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Abstract

We develop a simple model in which financial imperfections can

serve to stabilize aggregate fluctuations, and not necessarily aggravate

them as in much of the previous literature; we term this the financial

decelerator. Stabilization can occur in our model because lenders are

imperfectly informed as to borrowers’ propensity to default; as a re-

sult it is too costly for lenders to impose borrowing constraints that

guarantee repayment in every possible eventuality. This allows some

borrowers to default when house prices are low, thereby leaving them

with more wealth; this then serves as an endogenous stabilizing force.

Keywords: Financial accelerator, default, collateral, credit history

JEL Classification Numbers: D52, E44, G12, G21, G33.
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1 Introduction

Much recent economic research develops the idea that financial factors can

aggravate real fluctuations. The common theme of this work is that fi-

nancial imperfections may introduce inefficiencies into financial markets

that amplify economic downturns; a prominent example is Bernanke and

Gertler (1989). In this work, it is typically the case that borrowing must

be secured, because firms are unable to commit to repay their loans. A

shock to the economy that lowers the value of some asset used as collateral

then makes external financing more difficult to obtain; this, in turn, lowers

economic activity and, hence, asset prices, even further. Similarly, in the

context of housing markets, Stein (1995) constructs a model in which drops

in housing prices mean that after paying off their mortgage, households have

less money available to use as a down payment for a new house and so are

less likely to be able to move, further depressing housing prices.1

The question we seek to answer in this paper is the extent to which this

intuition is robust to the introduction of other, realistic financial imperfec-

tions, namely, adverse selection and strategic default. We find that, in fact,

for a large set of parameter values these latter imperfections may actually

serve as a stabilizing force.

In our model agents borrow to purchase housing and secure their loans

with this long-lived asset. There are two financial imperfections in this

model. First, in common with the previous literature, agents are unable

to commit to repay their loans. This limits the amount that lenders are

willing to offer. In addition, however, lenders are also imperfectly informed

as to a borrower’s propensity to default; that is, there is adverse selection.

The latter imperfection implies that strategic default may actually occur in

equilibrium.

1See also Ortalo-Magné and Rady (2006), who construct a life-cycle model of housing
markets in which agents face credit constraints; in their model the magnitude of housing
price fluctuations can exceed those of GDP.
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For relatively high house prices the commitment problem dominates, and

the equilibrium is typically characterized by a standard financial accelerator;

that is, the borrowing constraints that prevent default become tighter as

falling prices reduce the wealth with which agents can collateralize future

loans, thereby exacerbating aggregate fluctuations. However, we show that

when prices are low, some agents will strategically default, which serves as

a stabilizing force; we term this a financial decelerator.

The key reason for this is that under adverse selection what correspond to

borrowing constraints in full-information models are actually endogenously

determined in equilibrium. When house prices are high the equilibrium

level of borrowing is sufficiently low that there is no default, and we obtain

a financial accelerator as in the rest of the literature. When collateral values

are low, however, agents will find it too costly to restrict their borrowing.

There are then two possible outcomes. Either we will be in a separating

equilibrium in which the bad types strategically default on their current

loans, despite the cost this entails to their reputation; this will leave them

with more income precisely in those states in which house prices are low.

Alternatively, the equilibrium may continue to pool both types together,

but will be characterized by more borrowing; this will make the bad types

willing to repay now, but at the cost of allowing them to default in the

future (because they have borrowed more). In either case current spending

on housing will be higher, which will mitigate the decline in its price.

From this discussion one can see that a key feature of this story is the

interaction between adverse selection and strategic default. Default is strate-

gic in our model in the following sense. First of all, repayment is always an

option in that agents do indeed have sufficient funds to cover their debts

even when house prices fall. It is therefore important for our results that

the defaulting agents be able to retain at least some of these funds when de-

faulting; this is discussed further in the next section. In addition, agents act

strategically in weighing the costs and benefits of defaulting against those

4



of repaying. Some of these costs are direct, in the form of the value of the

collateral (house) that is surrendered upon default, as well as a personal

cost of bankruptcy that each agent incurs; but they are also indirect, in the

impact of default on a borrower’s reputation.

We note that the type of strategic default we have in mind is seen by

many to have played a role in the Texas housing crash of the mid-1980s.

This is illustrated in the following statement by Judith Dedmon, head of

Fannie Mae’s Dallas office in 1987: “[i]n some neighborhoods, the home-

owners would walk the house and go down the street and buy the same

house at half the price” (The Dallas Morning News, March 18, 1996). The

message of our paper is that strategic default can sometimes have the effect

of stabilizing the housing market and that the impact on the economy might

have been even more severe had borrowers been forced to repay all that they

owed.

Although our approach is novel, we should point out that this is not

the only paper to present a model that overturns the financial accelerator.

Bacchetta and Caminal (2000) show that the agency costs facing credit-

constrained firms can be aggravated by certain positive aggregate shocks

(in particular a decline in the cost of funds), thereby allowing these agency

costs to serve as a dampening force. And House (2006) shows that in models

where financial imperfections lead to an over-investment problem, aggregate

fluctuations that generate a decline in entrepreneurs’ net worth may actually

be more than offset by this over-investment.2

The plan of the paper is as follows. The following section presents the

model. In section 3 we define and characterize equilibrium in our model. In

section 4 we discuss the impact of aggregate fluctuations on house prices.

We then give explicit conditions under which we obtain equilibria with finan-

cial decelerators and also discuss the empirical implications of our results.

2In addition, some have argued that the quantitative significance of financial con-
straints in terms of acceleration is rather small for reasonable choices of parameters; see
Fuerst (1995) and Kocherlakota (2000).
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Section 5 presents examples that illustrate the general results of the paper.

A detailed derivation of the equilibrium is given in the Appendix.

2 The Model

In this section we present our model. In section 3 we then explore the equi-

librium of this economy, first focusing on the strategic interaction between

agents when house prices are fixed and then on the determination of the

market-clearing level of house prices.

2.1 Agents and Contracts

We work with a two-period model of the economy, in which the periods

are denoted 1 and 2. There are two goods, a perishable numeraire and

housing, the latter a long-lived asset from which agents accrue utility in

each period they consume it. Since it is long-lived, housing is available for

use as collateral on loans. The supply of housing will be fixed at 2 units.

The price of the perishable numeraire good will be normalized to 1 in ev-

ery state. A key focus of this model is the interaction between housing price

fluctuations and agents’ behavior. To generate a source of price fluctuations

in the cleanest manner possible we assume that there is a measure 1 − σ

of non-strategic agents who serve as an outside source of demand for hous-

ing. With equal probability, their spending on housing in period 1 will be

either δu or δd, which we will term the top and bottom nodes, respectively;

these nodes correspond to the two aggregate states of nature. As a result, in

period 1 the equilibrium housing price will have two possible values — p1u

and p1d — corresponding to this exogenous demand. In order to make the

analysis and interpretation of the model cleaner, we will restrict attention

to parameter values that yield equilibria for which p1u > 1 ≥ p1d > 1/2, so

that there is only default in the bottom state. In period 2 they will spend

1 on housing, regardless of the state. As a result, all aggregate uncertainty
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will be resolved in period 1. This will imply that there is a single period-2

value for the housing price corresponding to each node of period 1 — either

p2u, if the current price is p1u, or p2d, if it is p1d.

There is also a competitive lending sector that is always willing to offer

the numeraire on terms that provide it an expected return of 1.3 This is

discussed further below.

We also make the following assumptions regarding lending contracts,

which we discuss in detail in the following section. First, we restrict attention

to debt contracts in which the interest rate r is fixed and cannot be indexed

(for instance, to house prices). In addition, we assume that there are no

deficiency judgments — that is, should a borrower refuse to pay, the lender

does not have recourse to any assets other than the housing purchased with

the proceeds of this loan, nor to the borrower’s future income.

We will primarily be interested in the consumers of housing, whom we

will also refer to as “strategic agents.” We assume that they have measure

σ and that they share the following characteristics:

• Each strategic agent enters period 1 with two units of housing.

• We also assume that they have financed the purchase of this housing

by borrowing two units of the numeraire (as in Stein, 1995), and that

they have used the housing to secure this debt (although for low values

of the house price it may not suffice to cover the entire loan).

3We thus assume that the losses incurred by lenders when consumers default do not
impact their ability to lend further. Although this is a restrictive feature of our model, we
have in mind more generally that the negative impact of these losses is smaller than the
positive effect of the additional funds available to the strategic defaulters. This is in fact a
natural outcome of most models in which agents have a choice between consumption and
lending — those with the lower marginal propensity to consume out of current income
will naturally emerge as the lenders (see Tobin, 1975). Likewise, we do not model the
possibility that capital requirements could constrain banks in such a manner that an
increase in default would leave them with fewer funds to lend; while such an effect would
again mitigate our financial decelerator, it would likely not eliminate it completely. Finally,
although we assume here that the supply of funds is perfectly elastic so long as lenders
break-even in expectation, our results would be qualitatively similar were we to generalize
this.
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The timing of repayment and consumption is as follows. At the start

of period 1 the exogenous shock to housing demand is realized, which de-

termines whether we are in the top or the bottom node. A strategic agent

first makes a repayment on his initial loan of 2; this repayment may be par-

tial (for example, if he defaults and surenders his collateral). He then has

an opportunity to borrow further; the rate lenders charge him depends on

whether or not he repaid his loan in full. Finally, he is able to consume from

his wealth, which is the sum of whatever he retains after repaying his loan

and his borrowing. In period 2, there is no further realization of uncertainty.

The agent first makes a repayment and then consumes; there is no further

borrowing. This timing is illustrated in Fig. 1.

Figure 1: Timing of the Model
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2.2 Consumers

The strategic consumers consume only housing in period 1, and both housing

and the numeraire in period 2.4 Conditional on the realization of uncertainty

in period 1, an agent consuming (h1j, h2j) units of housing and x2j units of

the consumption good (in period 2) accrues the following utility: v(hj, xj) =

log[h1j ] + (x2j + log[h2j]) , where j ∈ {u, d}.
These agents will have income i1 ≡ i = 1/2 in either node of period 1

(this is high enough so that default is truly strategic for the parameters we

consider). Since they have quasi-linear utility, it will also be the case that

if we assume that their income in period 2 is sufficiently high, then their

period-2 housing consumption will be income-inelastic (in particular, i2 > 2

suffices). Given this assumption, we will see that the equilibrium price is

p2 = 1/2 in either node of period 2.

In addition, strategic agents also have a fixed personal cost of default,

denoted by κ ∈ [0, 1], which is deducted from their utility in any period

in which they default. So for example, conditional on being in the bottom

node, an agent with cost κ who defaults in period 2 (but not period 1) would

obtain utility v(hd, xd) − κ. If he defaulted in both periods of the bottom

node, he would accrue v(hd, xd)− 2κ.

The agents are distinguished by this cost of default. We will assume that

a fraction 1−β of the consumers are “good” in that they have a high cost of

default κ = 1, while the other β are “bad” and have a lower cost κ = k, with

k ∈ (0, 1/2]; later we will characterize the equilibrium as we vary β and k.

By choosing the default cost of the good agents to be κ = 1 we ensure that

there will always be an equilibrium in which they do not default; this allows

us to focus on the strategic interaction between reputation and default.

We also assume that this default cost is private information — lenders

do not observe it directly, although borrowers’ behavior can be used to make

4By restricting consumption to housing in period 1, we do not need to distinguish
between secured and unsecured loans, thereby simplifying the model.
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inferences about it. This is in line with actual practice in credit markets;

credit bureaus devote considerable resources to using borrower behavior to

infer information about their likelihood of defaulting in the future.

In employing default costs, we follow Dubey, Geanakoplos, and Shu-

bik (2005), although we take these costs as fixed, rather than as increasing

in the magnitude of default. These costs can be interpreted as a household’s

“social stigma” from a bankruptcy filing or else as summarizing the cost

associated with bankruptcy, such as lawyers’ fees and time wasted in court.

Since we do not want to arbitrarily exclude defaulters from credit markets

(in contrast to Kehoe and Levine, 1993 and many others), we must discour-

age default through these costs. In addition, since it is natural to interpret

at least some of these costs as being private information, this gives us a way

to introduce adverse selection into our model.

2.3 Discussion

In this section we discuss the assumptions we have made regarding the

types of contracts into which market participants can enter. Recall that we

assumed that the only contracts available are debt contracts that are not

indexed to house prices and which preclude deficiency judgments. In broad

terms, there are several salient generalizations of such a contract: multiple

periods, allowing lenders to seize agents’ non-housing wealth, and payments

that are indexed to house prices.

First of all, one might consider contracts with payments that span several

periods. We do not consider such an extension, since the fact that we have

assumed that agents begin our model with a fixed inherited debt would

put this beyond the scope of our model. Furthermore, endogenizing the

initial borrowing (which would be needed to consider the effect of multi-

period contracts) would result in a much more complicated model for which

it would be difficult to obtain analytic results.

In the context of our model, however, the most significant assumption
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we make is that deficiency judgments are prohibited. In particular, if a

homeowner defaults on his mortgage, then lenders cannot seize his other

(non-housing) assets, nor can they attach any future income or assets. This

is significant because the ability by homeowners to strategically default is a

key driver of our stabilizing mechanism. We will argue first of all that this

restriction accords with actual market practice. In addition, we will briefly

discuss why such restrictions might be optimal when viewed from a broader

perspective.

First, this restriction accords with actual market practice. Deficiency

judgments are essentially prohibited in nine U.S. states, which together ac-

count for over one-third of all mortgage lending (see Pence, 2006, for details.)

In addition, the Federal Housing Administration has a policy of not pursuing

deficiency judgments on loans that it guarantees (making up approximately

10 percent of all mortgages).5 Furthermore, as Capone et al. (1996) point

out, deficiency judgments are rarely carried out even when they are permit-

ted because the borrower can often protect his remaining assets, as well as

his future income, through a bankruptcy filing. In particular, a deficiency

judgment is considered an unsecured debt which can be discharged through

a bankruptcy filing. So if the borrower lives in a state with generous per-

sonal property exemptions, he may well be able to protect sufficient assets

to allow him to purchase a new home. Consistent with this, empirical work

has found that laws allowing deficiency judgments have no effect on lender

losses (Clauretie and Herzog, 1990).

More generally, the restriction on deficiency judgments, and the ability

by borrowers to discharge deficiencies through a bankruptcy filing, may be

viewed as one part of a broader “fresh start” policy. While such restrictions

5Deficiency judgments are also prohibited in some European countries (Austria, Italy,
and the Netherlands); however, even in those countries where the lender is permitted
to collect the outstanding balance, there is typically a time limit on the duration of the
homeowner’s liability (for example, in the UK it is 6 years). For further details, see
European Mortgage Federation (2002).
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on free contracting may appear to be suboptimal from a narrow perspective,

they may be the outcome of a political economy model (Bolton and Rosen-

thal, 2002), or they may result from concerns that free contracting could

leave agents underinsured (Aghion and Hermalin, 1990.)

The other assumption we make is that the debt payments in our model

(in particular the payment due in period 1) are fixed in nominal terms and

cannot be indexed to house prices. This might be important for two related

reasons. First, were agents contractually permitted to pay less when house

prices fell, the incentive to default would be reduced. Additionally, by al-

lowing lenders to offer indexed contracts, they might be able to separate the

two types more easily. Notwithstanding, note that our assumption is con-

sistent with actual practice. Aside from the general reasons why we do not

observe inflation-indexed contracts (see Fisher, 1983, for example) there are

additional factors that explain why in practice contracts are not indexed to

house prices in particular. The most important of these is that the major-

ity of movements in individual house prices are due to idiosyncratic factors,

rather than resulting from aggregate volatility that could be captured by an

index. For example, while the average house price volatility is 10 percent per

year, the OFHEO house price index has a volatility of only 2 percent. This

would obviously make tying payments to an individual house price difficult.6

2.4 Consumer Optimization

We now discuss how strategic consumers optimize in this model.

Consumers take prices for housing as given, as well as interest rates on

their borrowing. They then optimize with respect to these prices and rates.

Recall that the prices are p1u in the top node of period 1 and p1d in the

bottom node, and p2u and p2d in period 2. The interest rate for the initial

6One exception that proves the rule is Stanford University’s Mortgage Assistance Pro-
gram, which is of course highly restricted in scope — both to properties in a very small
geographic area as well as to a narrow class of borrowers (those who are employed by the
university).
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loan, which the agents must repay at the beginning of period 1 (regardless

of the state of nature), will be given by r0. For simplicity we will restrict

attention to parameter values such that there is only default in the bottom

nodes (i.e., when the house price goes down). In particular, we will have

p1u > r0 in equilibrium. As a result, we will focus attention primarily on

the bottom node because that is where default occurs (since p1d < r0); we

briefly discuss the top node of the game in appendix B.

The second period interest rates are ru and rd, for the top and bottom

nodes respectively. Since default can occur in the bottom node of period 1,

lenders will also be able to condition the rate rd on an agent’s repayment

behavior in period 1.

Given these prices and interest rates, agents’ decisions are then:7

• Whether to default on their original loan in a given node of period 1

• Given their default decision, how much to borrow

• Whether or not to repay in the final period (depending on the node

and on how much they borrowed in the previous period)

Note that since lenders observe only whether or not an agent defaults,

and the default penalty is incurred if and only if an agent does not repay

the full amount owed, it will be optimal for borrowers to either repay the

minimum possible (i.e., the collateral value) or else the full amount owed.

7In addition, agents must also allocate their wealth between housing and the numeraire,
but this is straightforward. Recall that the strategic agents consume only housing in period
1. In period 2, since they have quasi-linear utility, with i2 > 2, and since we will have
p2j = 1/2, the agents will consume two units of housing and apply their remaining wealth
to purchasing the numeraire.

13



3 Equilibrium

3.1 The Equilibrium Concept

In this section we discuss the equilibrium in our model. The equilibrium con-

cept we use will need to account both for the strategic interaction between

agents, as well as market-clearing in the housing market.

In particular, we define the equilibrium in this model as follows.

In each period, consumption is determined as the equilibrium outcome of

a “lending game” between borrowers and lenders, where agents take house

prices as given. In this game lenders offer contracts (borrowing amounts and

associated interest rates); in period 1 these offers can also be conditioned on

a borrower’s repayment behavior, since this is public knowledge. Because of

Bertrand competition, we also assume that rates must be set so that lenders

break even in every period.

Finally, we require that house prices be such that housing markets clear,

where consumption is given by the outcome of the lending game, as described

above.

Since this is a model of adverse selection in which pooling and separation

play a major role, we choose to work with the Wilson-Miyazaki equilibrium

of the lending game, as in Miyazaki (1977) and Wilson (1977). A set of con-

tracts will be a Wilson-Miyazaki equilibrium if no contract earns negative

profits for lenders (indeed, because of perfect competition they will actu-

ally break even) and if there is no set of contracts that could be profitably

introduced if all contracts that earn negative profits in its presence were

withdrawn.

This is an appealing solution concept in the context of our model, be-

cause unlike the Nash equilibrium, it allows for pooling equilibria. This

then means that strategic default can occur, because lenders will not ration

the bad types so much that they do not default. By contrast, no pooling

contract can be a Nash equilibrium, as in Rothschild and Stiglitz (1976).
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The reason is that lenders would always have an incentive to offer a slightly

safer contract in order to “cream-skim” the best types; the only contracts

that would be immune to this would be ones that involve so little borrowing

that they are riskless. Note by contrast that such cream-skimming would

not be profitable if the original contract can be withdrawn, which is why

the Wilson-Miyazaki equilibrium admits pooling.8

3.2 Equilibrium of the Lending Game

3.2.1 Borrowing Constraints

Given that agents are free to default, lenders of course impose borrowing

constraints. These constraints must be derived before we can characterize

the equilibrium.

Since lenders must at least break even in each period, they cannot offer

more than the best agent in a given pool would repay. For example, while

it may be the case that the “bad” agents default in a pooling equilibrium,

the good agents must repay, since otherwise lenders would not be able to

break even. As discussed earlier, this constraint is weaker than that which is

assumed in classic financial accelerator models; those models typically rule

out any strategic default whatsoever in equilibrium.

In the initial period (period 0), since the debt is fixed at 2 units, and

agents’ income in the following period is i1 = 1/2, this constraint leads rather

to a restriction on parameter values so as to ensure that the good agents

are able to repay in the low state. That is, in order for the lenders to break

even, we restrict attention to parameters that imply that in equilibrium we

always have 2(r0 − p1d) ≤ i1 = 1/2, with r0 given below.

The constraints are more complicated in period 1. In general, for an

agent whose default cost is known by lenders to be κ and with period-1

8Nevertheless, many of our results would still carry through were we to use Nash
equilibrium, because stabilization also obtains through default in period 1 (which could
still occur since the initial loan is specified exogenously).
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wealth i, the maximal borrowing bmax that is consistent with this agent

repaying in the following period satisfies:

[i + bmax]
p2

p1
− bmax = −κ, (1)

where p1 is the house price in period 1 in this node and p2 its price in the

following period of the same node. The left-hand side is derived by noting

that his spending on housing in period 1 will be i + bmax, and so the value

of his collateral in period 2 will be (i + bmax)p2
p1

; against this he owes bmax

from his period-1 borrowing (the gross interest rate will be rd = 1 because

the constraint ensures that he will repay). The right-hand side is simply the

disutility of defaulting in period 2.

We now focus attention on the bottom node (the top node is discussed

in the appendix). Since an agent who defaults is known to be the bad type

(good types do not default in equilibrium), Eq. (1) will give the borrowing

constraint for these agents. Recall that the bad types have default cost

κ = k; since default will allow these agents to retain all of their income of

i1 = 1/2 (and surrender only their collateral), their borrowing constraint

will be determined by substituting these values into (1), which can then be

solved to yield

bdef
max =

4kp1d + 1
4p1d − 2

(2)

For the pool of agents who do not default in equilibrium, the derivation

of the borrowing constraint is slightly more complicated. First of all, note

that there can be both good and bad types in this pool; since the bad types

may yet default in period 2, the interest rate that must be paid in period

2, rd, is not necessarily equal to 1. In addition, since the agents will have

repaid in period 1, their wealth in this period is actually 1/2 + 2(p1d − r0).

Finally, note that it is now the best agents in the pool (the ones with default

cost κ = 1) to whom lenders refer in determining the borrowing constraint.

As a result, the maximal borrowing is given as the solution bnodef
max to the

16



following equation:

[
1/2 + 2(p1d − r0) + bnodef

max

] p2d

p1d
− bnodef

max rd = −1. (3)

Since we will show below that this constraint never binds in equilibrium, we

do not report the solution to this equation.

3.2.2 Candidate Equilibrium Allocations

We now discuss the equilibrium allocations in the bottom node. We will

show that — depending on the parameter values and the equilibrium housing

price — the equilibrium of the lending game falls into one of three possible

“regimes,” which we term “safe,” “risky,” and “default.” We will provide a

summary of the equilibrium in this section; the detailed derivations can be

found in appendix A.

The three regimes are as follows:

• Safe: All agents repay in period 1 and then borrow the maximal

amount that is consistent with no default in period 2.

• Risky: All agents repay in period 1, but then borrow more than the

safe level, so that the the bad types default in period 2.

• Default: The bad types default in period 1 and then borrow the

maximum possible (bdef
max, as derived in (2) above). The good types

repay and borrow just enough so that the bad types are indifferent to

defaulting.

The first two types of equilibria are both pooling, in which all agents

choose to repay in the first node of the bottom period and then borrow the

same amount. There are two possible types of pooling equilibria.

One possibility is that the second-period borrowing is sufficiently low

that all types repay in period 2 and there is no default; this is the safe

regime. In particular, note that after repaying borrowers are left with wealth
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1/2+2(p1d−1). If the bad types have a default cost of k, then the maximal

borrowing that is consistent with their repaying is

bsafe =
4(1 + k)p1d − 3

4p1d − 2
, (4)

which is the solution to

[
1/2 + 2(p1d − 1) + bsafe

] p2d

p1d
− bsafe = −k.

Alternatively, both types can repay in period 1, but the equilibrium level

of borrowing can be higher, so that the bad types default in period 2; this

is the risky regime. The resulting borrowing in this case will be given by

brisky = 14p1d−3−4 β p1d−8 p2
1d

4p1d−2 , which is greater than bsafe. This is the level

that maximizes the good types’ utility when the types are pooled and the

bad types default in period 1; for further details see Eqs. (A-3) and (A-4)

in appendix A.

Finally, the equilibrium can be separating, with the bad types defaulting

in period 1 and the good types repaying. We call this the default regime.

In this case the bad types will borrow the maximum possible, which is

given by their borrowing constraint bdef
max, as derived in Eq. (2) above. The

equilibrium borrowing for the good types will be the maximum consistent

with separation — that is, the maximum that leaves the bad types willing

to default. We denote this by bdef ≡
6+β−8 p1d

4−2β + (1+2k) p1d

ek (2p1d−1)
, which is derived

in Eq. (A-8) of appendix A.

For given parameter values and house prices, the Wilson-Miyazaki equi-

librium will be characterized by a unique choice of regime. The particular

regime that obtains will be the one that is stable against deviations by both

borrowers and lenders. This must be determined by numerical simulation

using the expressions for the agents’ utilities associated with each regime;

these are derived in appendix A. Using the results in the appendix, we sim-
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ulate the equilibrium for a variety of parameter values9 and summarize the

results in Fig. 2, which is discussed below. In addition, we can also describe

some qualitative features of the equilibrium.

For example, for low house prices the safe regime cannot be an equi-

librium because the bad types would want to default and borrow bdef
max in

preference to repaying and borrowing bsafe. Conversely, the default regime

can only be an equilibrium when house prices are sufficiently low.

Finally, the risky regime exists only when β and k are sufficiently low;

in particular, we show in the appendix (see Eq. (A-5)) that a necessary

condition for the risky regime to exist is that β + 1+2k
2ek ≤ 1. The reason is

that when β is high, i.e., when there are many bad types, the good types find

the bad types’ period-2 default too costly, and a lender can cream-skim them

by offering a more attractive contract in which they borrow less — either

one in which the bad types do not default (i.e., they can deviate to the safe

regime) or else one that separates the bad from the good (a deviation to

the default regime). Similarly, when k is high the bad types may deviate

from the equilibrium by defaulting and then borrowing bdef
max; this will be

profitable because they can borrow relatively more on their own when k is

high.

In Fig. 2 we report the equilibrium regimes that obtain as we vary the

house price for a given pair of parameter values (β, k). For example, as

discussed above, for β + 1+2k
2ek > 1, the risky equilibrium does not exist; as

we go from high house prices (p1d close to 1) to low ones we move from the

safe equilibrium to the default equilibrium. This is referred to in the Figure

as “S-D.” Conversely, for very low values of β and k, the equilibrium will

be risky for any price p1d; this is denoted as “R” in the Figure. Last, for

intermediate values of β and k all regimes can exist; for high house prices

we are in the safe regime, for intermediate ones in the risky regime, and for

low ones we are in the default regime; this is denoted “S-R-D.”

9We use a 50 × 50 grid, with β ∈ [0, 1] and k ∈ [0, 0.5].
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Figure 2: The equilibrium regimes obtained as p1d varies, for selected values
of the bad types’ default cost k and the measure of bad types β.

3.3 General Equilibrium

We now discuss the determination of the market-clearing house prices, given

that agents play a Wilson-Miyazaki equilibrium of the lending game as de-

scribed in the previous section. Recall that lenders set interest rates so that

they earn an expected return of 1 for each unit lent. Thus only the housing

prices p1d, p1u, p2d, p2u need to be determined by market-clearing, given the

strategic agents’ demand for housing implied by the Wilson-Miyazaki equi-

librium of the lending game. We first give the market-clearing conditions

that determine these prices. We then give conditions under which we obtain

a financial decelerator in equilibrium.

Recall that the supply of housing in the second period is 2 units, and

that the non-strategic agents’ spending on housing is 1 (regardless of the

state). Since utility is quasi-linear in the second period and the strategic

consumers are assumed to have sufficient funds in period 2 (i2 > 2), the
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second-period market-clearing house prices will thus be p2u = 1/2 = p2d,

regardless of the state.

In period 1, recall that that the measure of strategic consumers is σ (and

1 − σ for the non-strategic) and that the outside (non-strategic) spending

on housing is δd and δu in the bottom and top nodes, respectively. We will

focus attention on the bottom node; the top node is discussed in appendix

B.

In the safe regime, the strategic agents spend

1/2 + 2(p1d − 1) + bsafe = p1d

(
2 − 1 − 2 k

2 p1d − 1

)
(5)

on housing (see appendix A for further details). So the price in the bottom

node is determined by the following market-clearing condition:

σ

(
2 − 1 − 2k

2p1d − 1

)
+ (1 − σ)

δd

p1d
= 2. (6)

In order to guarantee that equilibrium always exists in this model, we im-

pose assumptions that ensure that the law of demand holds — that is, as the

outside housing demand falls, the equilibrium price falls as well (otherwise,

as we reduce the outside demand δd there may be no price that clears the

market). In order for this to be the case, however, we cannot have too many

strategic consumers, since in the safe regime their borrowing constraints

lead to a financial accelerator in which falling prices actually decrease their

demand. By examining the market-clearing condition in (6) above, we can

deduce that for the parameter values we consider below, it is sufficient for

strategic agents to make up less than two-thirds of the population, i.e.,

Assumption 1: σ < 2/3.

For the risky regime, spending by the strategic agents is similarly

1/2 + 2(p1d − 1) + brisky = p1d

(
2(1− β)
2 p1d − 1

)
(7)
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and so the market-clearing condition is that

σ

(
2(1− β)
2 p1d − 1

)
+ (1− σ)

δd

p1d
= 2. (8)

Finally, in the default regime the bad types default, leaving them with

income 1/2 after defaulting, and borrow a further bmax
def , while the good types

repay (leaving them with income 1/2 + 2(p1d − r0)) and borrow bdef. Since

a fraction β of the strategic types are bad, the total per capita strategic

spending on housing is

β(1/2+bmax
def )+(1−β)

[
1/2 + 2(p1d − r0) + bdef

]
= p1d

(
1 + 2 k

ek (2 p1d − 1)

)
(9)

Thus to clear the housing market we must have

σ

(
1 + 2 k

ek (2 p1d − 1)

)
+ (1 − σ)

δd

p1d
= 2. (10)

4 The Financial Decelerator

In this section we discuss the implications of financial imperfections for the

impact of aggregate fluctuations on house prices. We begin by defining the

financial accelerator and decelerator, then we link them to the various classes

of equilibria presented in the previous sections. We also give conditions

under which strategic default will play a stabilizing role and discuss the

empirical implications of our model.

4.1 Accelerators and Decelerators

The various regimes that we described have very different implications for

the impact of aggregate fluctuations on house prices. Before we explore this

further, we must characterize our benchmark — an unconstrained economy

with no imperfections. The strategic agents’ demand for housing in such an
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economy coincides with that in the risky equilibrium when there are no bad

types (i.e., β = 0), namely, 2
2 p1d−1 as per (7) above.10

Having specified our benchmark, we can now define the financial accel-

erator and decelerator.

Definition: An economy will be characterized by a financial accelerator

in some region if a (small) drop in the non-strategic spending for housing

in the bottom node of period 1 leads to a larger decline in the equilibrium

housing price than in the unconstrained economy. Conversely, if it leads to

a smaller decline in the equilibrium housing price, then we will say that the

economy is characterized by a financial decelerator in this region.

We can now trace out the implications of the different regimes for the

response of equilibrium house prices to changes in the exogenous demand.

When we are in the safe regime, demand for housing by the strategic

consumers is 2− 1−2 k
2 p1d−1 . Observe that as p1d decreases, housing consumption

also goes down; for the parameters we consider in the paper, this is also the

case for spending on housing. The reason housing demand goes down is

that in the safe regime borrowing is determined by the no-default constraint

of the bad types, which gets tighter as the house price falls, because the

agents’ collateralizable wealth declines. This is an instance of the classic

“debt deflation” (Fisher, 1933) and it means that the safe equilibrium will

be characterized by a financial accelerator, for precisely the same reasons as

in the rest of the literature.

In the other two regimes, however, the borrowing constraint no longer

completely eliminates default. We show, moreover, that strategic default

has the effect of stabilizing the economy in these two regimes by precluding

debt deflation; as a result these regimes are not characterized by a financial

accelerator.

In the risky regime, Eq. (7) tells us that the strategic consumers’ hous-

ing demand is 2(1−β)
2 p1d−1 , where now β > 0. This demand is lower than the

10Since the good types’ borrowing constraint does not bind in the risky equilibrium.
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unconstrained spending (by a factor 1 − β); this reflects the good types’

response to free-riding by the bad types. Observe, however, that demand no

longer depends on the agents’ collateralizable wealth, and thus there is no

financial accelerator within this regime; in this sense the economy behaves

as if it were unconstrained. The reason is that now the bad types strategi-

cally default in period 2 equilibrium; this then implies that their collateral

constraint — which led to debt deflation in the safe regime — no longer

binds.

Finally, in the default regime, strategic agents’ housing consumption is

given by 1+2 k
ek (2 p1d−1)

; this is the weighted average of consumption by the good

and bad types as derived in Eq. (9). As in the risky regime, while adverse

selection reduces consumption relative to the first best (now, since k < 1),

the fact that the bad types strategically default (now, in period 1) again

implies that we have no accelerator and the economy responds to shocks as

if it were unconstrained.

In addition, we will now show that in the transition across regimes,

strategic default can sometimes have a decelerating effect. That is, the re-

sponse of the economy to shocks that drive us across regimes will be weaker

than in an unconstrained economy.

First recall that as prices fall we go from the safe, to the risky, and finally

the default regime (although not all of these will necessarily occur for all

parameter values).

When the parameter values are such that the risky equilibrium never

exists, then the transition — from the safe to the default regime — is con-

tinuous.11 The fact that we move from a (safe) equilibrium with a financial

accelerator to an equilibrium (the default regime) without one means that

11To see this, first note that the equilibrium switches from the safe to the default regime
when p = pnodef, as derived in Eq. (A-2). Substituting this price into the expressions for
housing demand in each regime ((5) and (9)) demonstrates that demand in each regime
is identical at this price and so the market-clearing price will be continuous across the
regimes.
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the response of the price and the strategic agents’ demand to changes in

the outside demand δd across this transition will be muted as compared to

the safe regime, but this response will still exceed that of the unconstrained

benchmark (or, equivalently, the response inside the default regime itself).

This may be seen in Fig. 3 below, for example.

In general, however, the risky regime will also exist. By comparing the

demand in the safe and risky regimes ((5) and (7), respectively), we can

conclude that housing demand in the risky regime is always higher when it

exists.12 As a result, the transition from the safe to the risky regime will

in fact be characterized by a financial decelerator. More precisely, the fact

that demand in the risky regime is higher than that in the safe means that

in order to ensure that equilibrium exists as we move across these regimes

we must randomize,13 so in fact housing consumption (and prices) will be

completely inelastic with respect to changes in the outside demand δd during

this transition (see Fig. 4, for example).

Finally, when the house price (or, equivalently, the outside demand) is

sufficiently low, we switch from the risky to the default regime. By compar-

ing (7) and (9) we can see that consumption in the default regime can only

exceed that in the risky regime if β > 1 − 1+2k
2 ek . But as discussed earlier

this implies that the risky regime does not exist,14 a case we covered earlier

and hence rule out here. So going from the risky to the default regime must

entail a drop in aggregate housing demand (and so an accelerator relative

12This is implied by condition (A-6) below.
13In particular, we assume that a fraction γ ∈ (0, 1) of the agents are randomly assigned

to play the risky equilibrium, and a fraction 1−γ play the safe. Here γ is chosen to keep the
market price fixed given the outside demand; at this price the good types are indifferent
between the safe and risky equilibria. In addition, we give lenders the off-equilibrium-path
belief that if an agent deviates, he is assumed to be the bad type. Of course, the bad types
all prefer the risky allocation (since this allows them to borrow more without repaying in
the final period), but since deviating would signal their type to lenders (since the good
types are indifferent), they do not switch. As δd falls, the fraction γ of agents assigned
to the risky regime of course increases, until it reaches 1, at which point we are in a pure
risky regime (and henceforth the price falls as δd drops).

14See Eq. (A-5) for the detailed derivation.
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to the unconstrained case).

Summary: In our model we can have (i) a “standard” accelerator in the

safe regime, (ii) an economy that responds as if it were unconstrained in

the risky and default regimes, and (iii) deceleration or acceleration as the

equilibrium transitions from one regime to another.

4.2 The Financial Decelerator in Equilibrium

By building on the discussion above, we can give the following results, which

establish conditions under which our original intuition holds — that is,

when prices are high we obtain an equilibrium with a financial accelera-

tors, whereas when they are low strategic default stabilizes the economy.

The simplest condition is one that rules out the risky regime (so that

prices do not drop when we switch to the default regime); as discussed above

we know that 1 − 1+2k
2 ek < β suffices (see Eq. (A-5)).

So that our equilibrium exists, we also restrict the variation in outside

demand δd, which simply ensures that (i) in the bottom node the equilibrium

housing price p1d is no greater than 1, and (ii) that i1 + 2p1d ≥ 2r0, so that

default is truly strategic — that is, agents are always able to repay should

they choose to.15

Assumption 2: δd ∈
[

e−k(6+β)(ek(2+β)−2σ(1+2k)
4(2+β)(1−σ) , 2−σ−2kσ

1−σ

]

This then allows us to formulate the following Proposition.

Proposition 1: Given Assumptions 1 and 2, when 1 − 1+2k
2 ek < β then

there exists an equilibrium of this economy in which housing markets clear

and agents play a Wilson-Miyazaki equilibrium of the lending game. For δd

sufficiently high the equilibrium is characterized by the safe regime and for

δd sufficiently low the default regime prevails. Moreover, the safe regime is

characterized by a financial accelerator, and in the default regime strategic

15This is derived from Eqs. (6)-(10).
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default stabilizes the economy so that it responds to shocks as if it were

unconstrained.

It is also not difficult to give conditions that rule out a financial accel-

erator altogether; this requires finding parameters for which only the risky

regime can occur in equilibrium. From the expressions for the good types’

utility in each regime (see (A-9)-(A-11)), this occurs when β and k are suffi-

ciently close to 0, as can also be verified from Fig. 2. Intuitively, the reason

is that with low β the free-riding problem is not severe in the risky regime,

so that it is immune to deviations by either type. Similarly, with low k the

borrowing in the safe and default regimes is low, again making the risky

regime more attractive.

As above, we also impose restrictions on the outside demand that keep

p1d below 1 and also ensure that it is sufficiently high that default is a

strategic decision (p1d > 3/4 suffices in this regime). From the market-

clearing condition (8), we can see that the necessary assumption is as follows:

Assumption 3: δd ∈
[

3(1−2σ(1−β)
2(1−σ) , 2(1−σ(1−β)

(1−σ)

]
.

The following Proposition then summarizes conditions under which we

obtain a risky regime, with neither a financial accelerator nor a decelerator.

Proposition 2: Given Assumption 3, when β and k are both sufficiently

close to 0, there exists an equilibrium in which only a risky regime occurs,

and the economy responds to shocks as if it were unconstrained.

Finally, we consider parameter values for which there is a safe regime

and a risky one, but no default regime. In this case, as discussed above,

there will be a financial accelerator for high house prices but a financial

decelerator as we move into the risky regime (the risky regime itself will

behave as if unconstrained). As above, taking β sufficiently low rules out

the default regime, since it means that it is no longer worthwhile for the

good types to try to separate from the bad types. However, to obtain a

safe regime we must now take k to be sufficiently high; intuitively this is

needed so that the borrowing in the safe regime (which is increasing in k)
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exceeds that in the risky regime when house prices are high. In particular,

from equation (A-6) we need k > 1/2 − β so as to ensure that borrowing

cannot be risky for p1d close to 1. This is illustrated in Fig. 4 below. As

above, in order to ensure that equilibrium exists, we restrict the domain of

the demand shocks:16

Assumption 4: δd ∈ [3(1−2σ(1−β)
2(1−σ) , 2−σ−2kσ

1−σ ].

This then gives us the following Proposition.

Proposition 3: Given Assumptions 1 and 4, when β is sufficiently close

to 0, but k > 1/2 − β, there exists an equilibrium in which either a safe

regime or a risky regime can occur. There is a financial accelerator in the

safe regime, the economy responds to shocks as if it were unconstrained in

the risky regime, and there is a financial decelerator in the transition from

the safe regime to the risky regime.

4.3 Empirical Implications

We now discuss the empirical implications of our model.

First recall that — as discussed in section 4.1 above — a financial ac-

celerator prevails only in the safe regime, i.e. when house prices are high.

So in light of Proposition 1, our model predicts that the response of house

prices to demand shocks should be greater when house prices are high than

when they are low.

We can also derive another, more detailed, empirical implication, namely

that recent reforms in U.S. bankruptcy laws should increase the sensitivity

of house prices to demand shocks. Some have argued (Mann, 2007 and also

White, 2007) that the primary effect of the recent reform of U.S. bankruptcy

laws (the Bankruptcy Abuse Prevention and Consumer Protection Act of

2005) is to make default more costly for borrowers (for example by increas-

ing lawyers’ fees) while leaving the amount actually collected by creditors

16This assumption simply combines the relevant bounds from Assumptions 2 and 3.
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relatively unchanged. We therefore interpret these reforms as having raised

the personal cost of default k.17

We now show that in our model a higher personal default cost k implies a

lower house price for which the transition out of the safe (financial accelera-

tor) regime occurs. To see this, first consider the case in which only the safe

and default regimes exist. Then, as discussed in appendix A, the good types

always prefer the safe regime when feasible, and thus the transition out of

the safe regime occurs at pnodef ≡
1+ek (3−2k)+2 k

4 ek , which is the lowest price

for which the bad types are willing to refrain from defaulting when offered

bsafe. This is decreasing in k, since for higher k defaulting is more costly for

the bad types. Similarly, when the risky regime exists as well, then while

the exact price for which we shift from the safe to the risky equilibrium must

be calculated numerically, we can nevertheless see that this cutoff must be

decreasing in k. The reason is that the utility18 the good types receive in

the safe regime, log
[

3+2 k−4 p1d
1−2 p1d

]
− k, is increasing in k for the parameter

values that we consider, whereas the utility they accrue in the risky regime,

given by (A-10), does not depend on k.

Thus these reforms imply that we are more likely to be in the safe regime,

with its financial accelerator, and less likely to observe a financial deceler-

ator. So our model predicts that, on average, house prices should now be

more sensitive to shocks.

17To be precise, the cost of a bankruptcy filing affects the decision to default on a secured
mortgage in two ways. First of all, as discussed above, in states that permit deficiency
judgments, homeowners use bankruptcy filings to limit the amount lenders can take from
their other assets. In addition, as is well-known (Leonard, 1999) chapter 13 bankruptcy
filings are often used by homeowners in distress as a way to slow down the foreclosure
process — either to give them time to become current on their payments or else simply
to extend the period during which the borrower can remain in his home without making
payments. Jacoby (2007) discusses the possible impact of the recent bankruptcy reform
on foreclosures.

18This expression is obtained by substituting the expression for bsafe into the good
types’ utility (A-9) in this case.
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5 Examples

In this section we present several examples that illustrate the possible types

of equilibria that can occur in our model. We will initially take half the

population to be strategic consumers (σ = 0.5) and assume the default cost

for the bad types is k = 0.4; this gives us the widest possible range of

equilibria.

The first case we consider is β = 0.4. Referring to Fig. 2 above and

Proposition 1, we can see that these parameters correspond to region S-D,

that is, the safe regime for high values of p1d and the default regime for low

values. This combination occurs because (i) with a relatively high value of k

(k = 0.4) it is not too costly for the good types to restrict their borrowing to

the level at which the bad still repay and (ii) with many bad types (β = 0.4)

the risky equilibrium — in which the bad types default — would be very

costly for the good types. As discussed in Proposition 1, in this case we

have a financial accelerator for high values of the house price, but strategic

default then stabilizes the economy for lower prices.

We begin by choosing the per capita spending by the outside sector δd

so as to calibrate the model at p1d = 1. We then lower δd; the results are

plotted in Fig. 3 below. As we do so, the price clearly falls. Observe that

the slope is relatively steep; this reflects the financial accelerator in the safe

regime.

When we reach p1d = pnodef = 0.85,19 the bad types no longer wish to

repay and we switch to the default regime. In the default regime the slope

of the price as a function of δ is less steep — indeed, as discussed above this

regime behaves as if it were unconstrained. The reason is that when the bad

types default in period 1, their wealth in this period no longer decreases as

the house price falls. Although lenders recoup some of their losses in the

form of a higher interest rate (paid by the good types, who do not default),

19pnodef is the lowest price that is consistent with a safe equilibrium; see Eq. (A-2).
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the rest is paid in the top node (where the price is much higher). Thus

the net effect on consumption in the bottom node is positive relative to the

safe regime — that is, default endogenously serves as a stabilizing force and

there is no longer a financial accelerator.

Figure 3: The response of house prices to a change in outside demand δd when
β = 0.4 (and k = 0.4 and σ = 0.5). The equilibrium shifts from the safe regime to
the default regime at p1d = 0.85. The safe regime is characterized by a financial
accelerator, but strategic default serves as a stabilizing force in the default regime.

Now suppose that β = 0.1. These parameters correspond to the case in

which there is no default regime (Fig. 2 and Proposition 3). For high prices

we are in the safe regime, with its financial accelerator, and for low prices,

we are in the risky regime. Once again default serves as a stabilizing force,

although this time it is default in period 2; that is, for low prices the good

types find it too costly to restrict their borrowing to the safe level. Observe

that there is now a flat region in the transition between the safe and risky

regimes — this is a clear example of the financial deceleration that results
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from the bad types’ strategic default. We plot the response of p1d in Fig. 4.

Figure 4: The response of house prices to a change in outside demand δd when
β = 0.1 (and k = 0.4 and σ = 0.5). Borrowing is such that the risky agents default
in period 2 for p1d ≤ 0.88. This additional borrowing serves as a stabilizing force
in the risky regime, and there is a financial decelerator in the transition from the
safe to the risky regime.

Finally, let β = 0.15 and σ = 0.1.20 In this case, as we vary the outside

demand and hence the market-clearing house price, all of the regimes can

occur; this is plotted in Fig. 5. As we move from the safe to the risky regime,

the economy behaves just as in the previous example. Notice, however, that

there is also a discrete jump down in p1d when we switch from the risky to

the default regime. Finally, recall from the first example that in the default

20We needed to lower the fraction of strategic agents in this example so that the non-
convexity that occurs when we switch from the risky to the default regime does not force
us into the region where the good agents would default as well.
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regime demand is higher than in the safe regime and there is no financial

accelerator either.

Figure 5: The response of house prices to a change in outside demand δd when
β = 0.15 (and k = 0.4 and σ = 0.1). The equilibrium shifts from the safe regime
to the risky regime at p1d = 0.85 and then to the default regime at p1d = 0.79.

6 Conclusion

In this paper we have developed a model of secured borrowing in which a

drop in the value of the underlying collateral can generate strategic default,

which in turn can serve to stabilize aggregate fluctuations because it leaves

agents with more wealth precisely when the house price is lowest. Strategic

default arises in equilibrium because the presence of adverse selection means

that default is not always ruled out by binding borrowing constraints.

Our model has the following empirical implications. First, it predicts

that the response of house prices to demand shocks should be greater when
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prices are high than when they are low. The model also implies that, by rais-

ing the cost to borrowers of defaulting, the recent reform of U.S. bankruptcy

laws should make house prices more sensitive to shocks.

There are several directions in which this model could be extended. One

interesting avenue would be to endogenize the partially collateralized debt

contract agents use to borrow. This paper also simplifies the effect of default

on the banking sector — obviously a rash of bank failures induced by a

sharp increase in borrower default could have serious consequences. Finally,

it would be interesting to interact our stabilizer with a simple model of

investment in which home equity serves to secure business loans, as does

indeed seem to be increasingly common. Such a model would also generate

interesting tradeoffs and might allow our mechanism to engender positive

real effects for the economy as a whole.

7 Appendix A - Derivation of the Equilibrium

In this appendix we characterize the equilibrium of the lending game.

It is useful to first study the behavior of the bad types when they default

in the bottom node of period 1, since this will affect the decisions of both

agents. Now, if the agents default, they are unambiguously identified as bad

(since the good types never default) and so the borrowing constraint ensures

that they will never be able to borrow so much that they default in period

2; they thus face an interest rate of rd = 1.

Given their quasi-linear preferences, conditional on being in the bottom

node of period 1 they would like to borrow b so as to maximize

log[(i1 + b)/p1d] + (i1 + b)
p2d

p1d
− b,

subject to their borrowing constraint b ≤ bdef
max ≡ 4kp1d+1

4p1d−2 (derived in (2)

above). Given that p2d = 1/2 and i1 = 1/2, the optimal value is b = 2p1+1
4p1−2 .

This is never less than the constrained level bdef
max whenever k ≤ 1/2, so the

34



borrowing constraint will always bind when the bad types default and they

will indeed borrow bdef
max.

The resulting utility for these agents will then be

log

[
1/2 + bdef

max

p1d

]
− 2k = log

[
1 + 2k

2p1d − 1

]
− 2k; (A-1)

the term −2k results from the fact that (i) the agents are defaulting in

period 1, and then (ii) borrowing their maximum into period 2 (the maximal

borrowing leaves them indifferent to defaulting or not in period 2, hence the

extra −k).

We now turn our attention to the characterization of the equilibrium

regimes, which are determined by the borrowing in period 1 and repayment

behavior in period 2. Recall that the Wilson-Miyazaki equilibrium must be

immune to the introduction of new contracts that attract either the good

or bad type; we will first ensure that the bad types do not want to deviate

from the candidate equilibrium; we then determine when these regimes are

also robust to deviations by the good types.

1. Safe Regime

First of all, we may be in a pooling equilibrium — in this case both

types repay their initial loan in period 1. One type of pooling equilib-

rium is characterized by borrowing that is sufficiently restricted that

the bad type also does not default in period 2; we term this the “safe

regime” since there will be no default in either period.

From the borrowing constraint given in (1), this would necessitate the

borrowing to be no more than bsafe, defined by:

[
1/2 + 2(p1d − 1) + bsafe

] p2d

p1d
− bsafe = −k.

This is determined by noting that (i) the bad type has default cost

k, (ii) the post-repayment period-1 wealth of the agents in this pool
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is 1/2 − 2(p1d − 1) and finally, (iii) the interest rate in period 2 is

rd = 1, since there is no default by construction. The solution to this

is bsafe = 4(1+k)p1d−3
4p1d−2 , which was already given in (4) above.

The Wilson-Miyazaki equilibrium must in fact be characterized by

borrowing up to this maximum. Were this not the case, then a lender

could profitably attract both types by offering a slightly larger loan;

this would be accepted by both types given their income of i = 1/2

and the second-period house price of p2d = 1/2.21

It is important to note that this is an admissible candidate equilibrium

only when the bad types do not want to deviate by defaulting. For

the bad types to be willing to repay in period 1, it must be the case

that the utility they derive from repaying and pooling with the good

types is at least as high as the utility — given in (A-1) above — that

they get from defaulting and separating themselves.

That is, the bad types will repay when

log[
(
1/2 + 2(p1d − 1) + bsafe

)
/p1d] − k ≥ log

[
1 + 2k

2p1d − 1

]
− 2k

i.e.,

log
[
2 +

1 − 2k

1 − 2p1d

]
− k ≥ log

[
1 + 2k

2p1d − 1

]
− 2k.

Solving this, we can determine that the bad agents are willing to repay

when p1d is above

pnodef ≡
1 + ek (3− 2 k) + 2 k

4 ek
. (A-2)

For the extreme case of k = 0 we have pnodef = 1, which means that

the bad agents would never want to repay under these terms (and so

this regime would not exist). In general, however, pnodef will be below

21To see this, note that since the bad types’ borrowing constraint binds when they
default, it will also bind here (for both types) when they repay and have lower income.
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1, since a higher k both makes default more costly and increases the

maximal safe borrowing level.

2. Risky Regime

Another type of pooling equilibrium occurs when everyone repays in

period 1, but the borrowing in period 1 is high enough that the bad

types default in period 2.

Given period-1 borrowing b, the interest rate rd that is payable in

period 2 is now the solution to the following equation:

b = (1 − β)brd + β(1/2 + 2(p1d − 1) + b)
p2d

p1d

The left-hand side is the amount b that is borrowed; on the right we

have the amount repaid. This expression is derived as follows. There

is a measure 1− β of good types, who repay b · rd, which is the entire

loan plus interest. Conversely the bad types default and repay only

their collateral, which is worth (1/2+2(p1d− 1)+ b)p2d
p1d

in period 2. It

is not hard to derive a closed-form expression for rd; in the interests

of space it will not be reported.

In order to be a Wilson-Miyazaki equilibrium, the borrowing b must

be immune to the introduction of new contracts that attract either the

good types or the bad. We begin with the good types.

The good types’ utility as a function of their borrowing b is

log
[
1/2 + 2(p1d − 1) + b

p1d

]
+ [1/2 + 2(p1d − 1) + b]

p2d

p1d
− rdb (A-3)

and the value of b that maximizes this expression is

brisky =
14 p1d − 3 − 4 β p1d − 8 p2

1d

4 p1d − 2
. (A-4)

There are, however, two constraints that must be satisfied. First,
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brisky cannot exceed the good types’ borrowing constraint bnodef
max , as

derived in (3) above. For the parameter values we consider, however,

it can be shown that this borrowing constraint never binds for the

good types.22

In addition, brisky must also be immune to the introduction of con-

tracts that attract the bad types. In our case, this means that the bad

types must (weakly) prefer repaying over defaulting in period 1. That

is, we must have

log
[

1 + 2k

2p1d − 1

]
− 2k ≤ log

[
1/2 + 2(p1d − 1) + brisky

p1d

]
− k;

the left-hand side of this expression is the utility risky agents accrue

when they default in period 1, as calculated in (A-1), while the right-

hand side is the utility they obtain from repaying and then borrowing

brisky. Substituting the expression in (A-4) above, it can be shown

that this occurs if and only if the fraction of bad types β satisfies

β ≤ 1 − 1 + 2 k

2 ek
. (A-5)

That is, we must have β and k sufficiently small for the bad types to

be willing to repay. The reason is that with high k the bad types can

borrow a lot when they default; similarly, when β is high, the adverse

selection problem is relatively severe when they repay and so brisky
will be low, which again makes repayment unattractive.

Finally, brisky will be an admissible candidate allocation only for house

prices p1d that are sufficiently low. The reason is that for this regime

22The reason is that since the good types have κ = 1, their borrowing constraint only
binds when p1d < 3/4. However, since we focus attention on cases in which default is
strategic (i.e., in which the agents can repay should they choose to do so), we must in fact
restrict attention to parameter values that lead to risky equilibria with p1d ≥ 3/4 (see
Assumption 2 above).

38



to exist, by definition borrowing must be risky, that is, it must exceed

the safe level of borrowing bsafe (derived above). When β + k ≤ 1/2

this holds for all values of p1d < 1 (because when β and k are low,

the safe borrowing level is low relative to the risky level, as discussed

below). More generally, we must have

p1d ≤ 5
4
− β + k

2
(A-6)

for the risky regime to exist.

3. Default Regime

Finally, the equilibrium may also be separating; that is, the bad types

may default in period 1 while the good repay. In this case we would

have rd = 1 (this time because we are in a separating equilibrium),

but now the initial interest rate r0 would be above 1. In particular,

the initial interest rate r0 that those agents who do not default must

pay is determined by the lenders’ break-even constraint:

1/2× r0 + 1/2× [(1− β)r0 + βp1d] = 1

This states that the total expected payment per unit must equal the

amount borrowed. The agents all repay in the top node (which occurs

with probability 1/2). In addition, in the bottom node all of the good

types (measure 1−β) repay. The bad types (of measure β) default and

surrender their collateral, which is worth p1d per unit. Observe that

lenders always break even in expectation in every period (i.e., over the

two nodes). If there is default in the bottom node of period 1, for

example, so that the bad types do not repay, this raises the interest

rate r0, which must be paid by all agents in the top node, and by the

good types in the bottom node as well (so it can potentially affect

their consumption).
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The solution to this equation is r0 = 2−βp1d
2−β > 1.

As we have mentioned earlier, since the focus of this paper is on strate-

gic default, we will want to restrict attention to parameter values for

which the agents are able to repay; that is, for which i1 + 2p1d ≥ r0.

Given this expression for r0, we must restrict attention to parameters

that yield p1d ≥ 6+β
8 in equilibrium.

This is an admissible candidate equilibrium only when the bad types

do indeed prefer to default. That is, the utility that the bad types

receive from defaulting in period 1 — calculated in (A-1) above —

must exceed what they would receive from repaying and then pooling

with the good types. This implies a restriction both on the good types’

borrowing (it must not be too high) as well as on the house price p1d

(it must be sufficiently low).

In particular, for default to (weakly) dominate for the bad types, the

good types’ borrowing must leave the bad types indifferent to default-

ing; that is, it must be no more than bdef, as defined by

log
[

1 + 2k

2p1d − 1

]
− 2k = log

[
1/2 + 2(p1d − r0) + bdef

p1d

]
− k, (A-7)

where the right-hand side is the utility the bad types would receive

from repaying in period 1 and mimicking the good types.

The solution to this equation is given by

bdef ≡
6 + β − 8 p1d

4 − 2 β
+

(1 + 2 k) p1d

ek (2 p1d − 1)
; (A-8)

it is easy to see that since this is below the good types’ optimum, this

constraint will in fact bind and the good types will indeed borrow bdef
in this case.

As mentioned above, for this to be an admissible candidate equilib-

rium, house prices must also be low enough that the bad types are
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indeed willing to default. The reason is that the bad types always

have another alternative available to them, which is to repay, but then

borrow the “safe” level bsafe that was derived in (4) above; they could

do this even if lenders are aware of their type. When p1d is sufficiently

high, the bad types’ income after repaying would also be fairly high

and so bsafe would actually exceed bdef. In particular, for the bad

types to be willing to default we must have p1d below

pdef ≡
6 + β − 4 k + 2 β k + (2−β) (1+2 k)

ek

8
;

this is obtained simply by setting bsafe equal to bdef and then solving

for p1d.

Intuitively, this cutoff is decreasing in the bad types’ default cost k

(it is again equal to p1d = 1 when k = 0). It is also decreasing in

the fraction of bad types β, because the more bad types there are,

the higher the initial interest rate r0 and thus the more attractive

it is to default. Now, it is not hard to show that pdef > pnodef,
23

which means that at least one of these regimes will always exist (and

so equilibrium will also always exist).

We have presented the candidate regimes. In addition, for fixed param-

eters β and k, and house price p1d, we have given conditions under which

one or more of these regions will be admissible in the sense that they are

immune to deviations by the bad type. However, it must also be impossible

for any new contract to attract the good types (while being profitable for

lenders after all unprofitable contracts are withdrawn). In other words, the

Wilson-Miyazaki equilibrium allocation will be the one associated with the

regime that maximizes the good types’ utility in the bottom node, subject

to no deviation by the bad types. These utilities are given by the following

23This reflects the non-convexity inherent in this model; when all of the bad types
default, the interest rate is higher, which makes repaying less attractive.
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expressions:

Safe: log
[

1/2+2(p1d−1)+bsafe
p1d

]
− k (A-9)

Risky: log
[

1/2+2(p1d−1)+brisky
p1d

]
+

[
1/2 + 2(p1d − 1) + brisky

]
p2d

p1d
− rdbrisky (A-10)

Default: log
[

1/2+2(p1d−r0)+bdef
p1d

]
+

[
1/2 + 2(p1d − r0) + bdef

]
p2d

p1d
− bdef (A-11)

Now, by substituting the expressions for bsafe and bdef into the above,

one can determine that the utility (A-9) that the good types accrue in the

safe regime always exceeds that received in the default regime (A-11) when-

ever p > pnodef, where recall that pnodef, given by (A-2) above, is the

lowest price for which the safe regime is immune to deviation by the bad

types. This implies that whenever the risky regime does not exist (so that

we are in case S-D), the good types prefer the safe regime whenever feasible,

and thus the transition from the safe to the default regime occurs precisely

at pnodef. More generally, however, the determination of which regime is

immune to deviations by the good types while still satisfying the bad types’

participation constraints must be made using numerical simulation. As de-

scribed in section 3.2.2, we carry out these calculations for a selection of

parameter values (β, k), and report which regimes obtain as we vary the

house price in Fig. 2 above.

8 Appendix B - the Top Node

In this section we briefly discuss the top node.

From our derivation of the first-period interest rate in the previous sec-

tion, we can see that it is never more than r0 = 9
8 . In order to keep the

analysis focused on the bottom node, we will restrict attention to parame-

ters in which it is not optimal for agents to default in the top node, neither

in period 1 nor period 2; this will be a pooling equilibrium in which both
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types behave in exactly the same way. For this it is sufficient to assume

that the outside demand δu is chosen so as to ensure that p1u > 11
8 . This

will imply that the collateral in period 1 is sufficient to cover the required

payment of 2r0. In addition, this assumption will also ensure that agents

are sufficiently wealthy that they do not want to borrow so much that they

default in period 2. Their borrowing can be determined by deriving their

first-order conditions for this node.
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