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Abstract

We find that technology’s effect on employment varies greatly across manufacturing industries.

Some industries exhibit a temporary reduction in employment in response to a permanent

increase in TFP, whereas far more industries exhibit an employment increase in response to

a permanent TFP shock. This raises serious questions about existing work that finds that a

labor productivity shock has a strong negative effect on employment. There are tantalizing

and interesting differences between TFP and labor productivity. We argue that TFP is a more

natural measure of technology because labor productivity reflects shifts in the input mix as well

as in technology.
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I. Introduction

Despite controversies concerning the quantitative importance of technology as a source of business

cycles, thchnology’s effect on employment is conventionally viewed as expansionary. Recently, a

number of studies—Jordi Gaĺı (1999), Michael Kiley (1998), Neville Francis and Valerie Ramey

(2002), and Susanto Basu, John Fernald and Miles Kimball (2005)—have reported that favorable

technology shocks may reduce total hours worked in the short run. This is an important finding

because, if it is confirmed, the fluctuation induced by technological progress may violate a simple

fact of the business cycle: output and employment strongly co-move, which has been documented

at least since the work of Arthur Burns and Wesley Mitchell (1946).1

In this article, we ask whether technological improvement of an industry—identified by the

permanent components of industry’s total factor productivity (TFP)—raises or lowers employment

in U.S. manufacturing. According to our VAR analysis of 458 4-digit manufacturing industries for

the period 1958–1996, the effect of technology on employment varies vastly across industries. While

some industries exhibit a temporary reduction in employment in response to a permanent increase

in TFP, there are far more industries in which both employment and hours per worker increase

in the short run. Among 458 4-digit industries, 133 industries exhibit a statistically significant

increase of hours in response to a favorable technology shock, whereas only 25 industries exhibit a

significant decrease in hours in the short run.

Our results contrast with Kiley’s; he found a strong negative correlation between the permanent

component of labor productivity and employment in most 2-digit manufacturing industries. We

do not see these findings necessarily conflicting because we identify technology from permanent

components of TFP, while Kiley identifies it from those of labor productivity. We argue that TFP

1In Gaĺı (1999), Kiley (1998), and Francis & Ramey (2002), a technology shock is identified by a stochastic trend

of labor productivity from a structural VAR. Basu et al. construct a measure of technology change from production

functions, controlling for increasing returns to scale, utilization, and aggregation effects. In contrast, John Shea

(1998), distinctive for his use of a direct measure of technology, finds that an increase in the orthogonal components

of R&D and patents tends to increase input use, especially labor, in the short run, but reduces inputs in the long

run.
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is a more natural measure of technology because labor productivity reflects changes in input mix

as well as improved efficiency. Disturbances affecting material-labor or capital-labor ratios (e.g.,

relative input price changes or sectoral reallocation of labor) generate a negative correlation between

labor productivity and hours along the downward sloping marginal product of labor, whereas such

changes alone do not affect the TFP. We show that significant shifts in input mix have occurred in

manufacturing and that permanent shocks to input mix are indeed associated with the short-run

reduction of hours.

The contractionary effect of technology is often interpreted in favor of the model with sticky

prices (e.g., Gaĺı (1999)). We ask whether the variation across industries in the impact of technology

on employment can be accounted for by the stickiness of industry-output prices using the recent

micro data on average duration of product prices in Mark Bils and Peter Klenow (2004). For 87

manufacturing industries, we do not find a strong correlation between the industry’s employment

response and the average duration of industry-output prices.

Our findings are potentially important because (i) they undercut a growing strand of literature

that uses the short-run impact of technology on employment as evidence against the models with

flexible prices, because (ii) TFP, rather than labor productivity, is the natural measure of technol-

ogy, and because (iii) TFP and labor productivity behave quite differently at the sectoral level—in

particular, shocks that affect labor productivity in the long run do not necessarily involve changes

in TFP.

The paper is organized as follows. In Section II, we briefly describe our empirical method,

including the VAR and data, and report the estimates on technology’s effect on employment.

In Section III, we analyze the difference between the trends in TFP and labor productivity by

computing the contribution of input deepening in labor productivity. Section IV provides caveats

to our analysis. Section V is the conclusion.
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II. Evidence from Industry TFP and Hours

A. Data

We derive our industry data from the NBER-CES Manufacturing Industry Database by Eric Bar-

telsman, Randy Becker and Wayne Gray (2000), which includes data for 458 4-digit manufactur-

ing industries for 1958–1996 and largely reflects information in the Annual Survey of Manufac-

tures(ASM).2 The TFP growth contained in the database is based on measuring separate factor

inputs for non-energy materials, energy, labor, and capital. For TFP higher than the 4-digit level,

we aggregate 4-digit TFP growth weighted by the industry’s revenue. For hours worked, we use to-

tal hours employed in the industry, measured by the sum of hours of production and non-production

workers. There are no data on workweeks for non-production workers. We follow the database’s

convention of setting the workweek for non-production workers equal to 40. We obtain a similar

result when we assume that hours of non-production workers are perfectly correlated with those of

production workers. The database includes only the wage and salary costs of labor. In calculating

the industry labor share, we magnify wages and salary payments to reflect the importance of fringe

payments and employer FICA payments in its corresponding 2-digit manufacturing industry. The

ratio of these other labor payments to wages and salaries in 2-digit industries, in turn, is based

on information in the National Income and Product Accounts. Industry output reflects the value

of shipments divided by the price deflator of industry output. Material expenditure includes ex-

penditure on energy as well as on non-energy materials. Capital’s share is calculated as a residual

from labor and material’s share following the database’s convention. This measurement of TFP

is correct under the assumptions of perfect competition and constant returns to scale. According

to Susanto Basu and John Fernald (1997), Craig Burnside, Martin Eichenbaum and Sérgio Rebelo

and (1995), these assumptions are reasonable descriptions of U.S. manufacturing.

2We exclude the “Asbestos Product” industry (SIC 3292) because this time series ended in 1993.
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B. Identifying Technology Shocks

Technology shocks are identified by the structural VAR of industry TFP and total hours worked.

Fluctuations in industry TFP and hours worked are driven by two fundamental disturbances—

technology and non-technology shocks—which are orthogonal to each other. Only technology shocks

can have a permanent effect on the level of industry productivity. Both technology and non-

technology shocks can have a permanent effect on industry hours. We do not attempt to provide

an interpretation of non-technology shocks, which can be either aggregate (e.g., monetary shocks)

or sectoral (e.g., reallocation shocks).

Let vector ∆xt be [∆zt, ∆lt]′, where ∆zt and ∆lt denote TFP growth and labor-hours growth,

respectively. Let εt be the vector of two shocks [εz
t , ε

l
t]
′, where εz

t and εl
t denote the technology and

non-technology shocks, respectively. In our data, both TFP and hours are integrated of order one.

Thus, ∆xt can be expressed as a (possibly infinite) distributed lag of both types of shocks:3

∆xt = C(L)εt =
∑∞

j=0 Cjεt−j (1)

with E[εtε
′
t] = I, and E[εtε

′
s] = 0, t 6= s.

Our identifying restriction corresponds to C12(1) =
∑∞

j=0 C12
j = 0. The MA representation is

∆xt = A(L)et =
∑∞

j=0 Ajet−j (2)

with A0 = I, E[ete
′
t] = Ω, E[ete

′
s] = 0, t 6= s,

where Ω = C0C
′
0, et = C0εt, and Cj = AjC0. The MA representation A(L) is obtained from the

VAR of

∆xt = B(L)∆xt−1 + et =
∑p

j=1 Bj∆xt−j + et. (3)

We estimate the VAR (3) using data aggregated to 2-, and 3-digit levels, aggregating from 4-digit

data as described above. We also estimate pooled specifications on disaggregated data, restricting

some coefficients to be identical across sub-industries. The pooled data provide more observations:

∆xi
t = B(L)∆xi

t−1 + ei
t, for i = 1, ..., N,

3The constant terms are suppressed here for expositional convenience.
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where N is the number of sub-industries. We assume that B(L) and Ω are the same across the

sub-industries but allow for different average growth rates in TFP and hours (constant terms in the

VAR) across sub-industries.4 Most of our discussions are based on aggregated data unless otherwise

specified. All VARs have a lag of one year.5 The standard errors are computed by bootstrapping

500 draws.

Lawrence Christiano, Martin Eichenbaum and Robert Vigfusson (2004) show that whether

hours are treated as stationary in levels or in first differences is important for the response of hours to

technology in a structural VAR. The issue of stationarity of hours worked remains controversial (e.g.,

Matthew Shapiro and Mark Watson (1988)), and the stationarity is often motivated by the so-called

balanced growth path at the aggregate level. At the industry level, however, a permanent change

in productivity may well imply a long-run change in hours worked through sectoral reallocation

of labor, and hours are, in fact, non-stationary in most industries. For example, at a 10 percent

significance level, we can reject the null hypothesis of unit root for only one out of 20 industries.

Thus, hours enter as first differences in our analysis of sectoral VARs.

C. Results from an Industry VAR

Figure 1 displays the impulse responses of TFP and hours for the aggregate manufacturing industry.

In response to a one-standard-deviation technology shock (which eventually increases the manufac-

turing TFP 1 percent), hours worked increase 0.35 percent at impact. Hours worked continue to

rise for two years, until it reaches the new steady state, 1.3 percent higher than before. In response

to a non-technology shock, TFP increases 0.7 percent initially—which indicates pro-cyclical factor

utilization—and returns to the previous level over time. Hours worked increases 3 percent and

remains high. The response based on the pooled data shows a similar pattern.

4For aggregate manufacturing, durables and non-durables, 2-digit data are used; for a 2-digit (3-digit) industry,

3-digit (4-digit) data are used.

5According to the Akaike information criterion (AIC), the optimal lag length is 1 in 304 industries out of 458

industries, and the Schwarz information criterion (SIC) chooses the lag length of 1 for 422 industries. Given the short

annual time series, we chose the lag length of 1.
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Table 1 lists unconditional and conditional correlations between TFP growth and growth of

hours worked.6 Overall, growth rates of TFP and hours worked are strongly positively correlated in

aggregate manufacturing: unconditional correlation is 0.64 (with standard error of 0.09). The cor-

relation conditional on technology shocks is 0.60 (0.34): the manufacturing industry employs more

workers when the efficiency improves permanently. The conditional correlation on non-technology

shocks is also positive and significant, 0.76 (0.06): a temporary increase of TFP is associated with

longer hours of work.7

The correlation conditional on technology ranges from -0.71 in “Lumber and Wood Products

except Furniture” to 0.99 in “Apparels and Other Finished Products.” Yet the majority of 2-

digit industries show a positive correlation between TFP and hours conditional on technology

shocks; 10 industries exhibit 0.5 or higher. Among those statistically significant, eight industries

exhibit a positive correlation, whereas only one industry exhibits a statistically significant negative

conditional correlation. This pattern is robust across the level of aggregation.

In terms of the short-run response, Table 2 shows the number of industries with a negative or

positive contemporaneous response of hours to technology from the bi-variate industry VARs. The

numbers in parentheses represent the cases that are statistically significant at 10 percent. Of the 2-

digit industry estimates based on the aggregated data, 14 industries show a positive response (four

significant) whereas six industries exhibit a negative response (only one is statistically significant).

The result is similar when we use the pooled data. There are 14 (eight significant) positive and

six (one significant) negative responses. At the 3-digit level, 93 (37 significant) industries show a

positive response, and 47 (12 significant) show a negative response. Again, the estimates based on

the pooled data provide a similar pattern. Among the full sample of the 458 4-digit industries,

6Following Gaĺı (1999), we compute the conditional correlation on technology based on VAR estimates as follows:

cor(∆zt, ∆lt | εi) =

P∞
j=0 C1i

j C2i
jp

var(∆zt | εi) · var(∆lt | εi)

for i = z, l, where var(∆zt | εi) =
P∞

j=0(C
1i
j )2 and var(∆lt | εi) =

P∞
j=0(C

2i
j )2.

7Unconditional correlation does not necessarily fall between two conditional correlations because unconditional

correlation is not necessarily a weighted average of conditional correlations. A formal proof is available from the

authors upon request.
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320 (133 significant) industries show a positive response, whereas 138 (25 significant) industries

show a negative response. Despite considerable heterogeneity across sectors, technology’s effect

on employment does not appear strongly inconsistent with the conventional view: technological

progress increases the demand for labor. Regarding the quantitative importance of technology

shocks, for aggregate manufacturing, technology shocks account for 15 percent of the volatility of

the three-year forecast variance of hours worked according to a VAR based on the aggregated data.

A relatively small contribution of technology is consistent with previous findings from the structural

VAR based on aggregate data where technology is identified by the permanent components of

productivity (e.g., Olivier Blanchard and Danny Quah (1989)).

D. Relation to Sticky Prices

Our analysis of industry VARs reveals a considerable heterogeneity in the response of hours to

technology. A negative response is apparently inconsistent with the prediction of the baseline

flexible-price model.8 Motivated by employment’s negative short-run response to a permanent labor

productivity shock in OECD countries, Gaĺı (1999) proposed a sticky-price model as a mechanism

capable of generating a negative impact of technology on employment. Intuitively, when price is

fixed, the demand for goods remains unchanged, and firms need less input, including labor, to

produce the same amount of output, thanks to the improved efficiency.9

We ask whether the industry’s response of hours (to technology shocks) is systematically cor-

related with the stickiness of industry-output prices. We take advantage of the recent study by Bils

& Klenow (2004), who compute the average price-change frequency of 350 goods and services from

the price quotes collected by the BLS for 1995-1997. For 87 manufacturing industries, we are able

8With adjustment costs to investment, an RBC model with flexible prices can exhibit a negative response of hours

to technology (e.g., Urban Jermann (1998)).

9Michael Dotsey (2002) and Jordi Gaĺı, David Lopéz-Salido and Javier Vallés (2003) show that technology’s effect

on employment also depends on monetary policy: employment can increase even under the sticky price model if the

monetary authority strongly accommodates technology shocks.
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to match the SIC code with the entry-level items (ELIs).10 In matching the two data sets, each

ELI corresponds to a 4-digit SIC industry for 44 goods. For 11 goods, one ELI item corresponds to

multiple 4-digit SIC industries. In this case, we aggregate the industries’ TFP and hours. For 32

goods, multiple ELIs belong to one 3- or 4-digit SIC industry. In this case, the CPI weights from

the BLS are used to calculate the average price-change frequency of the goods. For 87 goods, the

average duration during which prices remain fixed (the inverse of average price-change frequency)

is 3.4 months.

The left panel of Figure 2 shows the relationship between the short-run response of hours to

technology (y-axis) and average duration of industry-product prices (x-axis) for 87 manufacturing

industries. Since industries may have experienced different degrees of technological change over

time, we normalize the technology shocks across industries. We consider a technology shock that

increases TFP 1 percent in the long run (instead of the conventional one-standard-deviation shock).

Under the sticky-price hypothesis we expect a negative correlation between the short-run response

of hours worked and average price duration. No systematic relationship appears; the cross-sectional

correlation between the short-run response of hours worked and average duration of prices is -0.01.

The right panel of Figure 2 shows the cross-sectional relationship between price stickiness and

the short-run response of hours to a permanent labor productivity shock (that increases the labor

productivity 1 percent in the long run in a bivariate VAR of labor-productivity growth and hours

growth, as in Gaĺı (1999)) and average price duration. Again, we do not find a strong correlation

between the response of hours worked and average duration of prices.

Our evidence—a near-zero cross-sectional correlation between the employment response to

technology and average price duration—should not necessarily be viewed as evidence against the

importance of sticky prices in general.11 Rather, a low correlation suggests that price stickiness may

not be a primary reason why firms employ hours differently in the face of technological progress.

10To calculate the Consumer Price Index, the BLS collects prices for about 71,000 non-housing goods and services

per month. These are collected from around 22,000 outlets across 44 geographic areas. The BLS divides non-housing

consumption into roughly 350 categories called “entry-level items” (ELIs).

11Our analysis has a limited implication because the Bils-Klenow measure covers retail prices, whereas manufac-

turing output is more closely related to producers’ prices.
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Price stickiness should generate contractionary effects of technology shocks only if there are no

inventories. If firms carry a non-negligible amount of inventories, production does not have to

equal sales. In response to a favorable cost shock, firms can expand output relative to sales and

build up inventories for future sales. Mark Bils (1998) finds that average inventory-sales ratios have

a positive and significant effect in accounting for the contemporaneous correlation between growth

rates of employment and labor productivity in manufacturing. Yongsung Chang, Andreas Hornstein

and Pierre-Daniel Sarte (2004) find that, for 98 manufacturing industries, an industry’s employment

response to technology is strongly correlated with the storability (measured by the average service

life) of industry products: an average inventory-sales ratio that is 1 percent larger (owing to the

longer average service-life of an industry’s product) results in a 0.55-percentage-point larger short-

run response of employment (with a standard deviation of 0.19), while the coefficient on the average

price duration of an industry’s output has a negative sign but is statistically insignificant.12

III. TFP vs. Labor Productivity

Our results appear at odds with Kiley’s, which show that the permanent components of labor

productivity and employment are negatively correlated in 15 (out of 17) 2-digit manufacturing

industries for 1968:II–1995:IV. When we use labor-productivity growth (instead of TFP) in our

bivariate VAR, we also find a strong negative response of hours worked in most industries. In

Table 3, at the 2-digit level, 18 (nine significant) industries show a negative response to a permanent

increase in labor productivity, whereas only two (zero significant) industries show a positive short-

run response. A similar pattern is found across the level of aggregation and the estimation method.

We argue that TFP is a more natural measure of technology because labor productivity reflects

input mix as well as efficiency. Under constant returns to scale, labor-productivity growth ∆(y− l)t

12By contrast, Mikael Carlsson (2003) and Domenico Marchetti and Francesco Nucci (2005) provide evidence

supporting the sticky-price hypothesis based on, respectively, Swedish and Italian manufacturing data. Both studies

use the method of Basu, Fernald & Kimball (2005) to correct for the cyclical component in the TFP and find that

the negative correlation between hours and the corrected measure of TFP is more pronounced in sectors with stickier

prices.
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can be expressed as TFP growth and input deepening (increase of material-labor and capital-labor

ratios):

∆(y − l)t ' ∆zt + αm,t∆(m− l)t + αk,t∆(k − l)t (4)

where m and k denote the (logs of) material and capital input, respectively, and αm,t and αk,t

denote output elasticities (measured by revenue shares) of material and capital, respectively. Non-

technology factors, such as changes in relative input prices, affect labor productivity, whereas such

changes alone will not affect TFP. Table 4 summarizes the decomposition of the average labor

productivity growth based on (4) for 1958-1996. For aggregate manufacturing, the average annual

growth rate of labor productivity was 2.71 percent. This growth consists of a 0.9 percent increase

due to TFP, a 1.22 percent increase due to an increased material-labor ratio (αm∆(m− l)), and a

0.46 percent increase due to an increased capital-labor ratio (αk∆(k − l)). Changes in input mix

account for a large share of labor productivity growth across 2-digit industries.

The difference between TFP and labor productivity is dramatic in some industries. Figure 3

shows that, in “Leather and Leather Products,” TFP exhibits no apparent trend, whereas labor

productivity exhibits a strong trend because of the continuous decline in hours worked over time.

For aggregate manufacturing, we cannot reject the null-hypothesis of no co-integration between TFP

and labor productivity at a 10 percent significance level. At the 2-digit level, the null hypothesis

of no co-integration cannot be rejected for 17 industries at a 10 percent significance level.

If permanent shocks to labor productivity reduce hours, but permanent shocks to TFP do not,

then some permanent shocks to inputs must reduce hours in the short run. Consider a bivariate

VAR of the growth rate of non-labor input per hour (∆(n−l)t) and the growth rate of hours worked

(∆lt): [∆(n− l)t,∆lt]′ = C(L)εt. The non-labor input growth is the weighted (by their cost shares)

sum of material and capital growth. The long-run restriction, C12(1) = 0, distinguishes between

the shocks that increase non-labor input per hour in the long run and those that do not. The first

row of Figure 4 shows the responses of (n− l)t and lt to permanent shocks to non-labor input per

hour. Hours worked indeed decrease in the short run following a shock that increases non-labor

input per hour permanently. A similar bivariate VAR is estimated for the material per hour and

hours worked (i.e., [∆(m − l)t, ∆lt]′ = C(L)εt) as well as for capital per hour and hours worked

(i.e., [∆(k − l)t,∆lt]′ = C(L)εt). The second row of Figure 4 shows the response of material per
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hour and hours worked to a shock that increases the material-labor ratio in the long run. Likewise,

the third row shows the response of capital per hour and hours worked to a shock that increases

the capital-labor ratio in the long run. While both permanent shocks (to the material-labor and

capital-labor ratios) reduce hours in the short run, permanent shocks to the material-labor ratio

generate a more pronounced negative response of hours worked.

In sum, we find that TFP and labor productivity behave quite differently at the sectoral level—

in particular, there are shocks that affect labor productivity in the long run that do not involve

changes in TFP. While the studies based on aggregate data emphasize the technological progress

in the form of improved efficiency, the shift in input mix is also important for understanding

labor-productivity growth at the sectoral level. For example, increased outsourcing of intermediate

products and business services may account for the substitution of material input for labor in man-

ufacturing. (See Almas Heshmati (2003) for a survey on outsourcing’s effect on the measurement

of productivity.)

IV. Some Caveats

We provide some caveats regarding the identification of technology from measured TFP. We are

concerned with mismeasurement due to increasing returns to scale, factor utilization, and imperfect

competition, as well as potential specification errors in the VAR due to omitted variables.

A. Comparison with Basu et al.

Basu et al. (2005) propose a method to correct measured TFP for increasing returns and factor

utilization. The key equation to estimate is the sectoral production function:

∆yt = γ∆xt + β∆ht + ∆zt (5)

where ∆xt = αm∆mt + αk∆kt + αl∆(et + ht), and ∆yt, ∆zt, ∆et and ∆ht are growth rates of,

respectively, output, technology, employment, and hours per worker. The basic insight of Basu

et al. is that increases in observed inputs (hours per worker) can be a proxy for unobserved

changes in utilization (capacity utilization and labor effort). Following Basu et al., we estimate the
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system of Equation (5) (separately for durable and non-durable industries) based on 2-digit data

using the 3SLS. The coefficient for utilization is restricted to be common across sub-industries.

We use the instruments suggested by Basu et al. (2005): the growth rates of oil prices and real

military government spending (current and one-period lagged values) and monetary policy shocks

(one-period lagged values).13 According to Table 5 the median estimate for the returns to scale,

γ, is 1.15. The factor utilization parameter, β, is 0.17 and 0.76 for durables and non-durables,

respectively. The estimates are not identical to those in Basu et al. because of the differences in

the data set (KLEM in Basu et al. vs. NBER database in ours).14 The residuals from the estimated

production functions are aggregated to obtain the aggregate technology of manufacturing. We call

this measure of technology Basu-TFP. We obtain four types of Basu-TFP based on 2- and 4-digit

production functions as well as on gross and value-added output.15

Given these productivity measures, we estimate a structural VAR of productivity and hours

with the same long-run restriction: only technology has a long-run effect on productivity. Figure

5 shows the response of hours from the bivariate VARs with eight different productivity measures:

uncorrected TFP (1st row), 2-digit Basu-TFP (2nd row), 4-digit Basu-TFP (3rd row), and labor

productivity (4th row), each measure based on gross output (1st column) and value-added output

(2nd column). When the TFP is corrected for the returns to scale and factor utilization based on

2-digit production functions, hours worked decreases in a significant and persistent way as in Basu

et al. When 4-digit production functions are used, the hours worked still decrease in the short run

but not in a significant way.

Table 6 shows the number of industries with a positive or negative short-run response of hours

from bivariate VARs of Basu-TFP and hours worked. When TFP is corrected for returns to scale

and factor utilization, there are more industries with a negative response of hours in the short

run. While Basu et al.’s work is an important contribution that constructs the technology measure

from a micro production structure, we interpret the negative impact of technology with caution.

13We thank John Fernald for providing the instruments used in Basu et al.

14For example, Basu et al.’s estimates for β are 1.34 and 2.13 for durables and non-durables, respectively.

15The value-added-based TFP growth is obtained by ∆ez = ∆z
1−αm

, where ∆z is the gross-output-based TFP, the

estimated residual from the gross production function (5).
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First, we found that the estimates of production functions are somewhat sensitive to the choice

of instruments (for example, to whether the current values of instruments are included or not.).

Second, most explanatory power of the instruments stems from the oil-price changes which tends

to be more transitory than a typical business cycle. As Bils (1998) points out, we would expect a

greater use of increased factor utilization for more transitory shocks (which may result in a greater

degree of correction in TFP). Finally, we note that despite a negative impact in the aggregate,

the short-run response of hours from the industry VAR using the Basu-TFP still shows no cross-

sectional correlation (-0.02) with the Bils-Klenow measure of prices stickiness.

B. Markup

When the TFP measure in the database is constructed, the capital share is computed by the residual

share (αk = 1 − αm − αl). This implicitly assumes that the price-cost markup is 1. If the true

markup is greater than 1, input and TFP may be spuriously correlated. When the true markup is

µ, measured TFP growth (incorrectly assuming a markup of 1) is:

∆zt = ∆z∗t + (µ− 1)[αm(∆mt −∆kt) + αl(∆lt −∆kt)] (6)

where ∆z∗t denotes the true TFP growth and α’s denote revenue shares. Table 7 reports the short-

and long-run responses of hours to technology from the bivariate VAR of ∆z∗t and ∆lt assuming,

respectively, µ = 1.05 and µ = 1.1 in (6).16 As the markup ratio increases, the response of hours

worked tend to decrease in the short run as well as in the long run. In fact, the estimated short-run

response of hours decreases to -0.27 (with standard error of 0.78) when the markup is 1.1 and the

value-added TFP is used. Nevertheless, given the small profit rates reported in manufacturing over

the years (e.g., Basu & Fernald (1997)), the average markup of 1.1 appears high.

C. VAR Specification

John Shea’s study (as well as ours) estimates the dynamic response of hours to technology from

the structural VAR. Shea makes use of direct measures such as R&D and patent applications.

16We thank Jordi Gaĺı for suggesting this exercise.
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Confronted with an identification problem, he imposes a restriction on the contemporaneous ef-

fects (whereas we use the long-run restriction).17 While the identification based on the long-run

restriction is widely used and consistent with a large class of macro models, it has shortcomings,

too. First, it requires no trend in the intensity of factor utilization.18 The workweek of production

workers has declined persistently over decades. If this trend affected the intensity of labor effort,

the long-run movement of TFP may also reflect such changes. Second, recent studies report that an

estimated dynamics identified by the long-run restrictions is sensitive to the medium-run movement

(Jon Faust and Eric Leeper (1997)) and omitted variables in the VAR (Christopher Erceg and Luca

Guerrieri and Christopher Gust (2003)).

To address potential specification errors due to a small scale VAR, we compare the short-run re-

sponses of hours from our bivariate VAR to those from the alternative (larger scale) VARs. The first

alternative specification we consider includes aggregate TFP. For each 4-digit industry, we estimate

a tri-variate VAR of [∆Agg.TFPt, ∆TFPt, ∆lt]′ = C(L)εt where the innovation vector εt consists

of aggregate technology shock, sectoral technology shock, and non-technology shock. We distin-

guish three fundamental shocks based on a long-run restriction. Neither the sectoral technology

shock nor the non-technology shock affects aggregate TFP in the long run: C12(1) = C13(1) = 0.

The non-technology shock does not affect the sectoral TFP in the long run: C23(1) = 0. We then

compute the short-run response of hours to sectoral technology by the contemporaneous effect of

the sectoral technology shock on hours worked: C32
0 . The sectoral technology we identify reflects

the sectoral technology that has no impact on aggregate TFP in the long run. This restriction may

be justifiable at the 4-digit industry level where the sector is too small for a sectoral TFP to affect

the level of aggregate TFP in the long run in a significant way. The second alternative specification

includes other input variables ([∆TFPt, ∆lt, ∆kt, ∆mt]′ = C(L)εt). The same long-run restriction

is used to identify the technology shock of the sector: C12(1) = C13(1) = C14(1) = 0.

17In Shea, the technology variable is placed last in the VAR. Empirically, innovations to industry output are posi-

tively correlated with innovations to R&D and patent applications. Placing technology last highlights an accelerator

mechanism running from industry activity to technology—i.e., R&D is encouraged by the output demand, but an

instantaneous impact of technology shocks on output is not allowed.

18This assumption is also required for the Basu et al. method to identify technology from the measured TFP.
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The first graph in Figure 6 plots the short-run responses of hours worked from tri-variate

VARs against those from our benchmark bi-variate VARs. Inclusion of aggregate TFP has a non-

negligible impact on the estimate of the short-run response of hours to technology. The magnitude

of the responses of hours worked increases (in absolute value) overall. This makes sense because the

sectoral technology shock has a small (or zero) income effect in labor supply. Yet the ordering and

the signs are similar to those from the bivariate sectoral VAR and the cross-sectional correlation

between two estimates across 458 4-digit industries is 0.82. The second graph of Figure 6 shows

that inclusion of other input variables does not have a very significant effect on the estimates of the

short-run response of hours: the cross-sectional correlation between two estimates is 0.85. In sum,

our conclusion based on the short-run employment effect of technology from the bi-variate VARs

does not seem significantly sensitive to the omission of aggregate TFP or other input variables.

D. Aggregate Economy

We showed that there is a tantalizing difference in the response of hours to stochastic trends

in TFP and labor productivity in manufacturing. While our analysis focuses on manufacturing

industries because the reliable data on capital are available at the detailed disaggregate level, many

previous empirical works concern the aggregate economy.19 In Figure 7 we compare the short-run

responses of hours, respectively, to permanent TFP and labor-productivity shocks for the aggregate

non-farm business economy. At the aggregate level, the difference is not as striking as that in the

disaggregate data. Nevertheless, there is an important difference. According to the bivariate VARs,

following a permanent TFP shock, hours worked slightly decreases (statistically not significant)

in the short run, gradually increases, and remains high in the long run—a positive but delayed

response; however, hours worked declines significantly following a permanent labor-productivity

19Gaĺı’s (1999) empirical work has recently been disputed on the grounds of mis-specifications along two dimensions.

Altig, Christiano, Eichenbaum & Linde (2002) argue that Gaĺı’s results are subject to omitted variable bias while

Christiano, Eichenbaum & Vigfusson (2004) point out that whether hours are treated as stationary or not matters in

a structural VAR. V.V. Chari, Patrick Kehoe and Ellen McGrattan (2004) argue that the long-run identification in

a structural VAR may not be consistent with the data-generating process of a standard dynamic stochastic general

equilibrium model. Yet Francis & Ramey (2002) find evidence in support of Gaĺı.
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shock.

V. Conclusion

We find that technological improvement raises employment in many U.S. manufacturing industries.

This finding substantially differs from those of previous studies based on labor productivity, which

found a negative correlation between the permanent component of labor productivity and employ-

ment in manufacturing. We argue that TFP is the natural measure for technology because labor

productivity reflects the input mix as well as technology. We show that TFP and labor productivity

behave quite differently at the sectoral level and that permanent shocks to input mix are indeed

associated with the short-run reduction of hours. Using micro data on average price duration, we

ask whether the variation in employment’s response to a technology shock across industries is cor-

related with the average duration of industry-output prices. Among 87 manufacturing industries,

we do not find strong evidence of this relationship.

Our findings are potentially important because they undercut a growing strand of literature

that uses the short-run impact of technology on employment as evidence against flexible-price

business cycle models and because some shocks affecting labor productivity in the long run do

not necessarily involve changes in the level of TFP. Given the considerable heterogeneity in the

employment effect of technology, more research on micro and historic data—such as Michael Gort

and Steven Klepper (1982), Zvi Grilliches and Fuden Lichtenberg (1984), Samuel Kortum (1993),

Shea (1998), and Basu et al. (2005)—is necessary to better understand what technology shocks are

and what they do.
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Gaĺı, J., Lopéz-Salido, D. & Vallés, J. (2003). Technology shocks and monetary policy: Assessing

the fed’s performance, Journal of Monetary Economics 50(4): 723–743.

Gort, M. & Klepper, S. (1982). Time paths in the diffusion of production process, Economic Journal

92(367): 630–653.

Griliches, Z. & Lichtenberg, F. (1984). R&d and productivity growth at the industry level: Is

there still a relationship?, in Z. Griliches (ed.), R&D, Patents, and Productivity, University of

Chicago Press, pp. 466–501.

Heshmati, A. (2003). Productivity growth, efficiency and outsourcing in manufacturing and services,

Journal of Economic Surveys 17(1): 79–112.

Jermann, U. (1998). Asset pricing in production economies, Journal of Monetary Economics

41(2): 257–275.

Kiley, M. (1998). Labor productivity in u.s. manufacturing: Does sectoral comovement reflect

technology shocks? Unpublished Manuscript, Board of Governors Federal Reserve System.

Kortum, S. (1993). Equilibrium r&d and patent r&d ratio: Us evidence, American Economic

Review 83(2): 450–457.

Marchetti, D. & Nucci, F. (2005). Price stickiness and the contractionary effect of technology

shocks, European Economic Review 49(5): 1137–1163.

18



Shapiro, M. & Watson, M. W. (1988). Sources of business cycle fluctuations, in S. Fischer (ed.),

NBER Macroeconomics Annual, Vol. 3, MIT–Press, pp. 111–148.

Shea, J. (1998). What do technology shocks do?, in B. S. Bernanke & J. J. Rotemberg (eds), NBER

Macroeconomics Annual, Vol. 13, MIT–Press, pp. 275–310.

19



Table 1: Unconditional and Conditional Correlations in Manufacturing for 1958–1996

SIC Industry cor(∆z, ∆l) cor(∆z, ∆l | εz) cor(∆z, ∆l | εl)

Aggregate Manufacturing 0.638∗∗ 0.595∗ 0.762∗∗

(0.086) (0.340) (0.060)

Nondurables 0.478∗∗ 0.229 0.801∗∗

(0.118) (0.564) (0.113)

20 Food And Kindred Products 0.203 0.446 0.510
(0.136) (0.503) (0.498)

21 Tobacco Products 0.259∗ 0.996 0.759
(0.152) (0.633) (0.630)

22 Textile Mill Products 0.256∗∗ 0.519∗ −0.689
(0.111) (0.288) (0.690)

23 Apparel And 0.315∗∗ 0.995∗∗ −0.558
Other Finished Products (0.149) (0.421) (0.561)

26 Paper And Allied Products 0.476∗∗ 0.487 0.755∗∗

(0.198) (0.704) (0.115)
27 Printing, Publishing, 0.323∗∗ −0.270 0.736∗∗

And Allied Industries (0.146) (0.693) (0.277)
28 Chemicals And Allied Products 0.207∗ −0.258 0.582∗∗

(0.124) (0.396) (0.116)
29 Petroleum Refining 0.085 −0.473 0.793∗

And Related Industries (0.155) (0.591) (0.453)
30 Rubber And 0.614∗∗ 0.784∗∗ 0.721∗∗

Miscellaneous Plastics Products (0.088) (0.205) (0.302)
31 Leather And Leather Products 0.054 −0.355 0.512

(0.164) (0.602) (0.406)

Durables 0.658∗∗ 0.712∗∗ 0.760∗∗

(0.078) (0.205) (0.055)

24 Lumber And Wood Products, −0.101 −0.710∗∗ 0.508∗∗

Except Furniture (0.134) (0.221) (0.180)
25 Furniture And Fixtures 0.748∗∗ 0.848∗∗ 0.868∗∗

(0.060) (0.106) (0.110)
32 Stone, Clay, Glass, 0.675∗∗ 0.745∗∗ 0.796∗∗

And Concrete Products (0.085) (0.224) (0.054)
33 Primary Metal Industries 0.444∗∗ 0.566 0.667∗∗

(0.123) (0.528) (0.230)
34 Fabricated Metal Products 0.675∗∗ 0.863∗∗ 0.690∗∗

(0.069) (0.135) (0.286)
35 Industrial, Commercial Machinery 0.528∗∗ 0.399 0.733∗∗

And Computer Equipment (0.113) (0.477) (0.123)
36 Electronic Equipment, 0.464∗∗ 0.152 0.863∗∗

Except Computer Equipment (0.134) (0.519) (0.056)
37 Transportation Equipment 0.506∗∗ 0.820∗∗ 0.658∗∗

(0.119) (0.401) (0.311)
38 Measuring, Analyzing, 0.147 0.119 0.549

And Controlling Instruments (0.170) (0.587) (0.465)
39 Miscellaneous 0.405∗∗ 0.891∗∗ 0.565

Manufacturing Industries (0.126) (0.421) (0.527)

Note: The numbers in parenthesis are standard errors. Those with double asterisks are
statistically significant at 5 percent.



Table 2: Short-Run Response of Hours to TFP shock

Number of Industries
Data Positive Negative

2-digit aggregated 14 (4) 6 (1)
pooled 14 (8) 6 (1)

3-digit aggregated 93 (37) 47 (12)
pooled 107 (47) 33 (5)

4-digit 320 (133) 138 (25)

Note: The number of industries with a positive or negative short-run response of
hours to a technology shock from industry VARs. Those in parenthesis are the
number of industries whose estimates are statistically significant at 10 percent.

Table 3: Short-Run Response of Hours to Labor Productivity Shock

Number of Industries
Data Positive Negative

2-digit aggregated 2 (0) 18 (9)
pooled 2 (1) 18 (15)

3-digit aggregated 25 (6) 115 (60)

pooled 17 (2) 123 (72)

4-digit 107 (17) 351 (174)

See Note in Table 2.
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Table 4: Decomposition of Labor Productivity Growth

∆(y − l) ∆TFP αm∆(m− l) αk∆(k − l)

Manufacturing 2.71 0.90 1.22 0.46

Nondurables 2.34 0.55 1.17 0.57

20 : 2.32 0.45 1.34 0.45
21 : 3.00 -1.05 0.92 2.64
22 : 3.31 1.16 1.94 0.36
23 : 2.51 0.72 1.18 0.67
26 : 2.42 0.49 1.18 0.72
27 : 1.01 -0.07 0.43 0.57
28 : 3.11 0.92 1.19 0.83
29 : 2.88 0.44 2.17 0.26
30 : 2.42 1.38 0.83 0.36
31 : 1.95 0.11 1.12 0.78

Durables 3.00 1.20 1.28 0.38

24 : 1.71 0.46 1.09 0.14
25 : 1.64 0.33 0.82 0.41
32 : 1.88 0.80 0.72 0.30
33 : 1.84 0.54 1.19 0.14
34 : 1.51 0.60 0.62 0.42
35 : 3.71 2.07 1.64 0.60
36 : 5.70 2.92 1.61 0.92
37 : 2.85 0.80 1.92 0.37
38 : 3.46 0.93 1.23 1.21
39 : 2.12 0.66 0.90 0.59

Note: The long-run decomposition is based on Equation (4).
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Table 5: Parameter Estimates based on Basu et al. Method

Returns to Scale(γ)

Durables Non-Durables
Lumber, Wood Products (24) 0.92 (0.11) Food (20) 0.38 (0.41)
Furniture (25) 1.18 (0.08) Tobacco (21) 1.08 (0.96)
Stone, Clay, Glass (32) 1.36 (0.07) Textile Mill (22) 0.86 (0.16)
Primary Metal (33) 1.29 (0.09) Apparel (23) 1.24 (0.16)
Fabricated Metal (34) 1.29 (0.09) Paper Products (26) 1.48 (0.21)
Non-Electronic (35) 1.67 (0.15) Printing, Publishing (27) 1.49 (0.26)
Electronic Equipment (36) 1.53 (0.21) Chemicals (28) 1.52 (0.22)
Transportation Equipment (37) 1.12 (0.07) Petroleum Refining (29) 0.53 (0.14)
Measuring, Analyzing (38) 0.97 (0.09) Rubber, Plastics (30) 1.15 (0.08)
Miscellaneous (39) 1.41 (0.18) Leather (31) 0.39 (0.40)

Utilization(β)

Durables Non-Durables
0.17 (0.25) 0.76 (0.37)

Note: The estimates are based on 3SLS (separately for durables and non-durables).

Table 6: Short-Run Response of Hours to Basu-TFP Shock

Number of Industries
Data Positive Negative

2-digit aggregated 4 (0) 16 (5)
pooled 7 (2) 13 (7)

3-digit aggregated 38 (12) 102 (32)
pooled 43 (13) 97 (34)

4-digit 161 (43) 297 (100)

See Note in Table 2.
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Table 7: Imperfect Competition

Productivity Gross Output Value Added
Measure Short Run Long Run Short Run Long Run

TFP 0.35 1.35∗ 0.49 1.52∗∗
(µ = 1) (0.73) (0.69) (0.75) (0.73)

TFP 0.25 1.25 0.28 1.27
(µ = 1.05) (0.74) (0.77) (0.77) (0.79)

TFP 0.09 1.09 -0.26 0.38
(µ = 1.1) (0.73) (0.77) (0.78) (0.96)

Labor −1.77∗∗ 0.53 −1.58∗∗ 0.83
Productivity (0.47) (0.72) (0.54) (0.71)

Note: The numbers represent the short-run and long-run responses of hours (in percent) to
a permanent TFP or labor productivity shock. Those in parenthesis are standard errors.
The aggregate economy reflects the non-farm business sector.
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Figure 1: Impulse Responses of TFP and Hours – Aggregate Manufacturing
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Note: The shaded area represents the 90-percent confidence intervals based on bootstrapping
500 draws.
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Figure 2: Price Duration and Hours Response to Technology Shock
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Note: The x-axis is the (log of) average monthly duration of industry output prices. The
y-axis is the short-run response of hours to a shock that increases industry TFP (or labor
productivity in the right panel) by one percent in the long run.
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Figure 3: TFP, Labor Productivity, and Hours – Leather and Leather Products
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Figure 4: Response of Hours to Input Mix Shocks
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Note: The first row represents the responses of non-labor input per hour (n− l) and hours
(l), respectively, to a one-standard-deviation permanent shock to non-labor input per hour.
The second row represents the responses of material per hour (m−l) and hours, respectively,
to a one-standard-deviation permanent shock to material per hour. The third row represents
the responses of capital per hour (k− l) and hours, respectively, to a one-standard-deviation
permanent shock to capital per hour.
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Figure 5: Hours Response to Various Measures of Productivity
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Note: The figures in the left column use productivity measures based on gross output. Those
in the right column use productivity measures based on value-added output. The first row
shows the hours responses when TFP is used. The second row shows the responses when
the Basu-corrected TFP is aggregated from the 2-digit industry production functions. The
third row shows the responses when the Basu-corrected TFP is aggregated from the 4-digit
industry production functions. The last row shows the responses when labor productivity
is used. 29



Figure 6: Robustness to a VAR Specification
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Note: x-axis: short-run responses of hours to permanent TFP shocks from the 4-digit
bivariate VARs. y-axis: short-run responses of hours to industry TFP shocks from tri-
variate VARs where the third variable is aggregate TFP growth (top graph) and those from
the 4-variate VARs where the 3rd and 4th variables are material and capital input growth
(bottom graph).
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Figure 7: Aggregate Economy: TFP vs. Labor Productivity Shocks
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Note: The first (second) row represents the responses of the aggregate non-farm business
economy to a one-standard-deviation permanent TFP (labor productivity) shock.
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