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Abstract

We study the design of e¢ cient intertemporal payment arrangements when the ability of

agents to perform certain welfare-improving transactions is subject to random and unob-

servable shocks. E¢ ciency is achieved via a payment system that assigns balances to par-

ticipants, adjusts them based on the histories of transactions, and periodically resets them

through settlement. Our analysis addresses two key issues in the design of actual payment

systems. First, e¢ cient use of information requires that agents participating in transactions

that do not involve monitoring frictions subsidize those that are subject to such frictions.

Second, the payment system should explore the trade-o¤ between higher liquidity costs from

settlement and the need to provide intertemporal incentives. In order to counter a higher

exposure to default, an increase in settlement costs implies that the volume of transactions

must decrease, but also that the frequency of settlement must increase.

Keywords: Payment Systems, Subsidization across Transactions, Liquidity Costs, Default
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1 Introduction

Most models of decentralized exchange abstract from the institutions that enable such ex-

change and, hence, from their e¢ cient design. This is in sharp contrast to the immense

volume of transactions that are facilitated through payment systems in modern economies.

Lacker and Weinberg (2003) and more recently Kahn and Roberds (2006) argue, therefore,

that studying payment systems, and more broadly payment economics, is essential for under-

standing decentralized exchange and for designing institutions that can support it e¢ ciently.

However, they also point to the lack of a concise and integrated framework that can guide

policymakers in the e¢ cient design of such a system. The challenge is twofold. On the one

hand, such a framework requires a modelling of the fundamental reasons why a payment

system (PS) is necessary; on the other hand, answering questions about the e¢ cient design

of such systems requires a general welfare analysis.

The goal of this paper is to address these challenges. We build a dynamic general equi-

librium environment in which transactions are subject to a private information friction. To

have an explicit role for transactions, we incorporate a standard search model into our frame-

work. In the spirit of search models, the random matching shocks that agents are subject to

are a tractable way of modelling random needs for liquidity.1 This is an important feature

of actual PS in which participants are subject to random needs for making payments to

one another. Moreover, the model is consistent with the fact that actual transactions are

bilateral and, frequently, subject to private information. For example, within a retail PS, a

consumer�s ability to make a credit card payment might not be observable. Similarly, within

a wholesale system, banks might have private information about the necessity of making

certain payments.

We will assume that each transaction involves an agent that enjoys an instantaneous

bene�t and one that su¤ers an instantaneous cost.2 In the presence of private information

1Although our model does not involve currency, we use the framework of Kiyotaki and Wright (1989,

1993), which was developed in order to study monetary exchange.
2There are several ways to rationalize such costs and gains. In a wholesale PS, for example, a bank might

3



about agents� ability to produce or consume, the rules imposed by the PS must provide

the right incentives for its participants to both be part of the arrangement and reveal their

information truthfully. The PS in our model accomplishes this by assigning individual �bal-

ances� and by specifying rules on how these balances are updated given the participants�

trading histories. Furthermore, the PS requires that balances be �settled.�This implies that

participants are required to periodically �reset�their balances through centralized trading

in what we will model as a Walrasian market.

Our dynamic model allows us to study the use of intertemporal incentives in order to

explore the participants�willingness to be part of the system and carry out transactions

e¢ ciently.3 Transactions are �linked� through the settlement stage in which participants

erase obligations from their transactions by interacting through markets. This �ts well with

observations from actual PS, which almost always involve repeated interactions between the

system and its participants, with settlement playing a key role in shaping these incentives.

In Koeppl, Monnet, and Temzelides (2007), we addressed only the necessity of settlement

for a PS under very special circumstances. We left aside two crucial features for studying

the optimal design of PS. First, some transactions in a PS can often be monitored better

than others.4 Second, settlement involves costs that in�uence the trade-o¤ between liquidity

need to incur a cost in order to make a payment while enjoying a direct bene�t from receiving the payment.

In the context of a retail PS, a consumer who receives a good or service enjoys an immediate bene�t while

the cost is borne by its supplier. To �x ideas, we will hence refer to the two agents in the transaction as the

�consumer�and the �producer,�respectively.
3While most of the existing literature on PS is exclusively static (see Kahn and Roberds (1998, 2001)

for two prominent papers), our work is most closely related to the dynamic contracting literature (see

Green (1987), and Spear and Srivastava (1987), among others). Our analysis is also related to recent work

by Kocherlakota (2005), who extends the model of Mirrlees (1971) to a dynamic economy. The payment

system in our model plays an analogous role to that of the tax authority in Kocherlakota (2005): it explores

intertemporal incentives in order to decentralize e¢ cient allocations under private information.
4For example, in some wholesale PS, banks interact mostly, but not exclusively, through a local network.

Such networks, which are often run by large correspondent banks, might have detailed information about

their participants. The same information, however, might not be available to the PS when a bank transacts

outside its network. Similarly, in the context of retail PS, a consumer�s credit card history might be readily
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and incentives.

This paper attempts to answer two questions that are paramount to optimal PS design.

The �rst concerns the e¢ cient use of information when choosing optimal balance adjust-

ments. In the case when some transactions can be monitored (i.e., they can be publicly

observed), we demonstrate how an optimal PS must use this information to relax the in-

centive constraints of certain participants. More precisely, the PS will �tax� monitored

transactions in order to �subsidize� the costs of providing incentives in transactions that

are subject to private information. Also, we �nd that an optimal PS will shift the costs of

providing incentives from the transaction to the settlement stage. Producers in the transac-

tion stage are rewarded through balance increases, while consumers are penalized through

balance decreases. These rewards and costs materialize when participants equalize their

balances during settlement.

The second question concerns the study of how costs associated with settlement in�uence

the trade-o¤ between liquidity and incentives. Most actual large-value PS now involve im-

mediate �nality of settling transactions, a feature that requires the presence of liquid funds

in the system. As a response to increased liquidity costs, PS often o¤er short-term credit

facilities, at the expense of potentially increasing default risk. Optimal PS design must ex-

plore the trade-o¤ between minimizing liquidity costs and dealing with default exposures.5

This trade-o¤ has a clear counterpart in our model. As participants need an incentive to

settle their obligations periodically, we �nd that an optimal PS must decrease the need for

large payments by limiting the overall volume of transactions. At the same time, settlement

increases the liquidity available to participants as it enables them to engage in future trans-

actions. Increased liquidity, in turn, allows for a larger volume of transactions. However, a

larger volume of transactions increases the incentive for participants to default. Hence, an

endogenous trade-o¤ between liquidity and default arises naturally.

available within a credit card network, but not necessarily within other networks.
5Here we do not phrase this discussion in terms of gross versus net settlement systems, as this refers to

the �nality of payments or, in other words, to the discharge of bilateral exposures from transactions. This

is di¤erent from the overall amount of credit granted in a payment system, which is independent of �nality.
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We then introduce a �xed cost of settlement. We de�ne the cost of liquidity as the ratio

of the �xed cost to the volume of transactions in the PS. When participants settle more

frequently, given a transactions size, the cost of liquidity increases. The cost of settlement

can thus be interpreted as a cost for holding liquidity needed for settling balances with the

system.6

We demonstrate that, somewhat surprisingly, in an optimal PS, an increase in the �xed

settlement cost results in a lower volume of transactions. Furthermore, this is achieved

not only by a decrease in the size of transactions, but also by increasing the frequency of

settlement. Thus, while liquidity decreases, the overall costs of liquidity in the PS increase.

The reason is intuitive. Increasing the �xed costs of settlement in our model also increases

the incentives to default. To balance this risk, the PS then needs to improve the incentives

for participants to settle. This is achieved by lowering total credit available in the system.

Thus, our result stands in contrast to the existing literature, which does not consider incentive

e¤ects and simply trades o¤ default costs versus opportunity costs of funding liquidity in the

payment system.

The paper proceeds as follows. Section 2 introduces the model and discusses the concept

of a PS. Sections 3 and 4 discuss optimal balance adjustments and the optimal frequency

of settlement. Section 5 o¤ers a brief conclusion and discusses some of the many possible

directions for future research. The Appendix introduces a continuous-time extension of the

model and contains the proofs.

6An analog in actual PS would be the costs of pre-funding positions in the system after end-of-period

settlement. Larger positions are more costly, but they allow for a larger volume of transactions. In a broader

context, one could alternatively interpret such costs as access (or operational) costs.
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2 A Dynamic Model of Payments

2.1 The Environment

Time, t, is discrete and measured over the natural numbers. There is a [0; 1] continuum of

in�nitely lived agents. The common discount factor is � 2 (0; 1). We assume a periodic

pattern of length n, in which n transaction stages, each consisting of exactly one bilateral

meeting for every agent, are followed by a round of centralized trading (termed settlement

stage) at the end of the last period.7 Discounting applies after each period, except between

the last transaction stage and the settlement stage. We describe the transaction stage and

the settlement stage in turns.

During the transaction stage, agents are randomly matched bilaterally in each period.

Randomness in the transaction needs is captured by assuming that in each period, an agent

can trade with the agent he is matched with as a producer or as a consumer, each with

probability 
. Thus, in each period during the transaction stage, an agent is in a trade

meeting with probability 2
. Agents cannot pre-commit to produce in such meetings. With

probability (1� 2
), an agent is in a no-trade meeting. Production in the transaction stage

is perfectly divisible, and the produced goods are non-storable. Producing q units implies

disutility �c(q), while consumption of q units gives utility u(q) where q 2 R+. We assume

that c0(q) > 0, c00(q) � 0, limq!0 c
0(q) = 0, and limq!1 c

0(q) = 1. In addition, u0(q) > 0,

u00(q) � 0, limq!0 u
0(q) = 1, and limq!1 u

0(q) = 0. Thus, there exists a unique q� such

that u0(q�) = c0(q�). The quantity q� gives the e¢ cient level of output in the sense that it

uniquely maximizes the joint surplus created in a transaction. Since we concentrate on this

quantity for most of the paper, we will simplify notation by letting u denote u(q�) and c

denote c(q�).8

7Lagos and Wright (2006) introduced similar periodic trading patterns in monetary models. The contin-

uum assumption precludes aggregate risk. Issues related to optimal PS design in the presence of aggregate

risk are of great interest, but beyond the scope of this paper.
8We reiterate that what is important is that each transaction involves an agent that enjoys an instan-

taneous bene�t and an agent that su¤ers an instantaneous cost. In a wholesale system these costs and
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The information structure during the transaction stage is as follows. Whether or not a

trade meeting has occurred is always observable to the two agents in the meeting. This,

together with the identities of the two agents, is also publicly observable with probability �.

On the other hand, with probability 1 � �, neither the identities of the two agents nor the

type of their meeting is observable by anyone outside the meeting.9 While the opportunity to

trade is not observable in non-monitored meetings, we assume that, should they take place,

production and consumption are always veri�able.

During the settlement stage, each agent can produce and consume a general non-storable

good. No other good can be produced or consumed during this stage. Producing ` units of

the general good implies disutility �`, while consuming ` units gives utility `. Thus, trading

this good does not directly increase welfare. The settlement stage is frictionless in the sense

that, just as in Walrasian markets, agents interact in a centralized fashion, and there are no

informational frictions.

2.2 Payment Systems

An allocation for the above environment speci�es the quantity produced and consumed

during bilateral transactions, as well as the production and consumption of the general good

for each agent during settlement. In general, allocations may well exhibit history-dependence.

In this paper we concentrate on whether e¢ cient allocations can be decentralized through

a payment system (PS). A PS keeps a record of past transactions by assigning balances to

its participants. In addition, the PS instructs participants to produce or consume certain

quantities in trade meetings and speci�es rules for how the balances are updated given the

participants�current transactions. Finally, during the settlement stage, participants trade

bene�ts will typically be associated with costly payments of size q made by one participant to the other.

The functions c and u provide a reduced-form way of capturing such costs and bene�ts.
9This information structure can be the result of the agents being divided into two symmetric networks.

Each agent needs to transact within his network with probability �, and with another participant outside

his network with probability 1� �. In this interpretation, �within-network�meetings are monitored, while

during �inter-network�meetings the ability to transact is private information of the trading partners.
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their balances against the general good in order to achieve a particular starting balance for

the next transaction stage. Agents with low balances can then increase their balances by

producing, while those with high balances can reduce them by purchasing consumption of

the general good. Since we model the settlement stage as a Walrasian market, the price, p,

at which balances are traded, is determined by market clearing conditions. We make three

additional assumptions. First, we restrict attention to allocations that are stationary and

symmetric across agents.10 Second, we assume that the PS can permanently exclude from

all future transactions agents that do not produce or consume the prescribed amount during

monitored transactions or do not settle their balances. Finally, we rule out short-sales of

balances in the Walrasian market. Later we will assume that each settlement stage involves

an aggregate (average) resource cost � > 0 and study the implications of this cost for optimal

settlement frequency. For simplicity, we �rst formulate the general framework assuming that

� = 0.

Formally, the PS keeps a record of all transactions. For any agent, in any given period,

t, this record is summarized by his balance, dt 2 R. First, consider the problem of an agent

in the settlement stage at time t. Let Vt(dt; pt) denote his value function if he exits the last

bilateral meeting in the transaction stage with balance dt, given that the anticipated price in

the following settlement stage is pt. Let Etvt+1(bdt;	t+1) denote the expected future value of
an agent who exits the settlement stage with balance bdt, given that the resulting distribution
of balances is denoted by 	t+1. The problem of the agent is then given by

Vt(dt; pt) = max
`t;bdt �`+ �Etvt+1(bdt;	t+1) (1)

subject to

pt bdt = ptdt + `t (2)bdt � minf0; dtg. (3)

In this problem we have imposed the constraint that agents cannot short sell their bal-

10This is without loss of generality when, as is the case in most of the paper, the full-information-�rst-best

allocation is decentralized.
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ances in the Walrasian market. Note that, given a price level pt, Vt is linear in balances, dt.11

While it is not necessary for the results, linearity greatly simpli�es our analysis.

We now turn to the problem faced by the participants during the transaction stage. In

each period, agents are bilaterally matched. In non-monitored meetings, the PS receives a

joint report from the agents in the match. Formally, the two agents, say, i and j, each report

a number �i; �j 2 f0; 1g. The agents�identities become known to the system if and only if

�i�j = 1. If either agent chooses 0, so that �i�j = 0, the agents�identities are not revealed,

and the PS instructs them to exchange nothing. If both choose 1, they identify themselves

to the PS as being in a trade meeting. The potential producer is then instructed to produce

qt(dt; d
0
t;	t) for the potential consumer. Note that qt can depend on both participants�

balances as well as on the overall distribution of balances. In a monitored meeting, no such

reporting needs to occur, since in that case the type of the meeting is observable to the PS.

Hence, the PS instructs people directly to trade a quantity �qt(dt; d0t;	t). Again, this quantity

can depend on the balances of both participants as well as on the overall distribution.

Upon observing the reports and the production and consumption by every agent, the

PS adjusts balances. An adjustment, Xt(dt; d
0
t;	t) 2 R, is thus made to an agent�s current

balance, conditional on his current trading history, as summarized by his current balance.

Recall that an agent can be in a consumption, a production, or a no-trade meeting. In

addition, the meeting is either monitored or non-monitored. This results in six possible

adjustments for each transaction round; i.e., Xt 2 fLt; Kt; Bt; �Lt; �Kt; �Btg. More precisely,

Lt(Kt) is the adjustment for a participant who consumes (produces), while Bt is the adjust-

ment for a participant who does not transact in a non-monitored meeting. The variables �Lt,

�Kt, and �Bt are de�ned analogously for monitored meetings. Balances are represented by real

numbers not restricted in sign, while production of goods during trade meetings is restricted

to be positive.12 Agents may decide to leave the PS at any point. In that case, we assume

11This follows from an argument similar to that in Lagos and Wright (2006).
12To further clarify the information-related problem, the di¢ culty is that whether or not a trade meeting

has taken place is not always observable to the PS. Thus, any arrangement must rely on reports by the

agents about the type of meeting that has taken place. The transaction protocol we have formulated for
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that they cannot be re-admitted, and that they receive a permanent future payo¤ that is

normalized to zero. We can now formally de�ne a PS.13

De�nition 1. A payment system is an array

St(dt; d
0
t;	t) = fLt; Kt; Bt; qt; �Lt; �Kt; �Bt; �qtg, for all t.

We restrict attention to PS that are incentive feasible. We term a PS incentive feasible if

(i) all agents have an incentive to participate in each transaction, as well as in the settlement

stage, (ii) all agents in non-monitored transactions truthfully reveal the type of meeting they

are in, and (iii) the market clears in each settlement stage. The last requirement implies

that in each t that corresponds to a settlement stage,Z
dt

(bdt � dt)d	t = 0. (4)

This, in turn, immediately implies that
R
dt
ltd	t = 0. To formulate incentive compatibility

(IC) and participation constraints (PC), we �rst describe the value functions of participants

during the transaction stage. Recall that there are n bilateral meetings (one in each period)

between settlement stages. To ease notation, we denote the current-period immediate return

in period t by f(Xt), where Xt 2 fLt; Kt; Bt; �Lt; �Kt; �Btg. Thus, f (Lt) = u (qt), f (Kt) =

c (qt), and f (Bt) = 0. The adjustments for monitored meetings, �Lt, �Kt, and �Bt, are de�ned

similarly. If the last settlement stage occurred in period t, the value function during each

round s, s = 1; : : : ; n� 1, of the current transaction stage is given by

Et+s�1[vt+s(dt+s�1;	t+s�1)]

=

Z
d0t+s

E[f(Xt+s) + �Et+s[vt+s+1(dt+s�1 +Xt+s;	t+s)]]d	t+s�1, (5)

non-monitored meetings has the following interpretation. Each participant in the system has access to both

a �card�and a �card-reading machine.�Agents can choose to identify themselves to the PS by having their

card read by their partner�s machine (�i = �j = 1). In that case, the system becomes aware that the two

agents are in a trading meeting. The balances of both parties are then updated given their reports and the

production/consumption that has taken place.
13Strictly speaking, a PS must also be a function of whether an agent chooses to participate in the system

or not. For simplicity, we leave this indicator variable out of the formal de�nition of a PS.
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where E denotes the expectation over the type of meeting the agent will be in during the

current period.14 For the last period of the transaction stage, t+ n, we have

Et+n�1[vt+n(dt+n�1;	t+n�1)]

=

Z
d0t+n

E[f(Xt+n) + V (dt+n�1 + �Xt+n; pt+n)]d	t+n�1. (6)

Since consumption and production are veri�able, agents can only misreport during a non-

monitored transaction by claiming that they are in a no-trade meeting. Assuming that

the last settlement stage occurred at time t, allocations are IC during each round s, s =

1; : : : ; n� 1, of the current transaction stage if in all non-monitored transactions we have

f(Xt+s) + �Et+s[vt+s+1(dt+s�1 +Xt+s;	t+s)] �

f(Bt+s) + �Et+s[vt+s+1(dt+s�1 +Bt+s;	t+s)],
(7)

where Xt+s 2 fKt+s; Lt+s; Bt+sg. Similarly, for s = n, IC requires that for all Xt+n,

f(Xt+n) + V (dt+n�1 +Xt+n; pt+n) � f(Bt+n) + V (dt+n�1 +Bt+n; pt+n). (8)

Finally, PC require that agents have an incentive to remain in the PS during both the

transaction and the settlement stages. Thus, if the last settlement stage occurred at t, we

require

f(Xt+s) + �Et+s[vt+s+1(dt+s�1 +Xt+s;	t+s)] � 0, (9)

for all Xt+s, and all s = 1; : : : ; n� 1. Finally, for s = n we require

f(Xt+n) + V (dt+n�1 +Xt+n; pt+n) � 0, (10)

for all Xt+n. The absence of short-sales implies that settlement involves a positive expected

lifetime payo¤, independent of any balance adjustments. Otherwise, agents would default

on their obligations. Formally,

V (dt+n�1 +Xt+n; pt+n) � 0. (11)

14For example, �
 gives the probability that the agent is engaged in a monitored production meeting. To

ease notation, we have suppressed the dependence of the PS on (dt+s; d0t+s;	t+s).
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In most of the paper, we will concentrate on implementing the full-information-�rst-best

allocation, in which the e¢ cient transaction level q� is exchanged in all trade meetings, both

monitored and non-monitored.15 We have the following.

De�nition 2. A PS is optimal if it is incentive feasible and if it decentralizes the e¢ cient

level of production, q�, in all trade meetings.

To conclude this section, it is useful to specify two particular types of PS that we will

use extensively in what follows. A PS is simple if balance adjustments do not depend on the

agents�current balances. Hence, a simple PS is not a function of the agent�s history during

the transaction stage. A PS is simple and repeated (SRPS) if, in addition, it satis�es

Xt+s =
Xt+n

�n�s
, and (12)

Xt+kn = X, (13)

where X 2 fL;K;B; �L; �K; �Bg, s = 1; : : : ; n, and k 2 N. In the above expressions, t

represents the date of a settlement round. In words, adjusting for discounting, a repeated

PS imposes the same balance adjustments in each period of the transaction cycle. To ease

notation, we will drop the time index whenever possible. SRPS are convenient since the

linearity of V implies that in any optimal SRPS, the incentive constraints for all s, s =

1; : : : ; n�1 are ful�lled whenever those for s = n hold. In what follows, we restrict attention

to SRPS.

3 E¢ cient Use of Information

In the previous section we described an environment in which certain transactions are subject

to a private information problem, and we introduced a payment system as a way of decen-

tralizing incentive feasible allocations. In this section we use this setup to analyze some of

the properties of optimal PS. We pay particular attention to how the PS can use monitored

15Linear utility in the settlement stage implies that the utility from consuming any amount of the general

good equals the disutility to the producer. Hence, the e¢ cient amount of the general good is indeterminate.
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transactions in order to alleviate the incentive problem in non-monitored ones. To this end,

we will �rst take the length of the transaction stage, n, as given, and assume that there are

no settlement costs (� = 0). In the next section we study the issue of optimal settlement

frequency when � > 0.

3.1 Perfect Monitoring

It is instructive to �rst discuss the case in which all transactions are perfectly monitored;

i.e., � = 1. This special case is convenient as it involves no IC constraints. Thus, incentive

feasible allocations need to satisfy only market clearing in the settlement stage and, of course,

the PC. We will consider two optimal PS for this environment. First, suppose that the PS

sets all balance adjustments permanently equal to zero and imposes a �gift-giving�game in

which agents are induced to produce in all trade meetings under the threat of permanent

exclusion in the case of a deviation. Since this PS does not rely on any balance adjustments,

there is never a need to trade balances in the settlement stage. Furthermore, agents have an

incentive to participate if and only if

�

1� �
(u� c) � c, (14)

or if the future expected discounted utility from staying in the PS is greater than the current

cost of producing the e¢ cient quantity, c. Provided that the above participation constraint

holds, this PS is optimal.

Second, consider an alternative PS that uses balance adjustments in order to shift all

costs related to incentive provision to the settlement stage. Denote the minimum balance

adjustment in any given period by Xmin
t = minf �Kt; �Lt; �Btg and normalize the required

starting balance after the settlement stage in period t to bdt = 0.16 Agents that do not leave
the settlement stage with bdt = 0, as well as those that do not exchange q� in a trade meeting,
are permanently excluded from the PS. Hence, the distribution of balances, 	t, at the end

16This implies that the minimum adjustment will be negative, while agents that produce are rewarded

with a positive adjustment.
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of each settlement stage is degenerate, for all t. The only potentially binding PC are then

given by

V (bdt + nX
s=1

Xmin
t+s ; pt+n) � 0, (15)

and

f(Xt+n) + V (bdt + n�1X
s=1

Xmin
t+s +Xt+n; pt+n) � 0. (16)

The �rst constraint implies that an agent chooses to settle and, thus, remains in the PS even

under the worst possible history of adjustments. The second constraint is the PC for agents

in the last transaction round, conditional on having had the worst balance adjustment until

this round. Such agents still need an incentive to carry out the transaction as they can

always avoid the cost f (Xt+n) by leaving the PS prior to the settlement stage. Finally, the

PS must satisfy the market clearing condition during settlement (4) with bdt+n = 0; i.e.,

pt

nX
s=1

�Kt+s + 
pt

nX
s=1

�Lt+s + (1� 2
)pt
nX
s=1

�Bt+s = 0. (17)

Since we restrict attention to PS that are simple and repeated, we can use (12) and (13) to

simplify the above market clearing condition to


pt �K + 
pt �L+ (1� 2
)pt �B = 0. (18)

Let p denote the (constant) equilibrium price in the settlement round. We then have the

following.

Proposition 3. Suppose that � = 1. If �
1��
(u�c) � c, the PS with no balance adjustments

( �Kt = �Lt = �Bt = 0, for all t) is optimal. If �
nu � c, the simple repeated PS with balance

adjustments p �K = p�L+ c = p �B + c is optimal.

The proof is in the Appendix. Notice that the condition that �nu � c requires that

settlement be su¢ ciently frequent. Thus, if n is large, the second PS is no longer optimal,

since it is not incentive feasible. It is easy to check that as long as


 � �n

1� �n
(1� �)
�

, (19)
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the �rst PS is optimal for the widest set of parameter values. In other words, provided that

this inequality holds, if an optimal PS exists, the �rst PS is also optimal. Of course, there

exist parameters for which both of the above PS are optimal. The main di¤erence between

the two is that the �rst PS does not employ settlement, while the second one collects all costs

from incentive provision during the transaction stage and periodically resets the participants�

balances through settlement.

3.2 Cross-Subsidizing Transactions

Before we analyze the possibility of cross-subsidization, it is useful to �rst consider the other

extreme case in which there are no monitored transactions (� = 0). In this case, the PS

relies on reports by participants about whether or not they are in a trade meeting. By the

linearity of V in d, the relevant IC in any period s, s = 1; : : : ; n, during the transaction stage

are given by

�c(qt+s) + �n�spt+nKt+s � �n�spt+nBt+s, and (20)

u(qt+s) + �
n�spt+nLt+s � �n�spt+nBt+s. (21)

In this case, the SRPS that uses the balance adjustments described in the second part of

Proposition 3 is optimal if and only if �nu � c. Of course, as long as �nu � c, this PS

also remains optimal for any � 2 [0; 1]. Indeed, even if � > 0, the PS can always treat all

transactions as if they are non-monitored and make balance adjustments as in Proposition

3.

The above PS, however, does not exploit the fact that as long as � > 0, some transactions

are monitored. Hence, the question arises whether an optimal PS exists if �nu < c that

explores this information. The following Proposition asserts that this is indeed possible

through a PS that �taxes�some of the surplus created in monitored transactions in order to

relax the incentive constraints by �subsidizing�non-monitored transactions.

Proposition 4. Assume that �nu < c. There exists an optimal simple repeated PS if and
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only if
�

1� �
(u� c)� c � (1� �)

�
�

�n
1� �n

1� �

�
c. (22)

For any parameter values satisfying the above inequality, the PS with balance adjustments

p �K = p�L = p �B = pB = pL = �(1� �)
c and pK = pB + c is optimal.

The intuition behind this result is straightforward. First, recall that cross-subsidization

is useful only when �nu < c (otherwise we already know that an optimal PS exists). This,

together with (22), implies that (19) holds. Thus, without loss of generality, we employ

the PS that uses a gift-giving game during monitored transactions. The left-hand side of

inequality (22) is the maximum total tax revenue that an optimal PS can extract when

it employs a gift-giving game. The right-hand side gives the total subsidy required in a

settlement stage for the incentive constraints to be satis�ed for non-monitored producers. In

other words, the above PS imposes a uniform lump-sum tax on all participants and then uses

the proceeds to make the incentive constraints for non-monitored producers hold. Such a PS

is optimal as long as the available taxes are high enough to subsidize the cost of providing

incentives to non-monitored producers.

We remark that the restriction to SRPS likely involves some loss of generality, since such

a PS cannot extract all possible surplus. Indeed, a PS that would be a function of the

entire history of all transactions since the last settlement stage could potentially redistribute

surplus more e¢ ciently. Finally, note that since we assume that �nu < c, condition (22)

cannot be met if � = 0, in which case there are no monitored transactions to �nance the

incentive subsidy.

It is worth pointing out that, as the above analysis suggests, balances in our model

are distinct from currency in at least one important way. When two agents transact using

currency, the amount of money that the seller receives is equal to the amount that the buyer

o¤ers. Here, however, in order for non-monitored transactions to be subsidized, it is necessary

that both the buyer and the seller in monitored transactions receive a negative balance

adjustment. The ability to implement such a policy, which is analogous to a transaction-

speci�c tax or subsidy, distinguishes the PS in our model from a monetary authority imposing
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an in�ation tax.

4 Liquidity and Incentives

Settlement resets the balances of participants. Hence, it provides liquidity in the sense that

agents have an incentive to engage in a new round of transactions. Our model naturally

captures the fact that infrequent settlement increases the potential for default. However, the

analysis has abstracted so far from costs directly associated with settlement. Instead, we

have assumed that the length of the transaction stage is exogenously given. We now turn

to the question of how to optimally balance such costs against the higher default exposure

associated with less frequent settlement.

For the remainder of the paper, we assume that there is a �xed cost, � > 0, that is

incurred in each period in which settlement takes place. The existence of such a cost is

important if one wants to study the frequency of settlement as a policy variable chosen by

the PS. Indeed, as pointed out earlier, such a cost links the frequency of settlement to higher

levels of liquidity in the PS. In the absence of such costs, our model implies that an optimal

PS will have settlement occurring after each transaction; i.e., n = 1.

To streamline the analysis, we now abstract from questions related to cross-subsidization

of transactions and study the benchmark case in which there is no monitoring (� = 0). We

will also assume that � is small enough, so that settlement must periodically occur as part

of an optimal PS. Finally, we assume that � is generated through production of the general

good during the settlement stage.

Our �rst goal is to characterize the values of n for which an optimal PS exists in the

presence of the �xed settlement cost �. We then show that the particular way that this

cost is divided across participants is not important. The reason is that what matters for

incentives is the overall balance adjustments, which are inclusive of these costs. Finally, we

study the trade-o¤ between transaction size and settlement frequency.
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4.1 Settlement Costs

Building on our earlier �ndings, we consider a PS that sets balance adjustments such that

pK = pB + c = pL+ c. This satis�es all IC and PC (see equations (20) and (21)). The PS

must now also recover the cost �. Hence, market clearing during the settlement stage is now

given by



nX
s=1

Kt+s + 

nX
s=1

Lt+s + (1� 
)
nX
s=1

Bt+s = �
�

pt+n
. (23)

Assuming that participants share the settlement costs equally,17 the value function, V , of an

agent prior to entering the settlement stage is now given by

V (dt; pt) = dtpt +
�

1� �
(u� c) + �
�

�n

1� �n
�
. (24)

We have again assumed, without loss of generality, that the PS sets the desired balance at

the end of the settlement stage to bdt = 0. Like before, the �rst two terms of the value

function give the value of the agent�s current balances and the future expected utility from

participating in the PS, respectively. The last term gives the present value of all future

settlement costs.18

Like before, it is su¢ cient to check that the PC under the worst possible balance adjust-

ments holds during the last period of the transaction stage. For the above PS, this constraint

is given by

pL

�
�

1� �

��
1� �n

�n

�
� � �

1� �
(u� c) + �
�

�n

1� �n
�
. (25)

One can use the market clearing condition to solve for the implied adjustment for consumers,

L, which is given by

pL = ��
�
1� �
�

��
�n

1� �n
�
� 
c. (26)

Substituting this into the PC, we obtain

�nu� c � �




�
1� �
�

��
�n

1� �n
�
. (27)

17As we show in the next section, this is without loss of generality.
18The current settlement cost is contained in the agent�s balance, dt.
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Hence, any n satisfying this condition allows the above PS to decentralize the e¢ cient trans-

action level, q�. We then have the following.

Proposition 5. Assume that � = 0. There exists an optimal simple repeated PS if and only

if

�nu� c � �




�
1� �
�

��
�n

1� �n
�
. (28)

For any parameter values satisfying the above inequality, the PS with balance adjustments

pK = pB + c = pL+ c is optimal. The optimal settlement frequency, n�, is the maximum n

for which this condition holds.

Conditional on decentralizing an e¢ cient allocation, an optimal PS should minimize the

incurred costs from settlement. In other words, the PS must choose the longest length of a

transaction stage that is compatible with optimality, given the costs � as expressed by (27).

Such an n exists as long as � � 
(�u� c). Note also that, if n is large enough, we have that

�nu < c. (29)

Thus, if settlement is su¢ ciently infrequent (n is su¢ ciently large), the PC of an agent that

consumed n times in a row will be violated. In other words, there exists a maximum n such

that constraint (27) is satis�ed.

4.2 Financing Settlement Costs

Throughout, we are assuming that the PS is self-�nanced. This implies that the �xed cost, �,

associated with its operation must be entirely �nanced by PS participants. In our analysis so

far, we assumed that � is shared equally by all participants. Here we study the division of �

across participants and show that the distribution of costs does not matter for the optimality

of the PS.

For simplicity, we set n = 1. Denote the value of the cost paid by each producer by �K .

Consumers and non-traders pay �L and �B, respectively. Clearly, since we assume that the

PS is self-�nanced, we have


�K + 
�L + (1� 2
) �B = �. (30)
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The IC (20) and (21) are then given by

pK � �K � c � pB � �B, and (31)

u+ pL� �L � pB � �B. (32)

Assuming, as before, that bdt = 0, and since the expected settlement cost in any future period
is given by �, the PC (16) is given by

f(X) + pX � �X � �
�

1� � [
(u� c)� �] . (33)

This PC implies that if an optimal PS exists, one can always construct an optimal PS by

setting balances such that pK � �K � c = pB� �B = pL� �L. Hence, we have the following.

Proposition 6. Suppose that an optimal simple repeated PS exists. Then, there exists an

optimal PS in which settlement costs are shared equally across all agents; i.e., �L = �B =

�K = �.

The intuition for this result is straightforward. The right-hand side in (33) gives the

value to a participant who stays in the PS after settlement. This value is independent of

his history of past transactions. An optimal PS can always set balance adjustments so as

to make all PC exactly binding.19 In that case, when � = �K = �B = �L = 0, the PS sets

pK = pB + c = pL+ c. If � increases, such a PS would increase the costs to all agents so as

to keep the incentives to participate the same across all agents.

The above argument continues to hold even if n > 1, as long as � = 0. Of course, other

cost allocations can also be consistent with an optimal PS. However, it is worth mentioning

that when � > 0, it is the PC for agents that have consumed n-times in a row that will

bind �rst. In that case, any optimal PS will levy a higher share of the settlement costs on

non-consumers; i.e., �L = �B < �K . The rationale for this policy prescription is di¤erent

from the standard argument that competitive forces drive the allocation of PS costs. Rather,

19This is not a necessary feature of optimal PS. However, if an optimal PS exists, one can always construct

another optimal PS that satis�es this property. It is this property that characterizes PS that are optimal

for the widest range of parameter values.
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the above argument suggests that in order to reduce their incentive to default during the

settlement stage, it is the agents that are most constrained who must pay the lowest share

of the costs.

4.3 Settlement Frequency and Transaction Size

It is widely recognized among PS practitioners that actual PS involve certain liquidity costs

for participants who hold reserves in the system. Hence, actual PS often make provisions,

such as o¤ering short-term credit facilities, in order to economize on such costs. O¤ering

credit, however, is not without its own costs, since it might increase default risk in the

system. In this section, we study this trade-o¤ in the context of our model.

So far in our analysis we have termed a PS optimal if it decentralizes the e¢ cient output

level, q�, in all transactions. In the presence of settlement costs, however, an optimal PS

might need to explore the trade-o¤ between reducing the size of transactions versus length-

ening the transaction stage. We now turn to the more general problem of determining jointly

the e¢ cient settlement frequency and the e¢ cient transaction size.

We assume that � � 
(�u � c). Settlement costs must be small enough, so that it

is optimal for settlement to occur eventually. Based on our earlier �ndings, since � = 0,

we assume that the �xed cost � is shared equally across all participants and is covered by

production of the general good in the settlement stage. In the Appendix we use a continuous-

time formulation of our model in order to set up the joint choice of settlement frequency and

transaction size by the PS as a planning problem. In order for the constraint set for this

problem to be convex, it is su¢ cient that the cost function c(q) is log-convex. Under these

assumptions, we derive the following.

Proposition 7. Assume that c(q) is log-convex. Any optimal simple PS implies that qt =

q̂ < q�, for all t. Furthermore, as � increases, the optimal transaction size, q̂, as well as the

optimal length of the settlement cycle, T̂ , decreases.

The �rst part of the Proposition con�rms our intuition. Proposition 5 already established

that (given that q� can be decentralized) the PS must optimally reduce settlement frequency
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as much as possible in order to economize on settlement costs. The above Proposition asserts

that it is also optimal to economize further on settlement costs by reducing the intensive

margin; i.e., the transaction size, below its �rst-best level.20 This is equivalent to reducing

participants�exposures prior to the settlement stage, by imposing a tighter cap on the total

amount of goods produced during bilateral transactions.

The second part of the Proposition is somewhat more surprising. It asserts that as a

response to an increase in settlement costs, an optimal PS must adjust both q̂ and T̂ in

the same direction. In other words, an optimal PS must reduce the volume of balance

adjustments that need to be settled in two complementary ways: by shortening the length

of the transaction stage, and by reducing the transaction size. The explanation for this is

as follows. The binding constraint on the PS is the PC of an agent that has consumed the

most during the transaction stage and, as a result, has to settle a large negative balance. An

increase in � makes it more likely that this agent�s participation constraint will be violated.

Hence, in order to avoid default, the PS must decrease the potential exposure of this agent

by reducing his negative balance adjustments. This involves reducing both the quantity

produced as well as the time between settlement periods.

5 Conclusion

One of the features of the economy that Walrasian models abstract from concerns the in-

stitutions through which payments for goods and services take place: the payment system.

This results in the need for a framework that can guide policymakers in the e¢ cient design

of such systems. In this paper we proposed such a framework using mechanism design. We

then asked under what conditions a PS can decentralize the e¢ cient volume of intertemporal

transactions in the presence of private information. We studied this question in a dynamic

model in which the ability of agents to perform at least some welfare-improving transactions

is subject to random and unobservable shocks. In particular, we examined the interplay

20One can show that an optimal PS involves a constant level of production across transactions.
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between monitored and non-monitored transactions. In general, the optimal PS will tax the

�rst type of transactions in order to subsidize incentive provision for the latter type. We also

discussed key issues for PS design related to optimal settlement frequency and cost recovery.

Our framework is certainly not limited to these questions and can be used to further

investigate several other issues related to payments. One open question is whether more

complicated payment systems than the ones considered here could decentralize e¢ cient out-

comes under less restrictive conditions. For the no-monitoring case (� = 0), restricting

attention to simple, repeated payment systems is without loss of generality. Owing to lin-

earity in the settlement round, whenever the IC in the last period of the transaction stage

hold as equalities under such a PS, all other IC in earlier rounds also hold.

When some transactions are monitored, a PS that is simple but not repeated still cannot

improve on SRPS. Under any simple PS, only the total adjustments accumulated for the next

settlement stage matter. Thus, a SRPS can decentralize a constant production level in all

transactions that lead to at least as high total adjustments as any other simple PS. However,

a PS where balance adjustments are history-dependent within a transaction cycle can likely

improve on a SRPS. Hence, we would expect more conditional balance adjustments in PS

with better information about participants�transactions.

We believe that our basic model can be used to address a variety of policy questions.

Actual PS, for example, di¤er substantially on their policies regarding the �nancing of oper-

ational costs. While we associate � with settlement costs here, our analysis applies to other

costs associated with the operation of a PS. One example is credit card fees in retail PS.21

There is an ongoing debate about whether consumers or stores should be responsible for

such fees. Another example is cost recovery in wholesale PS involving banks. The discussion

there involves whether the �payee�or the �payer� should pay, as well as whether the fees

should be �xed or volume-based.

Finally, an important debate concerns the public versus private provision of payment

services. Given that our framework deals with dynamic incentives, we could investigate the

21Monnet and Roberds (2007) o¤er a careful analysis of this issue using our framework.
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time consistency of various payment system policies, since optimal dynamic schemes might

require some commitment. The existence of di¤erent competing payment networks and of

tiered structures in PS, as well as the extension of the model to incorporate aggregate risk,

outlines a whole range of interesting issues that our framework can potentially address.22

6 Appendix

Proof of Proposition 3

For the �rst part of the proof, note that zero balance adjustments imply that there is no

trade in the settlement stage. It can then be easily veri�ed that when qt = q�, for all t, the

PC for consumers, producers, and non-traders are the same for every period. The PC for

producers is ful�lled if and only if equation (14) holds.

For the second part of the proof, we �rst show that PC (15) and (16) imply that all other

PC are also satis�ed. First, note that the value function V (dt; pt) is linear in pt and given

by

V (dt; pt) =
�

1� � (u� c) + pt(dt �
bdt). (34)

22Bech and Garratt (2006) investigate some related issues in a model that explicitly takes into account

the network topology of payments.
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Having normalized bdt = 0 for all t, the PC at t+ n� 1 gives
f(Xt+n�1) + �Et+n�1[vt+n(dt+n�2 +Xt+n�1;	t+n�1)] �

f(Xt+n�1) + �Et+n�1[vt+n(

n�2X
s=1

Xmin
t+s +Xt+n�1;	t+n�1)] =

f(Xt+n�1) + �

"

(u� c) + Et+n�1[V (

n�2X
s=1

Xmin
t+s +Xt+n�1 +Xt+n; pt+n)]

#
=

f(Xt+n�1) + �

"
1

1� �
(u� c) + pt+n

 
n�2X
s=1

Xmin
t+s +Xt+n�1

!
+ pt+nE[Xt+n]

#
=

f(Xt+n�1) + �ptXt+n�1 +
�

1� �
(u� c) + �pt+n

 
n�2X
s=1

Xmin
t+s

!
+ �pt+nE[Xt+n] =

f(Xt+n) + pt+nXt+n +
�

1� �
(u� c) + pt+n

 
n�1X
s=2

Xmin
t+s

!
+ �pt+nE[Xt+n] �

f(Xt+n) + pt+nXt+n +
�

1� �
(u� c) + pt+n

 
n�1X
s=1

Xmin
t+s

!
=

f(Xt+n) + V (
n�1X
s=1

Xmin
t+s +Xt+n; pt+n),

which is just the PC for adjustment X in the last transaction round. The last inequality

follows since Xmin � 0, and market clearing implies E[Xt+n] = 0. Hence, the PC at t+n�1

hold provided that they hold for t + n. By induction, it follows that they also hold for any

t+ s, s = 1; : : : ; n� 2.

Next, suppose that �nu � c, and let pt �K = pt �L + c = pt �B + c. Market clearing implies

that pt �K = (1 � 
)c. It then follows that both PC (15) and (16) are satis�ed. The PS is

thus incentive feasible. Since it decentralizes q�, it is also optimal. �

Proof of Proposition 4

First, note that condition (22) is equivalent to

c



(1� �n)

�
�
 � �n

(1� �n)
1� �
�

�
� c� �nu. (35)
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De�ne a PS as in the statement of the Proposition. It is clear that K 6= Xmin. In addition,

all IC are ful�lled, and the PC for producers holds, since pK � pB + c. Market clearing

requires that

�p �K + (1� �) (pB + 
c) = 0, (36)

or that

p �K = �(1� �)
c. (37)

The necessary and su¢ cient condition for the PS to decentralize the e¢ cient allocation in

the transaction stage is, thus, given by

p �K

�
1 +

1

�
+ � � �+ 1

�n�1

�
� c � � �

1� �
(u� c). (38)

All other PC hold if this PC involving the worst balance adjustment is ful�lled. Hence, we

obtain a single condition in terms of parameters, which is given by

(1� �)
c �

1� �
1� �n

�n
� c � � �

1� �
(u� c). (39)

Rewriting this expression we obtain

�nu � c+ c�n1� �
�

1



� �c(1� �n), (40)

or
c



(1� �n)

�
�
 � �n

(1� �n)
1� �
�

�
� c� �nu. (41)

This is condition (35).

For the converse, consider again the PS speci�ed in the statement of the Proposition.

Under this PS, only the PC for monitored producers is binding. Suppose that one increases

�K by any amount � > 0, and, at the same time, lowers all other balance adjustments by

� �

1��
�, so as to satisfy the market clearing condition. This relaxes the constraint (38) if

and only if

�
 <
�n

�

1� �
1� �n . (42)
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First, suppose that this condition is satis�ed. The PS can then set pK = pB + c, p �K =

p�L = p �B = pB = pL, and p �K such that

pB
�

�n
1� �n

1� � = � �

1� �
(u� c), and (43)

�
p �K + (1� �)
c+ (1� �
)pB = 0. (44)

This PS is optimal for the widest possible range of parameter values. Since B = Xmin, in

order to satisfy all PC, it must be the case that p �K � c � pB, or,

�n

1� �n
(u� c) � 
c. (45)

But this implies that �nu � c, a contradiction. Hence, it must be the case that �
 > �n

�
1��
1��n .

Suppose now that there exists an optimal PS while condition (35) is not satis�ed. We have

just shown that in that case the PS with p �K = p�L = p �B = pB = pL = �(1 � �)
c, and

pK = pB + c is optimal for the widest possible range of parameters. But then, as condition

(35) is violated, the PC for non-monitored producers, equation (38), cannot be satis�ed, a

contradiction. �

Proof of Proposition 7

In order to demonstrate Proposition 7, we �nd it convenient to use di¤erential calculus. To

this end, we develop a continuous-time version of the model. We assume that consumption

and production opportunities follow a Poisson process with arrival rate 
. The (continuous)

rate of time preference is now denoted by �. The �xed cost, �, is incurred whenever the

transaction process stops and settlement occurs. This occurs after a deterministic interval

of length T . As before, we denote balance adjustments by (K(t); L(t); B(t)). All other

assumptions remain the same as in the text.

We let the random time before the next arrival of a trading opportunity be denoted by

� . In that case, � has a distribution function given by

F (t) = Pr(� � t) = 1� Pr(� > t) = 1� e�
t. (46)
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Hence, the time until the next arrival of a trading opportunity is an exponentially distributed

random variable with distribution function F (t) = 1� e�
t.

In order to determine, for any given q, the expected future payo¤ for an agent at the end

of the settlement stage, we �rst consider a PS that employs a gift-giving game as described

in the main body of the paper. Denote this expected utility by V0. It is straightforward

to show that an optimal PS involves a constant level of transactions. First, assume that

there are no settlement costs. Since both consumption and production opportunities are

independent, arrive at rate 
, and have the same continuation value, we have

V0 =

Z 1

0

e��t(u(q)� c(q) + V0)d(1� e�
t)

=




 + �
(u(q)� c(q) + V0), (47)

which yields

V0 =



�
(u(q)� c(q)). (48)

This is analogous to the lifetime utility under a PS that employs a gift-giving game in

the discrete-time version of the model presented in the text. In the absence of settlement

costs, equation (48) also gives the lifetime expected payo¤ of an incentive feasible PS that

decentralizes transactions of size q.

When costly settlement occurs after each time length T , it involves an aggregate (average)

�xed cost �. Hence, the net present value of the settlement costs is given by
1X
n=1

e�n�T � = �
e��T

1� e��T . (49)

Thus, the continuous-time version of the value function, V0, is given by

V0 =



�
(u(q)� c(q))� � e��T

1� e��T . (50)

As before, we de�ne the PS adjustments conditional on the agents�reports by

pKt � c(q) = pLt = pBt, (51)

for all t. Also, since the PS is repeated, we have that adjustments, X, satisfy

XnT+t = Xe
�(T�t), (52)
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for all t 2 [nT ; (n+1)T ], where n is an integer. As in the discrete-time case, such a PS implies

that all IC are ful�lled. In addition, it satis�es all PC for the largest set of parameter values.

Next, we derive the market clearing condition for the settlement stage. This is accomplished

by approximating total balance adjustments in an interval of length T . First, note that the

probability of having exactly n arrivals of trading opportunities in the interval [0; t] is given

by

P [Nt = n] = e
�
t (
t)

n

n!
. (53)

For small �, we then have that

P [N� = 1] � 
�, (54)

where P [N� > 1] = o(�). Next, de�ne � = T
m
, where m 2 [0; T ] is an integer. The total

adjustment for producers over an interval of length T is then approximately given by


�K� + � � �+ 
�K(m�1)� + 
�Km�

= 
�K
�
e�(T��) + � � �+ e�(T�(m�1)�) + e�(T�m�)

�
= 
�Ke�T

"
1�

�
e���

�m
1� e��� � 1

#

= 
K

�
�e�(T��) ��
1� e���

�
. (55)

As � ! 0, an agent will almost surely receive at most one opportunity to trade during

a time length �. In that case, using L�Hôpital�s rule,23 the expected total adjustments to

producers are given by 

�
K
�
e�T � 1

�
. The expected total balance adjustments to consumers

are similarly determined and given by 

�
L
�
e�T � 1

�
. Finally, expected balance adjustments

for all agents who have received no trading opportunities over this time interval can be

determined as follows. For each interval of length �, a measure 2
� of agents are engaged

in transactions (
� of them as consumers and 
� as producers). Therefore, the measure of

agents who are not involved in any transactions over an interval of length � is (1� 2
)�.
23Note that both the numerator and the denominator in this expression go to zero. In addition, we have

lim�!0
f 0(x)
g0(x) = lim�!0

���e�(T��)+e�(T��)�1
�e�� = lim�!0��e�T + e�T

� � 1
�e��� =

1
� (e

�T � 1).
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As a result, the aggregate balance adjustments for non-trading activities over the interval of

length T are given by

(1� 2
)�B� + � � �+ (1� 2
)�B(m�1)� + (1� 2
)�Bm�

=
(1� 2
)

�
B
�
e�T � 1

�
. (56)

Market clearing during the settlement stage is then given by the following equation:

1

�

�
e�T � 1

�
[
pK + 
pL+ (1� 2
)pB] = ��. (57)

Using the above balance adjustments, one obtains

pB = ��� 1

e�T � 1 � 
c(q). (58)

The worst possible balance adjustment is assigned to agents that either never traded or never

produced in the interval [0; T ]. Following the above discussion, this adjustment is given by
1
�

�
1� e��T

�
pB. This implies that the only PC that is potentially binding is given by

1

�

�
e�T � 1

�
pB +




�
(u(q)� c(q))� � e��T

1� e��T � 0. (59)

This constraint is identical to the one in the discrete-time version, simply adjusting for the

continuous time discount factor. Given these adjustments, an optimal PS chooses q and T

in order to solve the following maximization problem:

max
q;T




�
(u(q)� c(q))� � e��T

1� e��T (60)

subject to
1

�

�
e�T � 1

�
pB +




�
(u(q)� c(q))� � e��T

1� e��T � 0,

pB = ��� 1

e�T � 1 � 
c(q).

The objective function expresses the discounted lifetime utility of a representative partici-

pant. The second constraint summarizes the PC that is potentially binding, while the third

constraint summarizes the IC and the market clearing conditions that must be satis�ed in
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any incentive feasible PS. The equality in the last equation follows from the fact that the PS

works for the largest set of parameters if it makes all IC exactly bind. The constraint set

can be rewritten to obtain




�

�
u(q)� e�T c(q)

�
� � 1

1� e��T , (61)

or �
1� e��T

�
u(q)�

�
e�T � 1

�
c(q) � �



�. (62)

The objective function is strictly concave in (q; T ). In order to guarantee that the constraint

set is convex, we need an additional assumption. Given any T (q), the function on the

left-hand side of the above inequality is concave in q (T ). However, the left-hand side is not

necessarily jointly concave in (q; T ) due to the second term, which is a product of two convex

functions. We have the following su¢ cient condition for the constraint set to be convex.24

Lemma 8. Suppose that c(q) is log-convex. Then e�T c(q) is a strictly convex function in

(q; T ), and the constraint set is convex.

Proof. A function is log-convex if its natural logarithm is convex. Since c(q) is log-convex,

we have that
@2 ln c(q)

@q2
=
c(q)c00(q)� (c0(q))2

(c(q))2
> 0. (63)

The �rst term of the LHS in equation (61) is strictly concave in q, while the RHS is strictly

convex in T . The remaining term has a Hessian given by

H(q; T ) =

0@ �2e�T c(q) �e�T c0(q)

�e�T c0(q) e�T c00(q)

1A . (64)

The �rst principal minor is positive, while the second principal minor is positive if and only

if

c(q)c00(q)� (c0(q))2 > 0. (65)

Hence, since c(q) is log-convex, e�T c(q) is convex. The result follows, since the sum of two

concave functions is concave.
24A weaker condition is given by � 1

e�T
u00(q)c(q) � c02 � c00(q)c(q).
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Taking �rst-order conditions with respect to q and T , we obtain the following character-

ization of the solution:

u0(q)� c0(q)
c0(q)

=
�

1 + �

�
e�T � 1

�
, and (66)

�

c(q)

�




�
1

e�T � 1

�
=

�

1 + �

�
e�T � 1

�
, (67)

where � is the multiplier on the single constraint. This leads us to the following.

Lemma 9. Let c(q) be log-convex. For any optimal PS with settlement, we have q̂ < q�.

Proof. Since �, 
, and � are positive, and the optimal settlement length is �nite (T̂ 2 (0;1)),

we must have that � > 0. Hence, equation (66) implies that u0(q̂) � c0(q̂) > 0. Since c is

increasing and strictly convex, and u is increasing and strictly concave, this implies that

q̂ < q�.

Eliminating � from the �rst-order conditions (66) and (67), we obtain a single �rst-order

condition



�

u0(q)� c0(q)
c0(q)

�
e�T � 1

�
=

�

c(q)
. (68)

This condition, together with the constraint (61), characterizes the solution (q̂; T̂ ). Solving

these equations yields the optimal length of the transaction stage, T̂ , as a function of � and

q̂; i.e.,
u(q)

u0(q)

c0(q)

c(q)
= e�T . (69)

The optimal transaction size, q̂, is given by

u(q)

�
1� c0(q)

u0(q)

�
+ c(q)

�
1� u

0(q)

c0(q)

�
= �

�



. (70)

A solution to the last equation exists by the Intermediate-Value-Theorem. Furthermore, any

solution must lie in an interval [q; q�], where q > 0. The problem is that the left-hand side of

equation (70) is non-monotonic. Hence, there will, in general, be more than one solution to

this equation. The optimal solution, however, corresponds to the one closest to (and below)

q�. The next Proposition relies solely on the fact that at this solution, q̂, the left-hand side

of equation (70) is locally strictly decreasing.
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Lemma 10. Assume that c(q) is log-convex. As the settlement cost, �, increases, the optimal

transaction size, q̂, as well as the optimal length of the transaction stage, T̂ , decreases.

Proof. We establish �rst that q̂ and T̂ move in the same direction; i.e. dT̂
dq̂
> 0. Di¤erentiating

the left-hand side of equation (69) with respect to q, we obtain

1

(u0(q)c(q))2
�
u(q)u0(q)

�
c(q)c00(q)� (c0(q))2

�
+ c(q)c0(q)

�
(u0(q))2 � u(q)u00(q)

��
, (71)

which is strictly positive, as u is strictly increasing and strictly concave, while c is log-convex.

Next, we show that q̂ is decreasing in �. Denote the left-hand side of equation (70) by

�(q). Di¤erentiating �(q) with respect to q and collecting terms we obtain

@�

@q
= c00(q)

�
c(q)

c0(q)

u0(q)

c0(q)
� u(q)

u0(q)

�
+ u00(q)

�
c0(q)

u0(q)

u(q)

u0(q)
� c(q)

c0(q)

�
. (72)

We can rewrite equation (70) as




�

u0(q)� c0(q)
c0(q)

�
u(q)

u0(q)

c0(q)

c(q)
� 1
�
=

�

c(q)
. (73)

Since u0(q) > c0(q), for q < q�, we obtain that u(q)
u0(q) >

c(q)
c0(q) . Letting q ! q�, this implies that

c(q)

c0(q)

u0(q)

c0(q)
� u(q)

u0(q)
< 0, (74)

and
c0(q)

u0(q)

u(q)

u0(q)
� c(q)

c0(q)
> 0. (75)

Hence, @�
@q
< 0, or, equivalently, the left-hand side of equation (70) is strictly decreasing for

q su¢ ciently close to q�. Furthermore, �(q) converges to 0 as q ! q�. Hence, �(q) > 0 for q

su¢ ciently close to q� and, by the continuity of �(q), there must exist a solution to equation

(70) for small enough � > 0. Finally, since �(q) # 0 as q ! q�, we must have that �0(q̂) � 0

(with � having possibly a local maximum at q̂). This completes the proof.
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