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ABSTRACT 

 

 This paper extends the research in Carlino, Chatterjee, and Hunt (2007) to 
examine the effects of local economic characteristics on the rate of innovation (as 
measured by patents) in more than a dozen industries. The availability of human capital is 
perhaps the most important factor explaining the invention rate for most industries. We 
find some evidence that higher job market density is associated with more patenting in 
industries such as pharmaceuticals and computers. We find evidence of increasing returns 
with respect to city size (total jobs) for many industries and more modest effects for 
increases in the size of an industry in a city. This suggests that inter-industry spillovers 
are often at least as important as intra-industry spillovers in explaining local rates of 
innovation. A more competitive local market structure, characterized by smaller 
establishments, contributes significantly to patenting in nearly all industries. More often 
than not, specialization among manufacturing industries is not particularly helpful, but 
we find the opposite for specialization among service industries. Industries benefit from 
different local sources of R&D (academia, government labs, and private labs) and to 
varying degrees. 
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I. INTRODUCTION 

 This paper examines the role metropolitan areas play in the production of ideas.  

The academic literature has identified a variety of geographically localized forces that 

influence innovation. Theories by Berliant, Reed, and Wang (2006), hereafter BRW 

(2006), and Helsley and Strange (2002) stress the superiority of matches that can be 

formed among agents in cities.  For example, BRW (2006) argue that in dense urban 

areas, workers are more selective in their matches and are therefore more productive.1   

The examination of dynamic spillovers associated with matching externalities is 

relatively new and is in part motivated by the emergence of endogenous growth theory in 

the late 1980s. But there is also a much older literature that stresses the importance of 

static thick-market externalities in generating innovation, such as urban agglomeration 

economies.  There has been an ongoing debate as to whether innovation is enhanced in 

local areas with industrial structures that are highly specialized industrially or if more 

diverse places are better at fostering innovation. Economists have also debated the 

importance of the competitiveness of a local area (or lack thereof) on the rate of 

innovation among local firms.  

 Existing studies have tended to focus on one type of externality. For example, the 

study by Ó hUallacháin 1999 looks at the empirical relationship between metropolitan 

area population size and patenting in metropolitan areas.  A recent paper by Carlino, 

Chatterjee, and Hunt (2007), hereafter CCH (2007), considers how a number of localized 

forces influenced the rate of patenting in metropolitan areas in the 1990s.  Our paper is 

similar to  CCH (2007), in that we consider how urban density, urban scale, an area’s 

                                                 
1 For a generalization of the model in BRW (2006), see Hunt (2007). 

 3



industrial structure, the availability of research inputs in an area (i.e., private R&D labs), 

etc, effect the rate of innovation as measured by patents issued to inventors in a 

metropolitan area.  But our paper differs from CCH (2007) in that we focus on the effects 

of these factors on the invention rate at the level of 17 industry groups. It’s likely that the 

importance of localized knowledge spillovers and the benefits of geographic clustering 

for innovation differ significantly across industries.  One advantage of using industry data 

is that it gives a much larger testing ground for understanding the local forces that govern 

innovation.  

 

 II. LITERATURE REVIEW 

There is substantial evidence for a link between the geographic concentration of 

population/economic activity and innovation.  For example, in the 1990s, 92 percent of 

all patents were granted to residents of metropolitan areas, although only about three-

quarters of the U.S. population resides in metropolitan places.  Economists have offered 

two reasons why innovative activity is more efficient in cities than outside them: 

knowledge spillovers and thick market effects.   

Knowledge Spillovers Although many factors contribute to growth, the recent 

endogenous growth literature has argued that uncompensated knowledge spillovers may 

play an important role.  If the diffusion of tacit knowledge is to any degree retarded by 

distance, the concentration of workers in cities can capitalize on these spillovers by 

creating an environment in which ideas flow quickly among workers and firms.  

To date, economists have provided limited, but tantalizing, evidence on the 

existence and importance of these spillovers. Jaffe et al. (1993) find that nearby inventors 

 4



have a much higher propensity to cite each others’ patents, suggesting that knowledge 

spillovers are indeed localized. But their study does not explain how city characteristics, 

such as size and local density, influence the production of these spillovers.  

CCH (2007) find that, all else equal, patent intensity (patents per capita) is 20 

percent higher in a metropolitan area with an employment density (jobs per square mile) 

twice that of another metropolitan area. Ciccone and Hall (1996) find that county 

employment densities help to explain differences in productivity levels across states.  In 

their study of inventor network effects, Strumsky, Lobo, and Fleming (2005), report a 

positive relationship between the number of patents and population density in 331 MSAs.  

Andersson, Burgess, and Lane (2004) show that the correlation between workers’ skills 

(education) and employers’ productivity (revenue per worker) at the establishment level 

is larger in counties with higher population densities. They argue that this is evidence of 

superior matching between workers and firms in more dense labor markets.  

 There also is evidence that localized knowledge spillovers tend to attenuate 

rapidly with distance from the source of these externalities. For example, Rosenthal and 

Strange (2001) find that knowledge spillovers tend to be highly localized. They consider 

the importance of input sharing, matching, and knowledge spillovers for manufacturing 

firms at the state, county, and zip code levels of geography.  They find the effects of 

knowledge spillovers on agglomeration of manufacturing firms tend to be quite localized, 

influencing agglomeration only at the zip code level.  Jaffe (1986) finds evidence that 

localized knowledge spillovers dissipate rapidly for patent citations.  Arzaghi and 

Henderson (2005) find knowledge flows among advertising agencies in Manhattan tend 

to be extremely localized. 
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 Thick Market Effects A number of researchers stress the importance of a 

metropolitan area’s size for innovation. Large metropolitan areas have numerous 

inventors and plenty of R&D activities that are focused on innovations. Several authors 

find that patent activity increases with metropolitan area size as measured by population 

or total employment (Feldman and Audretsch 1999, Ó hUallacháin 1999, and 

Bettencourt, Lobo, and Strumsky 2004). But these studies do not control for inputs into 

the innovation process, such as R&D, and therefore cannot identify the external effects. 

A recent paper by Helsley and Strange (2002) offers micro-foundations for a link 

between innovation and input sharing. The idea is that a dense network of input suppliers, 

as found in metropolitan areas, facilitates innovation by making it less costly to bring 

new ideas to fruition. As Helsley and Strange (2002) note, “concentrations encourage 

innovation by assisting in the realization of ideas rather than in (or perhaps in addition to) 

the generation of ideas.” 

 Industries Level Studies Some studies have tended to look at innovation within 

a particular industry, such as the semi-conductor or pharmaceuticals industries.  While 

these studies are quite informative, most often these studies lack a spatial component.  

Studies that have a spatial component most often look at aggregate innovation in cities 

and metropolitan areas and in general ignore the sectoral dimension.  There are a few 

exceptions. A paper by Anselin, Varga, and Acs (1997) looks for evidence of local 

university spillovers for four two-digit industries located in MSAs.  They find evidence 

of university research spillovers in the electronics and instruments industries but not in 

the drugs and chemical industry or in the machinery industry.   
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Economists also have debated the effects of local market structures (e.g., degree 

of local market competition and degree of diversity in an area’s industrial structure) on 

the rate of innovation and growth.  Once again, the vast majority of this research has been 

for aggregate variables in cities and metropolitan areas.  One exception is the paper by 

Henderson, Kuncoro, and Turner (1995) who examined employment growth rates in five 

traditional capital goods industries located in 224 cities. For mature industries in these 

sectors, they found that employment growth was positively correlated with a high past 

concentration in the same industry, while industrial diversity was found to be most 

important for growth of less established industries.  

In this paper, we explicitly examine the effects of employment density (jobs per 

square mile), city size (total employment), industry size (share of MSA employment in a 

given industry) and other characteristics (e.g., specialization and local competition) on 

the rate of innovation across metropolitan areas in the U.S. We use the average level of 

patents during 1990 to 1999 in a metropolitan area as a measure of innovative activity in 

these areas.  Specifically, we look at total patents and patents in each of 17 industries in 

280 metropolitan areas in the 1990s.  Unlike past studies that have focused analysis on a 

single or a few determinants of local innovation (e.g., university research), we allow for a 

much richer set of influences (knowledge spillovers, thick market effects, the effects of 

private R&D and university R&D, etc.).   

By considering patents at the industry level we can observe if there are 

differences in the benefits that local labor markets offer to the various industries.  In 

addition to examining the role that industrial concentration plays in the innovation 

process, we allow for two types of thick market effects: those associated with industrial 
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clusters (localization economies) and those associated with the overall scale of a city 

(urbanization economies).   Other studies have focused on only one aspect, such as the 

size of a local area or industrial structure or competitiveness.  In this paper we look at the 

various ways in which a local area contributes to innovative activity.   

 

III. OUR DATA AND REGRESSION STRATEGY 

Since data on innovations are not generally available at the local level, we use the 

level of patents in a metropolitan area as our measure of innovation. This measure has its 

shortcomings, since some innovations are not patented and patents differ enormously in 

their economic impact.2  Nonetheless, patents remain a useful measure of the generation 

of ideas. 

We regress patents in each of 17 industries in a metropolitan area on measures of 

local employment density (labor market matching), MSA employment size (urbanization 

economies), MSA industry size (localization economies) and a variety of control 

variables.  More specifically, the dependent variables in our regressions is the total 

number of patents issued in an MSA over the period 1990-99 to each of the 17 major 

industries comprising this study.3 We use total patents by industry averaged over the 

period 1990-1999 to minimize any effects from year-to-year fluctuations in patent 

activity, which could be an issue in smaller metropolitan areas or if the presence of an 

industry in an area is low. Table 1 gives a detailed description of our broad industrial 

categories.  To mitigate any bias induced by endogeneity or reverse causation, the 

                                                 
2 For a general discussion of patents as indicators, see Griliches (1990, 1994). 
3 Our patent data are from the USPTO’s US Patent Inventor File and the PATSIC99 file. We thank Jim 
Hirabayashi of the USPTO for his assistance in obtaining and explaining these data.   
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independent variables to be described in detail below are at 1989-90, or roughly 

beginning-of-the-period values.4   

 Following CCH (2007), the sample consists of 280 metropolitan areas as defined 

in 1983. For brevity, we refer to these as MAs. Included in this sample are 264 

metropolitan statistical areas (MSAs) and primary metropolitan statistical areas (PMSAs). 

To include as many patents as possible in our data set, we grouped 25 component PMSAs 

into their corresponding nine consolidated metropolitan statistical areas (CMSAs). It was 

also necessary to group 21 separate MSAs into seven metropolitan areas.5  This 

aggregation permits us to include an additional 9,000 patents (6.5 percent of the total) in 

our regressions.  

 The Patent Data. Patents are assigned to metropolitan areas according to the 

residential address of the first inventor named on the patent. We allocate patents to a 

county or metropolitan area when we can identify a unique match to either a county or 

metropolitan area. Patents that cannot be uniquely matched are excluded from our data 

set. We were able to locate over 581,000 patents granted over the 1990-99 period to 

inventors living in the U.S. to either a unique county or MA, a match rate of 96 percent. 

Just over 534,000 (92 percent) of these patents were associated with an urban county.  

Industry Patent Counts. We depart from CCH (2007) in that we allocate our 

patents to 17 industries. We do this using the USPTO OTAF concordance for the 1999 

vintage of the patent data. This is a mapping from patent classifications, as assigned by 

                                                 
4 Details of the construction of our variables may be found in an appendix available from the authors. 
5 For details on these non-standard MAs, see the data appendix of CCH (2007). In that paper, we verified 
the regressions results were not sensitive to the exclusion of these MAs.   
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the examiner to industries that typically make or use these technologies.6 One can think 

(very loosely) of patent classifications as a position in technology space (Jaffe 1986). 

These industries, and the share of our patents in them, are reported in Table 1.  

We recognize this mapping is not a perfect one and, as a result, there is likely to 

be some measurement error in the assignment of patents to industries. To control for this, 

and also the possibility of persistence of local advantages in particular technologies or 

industries, we include lagged values of the share of jobs and patents in these industries in 

our regressions.7 The lagged patent shares are based on patent activity in an MA during 

the 1980s and the lagged employment shares are based on data contained in the 1989 

edition of County Business Patterns. 

 Land Area. By definition, employment density is the number of jobs per square 

mile of land area. Employment density varies enormously within metropolitan areas. It is 

typically highest in the central business district (CBD) of an MA’s central city and 

generally falls off as we move away from the CBD. However, the majority of land area in 

most MSAs counties is in fact rural in nature. In the 1990 census only 12 percent of the 

580,000 square miles of land in MSAs was categorized as urban in nature. There is also 

considerable variation in the degree to which the counties surrounding a central city are 

built out. The urban share of MSA land area in 1990 varied from less than 1 percent in 

Yuma, AZ, to 65 percent in Stamford, CT. 

We use a measure of land area that reflects the interaction of workers in labor 

                                                 
6 To be precise, we collapse 57 USPTO OTAF codes into 17 sets of two- and three-digit SIC codes, which 
we describe as industries. The remaining patents are grouped into an additional category, “other,” which 
constitutes the omitted share in all our regressions. 
7 An alternative interpretation of the coefficients on these variables is that they are picking up spillovers 
across industries. At present, however, our specification cannot distinguish between these two possibilities. 
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markets that are sufficiently dense to call urban—the urbanized area (UA) of cities.8 

These are defined as continuously built-up areas with a population of 50,000 or more, 

comprising at least one place and the adjacent densely settled surrounding area with a 

population density of at least 1,000 per square mile (U.S. Census Bureau, 1994).9  

Employment and Density. For our purposes, the ideal measure of jobs and 

employment density would count only those jobs located in the urbanized area of cities. 

Unfortunately, such data are generally unavailable. For example, our preferred measure 

of employment is derived from the BLS survey of payrolls. We also use these data in our 

measures of MA size.10 The primary advantage of these data is that jobs are reported 

based on the place of work rather than the place of residence. The disadvantage is that the 

data are reported at the county or MSA level, but not for urbanized areas.  

To the extent that some metropolitan employment occurs outside of urbanized 

areas, our MA employment density measure will overstate the actual density of jobs in 

the built-up portion of MAs. But the most likely effect of such measurement error in our 

regressions would be a negative bias in the coefficient on employment density.11 That is 

because we include in our density measure jobs (in “rural” parts of the MA) less likely to 

be associated with innovation activities.   

To investigate the potential effects of agglomeration economies on inventive 
                                                 
8 Mills and Hamilton (1994, p. 6) argue that urbanized areas correspond most closely to the economist’s 
notion of urban areas. 
9  While UAs often cross county lines, we collected data on urbanized area land in each county and then 
aggregated this number to the MA level. 
10 Our data on total employment, and job shares outside manufacturing, were extracted from the 1999 
vintage of the BEA’s Regional Economic Indicator System (REIS).  
11 In CCH (2007), we ran regressions for total patents per capita using alternative measures of employment 
density. We  found that the findings were unaffected by the using a resident based measure of employment 
(e.g., from the census of population) as opposed to establishment based measures.  In addition, we reported 
regressions where we instrument for our density measure to better control for possible endogeneity bias or 
measurement error. 
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output, we include three variables in all regressions that are reported.  Total 

establishment-based employment in an MA and its square is used to test for the 

importance of net urbanization economies on patenting. The share of MA employment in 

each industry (in 1989) is also included.12 The coefficient on the own industry 

employment share can be interpreted as a measure of localization economies for that 

economy. We expect a positive sign on both the net urbanization economies and 

localization economies variables.   

 Industrial Diversification and Local Market Structure. To explore the possible 

effects of local industrial diversification or specialization on inventive output, we 

construct two Herfindahl-Hirshman Indexes of industry employment shares. We calculate 

the sum of the square of MA manufacturing employment shares in 1989 accounted for by 

each two-digit SIC manufacturing industry and another using data for each one-digit SIC 

non-manufacturing industry.13 Higher values of either index for an MA imply that its 

economy is more highly specialized.   

To investigate the potential effects of local labor market structure on inventive 

output, we construct a variable similar to one suggested in Glaeser et al. (1992)—the 

number of establishments per worker in the metropolitan area. According to this 

definition, the higher this ratio, the more competitive is the local labor market.14 This 

variable may capture more than a static sense of industrial structure. If cities, or industries 

                                                 
12 We measure employment at the industry level using County Business Patterns, since this data allows us 
to construct shares that are consistent with our industry definitions. As noted above, we include the 
employment shares in the other industries in all our regressions.   
13 The index for manufacturing is derived from the County Business Patterns data and the index for non-
manufacturing is based on data from BEA (REIS). We use the latter source for non-manufacturing since it 
includes government employees. 
14 The number of establishments is derived from the 1989 vintage of County Business Patterns.   

 12



within a city, are experiencing considerable entry or start-up activity, one would expect 

average establishment size to be smaller.  

Local Research Inputs. Given that our regression relies on a cross section, it is 

important to take into account factors that influence the overall productivity in a city.  We 

include many control variables for this purpose.  We also control for the concentration of 

firms located in high technology industries. We do this by calculating the share of patents 

obtained in an MA for the years 1980-89 owned by firms in research-intensive industries 

as defined by the Commerce Department’s Office of Technology Policy (2001).15  And, 

as mentioned above, we also include the shares of patents obtained in each MA during 

1980-89 for each of our 17 industries.  

It is especially important to control for local inputs into the R&D process. For 

example, Andersson, Quigley, and Wilhelmsson (2005) find evidence that the expansion 

of the number of university-based researchers in a local labor market is positively 

associated with an increase in the number of patents granted in that area.16  To account 

for the relative abundance of local human capital, our regressions include the share of the 

population (over 25 years of age) with a college degree or more education in 1990. We 

also control for the influence of having many nearby universities, a possible college town 

effect, by including the ratio of college enrollment to population in the years 1987-89.  

We include three other measures of research inputs in terms of their intensities.17 

First, we include in our regressions the sum of spending on R&D in science and 

                                                 
15 This variable is constructed by matching patent numbers to assignees (firms) in the NBER Patent 
Citations Data File and obtaining a corresponding four-digit SIC code from Compustat. See CCH (2007) 
for details. 
16 See Anselin, Varga, and Acs (1997) for a review of the studies examining localized spillovers from 
university R&D. 
17 Not surprisingly, the levels of these inputs are highly correlated with city size. 
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engineering at local colleges and universities divided by full-time enrollment at colleges 

and universities in the MA over the years 1987-89. We hope to capture the intensive 

margin—the R&D resources available to potential researchers. Similarly, our regressions 

include the sum of federal funding at government research laboratories in the MA divided 

by the number of federal civilian employees in the MA (averaged over the period 1987-

89). Finally, we include in our regressions the number of private R&D facilities in 1989 

divided by the number of private non-farm establishments.18   

Other Control Variables. Does a correlation between patent activity and our 

spillover variables (employment density, city size, or industry size) reflect an actual 

difference in inventive activity or, instead, differences in the way firms protect their 

inventions? For example, firms might rely more on patenting in dense areas or in areas 

when other firms in its industry are concentrated if it is more difficult to maintain trade 

secrets there than in less dense areas.  In that case, greater difficulty in maintaining 

secrecy, rather than spillovers, might explain our results.  

To test the significance of this alternative explanation, we create an index of the 

importance of trade secrecy that varies across metropolitan areas. We do this by 

weighting industry-specific measures of the effectiveness of trade secrecy reported in 

Cohen, Nelson, and Walsh (2000) by the industry shares reflected in the mix of private 

R&D facilities in every MA in our data set.19 A higher value of this index for an MA 

implies that trade secrets are relatively more effective for the mix of industries reflected 

in its R&D facilities. 

                                                 
18 Over 1,800 private labs associated with the top 500 R&D performing corporations were geographically 
located using information contained in the 1989 edition of the Bowker Directory of American Research and 
Technology. 
19 See CCH (2007) for details on the construction of this variable. 
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We include a number of other control variables. We include the percent change in 

employment over the years 1980-89 as a control for the effects of unobserved differences 

in local economic opportunities on inventive activity. We also include seven dummy 

variables based on the BEA economic region in which the MA is located (the Rocky 

Mountain region is omitted).   

Table 2 shows the summary statistics for the variables used in the analysis. To 

begin with, we show the summary statistics for total patents and the summary statistics 

for patents for each of the 17 industries used in this study.  For example, the number of 

total patents awarded to inventors during the 1990s—our measure of innovative activity 

—vary considerably across MAs.  The number of patents runs from a high of almost 

43,000 in the New York MA to 7 in Victoria, Texas MA, compared with an average of 

just over 1,900 for the typical MA in our sample.  The number of patents by industry also 

displays considerably variation across cities.  The mean number of patents varies from a 

high of 284 in communications equipment (including semiconductors in our taxonomy) 

to about 13 in the food industry. Even through the food industry tends to do little 

patenting, the number of patents in the industry runs from a high of 655 in the New York 

metropolitan area to zero patents in 75 metropolitan areas.  

The urbanized land area of MAs varies considerably across cities: for Grand 

Forks it is less than 15 square miles; for New York-Northeastern New Jersey, it exceeds 

3,000 square miles. Establishment-based employment in our MAs varies from 37,000 

(Casper, WY) to 9.7 million (New York-Northeastern New Jersey). The mean of MA 

employment density is 1,727 jobs per square mile, while the mean of UA employment 

density is 987 jobs per square mile. 
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 Our Specification. Our main regression equation is simply:  

25 43
2 2

1 2 3 4 5 8
9 26

58

45 46 47 48 49 50
52

6 7

44 51& + a

3 _

_ _

ij i i i i i i k ik g i
k g

i i i i i i i r ir
r

i iC a D a D a E a E a COMP a a a HITECH a PATSHR a INDSHR

a PCTCOL a CE a U a FEDLAB a R D a TS a EMPGT a REGION

y hhi hhi nm

non mfg sh iμ

= =

=

= + + + + + + + + +

+ + + + + + +

+

+

∑ ∑

∑ +

A

i

iMA

where: 

 The level of total patents issued during the period 1990-99 in the j-th industry and i-th ;ijy MA=

D MA job density in 1989 in ; Log of i i=  

 Log of 1989 level of employment in ;i iE M=  

 = Log of the number of establishments in  divided by total employment in , in 1989;i iCOMP MA MA
3  = Herfindahl-Hirshman Index of manufacturing industry employment shares in 1989 ;i ihhi MA

_  = Herfindahl-Hirshman Index of non-manufacturing industry employment shares in 1989 ;ihhhi nm
= Share of patents in  during 1980-89 obtained by firms in R&D intensive industries; ii

HITECH MA

 = Share of patents obtained in  during 1980-89, classified in 
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Statistical Model Let  denote the number of patents in jth industry in the ith 

MA.  Since we will apply the same model to each industry in our sample, we drop the j 

subscripts here to simplify the notation.  Because

ijy

iy  is a discrete random count variable, it 

can be modeled as a Poisson distribution with parameter iλ : 

 exp( )( ) ,    0,  1,  2,  3,
!

iy

i i i i
i

prob Y y x y
y
λ λ−

= = = L ,    

The Poisson regression model estimates the probability of the arrival rate iλ  of patents 

that occurs n times ( ) as a function of a vector of independent variables. 

More precisely, 

1, 2,3,n = L

iλ  is defined as an exponential function of ix : 

( ) exp( )i i i i iE y x xλ β= =  

where iβ  is the vector of parameters to be estimated. 

One limitation of this model is that a Poisson random variable is distributed with a mean 

equal to the variance (equidispersion). If there is more variation than would be expected 

under a Poisson process (overdispersion) estimation of a Poisson model produces 

downward biased estimates of the variances. This is a common problem in empirical 

work and is often addressed by using the more general negative binomial specification. 

For each regression, we test for over-dispersion using a likelihood-ratio test developed by 

Cameron and Trivedi (1998).  We reject the null hypothesis of zero over-dispersion in 

each of the 17 industries in this study.   We therefore estimated a negative binominal 

model (for total patents and for patents in each of our 17 industries) using the maximum 

likelihood techniques in contained in STATA. All our results are presented using robust 

standard errors (White correction) to control for any heteroskedasticity.   
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IV. FINDINGS  

Density and Scale Table 3 contains the estimates for negative binominal model 

for total patents, and for each of 17 industries. To conserve on space, Table 3 shows 

estimated coefficients and related statistics only for the main variables of analysis.20  In 

all but two industries (fabricated metals, and other transportation equipment), the 

coefficient on our total employment density variable is positive. These coefficients are 

statistically significant in six industries: drugs, non-metal materials (oil and gas 

production, refining, rubber, stone, and other non-metallic materials), metal working 

machinery, computers, electric2 (household appliances, lighting and wiring, and other 

electric equipment), and communications equipment (which includes semiconductors) . 

In CCH (2007), we argued that such a relationship was consistent with increasing 

efficiencies in the matching of workers and firms at higher densities found in the 

theoretical model of BRW (2006). There is also some evidence of congestion—in each of 

the six industries mentioned above, there is a negative and statistically significant 

coefficient on the square of job density. 

Table 4 presents optimal density and optimal scale for the 17 industries, as well as 

the elasticities for a number of variables reported in Table 3.  The optimal density level 

for total employment is about 2,016 jobs per square mile. That is about the 75th percentile 

of our data set, or roughly the densities associated with the Greensboro-Winston-Salem, 

North Carolina MA.  This is very similar to the optimal density estimated using ordinary 

least squares in CCH (2007).21  

                                                 
20 Tables containing the full set of variables reported in Table 3 are available from the authors upon request. 
21 In that paper, the dependant was the log of patents per capita. 
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Considering only the significant coefficients, the optimal density varies from as 

high as 2,019 jobs per square mile for the communications equipment industry (which 

includes semiconductors) industry, to a low of 1,289 jobs per square mile for 

manufacturers of other machinery. The former value is roughly the density of the 

Greensboro-Winston-Salem (North Carolina) MA, while the latter corresponds to the 

density of the Fort Meyers (Florida) MA.   

We now turn to our measures of scale, or what are often described as urbanization 

economies. Previous research has found evidence that innovation is positively related to 

metropolitan employment size (see, for example, Ó hUallacháin 1999, and Feldman and 

Audretsch 1999). But these papers do not allow for the possibility of congestion as 

suggested by the open city version of the model in BRW (2006). In CCH (2007), we 

found evidence of initially increasing returns to scale in patenting. But we also found that 

these scale economies were largely exhausted at roughly the mean of the distribution of 

city size in our data (roughly that of Austin, TX, or Raleigh-Durham, NC, in 1990). Here 

we examine whether these effects vary by industry. 

Table 3 reports the estimated coefficients on both the log of MA employment and 

its square in our regressions.  For every industry in this study, the level of establishment-

based employment in an MA is positive and always statistically significant.  That is 

hardly a surprising result given findings reported in the literature. But we again find some 

evidence of significant congestion effects for some industries: chemicals, drugs, metal 

working machinery, computers, other machinery, electrical equipment (power generation, 

distribution, and industrial apparatus), motor vehicles, and instruments.   
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Unless there are extremely large diseconomies of scale, we should expect the 

number of patents to increase with the size of MAs. As a first approximation, the level of 

patenting should increase proportionately with MA scale.  We do not suggest this is 

evidence in favor of urbanization economies. A more appropriate measure would be 

some evidence of increasing returns to scale. In the second column of Table 4 we report 

estimates of the scale economies, evaluated at the mean of the distribution of city size in 

our data. As expected, all of the coefficients are above one in magnitude, and the ones in 

bold (12 industries) indicate that the estimated value is statistically different from one.22 

Interestingly, the largest estimates of economies of scale are associated with drugs (1.54), 

computers (1.42), and chemicals (1.26). These are also relatively patent intensive 

industries. 

Our findings suggest that localization economies may also be an important 

determinant of innovative activity, for some (8 out of 17) of our industries. Recall that we 

estimate these effects using the coefficient on the industry’s share of total employment in 

an MA. In one case, textiles, this coefficient is both negative and statistically significant, 

suggesting strong within industry diseconomies scale.  For the remaining seven industries 

with a significant coefficient on our localization variable, the associated elasticities are 

relatively small, varying from 0.06 (in metal working machinery) to 0.14 (in non-metal 

materials).  

On balance, then, it appears that urbanization economies in a number of industries 

appear to be at least as strong as any localization economies. This suggests an important 

source of spillovers may be arriving from outside the industry, a view suggested in the 

                                                 
22 In addition, the test statistics for all patents and patents in non-metal materials are also marginally 
significant. The associated p values are 0.12 and 0.11, respectively. 
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research of Jacobs (1969). This finding is reinforced by the fact that coefficients on 

lagged values of patent shares for other industries in the MA are often statistically 

significant (not shown), which might also suggest the presence of significant inter-

industry spillovers. 

Local Competition. The bulk of the regressions suggest that the rate of 

innovation is enhanced in more competitive local environments characterized by many 

small firms, rather than in local economies dominated by a few large firms. The 

coefficient on the number of establishments per employee is about 1.3 in the total patent 

regression and is precisely measured. The coefficient can be interpreted as an elasticity 

since the variable is included in logs in our regression. The effect is economically 

significant, as this ratio more than doubles across the industries in our sample. The 

elasticity of patents with respect to local competition varies from 0.14 in the primary 

metals industry to 1.88 in both the computer and other transportation industries. For most 

industries this elasticity is quite large. In only one industry was this coefficient 

insignificant (drugs) and this telling, since the market structure of this industry is 

significantly determined by government regulation. Perhaps that is because the market 

structure on the industry may be determined by regulation (the FDA drug approval 

process) than by economic factors, at least relative to other industries. 

These results are broadly consistent with the views of Chinitz (1961), Feldman 

and Audretsch (1999), Glaeser et al. (1992), and Jacobs (1969) that competitive local 

labor markets facilitate innovation.   

  Industrial Mix and Specialization. If knowledge spillovers occur largely 

within industries, specialized cities may be more efficient producers of inventions. On the 
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other hand, if important spillovers are generated across industries, perhaps more 

industrially diverse cities may be more efficient innovators. To test for such effects, we 

include in our regressions, in logs, two Herfindahl-Hirshman Indexes of industry 

employment shares. The first measures the degree of specialization in two-digit SIC 

manufacturing industries, and the second measures the degree of specialization in one 

digit SIC non-manufacturing industries. We control for the relative importance of these 

two parts of the local economy by also including the non-manufacturing share of all jobs 

in 1989 as a control variable. 

The estimated coefficient on our measure of manufacturing specialization is 

statistically significant in only six industries: food, textiles, primary metals, machinery, 

metal working machinery, and computers. The associated elasticities are about 0.3-0.4 in 

absolute value. The effects are positive in all but one industry—computers. Thus for most 

industries manufacturing specialization does not appear to be important; in less than a 

third of the industries it is associated with higher inventive productivity; but in computers 

it is associated with less inventive productivity. Keep in mind that our regression also 

includes the underlying manufacturing industry employment shares. A literal 

interpretation of this specification is that, conditional on that industry mix, there can be 

significant separate effects associated with the degree of specialization in manufacturing.   

As for specialization outside of manufacturing, we find this is positively 

associated with patenting in 10 of 17 industries, and for patenting overall. The associated 

elasticities are relatively large, especially for drugs and computers where they exceed 2.  

We are unaware of any previous research that explores the significance of specialization 
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in non-manufacturing on the rate of invention in manufacturing industries. We think 

these results warrant additional investigation. 

  Local Research Inputs. We also find that local research inputs are important to 

explaining the variation in patenting across MAs and across industries The coefficients 

on our controls for research-intensive industries is statistically significant in 10 of 17 

industries and for patents overall (Table 5). But the associated elasticities are relatively 

small (0.1 to 0.2). These coefficients are likely reduced by the inclusion in our 

regressions of the shares of patents obtained in each industry over the previous decade. 

Table 5 presents results for five other variables of interest. By far the most 

powerful effect is generated by human capital (the share of the adult population in an MA 

with at least a college degree). A 10 percent increase in this ratio is associated with a 5.9 

percent increase in total patents. With the exception of the food, computers, motor 

vehicles and other transportation industries, this measure of human capital has a 

statistically significant effect on patenting in all other industries. Among the industries 

where this coefficient is statistically significant, the smallest elasticity among these 

industries (metal working machinery) is 0.4. These results are consistent with what we 

report in CCH (2007)—the presence of local human capital (the share of the adult 

population in an MA with at least a college degree) is by far the most important variable 

in explaining the rate of invention in cities. 

We also included a variable to capture the relative size of higher education in a 

metropolitan area, measured by the ratio of college enrollment to the adult population. 

The coefficient on this variable is either generally insignificant or marginally significant 
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in our regressions, suggesting that there is no separate college town effect on the local 

invention rate. 

Our other controls for local research inputs include lagged values of academic 

R&D, R&D spending at nearby government labs, and private R&D, all included in 

intensity form (see section IV).  Each of these variables has a statistically significant 

effect on the rate of patenting in most industries, and patenting overall. But, as we found 

in CCH (2007), the implied elasticities are relatively small (see Table 5).  Still, these 

effects are economically significant since there is considerable variation in the intensity 

of both academic and private R&D intensity in our data (see Table 2).   

There is also considerable variation in the magnitude of these effects across 

industries. For example, the chemical and drug industries especially benefit from 

increases in local human capital and in academic R&D performed by universities nearby 

(the elasticity associated with an increase in academic R&D intensity is 0.13 in 

Chemicals and 0.19 in drugs). On the other hand, the intensity of nearby private R&D 

labs does not appear to be important for patenting in drugs, while this elasticity is highest 

for the food (0.11) and computer (0.12) industries. The largest elasticity associated with 

R&D performed by government labs is found in the primary metals industry (0.03). 

Trade Secret Protection.  Recall that one interpretation of our coefficients on job 

market density is that firms are substituting patents for trade secrets in areas where the 

latter form of protection may be less effective. To test for such effects, we constructed a 

measure of the efficacy of trade secret protection across manufacturing industries and 

then weighted these measures using the local share of employment in these industries. 
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In our regressions we find a positive effect of our trade secrecy measure on 

overall patenting (Table 4). This suggests, if anything, that patents and trade secrets are 

complementary forms of protection. This is consistent with the correlation between 

industry level measures of the efficacy of patents and trade secrets reported in Cohen, 

Nelson, and Walsh (2000).  At the industry level, this variable is only significant for six 

industries (chemicals, non-metal materials, primary metals, fabricated metal products,  

metal working machinery, and computers). For these industries, the elasticities are 

relatively large, in particular for computers and primary metals.  

But it remains the case that city size and employment density remain important in 

explaining patent intensity even after controlling for an industry’s reliance on trade secret 

protection. This suggests that we are measuring increases in the rate of invention and not 

simply substitution in the means of protecting inventions. 

Employment Growth and Other Control Variables. The coefficient on 

employment growth in the previous decade is positive and statistically significant in the 

total patents main regression (Table 5). It is also has a positive and significant effect on 

patenting in 14 of our 17 industries. The associated elasticities vary from 0.12 in the 

machinery industry to 0.43 for primary metals. This suggests that, even after controlling 

for an MA’s historical mix of industries and technologies, a considerable amount of 

unobserved heterogeneity remains to be explained. 

 The estimated coefficients on only one of the seven BEA region dummies (not 

shown) are statistically significant in the total patents regression. MAs located in the 

Southwest regions had lower patent intensities. But there are also differential regional 
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effects in a number of our industries (not shown). Overall, it appears that our controls do 

a good job of accounting for the other factors that contribute to innovation in cities.  

 

V. CONCLUSION 

In this paper we explore the relationship between patenting at the industry level 

using a rich set of explanatory variables at the level of individual cities. This research 

builds on the results of CCH (2007) by decomposing our aggregate patenting data in that 

paper into measures for 17 groups of industries. This finer examination of the data 

requires a different econometric specification—in this case the negative binomial.  

As in CCH (2007), we test for significant effects of city size and density on the 

research productivity of industries located in these cities. We also look for evidence of 

congestion. We find that job market density plays a role in explaining the patenting 

behavior of some of the most patent intensive industries, such as drugs, computers, and 

communications equipment (which includes semiconductors in our taxonomy) and the 

implied optimal density varies significantly across industries. Thus, at the industry level, 

there is qualified evidence in support of the labor market matching externality explored in 

BRW (2006). 

We test for evidence of increasing returns to scale as well as the possibility of 

congestion that would imply that such returns must eventually diminish. We find 

evidence of both. The elasticity of output (in this case patenting) with respect to city size 

(total employment) exceeds one in 12 of our 17 industries, and by a significant margin for 

drugs (1.5), computers (1.4), and chemicals (1.3). This result is consistent with the 

argument that larger cities produce more spillovers that are enjoyed by the resident 
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industries (urbanization economies). But we also find evidence of congestion effects in at 

least seven of our industries, including the ones mentioned above.   

Another view of the dynamics of spillovers is that they tend to come from within 

industries, and we also find some evidence in support of this reasoning. In particular, the 

relative size of an industry affected the volume of patenting in about half of our 

industries, but the estimated elasticities seem relatively small (and in the case of textiles, 

it was negative), especially when compared to our estimates of the urbanization 

economies.  

Consistent with our earlier research, we find the abundance of local human capital 

is a major determinant of the rate of patenting in most of our industries. The effects are 

especially pronounced for chemicals and drugs. We find that, at the margin, local 

investments in R&D by universities, government labs, and private firms produce modest 

but significant contributions to patenting in most industries. But the magnitude of these 

effects, and the most relevant sources of R&D, vary considerably by industry. For 

example, we find that academic R&D is clearly most important for patenting in chemicals 

and drugs, while the presence in private R&D labs is most important for patenting in food 

products and computers. The marginal effect of additional government R&D was largest 

for patenting in primary metals.   

Once again we find that a more competitive local market structure, characterized 

by a smaller average establishment size, is associated with a higher rate of invention. 

Indeed this variable was statistically significant for every one of our industries except for 

drugs. Finally, we find that specialization among manufacturing industries positively 

influenced patenting in less than a third of industries, and actually reduced patenting in 
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the computer industry. In contrast, we found that specialization among non-

manufacturing industries was associated with more patenting in most of our 

manufacturing industries. The implied elasticity was especially large for drugs and 

computers. We believe this an entirely new finding and it warrants additional 

investigation. 

 

 28



REFERENCES 

Andersson, Frederik, Simon Burgess, and Julia Lane, 2004, “Cities, Matching and 
Productivity Gains of Agglomeration,” CEPR Discussion Paper No. 4598. 

Andersson, Roland, J. Quigley, and M. Wilhelmsson, 2005, “Higher Education, 
Localization and Innovation: Evidence from a Natural Experiment,” Unpublished 
manuscript. 

Anselin, Luc, Attila Varga, and Zoltan Acs, 1997, “Local Geographic Spillovers Between 
University and High Technology Innovations,” Journal of Urban Economics, Vol. 
42, pp. 442-48. 

Arzaghi, Mohammad, and J. Vernon. Henderson. “Networking off Madison Avenue,” 
Unpublished manuscript, (2005). 

Berliant, Marcus, Robert R. Reed, III and Ping Wang, 2006, “Knowledge Exchange, 
Matching, and Agglomeration,” Journal of Urban Economics, Vol. 60, pp. 69-95. 

Bettencourt, L., J. Lobo and D. Strumsky, 2004, “Invention in the City: Increasing 
Returns to Scale in Metropolitan Patenting,” Los Alamos National Laboratory 
technical ReportLAUR-04-8798.  

Cameron, A. Colin and Pravin K. Trivedi, 1998, Regression Analysis of Count Data,  
Econometric Society Monograph No.30, Cambridge University Press. 

Carlino, Gerald, Satyajit Chatterjee, and Robert M. Hunt, 2007, “Urban Density and the 
Rate of Innovation,” Journal of Urban Economics, Vol. 61, pp. 389-419. 

Ciccone, Antonio, and Robert E. Hall, 1996, “Productivity and the Density of Economic 
Activity,” American Economic Review, Vol. 86, pp. 54-70. 

Chinitz, Benjamin, 1961, “Contrasts in Agglomeration: New York and Pittsburgh,” 
Papers and Proceedings of the American Economic Association, Vol. 51, pp. 279-
89. 

Cohen, Wesley. M., Richard Nelson, and John P. Walsh, 2000, “Protecting Their 
Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing 
Firms Patent (OR NOT),” NBER Working Paper No. 7552.   

Directory of American Research and Technology, 23rd Edition, 1989, New York: R.R. 
Bowker. 

Feldman, Maryann P., and David. B. Audretsch, 1999, “Innovation in Cities: Science-
Based Diversity, Specialization and Localized Competition,” European Economic 
Review, Vol. 43, pp. 409-29. 

Glaeser, Edward L., Hedi D. Kallal, Jose A. Scheinkman, and Andrei Shleifer, 1992, 
“Growth in Cities,” Journal of Political Economy, Vol. 100, pp. 1126-53. 

Griliches, Zvi, 1990, “Patent Statistics as Economic Indicators: A Survey,” Journal of 
Economic Literature, Vol. 28, pp. 1661-1707. 

Griliches, Zvi, 1994, “Productivity, R&D, and the Data Constraint,” American Economic 
Review, Vol. 84, pp. 1-23. 

 29



Hall, Bronwyn H., Adam B. Jaffe, and Manuel Trajtenberg, 2001, “The NBER Patent 
Citations Data File: Lessons, Insights and Methodological Tools,” NBER 
Working Paper No. 8498. 

Helsley, Robert W., and William Strange, 2002, “Innovation and Input Sharing,” Journal 
of Urban Economics, Vol. 51, pp. 25-45. 

Henderson, Vernon J., Ari Kuncoro, and Matt Turner, 1995, “Industrial Development in 
Cities,” Journal of Political Economy, Vol. 103, pp. 1067-1090. 

Hunt, Robert M. 2007. “Matching Externalities and Inventive Productivity,” Federal 
Reserve Bank of Philadelphia Working Paper No. 07-7. 

Jacobs, Jane, 1969, The Economy of Cities. New York: Vintage Books. 

Jaffe, Adam. 1986. “Technological Opportunity and Spillovers of R&D: Evidence from 
Firms’ Patents, Profits and Market Value,” American Economic Review, Vol. 76, 
pp. 984-1001. 

Jaffe, Adam B., Manual Trajtenberg, and Rebecca Henderson, 1993, “Geographic 
Localization of Knowledge Spillovers as Evidenced by Patent Citations,” 
Quarterly Journal of Economics, Vol. 108, pp. 577-98. 

Mills, Edwin S., and Bruce W. Hamilton, 1994, Urban Economics, 5th ed. New York: 
Harper Collins College Publishers. 

Ó hUallacháin , Breandán, 1999, “Patent Places: Size Matters,” Journal of Regional 
Science, Vol. 39, pp. 613-36. 

Rosenthal, Stuart S., and William C. Strange, 2001, “The Determinants of 
Agglomeration,” Journal of Urban Economics, Vol. 50, pp. 191-229. 

Strumsky, Deborah, Jose Lobo, and Lee Fleming, 2005, “Metropolitan Patenting, 
Inventor Agglomeration and Social Networks: A Tale of Two Effects,” Los 
Alamos National Laboratory Technical Report LAUR-04-8798. 

U.S. Census Bureau, 1994, Geographic Areas Reference Manual. 
 http://www.census.gov/geo/www/garm.html

U.S. Department of Commerce, 2001, The dynamics of technology-based economic 
development: state science and technology indicators, 2nd ed., Office of 
Technology Policy, Washington, 2001. 

U.S. Patent and Trademark Office, 2000, United States Patent Grants by State, County, 
and Metropolitan Area. Washington: U.S. Patent and Trademark Office, Office 
for Patent and Trademark Information. 
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/county.pdf

 30

http://www.census.gov/geo/www/garm.html
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/county.pdf


 
Table 1: Industry Definitions 

Industry Description Share of Total Patents 
Food Food & kindred products (SIC 20) 0.66% 

Textiles Textile mill products (SIC 22) 0.87% 
Chemicals Chemicals, except drugs & medicines (SIC 281-2, 284-9) 12.88% 

Drugs Drugs & medicines (SIC 283) 2.75% 

Non-Metal 
Materials 

Petroleum/natural gas extraction & refining; Rubber & 
miscellaneous plastics products; Stone, clay, glass & 

concrete products (SIC 13, 29, 30, 32) 
7.58% 

Primary Metals Primary ferrous products; Primary &  
secondary non-ferrous metals (SIC 33, 3462-3) 0.64% 

Fabricated Metal Fabricated metal products (SIC 34 ex 3462-3 & 348) 6.51% 

Machinery 
Engines & turbines; Farm & garden machinery & 

equipment; Construction, mining & material  
handling machinery & equip. (SIC 351-3) 

4.83% 

Metal Working 
Machinery Metal working machinery & equipment (SIC 354) 1.78% 

Computers Office computing & accounting machines (SIC 357) 8.62% 
Other Machinery Other machinery, except electrical (SIC 355-6, 358-9) 7.54% 

Electric Electrical transmission & distribution equipment 
Electrical industrial apparatus (SIC 361-2, 3825) 4.57% 

Electric2 
Household appliances; Electrical lighting & wiring 

equipment; Miscellaneous electrical machinery,  
equipment & supplies (SIC 363-4, 369) 

2.60% 

Communication 
Radio & TV receiving equipment; 

Electrical components & accessories &  
communications equipment (SIC 365-7) 

14.91% 

Motor Vehicles Motor vehicles & other motor vehicle equipment (SIC 371) 1.28% 

Other Transp. 
Equipment 

Guided missiles & space vehicles; Ship & boat building & 
repairing; Railroad equip; Motorcycles, bicycles & parts; 

Misc. transport equip.; Ordinance except missiles;  
Aircraft & parts (SIC 372-6, 348, 3795) 

1.31% 

Instruments Professional & scientific instruments (SIC 38, except 3825) 12.60% 
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Table 2: Descriptive Statistics 

 Mean SD Min. Max. 
Total Patents, Avg. 1990-99 1906.5 4637.6 7 42702 
Food Patents, Avg. 1990-99 12.6 52.4 0 655 
Textile Patents, Avg. 1990-99 16.5 40.9 0 296 
Chemicals Patents, Avg. 1990-99 245.5 772.5 0 9530 
Drug Patents, Avg. 1990-99 52.4 178.1 0 1483 
Non-Metal Materials Patents, Avg. 1990-99 144.5 345.5 1 3006 
Primary Metal Patents, Avg. 1990-99 12.2 29.5 0 259 
Fabricated Metal Patents, Avg. 1990-99 124.1 284.2 0 2333 
Machinery Patents, Avg. 1990-99 92.0 196.8 0 1753 
Metal Working Machinery Patents, Avg. 1990-99 34.0 80.7 0 830 
Computer Patents, Avg. 1990-99 164.4 583.3 0 6963 
Other Machinery Patents, Avg. 1990-99 143.8 303.0 0 2254 
Electric Patents, Avg. 1990-99 87.1 222.3 0 1922 
Electric2 Patents, Avg. 1990-99 49.5 135.2 0 987 
Communication Patents, Avg. 1990-99 284.3 899.9 0 9174 
Motor Vehicle Patents, Avg. 1990-99 24.5 111.5 0 1780 
Other Transportation Patents, Avg. 1990-99 25.0 61.2 0 660 
Instrument Patents, Avg. 1990-99 240.3 6680.8 0 5659 
Urbanized Area Land Area, 1990 211.5 333.5 14.50 3015 
MA Employment Density, 1990 1,727 689.3 408.1 5,021 
MA Employment, 1989 392,480 862,483 37,375 9,665,015 
Food Employment Share, 1989 0.0035 0.0065 0.00001 0.0560 
Textile Employment Share, 1989 0.0036 0.0132 0 0.1311 
Chemicals Employment Share, 1989 0.01097    0.0011 0 0.1677 
Drug Employment Share, 1989 0.0016    0 .0047      0    0.0390 
Non-Metal Materials Employment Share, 1989 0.0231    0.0214 0.0009     0.1426 
Primary Metal Employment Share, 1989 0.0117    0.0230      0 0. .2547 
Fabricated Metal Employment Share, 1989 0.0170    0.0159    0.0003    0.1165 
Machinery Employment Share, 1989 0.0063    0.0163      0  0.1934 
Metal Working Mach. Employment Share, 1989 0.0032    0.0060      0  0.0499 
Computer Employment Share, 1989 0.0039      0.0130      0 0.1308 
Other Machinery Employment Share, 1989 0.0115     0.0129    0.0001    0.1246 
Electric Employment Share, 1989  0.0033    0.0064      0 0.0478 
Electric2 Employment Share, 1989 0.0069      0.0208      0 0.2603 
Communication Employment Share, 1989 0.0101     0.0206      0 0.1808 
Motor Vehicle Employment Share, 1989 0.0103    0.0260      0 0.2522 
Other Transportation Employment Share, 1989 0.0116    0.0356      0 0.4914 
Instrument Employment Share, 1989 0.0095    0.0158      0 0.1215 
Establishments per 100,000 Employees, 1989 4425 597.8 2667 6365 
HHI of Mfg. Industry Employment Shares, 1989 436.3 535.9 3.3151 6015.6 
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Table 2: Descriptive Statistics, Continued 
 Mean SD Min. Max. 
HHI of Non-Mfg. Industry Emp. Shares, 1989 1376.0     271.2    543.6    3137.6 
Non Manufacturing Employment Share, 1989  0.8508 0.0745 0.5394 0.9818 
College Educated, 1990 (percent) 19.54 6.235 8.100 45.40 
Enrolled in College, 1987-89 (percent) 6.661 5.423 0 34.06 
University R&D Spending ($1,000) per Student, 
Avg. 1987-89 .5623 .9324 0 5.297 

Federal Lab R&D Spending ($1,000) per Federal 
Civilian Employee, 1987-89 1.396 10.81 0 161.4 

Private R&D Labs per 1,000 Establishments, 1989 .3037 .3863 0 2.710 
Trade Secrets Index 50.96 5.382 34.04 70.69 
MA Employment Growth, 1979-89 (percent) 20.47 15.54 -25.80 77.69 
New England Region dummy .0571 0.2325 0 1 
Mideast Region dummy 0.1179 0.3230 0 1 
Great Lakes Region dummy 0.1786 0.3837 0 1 
Planes Region dummy 0.09286 0.2907 0 1 
Southeast Region dummy 0.2821 0.4508 0 1 
Southwest Region dummy 0.1107 0.3143 0 1 
Rocky Mountain Region dummy 0.0357 0.1859 0 1 
Far West Region dummy 0.1250 0.3313 0 1 

See Section IV for details of variable construction and data sources 
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Table 3: Negative Binominal Regressions 
 (1) (2) (3) (4) (5) (6) 

 Total Food Textiles Chemicals Drugs Non-Metal 
Materials 

Job Density† 3.311 
(1.62)* 

2.857 
(0.52) 

6.520 
(1.14) 

4.085 
(1.10) 

16.337 
(2.62)*** 

4.849 
(1.99)** 

Square of Job Density† -0.218 
(1.58) 

-0.195 
(0.53) 

-0.437 
(1.13) 

-0.268 
(1.07) 

-1.097 
(2.61)*** 

-0.320 
(1.95)* 

Jobs† 1.148 
(10.06)*** 

1.277 
(4.72)*** 

1.324 
(5.01)*** 

1.553 
(7.63)*** 

2.157 
(5.77)*** 

1.216 
(9.38)*** 

Square of Jobs† -0.016 
(1.09) 

-0.010 
(0.33) 

-0.034 
(1.09) 

-0.050 
(1.98)** 

-0.107 
(2.44)** 

-0.024 
(1.56) 

Industry Share of Jobs N/A 3.317 
(0.76) 

-13.843 
(2.94)*** 

7.698 
(2.30)** 

10.977 
(0.49) 

6.061 
(2.30)** 

Establishments per 
100,000 Employees†

1.272 
(6.78)*** 

1.268 
(2.38)** 

1.429 
(2.28)** 

1.272 
(3.46)*** 

0.195 
(0.33) 

1.402 
(5.38)*** 

Manufacturing 
Specialization (HHI)†

0.062 
(0.92) 

0.347 
(1.77)* 

0.434 
(2.78)*** 

0.034 
(0.27) 

-0.185 
(0.67) 

0.127 
(1.62) 

Non- Manufacturing 
Specialization (HHI)†

0.466 
(1.95)* 

-0.326 
(0.56) 

-0.776 
(0.98) 

0.337 
(0.72) 

2.038 
(2.16)** 

0.701 
(2.21)** 

Human Capital# 3.032 
(4.43)*** 

1.018 
(0.58) 

5.133 
(3.33)*** 

4.444 
(3.78)*** 

4.545 
(2.38)*** 

3.238 
(4.07)*** 

Academic R&D# 0.127 
(4.06)*** 

0.189 
(2.45)** 

0.138 
(1.69)* 

0.229 
(3.55)*** 

0.334 
(3.44)*** 

0.073 
(2.10)** 

Government Lab R&D#

 
0.007 

(3.74)*** 
0.007 

(1.27) 
0.015 

(2.35)** 
0.008 

(2.66)*** 
0.009 

(1.81)* 
0.005 

(2.32)** 

Private R&D# 0.255 
(3.60)*** 

0.371 
(2.21)** 

0.175 
(1.08) 

0.236 
(1.91)* 

-0.072 
(0.36) 

0.260 
(2.74)*** 

Trade Secrecy Index† 0.533 
(2.53)** 

0.789 
(1.17) 

0.379 
(0.62) 

0.901 
(1.83)* 

0.497 
(0.68) 

0.549 
(1.71)* 

N = 280. Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% 
†: in logs. #: in intensity form. See section IV for variable definitions. All explanatory variables are lagged values. 
Regressions also include a constant, the non-manufacturing share of jobs, the share of jobs in all 17 industries, the share of 
patents in all 17 industries, the share of patents in R&D intensive industries, the ratio of college enrollment to adult 
population, the percent change in jobs, and 7 BEA region dummies. 
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Table 3: Negative Binominal Regressions, Continued 

 (7) (8) (9) (10) (11) (12) 

 Primary 
Metals 

Fab. Metal 
Products Machinery 

Metal 
Working 

Machinery 
Computers Other 

Machinery 

Job Density† 12.236 
(2.30)** 

-0.563 
(0.25) 

2.571 
(0.88) 

4.338 
(1.13) 

8.978 
(1.86)* 

1.988 
(1.03) 

Square of Job Density† -0.818 
(2.29)** 

0.042 
(0.27) 

-0.178 
(0.91) 

-0.289 
(1.11) 

-0.597 
(1.82)* 

-0.139 
(1.07) 

Jobs† 1.319 
(4.29)*** 

1.220 
(9.14)*** 

1.224 
(7.80)*** 

1.333 
(7.20)*** 

1.764 
(6.26)*** 

1.425 
(11.04)*** 

Square of Jobs† -0.046 
(1.32) 

-0.025 
(1.44) 

-0.027 
(1.33) 

-0.042 
(1.90)* 

-0.060 
(1.82)* 

-0.050 
(3.21)*** 

Industry Share of Jobs -1.226 
(0.34) 

7.669 
(2.46)** 

2.779 
(0.66) 

18.502 
(2.42)** 

23.688 
(3.74)*** 

8.621 
(2.43)** 

Establishments per 
100,000 Employees†

0.145 
(0.27) 

1.586 
(7.38)*** 

1.261 
(4.07)*** 

1.446 
(4.29)*** 

1.878 
(3.52)*** 

1.257 
(5.47)*** 

Manufacturing 
Specialization (HHI)†

0.374 
(2.36)** 

0.088 
(1.35) 

0.298 
(3.24)*** 

0.257 
(2.39)** 

-0.284 
(1.68)* 

0.081 
(1.15) 

Non- Manufacturing 
Specialization (HHI)†

0.618 
(0.81) 

0.540 
(2.35)** 

0.504 
(1.43) 

0.784 
(1.85)* 

2.216 
(2.91)*** 

0.650 
(2.29)** 

Human Capital# 3.268 
(1.92)* 

2.415 
(3.72)*** 

3.187 
(3.99)*** 

2.170 
(2.40)** 

2.316 
(1.47) 

3.022 
(4.22)*** 

Academic R&D# 0.049 
(0.63) 

0.096 
(2.76)*** 

0.017 
(0.44) 

0.061 
(1.38) 

0.165 
(2.18)** 

0.087 
(2.52)** 

Government Lab R&D# 0.021 
(4.18)*** 

0.007 
(3.16)*** 

0.001 
(0.31) 

0.012 
(3.31)*** 

0.003 
(0.69) 

0.008 
(3.82)*** 

Private R&D# 0.108 
(0.60) 

0.076 
(0.84) 

0.168 
(1.66)* 

-0.056 
(0.50) 

0.392 
(2.17)** 

0.222 
(2.77)*** 

Trade Secrecy Index† 2.459 
(3.74)*** 

0.489 
(1.78)* 

0.380 
(1.12) 

0.830 
(2.21)** 

2.225 
(3.33)*** 

0.079 
(0.28) 

N = 280. Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% 
†: in logs. #: in intensity form. See section IV for variable definitions. All explanatory variables are lagged values. 
Regressions also include a constant, the non-manufacturing share of jobs, the share of jobs in all 17 industries, the share of 
patents in all 17 industries, the share of patents in R&D intensive industries, the ratio of college enrollment to adult 
population, the percent change in jobs, and 7 BEA region dummies. 
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Table 3: Negative Binominal Regressions, Continued 

 (13) (14) (15) (16) (17) (18) 

 Electric Electric2 Comm. Motor 
Vehicle 

Other Transp 
Equip. Instruments 

Job Density† 1.844 
(0.52) 

10.038 
(2.86)*** 

6.771 
(2.16)** 

-0.990 
(0.29) 

-1.680 
(0.62) 

1.543 
(0.55) 

Square of Job Density† -0.142 
(0.60) 

-0.677 
(2.85)*** 

-0.444 
(2.11)** 

0.054 
(0.23) 

0.115 
(0.63) 

-0.099 
(0.52) 

Jobs† 1.519 
(7.02)*** 

1.170 
(5.65)*** 

1.037 
(5.34)*** 

1.551 
(8.02)*** 

1.137 
(6.27)*** 

1.324 
(9.40)*** 

Square of Jobs† -0.048 
(1.94)* 

-0.005 
(0.21) 

0.012 
(0.50) 

-0.070 
(3.02)*** 

-0.017 
(0.78) 

-0.032 
(1.88)* 

Industry Share of Jobs -1.801 
(0.19) 

4.216 
(1.27) 

3.643 
(1.17) 

2.633 
(1.03) 

5.354 
(3.40)*** 

1.533 
(0.64) 

Establishments per 
100,000 Employees†

1.479 
(2.94)*** 

1.103 
(3.15)*** 

1.379 
(3.97)*** 

1.472 
(4.01)*** 

1.878 
(4.61)*** 

1.093 
(4.45)*** 

Manufacturing 
Specialization (HHI)†

0.137 
(0.89) 

-0.081 
(0.60) 

0.044 
(0.34) 

0.145 
(1.29) 

-0.107 
(0.86) 

0.081 
(1.01) 

Non- Manufacturing 
Specialization (HHI)†

1.093 
(1.81)* 

1.203 
(2.77)*** 

0.232 
(0.47) 

0.990 
(2.04)** 

0.838 
(1.65)* 

0.557 
(1.93)* 

Human Capital# 2.722 
(2.39)** 

3.865 
(3.52)*** 

2.792 
(2.99)*** 

1.341 
(1.52) 

1.514 
(1.31) 

2.469 
(3.15)*** 

Academic R&D# 0.156 
(2.55)** 

0.086 
(1.27) 

0.058 
(1.08) 

0.070 
(1.13) 

0.111 
(1.92)* 

0.107 
(3.06)*** 

Government Lab R&D# 0.008 
(1.85)* 

0.005 
(1.13) 

0.008 
(2.42)** 

0.003 
(1.18) 

0.008 
(2.54)** 

0.006 
(2.95)*** 

Private R&D# 0.134 
(0.97) 

0.193 
(1.56) 

0.248 
(2.08)** 

0.262 
(1.90)* 

0.312 
(2.59)*** 

0.258 
(2.97)*** 

Trade Secrecy Index† 0.455 
(1.10) 

0.625 
(1.38) 

0.556 
(1.35) 

-0.406 
(0.98) 

-0.180 
(0.43) 

0.226 
(0.90) 

N = 280. Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% 
†: in logs. #: in intensity form. See section IV for variable definitions. All explanatory variables are lagged values. 
Regressions also include a constant, the non-manufacturing share of jobs, the share of jobs in all 17 industries, the share of 
patents in all 17 industries, the share of patents in R&D intensive industries, the ratio of college enrollment to adult 
population, the percent change in jobs, and 7 BEA region dummies. 
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Table 4 Optimal Density and Scale and Elasticities for Selected Covariates* 
Elasticities     Specialization (HHI)  

Industry Optimal 
Density 

Economies 
of Scale#

Industry 
Job Share 

Estabs per 
100k Jobs Mfg.  Non-Mfg. Secrecy 

Total 2,016 1.06 N/A 1.27   0.06   0.46   0.53 
Food 1,492 1.22   0.07 1.27   0.34 -0.33   0.78 
Textiles 1,736 1.13 -0.10 1.43   0.43 -0.78   0.38 
Chemicals 2,019 1.26   0.07 1.27   0.03   0.33   0.90 
Drugs 1,714 1.54   0.02 0.20 -0.19   2.03   0.50 
Non-Metal 
Materials 1,973 1.07   0.14 1.40   0.13   0.70   0.55 

Primary Metals 1,771 1.05 -0.01 0.14   0.37   0.62   2.46 
Fabricated Metal 
Products   857 1.08   0.13 1.59   0.08   0.54   0.49 

Machinery 1,346 1.07   0.02 1.26   0.30   0.51   0.38 
Metal Working 
Machinery 1,820 1.09   0.06 1.45   0.26   0.78   0.83 

Computers 1,840 1.42   0.09 1.88 -0.28   2.22   2.22 
Other 
Machinery 1,289 1.13   0.10 1.26   0.08   0.65   0.08 

Electric   672 1.24 -0.01 1.48   0.14   1.09   0.45 
Electric2 1,665 1.14   0.03 1.10 -0.08   1.20   0.62 
Communication 
Equipment 2,042 1.11   0.04 1.37   0.04   0.23   0.56 

Motor Vehicle 9,707 1.15   0.03 1.47   0.15   0.99 -0.41 
Other Transport 
Equipment 1,474 1.04   0.06 1.88 -0.11   0.84 -0.18 

Instruments 2,406 1.14 

 

  0.01 1.09   0.08   0.56   0.23 
Based on regressions reported in Table 3. See Section IV for variable definitions. 
*: bold numbers indicate statistical significance at least at the 10% level of significance. 
#: evaluated at the mean of city size (jobs) in our data 
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Table 5: Elasticities* 

 (1) (2) (3) (4) (5) (6) 

 Total Food Textiles Chemicals Drugs Non-Metal 
Materials 

Hitech Patents# 0.155 0.192 0.152 0.084 0.134 0.088 

Human Capital# 0.592 0.199 1.00 0.868 0.888 0.633 

Academic R&D# 0.071 0.106 0.078 0.129 0.188 0.041 

Government Lab R&D# 0.009 0.009 0.020 0.011 0.012 0.008 

Private R&D# 0.077 0.113 0.053 0.072 -0.022 0.078 

Job Growth (%) 0.210 0.155 0.167  0.098 0.022 0.227 

 
 (7) (8) (9) (10) (11) (12) 

 Primary 
Metals 

Fab. Metal 
Products Machinery Metal Wkg 

Machinery Computers Other 
Machinery 

Hitech Patents# 0.024 0.075 0.083 0.192 0.105 0.104 

Human Capital# 0.639 0.472 0.623 0.424 0.453  0.591 

Academic R&D# 0.027 0.054 0.010 0.034 0.093 0.049 

Government Lab R&D# 0.030 0.010 0.001 0.017 0.005 0.011 

Private R&D# 0.033 0.023 0.051 -0.017  0.119 0.068 

Job Growth (%) 0.434 0.192 0.222   0.177  0.336 0.155 

 
 (13) (14) (15) (16) (17) (18) 

 Electrical 
Equipment 

Electrical 
Equipment 2 

Comm. 
Equipment 

Motor 
Vehicles 

Other Trans. 
Equipment Instruments 

Hitech Patents# 0.128 -0.048  0.126 0.116 0.032 0.090 

Human Capital# 0.532 0.755  0.545 0.262 0.296  0.483 

Academic R&D# 0.088 0.048 0.032 0.004 0.062 0.060 

Government Lab R&D# 0.011 0.006 0.011 0.005 0.012 0.009 

Private R&D# 0.041 0.059 0.075 0.080  0.095 0.078 

Job Growth (%) 0.360 0.221 0.314  0.359  0.305 0.227 

 
 

Based on regressions reported in Table 3. See Section IV for variable definitions. 
*: Bold numbers indicate statistical significance at least at the 10% level of significance. 
#: in intensity form. 
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