial for the observed selected

proxies to span the same space as the r latent factors, as discussed above. We nevertheless consider
1Note that we also considered the confidence interval approach of Bai and Ng (2006a); but it did not perform

better than the above methods.
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versions of the above methods where the number of factors is greater than the number of proxies,

given the principle of parsimony in forecasting.

3.3 Smoothed A(j) and M(j) tests for selecting factor proxies

The A(j) and M(j) statistics discussed above may yield a different set of proxies at each point in

time when used to construct a sequence of recursive forecasts. Namely, if the information set used in

the parameterization of a prediction model is updated prior to the construction of each new forecast

for some sequence of E ex ante predictions, then the “first stage” factor analysis discussed above

may yield a sequence of E different vectors of factor proxies. Thus, in addition to the A(j) and

M(j) proxy selection methods, we also consider a version of these methods where the sample period

in our empirical analysis is broken into three subsamples (R1, R2, and E, such that T = R1+R2+

E). The first subsample is used to estimate proxies. Thereafter, one observation from R2 is added,

and this new larger sample is used to recursively select a second set of factor proxies. This is

continued until the second subsample is exhausted, yielding a sequence of R2 different vectors

of factor proxies. Individual proxies are then ranked according to their selection frequency, and

those occurring the most frequently are selected and fixed for further use in constructing E ex ante

predictions. As some of our models (such as the autoregressive model) select the number of lags and

re-estimate all parameters prior to the formation of each new prediction, this smoothed approach

is at a disadvantage, in the sense that it is static (i.e., the set of proxies is fixed throughout the

forecast experiment). However, loading parameters for the proxies are still re-estimated prior to

the formation of each new recursive prediction. Of course, the potential advantage to this approach

is that noise across the proxy selection process is suppressed.

4 Empirical Methodology

In order to assess the performance of factor proxy based prediction models, we focus our attention

on direct multistep-ahead predictions. Forecasts are generated as h-step ahead predictions of yt, say.

Namely, we predict yt+h = log
³
Yt+h
Yt+h−1

´
, where Yt is the variable of interest.

2 Our approach is to

2While cummulative changes are very useful in prediction contexts, we predict the growth rate from one period to

the next, yt+h = log(Yt+h/Yt+h−1) instead of the cumulative change, yt+h = log(Yt+h/Yt). Our approach is in accord

with the Federal Reserve Economic Database (FRED), where the same period on period growth rates are reported.
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compare the performance of factor-based predictions with a host of proxy-based predictions as well

as various “strawman” predictions. For the “strawman” forecast models, we use an autoregressive

(AR(p)) model (with lags selected using the Schwarz Information Criterion (SIC)) and a random

walk model. The “strawman” models are included because they serve as parsimonious benchmarks

that are often difficult to outperform. In Table 1, we provide the specifications and brief descriptions

of all of the forecast models examined.

We consider two classes of proxy forecast models. The first class of models, which we call

“ordinary” proxy forecast models, include Model 4 - Model 7. With these models, proxies are

re-selected recursively, prior to the construction of each h-step ahead prediction. Let {A(j)}mj=1,

be a set of A(j) statistics calculated for each candidate proxy variable j. As suggested above, in

this particular paper, we set m = N ; but this need not always be the case. Define:

SA = {GAj1 , . . . , G
A
jbk} (22)

where bk ≤ m and |A (j1)− 2ξ| ≤ |A (j2)− 2ξ| ≤ . . . ≤ |A
³
jbk´− 2ξ|.Here, SA is the set of bk proxy

variables selected via implementation of the A(j) test. Further, define GAj1 as the “best” possible

proxy as determined by the A(j) while GAj2 is the next “best” proxy, and so on. Recall that Gj

is an observable time series variable, such as the CPI or the federal funds rate. Turning next to

proxies selected via implementation of the M(j) test, define:

SM = {Gj ∈ G |M(j) ≤ x}, j = 1, . . . ,m.

Here, SM is a set of proxies selected by the M(j) test. The number of proxy variables selected at

each recursive stage is indeterminate. Furthermore, the selected proxies are not ranked. For Model

6, where the M(j) test is used to select a single proxy, our approach is to select the proxy in the

set SM that is associated with the smallest value of M(j).

The second class of models, which we call “smoothed” proxy forecast models, are discussed in

Section 3.3, and include Model 8 - Model 15. The proxies used in these models are still based on

implementing the A(j) and M(j) statistics as discussed above. The factors and the proxies are

estimated recursively, just as in Models 1, 4-7, but this is done starting with R1 observations and

ending with R1 +R2 observations. The “smoothed” proxies are selected as the bk proxies that are
“most frequently” picked by the A(j) and M(j) tests. Thereafter, all proxies are fixed, although

We have experimented also with cumulative growth rates, with empirical findings similar to those reported here.
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their “weights” in the prediction models are still re-estimated recursively, prior to the construction

of each of the E ex-ante forecasts. To differentiate between proxies picked using the “ordinary”

and “smoothed” versions of the tests, we define SA∗ and SM∗ to be the “smoothed” versions of SA

and SM . The ex-ante prediction period, E, is the same for all models in our empirical experiments.

In order to evaluate forecast performance, we compare mean squared forecast errors (MSFEs)

defined as 1E
PT−h
t=R−h+1 (byt+h − yt+h)2, where R = R1+R2. We also carry out Diebold and Mariano

(DM: 1995) predictive accuracy tests. Let {by1,t}T−ht=R−h+1 and {by2,t}T−ht=R−h+1 be two forecasts of the

time series {yt}T−ht=R−h+1. The “benchmark” is Model 1 (i.e., the factor model), and is used to gen-

erate {by1,t}T−ht=R−h+1, while Models 2-15 are used to generate {by2,t}T−ht=R−h+1. Since the “benchmark”

contains estimated factors and the alternative models contain no estimated factors, the “bench-

mark” and alternative models are non-nested. The corresponding out-of-sample forecast errors are

{bε1,t}T−ht=R−h+1 and {bε2,t}T−ht=R−h+1. The null hypothesis of equal forecast accuracy for two forecasts

is given by H0 : E[bε21,t] = E[bε22,t] or H0 : E[ bdt] = 0,where bdt = bε21,t − bε22,t is the loss differential
series. The DM test statistic is DM = E−1/2 dpbσ2

d

, where d = 1
E

PT−h
t=R−h+1

bdt, and bσ2d is a HAC
standard error for bdt. Since the forecast models are non-nested, and assuming that parameter es-
timation error vanishes, the DM test statistic has a N(0, 1) limiting distribution. Finally, given

this setup, a negative DM t-stat indicates that the factor model yields a lower point MSFE. For

further discussion of parameter estimation error and nestedness issues in the context of predictive

accuracy tests, the reader is referred to Corradi and Swanson (2002, 2006a, 2006b).

5 Data

The dataset used to estimate the factors is the same as that used in Stock and Watson (2005), which

can be obtained at http://www.princeton.edu/˜mwatson. This dataset contains 132 monthly time

series for the United States for the entire period from 1960:1 to 2003:12, hence N = 132 and T = 528

observations. The series were selected to represent the following categories of macroeconomic time

series: real output and income; employment, manufacturing and trade sales; consumption; housing

starts and sales; real inventories and inventory-sales ratios; orders and unfilled orders; stock price

indices; exchange rates; interest rate spreads; money and credit quantity aggregates; and price

indexes. Most of the series were taken from the Global Insights Basic Economic Database or The

Conference Board’s Indicators Database (TCB). Others were calculated by Stock and Watson with
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information from either Global Insights or TCB or both. The theory outlined assumes that the panel

dataset used to estimate the factors is I(0). To achieve this, some of the 132 series were subjected

to transformations by taking logarithms and/or first differencing. In general, logarithms were taken

for all nonnegative series that were not already in rates or percentage units (see Stock and Watson

(2002a,2005) for complete details). After these transformations were carried out, all series were

further standardized to have sample mean zero and unit sample variance. Using the transformed

dataset, denoted above by X, the factors are estimated by the method of principal components. As

mentioned earlier, in our implementation, the set of candidate proxies for the factors G0 will be the

same as X. Although this need not be the case, it is done mainly because X represents the biggest

set of (standardized and stationary) observable time series variables available to us. We perform

real-time forecasts of 7 of the 8 major monthly macroeconomic time series studied in Stock and

Watson (2002a). The four real variables we concentrate on are total industrial production (IP), real

personal income less transfers, real manufacturing and trade sales and the number of employees on

nonagricultural payrolls. The three price series considered are the consumer price index (CPI), the

personal consumption expenditure implicit price deflator (PCED) and the producer price index for

finished goods (PPI). All of these variables are expressed in log-differences (i.e., monthly growth

rates).3

6 Monte Carlo Experiment

Table 2 contains the results from a small Monte Carlo experiment used to assess the finite sam-

ple forecast performance of the A(j) and M(j) tests. In the empirical panel dataset spanning

1960:1 to 2003:12 discussed in Section 5 above, bk = 13 factors are consistently estimated using the
methodology of Bai and Ng (2002). For this reason, we assume there are 13 factors underlying

our simulated dataset and set r = 13. The simulated dataset also has the same dimensions as the

empirical dataset discussed in the next section. Hence, we set N = 132 and T = 528. Each of the

3Note that Stock and Watson (1999, 2002a) model some of our price variables as I(2) in logarithms. However,

they find little discrepancy in performance under I(1) and I(2) assumptions for factor forecasts of our three target

price variables. For this reason, we limit our analysis by assuming that our price variables as well as other variables

in X are I(1) in logarithms (see Section 10 for further details). In all other respects, our dataset is the same as that

used by Stock and Watson (2005).
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thirteen latent factors is generated as

Fkt = νkFkt−1 + ukt, (23)

where 0.6 ≤ νk ≤ 0.8, ukt ∼ N(0, 1), and ukt is uncorrelated with ujt, for k 6= j, k, j = 1, . . . , r.

Ft = (F1t, . . . , Frt)
0, Λik ∼ N(0, 1), and eit is uncorrelated with ejt, for i 6= j, i, j = 1, . . . , N ,

t = 1, . . . , T . Following Bai and Ng (2002), the simulated panel dataset is generated as

xit = Λ
0
iFt +

√
ηeit, (24)

for i = 1, . . . , 119, where η is a measure of the variance of the idiosyncratic errors, eit, relative

to the common component, Λ0iFt. More specifically, for i = 1, . . . , 39, we make the idiosyncratic

errors homoskedastic and set eit ∼ N(0, 1). We introduce heteroskedasticity into the variables for

which i = 40, . . . , 79 and let

eit =

(
e1it if t is even
e1it + e

2
it if t is odd

(25)

where e1it and e
2
it are independent N(0, 1) (see Bai and Ng (2002)). For i = 80, . . . , 119, the

idiosyncratic component of (24) is generated as an MA(1) process such that

eit = 0.6eit−1 + e
3
it (26)

and e3it ∼ N(0, 1). Define a variable to be a good proxy if it is a linear combination of the underlying

latent factors (see Bai and Ng (2006b) for complete details). Thus, for i = 120, . . . , 132, the proxy

variables are generated as

xit = Λ
0
iFt (27)

Since the generated factors in (23) are assumed to be latent, they are not wholly included in the

simulated panel dataset. The above setup ensures that four separate DGPs generate a total of

132 simulated variables. Ex ante forecasts are constructed for four variables. In Table 2, the

target variables labelled “Homoskedastic,” “Heteroskedastic” and “MA(1)” are all generated from

(24). However, the corresponding idiosyncratic errors are specified by i.i.d. N(0, 1), (25) and (26)

respectively. Let xpt = (x120t, . . . , x132t), e
4
it ∼ N(0, 1) and Ωil ∼ N(0, 1) for l = 1, . . . , 13, then the

target variable labelled “Proxy (Homoskd.)” is generated by

yp = Ω
0
ix
p
t + e

4
it (28)
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The difference between (28) and (24) is that in (28), xpt are observed and can be selected by the

A(j) or M(j) tests as regressors in a forecast model for the respective target variable. Of course,

there is still no guarantee that they will be selected; rather this is the only case where the true

regressor variables are actually in the panel dataset and can be selected. This is an important case,

and defines the case we are most interested in. On the contrary in (24), Ft are not observed and

can consequently not be selected as predictors in a forecasting exercise. For each of the four target

variables in Table 2 and Table 3, the last third of simulated values are recursively forecasted. Since

there are 528 data points across time in our setup, we effectively use observations from t = 352

to t = 528 to evaluate forecast performance via examination of the mean squared forecast error

(MSFE). Prior observations are used to estimate the forecast models. In strict recursive fashion,

all models, factors, number of factors, k and proxies are re-estimated and re-selected for each

constructed forecast. Forecasting at time t+1, the panel dataset from 1, . . . , t is also standardized

to have mean zero and unit variance before the factors are recursively estimated and proxies selected.

In order to make the experiment credible, the model used for the factor forecasts is Model 1 and

those used for the “A(j)” and “M(j)”proxy forecasts are Model 5 and Model 7, respectively (see

Table 1 for the specification of these models). From prior work, Model 5 and Model 7 performed

worst among all the alternative proxy forecast models specified in Table 1, and hence our setup

is as “tough as possible” on our approach. It is left to future research to establish whether other

model specifications discussed in this paper that perform better in our empirical experiments also

perform better in Monte Carlo simulation experiments.

We perform the same forecast evaluation exercise for a subset of N = 40 and N =132. The

40 variable subsets are randomly selected from the original 132 simulated variables under the

constraint that at least 2 and at most 7 proxies as defined by (27) are selected. Forecast horizons

of h = 1, 12 are considered. The entire Monte Carlo experiment is conducted for 250 iterations and

at each iteration, for N = 40 and N = 132, we calculate the MSFE from 176 recursive forecasts for

t = 352, . . . , 528.

The numerical entries in Table 2 represent the fraction of times (out of 250 Monte Carlo iter-

ations) that the proxy forecasts have a lower MSFE than the factor forecasts. Regardless of the

number of variables in the panel dataset or the forecast horizon, the proxy forecasts outperformed

the factor forecasts about 50% of the time in almost all cases. This is significant as it demonstrates

that the worst performing proxy forecast models equally match the factor forecasts. Under h = 1,
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entries of 0.720, 0.795, 0.880 and 0.895 for “Proxy (Homoskd.)” indicate that the proxy forecasts

strongly outperform the factor forecasts. This particular outcome is as might be expected, given

that this is the case where the A(j) and M(j) test statistics are afforded the possibility of selecting

the truly correct elements of xpt used to generate yp in (28) and suggests that our approach is

working as desired. However, under h = 12 for the same target variable “Proxy (Homoskd.),” the

proxy forecasts perform just as well as the factor forecasts. One explanation for this result might

be that as the forecast horizon gets longer, the informational content in the proxies deteriorates

faster relative to that of the factors.

The entries in Table 3 not in parenthesis represent the mean of the various MSFEs across Monte

Carlo iterations. The standard deviations of the MSFEs are reported in parentheses. From Table

3, proxy forecasts constructed from the A(j) or M(j) statistic marginally outperform the factor

forecasts most of the time in terms of the mean of the MSFEs. However, the equal performance of

the factor and proxy forecasts in Table 2 is demonstrated in Table 3 by the fact that the mean of

the proxy MSFEs is generally only slightly less than the mean of the factor MSFEs.

Overall, these results are interesting, and suggest that our prediction/proxy approach outper-

forms a standard factor approach in favorable cases, and performs equally well in non-favorable

cases.

7 Empirical Findings

In this section, we discuss the results of a series of prediction experiments using the dataset discussed

above, and applying the models outlined in Table 1 to construct sequences of recursive ex-ante h-

step ahead predictions. The dataset consists of 132 variables (see Section 5), and data are available

for the period 1960:1-2003:12. Furthermore, predictions are constructed for the period 1989:5-

2003:12. Please see Section 4 for complete details concerning the strategy used to specify and

estimate the prediction models prior to forecast construction. For models in which proxies were

selected using the M(j) and A(j) tests, we set 2ξ = 0.05. Hence we carry out the tests at a 5%

significance level. We include 1 autoregressive lag in most of the models because the importance of

autoregressive lags in prediction is well established. Furthermore, adding autoregressive terms of

the target variable to the basic factor model is a good way to give the factor model a fair chance

to “win” our forecasting competition.
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Results of our empirical experiments are gathered in Table 4 (frequency of selected factor

proxies), Table 5 (CPI, PCED, and PPI forecasting competition results), and Table 6 (Industrial

Production, Personal Income; Nonagricultural Employment, Manufacturing and Trade Sales). In

Table 4, selection frequencies are reported, while in Tables 5-6 MSFEs and DM test statistics are

reported. The MSFE values reported for CPI, PCED and Nonagricultural Employment are multi-

plied by 100,000 and those reported for Producer Price Index, Industrial Production, Manufacturing

and Trade Sales and Personal Income are multiplied by 10,000. For the benchmark Model 1 (i.e.,

the factor model), the only tabular entry for all forecast horizons is the MSFE. With all of the

other models (i.e., our alternative models), there are two entries: The top entry is the MSFE and

the bottom entry in parenthesis is the DM t-statistic. As mentioned earlier, a positive DM statistic

value indicates that the alternative model has a MSFE that is lower than the benchmark, while a

negative statistic value indicates the reverse. Entries in bold signify instances where the alternative

model outperforms the factor model as determined by a point MSFE comparison. Boxed MSFE

entries represent the lowest MSFE value among all the models for a particular forecast horizon.

DM statistic entries with a ∗ indicate instances where the respective alternative model significantly

outperforms the factor model at a 10% significance level, whereas for entries with a † sign, the

factor model significantly outperforms the alternative model at a 10% significance level. We now

provide a number of conclusions based on the tables.

Upon inspection of Table 5, it is clear that the benchmark factor model (i.e., Model 1) signifi-

cantly outperforms most of the alternative models in the forecast of CPI and PCED. This point is

supported by the overwhelming number of DM test rejections in Panels A and B of Table 5. While

the benchmark still yields the lower MSFE in many pairwise comparisons when examining PPI

results (see Panel C of the table), the DM test null of equal predictive accuracy is not frequently

rejected.

A key exception to the above conclusion that the benchmark model yields superior predictions

is in the case of Models 12-15. From Table 1, recall that these are autoregressive models with

exogenous variables (ARX). The lags of the ARX models are selected by the SIC and the exogenous

variables are based on smoothed versions of the A(j) and M(j) tests. For h = 1, 3, 12, these

models not only frequently yield lower point MSFEs than the benchmark, but the difference in

performance is often significant. Across all 3 panels and 3 forecast horizons (i.e., 9 variable/horizon

combinations), it is interesting to note that one or many of Models 12-15 are “MSFE-best” 7 times.
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Furthermore, of these 7 “wins” it is Model 12 that yields the lowest MSFE in 4 instances. Thus, we

have direct evidence that the parsimonious single proxy smoothed A(j) model fares very well when

compared not only to the benchmark, but also to other models which yield lower MSFEs than the

benchmark. This suggests that while the factor approach is very useful, often beating the pure

autoregressive and other linear models when used for predicting price variables, a parsimonious

version of the smoothed A(j) factor proxy approach performs the best, overall. Thus, as pointed

out by Bai and Ng (2006c), parsimony is still important. This is even true in the context of ordinary

proxy models (Models 4-7), as choosing one proxy rather than bk proxies often yields the lowest
MSFE model.

Interestingly, in Table 5, the above conclusions hold for h = 1, 3, 12 and not for h = 24. Indeed,

it appears that all models perform quite poorly for h = 24, with the notable exception of the

benchmark, which clearly outperforms virtually all competitors in all price variable cases when

h = 24. Thus, at the longest forecast horizons, we have evidence that our simple factor proxy

approaches are not faring well at all.

Turning now to Table 6, the above conclusions still hold, with the exception that many other

alternative models, and not just Models 12-15, are point MSFE “better” than the benchmark.

Summarizing the results in Table 6, the benchmark model does yield the lowest MSFE for 3 of the

4 variables when h = 1 and for 1 variable when h = 3, although the DM test null is not rejected in

any of these cases. Furthermore, for all remaining horizon/variable combinations, the benchmark

does not yield the lowest MSFE. Indeed, in all but one of these other cases, factor proxy approaches

yield the lowest MSFE (the sole exception is a random walk “win” for Manufacturing and Trade

Sales when h = 3).

Given the above results, it is of interest to tabulate which factor proxies were used in our

prediction experiments. This is done in Table 4, where factor proxies that are (most frequently)

selected using the A(j) andM(j) test and the frequencies with which they are selected are reported.

The second column under “Trans” indicates the data transformation that was performed to induce

data stationarity. As is evident, S&P’s Common Stock Price Index, Industrials; S&P’s Common

Stock Price Index, Composite; Dividend Yields, a 1-Year Bond Rate; and Housing Starts are the five

most common proxies selected by both A(j) and M(j). Structural change could account for some

of the proxies being selected less frequently than the five above proxies. Clearly, the importance of

proxies may in some cases depend on the period in history represented by the data. However, it is
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interesting that a variety of factor proxies are “picked” across our entire ex-ante prediction period.

The diagrams in Panel 1- 3 of Figure 1 are time series plots of the first three estimated factors

(i.e., the most important factors for explaining the variability in our panel dataset). Panels 4-6 are

time series plots of the three most frequently selected proxies based on use of the A(j) and M(j)

test statistics. The S&P Common Stock Price Index does proxy the estimated factors to some

extent, although the relatively high level of noise in the S&P variable does appear to obscure this

fact to a certain degree. The Housing Starts, Nonfarm variable (which has less noise - see Panel 6)

better illustrates the close relationship between the estimated factors and selected proxies. Results

in Table 4 indicate that almost all three proxies in Figure 1 are selected 100% of the time by both

the A(j) and M(j) statistics although the M(j) test has more power than the A(j) test. The lone

exception to this is the Housing Starts, Nonfarm variable which is selected 95% of the time by

the M(j) test. This suggests how strongly the three variables proxy the underlying factors. In

addition, one gets a “sense” of the robustness of the A(j) and M(j) test statistics in consistently

selecting good proxies, since the uderlying factors are re-estimated at each recursive iteration.

In closing, we note that factor proxies appear useful for prediction. Additionally, since factors

are unobserved, analyzing and studying them on their own can be quite difficult. For instance, in

our context it is not clear how relevant it is to study the evolution of the individual factors over

time because prior to each new prediction, the factors are re-estimated. Creating a clearly defined

historical path for a factor is consequently complicated. The ability to proxy the unobserved factors

with observed variables enables us to identify actual variables that can serve as primitive building

blocks for (prediction) models of a host of macroeconomic variables.

8 Recent Advances in the Construction of Diffusion Indices

In this section, we briefly highlight some of the most recent work relating to diffusion index (factor)

models. Many of these ideas could potentially be applied to the issues discussed in this paper,

although we leave that to future research. Some of the concerns raised in this paper such as the

use of the same factors and consequently the same proxies to forecast any variable are addressed

in a number of the papers. For example, Bai and Ng (2006c) offer two refinements to the method

of factor forecasting. The current framework is confined to a linear relation between the predictors

and the forecasted series. Bai and Ng (2006c) propose a more flexible structure. Their so-called
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squared principal components approach allows the relationship between the predictors and the

factors to be non-linear. They use a non-linear “link” function that involves expanding the set

of predictors to include non-linear functions of the observed variables. In this regard, (4) can be

modified as follows:

h(xit) = ϑ0iJt + eit,

where h(·) is a non-linear link function, Jt are the common factors, and ϑi is the vector of factor

loadings. The second order factor model is consequently:

x∗t = ΩJt + et (29)

where x∗t = {xit, x2it}∀i is an N∗ × 1 vector and N∗ = 2N . Estimation of Jt from (29) is done

using the usual method of principal components. The forecasting equation in (9) remains linear

regardless of the form of h(·). The second refinement proposed by Bai and Ng (2006c) takes explicit

account of the fact that the ultimate aim is to forecast a specific time series variable, say yt. The

authors propose using principal components analysis with a “targeted” subset of the predictors in

X, which have been tested to have predictive power for y. This implies that the set of predictors

used to extract the factors change with y, the targeted forecast variable. “Hard” and so-called

“soft” thresholding is used to determine which subset of X the factors are to be extracted from.

Under “hard” thresholding, a test with a sharp decision rule determines which variables are “in”

or “out.” With “soft” thresholding, the top variables are kept in the subset of predictors used

to extract the factors. The ordering of the predictors is based on the particular soft-thresholding

rule. The “soft” thresholding approach is thus related to our “smoothed” test statistic approach

to factor proxy selection.

As a reminder, the use of factor models (diffusion indices) involves a two-step approach in

which the factors are first estimated from a large panel dataset. The estimated factors are then

used as predictors in the forecast models. Although the estimated factors in the first stage are

capable of parsimoniously capturing almost all the information in a large dataset, standard tools

for specifying the forecast model in the second stage remain unsatisfactory in certain contexts. The

specified prediction models are still susceptible to overfitting or underfitting, for example. In this

light, Bai and Ng (2006d) suggest a stopping rule for “boosting” that prevents a model from being

overfitted with estimated factors or other predictors. Boosting is a procedure that estimates the

conditional mean using M stagewise regressions (Bai and Ng (2006d)). The authors also propose

24



two ways to handle lagged predictors: a component-wise approach that treats each lag as a separate

variable, and a block-wise approach that treats lags of the same variable jointly. Some important

papers on boosting include Schapire (1990), Freund (1995), Friedman (2001) and Buhlmann and

Hothorn (2006).

9 Concluding Remarks

Using Monte Carlo and empirical analysis, we have shown that the A(j) and M(j) statistics of

Bai and Ng (2006b) appear to offer an interesting means by which factor proxies for later use in

prediction models can be chosen. Indeed, our “smoothed” approaches to factor proxy selection

appear to yield predictions that are often superior not only to a benchmark factor model, but also

to simple linear time series models which have in many practical applications hitherto been found

to be difficult to beat in forecasting competitions. More specifically, we find that our factor proxy

models (e.g., see Model 5 and Model 7 in Table 1) perform (slightly) better than a standard factor

model (Model 1) in our Monte Carlo experiments. The implication is that a policymaker will be

better served by using the proxy model. At the very least, the methodology suggested in this paper

should perhaps be added to the practitioners’ “tool-box,” and one should examine on a case-by-

case basis whether or not proxy observable factors are more effective than standard factors. This is

particularly relevant since, unlike the factor model which has estimated regressors, the proxy model

uses observed regressors that can act as policy instruments, for example. By using our approach

to predictive factor proxy selection, one is able to open up the “black box” often associated with

factor analysis, to some extent. This is because one can identify actual variables that can serve

as “primitive” building blocks for (prediction) models of a host of other macroeconomic variables.

This approach in some cases leads to improved prediction, and may also possibly lead to improved

policy analysis if used in policy-related prediction modelling.
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Table 1: Prediction Models Used in Empirical Experiments∗

Model 1 (Factor Model): This is the standard factor forecast model: byT+h|T = ba0 + bα0 eFT + bβyT
Model 2 (Autoregressive Model): This is an AR(p) forecast model, with lags selected by the SIC: byT+h|T =

ba0 + pP
j=1

bαjyT−j+1
Model 3 (Random Walk Model): This is a random walk forecast model: byT+h|T = yT
Model 4 (Ordinary A(j) - 1 Proxy Model): In this forecast model, the single “best” proxy selected by the A(j) test

(i.e., the proxy associated with the A(j) statistic value closest to 2ξ in absolute value) is used as the only proxy

regressor in the forecast model: byT+h|T = ba0 + bαGAj1T +bβyT
Model 5 (Ordinary A(j) - bk Proxies Model): The “best” bk factor proxies selected by the A(j) test are used:byT+h|T = ba0 + bα0SAT + bβyT , where SAT = {GAj1T , . . . , GAjbkT}.
Model 6 (Ordinary M(j) - 1 Proxy Model): In this forecast model, the single “best” factor proxy selected by the

M(j) test (i.e., the proxy associated with the lowest M(j)-statistic) is used as the only proxy regressor in the

forecast model: byT+h|T = ba0 + bαGMjT + bβyT . Since it is possible for the M(j) test to select no proxies at all,
should that scenario occur, the model degenerates to: byT+h|T = ba0 + bβyT .
Model 7 (Ordinary M(j) - bk Proxies Model): This forecast model is the same as Model 6, but bk factor proxies
selected by theM(j) test are used: byT+h|T = ba0 + bα0SMT + bβyT .
Model 8 (Smoothed A(j) - 1 Proxy Model): This forecast model is the same as Model 4, except that the smoothed

version of the A(j) test is used (see Section 3.3 for further discussion).

Model 9 (Smoothed A(j) - bk Proxies Model): This forecast model is the same as Model 5, except that the smoothed
version of the A(j) test is used (see Section 3.3 for further discussion).

Model 10 (SmoothedM(j) - 1 Proxy Model): This forecast model is the same as Model 6, except that the smoothed

version of theM(j ) test is used (see Section 3.3 for further discussion).

Model 11 (SmoothedM(j) - bk Proxies Model): This forecast model is the same as Model 7, except that the smoothed
version of theM(j ) test is used (see Section 3.3 for further discussion).

Model 12 (Autoregressive plus Smoothed A(j) - 1 Proxy Model): This forecast model is the same as Model 8,

except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1: byT+h|T =ba0 + bαGA∗j1T +pxP
j=1

bβjyT−j+1.
Model 13 (Autoregressive plus Smoothed A(j) - bk Proxies Model): This forecast model is the same as Model 9,
except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1.

Model 14 (Autoregressive plus Smoothed M(j) - 1 Proxy Model) : This forecast model is the same as Model 10,

except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1.

Model 15 (Autoregressive plus Smoothed M(j) - bk Proxies Model): This forecast model is the same as Model 8,
except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1.

∗ Note: See Sections 3.3 and 4 for further discussion of the factor proxy selection methodology used
in the construction of the above models.
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Table 2: Monte Carlo Experiment Results∗

h = 1 h = 12
N Error Structure A(j) M(j) A(j) M(j)

40 Homoskedastic 0.425 0.330 0.460 0.560
40 Heteroskedastic 0.425 0.435 0.530 0.685
40 MA(1) 0.520 0.620 0.575 0.675
40 Proxy (Homoskd.) 0.720 0.795 0.390 0.450
132 Homoskedastic 0.585 0.430 0.545 0.595
132 Heteroskedastic 0.680 0.475 0.545 0.615
132 MA(1) 0.460 0.600 0.585 0.605
132 Proxy (Homoskd.) 0.880 0.895 0.585 0.620

∗ Notes: The numeric entries under “N” indicate the number of variables in the simulated panel dataset. Entries under “A(j)”

and “M(j)” indicate the fraction of times that the alternative model (Model 5 or Model 7, repsectively) has a lower MSFE than

the benchmark (Model 1), in 250 Monte Carlo iterations. Under “Error Structure,” we state the forecast “target” variable.

“Homoskedastic,” “Heteroskedastic” and “MA(1)” represent target variables for which the idiosyncratic error, eit, in the DGP

is an i.i.d. N(0, 1), a heteroskedastic, or a moving average process, respectively. For all three of these cases, the independent

variables in the DGP are the latent factors. For “Proxy (Homoskd.),” the idiosyncratic error, eit, is i.i.d. N(0, 1); and the

independent variables in the DGP are potential “proxy” variables, so that the “A(j)” and “M(j)” in this case might select the

“true” proxy, if they perform as desired. See Section 6 for complete details.

Table 3: Monte Carlo Experiment Descriptive Statistics∗

h = 1 h = 12
N Error Structure Factor A(j) M(j) Factor A(j) M(j)

40 Homoskedastic 52.809 53.023 53.472 60.043 60.118 60.008
(8.882) (8.933) (9.219) (12.770) (12.826) (12.822)

40 Heteroskedastic 49.111 49.481 49.725 56.925 56.928 56.685
(8.950) (8.761) (8.783) (14.240) (14.226) (14.174)

40 MA(1) 38.829 38.812 38.736 66.851 66.649 66.468
(6.669) (6.665) (6.619) (16.385) (16.333) (16.178)

40 Proxy (Homoskd.) 25.751 25.569 25.466 56.548 56.953 56.681
(26.382) (26.695) (26.704) (59.791) (59.849) (59.543)

132 Homoskedastic 49.371 48.955 50.024 62.079 61.987 61.814
(8.567) (8.627) (8.680) (13.959) (13.609) (13.578)

132 Heteroskedastic 44.948 44.305 45.265 57.560 57.444 57.298
(7.369) (7.501) (7.834) (12.337) (12.245) (12.384)

132 MA(1) 39.227 39.234 39.054 69.809 69.586 69.236
(6.225) (6.266) (6.254) (15.916) (16.042) (16.556)

132 Proxy (Homoskd.) 28.249 27.579 27.422 60.651 60.446 60.065
(31.545) (31.141) (30.988) (71.739) (72.218) (71.744)

∗ Notes: See notes to Table 2 above. The numerical entries not in parentheses under “Factor,” “A(j)” or “M(j)” are the means

of the various MSFEs calculated under the respective models, across 250 Monte Carlo iterations. The corresponding entries in

parentheses are MSFE standard deviations, again calculated across all Monte Carlo iterations.
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Table 4: Frequency of Selected Factor Proxies∗

Selected Factor Proxy Trans A(j) M(j)

fspin: S&P’s Common Stock Price Index, Industrials ∆ log 1.000 1.000
fspcom: S&P’s Common Stock Price Index, Composite ∆ log 1.000 1.000
fsdxp: S&P’s Composite Common Stock: Dividend Yield ∆lv 1.000
fygt1: Interest Rate: U.S. Treasury Const Maturities, 1-Yr ∆lv 1.000
hsfr: Housing Starts, Nonfarm log 1.000 0.949
hsbr: Housing Authorized, Total New Private Housing Units log 0.989 0.455
ips10: Industrial Production Index, Total Index ∆ log 0.909
exrus: United States, Effective Exchange Rate ∆ log 0.835 0.370
sfygm6: 6 month Treasury Bills - Federal Funds, spread lv 0.813
sfygt5: 5 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.750
sfygt10: 10 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.659 0.420
fygm6: Interest Rate, U.S. Treasury Bills, Sec Mkt, 6-Mo. ∆lv 0.460
a0m077: Ratio, Mfg. and Trade Inventories to Sales ∆lv 0.341 0.261

∗ Notes: In this table we report proxies that were frequently selected using the A(j) and M(j) tests, and the frequencies

with which they were selected, in our recursive forecasting experiments. The second column under “Trans” indicates the data

transformation that was performed to induce stationarity, lv means no transformation; the series was left at level. ∆lv means

first difference of the level. log means the natural log function was applied to the data. ∆ log means the series was first

differenced after the natural log function was applied. Empty entries in the fourth column under M(j) indicate that the

respective variables were not selected at all by the M(j) test.
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Table 5: Predictive Performance of Various Models for Price Variables∗

Forecast Horizon (h) 1 3 12 24
Panel A: CPI

Model 1 3.496 3.464 4.299 4.089
Model 2 3.457 3.330 4.357 5.069

(0.136) (0.375) (-0.155) (-2.270)†
Model 3 4.785 5.270 6.347 6.129

(-3.788)† (-3.795)† (-3.768)† (-3.087)†
Model 4 3.809 4.075 4.792 5.305

(-1.164) (-1.873)† (-1.336) (-2.737)†
Model 5 4.079 4.592 5.255 5.337

(-1.125) (-1.775)† (-1.650)† (-1.878)†
Model 6 3.802 4.107 4.757 4.891

(-1.139) (-2.011)† (-1.347) (-1.770)†
Model 7 4.516 4.747 5.095 5.103

(-1.479) (-2.223)† (-1.480) (-1.600)
Model 8 3.810 4.111 4.759 4.960

(-1.169) (-2.048)† (-1.382) (-2.014)†
Model 9 3.677 3.921 4.472 4.665

(-0.775) (-1.798)† (-0.618) (-1.645)†
Model 10 3.819 4.101 4.769 5.208

(-1.212) (-2.040)† (-1.304) (-2.576)†
Model 11 3.720 4.050 4.563 4.740

(-0.935) (-2.022)† (-0.881) (-1.659)†
Model 12 3.340 3.158 4.020 4.448

(0.549) (0.995) (0.921) (-0.981)
Model 13 3.519 3.296 4.097 4.259

(-0.086) (0.539) (0.606) (-0.537)
Model 14 3.486 3.381 4.351 5.124

(0.035) (0.232) (-0.145) (-2.379)†
Model 15 3.351 3.331 3.999 4.297

(0.527) (0.411) (0.938) (-0.634)

Panel B: Consumption Deflator (PCE)

Model 1 2.689 2.882 3.162 2.902

Model 2 2.613 2.540 3.097 3.918
(0.245) (1.598) (0.275) (-2.985)†

Model 3 4.318 3.956 4.521 4.823
(-2.312)† (-3.275)† (-3.082)† (-3.373)†

Model 4 3.561 3.214 3.608 4.114
(-1.911)† (-1.525) (-1.983)† (-3.754)†

Model 5 2.900 3.488 3.557 3.663
(-1.106) (-2.348)† (-1.990)† (-2.308)†

Model 6 3.542 3.220 3.587 3.835
(-1.871)† (-1.593) (-2.118)† (-2.933)†

Model 7 3.123 3.386 3.501 3.648
(-1.865)† (-2.486)† (-1.834)† (-2.349)†

Model 8 3.562 3.283 3.921 4.412
(-1.910)† (-1.847)† (-3.021)† (-4.066)†

Model 9 3.375 3.233 3.491 3.826
(-1.687)† (-1.948)† (-1.729)† (-2.957)†

Model 10 3.593 3.227 3.673 4.207
(-1.887)† (-1.614) (-1.969)† (-3.925)†

Model 11 3.548 3.196 3.496 3.781
(-1.717)† (-1.504) (-1.769)† (-2.905)†

Model 12 2.619 2.485 3.118 3.846
(0.237) (2.005)* (0.191) (-2.904)†

Model 13 2.669 2.554 2.874 3.294
(0.066) (1.669)* (1.360) (-1.562)

Model 14 2.637 2.558 3.123 3.978
(0.163) (1.544) (0.160) (-3.229)†

Model 15 2.633 2.525 2.817 3.271
(0.175) (1.870)* (1.617) (-1.542)

31



Table 5 (cont.): Predictive Performance of Various Models for Price Variables∗

Forecast Horizon (h) 1 3 12 24

Panel C: Producer Price Index (PPI)

Model 1 2.142 2.152 2.351 2.198
Model 2 2.445 2.360 2.433 2.385

(-1.813)† (-1.349) (-0.660) (-1.232)
Model 3 3.140 4.070 3.625 3.737

(-3.026)† (-3.407)† (-3.214)† (-3.404)†
Model 4 2.201 2.413 2.300 2.421

(-0.387) (-1.424) (0.370) (-1.599)
Model 5 2.282 2.391 2.370 2.536

(-1.143) (-1.339) (-0.152) (-1.576)
Model 6 2.203 2.392 2.256 2.303

(-0.402) (-1.320) (0.729) (-0.743)
Model 7 2.332 2.480 2.273 2.420

(-1.205) (-1.828)† (0.632) (-1.110)
Model 8 2.206 2.397 2.257 2.332

(-0.420) (-1.351) (0.730) (-1.021)

Model 9 2.115 2.192 2.245 2.238
(0.394) (-0.769) (1.369) (-0.352)

Model 10 2.217 2.474 2.345 2.407
(-0.465) (-1.806)† (0.043) (-1.350)

Model 11 2.199 2.409 2.200 2.313
(-0.385) (-1.569) (1.449) (-0.938)

Model 12 2.396 2.299 2.356 2.332
(-1.654)† (-0.888) (-0.054) (-1.021)

Model 13 2.115 2.344 2.245 2.238
(0.394) (-1.512) (1.369) (-0.352)

Model 14 2.447 2.401 2.465 2.407
(-1.784)† (-1.558) (-0.912) (-1.350)

Model 15 2.406 2.387 2.383 2.313
(-1.650)† (-1.337) (-0.327) (-0.938)

∗ Notes: Primary entries in this table are mean square forecast errors (MSFEs) based upon re-
cursively constructed ex ante predictions for the period 1960:01-2003:12, using Models 1-15 (see
Table 1 for an explanation of the different models). Bracketed entries are MSFE type Diebold and
Mariano (DM: 1995) predictive accuracy test statistics, where Model 1 is compared with each of the
other models). Entries in bold indicate instances where the alternative model (i.e. each of Models
2-15) outperforms the factor model (i.e. Model 1), as indicated by both a lower MSFE and a pos-
itive DM test statistic. Boxed MSFE entries represent the lowest MSFE value among all models,
for a particular forecast horizon, h. DM statistic entries with a ∗ sign indicate instances where the
respective alternative model significantly outperforms the factor model at a 10% significance level,
whereas for entries with a † sign, the factor model significantly outperforms the alternative model
at a 10% significance level, under the assumption that the DM test statistic has a standard normal
limiting distribution (see above for further discussion).
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Table 6: Predictive Performance of Various Models for Output, Employment and
Sales Variables∗

Forecast Horizon (h) 1 3 12 24
Panel A: Industrial Production

Model 1 2.226 2.459 3.114 2.871
Model 2 2.471 2.490 2.811 2.797

(-1.529) (-0.192) (1.343) (0.673)
Model 3 4.267 3.931 4.541 5.528

(-4.910)† (-3.142)† (-3.165)† (-4.884)†
Model 4 2.804 2.655 2.785 2.708

(-3.270)† (-1.093) (1.436) (1.417)
Model 5 2.284 2.478 3.100 2.747

(-0.419) (-0.147) (0.081) (0.560)
Model 6 2.682 2.623 2.795 2.688

(-2.613)† (-1.039) (1.383) (1.584)
Model 7 2.678 2.352 2.708 2.620

(-2.563)† (0.948) (1.752)* (1.853)*

Model 8 2.719 2.652 2.737 2.584
(-2.542)† (-1.210) (1.598) (2.195)*

Model 9 2.445 2.406 2.912 2.681
(-1.542) (0.447) (0.803) (1.504)

Model 10 2.666 2.164 2.758 2.846
(-2.474)† (2.155)* (1.565) (0.232)

Model 11 2.512 2.291 2.654 2.609
(-1.911)† (1.268) (1.784)* (1.852)*

Model 12 2.594 2.615 2.737 2.584
(-2.009)† (-0.976) (1.598) (2.195)*

Model 13 2.445 2.402 2.912 2.681
(-1.542) (0.490) (0.803) (1.504)

Model 14 2.453 2.123 2.758 2.846
(-1.445) (2.445)* (1.565) (0.232)

Model 15 2.502 2.240 2.654 2.609
(-1.840)† (1.608) (1.784)* (1.852)*

Panel B: Personal Income Less Transfers

Model 1 5.919 5.841 5.660 6.235

Model 2 7.167 6.811 5.576 5.994
(-1.444) (-1.522) (0.293) (1.841)*

Model 3 15.316 12.858 6.533 10.327
(-2.046)† (-1.697)† (-0.534) (-1.459)

Model 4 6.408 6.028 5.225 6.083
(-0.725) (-0.927) (1.627) (1.587)

Model 5 6.030 6.028 5.642 6.148
(-0.292) (-1.125) (0.118) (1.117)

Model 6 6.373 5.996 5.298 6.071
(-0.674) (-0.790) (1.513) (1.889)*

Model 7 6.570 6.249 5.518 6.027
(-0.941) (-1.328) (0.418) (2.272)*

Model 8 6.368 5.991 5.300 6.075
(-0.666) (-0.764) (1.505) (1.840)*

Model 9 6.334 6.147 5.690 6.132
(-0.741) (-2.102)† (-0.074) (0.969)

Model 10 6.569 6.077 5.363 6.026
(-0.734) (-0.834) (0.940) (1.581)

Model 11 6.336 6.057 5.358 6.042
(-0.610) (-0.782) (1.347) (1.887)*

Model 12 6.766 6.674 5.490 6.075
(-1.268) (-1.327) (0.767) (1.840)*

Model 13 6.659 6.791 5.920 6.150
(-1.220) (-1.589) (-0.676) (1.004)

Model 14 7.164 6.809 5.587 6.007
(-1.440) (-1.491) (0.269) (1.548)

Model 15 6.649 6.796 5.482 6.042
(-1.022) (-1.417) (0.936) (1.887)*
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Table 6 (cont.): Predictive Performance of Various Models for Output, Employment
and Sales Variables∗

Forecast Horizon (h) 1 3 12 24
Panel C: Nonagricultural Employment

Model 1 1.893 1.693 3.587 3.279
Model 2 1.135 1.471 3.446 3.626

(4.013)* (1.323) (0.561) (-1.836)†
Model 3 1.655 1.571 3.685 6.021

(0.991) (0.542) (-0.239) (-5.224)†
Model 4 2.203 2.134 3.607 3.424

(-1.460) (-2.614)† (-0.079) (-0.970)

Model 5 2.360 2.441 3.345 2.726
(-2.191)† (-3.580)† (0.977) (3.068)*

Model 6 2.102 2.032 3.566 3.408
(-0.982) (-2.115)† (0.090) (-0.866)

Model 7 2.235 2.102 3.177 2.992
(-1.323) (-2.570)† (1.569) (2.170)*

Model 8 2.090 2.024 3.547 3.426
(-0.929) (-2.073)† (0.170) (-0.986)

Model 9 2.223 2.219 3.385 2.772
(-1.635) (-3.206)† (0.786) (2.767)*

Model 10 1.772 1.632 3.311 3.657
(0.574) (0.333) (1.066) (-2.064)†

Model 11 2.084 2.009 3.029 2.784
(-0.935) (-2.081)† (2.256)* (3.210)*

Model 12 1.275 1.719 3.547 3.426
(3.526)* (-0.187) (0.170) (-0.986)

Model 13 1.327 1.744 3.385 2.772
(3.691)* (-0.428) (0.786) (2.767)*

Model 14 1.128 1.406 3.311 3.657
(4.087)* (1.546) (1.066) (-2.064)†

Model 15 1.257 1.695 3.029 2.784
(3.825)* (-0.015) (2.256)* (3.210)*

Panel D: Manufacturing and Trade Sales

Model 1 7.001 8.243 8.603 8.187

Model 2 7.294 7.729 8.075 7.920
(-0.639) (1.802)* (1.494) (0.912)

Model 3 21.172 12.915 15.844 18.207
(-5.572)† (-3.449)† (-4.636)† (-5.484)†

Model 4 7.811 8.132 8.076 7.881
(-1.696)† (0.447) (1.461) (1.073)

Model 5 7.885 7.787 8.292 8.425
(-1.239) (2.022)* (0.734) (-0.914)

Model 6 7.541 7.808 8.074 7.925
(-1.197) (1.895)* (1.451) (0.915)

Model 7 7.706 7.890 8.183 8.420
(-1.359) (1.643) (1.083) (-0.907)

Model 8 7.429 7.795 8.079 7.926
(-0.959) (1.955)* (1.447) (0.910)

Model 9 7.199 7.836 8.148 8.033
(-0.458) (1.589) (1.128) (0.602)

Model 10 7.571 7.895 8.091 7.964
(-1.109) (1.546) (1.424) (0.763)

Model 11 7.465 7.917 8.092 7.984
(-1.019) (1.585) (1.237) (0.687)

Model 12 7.429 7.795 8.079 7.926
(-0.959) (1.955)* (1.447) (0.910)

Model 13 7.199 7.836 8.013 8.033
(-0.458) (1.589) (1.422) (0.602)

Model 14 7.195 7.895 8.091 7.964
(-0.398) (1.546) (1.424) (0.763)

Model 15 7.465 7.917 8.092 7.984
(-1.019) (1.585) (1.237) (0.687)

∗ Notes: See notes to Table 4.

34



Figure 1: Estimated Factors and Most Frequently Selected Factor Proxies

Panel 1: Estimated Factor 1
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Panel 2: Estimated Factor 2
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Panel 3: Estimated Factor 3
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Panel 4: S&P’s Common Stock Price Index, Composite
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Panel 5: S&P’s Common Stock Price Index, Industrials
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Panel 6: Housing Starts, Nonfarm
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